WO2012071923A1 - 一种火力发电厂水汽系统加氧处理方法 - Google Patents

一种火力发电厂水汽系统加氧处理方法 Download PDF

Info

Publication number
WO2012071923A1
WO2012071923A1 PCT/CN2011/079562 CN2011079562W WO2012071923A1 WO 2012071923 A1 WO2012071923 A1 WO 2012071923A1 CN 2011079562 W CN2011079562 W CN 2011079562W WO 2012071923 A1 WO2012071923 A1 WO 2012071923A1
Authority
WO
WIPO (PCT)
Prior art keywords
steam
oxidant
pressure heater
high pressure
oxygen
Prior art date
Application number
PCT/CN2011/079562
Other languages
English (en)
French (fr)
Inventor
曹杰玉
宋敬霞
Original Assignee
西安热工研究院有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 西安热工研究院有限公司 filed Critical 西安热工研究院有限公司
Publication of WO2012071923A1 publication Critical patent/WO2012071923A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K7/00Steam engine plants characterised by the use of specific types of engine; Plants or engines characterised by their use of special steam systems, cycles or processes; Control means specially adapted for such systems, cycles or processes; Use of withdrawn or exhaust steam for feed-water heating
    • F01K7/16Steam engine plants characterised by the use of specific types of engine; Plants or engines characterised by their use of special steam systems, cycles or processes; Control means specially adapted for such systems, cycles or processes; Use of withdrawn or exhaust steam for feed-water heating the engines being only of turbine type
    • F01K7/22Steam engine plants characterised by the use of specific types of engine; Plants or engines characterised by their use of special steam systems, cycles or processes; Control means specially adapted for such systems, cycles or processes; Use of withdrawn or exhaust steam for feed-water heating the engines being only of turbine type the turbines having inter-stage steam heating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K7/00Steam engine plants characterised by the use of specific types of engine; Plants or engines characterised by their use of special steam systems, cycles or processes; Control means specially adapted for such systems, cycles or processes; Use of withdrawn or exhaust steam for feed-water heating
    • F01K7/34Steam engine plants characterised by the use of specific types of engine; Plants or engines characterised by their use of special steam systems, cycles or processes; Control means specially adapted for such systems, cycles or processes; Use of withdrawn or exhaust steam for feed-water heating the engines being of extraction or non-condensing type; Use of steam for feed-water heating
    • F01K7/40Use of two or more feed-water heaters in series
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2303/00Specific treatment goals
    • C02F2303/08Corrosion inhibition

Definitions

  • the invention relates to a water chemical treatment method for preventing corrosion of a thermal equipment, in particular to an oxygen treatment method for a water vapor system of a thermal power plant.
  • the chemical treatment method for preventing the corrosion of thermal equipment in the steam power system of a thermal power plant at home and abroad is to treat the water with oxygen.
  • the method can significantly reduce the flow accelerated corrosion of the heating equipment of the water supply system, reduce the transfer of corrosion products, reduce the fouling rate of the water wall, and prolong the operating period of the condensate polishing device.
  • this method has the risk of promoting the detachment of scale on the inner wall of the superheater tube.
  • the oxygen added by the original oxygen treatment process is brought into the steam, which will cause the superheater.
  • the scale of the inner wall of the tube falls off. The detached scale blocks the superheater tube, so that the evaporator tube does not get enough steam to cool, causing the superheater tube to overheat and burst.
  • the existing water supply and oxygen treatment methods at home and abroad cannot take into consideration the anti-corrosion of the water supply system, the corrosion prevention of the steam side of the high-pressure heater, and the prevention of the scale falling off in the superheater tube.
  • the object of the present invention is to overcome the above disadvantages of the prior art and to provide a The anti-corrosion of the water system and the steam side of the high-pressure heater, thereby avoiding the oxygenation treatment method of the steam power plant water vapor system which may adversely affect the superheater system by the oxidation treatment.
  • the technical scheme adopted by the invention is: the oxidant is added to the steam on the steam side of the high pressure heater or added to the hydrophobicity of the high pressure heater, and the added oxidant is converted into a dissolved oxygen concentration of 5 g/kg - 200 ⁇ . ⁇ /13 ⁇ 4 ; At the same time, oxygen is added to the water supply system through the oxygen addition point after the deaerator, and the dissolved oxygen concentration of the feed water is controlled to be 5 g/L - 6 ( ⁇ g/L.
  • the oxidant is added to a high-pressure heater having the highest temperature on the steam side of the high-pressure heater; the oxidant is added to a high-pressure heater centered on the steam side of the high-pressure heater; and the oxidant is added to the steam side temperature of the high-pressure heater
  • the lowest high pressure heater; the oxidant is pure oxygen, compressed air or hydrogen peroxide.
  • the invention adds oxidant to the steam side or the hydrophobic side of the high-pressure heater, and simultaneously adds low-concentration oxygen to the water, taking into account the anti-corrosion of the economizer, the water side of the high-pressure heater and the steam side of the high-pressure heater, and avoids oxidation treatment to the superheater.
  • the adverse effects are not limited to the following abbreviations: the following abbreviations: the following abbreviations of the economizer, the water side of the high-pressure heater and the steam side of the high-pressure heater, and avoids oxidation treatment to the superheater. The adverse effects.
  • Figure 1 is a system diagram of the present invention.
  • the present invention adds a low concentration of oxygen to the water supply system through the oxygen addition point 16 after the deaerator 4, and controls the dissolved oxygen concentration of the feed water to be 5 g/L-6 ( ⁇ g/L, the optimum dissolved oxygen concentration is 5 g/L — 3 ( ⁇ g/L.
  • the dissolved oxygen concentration of the feed water is low, the dissolved oxygen is consumed by the economizer 9 and the water wall 10, and the oxygen concentration in the steam entering the superheater 11 is low, which does not adversely affect the formation and fall of the scale on the inner wall of the superheater tube. After passing through the superheater 11, the dissolved oxygen concentration in the steam is close to zero. Therefore, there is no oxygen in the heating steam drawn from the steam turbine high pressure cylinder 12 to the steam side of the high pressure heaters 6, 7, 8 and there is a risk of flow accelerated corrosion on the steam side of the high pressure heaters 6, 7, and 8.
  • the invention adds an oxidant to the steam side or the hydrophobic side of the high pressure heater 6, 7, 8 through a high pressure heater steam side oxygen addition point 17 or a high pressure heater hydrophobic oxygen addition point 18, which may be a gas oxidant such as oxygen or compressed air. It can also be a liquid oxidant such as hydrogen peroxide. Therefore, the corrosion of the steam side of the high pressure heaters 6, 7, 8 is effectively reduced.
  • the concentration of the oxidant added to the hydrophobicity of the high pressure heater 6, 7, 8 or the high pressure heater is low, and the added oxidant is converted into the optimal dissolved oxygen concentration of l (g/kg - 5 ( ⁇ g/).
  • the hydrophobicity of the high-pressure heaters 6, 7, 8 enters the deaerator 4, and is diluted by the low-pressure feed water from the low-pressure heater 3 into the deaerator 4 to ensure that the dissolved oxygen in the feed water is kept at a lower concentration.
  • the anti-corrosion of the economizer 9 the water side of the high-pressure heaters 6, 7, 8 and the steam side of the high-pressure heaters 6, 7, 8 are taken into consideration, and the adverse effects of the oxidation treatment on the superheater 11 are avoided. .
  • the working process of the system is as follows: the water in the condenser 1 passes through the condensing water pump 2 and then enters the low-pressure heater 3 and the deaerator 4 in sequence, and the oxygen-adding point 16 after the deaerator 4 adds a low concentration of oxygen to the water supply system, and controls
  • the dissolved oxygen concentration in the feed water is 5 g/L - 6 ( ⁇ g / L, the optimum dissolved oxygen concentration is 5 g / L - 3 ( ⁇ g / L, the water after the oxygen is fed into the high-pressure heater 6 through the feed pump 5) 7, 7 ⁇ 8, the water heated by the high-pressure heaters 6, 7 and 8 enters the economizer 9 and the water-cooled wall 10 in sequence, and the steam generated by the water-cooled wall passes through the superheater 11 and the steam turbine high-pressure cylinder 12 and the reheater 13 in turn.
  • the steam turbine intermediate pressure cylinder 14 and the steam turbine low pressure cylinder 15 are steamed into the condenser 1 to be condensed into water; the intermediate extraction pipe of the steam turbine high pressure cylinder 12 (or intermediate pressure cylinder) is connected to the steam side of the high pressure heaters 6, 7, and 8. , adding oxidant to the steam side of the high pressure heater 6, 7, 8 through the steam side oxygen addition point 17 of the high pressure heater, or by high pressure Heater hydrophobic oxygen point 18 adds oxidant to the hydrophobic

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Preventing Corrosion Or Incrustation Of Metals (AREA)

Description

说 明 书 一种火力发电厂水汽系统加氧处理方法 技术领域
本发明涉及一种防止热力设备腐蚀的水化学处理方法, 特别涉及一种 火力发电厂水汽系统加氧处理方法。
背景技术
目前国内外已有的火力发电厂水汽系统防止热力设备腐蚀的化学处 理方法是给水加氧处理。该方法可以显著降低给水系统热力设备的流动加 速腐蚀、 减少腐蚀产物的转移、 减少水冷壁的结垢速率、 延长凝结水精处 理装置的运行周期。但是, 该方法存在促进过热器管内壁氧化皮脱落的风 险。 对于某些奥氏体不锈钢材料, 在过热器管壁温超标、 机组停机冷却速 度过快等影响因素的共同作用下, 原有的加氧处理工艺加入的氧带到蒸汽 中, 会造成过热器管内壁氧化皮脱落。 脱落的氧化皮堵塞过热器管, 使过 热器管得不到足够的蒸汽冷却, 导致过热器管过热爆管。
如果为了避免蒸汽中的氧对过热器的不利影响, 减少给水加氧量, 使 蒸汽中的溶解氧浓度接近于零, 会导致高压加热器汽侧腐蚀损坏、 增加疏 水腐蚀产物, 影响电厂的安全经济运行。
因此, 目前国内外已有的给水加氧处理方法,无法兼顾给水系统防腐、 高压加热器汽侧的防腐和防止过热器管内氧化皮脱落。
发明内容
本发明的目的在于克服上述现有技术的缺点, 提供了一种能够兼顾给 水系统、 高压加热器汽侧的防腐, 从而避免氧化处理对过热器系统可能产 生不利影响的火力发电厂水汽系统加氧处理方法。
为达到上述目的, 本发明采用的技术方案是: 氧化剂加入到高压加热 器汽侧的蒸汽中或加入到高压加热器的疏水中, 所加入的氧化剂折算成溶 解氧浓度为 5 g/kg— 200μ§/1¾; 同时,通过除氧器后的加氧点向给水系统 加入氧气, 控制给水溶解氧浓度为 5 g/L— 6(^g/L。
所述的氧化剂加入到高压加热器汽侧温度最高的高压加热器中; 所述的氧化剂加入到高压加热器汽侧温度居中的高压加热器中; 所述的氧化剂加入到高压加热器汽侧温度最低的高压加热器中; 所述的氧化剂为纯氧气、 压缩空气或双氧水。
本发明在高压加热器汽侧或疏水中加氧化剂, 同时给水加入低浓度 氧, 兼顾了省煤器、 高压加热器水侧、 高压加热器汽侧的防腐, 同时避免 了氧化处理对过热器可能产生的不利影响。
附图说明
图 1是本发明的系统图。
具体实施方式
下面结合附图对本发明作进一步详细说明。
参见图 1,本发明通过除氧器 4后的加氧点 16向给水系统加入低浓度 的氧, 控制给水溶解氧浓度为 5 g/L— 6(^g/L, 最佳溶解氧浓度为 5 g/L — 3(^g/L。
由于给水溶解氧浓度低, 经过省煤器 9、水冷壁 10消耗溶解氧, 进入 过热器 11 的蒸汽中的氧浓度很低, 不会对过热器管内壁氧化皮的生成和 脱落产生不利影响。 经过过热器 11后, 蒸汽中的溶解氧浓度接近零。 因此, 从汽轮机高 压缸 12抽汽进入到高压加热器 6、 7、 8汽侧的加热蒸汽中没有氧, 高压 加热器 6、 7、 8汽侧有发生流动加速腐蚀的危险。
本发明通过高压加热器汽侧加氧点 17或高压加热器疏水加氧点 18, 向高压加热器 6、 7、 8汽侧或疏水中加入氧化剂, 该氧化剂可以是氧气、 压缩空气等气体氧化剂, 也可以是双氧水等液体氧化剂。 因此, 有效地降 低了高压加热器 6、 7、 8汽侧的腐蚀。
本发明向高压加热器 6、 7、 8汽侧或高压加热器疏水中加入的氧化剂 浓度较低, 所加入的氧化剂折算成溶解氧浓度最佳值为 l( g/kg— 5(^g/kg。 高压加热器 6、 7、 8的疏水进入除氧器 4, 被从低压加热器 3进 入除氧器 4的低压给水稀释后, 可保证给水溶解氧保持在较低浓度。
采用本方法后, 兼顾了省煤器 9、 高压加热器 6、 7、 8水侧、 高压加 热器 6、 7、 8汽侧的防腐, 同时避免了氧化处理对过热器 11可能产生的 不利影响。
系统工作过程如下:凝汽器 1中的水经凝结水泵 2后依次进入低压加 热器 3和除氧器 4,经除氧器 4后的加氧点 16向给水系统加入低浓度的氧, 控制给水溶解氧浓度为 5 g/L— 6(^g/L, 最佳溶解氧浓度为 5 g/L— 3(^g/L, 加氧后的水经给水泵 5依次进入高压加热器 6、 7、 8, 经高压加 热器 6、 7、 8加热后的水依次进入省煤器 9、 水冷壁 10, 水冷壁产生的蒸 汽依次经过过热器 11和汽轮机高压缸 12、 再热器 13、 汽轮机中压缸 14 和汽轮机低压缸 15,蒸汽进入凝汽器 1中冷凝成水;汽轮机高压缸 12 (或 中压缸) 的中间抽汽管与高压加热器 6、 7、 8汽侧相连通, 通过高压加热 器汽侧加氧点 17向高压加热器 6、 7、 8汽侧加入氧化剂, 或通过高压加 热器疏水加氧点 18向疏水中加入氧化剂

Claims

权 利 要 求 书
1、 一种火力发电厂水汽系统加氧处理方法, 其特征在于: 将氧化剂 加入到高压加热器汽侧的蒸汽中或加入到高压加热器的疏水中, 所加入的 氧化剂折算成溶解氧浓度为 5 g/kg— 200μ8/1¾; 同时,通过除氧器后的加 氧点向给水系统加入氧气, 控制给水溶解氧浓度为 5 g/L— 6(^g/L。
2、 根据权利要求 1所述的火力发电厂水汽系统加氧处理方法, 其特 征在于: 所述的氧化剂加入到高压加热器汽侧温度最高的高压加热器中。
3、 根据权利要求 1所述的火力发电厂水汽系统加氧处理方法, 其特 征在于: 所述的氧化剂加入到高压加热器汽侧温度居中的高压加热器中。
4、 根据权利要求 1所述的火力发电厂水汽系统加氧处理方法, 其特 征在于: 所述的氧化剂加入到高压加热器汽侧温度最低的高压加热器中。
5、 根据权利要求 1所述的火力发电厂水汽系统加氧处理方法, 其特 征在于: 所述的氧化剂为纯氧气、 压缩空气或双氧水。
PCT/CN2011/079562 2010-11-29 2011-09-13 一种火力发电厂水汽系统加氧处理方法 WO2012071923A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201010563621A CN102070214B (zh) 2010-11-29 2010-11-29 一种火力发电厂水汽系统加氧处理方法
CN201010563621.2 2010-11-29

Publications (1)

Publication Number Publication Date
WO2012071923A1 true WO2012071923A1 (zh) 2012-06-07

Family

ID=44029001

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/079562 WO2012071923A1 (zh) 2010-11-29 2011-09-13 一种火力发电厂水汽系统加氧处理方法

Country Status (2)

Country Link
CN (1) CN102070214B (zh)
WO (1) WO2012071923A1 (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102070214B (zh) * 2010-11-29 2012-10-10 西安热工研究院有限公司 一种火力发电厂水汽系统加氧处理方法
CN103833122B (zh) * 2014-03-14 2016-03-30 长沙理工大学 一种火电厂加热器疏水系统的防腐装置与方法
CN103880230B (zh) * 2014-03-26 2015-04-08 西安热工研究院有限公司 一种火电厂热力系统分段氧化处理系统及处理方法
CN105425581B (zh) * 2015-12-17 2018-07-03 镇江市高等专科学校 热电厂水汽管道加氧控制方法
CN110510723A (zh) * 2019-08-05 2019-11-29 安徽安庆皖江发电有限责任公司 火力发电机组
CN111348759A (zh) * 2020-04-07 2020-06-30 西安热工研究院有限公司 一种高加疏水自动加氧系统及加氧方法
CN114229980A (zh) * 2021-12-03 2022-03-25 山西三合盛智慧科技股份有限公司 一种发电厂给水自动加氧加氟协同控制装置及其控制方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11236689A (ja) * 1998-02-25 1999-08-31 Babcock Hitachi Kk 発電プラントの水処理装置および水処理方法
JPH11304992A (ja) * 1998-04-17 1999-11-05 Toshiba Corp 発電用タービン設備
JP2005313116A (ja) * 2004-04-30 2005-11-10 Toshiba Corp コンバインドサイクル発電プラントの水処理装置、その水処理方法およびコンバインドサイクル発電プラント
WO2010104062A1 (ja) * 2009-03-10 2010-09-16 株式会社東芝 発電プラントの水質管理方法及びシステム
CN101851020A (zh) * 2010-04-29 2010-10-06 浙江省电力试验研究院 直流锅炉定向氧化给水处理工艺
CN101880092A (zh) * 2010-05-27 2010-11-10 江苏省电力试验研究院有限公司 本质安全的直流锅炉给水加氧处理方法
CN102070214A (zh) * 2010-11-29 2011-05-25 西安热工研究院有限公司 一种火力发电厂水汽系统加氧处理方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11236689A (ja) * 1998-02-25 1999-08-31 Babcock Hitachi Kk 発電プラントの水処理装置および水処理方法
JPH11304992A (ja) * 1998-04-17 1999-11-05 Toshiba Corp 発電用タービン設備
JP2005313116A (ja) * 2004-04-30 2005-11-10 Toshiba Corp コンバインドサイクル発電プラントの水処理装置、その水処理方法およびコンバインドサイクル発電プラント
WO2010104062A1 (ja) * 2009-03-10 2010-09-16 株式会社東芝 発電プラントの水質管理方法及びシステム
CN101851020A (zh) * 2010-04-29 2010-10-06 浙江省电力试验研究院 直流锅炉定向氧化给水处理工艺
CN101880092A (zh) * 2010-05-27 2010-11-10 江苏省电力试验研究院有限公司 本质安全的直流锅炉给水加氧处理方法
CN102070214A (zh) * 2010-11-29 2011-05-25 西安热工研究院有限公司 一种火力发电厂水汽系统加氧处理方法

Also Published As

Publication number Publication date
CN102070214B (zh) 2012-10-10
CN102070214A (zh) 2011-05-25

Similar Documents

Publication Publication Date Title
WO2012071923A1 (zh) 一种火力发电厂水汽系统加氧处理方法
JP6420729B2 (ja) 排ガスから湿分を回収する火力発電設備及びその火力発電設備の回収水の処理方法
CN107935287A (zh) 一种超临界水氧化能量回收系统
JP5273378B2 (ja) 蒸気ボイラ装置およびその運転方法
TWI595148B (zh) 高溫蒸汽產生器之混合式水處理法
CN102603085B (zh) 一种电站锅炉给水加氧处理工艺
US20140042104A1 (en) Process for feed-water oxygenating treatment in boiler in power station
JP5788421B2 (ja) 空気分離するとともに空気分離装置から生じた空気ガスを加熱する方法および一体型装置
CN207891190U (zh) 一种基于朗肯循环的超临界水氧化能量回收装置
CN106115634B (zh) 一种浓缩钛白废酸的方法
JP6199428B2 (ja) 過熱水蒸気発生器
CN207661753U (zh) 一种干熄焦锅炉给水装置
CN208382128U (zh) 一种蒸压釜余热、余压给锅炉软水加热、升温装置
WO2019192173A1 (zh) 一种含s03气体制酸能量回收装置及方法
JP2015212585A (ja) 給水脱気装置を持ったボイラ
TW201429877A (zh) 含有過氧化氫及氨之水的處理方法及裝置
JP2012102980A (ja) ブロータンク及びその使用方法
CN109028021A (zh) 一种除氧器排气能量回收装置及方法
JP2010002100A (ja) 加熱加圧システム
JP2007263385A (ja) ボイラ給水処理装置、ボイラ装置及びボイラ給水処理装置の運転方法
JP5201506B2 (ja) 過熱水蒸気を用いた食品調理方法及び調理器
JPH11236689A (ja) 発電プラントの水処理装置および水処理方法
CN215765033U (zh) 一种乏汽回收系统
CN105626172B (zh) 一种蒸气轮机发电设备
EA033173B1 (ru) Способ опреснения морской воды и выработки электроэнергии в комбинированной установке

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11845884

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11845884

Country of ref document: EP

Kind code of ref document: A1