WO2013140066A1 - Capteur de temperature - Google Patents

Capteur de temperature Download PDF

Info

Publication number
WO2013140066A1
WO2013140066A1 PCT/FR2013/050528 FR2013050528W WO2013140066A1 WO 2013140066 A1 WO2013140066 A1 WO 2013140066A1 FR 2013050528 W FR2013050528 W FR 2013050528W WO 2013140066 A1 WO2013140066 A1 WO 2013140066A1
Authority
WO
WIPO (PCT)
Prior art keywords
seal
sensor
housing
guide means
electrical wires
Prior art date
Application number
PCT/FR2013/050528
Other languages
English (en)
Inventor
Jean Sannier
Stéphane MASSIERA
Marc Seigneur
Original Assignee
Sc2N
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sc2N filed Critical Sc2N
Priority to JP2015500961A priority Critical patent/JP2015512513A/ja
Priority to US14/382,767 priority patent/US9816879B2/en
Priority to EP13715316.9A priority patent/EP2828630A1/fr
Priority to CN201380015002.1A priority patent/CN104204745B/zh
Priority to KR20147028589A priority patent/KR20140136035A/ko
Publication of WO2013140066A1 publication Critical patent/WO2013140066A1/fr

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K13/00Thermometers specially adapted for specific purposes
    • G01K13/02Thermometers specially adapted for specific purposes for measuring temperature of moving fluids or granular materials capable of flow
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K1/00Details of thermometers not specially adapted for particular types of thermometer
    • G01K1/08Protective devices, e.g. casings
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K7/00Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements
    • G01K7/16Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements using resistive elements
    • G01K7/22Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements using resistive elements the element being a non-linear resistance, e.g. thermistor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K13/00Thermometers specially adapted for specific purposes
    • G01K13/02Thermometers specially adapted for specific purposes for measuring temperature of moving fluids or granular materials capable of flow
    • G01K13/024Thermometers specially adapted for specific purposes for measuring temperature of moving fluids or granular materials capable of flow of moving gases
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K7/00Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements
    • G01K7/16Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements using resistive elements
    • G01K2007/163Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements using resistive elements provided with specially adapted connectors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K2205/00Application of thermometers in motors, e.g. of a vehicle
    • G01K2205/04Application of thermometers in motors, e.g. of a vehicle for measuring exhaust gas temperature

Definitions

  • the present invention relates to a temperature sensor, especially for measuring high temperatures, for example greater than 900 ° C, or even 1000 ° C.
  • the invention applies in particular to temperature sensors adapted to measure the temperature of motor vehicle gases such as exhaust gases or gases in the engine compartment.
  • Such sensors generally comprise a temperature sensitive element, such as a thermistor, connected to the outside to an electrical / electronic circuit for operating a measurement signal via electrical wires.
  • a temperature sensitive element such as a thermistor
  • such a sensor comprises at one end a thermistor housed in a protective housing.
  • Two first electrical wires in contact with this thermistor run along the protective housing to be accessible outside thereof and to provide electrical information representative of the resistance of the thermistor and therefore the measured temperature.
  • the first electrical son are connected, for example via an electrical connection piece in the form of a lug, to second electrical son used to provide the electrical connection with the electrical / electronic circuit.
  • the connection between the first and second electric son is performed in an electrical insulating device.
  • Such a sensor being used in particular in the exhaust line or in the engine compartment, it is exposed to a very hostile environment due to a corrosive environment and projections of oil or water. It is therefore important to ensure a good seal vis-à-vis the outside, especially at the second electrical son.
  • this seal is provided by a seal in the sensor zone opposite to the temperature-sensitive element and having two parallel passage channels for the second electrical son.
  • the protective housing is crimped onto the seal to insulate the sensor interior from the outside environment.
  • the second electrical son used to provide the electrical connection with the electrical circuit / Electronics even covered by a sheath, may not be protected against a severe fold leading to locally severe deformations and thus to the degradation or rupture of the son.
  • the sheath can be introduced into the sensor housing.
  • this solution makes it possible to limit the risk of creases and to ensure continuous coverage of the second wires, this solution has the disadvantage of lengthening the sensor housing.
  • the introduction of the sheath in the sensor housing forced to have a double crimping, on the one hand the crimping of the housing on the seal, and on the other hand the crimping on the sheath for holding of the sheath.
  • the length between the innermost face of the seal and the end of the housing can be doubled compared to a standard sensor.
  • this has the disadvantage of bringing the electrical insulator and the connections between the first and second electrical son of the hot zone of the sensor located around the sensitive element.
  • the invention therefore aims to at least partially overcome these disadvantages of the prior art by providing a sensor for guiding and protecting the second son output of the sensor.
  • the subject of the invention is a temperature sensor for a motor vehicle comprising:
  • a housing defining an internal volume comprising a temperature-sensitive element
  • said sensor further comprises a guiding means integral with said seal for guiding said electrical wires at the output of said sensor.
  • Said sensor may further comprise one or more of the following features, taken separately or in combination:
  • said guide means is made in one piece with said seal
  • said seal has a generally substantially cylindrical shape and said guide means is in the extension of said seal in the longitudinal direction of said seal towards the outside of said sensor housing;
  • said guide means has a substantially cylindrical general shape with a diameter smaller than the diameter of said seal
  • said guide means extends out of the housing of said sensor
  • said guide means extends at least partially inside the housing of said sensor
  • said guide means is configured to be covered with an insulating sheath
  • said guide means is a body comprising passage channels for the electric wires
  • passage channels are recesses in the body of the guide means for the passage of their respective electrical wire
  • said guide means is made of elastomer
  • said sensor housing is crimped onto said seal.
  • the invention further relates to a temperature sensor for a motor vehicle comprising:
  • a housing defining an internal volume comprising a temperature sensitive element, electrical wires electrically connected to said temperature-sensitive element and configured to transmit temperature information of said sensitive element to the outside of the housing,
  • said sensor further comprising guide means secured to said seal for guiding said electrical wires at the output of said sensor, said guide means extending in the extension of said seal in the longitudinal direction of said seal from a central zone of said joined outwardly of said sensor housing, and the cross-section of said guide means being smaller in size than that of the cross-section of the seal, at least a portion of said guide means extending out of the housing .
  • This sensor may comprise one or more of the preceding characteristics, taken separately or in combination.
  • FIG. 1 represents a view in longitudinal section of a sensor according to the invention
  • FIG. 2 is a perspective view of a seal and its extension
  • FIG. 3 is a perspective view of the seal and its extension partially surrounding electric wires at the output of the sensor.
  • FIG. 1 shows a temperature sensor 1 comprising a protective casing 3 of generally tubular shape housing, from a closed end:
  • thermocouple such as a thermocouple or a thermistor 5
  • first two electrical wires 7 connected to two second electric wires 9 serving to provide the electrical connection with, for example, an electric / electronic circuit of a processing unit, for conveying thereto the temperature signal supplied by the thermistor 5;
  • an electrical insulator 11 at the level of the electrical connection of the first 7 and second 9 electrical wires.
  • the protective housing 3 further comprises a seal 13 partially surrounding the two second electrical wires 9 at the opposite end of the sensor 1 with respect to the thermistor 5, and a means 15 for guiding the two second electrical wires 9 sensor output 1.
  • the protective housing 3 is for example crimped on the seal 13 defining an internal volume comprising the temperature-sensitive element, the first two electrical wires 7, the electrical insulation 11 and at least a portion of the gasket. sealing 13 and second electrical wires 9.
  • the protective housing 3 is made of a metal material resistant to high temperatures, such as an alloy of chromium, nickel and iron type Inconel ® 601 (trademark) or refractory steel.
  • the housing 3 may comprise a first portion 3a at the thermistor 5 and a second portion 3b with a larger diameter than the first portion 3a at the connection area of the first 7 and second 9 Electric wires.
  • This housing 3 may comprise a fastening system 17 on a wall (not shown) delimiting a medium whose temperature is to be known, such as the cylinder head of an engine.
  • the fastening system 17 may include an outer stop 19 and a clamping means such as a screw 21 for clamping the stop 19 against a bearing surface complementary to the wall defining the medium to be measured.
  • Thermistor 5 is a passive component of semiconductor material whose resistance varies as a function of temperature.
  • the thermistor 5 may be of the CTN type, negative temperature coefficient (or NTC, Negative Temperature Coefficient) when the resistance decreases as a function of the rise in temperature or type CTP, positive temperature coefficient (or PTC, Positive Temperature Coefficient in English) in the opposite case, such as a platinum thermistor.
  • the first electrical wires 7 can be held in an insulating sheath 23 having an associated passage channel 25 for each first electric wire 7 so that they are insulated from each other and held by the insulating sheath 23.
  • the insulating sheath 23 is for example of generally elongate shape, the longitudinal direction of which corresponds to the longitudinal direction of the first electric wires 7.
  • This sheath 23 may comprise a casing of generally cylindrical shape, so as to be able to fit the tubular-shaped wall, for example of the first part 3a, of the protective casing 3 and be held by the latter.
  • the sheath 23 is internally made of electrically insulating ceramic material and resistant to heat, and outside for example refractory steel.
  • the first electrical wires 7 each have one end connected to the thermistor 5 and an opposite end connected to a second electrical wire 9.
  • the first electrical wires 7 can be connected to the second electrical wires 9 via an electrical connection piece 27, for example in the form of a pod.
  • the second son 9 may have a larger diameter and be made of less noble materials than the first son 7 to reduce costs.
  • the second electrical wires 9 are for example intended to be connected to a conjugate connector (not shown) remote from the sensor 1.
  • the electrical insulator 11 also has a generally cylindrical shape so as to marry the tubular wall, for example the second portion 3b, the protective housing 3 and be held by it.
  • the electrical insulator 11 is made of electrically insulating ceramic material and resistant to heat.
  • steatite is used. It is also possible to provide an electrical insulator 11 made of a plastic material resistant to high temperatures.
  • the electrical insulator 11 comprises two housings 29 for receiving the connecting terminals 27 as well as firstly two first passage channels 31 for the first electrical wires 7 and secondly two second passageways 33 for the second electric wires 9.
  • the second passage channels 33 for the second electric wires 9 have a greater diameter than the diameter of the wires.
  • the electrical insulator 11 arranged at the level of the connection between the first 7 and the second 9 electrical wires makes it possible to electrically isolate the two connection terminals 27 with respect to one another and also with respect to the housing 3.
  • the insulator 11 limits the translational movement of the terminal lugs 27 in order to prevent traction on the second electrical wires 9 from causing ejection or deterioration of the internal components of the sensor 1.
  • the electrical insulator 11 is placed in abutment against the seal 13.
  • the seal 13, for its part is for example made of elastomer.
  • silicone or fluorocarbon may be chosen as the material.
  • the seal 13 has a substantially cylindrical general shape so as to marry the tubular wall, for example the second portion 3b, the protective housing 3 and to be maintained by it.
  • the cylindrical seal 13 thus has a sleeve shape.
  • the seal 13 partially surrounds the second electrical wires 9, and to do this, the seal 13 may have two passage channels 35 of the second electrical wires 9.
  • the housing 3 of the sensor 1 is for example crimped on the seal 13 so as to isolate the sensitive element 5 relative to the outside of the housing 3.
  • the guide means 15 it is arranged at the end of the seal 13 opposite the end of the seal 13 in abutment against the electrical insulator 11.
  • the guide means 15 is therefore arranged on the side of the sensor 1 opposite the side housing the sensitive element 5.
  • the guide means 15 may have a generally cylindrical general shape with its longitudinal axis substantially parallel to the longitudinal axis of the sensor 1.
  • the guide means 15 is integral with the seal 13.
  • the guide means 15 is integral with the housing 3 via the seal 13 without necessarily crimping the housing on the guide means 15.
  • the guiding means 15 guides the second electrical wires 9 at the output of the sensor 1. It is understood that such a guide means 15 arranged at the output of the sensor housing 3 ensures the maintenance of the second electrical wires 9 at the output of the sensor 1 and protects against severe bending radii likely to damage the second son 9 and accelerate their wear.
  • the guide means 15 is made of a flexible material.
  • the guiding means 15 improves the protection against severe radii of curvature by avoiding the presence of a folding point which would damage the electrical wires 9.
  • the guiding means 15 can be made of elastomer.
  • the guide means 15 is in the extension of the seal 13 in the longitudinal direction of the seal 13 and towards the outside of the sensor housing 3.
  • the guide means 15 is for example made in one piece with the seal 13 (see Figures 2-3), for example by molding.
  • the extension 15 could also be an additional piece fixed, for example by gluing, to the seal 13 to ensure the protective function of the second electrical son 9 at the exit of the seal 13.
  • this additional piece could be in a material different from that of the seal 13.
  • the guide means 15 can be thinned with respect to the seal 13 and therefore have a diameter smaller than the diameter of the seal 13. Furthermore, the guide means 15 may have a length within a range length of the order of 10 to 25 mm. In order to guide the second electrical wires 9 at the output of the sensor 1, the guide means 15 at least partially surrounds the two second electrical wires 9 at the outlet of the seal 13.
  • the guide means 15 may comprise two passage means for the two second electrical wires 9. More particularly, the guide means 15 is a body having passage channels for the electrical wires 9. This guide means 15 thus makes it possible to separate the two second electric wires 9.
  • passage means may for example be made in the form of closed passageways, similarly to the channels 35 formed in the seal 13.
  • the passage means can be opened.
  • the passage means are made by recess in the body of the guide means 15 as illustrated in Figures 2 and 3. More specifically, the body, for example cylindrical, of the guide means 15 has two recesses 37 of each side for the passage of the two second electric wires 9.
  • an insulating sheath (not shown) may be provided to cover the guiding means 15 and the second electrical wires 9.
  • This insulating sheath may, for example, be of generally elongate shape, the longitudinal direction of which corresponds to the longitudinal direction of the second ones. electrical wires 9.
  • the sheath improves the protection of the second electrical wires 9.
  • the guide means 15 thus makes it possible to guide the second electrical wires 9 and this insulating sheath (not shown) at the output of the sensor 1.
  • the guiding means 15 protects the 9 son and the sheath of severe radii of curvature.
  • the guiding means 15 extends longitudinally out of the sensor housing 3.
  • the guide means 15 holds the second wires 9 and thus protects them against a fold which can lead to their degradation. or their break.
  • the guiding means 15 extends out of the internal volume defined by the crimping of the protective casing 3 on the seal 13.
  • the sensor housing 3 may be standard since it is not necessary to bring the connection lugs 27 and the insulator 1 1 of the thermistor 5 together or to lengthen the rear part of the sensor housing 3.
  • the guide means 15 can be received at least partially or completely inside the housing 3 of the sensor 1.
  • the guide means 15 covered with the sheath penetrate into the housing 3, improves the protection of electrical wires against wrinkles.
  • the guide means 15 made by extending the seal 13 is covered with sheath and is received in the housing 3 of the sensor, it is not necessary to provide additional crimping since the housing 3 of the sensor 1 is already crimped on the seal 13.
  • the invention is not limited to the examples described.
  • the sensor may not include first electric wires 7, the second wires 9 being then configured to be directly connected to the thermistor 5.
  • the seal 13 and the guide means 15 have a generally substantially cylindrical shape.
  • the seal 13 and the guide means 15 may have other shapes.
  • they could be of substantially parallelepiped shape.
  • the seal 13 preferably extends in a direction, called the longitudinal direction. This direction may correspond to a direction of insertion of the seal 13 in the sensor 1.
  • the transverse dimension of the seal 13 is shaped to ensure a seal of the sensor 1 when the seal 13 is mounted in the housing 3.
  • the guide means 15 may then be in the extension of the seal 13 in the longitudinal direction of the seal.
  • the guide means 15 is connected to the seal 13 at a central zone of the seal 13.
  • the guide means 15 forms a core around which the son 9 come to bear to be guided at the output of the sensor 1
  • the cross-section of the means of The guide 15 is smaller than the cross section of the seal 13.
  • the guide means 15 can be hinged more easily than the seal 13, which reduces the pulling stresses of the son 9 This size differential protects the seal / guide assembly. Indeed, if the seal 13 and the guide means 15 had identical sections, this would cause higher stresses in the joint assembly / guide means during reciprocating electric wires 9 around their central position (movements of the same type). jumping rope). A radial tear may appear prematurely. Repetitive motion could also cause a cut caused by the end of the housing 3.
  • the guiding means 13 makes it possible to guide the wires 9 at the output of the sensor 1, that is to say outside the housing 3.
  • the guiding means 3 may comprise at least one portion extending out of the housing 3 so as to improve the output guidance of the sensor.
  • the senor 1 may comprise a means for holding the electrical wires 9 on the guiding means, such as glue, a collar or a sheath surrounding the electric wires 9.
  • the passageways of the guide means are recesses 37 therein.
  • Each recess 37 may form a channel whose wall matches at least a portion of the periphery of its respective wire 9 so as to contribute to the maintenance of the wire 9 therein.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Measuring Temperature Or Quantity Of Heat (AREA)

Abstract

-14- BRT0854 (CFR0495) ABREGE DESCRIPTIF L'invention concerne un capteur (1) de température pour véhicule automobile comportant : -un boîtier (3) définissant un volume interne comprenant un élément sensible (5) à la température, -des fils électriques (9) reliés électriquement audit élément sensible (5) à la température et configurés pour transmettre une information de température dudit élément sensible (5) à l'extérieur du boîtier (3), -un joint d'étanchéité (13) entourant partiellement lesdits fils électriques (9) de façon à isoler l'élément sensible (5) par rapport à l'extérieur du boîtier (3), le joint d'étanchéité 13 s'étendant préférentiellement suivant une direction, dite direction longitudinale, Selon l'invention, ledit capteur (1) comporteen outre un moyen de guidage (15) solidaire dudit joint d'étanchéité (13) pour le guidage desdits fils électriques (9) en sortie dudit capteur, ledit moyen de guidage (15) s'étendant dans le prolongement dudit joint d'étanchéité (13) selon la direction longitudinale dudit joint d'étanchéité (13) depuis une zone centrale du joint (13) en direction de l'extérieur dudit boîtier (3) de capteur,et la section transversale dudit moyen de guidage (15)étant de dimension inférieure à celle de la section transversale du joint d'étanchéité (13)), au moins une portion dudit moyen de guidage (15) s'étendant hors du boîtier. FIGURE:

Description

Capteur de température
La présente invention concerne un capteur de température, notamment pour mesurer des températures élevées, par exemple supérieures à 900°C, voire à 1000°C.
L'invention s'applique en particulier aux capteurs de température adaptés pour mesurer la température des gaz de véhicules automobiles tels que les gaz d'échappement ou les gaz dans le compartiment moteur.
De tels capteurs comprennent généralement un élément sensible à la température, tel qu'une thermistance, relié vers l'extérieur à un circuit électrique / électronique d'exploitation d'un signal de mesure via des fils électriques.
A titre d'exemple, un tel capteur comprend à une extrémité une thermistance logée dans un boîtier de protection. Deux premiers fils électriques en contact avec cette thermistance cheminent le long du boîtier de protection pour être accessibles à l'extérieur de celui-ci et pour fournir une information électrique représentative de la résistance de la thermistance et par conséquent de la température mesurée. Pour cela, les premiers fils électriques sont reliés, par exemple par l'intermédiaire d'une pièce de liaison électrique sous forme d'une cosse, à des seconds fils électriques servant à assurer la liaison électrique avec le circuit électrique / électronique. Généralement la liaison entre les premiers et seconds fils électriques est réalisée dans un dispositif isolant électrique.
Un tel capteur étant utilisé notamment dans la ligne d'échappement ou dans le compartiment moteur, il est exposé à un milieu très hostile du fait d'un environnement corrosif et des projections d'huile ou d'eau. Il est donc important d'assurer une bonne étanchéité vis-à-vis de l'extérieur, en particulier au niveau des seconds fils électriques.
Selon une solution connue, cette étanchéité est assurée grâce à un joint d'étanchéité dans la zone du capteur opposée à l'élément sensible à la température et présentant deux canaux de passage parallèles pour les seconds fils électriques. Le boîtier de protection est serti sur le joint d'étanchéité pour isoler l'intérieur du capteur de l'environnement extérieur.
Par ailleurs, en sortie du capteur c'est-à-dire en sortie du joint d'étanchéité, les seconds fils électriques servant à assurer la liaison électrique avec le circuit électrique / électronique, même couverts par une gaine, peuvent ne pas être protégés contre un pli sévère menant à des déformations localement sévères et donc à la dégradation, voire à la rupture, des fils.
Selon une solution connue, la gaine peut être introduite dans le boîtier du capteur.
Bien que cette solution permette de limiter le risque de pli et d'assurer une couverture continue des seconds fils, cette solution présente l'inconvénient d'allonger le boîtier du capteur.
En effet, l'introduction de la gaine dans le boîtier du capteur contraint d'avoir un double sertissage, d'une part le sertissage du boîtier sur le joint d'étanchéité, et d'autre part le sertissage sur la gaine pour la tenue de la gaine. Dans ce cas, la longueur entre la face la plus interne du joint d'étanchéité et l'extrémité du boîtier peut être doublée par rapport à un capteur standard.
A longueur de capteur égale, ceci présente l'inconvénient de rapprocher l'isolant électrique et les connexions entre les premiers et seconds fils électriques de la zone chaude du capteur localisée autour de l'élément sensible.
Ces composants étant sensibles à la température, il est en général préféré d'allonger l'arrière du capteur pour ne pas augmenter la température maximale sur ces composants. Toutefois, cet allongement arrière du boîtier du capteur peut poser des problèmes d'encombrement et de coûts du capteur.
L'invention a donc pour objectif de pallier au moins partiellement ces inconvénients de l'art antérieur en proposant un capteur permettant de guider et de protéger les seconds fils en sortie du capteur.
À cet effet, l'invention a pour objet un capteur de température pour véhicule automobile comportant :
un boîtier définissant un volume interne comprenant un élément sensible à la température,
des fils électriques reliés électriquement audit élément sensible à la température et configurés pour transmettre une information de température dudit élément sensible à l'extérieur du boîtier,
un joint d'étanchéité entourant partiellement lesdits fils électriques de façon à isoler l'élément sensible par rapport à l'extérieur du boîtier,
caractérisé en ce que ledit capteur comporte en outre un moyen de guidage solidaire dudit joint d'étanchéité pour le guidage desdits fils électriques en sortie dudit capteur.
Ledit capteur peut en outre comporter une ou plusieurs des caractéristiques suivantes, prises séparément ou en combinaison :
-ledit moyen de guidage est réalisé d'une seule pièce avec ledit joint d'étanchéité ;
-ledit joint d'étanchéité présente une forme générale sensiblement cylindrique et ledit moyen de guidage est dans le prolongement dudit joint d'étanchéité selon la direction longitudinale dudit joint d'étanchéité en direction de l'extérieur dudit boîtier de capteur ;
-ledit moyen de guidage présente une forme générale sensiblement cylindrique de diamètre inférieur au diamètre dudit joint d'étanchéité ;
-ledit moyen de guidage s'étend hors du boîtier dudit capteur ;
-ledit moyen de guidage s'étend au moins partiellement à l'intérieur du boîtier dudit capteur ;
-ledit moyen de guidage est configuré pour être couvert d'une gaine isolante ;
-ledit moyen de guidage est un corps comportant des canaux de passage pour les fils électriques ;
-lesdits canaux de passage sont des décrochements dans le corps du moyen de guidage pour le passage de leur fil électrique respectif ;
-ledit moyen de guidage est réalisé en élastomère ;
-ledit boîtier de capteur est serti sur ledit joint d'étanchéité.
L'invention concerne en outre un capteur de température pour véhicule automobile comportant :
- un boîtier définissant un volume interne comprenant un élément sensible à la température, - des fils électriques reliés électriquement audit élément sensible à la température et configurés pour transmettre une information de température dudit élément sensible à l'extérieur du boîtier,
- un joint d'étanchéité entourant partiellement lesdits fils électriques de façon à isoler l'élément sensible par rapport à l'extérieur du boîtier, le joint d'étanchéité s 'étendant préférentiellement suivant une direction, dite direction longitudinale, ledit capteur comportant en outre un moyen de guidage solidaire dudit joint d'étanchéité pour le guidage desdits fils électriques en sortie dudit capteur, ledit moyen de guidage s'étendant dans le prolongement dudit joint d'étanchéité selon la direction longitudinale dudit joint d'étanchéité depuis une zone centrale du joint en direction de l'extérieur dudit boîtier de capteur, et la section transversale dudit moyen de guidage étant de dimension inférieure à celle de la section transversale du joint d'étanchéité, au moins une portion dudit moyen de guidage s'étendant hors du boîtier.
Ce capteur peut comporter une ou plusieurs des caractéristiques précédentes, prises séparément ou en combinaison.
D'autres caractéristiques et avantages de l'invention ressortiront de la description suivante, donnée à titre d'exemple, sans caractère limitatif, en regard des dessins annexés sur lesquels :
- la figure 1 représente une vue en coupe longitudinale d'un capteur selon l'invention,
- la figure 2 est une vue en perspective d'un joint d'étanchéité et de son prolongement,
- la figure 3 est une vue en perspective du joint d'étanchéité et de son prolongement entourant partiellement des fïls électriques en sortie du capteur.
Dans ces figures les éléments sensiblement identiques portent les mêmes numéros de référence.
On a représenté sur la figure 1 un capteur de température 1 comprenant un boîtier de protection 3 de forme générale tubulaire logeant, depuis une extrémité fermée:
- un élément sensible à la température tel qu'un thermocouple ou une thermistance 5 ; - deux premiers fïls électriques 7 reliés à deux seconds fils électriques 9 servant à assurer la liaison électrique avec par exemple un circuit électrique/électronique d'une unité de traitement, pour y acheminer le signal de température fourni par la thermistance 5 ;
- un isolant 11 électrique au niveau de la connexion électrique des premiers 7 et des seconds 9 fils électriques.
Le boîtier de protection 3 comprend en outre un joint d'étanchéité 13 entourant partiellement les deux seconds fils électriques 9 à l'extrémité opposée du capteur 1 par rapport à la thermistance 5, et un moyen de guidage 15 des deux seconds fils électriques 9 en sortie du capteur 1.
Le boîtier de protection 3 est par exemple serti sur le joint d'étanchéité 13 définissant un volume interne comprenant l'élément sensible à la température, les deux premiers fils électriques 7, l'isolant électrique 11 et au moins une portion du joint d'étanchéité 13 et des seconds fils électriques 9.
Le boîtier de protection 3 est réalisé en un matériau métallique résistant à des températures élevées, tel qu'un alliage de chrome, de nickel et de fer du type Inconel® 601 (marque déposée) ou encore en acier réfractaire.
Comme on le remarque sur la figure 1, le boîtier 3 peut comporter une première partie 3a au niveau de la thermistance 5 et une deuxième partie 3b de diamètre supérieur à la première partie 3a au niveau de la zone de connexion des premiers 7 et seconds 9 fils électriques.
Ce boîtier 3 peut comporter un système de fixation 17 sur une paroi (non représentée) délimitant un milieu dont on cherche à connaître la température, tel que la culasse d'un moteur. Pour cela, le système de fixation 17 peut comporter une butée 19 extérieure et un moyen de serrage tel qu'une vis 21 pour serrer la butée 19 contre une surface d'appui complémentaire de la paroi délimitant le milieu à mesurer.
La thermistance 5 est un composant passif en matériau semi- conducteur dont la résistance varie en fonction de la température. La thermistance 5 peut être du type CTN, coefficient de température négatif (ou NTC, Négative Température Coefficient en anglais) lorsque la résistance décroît en fonction de l'élévation de la température ou de type CTP, coefficient de température positif (ou PTC, Positive Température Coefficient en anglais) dans le cas contraire, telle qu'une thermistance en platine.
Les premiers fils électriques 7 peuvent être maintenus dans une gaine isolante 23 présentant un canal de passage 25 associé pour chaque premier fil électrique 7 de sorte qu'ils soient isolés entre eux et maintenus par la gaine isolante 23.
La gaine isolante 23 est par exemple de forme générale allongée, dont la direction longitudinale correspond à la direction longitudinale des premiers fils électriques 7.
Cette gaine 23 peut comporter une enveloppe de forme générale cylindrique, de manière à pouvoir épouser la paroi de forme tubulaire, par exemple de la première partie 3a, du boîtier de protection 3 et être maintenue par celui-ci.
A titre d'exemple, la gaine 23 est à l'intérieur en matière céramique électriquement isolante et résistante à la chaleur, et à l'extérieur par exemple en acier réfractaire.
Les premiers fils électriques 7 ont chacun une extrémité connectée à la thermistance 5 et une extrémité opposée connectée à un second fil électrique 9. Les premiers fils électriques 7 peuvent être reliés aux seconds fils électriques 9 par l'intermédiaire d'une pièce de liaison électrique 27, par exemple sous forme d'une cosse.
Les seconds fils 9 peuvent présenter un diamètre plus important et être réalisés dans des matériaux moins nobles que les premiers fils 7 pour réduire les coûts. Les seconds fils électriques 9 sont par exemple destinés à être reliés à un connecteur conjugué (non représenté) déporté du capteur 1.
L'isolant électrique 11 présente également une forme générale cylindrique de manière à pouvoir épouser la paroi de forme tubulaire, par exemple de la seconde partie 3b, du boîtier de protection 3 et être maintenu par celui-ci.
A titre d'exemple, l'isolant électrique 11 est en matière céramique électriquement isolante et résistante à la chaleur. On utilise par exemple de la stéatite. On peut également prévoir un isolant électrique 11 réalisé en un matériau plastique résistant à de hautes températures.
Dans l'exemple illustré sur la figure 1 , l'isolant électrique 1 1 comporte deux logements 29 pour recevoir les cosses de connexion 27 ainsi que d'une part deux premiers canaux de passage 31 pour les premiers fils électriques 7 et d'autre part deux seconds canaux de passage 33 pour les seconds fils électriques 9.
Selon l'exemple illustré sur la figure 1 avec des seconds fïls 9 de diamètre plus importants que le diamètre des premiers fïls 7, en concordance, les seconds canaux 33 de passage pour les seconds fïls électriques 9 présentent un diamètre plus important que le diamètre des premiers canaux de passage 31 pour les premiers fïls 7.
L'isolant électrique 11 agencé au niveau de la connexion entre les premiers 7 et les seconds 9 fils électriques, permet d'isoler électriquement les deux cosses de connexion 27 l'une par rapport à l'autre et également par rapport au boîtier 3.
De plus, l'isolant 11 limite le mouvement en translation des cosses de connexion 27 afin d'éviter qu'une traction sur les seconds fils électriques 9 n'entraîne une éjection ou une détérioration des composants internes du capteur 1.
Par ailleurs, l'isolant électrique 11 est disposé en appui contre le joint d'étanchéité 13.
Le joint d'étanchéité 13, est quant à lui par exemple réalisé en élastomère. On peut, à titre d'exemple, choisir comme matériau du silicone ou encore du fluorocarbone.
Selon le mode de réalisation illustré sur les figures 1 et 2, le joint d'étanchéité 13 présente une forme générale sensiblement cylindrique de manière à pouvoir épouser la paroi de forme tubulaire, par exemple de la seconde partie 3b, du boîtier de protection 3 et être maintenu par celui-ci. Le joint d'étanchéité 13 cylindrique présente donc une forme de manchon.
Comme dit précédemment, le joint d'étanchéité 13 entoure partiellement les seconds fils électriques 9, et pour ce faire, le joint d'étanchéité 13 peut présenter deux canaux de passage 35 des seconds fils électriques 9.
En outre, le boîtier 3 du capteur 1 est par exemple serti sur le joint d'étanchéité 13 de façon à isoler l'élément sensible 5 par rapport à l'extérieur du boîtier 3.
En ce qui concerne le moyen de guidage 15, il est agencé à l'extrémité du joint d'étanchéité 13 opposée à l'extrémité du joint d'étanchéité 13 en appui contre l'isolant électrique 11. Le moyen de guidage 15 est donc agencé du côté du capteur 1 opposé au côté logeant l'élément sensible 5.
De façon similaire au joint d'étanchéité 13, le moyen de guidage 15 peut présenter une forme générale sensiblement cylindrique avec son axe longitudinal sensiblement parallèle à l'axe longitudinal du capteur 1.
Le moyen de guidage 15 est solidaire du joint d'étanchéité 13. Ainsi, le moyen de guidage 15 est solidaire au boîtier 3 par l'intermédiaire du joint d'étanchéité 13 sans nécessairement un sertissage du boîtier sur le moyen de guidage 15.
Le moyen de guidage 15 guide les seconds fils électriques 9 en sortie du capteur 1. On comprend qu'un tel moyen de guidage 15 agencé en sortie du boîtier 3 de capteur 1 garantit le maintien des seconds fils électriques 9 en sortie du capteur 1 et les protège contre d'éventuels rayons de courbure sévères risquant d'abîmer les seconds fils 9 et d'accélérer leur usure.
De préférence, le moyen de guidage 15 est en un matériau flexible. Ainsi, le moyen de guidage 15 améliore la protection contre les rayons de courbure sévères en évitant la présence d'un point de pliage qui abîmerait les fils électriques 9. De façon similaire au joint d'étanchéité 13 , le moyen de guidage 15 peut être réalisé en élastomère.
Plus précisément, le moyen de guidage 15 est dans le prolongement du joint d'étanchéité 13 selon la direction longitudinale du joint d'étanchéité 13 et en direction de l'extérieur du boîtier 3 de capteur 1.
À cet effet, le moyen de guidage 15 est par exemple réalisé d'une seule pièce avec le joint d'étanchéité 13 (voir les figures 2-3), par exemple par moulage.
Le prolongement 15 pourrait aussi être une pièce additionnelle fixée, par exemple par collage, au joint d'étanchéité 13 pour assurer la fonction de protection des seconds fils électriques 9 en sortie du joint d'étanchéité 13. Bien entendu, cette pièce additionnelle pourrait être en un matériau différent de celui du joint d'étanchéité 13.
En outre, le moyen de guidage 15 peut être aminci par rapport au joint d'étanchéité 13 et donc présenter un diamètre inférieur au diamètre du joint d'étanchéité 13. Par ailleurs, le moyen de guidage 15 peut présenter une longueur comprise dans une plage de longueur de l'ordre de 10 à 25 mm. Afin de guider les seconds fils électriques 9 en sortie du capteur 1 , le moyen de guidage 15 entoure au moins partiellement les deux seconds fils électriques 9 en sortie du joint d'étanchéité 13.
À cet effet, le moyen de guidage 15 peut comporter deux moyens de passage pour les deux seconds fils électriques 9. Plus particulièrement, le moyen de guidage 15 est un corps comportant des canaux de passage pour les fils électriques 9. Ce moyen de guidage 15 permet donc de séparer les deux seconds fils électriques 9.
Ces moyens de passage peuvent par exemple être réalisés sous la forme de canaux de passage fermés, de façon similaire aux canaux 35 ménagés dans le joint d'étanchéité 13.
En variante, les moyens de passage peuvent être ouverts. Par exemple, les moyens de passage sont réalisés par décrochement dans le corps du moyen de guidage 15 comme l'illustrent les figures 2 et 3. Plus précisément, le corps, par exemple cylindrique, du moyen de guidage 15 présente deux décrochements 37 de chaque côté pour le passage des deux seconds fils électriques 9.
En outre, on peut prévoir une gaine isolante (non représentée) pour couvrir le moyen de guidage 15 et les seconds fils électriques 9. Cette gaine isolante peut par exemple être de forme générale allongée, dont la direction longitudinale correspond à la direction longitudinale des seconds fils électriques 9. La gaine améliore la protection des seconds fils électriques 9. Le moyen de guidage 15 permet donc de guider les seconds fils électriques 9 et cette gaine isolante (non représentée) en sortie du capteur 1. Le moyen de guidage 15 protège les fils 9 et la gaine de rayons de courbure sévères.
Par ailleurs, selon une variante illustrée sur la figure 1, le moyen de guidage 15 s'étend longitudinalement hors du boîtier 3 de capteur 1. Autrement dit, il n'est pas nécessaire de rallonger la partie arrière du capteur 1 , c'est-à-dire la partie du boîtier 3 de capteur 1 opposée à la thermistance 5, pour protéger les seconds fils électriques 9. En effet, le moyen de guidage 15 maintient les seconds fils 9 et les protège donc contre un pli pouvant entraîner leur dégradation ou leur rupture. Par exemple, le moyen de guidage 15 s'étend hors du volume interne défini par le sertissage du boîtier de protection 3 sur le joint d'étanchéité 13. Lorsque le moyen de guidage 15 s'étend hors du capteur, le boîtier 3 de capteur peut être standard puisqu'il n'est pas nécessaire de rapprocher les cosses de connexion 27 et l'isolant 1 1 de la thermistance 5 ni de rallonger la partie arrière du boîtier 3 de capteur 1.
Selon une autre variante, non représentée, le moyen de guidage 15 peut être reçu au moins partiellement ou totalement à l'intérieur du boîtier 3 du capteur 1. En faisant pénétrer le moyen de guidage 15 couvert de la gaine dans le boîtier 3, on améliore la protection des fils électriques contre les plis. Et plus précisément selon cette alternative, c'est le moyen de guidage 15 avec un diamètre inférieur à celui du joint d'étanchéité 13 et couvert de gaine isolante (non représentée) qui peut être reçu au moins partiellement dans le boîtier 3 du capteur 1. Enfin, lorsque le moyen de guidage 15 réalisé par prolongement du joint d'étanchéité 13 est couvert de gaine et est reçu dans le boîtier 3 du capteur, il n'est pas nécessaire de prévoir de sertissage supplémentaire puisque le boîtier 3 du capteur 1 est déjà serti sur le joint d'étanchéité 13.
Bien entendu, l'invention n'est pas limitée aux exemples décrits. Ainsi, le capteur peut ne pas comprendre de premiers fils électriques 7, les seconds fils 9 étant alors configurés pour être directement reliés à la thermistance 5.
Dans l'exemple de capteur 1 décrit aux figures 1 à 3, le joint d'étanchéité 13 et le moyen de guidage 15 ont une forme générale sensiblement cylindrique. Cependant, le joint d'étanchéité 13 et le moyen de guidage 15 peuvent avoir d'autres formes. Par exemple, ils pourraient être de forme sensiblement parallélépipédique. En particulier, le joint d'étanchéité 13 s'étend préférentiellement suivant une direction, dite direction longitudinale. Cette direction peut correspondre à une direction d'insertion du joint 13 dans le capteur 1. La dimension transversale du joint 13 est conformée pour assurer une étanchéité du capteur 1 lorsque le joint 13 est monté dans le boîtier 3.
Le moyen de guidage 15 peut alors être dans le prolongement du joint d'étanchéité 13 suivant la direction longitudinale du joint. En particulier, le moyen de guidage 15 est relié au joint 13 au niveau d'une zone centrale du joint 13. Ainsi, le moyen de guidage 15 forme un cœur autour duquel les fils 9 viennent en appui pour être guidés en sortie du capteur 1. De préférence, la section transversale du moyen de guidage 15 est de dimension inférieure à celle de la section transversale du joint d'étanchéité 13. Ainsi, le moyen de guidage 15 peut être articulé plus facilement que le joint d'étanchéité 13, ce qui diminue les contraintes d'arrachement des fils 9. Ce différentiel de dimension protège l'ensemble joint/moyen de guidage. En effet, si le joint 13 et le moyen de guidage 15 avaient des sections identiques, cela engendrerait des contraintes plus élevées dans l'ensemble joint/moyen de guidage lors de mouvement alternatifs des fils électriques 9 autour de leur position centrale (mouvements de type corde à sauter). Une déchirure radiale pourrait apparaître de façon prématurée. Le mouvement répétitif pourrait également entraîner une découpe causée par l'extrémité du boîtier 3.
Le moyen de guidage 13 permet de guider les fils 9 en sortie du capteur 1, c'est- à-dire hors du boîtier 3. A cet effet, le moyen de guidage 3 peut comprendre au moins une portion s 'étendant hors du boîtier 3 de façon à améliorer le guidage en sortie du capteur.
En particulier, le capteur 1 peut comprendre un moyen de maintien des fils électriques 9 sur le moyen de guidage, tel que de la colle, un collier ou une gaine entourant les fils électriques 9.
Dans une variante, les canaux de passage du moyen de guidage sont des décrochements 37 dans celui-ci. Chaque décrochement 37 peut former un canal dont la paroi épouse au moins une portion de la périphérie de son fil 9 respectif de façon à contribuer au maintien du fil 9 en son sein.

Claims

REVENDICATIONS
1. Capteur (1) de température pour véhicule automobile comportant :
- un boîtier (3) définissant un volume interne comprenant un élément sensible (5) à la température,
- des fils électriques (9) reliés électriquement audit élément sensible (5) à la température et configurés pour transmettre une information de température dudit élément sensible (5) à l'extérieur du boîtier (3),
- un joint d'étanchéité (13) entourant partiellement lesdits fils électriques (9) de façon à isoler l'élément sensible (5) par rapport à l'extérieur du boîtier (3), le joint d'étanchéité 13 s'étendant préférentiellement suivant une direction, dite direction longitudinale,
ledit capteur comportant en outre un moyen de guidage (15) solidaire dudit joint d'étanchéité (13) pour le guidage desdits fils électriques (9) en sortie dudit capteur, ledit moyen de guidage (15) s'étendant dans le prolongement dudit joint d'étanchéité (13) selon la direction longitudinale dudit joint d'étanchéité (13) depuis une zone centrale du joint (13) en direction de l'extérieur dudit boîtier (3) de capteur, et la section transversale dudit moyen de guidage (15) étant de dimension inférieure à celle de la section transversale du joint d'étanchéité (13), au moins une portion dudit moyen de guidage (15) s'étendant hors du boîtier.
2. Capteur selon la revendication 1, caractérisé en ce que ledit moyen de guidage (15) est réalisé d'une seule pièce avec ledit joint d'étanchéité (13).
3. Capteur selon la revendication 1 ou 2, caractérisé en ce que ledit joint d'étanchéité (13) et ledit moyen de guidage ( 15) présentent chacun une forme générale sensiblement cylindrique.
4. Capteur selon l'une quelconque des revendications 1 à 3, caractérisé en ce que ledit moyen de guidage (15) s'étend hors du boîtier (3) dudit capteur.
5. Capteur selon l'une quelconque des revendications 1 à 3, caractérisé en ce que ledit moyen de guidage (15) s'étend au moins partiellement à l'intérieur du boîtier (3) dudit capteur.
6. Capteur selon l'une quelconque des revendications précédentes, caractérisé en ce que ledit moyen de guidage (15) est configuré pour être couvert d'une gaine isolante.
7. Capteur selon l'une quelconque des revendications précédentes, caractérisé en ce que ledit moyen de guidage (15) est un corps comportant des canaux de passage pour les fils électriques (9).
8. Capteur selon la revendication 7, caractérisé en ce que lesdits canaux de passage sont des décrochements (37) dans le corps du moyen de guidage (15) pour le passage de leur fil électrique (9) respectif.
9. Capteur selon l'une quelconque des revendications précédentes, caractérisé en ce que ledit moyen de guidage (15) est réalisé en élastomère.
10. Capteur selon l'une quelconque des revendications précédentes, caractérisé en ce que ledit boîtier (3) de capteur est serti sur ledit joint d'étanchéité (13).
PCT/FR2013/050528 2012-03-19 2013-03-14 Capteur de temperature WO2013140066A1 (fr)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2015500961A JP2015512513A (ja) 2012-03-19 2013-03-14 温度センサ
US14/382,767 US9816879B2 (en) 2012-03-19 2013-03-14 Temperature sensor
EP13715316.9A EP2828630A1 (fr) 2012-03-19 2013-03-14 Capteur de temperature
CN201380015002.1A CN104204745B (zh) 2012-03-19 2013-03-14 温度传感器
KR20147028589A KR20140136035A (ko) 2012-03-19 2013-03-14 온도 센서

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1252453A FR2988172B1 (fr) 2012-03-19 2012-03-19 Capteur de temperature
FR1252453 2012-03-19

Publications (1)

Publication Number Publication Date
WO2013140066A1 true WO2013140066A1 (fr) 2013-09-26

Family

ID=48083495

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2013/050528 WO2013140066A1 (fr) 2012-03-19 2013-03-14 Capteur de temperature

Country Status (7)

Country Link
US (1) US9816879B2 (fr)
EP (1) EP2828630A1 (fr)
JP (1) JP2015512513A (fr)
KR (1) KR20140136035A (fr)
CN (1) CN104204745B (fr)
FR (1) FR2988172B1 (fr)
WO (1) WO2013140066A1 (fr)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USD722896S1 (en) * 2012-09-13 2015-02-24 Tesona Gmbh & Co. Kg Electronic temperature sensor
SG11201507366RA (en) 2013-03-15 2015-10-29 Gen Hospital Corp Glycine, mitochondrial one-carbon metabolism, and cancer
FR3026179B1 (fr) * 2014-09-19 2018-02-16 Sc2N Sonde de mesure comportant un element sensible
FR3035211B1 (fr) * 2015-04-20 2017-05-05 Sc2N Sa Capteur hautes temperatures avec connecteur integre
FR3036483B1 (fr) * 2015-05-19 2017-06-02 Sc2N Sa Element de renfort pour capteur hautes temperatures avec connecteur integre
CN105651414B (zh) * 2015-12-31 2019-09-10 广东爱晟电子科技有限公司 一种增强抗拉强度的温度传感器
CN105716742A (zh) * 2016-04-12 2016-06-29 瑞安市益华汽车配件有限公司 一种用于检测汽车废气的温度传感器
DE102016108840B4 (de) 2016-05-12 2017-12-14 Stego-Holding Gmbh Vorrichtung zur Temperaturregelung und Verfahren zur Herstellung einer Vorrichtung zur Temperaturregelung
DE102016111738A1 (de) * 2016-06-27 2017-12-28 Heraeus Sensor Technology Gmbh Kabel zum Kontaktieren eines Sensors, Temperaturmessvorrichtung, Verfahren zum Verbinden eines Kabels mit einer Temperaturmessvorrichtung und Verwendung einer Legierung zur Herstellung eines Kabels
FR3053465B1 (fr) * 2016-06-30 2018-08-10 Sc2N Boitier de protection pour capteur de temperature de vehicule
JP1577928S (fr) * 2016-07-14 2017-06-05
JP1577927S (fr) * 2016-07-14 2017-06-05
FR3060186B1 (fr) * 2016-12-14 2018-11-23 Sc2N Ensemble de communication sans fil pour capteur
DE202019104670U1 (de) * 2019-08-26 2019-12-10 Tdk Electronics Ag Sensor
JP1692912S (fr) * 2020-09-15 2021-08-16

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE9108581U1 (fr) * 1991-07-12 1991-11-21 Schott Glaswerke, 6500 Mainz, De
US6254432B1 (en) * 1999-04-22 2001-07-03 Yazaki Corporation Sealing structure in a sensor having lead wires
FR2849199A1 (fr) * 2002-12-20 2004-06-25 Denso Corp Detecteur de gaz possedant une struture perfectionnee pour reduire l'endommagement thermique d'un joint d'etancheite hermetique
DE102004018354A1 (de) * 2004-04-15 2005-11-03 Epcos Ag Messfühler
DE102004063083A1 (de) * 2004-12-28 2006-07-06 Robert Bosch Gmbh Vorrichtung zur Durchführung elektrischer Anschlusskabel
FR2893126A1 (fr) * 2006-11-07 2007-05-11 Sc2N Sa Capteur pour milieux hostiles

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4435602B2 (ja) * 2004-02-26 2010-03-24 日本特殊陶業株式会社 温度センサ
JP4693108B2 (ja) * 2005-10-05 2011-06-01 日本特殊陶業株式会社 センサ
JP2008096247A (ja) * 2006-10-11 2008-04-24 Hitachi Ltd ガスセンサ
JP5134701B2 (ja) * 2010-07-20 2013-01-30 日本特殊陶業株式会社 温度センサ
US9212955B2 (en) * 2011-03-09 2015-12-15 Tsi Technologies Llc Microwire temperature sensors constructed to eliminate stress-related temperature measurement inaccuracies and method of manufacturing said sensors

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE9108581U1 (fr) * 1991-07-12 1991-11-21 Schott Glaswerke, 6500 Mainz, De
US6254432B1 (en) * 1999-04-22 2001-07-03 Yazaki Corporation Sealing structure in a sensor having lead wires
FR2849199A1 (fr) * 2002-12-20 2004-06-25 Denso Corp Detecteur de gaz possedant une struture perfectionnee pour reduire l'endommagement thermique d'un joint d'etancheite hermetique
DE102004018354A1 (de) * 2004-04-15 2005-11-03 Epcos Ag Messfühler
DE102004063083A1 (de) * 2004-12-28 2006-07-06 Robert Bosch Gmbh Vorrichtung zur Durchführung elektrischer Anschlusskabel
FR2893126A1 (fr) * 2006-11-07 2007-05-11 Sc2N Sa Capteur pour milieux hostiles

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2828630A1 *

Also Published As

Publication number Publication date
CN104204745A (zh) 2014-12-10
US20150023391A1 (en) 2015-01-22
CN104204745B (zh) 2018-02-09
FR2988172A1 (fr) 2013-09-20
JP2015512513A (ja) 2015-04-27
KR20140136035A (ko) 2014-11-27
FR2988172B1 (fr) 2014-12-26
US9816879B2 (en) 2017-11-14
EP2828630A1 (fr) 2015-01-28

Similar Documents

Publication Publication Date Title
WO2013140066A1 (fr) Capteur de temperature
FR2817041A1 (fr) Capteur de temperature
FR2836549A1 (fr) Procede pour fabriquer un capteur de temperature et capteur de temperature ainsi fabrique
EP3479087B1 (fr) Boitier de protection pour capteur de temperature de vehicule
EP2350584A1 (fr) Capteur de temperature, procede de fabrication et procede d'assemblage correspondant
FR2880685A1 (fr) Capteur de temperature, notamment pour vehicule automobile
FR3028947A1 (fr) Capteur de temperature
WO2020193597A1 (fr) Boitier de protection pour capteur de température de véhicule
EP1785705B1 (fr) Capteur de temperature
FR3022406A1 (fr) Organe de raccordement electrique pour circuit electrique de vehicule
EP3286535A1 (fr) Capteur hautes temperatures avec connecteur integre
WO2016079447A1 (fr) Capteur de température
FR2958037A1 (fr) Capteur de temperature
WO2016185138A1 (fr) Elément de renfort pour capteur hautes températures avec connecteur intégré
WO2017029453A1 (fr) Dispositif de connexion électrique amélioré
WO2008055619A1 (fr) Capteur pour milieux hostiles
EP1953512B1 (fr) Capteur de haute température et procédé de fabrication d' un tel capteur
EP2795276A2 (fr) Capteur de temperature
FR3118675A1 (fr) Assemblage électrique pour transport d’énergie électrique soumis à haute température
EP3221675A1 (fr) Capteur de température
FR3045818A1 (fr) Capteur hautes temperatures avec cavite pour materiau d'etancheite
FR2958035A1 (fr) Capteur de temperature
FR2958038A1 (fr) Capteur de temperature
FR2958039A1 (fr) Capteur de temperature
EP3237861A1 (fr) Capteur de température

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13715316

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2013715316

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14382767

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2015500961

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20147028589

Country of ref document: KR

Kind code of ref document: A

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112014021566

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112014021566

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20140829