WO2013138993A1 - 一种电站锅炉给水加氧处理工艺 - Google Patents

一种电站锅炉给水加氧处理工艺 Download PDF

Info

Publication number
WO2013138993A1
WO2013138993A1 PCT/CN2012/072607 CN2012072607W WO2013138993A1 WO 2013138993 A1 WO2013138993 A1 WO 2013138993A1 CN 2012072607 W CN2012072607 W CN 2012072607W WO 2013138993 A1 WO2013138993 A1 WO 2013138993A1
Authority
WO
WIPO (PCT)
Prior art keywords
oxygen
water
supply system
stage
water supply
Prior art date
Application number
PCT/CN2012/072607
Other languages
English (en)
French (fr)
Inventor
钱洲亥
祝郦伟
曹求洋
庞胜林
冯礼奎
肖修林
周臣
洪灿飞
Original Assignee
浙江省电力试验研究院
国家电网公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 浙江省电力试验研究院, 国家电网公司 filed Critical 浙江省电力试验研究院
Priority to PCT/CN2012/072607 priority Critical patent/WO2013138993A1/zh
Priority to US13/980,534 priority patent/US9714179B2/en
Publication of WO2013138993A1 publication Critical patent/WO2013138993A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/727Treatment of water, waste water, or sewage by oxidation using pure oxygen or oxygen rich gas
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/20Treatment of water, waste water, or sewage by degassing, i.e. liberation of dissolved gases
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F14/00Inhibiting incrustation in apparatus for heating liquids for physical or chemical purposes
    • C23F14/02Inhibiting incrustation in apparatus for heating liquids for physical or chemical purposes by chemical means
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F15/00Other methods of preventing corrosion or incrustation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/02Treatment of water, waste water, or sewage by heating
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/58Treatment of water, waste water, or sewage by removing specified dissolved compounds
    • C02F1/62Heavy metal compounds
    • C02F1/64Heavy metal compounds of iron or manganese
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/22O2
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2303/00Specific treatment goals
    • C02F2303/08Corrosion inhibition
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B1/00Methods of steam generation characterised by form of heating method

Definitions

  • the invention relates to the field of boiler feed water treatment, in particular to a power plant boiler feed water oxygenation treatment process background technology
  • AVT-R total volatile water treatment process
  • AVT-0 weak oxidizing total volatile water treatment process
  • boiler feed water plus oxygen treatment process
  • AVT-R and AVT-0 can reduce the dissolution and deposition of corrosion products to a certain extent, but the suppression of flow accelerated corrosion (FAC) in the water supply system is still far from enough.
  • Some units use this feed water treatment process, and the feed water iron The phenomenon of excessive ion content is very serious.
  • this excessive standard directly leads to a series of problems such as high fouling rate and iron scale deposition of the turbine blade, which seriously affects the efficiency of the unit. It is in this case that most of the foreign DC furnace unit water supply systems use a more advanced enthalpy process.
  • the enamel process was first developed from West Germany in the 1970s. In the early 1990s, the American Academy of Electric Power (EPRI) officially established guidelines for oxygenation. In 2011, China revised the new oxygenation guidelines.
  • EPRI American Academy of Electric Power
  • the tantalum process can effectively suppress FAC.
  • the reason why the OT process can suppress FAC is mainly because the process continuously adds high-purity oxygen to the water supply system during the process, thereby forming a dense oxide film on the inner wall of the water supply system, effectively slowing down the development of corrosion.
  • the problem solved by the invention is to provide a process for supplying water to a power station boiler, which can be realized While the OT process suppresses the FAC of the power station boiler, it also eliminates the influence of the oxidized skin shedding on the high temperature heating surface of the boiler.
  • the technical solution of the present invention is:
  • the utility model relates to a feed water boiler oxygenation treatment process, which is implemented under the boiler feed water ⁇ treatment process, and is suitable for a DC furnace and a steam drum furnace, and the oxygenation phase comprises:
  • the constant oxidation conversion stage is to simultaneously oxidize the water supply system by adding oxygen at the outlet of the condensate polishing system and the feed water pump of the high pressure water supply system, and controlling the dissolved oxygen concentration in the main steam to be ⁇ 5 g/L;
  • the micro-oxygen operation film-filling stage reduces the oxygen supply amount of the high-pressure water supply system after forming an oxide film in the water supply system, so that the added oxygen is only for repairing and maintaining the oxide film, and simultaneously controlling the dissolved oxygen concentration in the main steam to be ⁇ 5 g. /L.
  • the oxygen addition amount at the outlet of the condensate polishing system is 5 ( ⁇ g/L ⁇ 15 ( ⁇ g/L, and the oxygen supply amount of the feed water pump inlet of the high pressure water supply system is 5 ( ⁇ g/L ⁇ 15( ⁇ g/L.
  • the transition point from the constant oxidation conversion stage to the micro-oxygen operation replenishing stage is: the iron ion concentration in the high-pressure water supply system is stable and ⁇ ⁇ , and the dissolved oxygen amount is the feed water pump of the high-pressure water supply system
  • the inlet oxygen is 95% ⁇ 100%.
  • the oxygen supply amount at the outlet of the condensate polishing system is 5 ( ⁇ g/L ⁇ 15 ( ⁇ g/L, the oxygen supply amount in the high-pressure water supply system is ⁇ 3 ( ⁇ ⁇ .
  • the amount of oxygen added in the high pressure water supply system is 5 g/L to 15 g/L.
  • said method of reducing the amount of oxygen added in the high pressure water supply system is to reduce the amount of oxygen added to the inlet of the feed water pump of the high pressure feed water system or to adjust the exhaust valve of the deaerator.
  • the utility model provides a water supply and oxygenation treatment process for a power station boiler.
  • the process of adding oxygen is divided into a constant oxidation conversion stage and a micro-oxygen operation film-filling stage, and the first stage is added.
  • the oxygen supply of the second stage is strictly controlled, and the main steam dissolved oxygen is controlled.
  • the oxygenation treatment process is suitable for the DC furnace and the steam drum furnace, can ensure the formation and maintenance of a dense protective film on the metal surface of the water supply system pipeline, reduce the water supply iron content; control the main steam dissolved oxygen, prevent excessive oxygen from entering the high temperature heating surface, The oxide scale is detached; the oxygen consumption is greatly reduced, and the oxygen consumption under normal operating conditions is only 1/3 to 1/5 of the current OT method, which reduces the maintenance amount.
  • FIG. 1 is a schematic view of a boiler feed water system and an oxygen addition point according to an embodiment of the present invention. Description of each mark in the drawing:
  • the feed water boiler oxygenation treatment process provided by the invention is an improvement of the oxygenation process of the current boiler feed water OT treatment process, and is suitable for the DC furnace and the steam drum furnace.
  • Figure 1 for a boiler feed water system for a DC furnace and a steam drum furnace, Figure 1 is a schematic view of a boiler feed water system and an oxygen addition point according to a specific embodiment of the present invention.
  • the water vapor circulation process in the system is: the condensed water in the condenser 1 passes through the condensate water pump 2 and enters the condensate water treatment system 3, and the condensed water purified by the condensed water treatment system 3 is turned into high-purity water, and the refined treatment outlet Adding oxygen point 4 to the low-pressure water supply system (mainly including the piping system between the condensate finishing system 3 and the deaerator 7), adding high-purity oxygen, and the oxygen-added high-purity water sequentially flows through the low-pressure heater 5 and deoxidizes
  • the high-purity water at the outlet of the deaerator 7 is supplied with high-purity oxygen through the oxygen supply point 9 of the water supply system to the high-pressure water supply system (mainly including the piping system from the outlet of the feed water pump 10 to the economizer 13).
  • the high-purity water flows through the economizer 13 and the water-cooling wall 15 in turn, and becomes saturated steam after the water-cooling wall 15 absorbs heat, and the saturated steam enters the superheater 16 to further absorb heat to become superheated steam, also called main steam, and the main steam passes through the steam turbine 18 After the reheater 19, the condenser 1 is condensed into water to complete a water vapor cycle.
  • the oxygen addition process is divided into two stages, including a constant oxidation conversion stage and a micro-oxidation operation membrane stage.
  • the present invention adds high-purity oxygen at the inlet of the feed water pump of the finishing treatment and the inlet of the feed water pump of the high-pressure water supply system, that is, the oxygen supply point of the feed water system, and controls the fine treatment of the outlet oxygen point 4 and
  • the oxygen addition point of the oxygen point of the water system is between 50 g/L and 15 ( ⁇ g/L, and the dissolved oxygen concentration in the main steam should be controlled ⁇ 5 g/L.
  • the hydrogen conductivity of the feed water and steam is controlled to be ⁇ 0.15 S/cm, and in the constant oxidation conversion stage, the hydrogen conductivity of the feed water and steam is controlled to be ⁇ 0.2 ( ⁇ S/cm).
  • the iron ions at the sampling point 12 of the feed water are stable for a long time and ⁇ ⁇ , and the dissolved oxygen amount is 95% ⁇ 100% of the oxygen addition point at the oxygen supply point of the water supply system, then the constant oxidation conversion stage is completed, and the micro-oxygen operation is completed. Film filling stage.
  • the oxygen supply at the outlet of the condensate polishing system is still 50 g/L ⁇ 150 g/L, but the oxygen content in the high-pressure water supply system is reduced to ⁇ 30 g/L, so that the added oxygen Only repair and maintain the oxide film, and control the dissolved oxygen concentration in the main steam ⁇ 5 g / L.
  • the hydrogen conductivity of the feed water and steam is controlled to be ⁇ 0.15 S/cm in the micro-oxygen operation film-filling stage. Reducing the amount of oxygen in the high pressure feedwater system can reduce the oxygen addition at the oxygen supply point of the feedwater system or adjust the deaerator exhaust valve.
  • the dissolved oxygen content of the deaerator inlet sampling point 6, the deaerator outlet sampling point 8, the feed water sampling point 12, the water wall inlet sampling point 14 and the main steam sampling point 17 are closely monitored, according to the monitoring.
  • the result adjusts the oxygen addition amount in real time, and controls the dissolved oxygen concentration at the main steam sampling point 17 to be ⁇ 5 g/L to prevent the excessive oxygen from affecting the high temperature heating surface.
  • the iron ion content of the feed water before the implementation of the present invention exceeds the standard.
  • the average iron ion content of the feed water is 1.92 g/L, and the maximum value is up to 14 g/L.
  • the water wall throttle is often used. Sexually occurring metal corrosion products are deposited and must be shut down once a quarter.
  • the iron ion content of the feed water is stable at 0.5 g/L for a long time, and no throttling phenomenon occurs in the continuous operation for 400 days, and no scale peeling occurs on the high temperature heated surface.
  • the oxygen content during the operation is shown in Table 1:
  • the oxygenation of the oxygenation condensate system is 50 g/L ⁇ 15 ( ⁇ g/L 50 g/L ⁇ 150 g/L in the water supply system 50 g/L ⁇ 15). ⁇ g/L 5 g/L ⁇ 15 g/L Example 2:
  • the average iron content of the feed water before the implementation of the present invention is 4.89 g/L, the maximum value is up to 10 g/L, and the water wall fouling rate is high.
  • the iron ion content of the feed water is stable at 2.5 g/L for a long time, and no scale peeling occurs on the high temperature heated surface.
  • the oxygen content during operation is shown in Table 2:

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Hydrology & Water Resources (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Preventing Corrosion Or Incrustation Of Metals (AREA)
  • Physical Water Treatments (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)

Abstract

一种电站锅炉给水加氧处理工艺,其适用于直流炉和汽包炉。在该工艺中,加氧阶段包括常量氧化转化阶段和微氧运行补膜阶段。常量氧化转化阶段为在凝结水精处理系统出口和高压给水系统的给水泵入口同时加氧对给水系统进行氧化,并控制主蒸汽中的溶解氧浓度≤5μg/L;微氧运行补膜阶段为待给水形成氧化膜后,降低高压给水系统的加氧量,使加入的氧仅供修补和维持氧化膜,同时控制主蒸汽中的溶解氧浓度≤5μg/L。该工艺能保证给水系统管路金属表面形成并维持致密的保护膜,降低给水铁含量;防止过量的氧进入高温受热面,导致氧化皮脱落;耗氧量大幅下降,减轻了维护量。

Description

一种电站锅炉给水加氧处理工艺
技术领域
本发明涉及锅炉给水处理领域, 具体涉及一种电站锅炉给水加氧处理工 艺 背景技术
目前国内外关于电站锅炉的给水处理主要釆用三种工艺,全挥发给水处理 工艺 (简称 AVT-R )、 弱氧化性全挥发给水处理工艺 (简称 AVT-0 )和锅炉给 水加氧处理工艺 (简称 οτ )。
AVT-R和 AVT-0能在一定程度上降低腐蚀产物的溶解和沉积, 但对给水 系统流动加速腐蚀 (简称 FAC ) 的抑制还是远远不够, 一些机组釆用该给水 处理工艺, 其给水铁离子含量超标现象非常严重, 对于直流锅炉而言, 这种超 标直接导致其结垢速率高、 汽轮机叶片铁垢沉积等一系列问题,严重影响机组 效率。正是在此种情况下, 国外大部分直流炉机组给水系统釆用了较为先进的 ΟΤ工艺。
ΟΤ工艺最早由 70年代的西德发展而来, 90年代初美国电科院 (EPRI ) 正式建立加氧处理的导则, 我国也于 2011年修订了新的加氧处理导则。 较之 于 AVT-O, ΟΤ工艺可有效的抑制 FAC。 OT工艺之所以能抑制 FAC主要是因 为该工艺在实施过程中, 向给水系统持续加入高纯氧,从而在给水系统的金属 内壁形成致密的氧化膜, 有效的减緩腐蚀的发展。
然而, OT工艺仍存在着一些弊端, 主要是 OT工艺在实施时要求主蒸汽 中维持一定浓度的溶氧(《DL/T 805.1— 2011锅炉给水加氧处理导则》要求主 蒸汽的溶解氧≥l(^g/L ),可能会使某些钢材(如 TP347 )制成的高温受热面(包 括过热器、再热器、水冷壁等)发生氧化皮脱落,脱落的氧化皮一旦形成堵塞, 会导致受热管爆管。
发明内容
本发明解决的问题在于提供一种电站锅炉给水加氧处理工艺,可在实现现 行 OT工艺对电站锅炉 FAC抑制的同时, 还消除其对锅炉高温受热面氧化皮 脱落的影响。
为了解决上述技术问题, 本发明的技术方案为:
一种电站锅炉给水加氧处理工艺, 在锅炉给水釆用 ΟΤ处理工艺下实施, 适用于直流炉和汽包炉, 加氧阶段包括:
常量氧化转化阶段和微氧运行 卜膜阶段;
所述常量氧化转化阶段为在凝结水精处理系统出口和高压给水系统的给 水泵入口同时加氧对给水系统进行氧化, 并控制主蒸汽中的溶解氧浓度 ≤5 g/L;
所述微氧运行补膜阶段为待给水系统形成氧化膜后,降低高压给水系统的 加氧量,使加入的氧仅供修补和维持氧化膜, 同时控制主蒸汽中的溶解氧浓度 ≤5 g/L。
作为优选, 所述常量氧化转化阶段中,凝结水精处理系统出口的加氧量为 5(^g/L ~ 15(^g/L, 高压给水系统的给水泵入口的加氧量为 5(^g/L ~ 15(^g/L。
作为优选,由所述常量氧化转化阶段进入所述微氧运行补膜阶段的转换点 是: 高压给水系统中的铁离子浓度稳定并≤^§ ,且其溶解氧量为高压给水系 统的给水泵入口加氧量的 95% ~ 100%。
作为优选, 所述微氧运行补膜阶段中,凝结水精处理系统出口的加氧量为 5(^g/L ~ 15(^g/L, 高压给水系统内的加氧量≤3(^§ 。
作为优选, 所述高压给水系统内的加氧量为 5 g/L ~ 15 g/L。
作为优选,所述降低高压给水系统内的加氧量的方法为在高压给水系统的 给水泵入口降低加氧量或调节除氧器排气门。
本发明提供的一种电站锅炉给水加氧处理工艺在现行的锅炉给水 OT处理 工艺的基础上,将加氧的过程分为常量氧化转化阶段和微氧运行补膜阶段, 在 第一阶段的加氧过程结束后,严格控制第二阶段的给水加氧量, 并控制主蒸汽 溶氧。该加氧处理工艺适用于直流炉和汽包炉, 能够保证给水系统管路金属表 面形成并维持致密的保护膜, 降低给水铁含量; 控制主蒸汽溶氧, 防止过量的 氧进入高温受热面, 导致氧化皮脱落; 耗氧量大幅下降, 正常运行条件下的耗 氧量仅为现行 OT法的 1/3 ~ 1/5 , 减轻了维护量。 附图说明
图 1为本发明一种具体实施方式所提供的锅炉给水系统及加氧点示意图。 附图中各个标记的说明:
1.凝汽器; 2.凝结水泵; 3.凝结水精处理系统; 4.精处理出口加氧点; 5. 低压加热器; 6.除氧器入口取样点; 7.除氧器; 8.除氧器出口取样点; 9.给水系 统加氧点; 10.给水泵; 11.高压加热器; 12.给水取样点; 13.省煤器; 14.水冷 壁入口取样点; 15.水冷壁; 16.过热器; 17.主蒸汽取样点; 18.汽轮机; 19.再 热器。
具体实施方式
为了进一步了解本发明, 下面结合实施例对本发明优选实施方案进行描 述, 但是应当理解, 这些描述只是为进一步说明本发明的特征和优点, 而不是 对本发明权利要求的限制。
本发明提供的一种电站锅炉给水加氧处理工艺是对现行锅炉给水 OT处理 工艺的加氧过程的改进,适用于直流炉和汽包炉。 直流炉和汽包炉的锅炉给水 系统请参考图 1 , 图 1为本发明一种具体实施方式所提供的锅炉给水系统及加 氧点示意图。
系统中的水汽循环过程为:凝汽器 1中的凝结水经凝结水泵 2后进入凝结 水精处理系统 3 ,经过凝结水精处理系统 3进行净化处理的凝结水变为高纯水, 经精处理出口加氧点 4向低压给水系统(主要包括从凝结水精处理系统 3至除 氧器 7之间的管路系统)加入高纯氧, 加氧后的高纯水依次流经低压加热器 5 和除氧器 7, 除氧器 7出口的高纯水经给水系统加氧点 9向高压给水系统(主 要包括从给水泵 10出口至省煤器 13之间的管路系统)加入高纯氧,加氧后的 高纯水依次流经省煤器 13、水冷壁 15 ,在水冷壁 15吸收热量后变为饱和蒸汽, 饱和蒸汽进入过热器 16进一步吸热成为过热蒸汽, 也称为主蒸汽, 主蒸汽经 汽轮机 18、 再热器 19后进入凝汽器 1凝结成水, 完成一个水汽循环过程。
其中加氧过程分为两个阶段, 包括常量氧化转化阶段和微氧运行补膜阶 段。在常量氧化转化阶段, 本发明在精处理出口加氧点 4和高压给水系统的给 水泵入口即给水系统加氧点 9同时加入高纯氧,控制精处理出口加氧点 4和给 水系统加氧点 9的加氧量均在 50 g/L〜15(^g/L之间, 同时需控制主蒸汽中的 溶解氧浓度≤5 g/L。为保证加氧过程的顺利进行,在进行常量氧化转化阶段之 前, 控制给水和蒸汽的氢电导率≤0.15 S/cm, 常量氧化转化阶段中, 控制给水 和蒸汽的氢电导率≤0.2(^S/cm。
待给水取样点 12处的铁离子长期稳定并≤^§ , 且其溶解氧量为给水系 统加氧点 9处加氧量的 95% ~ 100%, 则常量氧化转化阶段完成, 进入微氧运 行补膜阶段。
在微氧补膜阶段,凝结水精处理系统出口的加氧量仍为 50 g/L ~ 150 g/L, 但降低高压给水系统内的加氧量至≤30 g/L, 使加入的氧仅供修补和维持氧化 膜, 同时需控制主蒸汽中的溶解氧浓度≤5 g/L。 为保证加氧过程的顺利进行, 在微氧运行补膜阶段中,控制给水和蒸汽的氢电导率≥0.15 S/cm。 降低高压给 水系统内的加氧量可以在给水系统加氧点 9处降低加氧量,或者调节除氧器排 气门。
在发明实施的整个过程中, 密切监视除氧器入口取样点 6、 除氧器出口取 样点 8、给水取样点 12、 水冷壁入口取样点 14和主蒸汽取样点 17的溶解氧含 量, 根据监测的结果实时调整加氧量, 控制主蒸汽取样点 17 处溶解氧浓度 ≤5 g/L, 防止过量的氧对高温受热面的影响。
实施例 1:
浙江某 1000MW超超临界机组直流锅炉机组, 实施本发明前给水铁离子含 量时有超标, 给水铁离子含量的平均值为 1.92 g/L, 最大值高达 14 g/L, 水冷 壁节流圈经常性发生金属腐蚀产物沉积,每季度必须停机清洗一次。在实施本 发明后, 给水铁离子含量长期稳定在 0.5 g/L, 连续运行 400天未发生节流圈堵 塞现象, 高温受热面未发生氧化皮脱落现象。 运行过程中加氧量见表 1:
表 1 该机组运行过程中的加氧量
^加氧量
常量氧化转化阶段 微氧运行补膜阶段 加氧 凝结水系统加氧量 50 g/L~ 15(^g/L 50 g/L~ 150 g/L 给水系统加氧量 50 g/L~ 15(^g/L 5 g/L ~ 15 g/L 实施例 2:
对于高参数汽包炉, 如 600MW亚临界汽包炉, 实施本发明前给水铁离子 含量的平均值为 4.89 g/L, 最大值高达 lO g/L, 水冷壁结垢速率高。 实施本发 明后, 给水铁离子含量长期稳定在 2.5 g/L, 高温受热面未出现氧化皮脱落现 象。 运行过程中加氧量见表 2:
表 2 该机组运行过程中的加氧量
Figure imgf000007_0001
以上对本发明所提供的一种电站锅炉给水加氧处理工艺进行了详细介绍。 说明只是用于帮助理解本发明的方法及其核心思想。应当指出,对于本技术领 域的普通技术人员来说,在不脱离本发明原理的前提下,还可以对本发明进行 若干改进和修饰, 这些改进和修饰也落入本发明权利要求的保护范围内。

Claims

权 利 要 求
1、 一种电站锅炉给水加氧处理工艺, 其特征在于, 适用于直流炉和汽包 炉, 加氧阶段包括:
常量氧化转化阶段和微氧运行补膜阶段;
所述常量氧化转化阶段为在凝结水精处理系统出口和高压给水系统的给 水泵入口同时加氧对给水系统进行氧化, 并控制主蒸汽中的溶解氧浓度 ≤5 g/L;
所述微氧运行补膜阶段为待给水系统形成氧化膜后,降低高压给水系统的 加氧量,使加入的氧量仅供修补和维持氧化膜, 同时控制主蒸汽中的溶解氧浓
Figure imgf000008_0001
2、 根据权利要求 1所述的电站锅炉给水加氧处理工艺, 其特征在于, 所 述常量氧化转化阶段中,凝结水精处理系统出口的加氧量为 50 g/L ~ 150 g/L, 高压给水系统的给水泵入口的加氧量为 50 g/L ~ 150 g/L。
3、 根据权利要求 1所述的电站锅炉给水加氧处理工艺, 其特征在于, 由 所述常量氧化转化阶段进入所述微氧运行补膜阶段的转换点是:高压给水系统 中的铁离子浓度稳定并≤l g/L,且其溶解氧量为高压给水系统的给水泵入口加 氧量的 95% ~ 100%。
4、 根据权利要求 1所述的电站锅炉给水加氧处理工艺, 其特征在于, 所 述微氧运行补膜阶段中,凝结水精处理系统出口的加氧量为 50 g/L ~ 150 g/L, 高压给水系统内的加氧量≤3(^§ 。
5、 根据权利要求 4所述的电站锅炉给水加氧处理工艺, 其特征在于, 所 述高压给水系统内的加氧量为 5 g/L ~ 15 g/L。
6、根据权利要求 1、 4或 5所述的电站锅炉给水加氧处理工艺, 其特征在 于,所述降低高压给水系统的加氧量的方法为在高压给水系统的给水泵入口降 低加氧量或调节除氧器排气门。
PCT/CN2012/072607 2012-03-20 2012-03-20 一种电站锅炉给水加氧处理工艺 WO2013138993A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2012/072607 WO2013138993A1 (zh) 2012-03-20 2012-03-20 一种电站锅炉给水加氧处理工艺
US13/980,534 US9714179B2 (en) 2012-03-20 2012-03-20 Process for feed-water oxygenating treatment in boiler in power station

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2012/072607 WO2013138993A1 (zh) 2012-03-20 2012-03-20 一种电站锅炉给水加氧处理工艺

Publications (1)

Publication Number Publication Date
WO2013138993A1 true WO2013138993A1 (zh) 2013-09-26

Family

ID=49221794

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/072607 WO2013138993A1 (zh) 2012-03-20 2012-03-20 一种电站锅炉给水加氧处理工艺

Country Status (2)

Country Link
US (1) US9714179B2 (zh)
WO (1) WO2013138993A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104326547B (zh) * 2014-10-23 2015-12-09 国家电网公司 一种燃煤机组锅炉高压给水微氧精准控制方法及装置
CN108558030B (zh) * 2018-03-15 2021-01-29 湖南省湘电试验研究院有限公司 一种给水自动加氧系统及方法
CN108569776A (zh) * 2018-05-16 2018-09-25 西安热工研究院有限公司 一种发电厂自动供气式全保护精确加氧装置及加氧方法
CN109084829B (zh) * 2018-06-20 2020-12-18 淮浙煤电有限责任公司凤台发电分公司 一种超临界火力发电机组高温受热面氧化速率验证及校准方法
US11097959B2 (en) * 2019-11-22 2021-08-24 Peter B. Choi Solar desalination system

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2064151C1 (ru) * 1993-08-06 1996-07-20 Всероссийский теплотехнический научно-исследовательский институт Способ очистки и пассивации тракта рабочей среды прямоточного котла
CN101423282A (zh) * 2008-12-01 2009-05-06 河南电力试验研究院 一种电站锅炉及其给水补氧装置和方法
CN101851020A (zh) * 2010-04-29 2010-10-06 浙江省电力试验研究院 直流锅炉定向氧化给水处理工艺
CN101880092A (zh) * 2010-05-27 2010-11-10 江苏省电力试验研究院有限公司 本质安全的直流锅炉给水加氧处理方法
CN102070254A (zh) * 2010-12-17 2011-05-25 江苏方天电力技术有限公司 本质安全的锅炉给水加氧处理方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58207378A (ja) * 1982-05-28 1983-12-02 Hitachi Ltd 発電プラントの水処理方法
US9758880B2 (en) * 2009-03-10 2017-09-12 Kabushiki Kaisha Toshiba Method and system for controlling water chemistry in power generation plant

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2064151C1 (ru) * 1993-08-06 1996-07-20 Всероссийский теплотехнический научно-исследовательский институт Способ очистки и пассивации тракта рабочей среды прямоточного котла
CN101423282A (zh) * 2008-12-01 2009-05-06 河南电力试验研究院 一种电站锅炉及其给水补氧装置和方法
CN101851020A (zh) * 2010-04-29 2010-10-06 浙江省电力试验研究院 直流锅炉定向氧化给水处理工艺
CN101880092A (zh) * 2010-05-27 2010-11-10 江苏省电力试验研究院有限公司 本质安全的直流锅炉给水加氧处理方法
CN102070254A (zh) * 2010-12-17 2011-05-25 江苏方天电力技术有限公司 本质安全的锅炉给水加氧处理方法

Also Published As

Publication number Publication date
US20140042104A1 (en) 2014-02-13
US9714179B2 (en) 2017-07-25

Similar Documents

Publication Publication Date Title
CN105157007B (zh) 超超临界二次再热1000mw机组锅炉蒸汽冲管方法
JP5727951B2 (ja) 蒸気供給システム及び蒸気供給システムの制御方法
WO2013138993A1 (zh) 一种电站锅炉给水加氧处理工艺
CN102070254B (zh) 本质安全的锅炉给水加氧处理方法
CN101880092B (zh) 本质安全的直流锅炉给水加氧处理方法
CN101851020B (zh) 直流锅炉定向氧化给水处理工艺
CN104529015B (zh) 一种燃煤机组锅炉疏水系统防腐处理方法
CN204962711U (zh) 超临界机组或超超临界机组无除氧器回热系统
CN207815281U (zh) 供热机组汽机锅炉异步负荷深度调峰系统
JP2011127786A (ja) コンバインドサイクル発電設備及びその給水加熱方法
JP6148815B2 (ja) 高温蒸気発生器用のハイブリッド水処理
WO2012071923A1 (zh) 一种火力发电厂水汽系统加氧处理方法
CN102603085B (zh) 一种电站锅炉给水加氧处理工艺
CN105276564A (zh) 超(超)临界机组无除氧器回热系统
CN108678821A (zh) 一种实现火电机组热电解耦的汽轮机启停调峰供热系统
CN113154356A (zh) 一种高温蒸汽复合热力系统及其利用方法
CN103553198B (zh) 一种电站锅炉给水加强碱处理工艺
CN106989382A (zh) 一种火力发电厂循环流化床锅炉冷渣器冷却水系统
CN201568952U (zh) 饱和蒸汽再加热锅炉
CN108487955B (zh) 基于蒸汽参数提升的煤气增效利用系统
CN209076428U (zh) 一种反渗透膜进水温度调节装置
JP2009097735A (ja) 給水加温システムおよび排熱回収ボイラ
CN207661753U (zh) 一种干熄焦锅炉给水装置
CN209540862U (zh) 一种锅炉蒸汽还原处理系统
CN104990065B (zh) 汽轮机发电机组中的锅炉给水循环除氧系统

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 13980534

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12871994

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12871994

Country of ref document: EP

Kind code of ref document: A1