WO2013136909A1 - 荷電粒子線装置用防音カバー及び荷電粒子線装置 - Google Patents

荷電粒子線装置用防音カバー及び荷電粒子線装置 Download PDF

Info

Publication number
WO2013136909A1
WO2013136909A1 PCT/JP2013/053788 JP2013053788W WO2013136909A1 WO 2013136909 A1 WO2013136909 A1 WO 2013136909A1 JP 2013053788 W JP2013053788 W JP 2013053788W WO 2013136909 A1 WO2013136909 A1 WO 2013136909A1
Authority
WO
WIPO (PCT)
Prior art keywords
soundproof cover
particle beam
charged particle
cylindrical body
cover
Prior art date
Application number
PCT/JP2013/053788
Other languages
English (en)
French (fr)
Inventor
武藤 大輔
秀樹 菊池
浩大 上田
長沖 功
高野 靖
Original Assignee
株式会社 日立ハイテクノロジーズ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 日立ハイテクノロジーズ filed Critical 株式会社 日立ハイテクノロジーズ
Priority to DE112013000944.7T priority Critical patent/DE112013000944T8/de
Priority to US14/378,688 priority patent/US20150041676A1/en
Priority to CN201380007222.XA priority patent/CN104081491A/zh
Publication of WO2013136909A1 publication Critical patent/WO2013136909A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/16Vessels; Containers
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K11/00Methods or devices for transmitting, conducting or directing sound in general; Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/16Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K11/00Methods or devices for transmitting, conducting or directing sound in general; Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/16Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/172Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using resonance effects
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/20Means for supporting or positioning the objects or the material; Means for adjusting diaphragms or lenses associated with the support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/26Electron or ion microscopes; Electron or ion diffraction tubes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/02Details
    • H01J2237/0216Means for avoiding or correcting vibration effects

Definitions

  • the present invention relates to a soundproof cover used for a charged particle beam device or the like, and more particularly to a soundproof cover and a charged particle beam device that can suppress the influence of sound of a specific frequency.
  • a soundproof cover is installed to cover the apparatus from the outside as a means for blocking the transmission of the sound wave irradiated to the apparatus for the purpose of preventing the occurrence of an image failure caused by the irradiation of the installation environment sound.
  • the soundproof cover is usually formed with a hexahedron structure having upper, lower, left, and upper surfaces in consideration of the property of sound wave wrapping around and further in view of workability and cost reduction.
  • Patent Document 1 discloses a technique in which a sound absorbing material is covered with dustproof fibers and attached to the inner surface of the soundproof cover.
  • Patent Document 2 discloses a sound absorbing structure including a box member having a large number of small holes.
  • Patent Documents 3 and 4 disclose a structure in which a Helmholtz resonator is installed in a sash portion of a double window
  • Patent Document 5 discloses a structure in which a Helmholtz resonator is installed in a lower part of a skirt portion of a railway vehicle. Yes.
  • a high-resolution charged particle beam apparatus is provided with a soundproof cover as a means for interrupting transmission of sound waves irradiated to the apparatus, thereby improving noise resistance performance of relatively high frequencies.
  • noise resistance may be reduced in the low frequency region. This is because, in a general design, a part that is sensitive to vibration is placed near the center of the cover in the device, whereas at a certain frequency, the antinode of the sound pressure of the standing acoustic wave generated in the cover is present. This is caused by oscillating a part sensitive to vibrations by just coming to the center of the cover.
  • Patent Document 1 When the soundproof cover of Patent Document 1 is used to deal with vibrations caused by the sound of this specific frequency, the sound absorbing material to be installed becomes thick because the target frequency is low.
  • Patent Document 2 it is necessary to open an infinite number of holes having an opening diameter less than or equal to the plate thickness, and it is difficult to perform general punching processing. The production cost may increase.
  • Patent Document 3 to Patent Document 5 do not provide a structure such as a shape or an installation location that can efficiently absorb sound by a sound absorbing structure specialized for a frequency that is a problem in the charged particle beam apparatus. .
  • a hollow portion forming member that forms a cylindrical body having a wall surface along the inner wall of the soundproof cover is provided. Proposed is a soundproof cover in which one end of a cylindrical body formed by a part forming member is open and the other end of the cylindrical part is closed, and a charged particle beam device surrounded by the soundproof cover.
  • the block diagram of a charged particle beam apparatus The figure which shows the frequency characteristic of the noise-proof performance of a charged particle beam apparatus.
  • FIG. 1 Another figure explaining the result of the numerical analysis which verifies the effect of a soundproof cover.
  • the embodiment described below relates to a charged particle beam apparatus in which image disturbance occurs due to acoustic excitation.
  • it relates to a soundproof cover for reducing noise and vibration from the external environment, and is assumed to be used particularly in a clean room.
  • the soundproof cover for the high-resolution charged particle beam device installed for the purpose of preventing the occurrence of image failure caused by the environment sound of the installation environment has a uniform noise resistance performance over the entire frequency band.
  • a structure that is improved and is realized at low cost without impairing dustproofness that can withstand use of a clean room, which is an installation environment of the charged particle beam device, and ease of opening and closing the cover in consideration of maintenance will be described.
  • the present invention relates to a charged particle beam device including an electron gun, a sample chamber, and a detector, and a soundproof cover that covers the outside of the charged particle beam device.
  • a charged particle beam device including an electron gun, a sample chamber, and a detector
  • a soundproof cover that covers the outside of the charged particle beam device.
  • Can be discriminated at a very high resolution and an electron gun and / or detector is disposed at the end of the apparatus, and a sample chamber is provided at the center of the apparatus.
  • the soundproof cover has a cylindrical cavity part that is open on one side and closed on the other side with respect to the inner surface. An example in which it is arranged so as to be in the center of the direction or both will be described.
  • a hollow portion forming member that forms a cylindrical body having a wall surface along the inner wall of the soundproof cover is provided, and one end of the cylindrical body formed by the hollow portion forming member is opened, and the cylindrical body
  • the soundproof cover in which the other end of the cover is closed can efficiently eliminate the influence of sound brought into the cover. Specifically, it is possible to install a sound absorption mechanism having a large sound absorption characteristic at the frequency at which the acoustic standing wave is generated at the position of the antinode of the sound pressure of the acoustic standing wave generated in the cover.
  • the soundproof cover described in detail below is particularly effective when applied to a high-resolution charged particle beam apparatus, and can prevent image failure caused by installation environment sound.
  • the soundproof cover described below can improve the noise resistance performance evenly over the entire frequency band.
  • it can be provided at a low cost without impairing the ease of opening and closing the cover in consideration of dust resistance and maintenance that can withstand the use of a clean room, which is an installation environment of the charged particle beam apparatus.
  • the charged particle beam device referred to below is a high-precision scanning electron microscope, transmission electron microscope, length measuring device (CD-SEM), review device, defect inspection device, sample processing device using a charged particle beam, etc. This refers to a device that inspects, observes, and processes, and generally refers to a device in which an image failure occurs due to minute vibrations of the device.
  • FIG. 1 is a schematic diagram showing the overall configuration of a transmission electron microscope that is an example of a charged particle beam apparatus 100.
  • the transmission electron microscope of FIG. 1 includes a column 101, a converging device 102, a sample chamber 103, a stage 104, a holder 105, a sample 106, a detector 107, a gantry 108, a vibration isolation table 109, and the like. Electrons emitted from 110 (charged particle source) pass through the sample 106 and are detected by the detector 107.
  • the trajectory of the electrons emitted from the electron gun 110 is slightly distorted, so that the position where the electrons are transmitted through the sample 106 is changed slightly, and accordingly detection is performed.
  • the intensity of electrons detected by the device 107 changes. In this way, by imaging the intensity of the electrons that pass through the sample 106 as light and shade with respect to the corresponding coordinates, an enlarged image of the fine structure of the sample can be obtained.
  • the charged particle beam apparatus is an imaging apparatus
  • the main performance is resolution.
  • a very minute structure is enlarged and displayed, an image failure is caused by a very small disturbance.
  • the above-described vibration isolation table 109 is installed to prevent image failure caused by vibration from the floor. As an effect, image failure due to floor vibration is reduced.
  • image defects caused by the environmental sound of the charged particle beam apparatus have also become apparent.
  • the fact that the frequency characteristic of the allowable sound pressure is convex downward indicates that an image disturbance is likely to occur due to the installation environment sound at this frequency, but this is a charged particle beam device. This is because one of the structures has a portion that easily vibrates at this frequency and is affected by the natural vibration. In the case of a transmission electron microscope, this is generally caused by the natural vibration of the holder 105, and the frequency at which the allowable sound pressure falls often coincides with the natural vibration frequency of the holder 105.
  • a soundproof cover 200 as shown in FIG. 3 is recently installed for a high-resolution charged particle beam apparatus. Is done.
  • the installation of the soundproof cover 200 improves the noise resistance performance in a wide range at a high frequency, and the allowable sound pressure drop due to the natural vibration of each part of the structure of the charged particle beam device described above is also improved.
  • the installation of the soundproof cover 200 improves the noise resistance performance in the high frequency region, while the noise resistance performance deteriorates in a certain limited frequency band in the low frequency region. It has been confirmed.
  • an acoustic standing wave as shown in FIG. 5 is generated in the cover.
  • a part sensitive to vibration is arranged near the center of the cover in the apparatus. This is caused by the fact that the sound pressure wave of the acoustic standing wave generated in the cover is vibrated at the center of the cover, so that the part sensitive to vibration is well excited.
  • the embodiment described below provides a structure that effectively reduces the acoustic standing wave in the cover by taking the opposite side that the acoustic standing wave generated in the cover is generated at a frequency determined by the dimensions of the cover.
  • FIG. 6 is an example of a cross-sectional view of the configuration of the charged particle beam apparatus and the soundproof cover according to the present embodiment
  • FIG. 7 is a perspective view of a portion indicated by a broken line.
  • the opening 211 of the cylindrical cavity 210 becomes an antinode of the sound pressure of the acoustic standing wave with respect to the inner surface of the cover. It is installed on the inner surface of the side wall of the soundproof cover so that it comes to the upper and lower inner sides of the cover in the vertical direction.
  • the soundproof panel 7 is installed on the inner wall of a soundproof cover that surrounds the charged particle beam device, and a plurality of cylindrical bodies having wall surfaces along the inner wall of the soundproof cover are arranged along the inner wall of the soundproof cover. Is formed.
  • the soundproof panel is formed so that the closed side of the cylindrical body is connected to the closed side of another cylindrical body.
  • the soundproof panel serves as the cavity forming member, but is not limited thereto, and may be another cylindrical body that can exhibit the effects described below.
  • the transmission electron microscope among other charged particle beam apparatuses, has a structure in which the portion of the holder 105 is weak against vibrations, and thus has a lower noise resistance than the surrounding frequency in the vicinity of the natural frequency of the holder 105.
  • the drop in the noise resistance performance at this frequency is improved by the installation of the soundproof cover 200.
  • the sound pressure is increased near the center of the cover where the holder is placed. The sound standing wave is generated and the noise resistance performance is deteriorated.
  • the generation frequency of the acoustic standing wave (acoustic mode) which becomes the antinode of the sound pressure at the center of the cover where this holder is arranged depends on the shape and dimensions of the cover.
  • h is [m]
  • it is generated at 340 / h [Hz].
  • the cover height is 2 [m]
  • the frequency generated in the vertical three-stage antinode mode is 170 [Hz].
  • the tube with one closed and the other opened when a sound with a wavelength four times the length of the tube arrives, re-radiates the sound of the opposite phase of the incoming sound wave to It is known to cancel and reduce (sound absorption). This is called a sound absorbing tube.
  • the length is 1 [m]
  • the frequency at which this sound absorbing tube exhibits the most sound absorbing effect is 340/4 l [Hz].
  • the opening 211 should be installed at the position of the antinode of the sound pressure. In the vertical three-stage antinode mode, the upper surface of the cover, the lower surface of the cover, and the center of the cover in the height direction Install so that the opening comes to the front.
  • the first space that is in contact with the top plate the second space that is located below the first space and includes the central region in the height direction of the soundproof cover, and the lower space than the second space.
  • Two soundproof panels illustrated in FIG. 7 are provided on each of the four side walls so that the openings are located in the third space including the bottom.
  • the soundproof panel of this example is formed so that four cylindrical bodies are arranged in the height direction, and an opening is located in each of the first to third spaces.
  • the second space is located in the approximate center in the height direction of the soundproof cover, and is a region where the sample holder (sample stand) of the transmission electron microscope is located.
  • the cylindrical cavities 210 functioning as sound absorbing tubes do not overlap each other, and as a result, the vertical direction generated in the cover It is possible to provide a soundproof cover structure that can effectively suppress the three-stage antinode mode and can improve the noise resistance performance evenly in the entire frequency band.
  • FIG. 8 shows an analysis model created to verify the effect of the structure shown in the first embodiment. Only the soundproof cover is modeled, and the cover has a height of 2 m, a width of 1 m, and a depth of 1.4 m corresponding to a general transmission electron microscope. Regarding the installation of the internal sound absorption tube, when the sound absorption tube is not installed (Model 1), when equivalent to Example 1 (Model 2), when only the lower 1/4 of Example 1 is installed (Model 3) The length of the sound absorbing tube is the same as that of the first embodiment, but four types of cases where the position of the opening is different (model 4) were prepared.
  • FIG. 9 shows the result of calculating the sound leaked and transmitted to the inside of the cover.
  • the figure shows a cross section of the longitudinal sound pressure level at 175 Hz (the unit of contour is [dB]).
  • the longitudinal three-stage antinode mode is generated at the frequency calculated as described above. I understand that.
  • the acoustic standing wave is effectively suppressed in the model 2 corresponding to the first embodiment.
  • the suppression of the standing wave is not sufficient, and in the model 4, the suppression effect is small enough to confirm the vertical three-stage antinode mode.
  • FIG. 10 shows the frequency characteristics of sound pressure for each model shown above, and shows the average sound pressure at the sound pressure evaluation points shown in the upper diagram of FIG. This can be explained in the same manner as described above, and it is shown that the model 2 corresponding to the first embodiment can reduce the noise in the cover most at the frequency.
  • the sound absorbing tube is installed using not only the side surfaces but also the inner surface and floor surface of the ceiling, so that acoustic standing waves in the vertical three-stage antinode mode and the horizontal two-stage antinode mode can be suppressed.
  • FIG. 11 shows the length direction of the cylindrical hollow portion 210 of the first embodiment shown in FIG. 6 for the purpose of effectively using the inner surface and floor surface of the ceiling of the soundproof cover 200, and the cover height in the cover. It is installed in the side of the cover instead of the direction. In this way, the inner surface and floor surface of the ceiling of the soundproof cover 200 can be effectively used, and the in-cover lateral two-stage belly mode can be reduced although the contribution is small. Furthermore, it is expected that image defects can be reduced.
  • FIG. 12 shows an example in which a perforated plate is installed in the opening 211 of the cylindrical cavity 210 having the structure shown in FIG. 6 and described in the first embodiment.
  • FIG. 13 in the structure shown in FIG. 6 and described in the first embodiment, the cylindrical cavity portion 210 is again installed on the inner surface of the cylindrical cavity portion 210 installed on the inner surface of the soundproof cover 200. Is shown. In this way, the cylindrical cavity may be installed in multiple stages, and the length of the cylindrical cavity need not be the same as that of the first stage. Moreover, even when the soundproof cover ceiling surface or floor surface as in the second embodiment shown in FIG.
  • the multi-stage structure of the cylindrical hollow portion is not arranged directly on the inner surface of the soundproof cover, but, for example, is suspended from the soundproof cover ceiling surface using a holding tool.
  • a holding tool for example, is suspended from the soundproof cover ceiling surface using a holding tool.
  • the soundproof cover itself needs to be easily opened and closed for the convenience of maintenance, there is a restriction that a structure cannot be installed on the inner surface.
  • the multi-stage structure of the cylindrical hollow portion shown in Example 4 is configured to be hung from the ceiling surface using a holding tool so that it is not directly installed on the inner surface of the soundproof cover. It is good also as a structure.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Acoustics & Sound (AREA)
  • Multimedia (AREA)
  • Soundproofing, Sound Blocking, And Sound Damping (AREA)

Abstract

 本発明は、特定周波数によってもたらされる画像障害の抑制と、小型化の両立を実現することを防音カバー、及び荷電粒子線装置の提供を目的とする。上記目的を達成するために本発明では、以下に荷電粒子線装置を包囲する防音カバーにおいて、当該防音カバーの内壁に沿った壁面を持つ筒状体を形成する空洞部形成部材を備え、当該空洞部形成部材によって形成される筒状体の一端は開放され、当該筒状部の他端は閉じられている防音カバー、及び当該防音カバーに包囲される荷電粒子線装置を提案する。

Description

荷電粒子線装置用防音カバー及び荷電粒子線装置
 本発明は、荷電粒子線装置等に用いられる防音カバーに係り、特に特定周波数の音の影響を抑制し得る防音カバー及び、荷電粒子線装置に関する。
 電子線を用いた微小構造の高分解能での観察を行う電子顕微鏡などの荷電粒子線装置では、分解能の向上に伴って外部からの微小な振動や音によって画像障害の発生が顕在化している。このため、設置環境音が照射されることによって発生する画像障害の発生を防ぐことを目的に、装置へ照射される音波の伝達を遮断する手段として装置を外側から覆うに防音カバーが設置される。
 防音カバーは音波の回り込む性質を考慮し、さらに施工性や低コスト化を鑑みて通常は上下、左右、上下面を有する6面体構造を形成する。
 このカバーの防音性能を向上するには、カバー内部を吸音することが有効で、有機多孔質材料をカバー内面に張り巡らすのが効果的である。しかしながら、荷電粒子線装置はクリーンルーム内で使われることが一般的であり、これら有機材料の飛沫による発塵性がクリーンルームの防塵性を阻害して問題となる場合がある。これを回避する手段として、防塵繊維で吸音材を覆って防音カバー内面に取り付ける技術が特許文献1に開示されている。
 また、一般に音響工学の分野では、フラスコ型の容器の形状の口部における空気振動に起因して容器の形状に依存した共鳴周波数が存在することが知られている。これはヘルムホルツ共鳴器と呼ばれ、この吸音原理を利用して吸音する技術がある。例えばこの技術を利用したものとして、特許文献2には、多数の小孔を備えた箱部材からなる吸音構造体が開示されている。また、特許文献3および特許文献4には二重窓のサッシ部分にヘルムホルツ共鳴器を設置した構造が、特許文献5には鉄道車両のスカート部下部にヘルムホルツ共鳴器を設置した構造が開示されている。
特開2006-79870号公報 特開2008-138505号公報 特許第4232153号公報 特開2010-216104号公報 特許第3911208号公報
 分解能の高い荷電粒子線装置には、装置へ照射される音波の伝達を遮断する手段として防音カバーが設置され、これにより比較的高周波の耐騒音性能は向上する。しかし一方で、低周波数領域においては耐騒音性能が低下する場合がある。これは、一般的な設計では装置の中で振動に対して敏感な部位がカバー中央部付近に配置されるのに対し、ある周波数ではカバー内に発生した音響定在波の音圧の腹が、ちょうどそのカバー中央にきてしまうことによって、振動に対して敏感な部位をよく加振させてしまうために引き起こされる。
 この特定周波数の音によって生じる振動に対して、特許文献1の防音カバーで対応する場合、対象となる周波数が低いために設置するべき吸音材の厚さが厚くなる。また、特許文献2に開示されている従来技術では、板厚と同程度以下の開口径の穴を無数に開ける必要があり、一般的なパンチング加工では困難であるため、別途レーザー加工が必要となり、製作コストが膨らむ可能性がある。さらに、特許文献3ないし特許文献5では、荷電粒子線装置において問題となる周波数に特化した吸音構造によって、効率的に吸音を行うことのできる形状や設置箇所などの構造を提供するものではない。
 以下に、特定周波数によってもたらされる画像障害の抑制と、小型化の両立を実現することを目的とする防音カバー、及び荷電粒子線装置について説明する。
 上記目的を達成するための一態様として、以下に荷電粒子線装置を包囲する防音カバーにおいて、当該防音カバーの内壁に沿った壁面を持つ筒状体を形成する空洞部形成部材を備え、当該空洞部形成部材によって形成される筒状体の一端は開放され、当該筒状部の他端は閉じられている防音カバー、及び当該防音カバーに包囲される荷電粒子線装置を提案する。
 上記構成によれば、厚い吸音材等を必要とせず、小型であり、且つ特定周波数によってもたらされる画像障害を抑制することができる防音カバー、及び荷電粒子線装置の提供が可能となる。
荷電粒子線装置の構成図。 荷電粒子線装置の耐騒音性能の周波数特性を示す図。 荷電粒子線装置に対して防音カバーを設置した例を示す図。 防音カバーの耐騒音性能への影響を示す図。 荷電粒子線装置と、防音カバー内に発生する音響定在波との関係を示す図。 防音カバーを設置した荷電粒子線装置の一例を示す図。 防音カバー部の詳細を説明する図。 防音カバーの効果を検証する数値解析モデルを説明する図。 本発明の実施例1の効果を検証する数値解析の結果を説明する図。 防音カバーの効果を検証する数値解析の結果を説明する別の図。 防音カバーを設置した荷電粒子線装置の他の例を示す図。 防音カバーを設置した荷電粒子線装置の更に他の例を示す図。 防音カバーを設置した荷電粒子線装置の更に他の例を示す図。 防音カバーを設置した荷電粒子線装置の更に他の例を示す図。
 以下に説明する実施例は、音響加振されることによって像障害が発生する荷電粒子線装置に関する。その一例として、外部環境からの騒音や振動を低減するための防音カバーに関するもので、特にクリーンルームなどで使用されることを想定したものである。
 特に、本実施例では、設置環境音によって引き起こる画像障害の発生を防止することを目的に設置される高分解能荷電粒子線装置用の防音カバーについて、全周波数帯域に渡って満遍なく耐騒音性能を向上させ、且つ、荷電粒子線装置の設置環境であるクリーンルームの使用に耐えうる防塵性と、メンテナンスを考慮したカバー開閉の容易性を損なうことなく、安価に実現する構造を説明する。
 より具体的には、本実施例では電子銃と試料室、および検出器から構成される荷電粒子線装置と、該荷電粒子線装置の外側を覆う防音カバーに関し、該荷電粒子線装置は100nm以下のものも判別できる非常に高分解能で観察できるものであり、且つ、装置の端部に電子銃、もしくは検出器、あるいはその両方が配置されるもので、且つ、装置の中央部に試料室が配置され、該防音カバーは、内面に対して、一方が開き他方が閉じた筒状空洞部を有し、該筒状空洞部の開口部分を、カバー内部の上下左右方向端部、もしくは上下左右方向中央部、あるいはその両方にくるように配置した例について説明する。
 上述のように、防音カバーの内壁に沿った壁面を持つ筒状体を形成する空洞部形成部材を備え、当該空洞部形成部材によって形成される筒状体の一端は開放され、当該筒状体の他端は閉じられている防音カバーは、カバー内にもたらされる音の影響を効率良く排除することができる。具体的には、カバー内で発生する音響定在波の音圧の腹の位置に、該音響定在波の発生周波数での吸音特性が大きな吸音機構を設置することが可能となる。以下に詳述する防音カバーは、特に高分解能の荷電粒子線装置に適用することが有効であり、設置環境音によって引き起こされる画像障害の発生を防止することができる。
 また、以下に説明する防音カバーは、全周波数帯域に渡って満遍なく耐騒音性能を向上させることができる。また、荷電粒子線装置の設置環境であるクリーンルームの使用に耐えうる防塵性とメンテナンスを考慮したカバー開閉の容易性を損なうことなく、安価に提供することができる。
 以下でいう荷電粒子線装置とは、汎用の走査電子顕微鏡、透過電子顕微鏡、測長装置(CD-SEM)、レビュー装置、欠陥検査装置、荷電粒子線を用いた試料加工装置等、高精度の検査、観察、加工をする装置を指し、装置の微小な振動によって、画像障害が発生する装置全般をいう。
 図1は荷電粒子線装置100の一例である透過電子顕微鏡の全体構成を示す模式図である。図1の透過電子顕微鏡は、カラム101と収束器102、試料室103、ステージ104、ホルダ105、試料106、検出器107、架台108、除振台109などからなり、カラム101内にある電子銃110(荷電粒子源)から射出された電子が試料106を透過して検出器107で検出される。収束器102での電磁場の与え方を変化させると、電子銃110から射出される電子の軌道が極僅かに歪むため、試料106を電子が透過する位置が極僅かに変化し、それに伴って検出器107で検出される電子の強度が変化する。このようにして試料106中を透過する電子の強度を対応する座標に対する濃淡として画像化することで、試料の微細構造の拡大像を得ることができる。
 このように荷電粒子線装置は撮像装置であるため、主性能は分解能である。しかし、大変微小な構造を拡大表示しているために、非常に些細な外乱によっても画像障害が発生する。先述の除振台109は床からの振動によって発生する画像障害を防ぐために設置されているものであり、その効果として床振動による画像障害は低減した。一方で、ますます高精細化する分解能の向上に伴って、特に100nm以下の分解能を実現する最近の高分解能機種では、荷電粒子線装置の設置環境音によって発生する画像障害も顕在化してきた。
 この設置環境音と画像障害の量の対応関係について、以下で説明する。荷電粒子線装置に音波を照射したときの照射音圧と画像障害の量を測定・把握しておき、その対応関係をもとに、画像障害の程度が所定の値以下となるためには、何dB以下の設置環境音が求められるかを換算したものを「許容音圧」と呼び、値が大きいほど煩い環境でも所定の分解能を確保できることを意味し、耐騒音性能がよいことを表す。図2は、この「許容音圧」を示した一例で、一般に周波数特性を持つことが知られており、特にある周波数で下に凸となることが知られている。このように、許容音圧の周波数特性がある周波数において下に凸になるのは、この周波数で設置環境音によって画像障害が発生しやすいということを表しているが、これは、荷電粒子線装置の構造のいずれかにこの周波数で振動しやすい部位があり、その固有振動の影響をうけているためである。透過電子顕微鏡の場合では、一般にこれはホルダ105の固有振動に起因し、許容音圧が落ち込む周波数もホルダ105の固有振動周波数と一致することが多い。
 このような設置環境音によって発生する画像障害への耐性、つまり耐騒音性能を向上するための方法として、最近では高分解能の荷電粒子線装置に対して図3に示すような防音カバー200が設置される。この防音カバー200の設置により、高い周波数では広い範囲で耐騒音性能を向上させ、先述の荷電粒子線装置の構造各部の固有振動に起因した許容音圧の落ち込みも改善される。
 しかし図4に示すように、防音カバー200の設置によって高周波数領域において耐騒音性能が向上する一方で、低周波数領域の特にある限定した周波数帯域においては、かえって耐騒音性能は悪化するという現象が確認されている。
 これは図5に示すような音響定在波がカバー内で発生するためで、一般的な設計では装置の中で振動に対して敏感な部位がカバー中央部付近に配置されるのに対し、カバー内で発生した音響定在波の音圧の腹が、ちょうどこのカバー中央にきてしまうことによって、振動に対して敏感な部位をよく加振させてしまうために引き起こされる。
 以下に説明する実施例では、このカバー内で発生する音響定在波がカバーの寸法で決まる周波数で発生することを逆手に取り、カバー内音響定在波を効果的に低減する構造を提供する。以下、実施例について図面を用いて説明する。
 本実施例では、カバー内音響定在波を効果的に低減できる防音カバー構造とそれを具備した荷電粒子線装置の実施例について図6ないし図7を用いて説明する。
 図6は、本実施例の荷電粒子線装置およびその防音カバーの構成の断面図の例で、このうち破線で示す部分の斜視図を図7に示す。図6に示す実施例では、カバー内面に対して、一方が閉じ他方が開いた筒状空洞部210について、その筒状空洞部210の開口部211を音響定在波の音圧の腹となるカバー内部の上面、下面およりカバー上下方向中央部にくるように、防音カバーの側壁内面に設置されている。図7に例示する防音パネルは、荷電粒子線装置を包囲する防音カバー内壁に設置され、当該防音カバーの内壁に沿った壁面を持つ筒状体が複数、防音カバー内壁に沿って配列されるように形成されている。この防音パネルは、筒状体の閉じられた側が、他の筒状体の閉じられた側と連結するように形成されている。本実施例の場合、この防音パネルが空洞部形成部材となるが、これに限られることはなく、後述するような効果を発揮できる他の筒状体とするようにしても良い。
 先述のように、荷電粒子線装置の中でも特に透過電子顕微鏡は、その構造上、ホルダ105の部分が振動に弱く、これによりホルダ105の固有周波数近辺で周囲の周波数よりも耐騒音性能が悪い。この周波数における耐騒音性能の落ち込みは防音カバー200の設置で改善するが、さきほどのホルダ105の固有振動数よりも低い別の周波数では、ホルダが配置されるカバー中央付近にて音圧の腹となる音響定在波が発生して耐騒音性能が悪化する。ところでこのホルダが配置されるカバー中央で音圧の腹となる音響定在波(音響モード)の発生周波数はカバーの形状・寸法に依存し、例えば縦方向三段腹モードでは、カバーの高さをh[m]とすると340/h[Hz]に発生する。仮にカバーの高さを2[m]とすると縦方向三段腹モードの発生周波数は170[Hz]となる。
 これに対して一方が閉じ他方が開いた筒はその筒の長さの4倍の波長の音が到来した時に、その到来音波の逆位相の音を再放射することによって、元の到来音を打ち消し、低減(吸音)することが知られている。これは吸音管とよばれ、その長さをl[m]とすると、この吸音管が最も吸音効果を発揮する周波数は340/4l[Hz]である。
 この吸音管を用いて先ほどの高さh[m]のカバー内に発生する縦方向三段腹モードの定在波を効果的に吸音する場合、その長さl[m]はl=h/4[m]となり、ちょうど高さ方向を4等分する長さとなる。また、吸音効果を最大限に発揮するには開口部211を音圧の腹の位置に設置するのがよく、縦方向三段腹モードではカバー上内面、カバー下内面およびカバー内高さ方向中央に開口部が来るように設置する。
 本実施例では、天板と接する第1の空間、当該第1の空間より下方に位置し、防音カバーの高さ方向の中心領域を含む第2の空間、及び当該第2の空間より下方に位置し、底部を含む第3の空間に開口が位置するように、図7に例示する防音パネルを、4面の側壁のそれぞれに各2つ設置している。本例の防音パネルは、高さ方向に4つの筒状体が配列され、上記第1~第3の空間のそれぞれに開口が位置するように形成されている。このうち、第2の空間は、防音カバーの高さ方向のほぼ中央に位置し、透過電子顕微鏡の試料ホルダ(試料台)が位置する領域となる。
 このような構成を図6および図7に示すような配置でカバー内面に設置することで、吸音管として機能する筒状空洞部210同士が重なることはなく、結果、カバー内に発生する縦方向三段腹モードを効果的に抑制することができ、全周波数帯域において満遍なく耐騒音性能を向上することのできる防音カバー構造を提供することができる。
 実施例1に示した構造の効果について、数値解析を用いて検証した結果について、図8ないし図10を用いて説明する。
 図8は実施例1に示した構造の効果について検証するために作成した解析モデルである。モデルは防音カバーのみをモデル化しており、カバーは一般的な透過電子顕微鏡に相当する高さ2m、幅1m、奥行き1.4mとした。内部の吸音管の設置については、吸音管を設置しない場合(モデル1)、実施例1に相当する場合(モデル2)、実施例1のうち下1/4のみを設置した場合(モデル3)、吸音管の長さは実施例1と同等だが開口の位置が異なる場合(モデル4)の4種類を用意した。
 これらのモデルに対して、カバー側面外側1m、床上1mの位置に点音源を配置し、カバー下端から10mm下の位置に床を模擬した反射面を設定したときに、この床とカバーの隙間から漏洩してカバー内部に伝わる音を計算した結果を図9に示す。図は175Hzにおける縦方向の音圧レベル(コンターの単位は[dB])の断面を示したもので、モデル1では先述のようにして計算される当該周波数で縦方向三段腹モードが発生することがわかる。これに対し、実施例1に相当するモデル2では上記の音響定在波が効果的に抑制されているのが分かる。一方、モデル3では定在波の抑制が十分ではなく、モデル4に至っては縦方向三段腹モードが未だ確認できるほどに抑制効果は小さい。
 図10は上記に示す各モデルについて音圧の周波数特性を求めたもので、図10の上図に示す音圧評価点の平均音圧について示している。これについても上記と同様に説明でき、実施例1に相当するモデル2が当該周波数で最もカバー内騒音を低減できることが示される。
 本実施例では、側面のみでなく天井の内面や床面を利用して吸音管を設置することで、縦方向三段腹モードや横方向二段腹モードの音響定在波も抑制できる構造の例について図11を用いて説明する。図11は防音カバー200の天井の内面や床面を有効利用することを目的に図6で示した実施例1の筒状空洞部210についてその筒の長さ方向を、カバー内においてカバー高さ方向ではなくカバー横方向に設置している。このようにすることで防音カバー200の天井の内面や床面を有効利用することができるほか、寄与は小さいがカバー内横方向二段腹モードを低減することができ、実施例1に対して更に画像障害の低減ができると期待される。
 次に別の実施例として、多孔板と組み合わせたパターンについて図12を用いて説明する。図12では図6に示し実施例1にて説明した構造の筒状空洞部210の開口部211に対して多孔板を設置した例について示している。このように多孔板を開口部に設置することにより、開口部で振動する空気の動きやすさを妨げることで、多孔板を設けない場合に比べて短い長さの筒状空洞部でも、吸音効果を発揮することができる。これによりカバー内面の一帯に筒状空洞部を設置できない場合でも、同等の吸音効果を発揮できる。また多孔板の開孔率が極めて小さい場合には、筒状空洞部長さを短く取ることができ、これにより開口方向をカバー面に垂直な方向に設置することができるようになって設計上の自由度が増す。
 次に更に別の実施例として、筒状空洞部を防音カバー内面に対して多段設置したパターンについて、図13を用いて説明する。図13では、図6に示し実施例1にて説明した構造において防音カバー200の内面に対して設置された筒状空洞部210のさらに内面に対して、再度筒状空洞部210を設置した例を示している。このように筒状空洞部は多段にして設置してもよく、その筒状空洞部の長さは1段目と同じである必要はない。また、図11で示した実施例2のような防音カバー天井面や床面を用いた場合でも同様に多段にしてもよい。
 このような筒状空洞部の多段構造をうまく設定することにより、全周波数帯的な耐騒音性能向上が期待できる。たとえば、図10の下図にて実施例1を適用したモデル2において、実施例1を適用しないモデル1よりもカバー内音圧が上昇してしまう帯域に対しても、二段目・三段目の筒状空洞部の設置により改善することが期待される。
 次に更に別の実施例として、多段配置した筒状空洞部を防音カバー天井より吊るすようにして配置したパターンについて、図14を用いて説明する。図14では図13に示し実施例4にて説明した構造において筒状空洞部の多段構造を防音カバー内面に直接配置するのではなく、例えば防音カバー天井面から持具を用いて吊り下げて構成した例について示している。荷電粒子線装置の防音カバーの内側は上の方に比較的広いスペースがある。一方で、防音カバー自体はメンテナンスの都合上、開閉作業が容易にできるようにする必要があるため、あまり内面に構造物を設置できないという制約がある。このような場合は、図のように実施例4に示した筒状空洞部の多段構造を天井面から持具を用いて吊り下げて構成するなどして、防音カバー内面へ直接設置させないような構成としてもよい。
100 荷電粒子線装置
101 カラム
102 収束器
103 試料室
104 ステージ
105 ホルダ
106 試料
107 検出器
108 架台
109 除振台
110 電子銃
200 防音カバー
210 筒状空洞部
211 筒状空洞部の開口部
212 多孔板

Claims (15)

  1.  荷電粒子線装置を包囲する防音カバーにおいて、
     当該防音カバーの内壁に沿った壁面を持つ筒状体を形成する空洞部形成部材を備え、当該空洞部形成部材によって形成される筒状体の一端は開放され、当該筒状部の他端は閉じられていることを特徴とする荷電粒子線装置用防音カバー。
  2.  請求項1において、
     前記空洞部形成部材は、複数の前記筒状体を、前記防音カバーの内壁に沿って配列するように、当該筒状体を形成することを特徴とする荷電粒子線装置用防音カバー。
  3.  請求項1において、
     前記空洞形成部材は、前記防音カバーの側壁に前記筒状体を形成し、前記開口が当該防音カバーの天板と接する第1の空間、当該防音カバーの高さ方向の中心領域を含む第2の空間、及び底部を含む第3の空間の少なくとも1つに位置するように、前記筒状体を形成していることを特徴とする荷電粒子線装置用防音カバー。
  4.  請求項3において、
     前記筒状体は、前記側壁の高さ方向に、少なくとも4つ配列され、天板に一番近い筒状体は、前記第1の空間に開口を持ち、天板に2番目と3番目に近い筒状体は、前記第2の空間に開口を持ち、天板から4番目に近い筒状体は、前記第3の空間に開口を持つことを特徴とする荷電粒子線装置用防音カバー。
  5.  請求項4において、前記筒状体の空洞部の長さを、前記防音カバーの高さの1/4程度としたことを特徴とする荷電粒子線装置用防音カバー。
  6.  請求項1において、
     前記開口に多孔板を設置したことを特徴とする荷電粒子線装置用防音カバー。
  7.  請求項1において、
     前記空洞形成部材は、前記防音カバーの天板に前記筒状体を形成することを特徴とする荷電粒子線装置用防音カバー。
  8.  請求項1において、
     前記空洞形成部材は、前記防音カバーの底部に前記筒状体を形成することを特徴とする荷電粒子線装置用防音カバー。
  9.  請求項1において、
     前記空洞部形成部材は、前記筒状体を、前記防音カバーの内側、外側、あるいはその両方に対して、多段重ねて形成することを特徴とする荷電粒子線装置用防音カバー。
  10.  請求項1において、
     前記空洞部形成部材は、前記筒状体を、前記防音カバーの内側の空間に対して、一段もしくは多段重ねて形成することを特徴とする荷電粒子線装置用防音カバー。
  11.  荷電粒子源と、当該荷電粒子源から放出される荷電粒子線が照射される試料を保持する試料台を備えた荷電粒子線装置において、
     当該荷電粒子線装置を包囲する防音カバーを有し、当該防音カバーは、当該防音カバーの内壁に沿った壁面を持つ筒状体を形成する空洞部形成部材を備え、当該空洞部形成部材によって形成される筒状体の一端は開放され、当該筒状部の他端は閉じられていることを特徴とする荷電粒子線装置。
  12.  請求項11において、
     前記空洞部形成部材は、複数の前記筒状体を、前記防音カバーの内壁に沿って配列するように、当該筒状体を形成することを特徴とする荷電粒子線装置。
  13.  請求項11において、
     前記空洞形成部材は、前記防音カバーの側壁に前記筒状体を形成し、前記開口が、当該防音カバーの天板と接する第1の空間、当該防音カバーの高さ方向の中心領域を含む第2の空間、及び底部を含む第3の空間の少なくとも1つに位置するように、前記筒状体を形成していることを特徴とする荷電粒子線装置。
  14.  請求項11において、
     前記空洞形成部材は、前記防音カバーの側壁に前記筒状体を形成し、前記開口が、当該防音カバーの天板と接する第1の空間、当該防音カバーの高さ方向の中心領域を含む第2の空間、及び底部を含む第3の空間の内、少なくとも第2の空間に位置するように、前記筒状体を形成していることを特徴とする荷電粒子線装置。
  15.  請求項14において、
     前記試料台は、前記第2の空間に配置されることを特徴とする荷電粒子線装置。
PCT/JP2013/053788 2012-03-13 2013-02-18 荷電粒子線装置用防音カバー及び荷電粒子線装置 WO2013136909A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
DE112013000944.7T DE112013000944T8 (de) 2012-03-13 2013-02-18 Störschalldämmende Abdeckung für Ladungsteilchenstrahlvorrichtung und Ladungsteilchenstrahlvorrichtung
US14/378,688 US20150041676A1 (en) 2012-03-13 2013-02-18 Soundproof cover for charged-particle beam device, and charged-particle beam device
CN201380007222.XA CN104081491A (zh) 2012-03-13 2013-02-18 带电粒子线装置用隔音罩以及带电粒子线装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012055233A JP5838106B2 (ja) 2012-03-13 2012-03-13 荷電粒子線装置用防音カバー及び荷電粒子線装置
JP2012-055233 2012-03-13

Publications (1)

Publication Number Publication Date
WO2013136909A1 true WO2013136909A1 (ja) 2013-09-19

Family

ID=49160828

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/053788 WO2013136909A1 (ja) 2012-03-13 2013-02-18 荷電粒子線装置用防音カバー及び荷電粒子線装置

Country Status (5)

Country Link
US (1) US20150041676A1 (ja)
JP (1) JP5838106B2 (ja)
CN (1) CN104081491A (ja)
DE (1) DE112013000944T8 (ja)
WO (1) WO2013136909A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016101978A1 (en) * 2014-12-22 2016-06-30 Applied Materials, Inc. Apparatus for inspecting a substrate, method for inspecting a substrate, large area substrate inspection apparatus and method of operating thereof
JP2017050046A (ja) 2015-08-31 2017-03-09 株式会社日立ハイテクノロジーズ 荷電粒子線装置
KR102329264B1 (ko) * 2018-02-22 2021-11-18 어플라이드 머티어리얼스, 인코포레이티드 디스플레이 제조를 위한 기판에 대한 자동화된 임계 치수 측정을 위한 방법, 디스플레이 제조를 위한 대면적 기판을 검사하는 방법, 디스플레이 제조를 위한 대면적 기판을 검사하기 위한 장치, 및 그 동작 방법

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06222778A (ja) * 1993-01-21 1994-08-12 Towa Seisakusho:Kk 吸音ゴム
JP2006079870A (ja) * 2004-09-08 2006-03-23 Hitachi High-Technologies Corp 荷電粒子線装置
JP2008009014A (ja) * 2006-06-28 2008-01-17 Kobe Steel Ltd 多孔質防音構造体
JP2008138505A (ja) * 2006-11-02 2008-06-19 Kobe Steel Ltd 吸音構造体
JP2009220652A (ja) * 2008-03-14 2009-10-01 Tokai Rubber Ind Ltd 防音カバー
WO2011158458A1 (ja) * 2010-06-16 2011-12-22 株式会社 日立ハイテクノロジーズ 荷電粒子線装置および防音カバー

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL1036433A1 (nl) * 2008-01-31 2009-08-03 Asml Netherlands Bv Lithographic apparatus, method and device manufacturing method.
JP5537386B2 (ja) * 2010-11-09 2014-07-02 株式会社日立ハイテクノロジーズ 荷電粒子線装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06222778A (ja) * 1993-01-21 1994-08-12 Towa Seisakusho:Kk 吸音ゴム
JP2006079870A (ja) * 2004-09-08 2006-03-23 Hitachi High-Technologies Corp 荷電粒子線装置
JP2008009014A (ja) * 2006-06-28 2008-01-17 Kobe Steel Ltd 多孔質防音構造体
JP2008138505A (ja) * 2006-11-02 2008-06-19 Kobe Steel Ltd 吸音構造体
JP2009220652A (ja) * 2008-03-14 2009-10-01 Tokai Rubber Ind Ltd 防音カバー
WO2011158458A1 (ja) * 2010-06-16 2011-12-22 株式会社 日立ハイテクノロジーズ 荷電粒子線装置および防音カバー

Also Published As

Publication number Publication date
US20150041676A1 (en) 2015-02-12
JP5838106B2 (ja) 2015-12-24
JP2013191333A (ja) 2013-09-26
DE112013000944T8 (de) 2014-12-24
CN104081491A (zh) 2014-10-01
DE112013000944T5 (de) 2014-12-11

Similar Documents

Publication Publication Date Title
JP5537386B2 (ja) 荷電粒子線装置
JP5645934B2 (ja) 荷電粒子線装置および防音カバー
JP5838106B2 (ja) 荷電粒子線装置用防音カバー及び荷電粒子線装置
JP2013021035A (ja) 変圧器用騒音低減構造
JP2012177221A (ja) トンネルサイレンサ
US9453335B2 (en) Enclosure for acoustic insulation of an apparatus contained within said enclosure
JP6002561B2 (ja) 電子顕微鏡
US9734983B2 (en) Charged particle radiation apparatus
JP2022103118A (ja) 遮音補強材
KR101576578B1 (ko) 공명기 어셈블리를 이용한 터널 발파소음 저감 장치 및 그 방법
JP2006079870A (ja) 荷電粒子線装置
JP6118169B2 (ja) 荷電粒子線装置
WO2015093156A1 (ja) 荷電粒子線装置用防音カバー、及び荷電粒子線装置
CN103061424A (zh) 一种隔声减振装置
JPH0992192A (ja) 荷電粒子ビーム装置
JP2020057728A (ja) 静止誘導電器
Hamochi et al. Image noise reduction using structural mode shaping for scanning electron microscopy
JP6727142B2 (ja) 静止誘導電器
JP2016051535A (ja) 荷電粒子線装置
JP2023078734A (ja) 発破音低減装置のトンネル内設置構造
JP2008008243A (ja) 騒音低減外衣
JP4268112B2 (ja) 二重壁構造体
JP2014163198A (ja) L型ダクトを用いた騒音低減装置
JP2023035460A (ja) 発破音低減装置
WO2014195473A1 (de) Schallstrahler -anordnung für aktive schalldämpfer

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13761875

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14378688

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1120130009447

Country of ref document: DE

Ref document number: 112013000944

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13761875

Country of ref document: EP

Kind code of ref document: A1