WO2013136879A1 - 内燃機関の制御装置 - Google Patents

内燃機関の制御装置 Download PDF

Info

Publication number
WO2013136879A1
WO2013136879A1 PCT/JP2013/052654 JP2013052654W WO2013136879A1 WO 2013136879 A1 WO2013136879 A1 WO 2013136879A1 JP 2013052654 W JP2013052654 W JP 2013052654W WO 2013136879 A1 WO2013136879 A1 WO 2013136879A1
Authority
WO
WIPO (PCT)
Prior art keywords
ion signal
signal
ignition
internal combustion
combustion engine
Prior art date
Application number
PCT/JP2013/052654
Other languages
English (en)
French (fr)
Inventor
白石 拓也
賢吾 熊野
健一郎 緒方
赤城 好彦
伸也 眞戸原
Original Assignee
日立オートモティブシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立オートモティブシステムズ株式会社 filed Critical 日立オートモティブシステムズ株式会社
Priority to US14/379,682 priority Critical patent/US20150019112A1/en
Priority to DE112013001438.6T priority patent/DE112013001438T5/de
Priority to CN201380010069.6A priority patent/CN104126067A/zh
Publication of WO2013136879A1 publication Critical patent/WO2013136879A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P5/00Advancing or retarding ignition; Control therefor
    • F02P5/04Advancing or retarding ignition; Control therefor automatically, as a function of the working conditions of the engine or vehicle or of the atmospheric conditions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D35/00Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for
    • F02D35/02Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for on interior conditions
    • F02D35/021Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for on interior conditions using an ionic current sensor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P5/00Advancing or retarding ignition; Control therefor
    • F02P5/04Advancing or retarding ignition; Control therefor automatically, as a function of the working conditions of the engine or vehicle or of the atmospheric conditions
    • F02P5/145Advancing or retarding ignition; Control therefor automatically, as a function of the working conditions of the engine or vehicle or of the atmospheric conditions using electrical means
    • F02P5/15Digital data processing
    • F02P5/152Digital data processing dependent on pinking
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M15/00Testing of engines
    • G01M15/04Testing internal-combustion engines
    • G01M15/11Testing internal-combustion engines by detecting misfire
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/10Parameters related to the engine output, e.g. engine torque or engine speed
    • F02D2200/1015Engines misfires
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D35/00Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for
    • F02D35/02Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for on interior conditions
    • F02D35/027Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for on interior conditions using knock sensors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P17/00Testing of ignition installations, e.g. in combination with adjusting; Testing of ignition timing in compression-ignition engines
    • F02P17/12Testing characteristics of the spark, ignition voltage or current
    • F02P2017/125Measuring ionisation of combustion gas, e.g. by using ignition circuits
    • F02P2017/128Measuring ionisation of combustion gas, e.g. by using ignition circuits for knock detection
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P3/00Other installations
    • F02P3/02Other installations having inductive energy storage, e.g. arrangements of induction coils
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P3/00Other installations
    • F02P3/02Other installations having inductive energy storage, e.g. arrangements of induction coils
    • F02P3/04Layout of circuits
    • F02P3/045Layout of circuits for control of the dwell or anti dwell time
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Definitions

  • the present invention relates to a control device for an internal combustion engine, and more particularly to a control device for an internal combustion engine that can accurately estimate a knock state or a misfire state of the internal combustion engine by detecting a combustion state in a cylinder as an ion signal. .
  • a spark ignition type internal combustion engine using gasoline has a compression ratio set to about 10
  • a diesel type internal combustion engine has a compression ratio set to about 18. Therefore, a diesel type internal combustion engine is a spark ignition type internal combustion engine. It is said that the thermal efficiency is higher than In a spark ignition type internal combustion engine using gasoline, if the compression ratio is increased in order to increase the combustion efficiency, abnormal combustion called knocking (or knocking) tends to occur as the compression ratio increases. It is said that there is a limit to increasing the compression ratio.
  • misfire or knock is determined in the ignition coil. Then, a technique for outputting the determination result to the control device side is proposed.
  • a misfire detection circuit and a knock detection circuit are provided separately, and each detection result is output as a voltage value, for example, 5 V for misfire, 2.5 V for normal combustion, and 0 V for knock, and the control device It is said that misfire and knock can be determined from the voltage value.
  • FIG. 1 shows the configuration of a control device for an internal combustion engine, and a conventional knock detection method and misfire detection method will be described with reference to FIG.
  • reference numeral 9 is a knock sensor, and the knock sensor 9 captures pressure vibration caused by knock generated in the combustion chamber as mechanical vibration of the cylinder block of the internal combustion engine.
  • the knock sensor 9 performs frequency analysis on the detected vibration to extract only the knock component, Determine if there is a knock.
  • Numeral 11 is a toothless plate attached to the crankshaft that is synchronized with the movement of the piston 12, and has 60 teeth for every 6 ° crank angle, for example.
  • Reference numeral 10 is a crank angle sensor which detects teeth of the tooth missing plate 11 and sends an angle signal and a reference signal to the control device 1. In the control device 1, the crank angle and the rotational speed of the internal combustion engine are calculated based on the signal. These calculated values are used for control of various actuators of the internal combustion engine, injection control of the fuel injection valve 4, and ignition control of the spark plug 7.
  • a misfire When a misfire occurs, it appears as a slight change in the rotational speed of the combustion cycle. Therefore, a method is used in which a misfire is determined by calculating the change in the rotational speed (angular velocity).
  • knock detection is performed by frequency analysis of the knock sensor signal to detect knock, and misfire is detected by detecting the misfire by obtaining the angle difference from the angle signal from the tooth missing plate. Yes. Since the two detection methods described above detect knocks and misfires using different detection mechanisms using different sensors, the problem is that the calculation load in the control device 1 is high.
  • the technique described in Patent Document 1 proposes a simple configuration in which a signal output corresponding to misfire or knock is obtained in the ignition coil and output to the control device side.
  • a misfire detection circuit and a knock detection circuit are provided, and each detection result is output as a voltage value as 5 V for misfire, 2.5 V for normal combustion, and 0 V for knock. The knock is judged.
  • the technique described in Patent Document 1 merely determines the presence or absence of knock, and cannot detect a continuous change in knock intensity.
  • the ignition timing of the internal combustion engine in the vicinity of the optimal ignition timing “MBT (Minimum spark advance for Best Torque)”.
  • MBT Minimum spark advance for Best Torque
  • the ignition timing is often set with a width in the direction of delaying the ignition timing. From the viewpoint of improving the efficiency of the internal combustion engine, it is effective to reduce the width in the direction in which the ignition timing is delayed. For this purpose, it is necessary to detect a trace knock (region between normal combustion without knock and heavy knock). is there.
  • the main object of the present invention is to provide a control device for an internal combustion engine that can detect the misfire and detect the knock with the same determination function logic with a small calculation load and can detect the trace knock.
  • a feature of the present invention is that an ion sensor is used to detect combustion ions generated in a combustion chamber, and this ion signal is integrated to obtain an integrated signal.
  • This integrated signal is used as an integration signal for a misfire determination value and a predetermined number of cycles in the past. Is compared with the knock determination value based on the averaged signal to determine knock and misfire.
  • the present invention it is possible to reduce the calculation load by detecting the misfire state and the knock state of the combustion of the internal combustion engine with the same ion sensor and performing the determination process with the same determination function logic, and further, the trace knock is set by setting the knock determination threshold value. This makes it possible to increase the accuracy of ignition timing control.
  • FIG. 1 is a configuration diagram of an internal combustion engine system to which an internal combustion engine control device according to the present invention is applied. It is a block diagram which shows the structure and input / output relationship of the control apparatus of the internal combustion engine which becomes one Example of this invention. It is an ion signal measurement result figure which shows the measurement result of the ion signal produced by the combustion in a cylinder. It is a characteristic view for demonstrating the generation
  • FIG. 1 shows an overall system of an internal combustion engine to which the present invention is applied.
  • reference numeral 1 is a control device for an internal combustion engine, and signals from an air amount sensor 2, an ion sensor 8, a knock sensor 9, a crank angle sensor 10 and other sensors (not shown) are inputted. Yes. These input signals are used to calculate control amounts of various control actuators by a computer or the like built in the control device 1, and the control amounts calculated here are output to the control actuators.
  • a control signal is output to an ignition coil 13 that applies a high voltage to the throttle valve 3, the fuel injection valve 4, the intake variable valve 5, the exhaust variable valve 6, and the spark plug 7.
  • FIG. 2 is a diagram showing an input / output signal processing block of an internal combustion engine control apparatus (hereinafter simply referred to as a control apparatus) according to an embodiment of the present invention.
  • the ignition timing calculation block 102 calculates the ignition timing
  • the charging time calculation block 103 calculates the charging time of the primary current, which is the energy required for the ignition. Then, an ignition signal 14 in which the ignition timing and the charging time are paired is output to the ignition coil 13.
  • the ignition coil 13 is composed of a primary coil 13A and a secondary coil 13B, and the upper end of the primary coil 13A is connected to a power source, and an ignition signal 14 is input to the lower end.
  • a detailed description of a commonly used drive circuit such as a transistor is omitted.
  • the upper end of the secondary coil 13B is connected to the power source, and the lower end is connected to the spark plug 7.
  • the ignition signal 14 is input, charging of the primary coil 13A is started, and a predetermined period (usually converted to a crank angle). Charge over.
  • This spark ignites the air-fuel mixture in the combustion chamber formed in the cylinder, combustion starts, the pressure in the combustion chamber increases, the piston 12 is pushed down, the crankshaft connected to the piston 12 is rotated, and the internal combustion engine It is taken out as the rotation output of
  • the rotation speed of the crankshaft is inputted to the control device 1 when the crank angle sensor 10 detects the number of teeth formed on the tooth missing plate 11 fixed to the crankshaft.
  • the ion signal can be detected in various forms, an embodiment in which the ion signal is detected as a current is disclosed here. Since the method of expressing the ion signal as a current is known, the description thereof is omitted here.
  • the ion signal integration processing block 112 first performs integration processing of the ion signal itself.
  • the ion signal is integrated without passing through a band pass filter or the like. This is a pretreatment for correlating the sum of ion components generated by combustion with the combustion state.
  • this combustion period may not be the entire combustion period, but may be a selected period in which the combustion pressure actually increases and then decreases as the combustion progresses.
  • the signal output from the ion signal integration processing block 112 is referred to as an ion signal integration value.
  • This ion signal integral value is input to an ion signal average value calculation processing block 113 having a storage unit constituted by a semiconductor memory or the like, and the integral value of the ion signal generated in the past combustion cycle is added for several cycles, and this addition A value obtained by dividing the integrated value by the cycle number is output as an average value of the ion signal integrated values.
  • This background level is input to the misfire / knock determination block 115 and compared with the integrated value of the ion signal at that time to generate a knock. The state is determined. Processing in the misfire / knock determination block 115 will be described later.
  • the current ion signal integrated value determined is not used, but in several cycles including the previous ion signal integrated value determined. is there. Therefore, the current ion signal integral value to be determined is used for the next calculation of the background level.
  • the knock avoidance control block 122 performs processing such as retarding the ignition timing to avoid knock, and the misfire / knock determination block 115. If it is determined that a misfire has occurred, the misfire avoidance control block 123 performs a process such as increasing the air-fuel mixture or increasing the air-fuel mixture to avoid misfire.
  • FIG. 3 shows the measurement result of the ion signal output from the ion sensor 8 and shows it together with the pressure waveform in the combustion chamber for comparison.
  • the ion signal has a characteristic that three peaks appear.
  • the first peak 8A is a waveform that is seen when the ion sensor 8 is built in the ignition coil 7.
  • a current flows through the detection portion of the ion sensor 8 and is output as an ion signal.
  • the This peak 8A is actually a timing when there is no combustion flame in the combustion chamber, so this needs to be treated as noise.
  • the second peak 8B is a waveform that is observed after the ignition signal 14 is cut off and a spark is blown between the gaps of the spark plug 7, and the ion signal cannot be detected while the spark is flying between the gaps. The ion component in the initial flame is detected. However, this second peak 8B has no correlation with the combustion pressure and cannot be said to accurately capture combustion, and cannot be used to detect knocks or misfires.
  • the third peak 8C is a waveform detected when the combustion flame burns and spreads throughout the combustion chamber, and matches the pressure waveform in the combustion chamber well. Therefore, the ion component in the flame of the main combustion portion is detected. It can be said that.
  • the third peak 8C is set as a predetermined combustion period, and the combustion state is estimated by an ion signal to be used for determination of knocking or misfire.
  • FIG. 4 shows the relationship between the ignition signal 14 and the ion signal 8.
  • the ignition signal 14 is input and charging for storing ignition energy in the primary coil 13A is started.
  • the first peak 8A which is the noise waveform described in FIG. 3, is observed.
  • the peak 8A is noise due to the ignition signal and is not used for detecting knocking or misfire.
  • the ignition signal 14 is interrupted at time T2 after the charging time ⁇ t1, and the second peak 8B is observed during the time ⁇ t2 after the ignition signal 14 is interrupted.
  • the peak 8B since the peak 8B has no correlation with the combustion pressure as described above and does not represent an accurate combustion state, the peak 8B is not used for detection of knocking or misfire.
  • the third peak 8C from the time T3 after the lapse of the time ⁇ t2 to the time T4 after the lapse of the time ⁇ t3 is well correlated with the combustion pressure, so that the combustion state is well represented.
  • Sampling is performed sequentially over a period and sent to the ion signal integration processing block 112, and the ion signal integration processing block 112 calculates the ion signal integration value.
  • the ion signal average value calculation processing block 113 stores the past ion signal integration value stored therein, that is, the previous ion signal integration value S (i ⁇ 1). Ion signal integration value S (i-2) two times before, ⁇ Ion signal integration value S (i-3) three times before is averaged and output as a background level.
  • the ground level Sh is assumed. This background level Sh is used for detecting knock.
  • the number of ion signal integration values used for the averaging process is determined to be several cycles and not more than 10 cycles.
  • FIG. 5 shows the result of misfire detection according to the present embodiment shown in FIG. 2, and is the result of verification in a steady operation state.
  • the horizontal axis of the graph represents the net average effective pressure as the torque of the internal combustion engine, and the vertical axis represents the ion signal integrated value.
  • reference numeral 22 indicates an area where stable rotation is possible at the rotational speed Ne1
  • reference numeral 23 indicates an area where stable rotation is possible at the rotational speed Ne2.
  • the reference numeral 24 is stable at the rotational speed Ne3. The region where the rotation can be performed is shown.
  • the region 22 to the region 24 indicate the background level Sh in the operating state at the rotational speed Ne1 to Ne3. Since the background level Sh is the average of the ion signal integrated values for the past several cycles, there is no significant fluctuation in the steady state. Therefore, when the combustion state is stable, it falls within the region 22 to the region 24.
  • FIG. 6 shows the result of knock detection according to the present embodiment shown in FIG. 2 and is the result of verification in steady operation.
  • the horizontal axis of the graph represents the ignition timing as knock intensity. In the experiment, the ignition timing was controlled to change the knock intensity, and the vertical axis represents the ion signal integrated value.
  • a region 25 shows a region of a normal combustion state in a predetermined rotational speed region Ne, and this region is a state of the background level Sh when there is no so-called knock.
  • the ignition timing As the ignition timing is advanced, knocking begins to occur and a change appears in the waveform of the ion signal representing the combustion state in the combustion chamber.
  • the integrated value of the ion signal also changes according to the change in the knock intensity, and there is sufficient sensitivity from the trace knock region to the heavy knock region. In other words, if the ignition timing is sequentially advanced from the normal combustion region 25 where no knock has occurred, the ion signal integrated value increases following this and enters the heavy knock region. It is possible to detect trace knock sufficiently.
  • Knock can be determined by setting a knock determination threshold by multiplying the background level Sh by a predetermined value or by multiplying the background level Sh by a predetermined ratio (a coefficient of 1.0 or more). .
  • a predetermined ratio a coefficient of 1.0 or more.
  • FIG. 7 shows the verification results when knock detection and misfire detection are performed simultaneously according to the embodiment shown in FIG.
  • the horizontal axis represents time and the operating state is changing slowly, and the vertical axis represents the ion signal integrated value.
  • indicates a normal ion signal integration value S (i) in which neither knock nor misfire occurs, and this is within a predetermined range with the background level Sh26 as a boundary.
  • the misfire determination threshold value is indicated by a broken line 27, and the ion signal integrated value S (i) below the threshold value is indicated by a circle to determine a misfire.
  • a broken line 28 is a knock determination threshold value, and as described above, a predetermined value is added according to the background level Sh or a predetermined coefficient is multiplied, so that the background level Sh is adjusted. To change.
  • the ion signal integrated value S (i) exceeding the knock determination threshold is indicated by a mark ⁇ and determined as knock.
  • FIG. 8 shows a misfire / knock determination flowchart for carrying out the embodiment shown in FIG.
  • control device 1 reads the operating state of the internal combustion engine, for example, the power supply voltage, the rotational speed, the load, etc., based on signals from various sensors in step 1 (hereinafter, “step” is described as “S”), and proceeds to S2.
  • step is described as “S”.
  • the ignition timing is calculated from these signals.
  • the charging time is calculated or calculated with reference to a map in S3.
  • step S5 the delay time ⁇ t2 shown in FIG. 4 is set from the time when the ignition signal is cut off, and this is determined using the concept as shown in FIG.
  • step S6 the ion signal sampling start time T3 is determined, and in step S7, the end time T4 is determined. In these steps, an ion signal including the third peak 8C as shown in FIG. 4 is captured.
  • the signal detected by the ion sensor 8 after the ignition operation is sampled over the period of the sampling start timing T3 and the sampling end timing T4 determined in S8A, and thereafter, between time T3 and time T4 in S8B.
  • the ion signal integration value (Si) is calculated by integrating the sampled ion signal.
  • the background level Sh is obtained by adding the integral value of the ion signal generated in the past combustion cycle for several cycles, and dividing the added integral value by the cycle number to obtain the ion signal integral value. Output as the average value of.
  • the current ion signal integrated value determined in the calculation of the background level Sh is not used, and is several cycles including the previous ion signal integrated value determined. Therefore, the current ion signal integral value to be determined is used for the next calculation of the background level.
  • a knock determination threshold value (a) and a misfire determination threshold value (b) corresponding to the operating state of the internal combustion engine are set.
  • the method for determining the knock determination threshold value (a) and the misfire determination threshold value (b) is as described above.
  • the knock determination threshold value (a) and the misfire determination threshold value (b) may refer to map values set in advance.
  • the current ion signal integrated value S (i) is compared with the knock determination threshold value (a) and the misfire determination threshold value (b), and the case where each determination condition is met is knocked or misfired, respectively. It comes to judge.
  • the calculation load can be reduced by detecting the misfire state and the knock state of the combustion of the internal combustion engine with the same ion sensor and performing the determination process with the same determination function logic, and the knock Since the trace knock can be detected by setting the determination threshold, the ignition timing control can be highly accurate.
  • FIG. 9 shows a configuration in which the ion signal integration processing block 112 of the ion signal processing means 111 shown in the first embodiment is changed to an ion signal peak detection block 116.
  • the operation of the second embodiment is basically the same as that of the first embodiment, but differs in that the ion signal peak value detection block 116 is used as described above.
  • FIG. 10 shows the same ion signal waveform as that in FIG. 4 and shows the relationship between the ignition signal 14 and the ion signal 8.
  • the ignition signal 14 is input and charging for storing ignition energy in the primary coil 13A is started.
  • the first peak 8A which is the noise waveform described in FIG. 3, is observed.
  • the peak 8A is noise due to the ignition signal and is not used for detecting knocking or misfire.
  • the ignition signal 14 is interrupted at time T2 after the charging time ⁇ t1, and the second peak 8B is observed during the time ⁇ t2 after the ignition signal 14 is interrupted.
  • the peak 8B since the peak 8B has no correlation with the combustion pressure as described above and does not represent an accurate combustion state, the peak 8B is not used for detection of knocking or misfire.
  • the third peak 8C from the time T3 after the lapse of the time ⁇ t2 to the time T4 after the lapse of the time ⁇ t3 is well correlated with the combustion pressure, so that the combustion state is well represented. Sampling is performed sequentially over a period, and the peak value of the ion signal is extracted by the ion signal peak detection block 116 to obtain the ion signal peak value P (i).
  • the ion signal peak value averaging processing block 117 includes the ion signal peak values P (i-1), P (i-2), P (i-3),... Averaging processing is performed and the result is output as the background level Ph.
  • FIG. 11 shows a misfire / knock determination flowchart for carrying out the embodiment shown in FIG.
  • the operating state of the internal combustion engine for example, power supply voltage, rotation speed, load, etc.
  • the process proceeds to S2 to calculate the ignition timing from these signals.
  • the charging time is obtained by calculating the charging time or referring to the map in S3.
  • step S5 the delay time ⁇ t2 shown in FIG. 4 is set from the time when the ignition signal is cut off, and this is determined using the concept as shown in FIG.
  • step S6 the ion signal sampling start time T3 is determined, and in step S7, the end time T4 is determined. In these steps, an ion signal including the third peak 8C as shown in FIG. 10 is captured.
  • the signal detected by the ion sensor 8 after the ignition operation is sampled over the period of the sampling start timing T3 and the sampling end timing T4 determined in S8A, and thereafter, between time T3 and time T4 in S8B.
  • the sampled ion signal peak value (Pi) is obtained.
  • the background level Ph is obtained by adding the peak value of the ion signal generated in the past combustion cycle for several cycles, and dividing the added peak value by the number of cycles to obtain the ion signal peak. Output as the average value.
  • the current ion signal peak value determined in the calculation of the background level Ph is not used, and is several cycles including the previous ion signal peak value determined. Therefore, the current ion signal peak value to be determined is used for the next calculation of the background level.
  • a knock determination threshold value (a) and a misfire determination threshold value (b) corresponding to the operating state of the internal combustion engine are set.
  • the method for determining the knock determination threshold value (a) and the misfire determination threshold value (b) is as described above.
  • the knock determination threshold value (a) and the misfire determination threshold value (b) may refer to map values set in advance.
  • the current ion signal peak value P (i) is compared with the knock determination threshold value (a) and the misfire determination threshold value (b), and the case where each determination condition is met is knocked or misfired, respectively. It comes to judge.
  • the ion signal peak value detection block 116 is used in place of the ion signal integration processing block 112. However, knocking or misfire is detected using both the ion signal integration processing block 112 and the ion signal peak value detection block 116. May be detected.
  • abnormal combustion is expected to occur even when the peak value does not reach the predetermined determination threshold, and this can be determined by the ion signal integrated value, and conversely, the integrated value has reached the predetermined determination threshold.
  • Abnormal combustion is expected to occur even in the absence, and this can be determined by the ion signal peak value.
  • FIG. 12 shows the relationship between the ion signal and the ignition signal in the normal combustion state.
  • the detection window is set by determining the time W1 and the time W2 using the internal timer 1 and the internal timer 2.
  • This detection window corresponds to between time T3 and time T4, and the ion signal in the detection window is integrated to obtain an ion signal integrated value S (i).
  • FIG. 13 shows an ion signal when knocking occurs, and the area and peak value of the ion signal itself are increased. Therefore, the ion signal integrated value also increases, and in this case, the detection logic shown in FIG.
  • FIG. 14 shows an ion signal of the same scale as that at the time of the occurrence of the knock, but it is out of the detection window, and the ion signal integrated value is a small value.
  • No. 15 is an ion signal having the same magnitude as that at the time of knock occurrence, but the generation time is shifted to the front side, and the ion signal integrated value in the detection window is small, so that it is not determined as a knock.
  • the calculation load can be reduced by detecting the misfire state and the knock state of the combustion of the internal combustion engine with the same ion sensor and performing the determination process with the same determination function logic, and the knock determination threshold value. This makes it possible to detect a trace knock, so that the ignition timing control can be made highly accurate.
  • SYMBOLS 1 Control apparatus, 2 ... Air quantity sensor, 3 ... Throttle valve, 4 ... Fuel injection valve, 5 ... Intake variable valve, 6 ... Exhaust variable valve, 7 ... Spark plug, 8 ... Ion sensor, 9 ... Knock sensor DESCRIPTION OF SYMBOLS 10 ... Crank angle sensor, 11 ... Crank plate, 12 ... Piston, 13 ... Ignition coil, 14 ... Ignition signal, 21 ... Misfire determination area, 22, 23, 24, 25, 26 ... Background level, 27 ... Misfire determination Threshold value 28 ... Knock determination threshold value 101 ... Ignition signal generation means 102 ... Charging time determination section 103 ...
  • Ignition timing determination section 111 ... Ion signal processing means 112 . Ion signal integration section 113 ... Ion signal integration value storage 115, misfire / knock determination unit, 116 ion signal peak detection unit, 117 ion signal peak value storage unit, 121 actuator control means, 122 ignition control unit, 1 3 ... variable valve control unit.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Signal Processing (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Ignition Installations For Internal Combustion Engines (AREA)

Abstract

 従来では別々のセンサを使って、異なる検出メカニズムを用いてノックや失火を検出しているため、制御装置(1)内での演算負荷が高いことが課題であった。また内燃機関の効率向上の観点から点火時期を遅らせる方向の幅を少なくすることが有効であるが、このためにはトレースノックを検出する必要があった。 イオンセンサを用いて燃焼室内で発生する燃焼イオンを検出し、このイオン信号を積分して積分信号を求め、この積分信号を失火判定値及び過去の所定サイクル数の積分信号を平均化した信号に基づいたノック判定値と比較してノック及び失火を判定するようにした。失火及びノックを同一のイオンセンサで検出して同一の判定機能ロジックで判定処理することで演算負荷が軽減でき、しかもノック判定閾値の設定によりトレースノックの検出が可能となるため点火時期制御の高精度化が可能となる。

Description

内燃機関の制御装置
 本発明は内燃機関の制御装置に係り、特に気筒内の燃焼状態をイオン信号として検出することで内燃機関のノック状態や失火状態を正確に推定することができる内燃機関の制御装置に関するものである。
 近年、自動車の燃費向上のため内燃機関の燃焼効率を改善する試みがされている。その改善技術の1つが高圧縮比化であり、内燃機関の圧縮比を高くすることで内燃機関の熱効率が向上することは理論的に証明されている。
 ガソリンを使用した火花点火式の内燃機関では圧縮比を10前後、ディーゼル式の内燃機関では圧縮比が18前後に設定されていることから、ディーゼル式の内燃機関の方が火花点火式の内燃機関に比べて熱効率が高いといわれている。ガソリンを使用した火花点火式の内燃機関では、燃焼効率を高くするため圧縮比を大きくすると、この圧縮比の増加に伴ってノック(あるいはノッキングといわれている)という異常燃焼が発生し易くなるため高圧縮比化にもおのずと限界があるといわれている。
 そのノックを抑制する技術として排気ガス再循環技術(通常EGRといわれている)を利用することで、排気ガスを吸気側に還流して燃焼室に再導入して燃焼を緩慢にすることでノックを低減させる手法が提案されている。
 これはEGRガス中に含まれる二酸化炭素や窒素酸化物などの不活性成分を燃焼室に多く取り込むことで、空気に対して燃焼に寄与しない作動ガス量を多くすることによって燃焼反応が緩慢になり、燃焼速度を低減することでノックの発生を抑制することを狙っている。
 高圧縮比の内燃機関においても排気ガス再循環技術を採用することでノックの発生を抑制することができるので圧縮比を14前後まで高めることができる。また、この手法は高過給内燃機関にも適用できるものである。
 一方、このEGRガスを再導入して燃焼させる手法は、EGRガスが規定量以上に入りすぎると点火プラグによる着火性の悪化や燃焼速度の低下などにより燃焼が途中で途絶えたり、燃焼が開始されないなどの燃焼不具合を発生させ、この結果、燃焼の品質が悪くなって燃焼サイクルでの燃焼品質のばらつきが大きくなることが報告されている。
 従って、排気ガス再循環技術を利用して内燃機関を高圧縮比化するには、異常燃焼であるノックの検知、及び燃焼ばらつき要因となる失火の検知が必要である。少なくともこれらノックと失火を避けなければ内燃機関を高圧縮比化するのは難しい。
 このような異常燃焼であるノックの検知、及び燃焼ばらつき要因となる失火を検知する方法として、特開平11-159431号公報(特許文献1)にあるように、点火コイル内で失火やノックを判定して制御装置側にその判定結果を出力する技術を提案している。
 この技術によれば失火の検出回路、ノックの検出回路を個別に設け、それぞれの検出結果を電圧値として、例えば失火では5V、通常燃焼では2.5V、ノックでは0Vとして出力し、制御装置はその電圧値から失火やノックを判定することができるとしている。
特開平11-159431号公報
 先ず、本発明を説明する前に従来のノック検出方法についての説明とその課題を図面にしたがい説明する。図1は内燃機関の制御装置の構成を示しており、この図を用いて従来のノック検知方法や失火検知手法について説明する。
 尚、ここではノックと失火に関する説明を行い、図1については後で発明の実施例を説明する際に更に詳細に説明する。
 図1において、参照番号9はノックセンサであり、このノックセンサ9は燃焼室内で発生したノックに伴う圧力振動を内燃機関のシリンダブロックの機械振動として捉えるものである。
 このノックセンサ9はノッキングによる振動だけではなく、内燃機関のシリンダブロックに伝わる種々の機械振動をも検出するために、制御装置1は検出された振動を周波数分析してノック成分のみを抽出し、ノックの有無を判定する。
 参照番号11はピストン12の動きに同期するクランク軸に取り付けられた歯欠けプレートで、例えばクランク角度6°毎に60個の歯がついている。参照番号10はクランク角度センサで、歯欠けプレート11の歯を検出して制御装置1に角度信号や基準信号を送る。制御装置1内ではその信号を基にクランク角度や内燃機関の回転数を算出する。これらの算出値は内燃機関の各種アクチュエータの制御や燃料噴射弁4の噴射制御、点火プラグ7の点火制御に使われる。
 失火が発生すると、燃焼サイクルの僅かな回転数の変化として現れるため、その回転数の変化(角速度)を算出して失火と判定する手法が用いられている。
このように、ノックの検出にはノックセンサの信号を周波数分析してノック発生を検知しており、また失火の検出には歯欠けプレートからの角度信号から角度差を求めて失火を検知している。以上に説明した2つの検出手法は、別々のセンサを使って、異なる検出メカニズムを用いてノックや失火を検出しているため、制御装置1内での演算負荷が高いことが課題であった。
 また、上述したように特許文献1に記載の技術では、点火コイル内で失火やノックに対応した信号出力を求めて制御装置側に出力する簡単な構成を提案している。つまり、失火の検出回路、ノックの検出回路を設け、それぞれの検出結果を電圧値として、失火では5V、通常燃焼では2.5V、ノックでは0Vとして出力し、制御装置ではその電圧値から失火やノックを判定するものである。しかしながら、特許文献1に記載の技術はノックの有無を判定するだけで、ノック強度の連続的な変化については検出できないものであった。
 そのため、通常燃焼(ノック無し)とヘビーノックの中間状態である「トレースノック」のような状態を検出することができないのが現状であり、燃費向上のための最適制御の観点からは十分とは言えないものであった。
 更に、燃費向上のために、内燃機関の点火時期は最適点火時期「MBT(Minimum spark advance for Best Torque)」付近に設定するのが望ましいが、通常ではノック発生を防止するために、MBTタイミングに対して点火時期を遅らせる方向に幅をもたせて点火時期を設定することが多い。内燃機関の効率向上の観点から点火時期を遅らせる方向の幅を少なくすることが有効であるが、このためにはトレースノック(ノックなしの通常燃焼とヘビーノックの間の領域)を検出する必要がある。
 本発明の主たる目的は、失火の検出とノックの検出を演算負荷の少ない同一の判定機能ロジックで判定することができ、しかもトレースノックが検出できる内燃機関の制御装置を提供するものである。
 本発明の特徴は、イオンセンサを用いて燃焼室内で発生する燃焼イオンを検出し、このイオン信号を積分して積分信号を求め、この積分信号を失火判定値及び過去の所定サイクル数の積分信号を平均化した信号に基づいたノック判定値と比較してノック及び失火を判定する、ところにある。
 本発明によれば、内燃機関燃焼の失火状態及びノック状態を同一のイオンセンサで検出して同一の判定機能ロジックで判定処理することで演算負荷が軽減でき、しかもノック判定閾値の設定によりトレースノックの検出が可能となるため点火時期制御の高精度化が可能となるものである。
本発明になる内燃機関の制御装置が適用される内燃機関システムの構成図である。 本発明の一実施例になる内燃機関の制御装置の構成および入出力関係を示す構成図である。 シリンダ内の燃焼によって生じるイオン信号の測定結果を示すイオン信号測定結果図である。 点火信号とイオン信号の発生状況をと、イオン信号を使用する領域を説明するための特性図である。 イオン信号積分値と内燃機関トルクの関係を説明するための特性図である。 イオン信号積分値とノック強度の関係を説明するための特性図である。 失火とノックの判定手法を説明するための説明図である。 図2に示す実施例を実施するための制御フローを示すフローチャート図である。 本発明の他の実施例になる内燃機関の制御装置の構成および入出力関係を示す構成図である。 図9に示す実施例においての点火信号とイオン信号の発生状況と、イオン信号を使用する領域を説明するための特性図である。 図9に示す実施例を実施するための制御フローを示すフローチャート図である。 イオン信号の判定処理を説明するための第1のタイムチャート図である。 イオン信号の判定処理を説明するための第2のタイムチャート図である。 イオン信号の判定処理を説明するための第3のタイムチャート図である。 イオン信号の判定処理を説明するための第4のタイムチャート図である。
 以下、本発明の一実施例を図面に基づき詳細に説明するが、図1は本発明が適用される内燃機関の全体システムを示している。
 図1において、参照番号1は内燃機関の制御装置であり、空気量センサ2、イオンセンサ8、ノックセンサ9、クランク角度センセ10や図示しない他のセンサからの信号が入力されるようになっている。これらの入力信号は制御装置1に内蔵されているコンピュータ等によって各種制御アクチュエータの制御量を演算するのに用いられ、ここで演算された制御量は各制御アクチュエータに出力される。
 具体的にはスロットル弁3、燃料噴射弁4、吸気可変動弁5、排気可変動弁6、点火プラグ7に高電圧を加える点火コイル13に制御信号を出力するようになっている。
 この種のアクチュエータの基本的な制御等はすでに周知であるので、ここでは詳しい説明は省略する。それでは以下に本発明の実施例について説明する。
 図2は本発明の一実施例になる内燃機関の制御装置(以下、単に制御装置という)の入出力信号の処理ブロックを示した図である。制御装置1内では、各種センサからの入力信号を基に、点火時期演算ブロック102で点火時期を算出し、充電時間演算ブロック103でその点火に必要なエネルギーである一次電流の充電時間を算出し、これらの点火時期と充電時間を対とした点火信号14を点火コイル13に出力する。
 点火コイル13は一次コイル13Aと二次コイル13Bで構成されており、一次コイル13Aの上端は電源に接続され、下端に点火信号14が入力されるように構成されている。ここでは一般的に使用されるトランジスタなどの駆動回路の詳細の記載を省略している。
 二次コイル13Bの上端は電源に接続され、下端は点火プラグ7と接続されており、点火信号14が入力されると一次コイル13Aに充電が開始され、所定の期間(通常ではクランク角度換算)にわたり充電する。
 次に、充電期間を終了すると点火信号14の遮断に伴って2次コイル13Bに高電圧が発生し、この発生した高電圧で点火プラグ7に火花を飛ばしてシリンダ内の混合気を点火するようになる。
 この火花によってシリンダ内に形成された燃焼室の混合気に着火して燃焼が始まり、燃焼室内の圧力が高まることでピストン12を押し下げ、ピストン12に連接されているクランク軸を回転させて内燃機関の回転出力として取り出すものである。
 このクランク軸の回転数はクランク軸に固定された歯欠けプレート11に形成された歯数をクランク角度センサ10が検出して制御装置1に入力されるようになっている。
 次にイオン信号の検出のやり方について以下説明すると、燃焼室内の混合気に着火することによって発生した燃焼火炎中には、中間生成物としてのイオンが多数存在する。このイオンを検出するイオンセンサ8からの信号は、制御装置1に入力され、イオン信号処理手段111により失火とノックの発生状況が判定される。
 ここでイオン信号は種々の形態で検出できるが、ここではイオン信号を電流として検出する実施例を開示している。イオン信号を電流として表すやり方は公知であるのでここでは説明は省略する。
 イオン信号処理手段111内では、まずイオン信号積分処理ブロック112でイオン信号自身の積分処理を行う。この場合、イオン信号はバンドパスフィルタ等を介さずに積分処理が行われる。これは燃焼により発生したイオン成分の総和と燃焼状態を相関付けするための前処理である。
 つまり、燃焼は所定時間に亘って継続して行われるが、最初は正常に燃焼していても後半に燃焼が途切れたりする異常燃焼が発生することもあるので、このような燃焼を検出するためにも燃焼期間に亘って燃焼を監視することが必要である。尚、後述するが、この燃焼期間は全燃焼期間でなくても良く、燃焼の進行によって実際に燃焼圧が上昇してその後下降していく選択された期間であっても良い。
 ここで、イオン信号積分処理ブロック112から出力された信号をイオン信号積分値と呼ぶことにする。このイオン信号積分値は半導体メモリなどで構成される格納部を備えるイオン信号平均値算出処理ブロック113に入力され、過去の燃焼サイクルで生じたイオン信号の積分値を数サイクル分加算し、この加算された積分値をそのサイクル数で除算した値をイオン信号積分値の平均値として出力する。
 これをイオン信号のバックグランドレベル(これがノック判定値の基礎となる)と呼ぶが、このバックグランドレベルは失火/ノック判定ブロック115に入力され、その時のイオン信号積分値と比較されてノックの発生状態が判定される。この失火/ノック判定ブロック115内での処理については後述する。
 ここで、失火/ノック判定ブロック115で判定に使用されるバックグランドレベルの演算では判定される今回のイオン信号積分値は使用されず、判定されるその前のイオン信号積分値を含む数サイクルである。したがって、判定される今回のイオン信号積分値は次回のバックグランドレベルの演算に使用される。
 そして、失火/ノック判定ブロック115でノックが発生していると判定されるとノック回避制御ブロック122で点火時期を遅角させる等の処理を行ってノックを回避し、また失火/ノック判定ブロック115で失火が発生していると判定されると失火回避制御ブロック123で混合気を濃くしたり、混合気量を増加する等の処理を行って失火を回避する処理を行うようになる。
 図3はイオンセンサ8から出力されるイオン信号の測定結果を示しており、比較のため燃焼室内の圧力波形と共に示している。図3から理解できるようにイオン信号には3つのピークが出る特徴がある。
 第1のピーク8Aはイオンセンサ8が点火コイル7に内蔵されている場合に見られる波形で、点火信号14が入力された際にイオンセンサ8の検出部に電流が流れてイオン信号として出力される。このピーク8Aは実際には燃焼室内には燃焼火炎は存在しないタイミングなので、これはノイズとして処理する必要がある。
 第2のピーク8Bは点火信号14が遮断されて点火プラグ7のギャップ間に火花が飛んだ後に見られる波形で、ギャップ間に火花が飛んでいる間はイオン信号を検出できないものの、その後、燃焼初期火炎中のイオン成分を検出している。しかしながら、この第2のピーク8Bは燃焼圧力との相関がなく正確に燃焼を捉えているとは言い難く、ノックや失火の検出には使用できない。
 第3のピーク8Cは燃焼火炎が燃焼室全体に燃え広がる過程で検出される波形で、燃焼室内の圧力波形ともよく一致していることから、主燃焼部分の火炎中のイオン成分を検出しているといえる。
 本発明ではこの第3のピーク8Cを所定の燃焼期間として設定して燃焼状態をイオン信号で推定してノックや失火の判定に利用するものである。
 図4は、点火信号14とイオン信号8の関係を示している。時刻T1で点火信号14が入力されて一次コイル13Aに点火エネルギーを溜めるための充電が開始されるが、その際に図3で説明したノイズ波形である第1ピーク8Aが観測される。このピーク8Aは先に述べたとおり、点火信号によるノイズであるためノックや失火の検出には使用しない。
 充電時間Δt1後の時刻T2で点火信号14が遮断され、点火信号14の遮断後に時間Δt2の間で第2のピーク8Bが観測される。しかしながらこのピーク8Bは上述したように燃焼圧と相関がなく正確な燃焼状態を表していないのでこのピーク8Bもノックや失火の検出に使用しないものである。
 一方、時間Δt2の経過後の時刻T3から時間Δt3を経過後の時刻T4までの第3のピーク8Cは燃焼圧力と相関がとれているため燃焼状態をよく表しており、このピーク8CをΔt3の期間にわたって順次サンプリングしてイオン信号積分処理ブロック112に送り、このイオン信号積分処理ブロック112でイオン信号積分値を算出する。
 これを今回のイオン信号積分値S(i)とすると、イオン信号平均値算出処理ブロック113では内部に蓄積されている過去のイオン信号積分値、つまり前回のイオン信号積分値S(i-1), 2回前のイオン信号積分値S(i-2), 3回前のイオン信号積分値S(i-3)‥‥を含めて平均化処理してバックグランドレベルとして出力し、これをバックグランドレベルShとする。このバックグランドレベルShはノックの検出に用いるものである。
 この平均化処理に使用するイオン信号積分値の個数は数サイクルであって、10サイクルを越えない程度に決められている。
 図5は図2に示した本実施例による失火検出を行った結果を示しており、特に定常運転状態で検証した結果である。グラフの横軸は内燃機関のトルクとして正味平均有効圧を表しており、縦軸はイオン信号積分値を表している。
 図5で参照番22は回転数Ne1で安定した回転ができる領域を示し、また、参照番23は回転数Ne2で安定した回転ができる領域を示し、同様に参照番24も回転数Ne3で安定した回転ができる領域を示している。
 したがって、領域22乃至領域24が回転数Ne1乃至Ne3での運転状態のバックグランドレベルShを示している。バックグランドレベルShは過去数サイクル分のイオン信号積分値の平均であるため、定常状態では大きな変動は無い。そのため、燃焼状態が安定している時は領域22乃至領域24内に収まるようになっている。
 このような状態において失火が発生すると、燃焼室内では燃焼火炎が存在しない、或いは存在しても燃焼火炎は貧弱であることからこの燃焼サイクルでのイオン信号積分値S(i)は小さくなり、予め事前に決めた領域21内に入る場合は失火と判定できる。
 図5にあるように燃焼が不安定化する方向に行くにしたがい各回転数毎にイオン信号積分値の数値は小さくなっていき領域21に突入すると燃焼がかなり不安定となるので失火と判定する。
 図6は同様に図2に示した本実施例によるノック検出を行った結果を示しており、定常運転で検証した結果である。グラフの横軸はノック強度として点火時期を表しており、実験では点火時期を制御してノック強度を変化させており、また縦軸はイオン信号積分値を表している。
 グラフの左に行くほど点火時期が進められているのでノック強度が大きくなっていき、最左部はヘビーノックが発生する状態である。ここでも領域25は所定の回転数域Neでの通常の燃焼状態の領域を示しており、この領域は所謂ノック無し時のバックグランドレベルShの状態である。
 ここで、点火時期を進角していくとノックが発生し始めて燃焼室内の燃焼状態を表わすイオン信号の波形に変化が現れる。ノック強度の変化に応じてイオン信号積分値も変化しており、トレースノック領域からヘビーノック領域において十分な感度を有している。つまり、ノックが発生していない通常燃焼領域25から順次点火時期を進めていくとイオン信号積分値もこれに追従して増加してヘビーノックの領域に突入するようになっているので、この間で十分にトレースノックを検出することが可能である。
 例えば、領域25の運転状態においてノックが発生すると、燃焼室内の圧力/温度が上昇することから、イオン信号積分値S(i)は大きくなってバックグランドレベルShを超えた値となる。
 このバックグランドレベルShに対して所定値を加算した値、またはバックグランドレベルShに所定の比率(1.0以上の係数)を乗算してノック判定閾値を設けることでノックと判定することができる。また、内燃機関の運転状態毎に許容されるノック強度は異なることから、メモリにノック判定閾値を格納して運転状態毎に参照する方式を採用することもできる。
 図7は図2に示した実施例によってノック検出と失火検出に同時に行った時の検証結果である。横軸は時間であって運転状態が緩やかに変化している状態を示しておち、また縦軸はイオン信号積分値を表わしている。
 図7において、□印はノックも失火も生じていない正常なイオン信号積分値S(i)であり、これはバックグランドレベルSh26を境に所定の範囲に収まっている。また図7で失火判定閾値は破線27で示しており、これを下回ったイオン信号積分値S(i)は○印で示して失火と判定している。
 更に図7で破線28はノック判定閾値であり、これは先に述べた通り、バックグランドレベルShに合わせて所定値を加算したり、所定係数を乗算しているのでバックグランドレベルShに合わせて変化するようになる。そして、このノック判定閾値を上回ったイオン信号積分値S(i)は●印で示してノックと判定している。
 図8に図2に示した実施例を実施する失火/ノックの判定フローチャートを示している。
 まず、制御装置1はステップ1(以下、ステップを“S”と記載する)で各種センサからの信号を基に内燃機関の運転状態、例えば電源電圧、回転数、負荷等を読み込み、S2に進んでこれらの信号から点火時期を算出する。同時にS3で充電時間を演算またはマップを参照して充電時間を求める。
 次にS4に進んで点火信号を生成してこれを点火コイル13に出力する。その後点火プラグ7により点火動作が行われる。
 次にS5では点火信号の遮断時から図4にあるΔt2のディレイ時間を設定するが、これは図4にあるような考え方を利用して決められる。次にS6でイオン信号のサンプリング開始時期T3を決定し、更にS7で終了時期T4を決定する。これらのステップで図4にあるような第3のピーク8Cを含むイオン信号が取り込まれることになる。
 したがって、点火動作後からイオンセンサ8が検出した信号をS8Aにおいては決められたサンプリング開始タイミングT3とサンプリング終了タイミングT4の期間にわたりサンプリングを実施し、その後にS8Bにて時刻T3と時刻T4の間にサンプリングされたイオン信号を積分してイオン信号積分値(Si)を演算する。
 次に、S9で平均化処理を行ってバックグランドレベルShを演算する。このバックグランドレベルShは先に述べた通り、過去の燃焼サイクルで生じたイオン信号の積分値を数サイクル分加算し、この加算された積分値をそのサイクル数で除算した値をイオン信号積分値の平均値として出力する。
 また、バックグランドレベルShの演算では判定される今回のイオン信号積分値は使用されず、判定されるその前のイオン信号積分値を含む数サイクルである。したがって、判定される今回のイオン信号積分値は次回のバックグランドレベルの演算に使用される。
 次に、S10では内燃機関の運転状態に応じたノック判定閾値(a)と失火判定閾値(b)を設定する。これらのノック判定閾値(a)と失火判定閾値(b)の決め方はすでに説明した通りである。尚、ノック判定閾値(a)と失火判定閾値(b)は予め予め設定したマップ値を参照しても良い。
 次に、S11では今回のイオン信号積分値S(i)とノック判定閾値(a)、失火判定閾値(b)との比較を行い、それぞれの判定条件に合致している場合を夫々ノック或いは失火と判定するようになる。
 本実施例に代表される本発明によれば、内燃機関燃焼の失火状態及びノック状態を同一のイオンセンサで検出して同一の判定機能ロジックで判定処理することで演算負荷が軽減でき、しかもノック判定閾値の設定によりトレースノックの検出が可能となるため点火時期制御の高精度化が可能となるものである。
 次に本発明の他の実施例について図面を用いて詳細に説明する。図9は実施例1で示したイオン信号処理手段111のイオン信号積分処理ブロック112をイオン信号ピーク検出ブロック116に変更した構成である。
 この第2実施例の動作は基本的には実施例1と実質同様であるが、上述したようにイオン信号ピーク値検出ブロック116を用いた点で異なっている。
 それでは簡単に動作を説明すると、図10は図4と同じイオン信号の波形であり、点火信号14とイオン信号8の関係を示している。時刻T1で点火信号14が入力されて一次コイル13Aに点火エネルギーを溜めるための充電が開始されるが、その際に図3で説明したノイズ波形である第1ピーク8Aが観測される。このピーク8Aは先に述べたとおり、点火信号によるノイズであるためノックや失火の検出には使用しない。
 充電時間Δt1後の時刻T2で点火信号14が遮断され、点火信号14の遮断後に時間Δt2の間で第2のピーク8Bが観測される。しかしながらこのピーク8Bは上述したように燃焼圧と相関がなく正確な燃焼状態を表していないのでこのピーク8Bもノックや失火の検出に使用しないものである。
 一方、時間Δt2の経過後の時刻T3から時間Δt3を経過後の時刻T4までの第3のピーク8Cは燃焼圧力と相関がとれているため燃焼状態をよく表しており、このピーク8CをΔt3の期間にわたって順次サンプリングしてイオン信号ピーク検出ブロック116でイオン信号のピーク値を抽出してイオン信号ピーク値P(i)とする。
 イオン信号ピーク値平均処理ブロック117では、内部に蓄積されている過去の燃焼サイクルのイオン信号ピーク値P(i-1),P(i-2),P(i-3)‥‥を含めて平均化処理し、バックグランドレベルPhとして出力する。
 図11に図9に示した実施例を実施する失火/ノックの判定フローチャートを示している。
 まず、S1で各種センサからの信号を基に内燃機関の運転状態、例えば電源電圧、回転数、負荷等を読み込み、S2に進んでこれらの信号から点火時期を算出する。同時にS3で充電時間を演算またはマップを参照して充電時間を求める。
 次にS4に進んで点火信号を生成してこれを点火コイル13に出力する。その後点火プラグ7により点火動作が行われる。
 次にS5では点火信号の遮断時から図4にあるΔt2のディレイ時間を設定するが、これは図10にあるような考え方を利用して決められる。次にS6でイオン信号のサンプリング開始時期T3を決定し、更にS7で終了時期T4を決定する。これらのステップで図10にあるような第3のピーク8Cを含むイオン信号が取り込まれることになる。
 したがって、点火動作後からイオンセンサ8が検出した信号をS8Aにおいては決められたサンプリング開始タイミングT3とサンプリング終了タイミングT4の期間にわたりサンプリングを実施し、その後にS8Bにて時刻T3と時刻T4の間にサンプリングされたイオン信号ピーク値(Pi)を求める。
 次に、S9で平均化処理を行ってバックグランドレベルPhを演算する。このバックグランドレベルPhは実施例1と同様に、過去の燃焼サイクルで生じたイオン信号のピーク値を数サイクル分加算し、この加算されたピーク値をそのサイクル数で除算した値をイオン信号ピーク値の平均値として出力する。
 また、バックグランドレベルPhの演算では判定される今回のイオン信号ピーク値は使用されず、判定されるその前のイオン信号ピーク値を含む数サイクルである。したがって、判定される今回のイオン信号ピーク値は次回のバックグランドレベルの演算に使用される。
 次に、S10では内燃機関の運転状態に応じたノック判定閾値(a)と失火判定閾値(b)を設定する。これらのノック判定閾値(a)と失火判定閾値(b)の決め方はすでに説明した通りである。尚、ノック判定閾値(a)と失火判定閾値(b)は予め予め設定したマップ値を参照しても良い。
 次に、S11では今回のイオン信号ピーク値P(i)とノック判定閾値(a)、失火判定閾値(b)との比較を行い、それぞれの判定条件に合致している場合を夫々ノック或いは失火と判定するようになる。
 このように、イオン信号を積分せずにピーク信号を用いるようにすることで、実施例1の効果に加えて制御装置の演算負荷を更に低減できるという新たな効果が期待できる。
 尚、実施例2ではイオン信号積分処理ブロック112の代わりにイオン信号ピーク値検出ブロック116を用いているが、イオン信号積分処理ブロック112とイオン信号ピーク値検出ブロック116の両方を用いてノックや失火を検出するようにしても良い。
 例えばピーク値が所定の判定閾値に達していない場合でも異常燃焼がおこることが予想され、これについてはイオン信号積分値で判定することができ、また逆に積分値が所定の判定閾値に達していない場合でも異常燃焼がおこることが予想され、これについてはイオン信号ピーク値で判定することができるようになる。
 次に、イオン信号波形の判定処理のやり方を説明するが、以下の例では実施例1に示すイオン信号積分値を用いる場合の処理方法について説明する。
 図12は通常燃焼状態でのイオン信号と点火信号の関係を示している。イオン信号処理手段111では、点火信号14の遮断後に内部タイマー1及び内部タイマー2を用いて時間W1と時間W2を決めて検出ウィンドウを設定する。
 この検出ウィンドウは時刻T3と時刻T4の間に該当し、検出ウィンドウ中のイオン信号を積分してイオン信号積分値S(i)とする。
 これに対して、図13はノック発生時のイオン信号であり、イオン信号自体面積やピーク値が増大している。したがって、イオン信号積分値も大きくなり、この場合は図8で示した検出ロジックでノックと判定されるようになる。
 一方、図14はノック発生時と同規模のイオン信号が観測されているが、検出ウィンドウからはずれており、イオン信号積分値は小さな値となるためノックとは判定しなく、また、同様に図15はノック発生時と同規模のイオン信号が観測されているが、発生時期が前側にシフトしており、検出ウィンドウ中のイオン信号積分値は小さいためノックと判定しないものである。
 以上説明したように、本発明によれば内燃機関燃焼の失火状態及びノック状態を同一のイオンセンサで検出して同一の判定機能ロジックで判定処理することで演算負荷が軽減でき、しかもノック判定閾値の設定によりトレースノックの検出が可能となるため点火時期制御の高精度化が可能となるものである。
 1…制御装置、2…空気量センサ、3…スロットル弁、4…燃料噴射弁、5…吸気可変動弁、6…排気可変動弁、7…点火プラグ、8…イオンセンサ、9…ノックセンサ、10…クランク角度センサ、11…クランクプレート、12…ピストン、13…点火コイル、14…点火信号、21…失火判定領域、22、23、24、25、26…バックグランドレベル、27…失火判定閾値、28…ノック判定閾値、101…点火信号生成手段、102…充電時間決定部、103…点火時期決定部、111…イオン信号処理手段、112…イオン信号積分部、113…イオン信号積分値格納部、115…失火/ノック判定部、116…イオン信号ピーク検出部、117…イオン信号ピーク値格納部、121…アクチュエータ制御手段、122…点火制御部、123…可変動弁制御部。

Claims (12)

  1.  内燃機関の点火コイルに点火時期と一次コイルへの充電時間を含む点火信号を出力する点火信号生成手段と、シリンダ内の混合気の燃焼に伴って発生するイオン信号を検知するイオン信号検出手段と、前記点火信号の遮断後に、所定のディレイ時間を設定しイオン信号を積分する積分手段と、前記イオン信号の積分値を過去の所定の燃焼サイクル数にわたって平均化してバックグランドレベルを求めるバックグランドレベル生成手段と、前記バックグランドレベルより定まる所定の閾値と瞬時のイオン信号積分値を比較して瞬時のイオン信号積分値が前記所定の閾値を超えている場合をノックと判定するノック判定手段とを備えていることを特徴とする内燃機関の制御装置。
  2.  内燃機関の点火コイルに点火時期と一次コイルへの充電時間を含む点火信号を出力する点火信号生成手段と、シリンダ内の混合気の燃焼に伴って発生するイオン信号を検知するイオン信号検出手段と、前記点火信号の遮断後に、所定のディレイ時間を設定しイオン信号を積分する積分手段と、失火を検出するための予め定めた所定の閾値と瞬時のイオン信号積分値を比較して瞬時のイオン信号積分値が前記所定の閾値を超えている場合を失火と判定する失火判定手段とを備えていることを特徴とする内燃機関の制御装置。
  3.  請求項1乃至請求項2のいずれかに記載の内燃機関の制御装置において、
     ノック判定と失火判定を同一の演算処理で行うことを特徴とする内燃機関の制御装置。
  4.  内燃機関の点火コイルに点火時期と一次コイルへの充電時間を含む点火信号を出力する点火信号生成手段と、シリンダ内の混合気の燃焼に伴って発生するイオン信号を検知するイオン信号検出手段と、前記点火信号の遮断後に、所定のディレイ時間を設定してイオン信号のサンプリング開始時期と終了時期を設定し、このサンプリング期間中のイオン信号のピーク値を抽出するイオン信号ピーク値検出手段と、前記イオン信号のピーク値を過去の所定の燃焼サイクル数にわたって平均化してバックグランドレベルを求めるバックグランドレベル生成手段と、前記バックグランドレベルより定まる所定の閾値と瞬時のイオン信号ピーク値を比較して瞬時のイオン信号ピーク値が前記所定の閾値を超えている場合をノックと判定するノック判定手段とを備えていることを特徴とする内燃機関の制御装置。
  5.  内燃機関の点火コイルに点火時期と一次コイルへの充電時間を含む点火信号を出力する点火信号生成手段と、シリンダ内の混合気の燃焼に伴って発生するイオン信号を検知するイオン信号検出手段と、前記点火信号の遮断後に、所定のディレイ時間を設定しイオン信号を積分する積分手段と、前記点火信号の遮断後に、所定のディレイ時間を設定してイオン信号のサンプリング開始時期と終了時期を設定し、このサンプリング期間中のイオン信号のピーク値を抽出するイオン信号ピーク値検出手段と、失火を検出するための予め定めた所定の閾値と瞬時のイオン信号ピーク値を比較して瞬時のイオン信号ピーク値が前記所定の閾値を超えている場合を失火と判定する失火判定手段とを備えていることを特徴とする内燃機関の制御装置。
  6.  請求項4乃至請求項5のいずれかに記載の内燃機関の制御装置において、
     ノック判定と失火判定を同一の演算処理で行うことを特徴とする内燃機関の制御装置。
  7.  請求項1または請求項4に記載の内燃機関の制御装置において、
     ノックと判定した際は前記点火信号生成手段によって点火時期を遅角することを特徴とする内燃機関の制御装置。
  8.  内燃機関の点火コイルに点火時期と一次コイルへの充電時間を含む点火信号を出力する点火信号生成手段と、
     シリンダ内の混合気の燃焼に伴って発生するイオン信号を検知するイオン信号検出手段と、
     前記点火信号の遮断後に、所定のディレイ時間を設定してイオン信号を積分してイオン信号積分値を求める積分手段と、
     前記イオン信号積分値を過去の所定の燃焼サイクルにわたって平均化してバックグランドレベルを求めるバックグランドレベル生成手段と、
     前記イオン信号積分値を予め定めた失火判定値及び前記バックグランドレベルに基づいたノック判定値と比較してノック及び失火を判定するノック及び失火判定手段とを備えたことを特徴とする内燃機関の制御装置。
  9.  内燃機関の点火コイルに点火時期と一次コイルへの充電時間を含む点火信号を出力する点火信号生成手段と、
     シリンダ内の混合気の燃焼に伴って発生するイオン信号を検知するイオン信号検出手段と、
     前記点火信号の遮断後に、所定のディレイ時間を設定してイオン信号のサンプリング開始と終了時期を設定し、このサンプリング期間中のイオン信号のピーク値を抽出するイオン信号ピーク値算出手段と、
     前記イオン信号ピーク値を過去の所定の燃焼サイクルにわたって平均化してバックグランドレベルを求めるバックグランドレベル生成手段と、
     前記イオン信号ピーク値を予め定めた失火判定値及び前記バックグランドレベルに基づいたノック判定値と比較してノック及び失火を判定するノック及び失火判定手段とを備えたことを特徴とする内燃機関の制御装置。
  10.  請求項8または請求項9に記載の内燃機関の制御装置において、
     前記予め定めた失火判定値は運転領域毎に失火判定値が決められていることを特徴とする内燃機関の制御装置。
  11.  請求項8または請求項9に記載の内燃機関の制御装置において、
     前記所定のディレイ時間は前記点火信号の遮断後に最初に現れるイオン信号のピークをマスクできる時間に設定されていることを特徴とする内燃機関の制御装置。
  12.  請求項8または請求項9に記載の内燃機関の制御装置において、
     前記バックグランドレベル生成手段は、取り込まれたイオン信号の積分値、或いはピーク値より前に取り込まれた所定の燃焼サイクル数のイオン信号の積分値、或いはピーク値を加算して、この加算されたイオン信号の積分値、或いはピーク値を前記所定の燃焼サイクル数で除算して前記バックグランドレベルを求めることを特徴とする内燃機関の制御装置。
PCT/JP2013/052654 2012-03-14 2013-02-06 内燃機関の制御装置 WO2013136879A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US14/379,682 US20150019112A1 (en) 2012-03-14 2013-02-06 Control device for internal combustion engine
DE112013001438.6T DE112013001438T5 (de) 2012-03-14 2013-02-06 Steuervorrichtung für einen Verbrennungsmotor
CN201380010069.6A CN104126067A (zh) 2012-03-14 2013-02-06 内燃机的控制装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012056773A JP2013189923A (ja) 2012-03-14 2012-03-14 内燃機関の制御装置
JP2012-056773 2012-03-14

Publications (1)

Publication Number Publication Date
WO2013136879A1 true WO2013136879A1 (ja) 2013-09-19

Family

ID=49160798

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/052654 WO2013136879A1 (ja) 2012-03-14 2013-02-06 内燃機関の制御装置

Country Status (5)

Country Link
US (1) US20150019112A1 (ja)
JP (1) JP2013189923A (ja)
CN (1) CN104126067A (ja)
DE (1) DE112013001438T5 (ja)
WO (1) WO2013136879A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114483350A (zh) * 2022-04-02 2022-05-13 潍柴动力股份有限公司 一种发动机失火的诊断方法及装置

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6464707B2 (ja) * 2014-12-08 2019-02-06 日産自動車株式会社 エンジンの点火時期制御装置
CN104533618B (zh) * 2015-01-04 2017-09-26 同济大学 基于离子电流检测发动机超级爆震的系统和检测方法
US9909551B2 (en) * 2015-07-10 2018-03-06 Robert Bosch Gmbh Method of engine control for eliminating knocking combustion due to a misfire for spark-ignited engines equipped with external exhaust gas recirculation
CN108414230B (zh) 2018-02-14 2019-09-20 清华大学 一种内燃机早燃检测方法
IT201900002517A1 (it) * 2019-02-21 2020-08-21 Eldor Corp Spa Dispositivo elettronico per il controllo di una bobina di accensione di un motore a combustione interna e relativo sistema di accensione elettronica per rilevare una pre-accensione nel motore a combustione interna
IT201900002513A1 (it) * 2019-02-21 2020-08-21 Eldor Corp Spa Dispositivo elettronico per il controllo di una bobina di accensione di un motore a combustione interna e relativo sistema di accensione elettronica per rilevare una mancata combustione nel motore a combustione interna
IT201900013755A1 (it) * 2019-08-01 2021-02-01 Eldor Corp Spa Metodo di monitoraggio di una condizione di imbrattamento di una candela di accensione per un motore a combustione, metodo e sistema di controllo di una bobina di accensione in un motore a combustione interna
CN114962115B (zh) * 2022-06-28 2024-02-06 东风汽车集团股份有限公司 一种车辆的发动机的点火能量的优化方法及优化系统

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0534244A (ja) * 1991-08-01 1993-02-09 Hitachi Ltd 内燃機関の燃焼状態検出装置
JPH0587036A (ja) * 1991-09-30 1993-04-06 Hitachi Ltd 燃焼状態診断装置
JP2001140740A (ja) * 1999-09-01 2001-05-22 Mitsubishi Electric Corp ノック検出装置
JP2003286932A (ja) * 2002-03-28 2003-10-10 Mitsubishi Electric Corp 内燃機関のノック制御装置
JP2003314423A (ja) * 2002-04-17 2003-11-06 Mitsubishi Electric Corp 内燃機関の燃焼状態検出装置
JP2005282383A (ja) * 2004-03-26 2005-10-13 Fuji Heavy Ind Ltd エンジンの燃焼検出区間設定装置
JP2007270658A (ja) * 2006-03-30 2007-10-18 Mitsubishi Motors Corp 筒内噴射型火花点火式内燃機関

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3783823B2 (ja) * 1999-09-03 2006-06-07 三菱電機株式会社 内燃機関のノック制御装置
JP2003172241A (ja) * 2001-12-04 2003-06-20 Mitsubishi Electric Corp 内燃機関の失火検出装置
JP3619219B2 (ja) * 2002-08-06 2005-02-09 三菱電機株式会社 内燃機関の燃焼状態検出装置
JP4380604B2 (ja) * 2005-07-29 2009-12-09 トヨタ自動車株式会社 内燃機関の制御装置
CN101311511B (zh) * 2007-05-24 2013-01-23 福特环球技术公司 用于可变气门升程挺杆变换的自适应控制的系统和方法
JP4981869B2 (ja) * 2009-10-15 2012-07-25 三菱電機株式会社 内燃機関の燃焼状態検出装置
DE102011012722B4 (de) * 2010-03-31 2019-09-12 Mazda Motor Corp. Verfahren zur Detektion anomaler Verbrennung für einen Fremdzündungsmotor und Fremdzündungsmotor

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0534244A (ja) * 1991-08-01 1993-02-09 Hitachi Ltd 内燃機関の燃焼状態検出装置
JPH0587036A (ja) * 1991-09-30 1993-04-06 Hitachi Ltd 燃焼状態診断装置
JP2001140740A (ja) * 1999-09-01 2001-05-22 Mitsubishi Electric Corp ノック検出装置
JP2003286932A (ja) * 2002-03-28 2003-10-10 Mitsubishi Electric Corp 内燃機関のノック制御装置
JP2003314423A (ja) * 2002-04-17 2003-11-06 Mitsubishi Electric Corp 内燃機関の燃焼状態検出装置
JP2005282383A (ja) * 2004-03-26 2005-10-13 Fuji Heavy Ind Ltd エンジンの燃焼検出区間設定装置
JP2007270658A (ja) * 2006-03-30 2007-10-18 Mitsubishi Motors Corp 筒内噴射型火花点火式内燃機関

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114483350A (zh) * 2022-04-02 2022-05-13 潍柴动力股份有限公司 一种发动机失火的诊断方法及装置
CN114483350B (zh) * 2022-04-02 2022-08-23 潍柴动力股份有限公司 一种发动机失火的诊断方法及装置

Also Published As

Publication number Publication date
JP2013189923A (ja) 2013-09-26
CN104126067A (zh) 2014-10-29
DE112013001438T5 (de) 2015-01-22
US20150019112A1 (en) 2015-01-15

Similar Documents

Publication Publication Date Title
WO2013136879A1 (ja) 内燃機関の制御装置
US10288031B2 (en) Controller for internal combustion engine
JP5554295B2 (ja) 内燃機関の燃焼騒音検出方法及び燃焼騒音検出装置並びに内燃機関の制御装置
JP6032136B2 (ja) 内燃機関の失火検出システム
US7478624B2 (en) Ignition timing control device of internal combustion engine
CN107709956B (zh) 检测和缓解异常燃烧特性
US7854218B2 (en) Method to recognize and avoid premature combustion events
JP2017141693A (ja) 内燃機関の制御装置
US20150159569A1 (en) Method and apparatus for detecting combustion phase of engine by angular acceleration signal and combustion data of single cylinder
JP5502176B2 (ja) 内燃機関の制御装置
Kumano et al. Using an ion-current sensor integrated in the ignition system to detect precursory phenomenon of pre-ignition in gasoline engines
US8924134B2 (en) Knock control device of internal combustion engine
WO2014129389A1 (ja) 内燃機関の異常燃焼検出装置
JP2013517427A (ja) エンジンの性能を分析するための装置および方法
JP4799645B2 (ja) 内燃機関用制御装置
JP2013104371A (ja) 内燃機関の制御装置
Ogata Investigation of Robustness Control for Practical Use of Gasoline HCCI Engine-An Investigation of a Detecting Technology of Conditions of HCCI Using an Ion Current Sensor
JP2010025039A (ja) 燃焼異常状態判別装置
JP5466098B2 (ja) 内燃機関の燃焼状態検出システム
Kusuhara et al. Development on internal EGR feedback control based on ion current
JP2015014229A (ja) 内燃機関の異常燃焼回避装置
JP5998904B2 (ja) 内燃機関の失火判定装置
JP2005307844A (ja) 2サイクル内燃機関用点火制御方法及び点火制御装置
JP2002364446A (ja) 内燃機関用ノッキング検出装置
JP2016056684A (ja) エンジン制御装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13761046

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14379682

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1120130014386

Country of ref document: DE

Ref document number: 112013001438

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13761046

Country of ref document: EP

Kind code of ref document: A1