WO2013140551A1 - 太陽電池及び太陽電池モジュール - Google Patents

太陽電池及び太陽電池モジュール Download PDF

Info

Publication number
WO2013140551A1
WO2013140551A1 PCT/JP2012/057198 JP2012057198W WO2013140551A1 WO 2013140551 A1 WO2013140551 A1 WO 2013140551A1 JP 2012057198 W JP2012057198 W JP 2012057198W WO 2013140551 A1 WO2013140551 A1 WO 2013140551A1
Authority
WO
WIPO (PCT)
Prior art keywords
solar cell
resin
mass
electrode
conductive material
Prior art date
Application number
PCT/JP2012/057198
Other languages
English (en)
French (fr)
Inventor
翔士 佐藤
毅 西脇
Original Assignee
三洋電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三洋電機株式会社 filed Critical 三洋電機株式会社
Priority to PCT/JP2012/057198 priority Critical patent/WO2013140551A1/ja
Publication of WO2013140551A1 publication Critical patent/WO2013140551A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022425Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/048Encapsulation of modules
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/05Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells
    • H01L31/0504Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells specially adapted for series or parallel connection of solar cells in a module
    • H01L31/0512Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells specially adapted for series or parallel connection of solar cells in a module made of a particular material or composition of materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • the present invention relates to a solar cell and a solar cell module.
  • Patent Document 1 describes a solar cell having an electrode formed of a silver paste.
  • the main object of the present invention is to provide a solar cell having improved moisture resistance.
  • the solar cell according to the present invention includes a photoelectric conversion unit and an electrode.
  • the electrode is disposed on the photoelectric conversion unit.
  • the electrode includes a conductive material and a resin.
  • the ratio of the mass of the resin to the mass of the conductive material in the electrode ((the mass of the resin) / (the mass of the conductive material)) is 6/94 or less.
  • the solar cell module according to the present invention includes a solar cell, a first protection member, a second protection member, and a sealing material.
  • the first protective member is disposed on one side of the solar cell.
  • the second protective member is disposed on the other side of the solar cell.
  • the sealing material is disposed between the first protective member and the second protective member.
  • the sealing material seals the solar cell.
  • a solar cell has a photoelectric conversion part and an electrode.
  • the electrode is disposed on the photoelectric conversion unit.
  • the electrode includes a conductive material and a resin. The ratio of the mass of the resin to the mass of the conductive material in the electrode ((the mass of the resin) / (the mass of the conductive material)) is 6/94 or less.
  • a solar cell having improved moisture resistance can be provided.
  • FIG. 1 is a schematic cross-sectional view of a solar cell module according to an embodiment of the present invention.
  • FIG. 2 is a schematic plan view of a solar cell in one embodiment of the present invention.
  • FIG. 3 is a schematic rear view of the solar cell in one embodiment of the present invention.
  • FIG. 4 is a graph showing the fill factor (FF) of the solar cell modules produced in each of Examples 1 and 2 and the comparative example.
  • the solar cell module 1 has a plurality of solar cells 10 electrically connected by a wiring material 11.
  • the wiring member 11 and the solar cell 10 are bonded by a resin adhesive layer 12 containing a cured product of a resin adhesive.
  • the solar cell module may have only one solar cell.
  • the solar cell 10 has a photoelectric conversion unit 10a.
  • the photoelectric conversion unit 10a generates carriers such as electrons and holes when receiving light.
  • the photoelectric conversion unit 10a may generate a carrier only when light is received on one main surface 10a1.
  • the photoelectric conversion unit 10a may generate power not only when light is received on one main surface 10a1 but also when light is received on the other main surface 10a2.
  • the photoelectric conversion unit 10a may include a substrate made of a semiconductor material.
  • the photoelectric conversion unit 10a may include, for example, a crystalline silicon plate, and a p-type semiconductor layer and an n-type semiconductor layer disposed on the crystalline silicon plate.
  • the photoelectric conversion unit 10a may be configured by a crystalline silicon plate having a p-type dopant diffusion region and an n-type dopant diffusion region exposed on the surface.
  • first and second electrodes 21 and 22 are disposed on the photoelectric conversion unit 10a. Specifically, the first electrode 21 is disposed on the main surface 10a1. The second electrode 22 is disposed on the main surface 10a2. One of the first and second electrodes 21 and 22 is an electrode that collects majority carriers, and the other is an electrode that collects minority carriers.
  • the first electrode 21 has a plurality of finger portions 21a and a bus bar portion 21b.
  • the plurality of finger portions 21a are arranged at intervals from each other along the x-axis direction.
  • the plurality of finger portions 21a are electrically connected to the bus bar portion 21b.
  • the first electrode 21 is electrically connected to the wiring member 11 mainly in the bus bar portion 21b.
  • the second electrode 22 has a plurality of finger portions 22a and a bus bar portion 22b.
  • the plurality of finger portions 22a are spaced apart from each other along the x-axis direction.
  • the plurality of finger portions 22a are electrically connected to the bus bar portion 22b.
  • the second electrode 22 is electrically connected to the wiring member 11 mainly at the bus bar portion 22b.
  • a transparent conductive oxide layer 31 is disposed between the first electrode 21 and the main surface 10a1.
  • the transparent conductive oxide layer 31 is disposed so as to cover substantially the entire main surface 10a1.
  • a transparent conductive oxide layer 32 is disposed between the second electrode 22 and the main surface 10a2.
  • the transparent conductive oxide layer 32 is disposed so as to cover substantially the entire main surface 10a2.
  • the transparent conductive oxide layers 31 and 32 can be made of indium tin oxide (ITO), for example.
  • a first protective member 14 is disposed on one side of the solar cell 10.
  • a second protection member 15 is disposed on the other side of the solar cell 10.
  • a sealing material 13 is disposed between the first protection member 14 and the second protection member 15.
  • the solar cell 10 is sealed by the sealing material 13.
  • At least one of the first and second protection members 14 and 15 is made of a resin sheet.
  • at least one of the first and second protective members 14 and 15 is made of a resin sheet that does not include a barrier layer such as a metal layer or an inorganic oxide layer.
  • the 1st protection member 14 located in the light-receiving surface side of the solar cell 10 is comprised with the glass plate, the ceramic plate, or the resin plate.
  • the 2nd protection member 15 located in the back surface side of the solar cell 10 consists of a resin sheet which does not contain barrier layers, such as a metal layer and an inorganic oxide layer.
  • the sealing material 13 can be composed of, for example, a crosslinkable resin such as ethylene / vinyl acetate copolymer or a non-crosslinkable resin such as polyolefin.
  • the mass of the resin with respect to the mass of the conductive material is 7/93 or more. This is because if the resin content is too small, for example, the wettability with respect to solder becomes poor, and the connectivity of the electrode and the wiring material by solder is thought to deteriorate.
  • the present inventors have found that when the mass ratio of the resin to the conductive material is too large, the moisture resistance of the solar cell decreases.
  • the inventors of the present invention have found that the moisture resistance of the solar cell tends to be lowered particularly when the electrode is provided on the transparent conductive oxide layer.
  • One reason for this is that as a result of the deterioration of the resin due to moisture, the adhesion between the electrode and the photoelectric conversion part or the transparent conductive oxide layer is reduced, resulting in a gap between the electrode and the photoelectric conversion part or the transparent conductive oxide layer. It is conceivable that the electrical resistance at the interface increases.
  • the ratio of the mass of the resin to the mass of the conductive material in the electrodes 21 and 22 ((the mass of the resin) / (the mass of the conductive material)) is 6/94 or less. For this reason, as can be understood from the results of Examples and Comparative Examples described later, improved moisture resistance can be realized.
  • the ratio of the mass of the resin to the mass of the conductive material in the electrodes 21 and 22 ((the mass of the resin) / (the mass of the conductive material)) is more preferably 4/96 or more. In this case, further improved moisture resistance can be realized.
  • One possible reason for this is that the adhesive strength between the electrodes 21 and 22 and the transparent conductive oxide layers 31 and 32 decreases when the resin content in the electrodes 21 and 22 decreases too much.
  • At least one of the first and second protective members 14 and 15 is made of a resin sheet.
  • the moisture permeability of at least one of the first and second protective members 14 and 15 is high. Therefore, moisture easily enters the sealing material 13. Therefore, the electrodes 21 and 22 are likely to come into contact with moisture. Therefore, it is effective to keep the contents of the conductive material and the resin in the electrodes 21 and 22 within the above preferable range.
  • the wiring member 11 and the solar cell 10 are bonded not by solder but by a resin adhesive layer 12. For this reason, even if the resin content in the electrodes 21 and 22 is small and the solder wettability of the electrodes 21 and 22 is low, the adhesion strength between the wiring member 11 and the solar cell 10 does not decrease.
  • the conductive material contained in the electrodes 21 and 22 preferably contains, for example, silver or copper.
  • the conductive material is preferably made of an alloy containing at least one of silver, copper, silver, and copper.
  • the resin contained in the electrodes 21 and 22 preferably contains at least one of an epoxy resin and a urethane resin, for example.
  • a solar cell module (Example 1) in which the mass ratio of the conductive material and the resin is 95: 5
  • a solar cell module (comparative example) having a mass ratio of the material and the resin of 93: 7 was produced.
  • the solar cell module produced in each of Examples 1 and 2 and the comparative example was left in an atmosphere of 85% humidity and 85 ° C., and the case where the leaving time was zero hours and 1000 hours respectively.
  • the fill factor (FF) was measured. The result is shown in FIG. F. shown in FIG. F. Is the F. when the standing time of each solar cell module is zero hours.
  • F. Is a value normalized with 1 as the value.
  • the moisture resistance is improved by setting the ratio of the mass of the resin to the mass of the conductive material in the electrode to 6/94 or less. It can be seen that the moisture resistance is further improved by setting the ratio of the mass of the resin to the mass of the conductive material in the electrode in the range of 6/94 to 4/96.
  • the electrode may be arranged immediately above the photoelectric conversion unit. That is, the transparent conductive oxide layer may not be disposed between the electrode and the photoelectric conversion unit.
  • the electrode may be provided in a planar shape.
  • the solar cell may be a back junction solar cell.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Photovoltaic Devices (AREA)

Abstract

 改善された耐湿性を有する太陽電池を提供する。 太陽電池10は、光電変換部10aと、電極21とを備える。電極21は、光電変換部10aの上に配されている。電極21は、導電材と樹脂とを含む。電極21における導電材の質量に対する樹脂の質量の比((樹脂の質量)/(導電材の質量))が6/94以下である。

Description

太陽電池及び太陽電池モジュール
 本発明は、太陽電池及び太陽電池モジュールに関する。
 特許文献1には、銀ペーストにより形成された電極を有する太陽電池が記載されている。
特開2009-253096号公報
 太陽電池の耐湿性を向上させたいという要望がある。
 本発明は、改善された耐湿性を有する太陽電池を提供することを主な目的とする。
 本発明に係る太陽電池は、光電変換部と、電極とを備える。電極は、光電変換部の上に配されている。電極は、導電材と樹脂とを含む。電極における導電材の質量に対する樹脂の質量の比((樹脂の質量)/(導電材の質量))が6/94以下である。
 本発明に係る太陽電池モジュールは、太陽電池と、第1の保護部材と、第2の保護部材と、封止材とを備える。第1の保護部材は、太陽電池の一方側に配されている。第2の保護部材は、太陽電池の他方側に配されている。封止材は、第1の保護部材と第2の保護部材との間に配されている。封止材は、太陽電池を封止している。太陽電池は、光電変換部と、電極とを有する。電極は、光電変換部の上に配されている。電極は、導電材と樹脂とを含む。電極における導電材の質量に対する樹脂の質量の比((樹脂の質量)/(導電材の質量))が6/94以下である。
 本発明によれば、改善された耐湿性を有する太陽電池を提供することができる。
図1は、本発明の一実施形態に係る太陽電池モジュールの略図的断面図である。 図2は、本発明の一実施形態における太陽電池の略図的平面図である。 図3は、本発明の一実施形態における太陽電池の略図的裏面図である。 図4は、実施例1,2及び比較例のそれぞれにおいて作製した太陽電池モジュールの曲線因子(F.F.)を表すグラフである。
 以下、本発明を実施した好ましい形態の一例について説明する。但し、下記の実施形態は、単なる例示である。本発明は、下記の実施形態に何ら限定されない。
 また、実施形態等において参照する各図面において、実質的に同一の機能を有する部材は同一の符号で参照することとする。また、実施形態等において参照する図面は、模式的に記載されたものであり、図面に描画された物体の寸法の比率などは、現実の物体の寸法の比率などとは異なる場合がある。図面相互間においても、物体の寸法比率等が異なる場合がある。具体的な物体の寸法比率等は、以下の説明を参酌して判断されるべきである。
 図1に示されるように、太陽電池モジュール1は、配線材11により電気的に接続された複数の太陽電池10を有する。配線材11と太陽電池10とは、樹脂接着剤の硬化物を含む樹脂接着層12により接着されている。もっとも、太陽電池モジュールは、ひとつの太陽電池のみを有していてもよい。
 太陽電池10は、光電変換部10aを有する。光電変換部10aは、受光した際に電子や正孔などのキャリアを生成させる。光電変換部10aは、一主面10a1において受光した際にのみキャリアを発生させるものであってもよい。光電変換部10aは、一主面10a1において受光した際のみならず、他主面10a2において受光した際にも発電するものであってもよい。光電変換部10aは、例えば、半導体材料からなる基板を有するものであってもよい。具体的には、光電変換部10aは、例えば、結晶シリコン板と、結晶シリコン板の上に配されたp型半導体層及びn型半導体層とを有していてもよい。光電変換部10aは、表面に露出したp型ドーパント拡散領域とn型ドーパント拡散領域とを有する結晶シリコン板により構成されていてもよい。
 図2及び図3に示されるように、光電変換部10aの上には、第1及び第2の電極21,22が配されている。具体的には、第1の電極21は、主面10a1の上に配されている。第2の電極22は、主面10a2の上に配されている。これら第1及び第2の電極21,22のうちの一方が、多数キャリアを収集する電極であり、他方が、少数キャリアを収集する電極である。
 第1の電極21は、複数のフィンガー部21aと、バスバー部21bとを有する。複数のフィンガー部21aは、x軸方向に沿って相互に間隔をおいて配されている。複数のフィンガー部21aは、バスバー部21bに電気的に接続されている。第1の電極21は、主としてこのバスバー部21bにおいて配線材11に電気的に接続されている。
 第2の電極22は、複数のフィンガー部22aと、バスバー部22bとを有する。複数のフィンガー部22aは、x軸方向に沿って相互に間隔をおいて配されている。複数のフィンガー部22aは、バスバー部22bに電気的に接続されている。第2の電極22は、主としてこのバスバー部22bにおいて配線材11に電気的に接続されている。
 第1の電極21と主面10a1との間には、透明導電性酸化物層31が配されている。透明導電性酸化物層31は、主面10a1の実質的に全体を覆うように配されている。第2の電極22と主面10a2との間には、透明導電性酸化物層32が配されている。透明導電性酸化物層32は、主面10a2の実質的に全体を覆うように配されている。透明導電性酸化物層31,32は、それぞれ、例えば、インジウムスズ酸化物(ITO)等により構成することができる。
 図1に示されるように、太陽電池10の一方側には、第1の保護部材14が配されている。太陽電池10の他方側には、第2の保護部材15が配されている。第1の保護部材14と第2の保護部材15との間には、封止材13が配されている。この封止材13によって太陽電池10が封止されている。第1及び第2の保護部材14,15の少なくとも一方は、樹脂シートにより構成されている。具体的には、第1及び第2の保護部材14,15の少なくとも一方は、金属層や無機酸化物層などのバリア層を含まない樹脂シートからなる。より具体的には、太陽電池10の受光面側に位置する第1の保護部材14は、ガラス板、セラミック板または樹脂板により構成されている。太陽電池10の裏面側に位置する第2の保護部材15は、金属層や無機酸化物層などのバリア層を含まない樹脂シートからなる。封止材13は、例えば、エチレン・酢酸ビニル共重合体などの架橋性樹脂や、ポリオレフィンなどの非架橋性樹脂により構成することができる。
 一般的に、導電材及び樹脂を含む電極において、導電材の質量に対する樹脂の質量は、7/93以上とされている。これは、樹脂の含有量が少なすぎると、例えば半田に対する濡れ性が劣悪になり、電極と配線材との半田による接続性が悪化すると考えられていたためである。
 しかしながら、本発明者らは、鋭意研究の結果、導電材に対する樹脂の質量比が大きすぎると、太陽電池の耐湿性が低下することを見出した。本発明者らは、特に、電極が透明導電性酸化物層上に設けられている場合は、太陽電池の耐湿性が低下しやすいことを見出した。この一因としては、水分による樹脂の劣化に伴い、電極と光電変換部や透明導電性酸化物層との密着性が低下した結果、電極と光電変換部や透明導電性酸化物層との間の界面における電気抵抗が増大することが考えられる。
 太陽電池モジュール1においては、電極21,22における導電材の質量に対する樹脂の質量の比((樹脂の質量)/(導電材の質量))が6/94以下である。このため、後述する実施例及び比較例の結果からも理解されるように、改善された耐湿性を実現することができる。電極21,22における導電材の質量に対する樹脂の質量の比((樹脂の質量)/(導電材の質量))は、4/96以上であることがより好ましい。この場合、さらに改善された耐湿性を実現することができる。この一因としては、電極21,22における樹脂の含有量が少なくなりすぎると、電極21,22と透明導電性酸化物層31,32との接着強度が低下することが考えられる。
 特に、太陽電池モジュール1では、第1及び第2の保護部材14,15の少なくとも一方が、樹脂シートにより構成されている。このため、第1及び第2の保護部材14,15の少なくとも一方の水分透過度が高い。よって、封止材13中に水分が浸入しやすい。従って、電極21,22が水分と接触しやすい。よって、電極21,22における導電材と樹脂の含有量を上記の好適な範囲にしておくことが効果的である。
 太陽電池モジュール1では、配線材11と太陽電池10とが、半田ではなく、樹脂接着層12により接着されている。このため、電極21,22における樹脂の含有量が少なく、電極21,22の半田濡れ性が低くても、配線材11と太陽電池10との密着強度の低下は生じない。
 電極21,22に含まれる導電材は、例えば、銀や銅を含むことが好ましい。具体的には、導電材は、銀、銅、銀及び銅の少なくとも一方を含む合金からなることが好ましい。
 電極21,22に含まれる樹脂は、例えば、エポキシ樹脂及びウレタン樹脂の少なくとも一方を含むことが好ましい。
 実際に、導電材と樹脂の質量比が95:5である太陽電池モジュール(実施例1)と、導電材と樹脂の質量比が97:3である太陽電池モジュール(実施例2)と、導電材と樹脂の質量比が93:7である太陽電池モジュール(比較例)とを作製した。実施例1,2及び比較例のそれぞれにおいて作製した太陽電池モジュールを、湿度85%、温度85℃の雰囲気中に放置し、放置時間がゼロ時間である場合と1000時間である場合とのそれぞれにおける曲線因子(F.F.)を測定した。その結果を図4に示す。図4に示すF.F.は、各太陽電池モジュールの放置時間=ゼロ時間のときのF.F.を1として規格化した値である。
 図4に示す結果から、電極における導電材の質量に対する樹脂の質量の比を6/94以下とすることにより耐湿性が改善されることが分かる。電極における導電材の質量に対する樹脂の質量の比を6/94~4/96の範囲にすることにより、耐湿性がさらに改善されることが分かる。
 (変形例)
 電極は、光電変換部の直上に配されていてもよい。すなわち、電極と光電変換部との間に透明導電性酸化物層が配されていなくてもよい。電極は、面状に設けられていてもよい。太陽電池は、裏面接合型の太陽電池であってもよい。
1…太陽電池モジュール
10…太陽電池
10a…光電変換部
11…配線材
12…樹脂接着層
13…封止材
14…第1の保護部材
15…第2の保護部材
21…第1の電極
22…第2の電極
31,32…透明導電性酸化物層

Claims (7)

  1.  光電変換部と、
     前記光電変換部の上に配されており、導電材と樹脂とを含む電極と、
    を備え、
     前記電極における前記導電材の質量に対する前記樹脂の質量の比((樹脂の質量)/(導電材の質量))が6/94以下である、太陽電池。
  2.  請求項1に記載の太陽電池であって、
     前記電極における前記導電材の質量に対する前記樹脂の質量の比((樹脂の質量)/(導電材の質量))が4/96以上である、太陽電池。
  3.  請求項1または2に記載の太陽電池であって、
     前記電極と前記光電変換部との間に配された透明導電性酸化物層をさらに備える、太陽電池。
  4.  請求項1~3のいずれか一項に記載の太陽電池であって、
     前記導電材が銀を含み、
     前記樹脂が、エポキシ樹脂及びウレタン樹脂の少なくとも一方を含む、太陽電池。
  5.  太陽電池と、
     前記太陽電池の一方側に配された第1の保護部材と、
     前記太陽電池の他方側に配された第2の保護部材と、
     前記第1の保護部材と前記第2の保護部材との間に配されており、前記太陽電池を封止している封止材と、
    を備え、
     前記太陽電池が、
     光電変換部と、
     前記光電変換部の上に配されており、導電材と樹脂とを含む電極と、
    を有し、
     前記電極における前記導電材の質量に対する前記樹脂の質量の比((樹脂の質量)/(導電材の質量))が6/94以下である、太陽電池モジュール。
  6.  請求項5に記載の太陽電池モジュールであって、
     前記第1及び第2の保護部材の少なくとも一方が、樹脂シートにより構成されている、太陽電池モジュール。
  7.  請求項5または6に記載の太陽電池モジュールにおいて、
     複数の前記太陽電池と、
     前記太陽電池を配線材により電気的に接続している配線材と、
     前記配線材と前記太陽電池とを接着している樹脂接着層と、
    を備える、太陽電池モジュール。
PCT/JP2012/057198 2012-03-21 2012-03-21 太陽電池及び太陽電池モジュール WO2013140551A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/057198 WO2013140551A1 (ja) 2012-03-21 2012-03-21 太陽電池及び太陽電池モジュール

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/057198 WO2013140551A1 (ja) 2012-03-21 2012-03-21 太陽電池及び太陽電池モジュール

Publications (1)

Publication Number Publication Date
WO2013140551A1 true WO2013140551A1 (ja) 2013-09-26

Family

ID=49222045

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/057198 WO2013140551A1 (ja) 2012-03-21 2012-03-21 太陽電池及び太陽電池モジュール

Country Status (1)

Country Link
WO (1) WO2013140551A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005244171A (ja) * 2003-11-28 2005-09-08 Kyocera Corp 光電変換装置および光電変換アレイならびに光発電装置
JP2005276939A (ja) * 2004-03-23 2005-10-06 Sanyo Electric Co Ltd 光起電力装置
JP2007224191A (ja) * 2006-02-24 2007-09-06 Sanyo Electric Co Ltd 導電性ペースト組成物及びそのペースト組成物を用いた太陽電池セル、並びにそのセルを用いた太陽電池モジュール

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005244171A (ja) * 2003-11-28 2005-09-08 Kyocera Corp 光電変換装置および光電変換アレイならびに光発電装置
JP2005276939A (ja) * 2004-03-23 2005-10-06 Sanyo Electric Co Ltd 光起電力装置
JP2007224191A (ja) * 2006-02-24 2007-09-06 Sanyo Electric Co Ltd 導電性ペースト組成物及びそのペースト組成物を用いた太陽電池セル、並びにそのセルを用いた太陽電池モジュール

Similar Documents

Publication Publication Date Title
JP6586080B2 (ja) 太陽電池モジュールおよびその製造方法
JP5687506B2 (ja) 太陽電池及び太陽電池モジュール
JP5874011B2 (ja) 太陽電池及び太陽電池モジュール
JP6145884B2 (ja) 太陽電池モジュール
US9564547B2 (en) Solar cell module and method of manufacturing the same
EP3242334B1 (en) Solar cell module
JP7291715B2 (ja) 太陽電池デバイスおよび太陽電池モジュール
WO2013140552A1 (ja) 太陽電池モジュール
KR101694553B1 (ko) 태양 전지 모듈
JPWO2019202958A1 (ja) 太陽電池デバイスおよび太陽電池デバイスの製造方法
US20150027532A1 (en) Solar cell, solar cell module and method of manufacturing solar cell
US9059357B2 (en) Bifacial solar cell
WO2012073802A1 (ja) 太陽電池セル及び太陽電池モジュール
WO2013140551A1 (ja) 太陽電池及び太陽電池モジュール
WO2016084299A1 (ja) 太陽電池セル及び太陽電池モジュール
WO2012124463A1 (ja) 太陽電池及び太陽電池モジュール
WO2013183148A1 (ja) 太陽電池、太陽電池モジュール、太陽電池の製造方法及び太陽電池モジュールの製造方法
JP5906422B2 (ja) 太陽電池及び太陽電池モジュール
WO2013031298A1 (ja) 太陽電池モジュール及びその製造方法
JP5975447B2 (ja) 太陽電池モジュール
WO2013136424A1 (ja) 太陽電池モジュール
KR20150041930A (ko) 태양전지 모듈

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12872063

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12872063

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP