WO2013136803A1 - 薬液投与装置 - Google Patents

薬液投与装置 Download PDF

Info

Publication number
WO2013136803A1
WO2013136803A1 PCT/JP2013/001721 JP2013001721W WO2013136803A1 WO 2013136803 A1 WO2013136803 A1 WO 2013136803A1 JP 2013001721 W JP2013001721 W JP 2013001721W WO 2013136803 A1 WO2013136803 A1 WO 2013136803A1
Authority
WO
WIPO (PCT)
Prior art keywords
valve
umbrella
flow path
piston
stepping motor
Prior art date
Application number
PCT/JP2013/001721
Other languages
English (en)
French (fr)
Inventor
昭彦 八木
孝博 相馬
Original Assignee
テルモ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2012060920A external-priority patent/JP2013192640A/ja
Priority claimed from JP2012065270A external-priority patent/JP2013192850A/ja
Application filed by テルモ株式会社 filed Critical テルモ株式会社
Publication of WO2013136803A1 publication Critical patent/WO2013136803A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M5/00Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
    • A61M5/14Infusion devices, e.g. infusing by gravity; Blood infusion; Accessories therefor
    • A61M5/142Pressure infusion, e.g. using pumps
    • A61M5/14244Pressure infusion, e.g. using pumps adapted to be carried by the patient, e.g. portable on the body
    • A61M5/14248Pressure infusion, e.g. using pumps adapted to be carried by the patient, e.g. portable on the body of the skin patch type
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M5/00Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
    • A61M5/14Infusion devices, e.g. infusing by gravity; Blood infusion; Accessories therefor
    • A61M5/168Means for controlling media flow to the body or for metering media to the body, e.g. drip meters, counters ; Monitoring media flow to the body
    • A61M5/16804Flow controllers
    • A61M5/16809Flow controllers by repeated filling and emptying of an intermediate volume
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2205/00General characteristics of the apparatus
    • A61M2205/82Internal energy supply devices
    • A61M2205/8206Internal energy supply devices battery-operated
    • A61M2205/8212Internal energy supply devices battery-operated with means or measures taken for minimising energy consumption

Definitions

  • the present invention relates to a drug solution administration device, which is suitable for application when, for example, insulin is administered into the body.
  • a device for administering a drug solution it is a portable device that is used by adhering to a patient's skin, and is administered into the body by pushing out a drug solution filled in an outer cylinder through a plunger.
  • a so-called syringe pump type drug administration device has been proposed (see, for example, Patent Document 1).
  • the chemical solution administration device that is attached to the patient's skin and held for a long time is required to be further downsized.
  • the power source mounted inside must be reduced, so that when the motor is used in the piston pump type delivery unit, it is necessary to reduce the current consumption of the motor.
  • the present invention has been made in consideration of the above points, and intends to propose a drug solution administration device capable of miniaturizing the device.
  • the present invention is a chemical solution administration device that is used by being attached to the skin of a living body, and a chemical solution storage unit that stores the chemical solution, and a flow path through which the chemical solution flows from the chemical solution storage unit into the living body And a flow path section for transferring a chemical solution from the chemical storage section when moving from the most pressed position to the retracted position, which slides within the cylinder section connected to the flow path section.
  • the motor shaft rotates the piston that is sucked out through the flow path and sends the drug solution sucked out when moving from the retracted position to the push-off position into the living body via the flow path portion, and the piston connected to the motor shaft.
  • a stepping motor that is slid in the cylinder part by the above and a stepping motor that has a higher driving frequency than that required to drive at a set operating speed when dispensing chemicals at the set piston operating speed. Electricity is supplied to the stepping motor and a control unit that administers the drug solution into the living body at a set administration speed by rotating the motor shaft for a certain amount of time and then repeatedly performing an operation of stopping the stepping motor for a predetermined time. And a power supply unit to supply.
  • the stepping motor is driven for a short time at a driving frequency higher than the driving frequency required for driving at the set operating speed.
  • Current consumption can be reduced, and the movement speed of the piston as a whole becomes slow, so that an increase in internal pressure in the flow path portion can be reduced.
  • the stepping motor when the drug solution is administered at the set piston operation speed, the stepping motor is driven for a short time at a drive frequency higher than that required for driving at the set operation speed.
  • the amount of current consumed by the stepping motor can be reduced, and the moving speed of the piston is slowed down as a whole, so that an increase in internal pressure in the flow passage can be reduced even for a flow passage having a narrow inner diameter.
  • the load on the motor can be reduced, and thus the apparatus can be miniaturized.
  • a drug solution administration device 1 is a portable device that is used by being attached to a patient's skin, and includes a drug solution storage unit 2, a channel unit 3, a pump unit 4, and a drive unit. 5, the control unit 6 and the power supply unit 7 are included.
  • the chemical solution storage unit 2 is a container formed of a flexible material.
  • a material constituting the chemical liquid storage unit 2 for example, a material containing polyolefin is preferable. Particularly preferable examples include polyethylene or polypropylene, styrene-butadiene copolymer, styrene-ethylene-butylene-styrene block copolymer, and the like. And a soft resin obtained by blending and softening an olefinic thermoplastic elastomer such as an ethylene-propylene copolymer, an ethylene-propylene copolymer, an ethylene-butene copolymer, or a propylene- ⁇ -olefin copolymer.
  • medical solution storage part 2 is filled with a chemical
  • the drug solution stored in the drug solution storage unit 2 include insulin, various hormones, analgesics such as morphine, and anti-inflammatory drugs.
  • the channel 3 includes channels 13A, 14A, 11A, and 11B formed in the suction channel 3A, the delivery channel 3B, and the pump unit 4, and the channel through which the drug solution from the drug solution storage unit 2 to the body flows.
  • the suction flow path section 3A allows the chemical liquid storage section 2 and the flow path 13A formed in the pump section 4 to communicate with each other.
  • the delivery flow path part 3B communicates with a flow path 14A formed in the pump part 4.
  • the pump unit 4 sends the chemical solution stored in the chemical solution storage unit 2 to the user's body through the flow path unit 3.
  • the pump unit 4 includes a cylinder unit 11, a piston 12, lid units 13 and 14, and one-way valves 15 and 16.
  • the piston 12 is driven by the drive unit 5 and slides with a predetermined stroke in contact with the inner wall in the substantially cylindrical internal space 11A formed in the cylinder unit 11.
  • Examples of the material of the piston 12 include stainless steel, copper alloy, aluminum alloy, titanium material, thermoplastic elastomer such as polypropylene and polycarbonate, and the like.
  • the cylinder part 11 is provided with an internal space 11A in which the piston 12 is inserted and slid from one end, and communicates with the other end of the internal space 11A so that the flow path between the flow path 13A of the lid part 13 and the lid part 14 flows.
  • a flow path 11B is formed which communicates with the path 14A to form a flow path through which the chemical solution flows.
  • the one-way valve 15 is provided between the flow path 13A and the flow path 11B, passes the chemical liquid flowing from the flow path 13A to the flow path 11B, and does not allow the chemical liquid to pass from the flow path 11B to the flow path 13A.
  • an umbrella valve is applied.
  • the one-way valve 16 is provided between the flow path 11B and the flow path 14A, allows the chemical liquid flowing from the flow path 11B to the flow path 14A to pass, and does not allow the chemical liquid to pass from the flow path 14A to the flow path 11B.
  • an umbrella valve is applied.
  • the pump unit 4 configured as described above is configured to suck the chemical solution stored in the chemical solution storage unit 2 when the piston 12 is moved from the push-off position to the pull-back position, It sucks out into the internal space 11A through the flow path 11B of the cylinder part 11.
  • the pump unit 4 draws the chemical liquid sucked from the chemical liquid storage unit 2 when the piston 12 is moved from the retracted position to the push-off position, the flow path 11B of the cylinder part 11, the flow path 14A of the lid part 14, and the delivery flow. It is sent out into the body through the road portion 3B.
  • the driving unit 5 slides the piston 12 in the internal space 11 ⁇ / b> A of the cylinder unit 11 based on the control of the control unit 6.
  • the drive unit 5 includes a base unit 21, a stepping motor 22, a motor support unit 24, a motor fixing plate 25, a fixed plate support unit 26, a motion conversion unit 27, a coupling 28, and a bearing support.
  • the unit 29 is included.
  • the drive unit 5 is arranged on the base unit 21.
  • the stepping motor 22 is sandwiched between a motor support portion 24 and a motor fixing plate 25 supported by the fixing plate support portion 26 and fixed to the base portion 21.
  • the stepping motor 22 is provided with a motor shaft 23 protruding from the side surface on the motor fixing plate 25 side.
  • a screw groove 23 ⁇ / b> A is formed on the side surface of the motor shaft 23.
  • the motion converting unit 27 is formed in a substantially rectangular parallelepiped shape that is elongated along the axial direction of the stepping motor 22 and has a hollow interior.
  • the motion converting portion 27 is provided with a screw hole 27A at the center of a side surface corresponding to a short side of a substantially rectangular parallelepiped shape, through which the motor shaft 23 of the stepping motor 22 is inserted and screwed into the screw groove 23A.
  • the motion converting portion 27 has a piston 12 connected coaxially to the motor shaft 23 via a coupling 28 on a side surface facing a side surface provided with a screw hole 27A corresponding to a substantially rectangular parallelepiped short side. Further, the motion conversion unit 27 is supported by the bearing support unit 29. As the coupling 28, for example, a coupling that suppresses the axial displacement between the motor shaft 23 and the piston 12 is applied.
  • the drive unit 5 rotates the motor shaft 23, and the motion conversion unit 27 screwed to the motor shaft 23 moves in the axial direction in accordance with the rotation to move the piston 12 in the axial direction.
  • the drive unit 5 slides the piston 12 in the internal space 11 ⁇ / b> A of the cylinder unit 11. 3A, the piston 12 is at the most retracted position (hereinafter also referred to as the retracted position), and in FIG. 3B, the piston 12 is most pushed out (hereinafter referred to as this). Is also referred to as a press-off position).
  • the control unit 6 is a CPU (Central It consists of a microcomputer that includes circuits such as a processing unit (ROM), ROM (Read Only Memory), and RAM (Random Access Memory), and the CPU expands various programs stored in the ROM into the RAM and executes them to execute various processes. Execute.
  • ROM processing unit
  • ROM Read Only Memory
  • RAM Random Access Memory
  • the power supply unit 7 is a dry battery, a rechargeable battery, or the like, and supplies power to the stepping motor 22 and the control unit 6 of the drive unit 5.
  • the stepping motor 22 is, for example, a two-phase excitation type stepping motor, and a magnet 31 fixed to the periphery of the motor shaft 23 and a plurality of magnets provided on the outer periphery of the magnet 31 at predetermined angles.
  • Coil 32 (A phase coil 32A, B phase coil 32B).
  • the stepping motor 22 generates a magnetic force (excited) in the coil 32 by supplying a pulsed current to the coil 32, and the magnet 31 is attracted. At this time, the direction of the magnetic force generated from the coil 32 is switched by switching ON / OFF of the current flowing through the A-phase coil 32A and the B-phase coil 32B and the direction of the current for each pulse. As a result, the direction in which the magnet 31 is attracted is changed, and the magnet 31 and the motor shaft 23 are rotated at a certain angle by repeating this.
  • the stepping motor 22 is not limited to the two-phase excitation type, but may be a 1-2 phase excitation type.
  • the magnet 31 is attracted by switching the current pattern flowing in the coil 32 in a short pulse time during high-speed rotation (at high drive frequency).
  • the direction to be changed changes in a short time, and the motor shaft rotates at high speed.
  • a current is applied to the hatched coil 32, and the arrows indicate the magnetic field generated in the coil 32 and the direction of the magnet 31.
  • the direction in which the magnet 31 is attracted can be increased by increasing the interval (pulse time) for switching the current pattern flowing through the coil 32.
  • the change time becomes longer, and the motor shaft 23 rotates at a low speed.
  • the generated torque and the amount of current consumption with respect to the drive frequency in the conventional control method are such that the generated torque decreases as the drive frequency increases (high speed rotation).
  • the current flowing time with one pulse is shortened and the current consumption is reduced.
  • the amount of current consumption can be reduced by increasing the drive frequency and increasing the speed of the piston 12.
  • the tip of the flow path portion 3 is formed thin because it is inserted into the living body, the internal pressure of the flow path portion 3 increases if the drive frequency is increased and the speed of the piston 12 is increased. .
  • the pressure applied to the piston 12 increases correspondingly, and a load is applied to the stepping motor 22 to increase the current consumption.
  • the drug solution administration device 1 is required to achieve both a reduction in the amount of current consumption by increasing the driving frequency and a reduction in the internal pressure of the flow path section 3 by moving the piston 12 at a low speed.
  • the control unit 6 has the stepping motor 22 so that both the reduction of the current consumption by increasing the driving frequency and the reduction of the internal pressure of the flow path unit 3 by the low-speed movement of the piston 12 are achieved. Is controlled to drive the piston 12.
  • the case where the drug solution dosage is set to 2 ⁇ l / s will be specifically described using the relationship among the piston speed, the current consumption amount, and the internal pressure with respect to each driving frequency described in FIG.
  • the driving frequency necessary for delivering the chemical solution at 2 ⁇ l / s is 160 PPS. That is, a pulse signal is continuously supplied to and driven by a stepping motor at 160 PPS, and a drug solution dose is administered into the body at 2 ⁇ l / s.
  • the control unit 6 has a high drive frequency of, for example, 400 PPS, which is higher than the conventional drive frequency of 160 PPS when continuously supplying pulse signals, for example, 8 pulses (0. 02 step) pulse signal is supplied to drive the stepping motor 22. Thereafter, the control unit 6 stops the stepping motor 22 without supplying a pulse signal for 0.03 seconds, for example.
  • the controller 6 can administer the drug solution at 2 ⁇ l / s as a whole by repeating this operation.
  • the hatched coil 32 is in a state where it is magnetically excited by supplying a current, and in the absence of the hatched coil 32, the stepping motor 22 is Indicates that it has stopped.
  • the number of current pulses applied to the stepping motor 22 at a time in the control unit 6 will be described.
  • the inventors measured the change in the generated force of the piston 12 by changing the number of pulses continuously supplied at a time using the generated force measuring device 40 shown in FIG.
  • the generated force measuring device 40 continuously supplies a predetermined number of pulse signals from the driver circuit 41 to the stepping motor 22, and the generated force of the piston 12 according to the torque generated in the stepping motor 22 at that time is used as the motor shaft 23.
  • the measurement is performed by a force gauge 42 that is in contact with the piston 12 connected via the motion conversion unit 27 and the coupling 28.
  • the generated force is not generated in the piston 12 when the number of continuous pulses is one, and the generated force is generated in the piston 12 when the number of continuous pulses is two or more.
  • the generated force is generated in the piston 12 when the number of continuous pulses is two or more.
  • control unit 6 supplies a signal of a continuous pulse number (two or more times from the result of this experiment, three pulses in FIG. 10B) at which the generated force is generated in the piston 12 at a high driving frequency, and supplies the stepping motor. After driving 22, the stepping motor 22 is stopped for a predetermined time.
  • the control unit 6 drives the stepping motor 22 at a high driving frequency for a predetermined time (a predetermined number of pulses), and then stops the stepping motor 22 for a predetermined time. That is, the controller 6 operates the stepping motor 22 intermittently to drive the stepping motor 22 at a high driving frequency to reduce the amount of current consumption, and the moving speed of the piston 12 as a whole slows down. An increase in the internal pressure of the part 3 can be reduced.
  • medical solution administration apparatus 1 can reduce the amount of current consumption, and can reduce the raise of the internal pressure of the flow-path part 3, it can reduce the amount of current consumption as a whole, and a power supply part 7 can be reduced in size.
  • the drug solution administration device 1 can be downsized as a whole.
  • the medicinal solution administration device 101 according to the second embodiment has a medicinal solution storage unit 102 and a pump unit 104 instead of the medicinal solution storage unit 2 and the pump unit 4 as compared with the medicinal solution administration device 1 according to the first embodiment.
  • the other parts are configured similarly.
  • the chemical liquid storage unit 102 has a piston 112 inserted into an outer cylinder 111 formed in a cylindrical shape from the opened end side.
  • the chemical solution storage unit 102 stores the chemical solution in a chemical solution storage space 113 formed by the outer cylinder 111 and the piston 112.
  • the outer cylinder 111 is provided with a distal end portion 111B for closing the distal end of the cylindrical main body portion 111A, and the main body portion 111A and the distal end portion 111B are integrally formed.
  • the tip 111B is a surface (hereinafter referred to as an inscribed surface) that is in contact with the medicinal solution storage space 113 along a direction orthogonal to the direction of the main body 111A (hereinafter also referred to as the cylinder axis direction).
  • a hollow protrusion 111D having an opening penetrating to the outside is provided in the center of 111C.
  • distal end portion 111B communicates with the protruding portion 111D, and an external port 111E protrudes in a direction opposite to the protruding portion 111D, and the suction flow path portion 3A (FIG. 1) is connected to the external port 111E.
  • the main body 111A is provided with a convex regulating portion 111F in which a portion from a position in contact with the inscribed surface 111C to a position longer than the length of the protruding portion 111D protrudes inward. That is, the main body 111A is formed so that the inner diameter of the restricting portion 111F is shorter than the inner diameter of the main body 111A other than the restricting portion 111F.
  • the piston 112 is inserted into the main body 111A from the end opposite to the tip 111B, contacts the inner surface of the main body 111A along the circumferential direction, and moves along the cylinder axis direction of the main body 111A. Closely slidable.
  • the piston 112 is formed with a diameter larger than the inner diameter of the restricting portion 111F.
  • the medicinal solution storage portion 102 has a slight space between the inscribed surface 111C of the outer cylinder 111 and the piston 112 with the restriction portion 111F in a state where the piston 112 is positioned closest to the tip end portion 111B and is in contact with the restriction portion 111F. Is provided.
  • the chemical solution stored in the vial in this state is injected into the chemical solution storage space 113 from an injection port (not shown).
  • the piston 112 is moved to the end side, and the chemical solution is injected by a predetermined amount (for example, 2 ml). At this time, bubbles that existed in the chemical solution storage space 113 remain as they are.
  • the chemical solution storage unit 102 moves the piston 112 toward the distal end portion 111B by the chemical solution suction pressure by the pump unit 104, and the protruding portion 111D and the external port 111E. Then, the chemical solution is sent to the suction flow path portion 3A. And the chemical
  • the chemical liquid storage part 102 is provided with the protruding part 111D protruding from the inscribed surface 111C on the chemical liquid storage space 113 side, bubbles attached to the side surface of the main body part 111A when the chemical liquid is delivered. Can be prevented from being sent to the outside through the opening of the protrusion 111D.
  • the pump unit 104 is a so-called piston pump, and the piston 12 of the drive unit 5 (FIG. 3) is inserted into a cylindrical hollow internal space 131 ⁇ / b> A provided in the cylinder unit 131 from one end side. .
  • an O-ring 135 is provided on the side surface of the piston 12 along the circumferential direction so that the chemical liquid does not leak to the outside through a gap with the inner wall of the internal space 131A of the cylinder part 131.
  • An X ring may be provided in place of the O ring 135, and a gasket made of silicon rubber, butadiene rubber, or the like may be attached to the piston 12.
  • the cylinder part 131 is provided with flow paths 131B and 131C in communication with the internal space 131A on the side opposite to the side where the piston 12 is inserted in the internal space 131A.
  • the cylinder part 131 is provided with valve arrangement spaces 131D and 131E in which the umbrella valves 138 and 139 are respectively arranged on the side surfaces so as to communicate with the flow paths 131B and 131C, respectively.
  • valve arrangement space 131D the valve arrangement space 131D, the flow path 131B, the internal space 131A, the flow path 131C, and the valve arrangement space 131E are communicated in this order.
  • the cylinder portion 131 is provided with valve grooves 131F and 131G into which the shaft portion 138A of the umbrella valve 138 (FIG. 14) and one end side of the shaft portion 139A of the umbrella valve 139 are inserted at predetermined positions in the valve arrangement spaces 131D and 131E, respectively. It is done.
  • the diameters of the valve grooves 131F and 131G are substantially the same as the diameters of the shaft portions 138A and 139A.
  • the pump part 104 is provided with cover parts 140 and 141 arranged so as to abut on the side surface where the valve arrangement spaces 131D and 131E are provided in the cylinder part 131.
  • the lid portion 140 is provided with a flow path 140A penetrating to a joint 140B provided to project from a surface opposite to the surface facing the valve placement space 131D at a position facing the valve placement space 131D.
  • the lid 140 is connected to the joint 140B with the suction flow path 3A, and connects the suction flow path 3A and the valve arrangement space 131D via the flow path 140A.
  • the lid 140 is provided with an adjustment hole 140C penetrating from a surface facing the valve arrangement space 131D to a surface opposite to the surface at a position facing the valve groove 131F provided in the cylinder 131.
  • the diameter of the adjustment hole 140 ⁇ / b> C is approximately the same as the diameter of the umbrella valve 138.
  • the lid portion 140 is fixed to the cylinder portion 131 by a fixing member 143 such as a screw via an O-ring 142 provided between the lid portion 140 and the cylinder portion 131.
  • the valve position adjustment mechanism 150 is inserted into the adjustment hole 140C from the surface side opposite to the surface facing the valve arrangement space 131D.
  • the valve position adjusting mechanism 150 is provided with a worm screw 152 and a worm wheel 153 screwed into the housing portion 151.
  • One end of the worm screw 152 is formed with a plus-type groove, and the portion is exposed to the outside from the housing portion 151.
  • the worm wheel 153 has a substantially cylindrical shaft portion 154 attached to one surface.
  • the shaft portion 154 is provided with an O-ring 155 at a predetermined position in the length direction, and a thread groove 156 is formed on the tip side (the side opposite to the worm wheel 153) from the position where the O-ring 155 is provided.
  • a substantially disc-shaped contact portion 157 is provided at the tip of the shaft portion 154.
  • valve position adjusting mechanism 150 when the worm screw 152 is rotated by a Phillips screwdriver or the like, the worm wheel 153 screwed to the worm screw 152 rotates together with the shaft portion 154.
  • valve position adjusting mechanism 150 When the valve position adjusting mechanism 150 is attached to the lid portion 140, the screw groove 156 of the shaft portion 154 is screwed into a screw groove formed in a part of the side surface of the adjustment hole 140C. Further, in the valve position adjusting mechanism 150, the O-ring 155 contacts the side surface on the outer side (the side opposite to the side where the umbrella valve 138 is disposed) from the position where the screw groove is formed in the adjusting hole 140C.
  • the shaft portion 154 is rotated by rotating the worm screw 152, and the contact portion 157 is moved toward or away from the umbrella valve 138 in the adjustment hole 140 ⁇ / b> C of the lid portion 140. Moving.
  • the umbrella valve 138 is made of an elastic member such as rubber or resin, and is thin and umbrella-shaped at a substantially center position in the length direction of the shaft portion 138A having a substantially columnar length L as shown in FIG.
  • An umbrella-shaped portion 138B is provided.
  • the umbrella valve 138 is formed such that the outer diameter of the umbrella-shaped portion 138B is larger than the distance to the flow path 140A based on the center of the adjustment hole 140C of the lid portion 140.
  • one end of the shaft portion 138A facing the outside of the umbrella-like portion 138B (hereinafter also referred to as an outer peripheral surface) 138D side is a valve groove.
  • One end of the shaft portion 138A facing the inner side of the umbrella-shaped portion 138B (hereinafter also referred to as an inner peripheral surface) 138E is inserted into the adjustment hole 140C of the lid portion 140.
  • the bottom depth dimension of the valve groove 131F is The dimensions of the bottom surface of the valve groove 131F and the valve contact surface 140D are set to be sufficiently shorter than the length from the tip of the shaft portion 138A on the outer peripheral surface 138D side of the umbrella valve 138 to the tip portion 138C of the umbrella-shaped portion 138B.
  • the umbrella valve 138 is sandwiched between the bottom surface of the valve groove 131F and the contact portion 157 so as to be pressed against the contact portion 157 of the valve position adjusting mechanism 150.
  • valve position adjusting mechanism 150 adjusts the position of the umbrella valve 138 by adjusting the force for holding the umbrella valve 138 when the umbrella valve 138 is held between the bottom surface of the valve groove 131F by the contact portion 157. Can do.
  • valve position adjusting mechanism 150 has a positional relationship between the attachment position of the umbrella-shaped portion 138B and the valve contact surface 140D in the length direction of the shaft portion 138A, that is, the tip portion 138C of the umbrella-shaped portion 138B and the valve contact surface 140D. Can be adjusted.
  • the umbrella valve 138 is surrounded by a surface (hereinafter also referred to as a valve contact surface) 140D in which the tip portion 138C of the umbrella-shaped portion 138B faces the valve arrangement space 131D in the lid portion 140 in a state where no pressure is applied. It abuts across the direction without any gap and closes the space between the flow path 131B of the cylinder part 131 and the flow path 140A of the lid part 140. This state is also called a normally closed state.
  • the umbrella valve 138 is moved from the bottom dead center to the top dead center, and the pressure in the internal space 131A, the channel 131B, and the channel 131C is high, and pressure is applied to the umbrella-shaped portion 138B from the outer peripheral surface 138D side.
  • the tip portion 138C of the umbrella-shaped portion 138B contacts the valve contact surface 140D and closes the space between the flow path 131B of the cylinder portion 131 and the flow path 140A of the lid portion 140.
  • the umbrella valve 138 blocks the space between the flow path 131B of the cylinder portion 131 and the flow path 140A of the lid portion 140, and does not allow the chemical solution to pass from the chemical solution storage portion 102 to the internal space 131A.
  • the piston 12 is moved from the top dead center to the bottom dead center, and the pressure in the internal space 131A, the flow path 131B, and the flow path 131C is lowered, and the differential pressure is larger than the valve opening pressure of the umbrella valve 138.
  • the umbrella-shaped portion 138B is elastically deformed so as to open toward the outer peripheral surface 138D by the pressure, and the distal end portion 138C is separated from the valve contact surface 140D.
  • the umbrella valve 138 causes the flow path 131B of the cylinder part 131 to communicate with the flow path 140A of the lid part 140 and allows the chemical solution to pass from the chemical solution storage unit 102 to the internal space 131A.
  • the lid portion 141 is provided with a flow path 141A penetrating to a joint 141B provided to protrude from a surface opposite to the surface facing the valve arrangement space 131E at a position facing the valve arrangement space 131E.
  • the lid 141 is connected to the joint 141B with the delivery channel 3B, and connects the valve arrangement space 131E and the delivery channel 3B via the channel 141A.
  • the lid 141 is provided with an adjustment hole 141C at a position facing the valve groove 131G provided in the cylinder 131.
  • the diameter of the adjustment hole 141C is substantially the same as the diameter of the shaft portion 139A of the umbrella valve 139.
  • the lid part 141 is fixed to the cylinder part 131 by a fixing member 143 such as a screw via an O-ring 142 provided between the lid part 141 and the cylinder part 131.
  • the valve position adjustment mechanism 160 is inserted into the adjustment hole 141C from the surface of the lid 141 opposite to the surface facing the valve arrangement space 131E.
  • the valve position adjustment mechanism 160 is configured similarly to the valve position adjustment mechanism 150.
  • valve position adjusting mechanism 160 When the valve position adjusting mechanism 160 is attached to the lid portion 141, the screw groove 166 of the shaft portion 164 is screwed into a screw groove formed in a part of the side surface of the adjustment hole 141C.
  • the O-ring 165 contacts the side surface on the outer side (the side opposite to the side where the umbrella valve 139 is disposed) from the position where the screw groove is formed in the adjusting hole 141C.
  • valve position adjusting mechanism 160 when the worm screw 162 is rotated, the shaft portion 164 rotates, and the abutting portion 167 moves toward or away from the umbrella valve 139 in the adjusting hole 141C of the lid portion 141. Moving.
  • the umbrella valve 139 is made of the same material and shape as the umbrella valve 138, and is formed such that the outer diameter of the umbrella-shaped portion 139B is larger than the length to the flow path 131C with respect to the center of the valve groove 131G of the cylinder portion 131.
  • the umbrella valve 139 is sandwiched between the bottom surface of the valve groove 131G and the contact portion 167 so as to be pressed against the contact portion 167 of the valve position adjusting mechanism 160.
  • the valve position adjusting mechanism 160 can adjust the position of the umbrella valve 139 by adjusting the force for clamping the umbrella valve 139 when the umbrella valve 139 is held between the bottom surface of the valve groove 131G by the contact portion 167. it can.
  • valve position adjusting mechanism 160 has a positional relationship between the attachment position of the umbrella-shaped portion 139B and the valve contact surface 131H in the length direction of the shaft portion 139A, that is, the tip portion 139C of the umbrella-shaped portion 139B and the valve contact surface 131H. Can be adjusted.
  • the umbrella valve 139 is in a normally closed state, a positive pressure in which the piston 12 is moved from the top dead center to the bottom dead center, and the pressure of the internal space 131A, the flow path 131B, and the flow path 131C is applied to the suction flow path section 3A.
  • the tip 139C of the umbrella-shaped part 139B is in contact with the valve contact surface 131H in the circumferential direction, and between the flow path 131C of the cylinder part 131 and the flow path 141A of the lid part 141.
  • the chemical solution is not blocked from the internal space 131A to the delivery flow path portion 3B.
  • the umbrella valve 139 makes the flow path 131C of the cylinder part 131 communicate with the flow path 141A of the lid part 141, and allows the chemical solution to pass from the internal space 131A to the delivery flow path part 3B.
  • the medicinal solution administration device 200 suppresses the internal pressure of the flow path unit 203 at a predetermined position of the delivery flow path unit 203 ⁇ / b> B on the downstream side of the pump unit 4 in the flow path unit 203.
  • a suppression unit 203C is provided.
  • the suppressing portion 203C is made of a material that is elastically deformed according to, for example, applied pressure. Note that the configuration of the drug solution administration apparatus 200 other than the flow path portion 203 is the same as that of the drug solution administration apparatus 1.
  • the stepping motor 22 of the drive unit 5 is driven based on the control of the control unit 6, and the piston 12 slides in the cylinder unit 11.
  • the control unit 6 drives the stepping motor 22 at a high drive frequency for a certain period of time, and then stops the stepping motor 22 for a certain period of time, as in the case of the drug solution administration device 1.
  • the internal pressure of the flow path portion 203 rises when the piston 12 moves at a high speed.
  • the suppression portion 203C is provided in the flow path portion 203, the internal pressure rises. Accordingly, the suppression portion 203C is deformed so as to swell to reduce the pressure rise.
  • the drug solution administration device 200 can achieve both a reduction in the amount of current consumption by increasing the drive frequency and a reduction in the increase in the internal pressure of the flow path unit 203, and more.
  • the entire apparatus can be reduced in size.
  • the chemical solution administration device 200 can further reduce the pressure increase by providing the flow path section 203 with the suppressing section 203C. Therefore, even if the stepping motor 22 is driven at a higher driving frequency, the flow path section 203 is provided.
  • the increase in the internal pressure of the battery can be reduced, and the amount of current consumption at a high drive frequency can be reduced.
  • the chemical solution administration device 200 can extend the stop time of the stepping motor 22 by driving the stepping motor 22 at a higher driving frequency, and can reduce the current consumption accordingly.
  • control unit 6 drives the stepping motor 22 by supplying a predetermined number of pulse signals at a high driving frequency so as to achieve a set administration rate, and then, for a predetermined time.
  • a predetermined number of pulse signals at a high driving frequency so as to achieve a set administration rate, and then, for a predetermined time. The case where the operation of stopping the stepping motor 22 without supplying a pulse signal is repeated has been described.
  • the present invention is not limited to this.
  • the controller 6 supplies a predetermined number of pulse signals at a high driving frequency to drive the stepping motor 22, and then The stepping motor 22 may be stopped without supplying a pulse signal for a predetermined time.
  • the control unit 6 drives the stepping motor 22 at a high driving frequency (for example, 400 PPS) because the internal pressure of the flow path unit 3 is not increased when the piston 12 moves from the pressing position to the retracted position. Thus, the piston 12 is moved from the pressing position to the retracted position at a time.
  • a high driving frequency for example, 400 PPS
  • the medicinal solution administration device 1 drives the stepping motor 22 at a high drive frequency as described above to reduce the amount of current consumption, and the piston 12 as a whole.
  • the stepping motor 22 is driven at a high driving frequency to reduce the current consumption. Reduce. Thereby, in the drug solution administration device 1, the amount of current consumption can be further reduced, and thus the device can be further downsized.
  • valve position adjusting mechanism 150 in the second embodiment described above the casing 151 and the shaft 154 including the worm screw 152 and the worm wheel 153 are fixed to the lid 140 when the umbrella valve 138 is clamped.
  • the present invention is not limited to this.
  • the present invention is not limited to this, and the disadvantage that the valve position adjusting mechanism 150 is rotated by adjustment, the friction of the adjusting hole 140C of the O-ring 155 (165), and the shaft due to the elasticity of the O-ring. These may be removed from the lid by dealing with the difficulty of adjustment by returning the parts and reducing the number of parts used for the purpose of simplifying the configuration. The same applies to the valve position adjusting mechanism 160.
  • the pump unit 500 is provided with valve position adjusting mechanisms 510 and 520 instead of one or both of the valve position adjusting mechanisms 150 and 160 of the pump unit 104, and the lid parts 140 and 141 are provided. Instead, lid portions 540 and 541 are provided.
  • the valve position adjusting mechanism 510 has a housing portion 511 in which a worm screw 512 and a worm wheel 513 are provided, a screw groove 515A formed on the entire side surface, and a hexagonal hole 515B on one surface, for example. It is comprised with the formed thread part 515.
  • a plus-type groove is formed at one end of the worm screw 512, and the portion is exposed to the outside from the casing 511.
  • the worm wheel 513 has a shaft portion 514 whose tip is engaged with the hexagonal hole 515B of the screw portion 515 on one surface.
  • the housing portion 511 is provided with an engaging portion 511A that engages with an engaging receiving portion 540E that protrudes from the lid portion 540.
  • valve position adjusting mechanism 510 when the worm screw 512 is rotated by a Phillips screwdriver or the like, the worm wheel 513 screwed to the worm screw 512 rotates together with the shaft portion 514.
  • the screw portion 515 of the valve position adjusting mechanism 510 is screwed into the adjustment hole 540C of the lid portion 540.
  • the lid portion 540 has the same configuration as the lid portion 140 except that an engagement receiving portion 540E is provided around the adjustment hole 540C.
  • the screw hole 515 is screwed into a screw groove formed on the side surface of the adjustment hole 540C. At this time, the surface of the screw portion 515 where the hexagonal hole 515 ⁇ / b> B is not provided comes into contact with the umbrella valve 138.
  • valve position adjustment mechanism 510 When the valve position adjustment mechanism 510 is attached to the lid portion 540, the tip of the shaft portion 514 is engaged with the hexagonal hole 515B of the screw portion 515, and the engagement portion 511A of the housing portion 511 is engaged with the engagement receiving portion 540E. Engaged.
  • valve position adjusting mechanism 510 when the worm screw 512 is rotated, the shaft portion 514 rotates via the worm wheel 513, and only the screw portion 515 approaches the umbrella valve 138 in the adjustment hole 540C of the lid portion 540. Move in the direction or away.
  • the bottom depth dimension of the valve groove 131F is The dimension of the bottom surface of the valve groove 131F and the valve contact surface 540D is set to be sufficiently shorter than the length from the tip of the shaft portion 138A on the outer peripheral surface 138D side of the umbrella valve 138 to the tip portion 138C of the umbrella-shaped portion 138B.
  • the length of the shaft portion 514 and the hexagonal hole depth of the screw portion 515 are such that the tip of the shaft portion 514 has a sufficient margin at the adjustment position of the screw portion so that the tip of the shaft portion 514 does not contact the bottom of the hexagonal hole of the screw portion 515, Depth dimension.
  • valve position adjusting mechanism 510 can adjust the position of the umbrella valve 138 by adjusting the force for holding the umbrella valve 138 when the umbrella portion 138 is held by the screw portion 515 with the bottom surface of the valve groove 131F. it can.
  • valve position adjusting mechanism 510 adjusts the positional relationship between the center position of the shaft portion 138A in the length direction and the valve contact surface 540D, that is, the positional relationship between the tip portion 138C of the umbrella-shaped portion 138B and the valve contact surface 540D. be able to.
  • valve position adjusting mechanism 510 is configured such that the casing portion 511 is removed from the lid portion 540, and the gap between the screw groove 515A of the screw portion 515 and the screw groove of the adjustment hole 540C includes a screw thread thread. It is molded and sealed and closed.
  • the valve position adjusting mechanism 520 has the same shape as the valve position adjusting mechanism 510, and the lid portion 541 is provided with an engagement receiving portion 541E around the adjustment hole 541C in the same manner as the lid portion 540.
  • a screw portion 525 of the valve position adjusting mechanism 520 is attached to the adjusting hole 541C to sandwich the umbrella valve 139, but the description is omitted because it is the same as the valve position adjusting mechanism 510 described above.
  • valve position adjusting mechanisms 150 and 160 are provided in the pump unit 104 .
  • the present invention is not limited to this, and the valve position adjusting mechanisms 150 and 160 are omitted. You may do it.
  • the lids 140 and 141 may have a predetermined depth without penetrating the adjustment holes 140C and 141C.
  • the pump unit 104 uses the umbrella valves 138 and 139 in which the shaft portions 138A and 139A are formed in a substantially cylindrical shape having substantially the same diameter over the length direction. It was.
  • the present invention is not limited to this, and a portion that is more flexible than the other portions may be provided on both ends with reference to the center position in the length direction of the shaft portion.
  • an umbrella valve 600 shown in FIG. 18 is used instead of one or both of the umbrella valves 138 and 139.
  • the umbrella valve 600 is made of an elastic member such as rubber or resin. As shown in FIGS. 18A and 18B, the umbrella valve 600 is formed at the center position in the longitudinal direction of the axial portion 600A having a substantially columnar length L. An umbrella-shaped portion 600B that is thin and formed in an umbrella shape is provided.
  • the umbrella valve 600 includes a central portion and both side surface portions in a direction perpendicular to the length direction from the center position in the length direction of the shaft portion 600A having a substantially cylindrical shape to a length L at equal distances on both ends. Curved portions 600F and 600G having a predetermined width at equal intervals from the center along the orthogonal direction are provided.
  • the length L of the shaft portion 600A is a contact portion from the bottom surface of the valve groove 131F in a state where the cylinder portion 131 and the lid portion 140 are in contact. It is formed longer than the distance to the bottom surface of 157.
  • the umbrella valve 600 When the umbrella valve 600 is arranged in the valve arrangement space 131D, as shown in FIG. 18C, the umbrella part 600 is crushed by the cylinder part 131 and the lid part 140, and the bending parts 600F and 600G are bent by the same amount. It is pinched in such a way.
  • the umbrella valve 600 receives the force when the shaft portion 600A is crushed from both sides, so that the curved portions 600F and 600G are deformed, so that the position where the umbrella-shaped portion 600B is provided in the shaft portion 600A is prevented from being deformed. can do.
  • the umbrella valve 600 determines the positional relationship between the center position of the shaft portion 600A in the length direction and the valve contact surface 140D, that is, the positional relationship between the tip portion 600C of the umbrella-shaped portion 600B and the valve contact surface 140D. Compared with 138, the accuracy can be maintained.
  • the thin-walled umbrella-shaped portion 600B may be distorted in molding in the circumferential direction, and a gap may be formed between the valve-contacting surface 140D.
  • the influence of the distortion can be eliminated by adjusting the valve opening pressure using the valve position adjusting mechanism 150.
  • the stress between the tip portion 600C of the umbrella-shaped portion 600B and the valve contact surface 140D due to the adjustment of the length L of the shaft portion is relieved by the curved portions 600F and 600G, and the change in the stress due to the adjustment becomes small. Precise adjustment is possible.
  • the umbrella valve 600 can accurately set the normally closed state and the valve opening pressure to the expected values, and the chemical solution can be supplied more accurately than when the umbrella valves 138 and 139 are used. Can be administered.
  • the tip end portion 600C of the umbrella-shaped portion 600B of the umbrella valve 600 and the valve contact surface 140D must be set in a state in which they are sufficiently in pressure contact and do not leak before adjustment. However, this is not necessary when it is arranged in the valve arrangement space 131E.
  • an umbrella valve 610 shown in FIG. 19 is used instead of one or both of the umbrella valves 138 and 139.
  • the umbrella valve 610 is made of an elastic member such as rubber or resin. As shown in FIGS. 19A and 19B, the umbrella valve 610 is formed at the center position in the length direction of the shaft portion 610A having a substantially cylindrical shape and having a length L. An umbrella-shaped portion 610B that is thin and formed in an umbrella shape is provided.
  • the umbrella valve 610 is provided with a buffer portion 610F formed of an annular groove along the circumferential direction of the outer peripheral surface 610D of the umbrella-shaped portion 610B, and the tip portion 610C side from the buffer portion 610F is elastically deformed by a pressure change in the flow path.
  • a buffer portion 610F formed of an annular groove along the circumferential direction of the outer peripheral surface 610D of the umbrella-shaped portion 610B, and the tip portion 610C side from the buffer portion 610F is elastically deformed by a pressure change in the flow path.
  • a U-shaped groove, a square groove, a V-shaped groove or the like is applied.
  • the umbrella valve 610 does not block the flow path provided on the outer peripheral surface 610D side on the front end 600C side when the front end 610C side is elastically deformed to the outer peripheral surface 610D side due to the pressure change in the flow path from the buffer portion 610F.
  • a buffer 610F is provided at the position.
  • the length L of the shaft portion 610A is the contact portion from the bottom surface of the valve groove 131F in a state where the cylinder portion 131 and the lid portion 140 are in contact. It is formed longer than the distance to the bottom surface of 157.
  • the umbrella valve 610 is provided with a buffer portion 610F having the thinnest thickness in the radial direction of the umbrella-shaped portion 610B when sandwiched between the cylinder portion 131 and the lid portion 140.
  • the umbrella-shaped portion 610B is elastically bent toward the outer peripheral surface 610D at the position.
  • the umbrella valve 610 is pressed against the valve contact surface 140D by the force to return to the original shape at the position where the buffer portion 610F is provided.
  • the shape of the buffer portion 610F is determined so that the force for returning to the original shape is sufficiently smaller than the force applied to the umbrella-like portion 610B by the back pressure by the piston 12, so that the umbrella valve 610 is opened.
  • the influence on the valve pressure can be reduced.
  • the rate of change in the valve opening pressure due to the adjustment of the length of the shaft portion 610A when the umbrella valve 610 is attached can be reduced, and more precise adjustment can be performed.
  • the umbrella valve 610 is provided with the buffer portion 610F at a position where the flow passage 131B provided on the outer peripheral surface 610D side is not blocked on the tip portion 610C side of the umbrella-shaped portion 610B. Absent.
  • the umbrella valve 610 is arranged in the valve arrangement space 131E.
  • the umbrella valve 610 may be provided with the configuration of the curved portions 600F and 600G in the umbrella valve 600.
  • the tip 610C of the umbrella-like portion 610B of the umbrella valve 610 and the valve contact surface 140D must be sufficiently pressed and not leak-tight before adjustment. However, this is not necessary when it is arranged in the valve arrangement space 131E.
  • an umbrella valve 620 as shown in FIG. 20 may be used in the pump unit 104 instead of one or both of the umbrella valves 138 and 139.
  • the umbrella valve 620 is provided with an umbrella-shaped portion 620B that is thin and formed in an umbrella shape at the center position in the length direction of a shaft portion 620A having a substantially cylindrical shape with a length L.
  • the umbrella portion 620B is formed such that the buffer portion 620F from a predetermined position along the radial direction to the tip portion 620C is thinner than the root portion.
  • the umbrella valve 620 includes a buffer portion 620F at a position where the buffer portion 620F does not block the flow path provided on the outer peripheral surface 620D side when the buffer portion 620F is elastically deformed toward the outer peripheral surface 620D due to a pressure change in the flow path. Is provided.
  • the bottom depth dimension of the valve groove 131F is The dimensions of the bottom surface of the valve groove 131F and the valve contact surface 140D are set to be sufficiently shorter than the length from the tip of the shaft portion 620A on the outer peripheral surface 620D side of the umbrella valve 620 to the tip portion 620C of the umbrella-shaped portion 620B.
  • the umbrella-like part 620B is disposed on the outer peripheral surface 620D by the buffer part 620F in the umbrella-like part 620B.
  • the tip portion 620C is pressed against the valve contact surface 140D.
  • the shape of the buffer portion 620F is determined so that the force for returning to the original shape is sufficiently smaller than the force applied to the umbrella-like portion 620B by the back pressure by the piston 12, so that the umbrella valve 620 is opened.
  • the influence on the valve pressure can be reduced.
  • the rate of change in the valve opening pressure due to the adjustment of the length of the shaft portion when the umbrella valve is attached can be reduced, and more precise adjustment can be performed.
  • the umbrella valve 620 is provided with the buffer portion 620F at a position where the flow channel 131B provided on the outer peripheral surface 620D side is not blocked on the tip portion 620C side of the umbrella-shaped portion 620B. Absent.
  • the hardness and size of the umbrella valve 620 is 60 °
  • the length of the shaft portion 620A is 1 mm
  • the diameter is 0.3 mm
  • the diameter of the umbrella-shaped portion 620B is 2 mm
  • the buffer portion 620F of the umbrella-shaped portion 620B has a radial length of 0.25 mm and a thickness of 0.08 mm.
  • the diameter of the flow path 140A in the pump unit 104 using the umbrella valve 620 is 0.4 mm
  • the distance from the center of the contact part 157 to the center of the flow path 140A is 0.4 mm.
  • the umbrella valve 630 and the silicone oil 660 shown in FIG. 21 may be used.
  • the umbrella valve 630 is made of an elastic member such as rubber or resin, and is formed in an umbrella shape at the center position in the length direction of the shaft portion 630A having a substantially cylindrical shape L as shown in FIG. An umbrella-shaped portion 630B is provided.
  • the umbrella-shaped portion 630B is formed with a uniform thickness from the connecting position with the shaft portion 630A to a predetermined position along the radial direction, and as the tip approaches the tip portion 630C.
  • an oil groove 630F that gradually deepens on the inner peripheral surface 630E side is provided, and silicon oil 660 is attached to the oil groove 630F.
  • a case where the umbrella-shaped portion 630B has a uniform thickness in the radial direction is indicated by a broken line.
  • the length L of the shaft portion 610A is the contact portion from the bottom surface of the valve groove 131F when the cylinder portion 131 and the lid portion 140 are in contact. It is formed longer than the distance to the bottom surface of 157 and is sandwiched between the cylinder part 131 and the lid part 140.
  • the silicon oil 660 attached to the oil groove 630F flows between the tip part 630C and the valve contact surface 140D, and the silicon oil 660 flows between the tip part 630C and the valve contact surface 140D. It is filled.
  • the silicon oil 660 attached to the oil groove 630F of the umbrella-like portion 630B is in the normally closed state. Since the space between the portion 630C and the valve contact surface 140D is filled, the chemical liquid can be prevented from leaking from between the tip portion 630C and the valve contact surface 140D.
  • the umbrella valve 630 when the chemical solution flows with the distal end portion 630C being separated from the valve contact surface 140D, it is possible to prevent the silicon oil 660 from adhering to the oil groove 630F and flowing together with the chemical solution. Thereby, for example, even when the chemical solution administration device 101 is used for several days, the state in which the silicon oil 660 remains attached to the oil groove 630F during that period can be maintained. Thereby, it is possible to prevent a change (leakage) in the normally closed state due to creep deformation of the umbrella valve 630 due to a change with time after adjustment.
  • an umbrella valve 640 shown in FIG. 22 may be used.
  • the umbrella valve 640 is made of an elastic member such as rubber or resin, and is formed in an umbrella shape at the center position in the length direction of the shaft portion 640A having a substantially cylindrical shape L as shown in FIG. An umbrella-shaped portion 640B is provided.
  • the umbrella-shaped portion 640B is formed with a uniform thickness from the connection position with the shaft portion 640A to a predetermined position along the radial direction, and the tip of the umbrella-shaped portion 640B extends to the tip end portion 640C.
  • a concave oil groove 640F is provided on the 640E side, and a tip end portion 640C is formed in a substantially triangular shape in cross section protruding to the inner peripheral surface 640E side.
  • Silicon oil 660 is attached to the oil groove 640F of the umbrella-shaped portion 640B.
  • FIG. 22B a case where the umbrella-shaped portion 640B has a uniform thickness in the radial direction is indicated by a broken line.
  • the length L of the shaft portion 640A is in contact with the contact portion from the bottom surface of the valve groove 131F when the cylinder portion 131 and the lid portion 140 are in contact with each other. It is formed longer than the distance to the bottom surface of 157 and is sandwiched between the cylinder part 131 and the lid part 140.
  • the silicon oil 660 applied to the oil groove 640F flows between the tip part 640C and the valve contact surface 140D, and the silicon oil 660 flows between the tip part 640C and the valve contact surface 140D. It is filled.
  • the umbrella valve 640 is filled between the tip 640C and the valve contact surface 140D in the normally closed state, like the umbrella valve 630, so that the chemical solution leaks from between the tip 640C and the valve contact surface 140D. Can be prevented. Thereby, it is possible to prevent a change (leakage) in the normally closed state due to creep deformation of the umbrella valve 640 due to a change with time after adjustment.
  • an umbrella valve 650 shown in FIG. 23 may be used.
  • the umbrella valve 650 is made of an elastic member such as rubber or resin, and is formed in an umbrella shape at the center position in the longitudinal direction of the shaft portion 650A having a substantially cylindrical length L as shown in FIG. An umbrella-shaped portion 650B is provided.
  • the umbrella-shaped portion 650B is formed with a uniform thickness from the connecting position with the shaft portion 650A to the vicinity of the distal end portion 650C along the radial direction, and the tip of the umbrella-shaped portion 650B extends to the distal end portion 650C.
  • a concave oil groove 650F is provided on the peripheral surface 650E side, and a tip end portion 650C is formed in a substantially semicircular shape with a protrusion protruding on the inner peripheral surface 650E side.
  • Silicon oil 660 is attached to the oil groove 650F of the umbrella-shaped portion 650B.
  • FIG. 23B a case where the umbrella-shaped portion 650B has a uniform thickness in the radial direction is indicated by a broken line.
  • the length L of the shaft portion 650A is the contact portion from the bottom surface of the valve groove 131F in a state where the cylinder portion 131 and the lid portion 140 are in contact. It is formed longer than the distance to the bottom surface of 157 and is sandwiched between the cylinder part 131 and the lid part 140.
  • the silicone oil 660 applied to the oil groove 650F flows between the tip part 650C and the valve contact surface 140D, and the silicon oil 660 flows between the tip part 650C and the valve contact surface 140D. It is filled.
  • the umbrella valve 650 is filled between the tip 650C and the valve contact surface 140D in the normally closed state, like the umbrella valves 620 and 630, so that the chemical solution leaks between the tip 650C and the valve contact surface 140D. Can be prevented. Thereby, it is possible to prevent a change (leakage) in the normally closed state due to creep deformation of the umbrella valve 650 due to a change with time after adjustment.
  • the chemical solution storage unit 800 is provided with a stainless steel pipe 804 in place of the protrusion 111D and the external port 111E of the chemical solution storage unit 102 (FIG. 11).
  • the piston 802 is the same as the piston 112.
  • a stainless steel pipe 804 is provided in an opening 801G provided in the center of the distal end portion 801B of the outer cylinder 801.
  • the stainless steel pipe 804 is fixed to the opening 801G so that the length of the portion inserted into the chemical solution storage space 803 is shorter than the length of the protrusion 801F.
  • the chemical liquid storage unit 800 having such a configuration abuts against the protrusion 801F when the piston 802 moves to the most distal end 801B side, and contacts the inscribed surface 801C and the piston 802. There is a space between them.
  • the diameter of the opening of the stainless steel pipe 804 can be made smaller than that of the synthetic resin, it is possible to make it difficult to send out the bubbles to the outside.
  • the chemical solution storage unit 810 is provided with a protrusion 811D having an opening on the inscribed surface 811C of the outer cylinder 811 and protruding toward the chemical solution storage space 813.
  • An external port 811E protrudes from the opposite side so as to communicate with 811D.
  • the outer cylinder 811 is provided with a rib-shaped restricting portion 811F formed in an annular shape on the outer peripheral side of the protruding portion 811D and on the inner peripheral side of the main body portion 811A.
  • the restricting portion 811F is formed longer than the protruding portion 811D.
  • the chemical solution storage unit 810 when the chemical solution is delivered, the chemical solution storage unit 810 generates bubbles in the space provided between the piston 812 and the restriction unit 811F. It is possible to prevent the liquid from being collected and sent to the outside through the opening of the protrusion 811D.
  • the piston 812 is the same as the piston 112.
  • the medicinal solution storage unit 820 is provided with a protrusion 821D having an opening on the inscribed surface 821C of the outer cylinder 821 and protruding toward the medicinal solution storage space 823, and on the opposite side so as to communicate with the protrusion 821D.
  • An external port 821E is projected.
  • the chemical storage unit 820 As with the chemical storage unit 102, when the chemical solution is delivered, the bubbles attached to the side surface of the main body 821 ⁇ / b> A are generated in the space provided between the piston 822 and the protrusion 821 ⁇ / b> D. It is possible to prevent the liquid from being collected and sent to the outside through the opening of the protrusion 821D.
  • the piston 822 is the same as the piston 112.
  • the chemical solution storage unit 830 has an opening on the inscribed surface 831C of the outer cylinder 831 and has a protruding portion 831D protruding from the chemical solution storage space 833 side, and communicates with the protruding portion 831D.
  • the external port 831E is provided on the opposite side.
  • the tip 831B is provided with a protrusion 831F having a protrusion shorter than the length of the protrusion 831D on the inscribed surface 831C.
  • the piston 832 is inserted into the outer cylinder 831 from the end opposite to the tip 831B, contacts the inner surface of the main body 831A along the circumferential direction, and is liquid-tight along the cylinder axis direction of the main body 831A. It is slidably arranged.
  • the piston 832 is provided with a groove 832A into which the protrusion 831D can be inserted at a position facing the protrusion 831D.
  • the groove 832A is a cylindrical space having a diameter larger than the outer shape of the protrusion 831D, shallower than the length of the protrusion 831D, and deeper than the difference between the length of the protrusion 831D and the height of the protrusion 831F.
  • the chemical storage unit 830 contacts the protrusion 831F when the piston 832 is positioned closest to the tip 831B. At this time, in the chemical solution storage unit 830, a slight space is created by the protrusion 831F between the inscribed surface 831C of the outer cylinder 831 and the piston 832.
  • the chemical solution storage unit 830 causes bubbles attached to the side surface of the main body portion 831A to be generated in the space provided between the piston 832 and the protruding portion 831D when the chemical solution is delivered. It is possible to prevent the liquid from being collected and sent to the outside through the opening of the protrusion 831D.
  • the chemical solution storage unit 840 is provided with a protrusion 841 ⁇ / b> D having an opening on the inscribed surface 841 ⁇ / b> C of the outer cylinder 841 and protruding toward the chemical solution storage space 843.
  • An external port 841E projects from the opposite side so as to communicate with the portion 841D.
  • the piston 842 contacts the inner surface of the main body portion 841A along the circumferential direction, and is slidably disposed along the cylinder axis direction of the main body portion 841A.
  • the piston 842 is provided with a groove 842A into which the protrusion 841D can be inserted at a position facing the protrusion 841D.
  • the piston 842 has the same surface as the surface on which the groove 842A is provided, and a protrusion 842B is provided around the groove 842A.
  • the piston 842 is set such that the sum of the depth of the groove 842A and the height of the protrusion 842B is longer than the length of the protrusion 841D.
  • the protrusion 842B comes into contact with the inscribed surface 841C when the piston 842 is positioned closest to the tip end 841B. At this time, in the chemical solution storage unit 840, a slight space is formed between the inscribed surface 841C of the outer cylinder 841 and the piston 842.
  • the chemical solution storage unit 850 is provided with a stainless steel pipe 854 penetrating through an opening 851G provided at the center of the distal end portion 851B of the outer cylinder 851.
  • the stainless steel pipe 854 is fixed to the opening 851G so that the length of the portion inserted into the chemical solution storage space 853 is shorter than the total length of the height of the protrusion 851F and the depth of the groove 852A of the piston 852.
  • the chemical storage section 850 having such a configuration makes contact with the protrusion 851F when the piston 852 moves to the most distal end 851B side, and a space is formed between the inscribed surface 851C and the piston 852.
  • the bubbles attached to the side surface of the main body portion 851A accumulate in the space provided between the piston 852 and the protruding portion 851F. It can prevent being sent to the outside through the opening of the stainless steel pipe 854.
  • the piston 852 is the same as the piston 832.
  • the chemical solution storage unit 860 is provided with a protruding portion 861 ⁇ / b> D having an opening on the inscribed surface 861 ⁇ / b> C of the distal end portion 861 ⁇ / b> B of the outer cylinder 861.
  • the external port 861E is provided on the opposite side so as to communicate with the protrusion 861D.
  • the piston 862 is provided with a groove 862A into which the protrusion 861D can be inserted at a position facing the protrusion 861D.
  • the length of the protrusion 861D is longer than the depth of the groove 862A.
  • the present invention can be applied to the medical field, for example.

Abstract

 本発明は、装置を小型化する。 本発明は、薬液が貯蔵される薬液貯蔵部2から生体内へ薬液が流れる流路を形成する流路部3に接続されるシリンダ部11内でピストン12を摺動させるステッピングモータに所定数のパルス信号を供給することによりモータ軸を回転させ、その後に所定時間だけパルス信号を供給せずにステッピングモータを停止させることにより、ステッピングモータ22を高い駆動周波数で駆動させて消費電流量を低減させると共に、全体としてピストン12の移動速度が遅くなるので流路部3内の内部圧力の上昇を低減させることができる。

Description

薬液投与装置
 本発明は、薬液投与装置に関し、例えばインスリンを体内に投与する場合に適用して好適なものである。
 従来、薬液(インスリン)を投与する装置として、患者の皮膚に付着させて用いられる携帯型の装置であって、外筒内に充填された薬液をプランジャーを介して押し出すことにより体内に投与する、所謂シリンジポンプ型の薬液投与装置が提案されている(例えば、特許文献1参照)。
特表2010-501283公報
 ところで、薬液投与装置では、例えばモータを用いた所謂ピストンポンプ型の送出部により薬液を体内に送出することも考えられる。
 一方、患者の皮膚に貼り付けられて長時間に保持させる薬液投与装置ではより小型化することが求められる。装置を小型化する場合、内部に搭載される電源も小さくしなければならないので、ピストンポンプ型の送出部においてモータを使用する際には該モータの消費電流量を減らす必要がある。
 本発明は以上の点を考慮してなされたもので、装置を小型化し得る薬液投与装置を提案しようとするものである。
 かかる課題を解決するため本発明は、生体の皮膚に貼着されて使用される薬液投与装置であって、薬液が貯蔵される薬液貯蔵部と、薬液貯蔵部から生体内へ薬液が流れる流路を形成する流路部と、流路部に接続されるシリンダ部内で摺動し、最も押し切られた押切位置から最も引き戻された引戻位置に移動する際に薬液貯蔵部から薬液を流路部を介して吸出し、引戻位置から押切位置に移動する際に吸出された薬液を流路部を介して生体内に送出するピストンと、モータ軸に接続されるピストンを該モータ軸が回転することによりシリンダ部内で摺動させるステッピングモータと、設定されたピストン動作速度で薬液を投与する際に、設定された動作速度で駆動させるのに必要な駆動周波数よりも高い駆動周波数でステッピングモータを所定時間だけ駆動させてモータ軸を回転させ、その後に所定時間だけステッピングモータを停止させる動作を繰り返し行わせることで設定された投与速度で薬液を生体内に投与する制御部と、ステッピングモータに電気を供給する電源部とを有する。
 これにより、設定されたピストン動作速度で薬液を投与する際に、設定された動作速度で駆動させるのに必要な駆動周波数よりも高い駆動周波数でステッピングモータを短時間だけ駆動させることにより該ステッピングモータの消費電流量を低減させることができると共に、全体としてピストンの移動速度が遅くなるので流路部内の内部圧力の上昇を低減させることができる。
 本発明によれば、設定されたピストン動作速度で薬液を投与する際に、設定された動作速度で駆動させるのに必要な駆動周波数よりも高い駆動周波数でステッピングモータを短時間だけ駆動させることにより該ステッピングモータの消費電流量を低減させることができると共に、全体としてピストンの移動速度が遅くなるので内径の細い流路部に対しても流路部内の内部圧力の上昇を低減させることができることでモータの負荷を減らすことができ、かくして装置を小型化することができる。
薬液投与装置の構成を示す略線図である。 第1の実施の形態におけるポンプ部の構成を示す略線図である。 駆動部の構成を示す略線図である。 ステッピングモータの構成を示す略線図である。 従来のステッピングモータの回転制御を示す略線図である。 ステッピングモータの駆動周波数と発生トルクの関係を示す略線図である。 ステッピングモータの駆動周波数及びコイル抵抗と発生トルクを示す略線図である。 ステッピングモータに供給する信号及びステッピングモータの動作を示す略線図である。 発生力の測定を示す略線図である。 ステッピングモータに供給する信号を示す略線図である。 第2の実施の形態における薬液貯蔵部の構成を示す略線図である。 第2の実施の形態におけるポンプ部の構成を示す略線図である。 第2の実施の形態における弁位置調整機構の構成を示す略線図である。 第2の実施の形態におけるアンブレラ弁の構成を示す略線図である。 他の実施の形態における薬液投与装置の構成を示す略線図である。 他の実施の形態における送出部の構成を示す略線図である。 他の実施の形態における弁位置調整機構の構成を示す略線図である。 他の実施の形態におけるアンブレラ弁の構成を示す略線図である。 他の実施の形態におけるアンブレラ弁の構成を示す略線図である。 他の実施の形態におけるアンブレラ弁の構成を示す略線図である。 他の実施の形態におけるアンブレラ弁の構成を示す略線図である。 他の実施の形態におけるアンブレラ弁の構成を示す略線図である。 他の実施の形態におけるアンブレラ弁の構成を示す略線図である。 他の実施の形態における薬液貯蔵部の構成を示す略線図である。 他の実施の形態における薬液貯蔵部の構成を示す略線図である。 他の実施の形態における薬液貯蔵部の構成を示す略線図である。 他の実施の形態における薬液貯蔵部の構成を示す略線図である。 他の実施の形態における薬液貯蔵部の構成を示す略線図である。 他の実施の形態における薬液貯蔵部の構成を示す略線図である。 他の実施の形態における薬液貯蔵部の構成を示す略線図である。
 以下に、図面について、本発明の一実施の形態を詳述する。
[1.第1の実施の形態]
[1-1.薬液投与装置の全体構成]
 図1に示すように、薬液投与装置1は、患者の皮膚に貼り付けることにより保持されて使用される携帯型の装置であり、薬液貯蔵部2、流路部3、ポンプ部4、駆動部5、制御部6及び電源部7を含む構成とされる。
 薬液貯蔵部2は、柔軟性を有する材料により形成された容器である。薬液貯蔵部2を構成する材質としては、例えば、ポリオレフィンを含むものであるのが好ましく、特に好ましいものとして、ポリエチレンまたはポリプロピレンに、スチレン-ブタジエン共重合体やスチレン-エチレン-ブチレン-スチレンブロック共重合体等のスチレン系熱可塑性エラストマーあるいはエチレン-プロピレン共重合体やエチレン-ブテン共重合体、プロピレン-αオレフィン共重合体等のオレフィン系熱可塑性エラストマーをブレンドし柔軟化した軟質樹脂を挙げることができる。そして、薬液貯蔵部2には薬液が外部から充填される。薬液貯蔵部2に貯蔵される薬液としては、例えばインスリンや各種ホルモン、モルヒネなどの鎮痛薬、あるいは抗炎症薬剤などが挙げられる。
 流路部3は、吸込流路部3A、送出流路部3B、ポンプ部4に形成される流路13A、14A、11A及び11Bを含み、薬液貯蔵部2から体内までの薬液が流れる流路を形成する。吸込流路部3Aは、薬液貯蔵部2とポンプ部4に形成される流路13Aとを連通させる。送出流路部3Bは、ポンプ部4に形成される流路14Aに連通する。
 ポンプ部4は、薬液貯蔵部2に貯蔵された薬液を流路部3を介して使用者の体内へ送出する。具体的にポンプ部4は、図2に示すように、シリンダ部11、ピストン12、蓋部13、14及び一方向弁15、16を含む構成とされる。
 ピストン12は、駆動部5により駆動されてシリンダ部11に形成された略円筒形状の内部空間11A内で内壁に接して所定のストロークで摺動する。ピストン12の材質としては、例えば、ステンレス鋼、銅合金、アルミ合金、チタン材、ポリプロピレンやポリカーボネートなどの熱可塑性エラストマー等が挙げられる。
 シリンダ部11は、一端からピストン12が挿入されて摺動する内部空間11Aが設けられ、該内部空間11Aの他端に連通するようにして、蓋部13の流路13Aと蓋部14の流路14Aとを連通させて薬液が流れる流路を形成する流路11Bが形成される。
 一方向弁15は、流路13Aと流路11Bとの間に設けられ、流路13Aから流路11Bへ流れる薬液を通過させ、流路11Bから流路13Aへは薬液を通過させないものであり、例えばアンブレラ弁が適応される。
 一方向弁16は、流路11Bと流路14Aとの間に設けられ、流路11Bから流路14Aへ流れる薬液を通過させ、流路14Aから流路11Bへは薬液を通過させないものであり、例えばアンブレラ弁が適応される。
 このような構成でなるポンプ部4は、ピストン12が押切位置から引戻位置まで移動される際に薬液貯蔵部2に貯蔵された薬液を吸込流路部3A、蓋部13の流路13A及びシリンダ部11の流路11Bを介して内部空間11A内に吸い出す。
 そしてポンプ部4は、ピストン12が引戻位置から押切位置まで移動される際に薬液貯蔵部2から吸い出された薬液をシリンダ部11の流路11B、蓋部14の流路14A及び送出流路部3Bを介して体内に送り出す。
 駆動部5は、制御部6の制御に基づいてピストン12をシリンダ部11の内部空間11A内で摺動させる。具体的に駆動部5は、図3に示すように、土台部21、ステッピングモータ22、モータ支持部24、モータ固定板25、固定板支持部26、動作変換部27、カップリング28、軸受支持部29を含む構成とされる。
 駆動部5は、土台部21の上に各部が配される。ステッピングモータ22は、モータ支持部24と固定板支持部26に支持されるモータ固定板25とにより挟持されて土台部21に固定される。
 ステッピングモータ22は、モータ固定板25側の側面から突出するモータ軸23が設けられる。モータ軸23の側面にはねじ溝23Aが形成される。
 動作変換部27は、ステッピングモータ22の軸方向に沿って細長い略直方体状で内部が中空に形成される。動作変換部27は、略直方体状の短辺に相当する側面中央に、ステッピングモータ22のモータ軸23が貫通して配されてねじ溝23Aと螺合するねじ孔27Aが設けられる。
 動作変換部27は、略直方体状の短辺に相当してねじ孔27Aが設けられた側面と対向する側面にカップリング28を介してピストン12がモータ軸23と同軸上に接続される。また、動作変換部27は、軸受支持部29に支持される。なお、カップリング28は、例えば、モータ軸23とピストン12との軸方向のずれを抑制するものが適応される。
 駆動部5は、ステッピングモータ22が駆動されることによりモータ軸23が回転し、該回転に応じてモータ軸23に螺合された動作変換部27が軸方向に移動してピストン12を軸方向に往復動させる。これにより駆動部5は、ピストン12をシリンダ部11の内部空間11A内で摺動させる。なお図3(A)においてはピストン12が最も引戻された位置(以下、これを引戻位置とも呼ぶ)にあり、図3(B)においてはピストン12が最も押し出された位置(以下、これを押切位置とも呼ぶ)にある。
 制御部6は、CPU(Central
Processing Unit)、ROM(Read Only Memory)、RAM(Random Access Memory)等の回路を含むマイクロコンピュータにより構成され、CPUがROMに格納される各種プログラムをRAMに展開して実行することにより各種処理を実行する。
 電源部7は、乾電池や充電式の電池等が適応され、駆動部5のステッピングモータ22や制御部6に電力を供給する。
[1-2.ステッピングモータの制御]
 ステッピングモータ22は、図4に示すように、例えば2相励磁式のステッピングモータであって、モータ軸23の周縁に固定された磁石31と、該磁石31の外周に所定角度毎に設けられる複数のコイル32(A相コイル32A、B相コイル32B)を有する。
 そしてステッピングモータ22は、コイル32に対してパルス状の電流を供給することにより該コイル32に磁力が発生し(励磁され)、磁石31が引き付けられる。このときにA相コイル32A、B相コイル32Bに流れる電流のON,OFF及び電流の方向をパルスごとに切り替えることで該コイル32から発生する磁力の方向を切り替える。これにより磁石31が引き付けられる方向が変化し、この繰り返しにより一定の角度毎に磁石31及びモータ軸23が回転する。なお、ステッピングモータ22は、2相励磁式に限られず、1-2相励磁式のものであっても良い。
 ところで従来のステッピングモータの制御方法は、図5(A)に示すように、高速回転時(高駆動周波数時)にはコイル32に流す電流パターンを短いパルス時間で切り替えることで、磁石31が引き付けられる方向が短い時間で変化し、モータ軸が高速で回転する。なお図5において、ハッチングが施されているコイル32に電流が印加されており、矢印はコイル32で発生している磁界及び磁石31の向きを示している。
 一方、低速回転時(低駆動周波数時)には、図5(B)に示すように、コイル32に流す電流パターンを切り替える間隔(パルス時間を)長くすることで、磁石31が引き付けられる方向が変化する時間が長くなり、モータ軸23が低速で回転する。
 そして、従来の制御方法における駆動周波数に対する発生トルク及び消費電流量を図6に示すように、ステッピングモータは、駆動周波数が高くなる(高速回転になる)に連れて発生トルクが減少する。一方で、一度のパルスで電流を流す時間が短くなり、消費電流量が減少する。
 そして、駆動周波数を変えた場合におけるピストン速度、消費電流量及び流路内圧の関係のシミュレーション結果を図7に示すように、駆動周波数を高くすると流路部3内の流路の内部圧力が増加する一方で消費電流量は減少し、駆動周波数を低くすると流路部3内の流路の内部圧力が減少する一方で消費電流量は増加する。
 このように駆動周波数を高くしてピストン12の速度を早くすることにより消費電流量を減少させることができる。一方で、流路部3の先端が生体内に挿入されるために細く形成されているので、駆動周波数を高くしてピストン12の速度を早くすると流路部3の内部圧力が増加してしまう。流路部3の流路の内部圧力が増加すると、その分だけピストン12に加えられる圧力が増大してステッピングモータ22に負荷がかかり、消費電流量が増大することになる。
 すなわち薬液投与装置1では、駆動周波数を高くしての消費電流量の低減とピストン12を低速移動させて流路部3の内部圧力の低減との両立が求められる。
 特に、患者の皮膚に貼り付けることにより保持されて使用される携帯型の薬液投与装置は、患者の負担を減少させるためにより小型化することが要求されるので、消費電流量の増加に伴う電源部の大型化が問題となる。
 そこで薬液投与装置1は、駆動周波数を高くしての消費電流量の低減とピストン12の低速移動による流路部3の内供圧力の低減とを両立するように、制御部6がステッピングモータ22を制御してピストン12を駆動させる。
 次に具体例として、図7で説明した各駆動周波数に対するピストン速度、消費電流量及び内部圧力の関係を用いて、薬液投与量が2μl/sに設定されている場合について具体的に説明する。なお、従来の制御方法においては2μl/sで薬液を送出するために必要な駆動周波数が160PPSであるとする。すなわち、160PPSでパルス信号を連続的にステッピングモータに供給して駆動させ、薬液投与量を2μl/sで体内に投与する。
 一方、制御部6は、図8に示すように、従来における連続的にパルス信号を供給する場合の駆動周波数である160PPSよりも周波数が高い例えば400PPSの高駆動周波数で例えば8パルス分(0.02秒)のパルス信号を供給してステッピングモータ22を駆動させる。その後、制御部6は、例えば0.03秒だけパルス信号を供給せずにステッピングモータ22を停止させる。
 制御部6は、この動作を繰り返し行わせることで全体として2μl/sで薬液を投与することができる。
 なお図8(B)において、ハッチングが施されているコイル32が電流を供給されて磁励されている状態であることを示し、ハッチングが施されているコイル32がない状態ではステッピングモータ22が停止していることを示す。
 ここで制御部6において一度にステッピングモータ22に印加する電流パルスの数について述べる。発明者らは図9(A)に示す発生力測定装置40を用いて、一度に連続して供給されるパルス数を変えてピストン12の発生力の変化を測定した。
 発生力測定装置40は、ドライバ回路41から所定数のパルス信号を連続してステッピングモータ22に供給し、その際にステッピングモータ22に発生するトルクに応じたピストン12の発生力を、モータ軸23、動作変換部27及びカップリング28を介して接続されたピストン12に当接されたフォースゲージ42により測定する。
 測定結果を図9(B)に示すように、連続パルス数が1回の場合にはピストン12に発生力が発生せず、連続パルス数が2回以上の場合にはピストン12に発生力が生じ、連続パルス数が3回以上の場合にはピストン12にほぼ一定の発生力が生じる結果となった。
 従って図10(A)に示すように、ステッピングモータ22に1パルスの信号を供給した後、所定時間ステッピングモータ22を停止させる動作を繰り返すような場合には、薬液が送り出せない可能性がある。
 そこで制御部6は、ピストン12に発生力が生じる連続パルス数(この実験結果からでは2回以上、図10(B)においては3パルス数)の信号を高駆動周波数で供給して該ステッピングモータ22を駆動させた後、ステッピングモータ22を所定時間だけ停止させる。
 従って制御部6は、ステッピングモータ22を高駆動周波数で一定時間(所定パルス数)駆動させ、その後にステッピングモータ22を一定時間停止させる。すなわち制御部6は、ステッピングモータ22を断続的に動作せることにより、ステッピングモータ22を高駆動周波数で駆動させて消費電流量を低減させると共に、全体としてピストン12の移動速度が遅くなるので流路部3の内部圧力の上昇を低減させることができる。
 これにより薬液投与装置1は、消費電流量を低減させることができると共に、流路部3の内部圧力の上昇を低減させることができるので、全体として消費電流量を低減させることができ、電源部7を小型化することができる。かくして薬液投与装置1は、装置全体を小型化することができる。
 
[2.第2の実施の形態]
 第2の実施の形態による薬液投与装置101は、第1の実施の形態による薬液投与装置1と比較して、薬液貯蔵部2及びポンプ部4に代わる薬液貯蔵部102及びポンプ部104を有する点が相違するものの、他の部分については同様に構成されている。
[2-1.薬液貯蔵部の構成]
 薬液貯蔵部102は、図11に示すように、円筒形状に形成される外筒111に、開口した端側からピストン112が挿入される。薬液貯蔵部102は、外筒111とピストン112とにより形成される薬液貯蔵空間113に薬液を貯蔵する。
 外筒111は、円筒形状の本体部111Aの先端に、該先端を塞ぐ先端部111Bが設けられ、本体部111Aと先端部111Bとが一体成形される。
 先端部111Bは、本体部111Aの軸に沿った方向(以下、これを筒軸方向とも呼ぶ)に対して直交する方向に沿って薬液貯蔵空間113側に接する面(以下、これを内接面とも呼ぶ)111Cの中央に、外部まで貫通された開口を有する中空の突出部111Dが突設される。
 また先端部111Bは、突出部111Dと連通して該突出部111Dとは反対の方向に外部ポート111Eが突設され、該外部ポート111Eに吸込流路部3A(図1)が接続される。
 本体部111Aは、内接面111Cと接する位置から突出部111Dの長さよりも長い位置までの部分が内側に突出した凸状の規制部111Fが設けられる。すなわち本体部111Aは、規制部111Fの内径が本体部111Aにおける規制部111F以外の部分の内径より短くなるように形成される。
 ピストン112は、先端部111Bとは反対側の末端から本体部111A内に挿入され、該本体部111Aの内側面に周方向に沿って当接し、該本体部111Aの筒軸方向に沿って液密に摺動可能に配される。ピストン112は、直径が規制部111Fの内径よりも大きく形成される。
 薬液貯蔵部102は、ピストン112が最も先端部111B側に位置して規制部111Fに当接した状態で、外筒111の内接面111Cとピストン112との間に規制部111Fにより若干の空間が設けられる。薬液貯蔵部102は、この状態で注入口(図示せず)からバイアルに貯蔵された薬液が薬液貯蔵空間113に注入される。
 薬液貯蔵部102は、薬液が注入されるに連れてピストン112が末端側に移動され、所定量(例えば2ml)だけ薬液が注入される。このとき薬液貯蔵空間113には、予め存在していた気泡がそのまま残ることになる。
 薬液貯蔵部102は、ポンプ部104(図1)により薬液が体内に送出される際、該ポンプ部104による薬液吸引圧力によりピストン112が先端部111B側に移動しながら突出部111D及び外部ポート111Eを介して吸込流路部3Aに薬液を送出させる。そして薬液貯蔵部102は、ピストン112が規制部111Fに当接するまで薬液を送出させる。
 ところで薬液貯蔵部102では、薬液貯蔵空間113内に気泡が存在している場合、該気泡の殆どは壁面に付着される。従って薬液貯蔵部102では、ピストン112が移動して薬液が送出される際に、本体部111Aの側面に付着した気泡がピストン112により押されながら移動し、ピストン112が規制部111Fに当接した際に、該ピストン112と内接面111Cとの間に設けられた空間に気泡が溜まるので、外部に気泡が送出されることを防止できる。
 また薬液貯蔵部102は、突出部111Dが内接面111Cに対して薬液貯蔵空間113側に突設して設けられているので、薬液が送出される際に本体部111Aの側面に付着した気泡が突出部111Dの開口を通して外部に送出されることを防止できる。
[2-2.ポンプ部の構成]
 ポンプ部104は、図12に示すように、所謂ピストンポンプでなり、シリンダ部131に設けられる円柱形状の中空の内部空間131Aに一端側から駆動部5(図3)のピストン12が挿入される。
 ピストン12の側面には、周方向に沿って例えばOリング135が設けられ、シリンダ部131の内部空間131Aの内壁との隙間から薬液が外部に漏れないようにする。なお、Oリング135に代えてXリングが設けられていてもよく、またピストン12にシリコンゴムやブタジエンゴムなどで構成されるガスケットが取り付けられていてもよい。
 ピストン12は、駆動部5のステッピングモータ22が制御されると引戻位置と押切位置との間で移動され、これに伴ってシリンダ部131の内部空間131A内を摺動する。
 シリンダ部131は、内部空間131Aにおけるピストン12が挿入される側とは反対側に流路131B及び131Cが内部空間131Aと連通して設けられる。
 シリンダ部131は、流路131B及び131Cにそれぞれ連通するようにして、アンブレラ弁138及び139がそれぞれ配置される弁配置空間131D及び131Eが側面に設けられる。
 従ってシリンダ部131では、弁配置空間131D、流路131B、内部空間131A、流路131C及び弁配置空間131Eの順に連通される。
 シリンダ部131は、弁配置空間131D及び131Eの所定の位置に、アンブレラ弁138の軸部138A(図14)及びアンブレラ弁139の軸部139Aの一端側がそれぞれ挿入される弁溝131F及び131Gが設けられる。弁溝131F及び131Gの径は、軸部138A及び139Aの径とほぼ同一の大きさとされる。
 ポンプ部104は、シリンダ部131において弁配置空間131D及び131Eが設けられる側面に当接するように配される蓋部140及び141が設けられる。
 蓋部140は、弁配置空間131Dと対向する位置に、弁配置空間131Dと対向する面とは反対側の面に突設して設けられる継手140Bまで貫通した流路140Aが設けられる。蓋部140は、継手140Bに吸込流路部3Aが接続され、流路140Aを介して吸込流路部3Aと弁配置空間131Dを連通させる。
 また蓋部140は、シリンダ部131に設けられる弁溝131Fと対向する位置に、弁配置空間131Dと対向する面から該面とは反対側の面まで貫通した調整孔140Cが設けられる。調整孔140Cの径は、アンブレラ弁138の径とほぼ同一の大きさとされる。
 蓋部140は、シリンダ部131との間に設けられるOリング142を介してねじ等の固定部材143によりシリンダ部131に固定される。
 蓋部140は、弁配置空間131Dと対向する面とは反対側の面側から調整孔140Cに弁位置調整機構150が挿入される。
 弁位置調整機構150は、図13に示すように、筐体部151の内部にウォームねじ152及びウォームホイール153が螺合して設けられる。ウォームねじ152の一端はプラス型の溝が形成されており、その部分が筐体部151から外部に露出される。
 ウォームホイール153は、一方の面に略円柱形状の軸部154が取り付けられる。軸部154は、長さ方向の所定位置にOリング155が設けられ、該Oリング155が設けられた位置よりも先端側(ウォームホイール153とは反対側)にねじ溝156が形成される。また軸部154の先端には、略円盤形状の当接部157が設けられる。
 弁位置調整機構150は、ウォームねじ152がプラスドライバー等で回転させられると、該ウォームねじ152に螺合されたウォームホイール153が軸部154と共に回転する。
 弁位置調整機構150は、蓋部140に取り付けられる際、調整孔140Cの側面の一部に形成されたねじ溝に軸部154のねじ溝156が螺合する。また弁位置調整機構150は、調整孔140Cにおけるねじ溝が形成された位置よりも外側(アンブレラ弁138が配される側とは反対側)の側面にOリング155が周方向にわたって当接する。
 そして弁位置調整機構150は、ウォームねじ152が回転させられることにより軸部154が回転し、蓋部140の調整孔140C内でアンブレラ弁138に接近する方向または離間する方向に当接部157が移動する。
 一方、アンブレラ弁138は、ゴム、樹脂等の弾性部材からなり、図14に示すように、略円柱形状をした長さLの軸部138Aにおける長さ方向のほぼ中心位置に、薄肉で傘状に形成される傘状部138Bが設けられる。
 アンブレラ弁138は、蓋部140の調整孔140Cの中心を基準とした流路140Aまでの距離より傘状部138Bの外径が大きく形成される。
 アンブレラ弁138は、シリンダ部131の弁配置空間131Dに配置される際、軸部138Aにおける傘状部138Bの外側を向いた面(以下、これを外周面とも呼ぶ)138D側の一端が弁溝131Fに挿入され、軸部138Aにおける傘状部138Bの内側を向いた面(以下、これを内周面とも呼ぶ)138E側の一端が蓋部140の調整孔140Cに挿入される。なお、弁位置調整機構150を調整孔140Cに挿入する前にアンブレラ弁138の傘状部138Bが十分に弁当接面140Dに圧接していることが必要なので、弁溝131Fの底面深さ寸法は、弁溝131Fの底面と弁当接面140Dとの寸法がアンブレラ弁138の外周面138D側の軸部138Aの先端から傘状部138Bの先端部138Cまでの長さより十分に短く設定する。
 そしてアンブレラ弁138は、弁位置調整機構150の当接部157に押え付けられるようにして、弁溝131Fの底面と当接部157とにより挟持される。
 従って弁位置調整機構150は、当接部157によりアンブレラ弁138を弁溝131Fの底面とで挟持する際に、アンブレラ弁138を挟持する力を調整させて、アンブレラ弁138の位置を調整することができる。
 これにより、弁位置調整機構150は、軸部138Aの長さ方向における傘状部138Bの取り付け位置と弁当接面140Dとの位置関係、すなわち傘状部138Bの先端部138Cと弁当接面140Dとの位置関係を調整させることができる。
 そしてアンブレラ弁138は、圧力が加えられていない状態で、傘状部138Bの先端部138Cが蓋部140における弁配置空間131Dと対向する面(以下、これを弁当接面とも呼ぶ)140Dに周方向にわたって隙間なく当接し、シリンダ部131の流路131Bと蓋部140の流路140Aとの間を塞ぐ。なお、この状態をノーマルクローズ状態とも呼ぶ。
 またアンブレラ弁138は、ピストン12が下死点から上死点に移動されて内部空間131A、流路131B及び流路131Cの圧力が高く傘状部138Bに外周面138D側から圧力が加えられた状態で、傘状部138Bの先端部138Cが弁当接面140Dに当接し、シリンダ部131の流路131Bと蓋部140の流路140Aとの間を塞ぐ。
 これらの状態で、アンブレラ弁138は、シリンダ部131の流路131Bと蓋部140の流路140Aとの間を塞ぎ、薬液貯蔵部102から内部空間131Aへ薬液を通過させない。
 一方、アンブレラ弁138は、ピストン12が上死点から下死点に移動されて内部空間131A、流路131B及び流路131Cの圧力が低くなり、アンブレラ弁138の開弁圧よりも大きい差圧がアンブレラ弁138に加わると、該圧力により傘状部138Bが外周面138D側に開くようにして弾性変形し、先端部138Cが弁当接面140Dから離間する。
 このとき、アンブレラ弁138は、シリンダ部131の流路131Bと蓋部140の流路140Aとの連通をさせ、薬液貯蔵部102から内部空間131Aへ薬液を通過させる。
 蓋部141は、弁配置空間131Eと対向する位置に、弁配置空間131Eと対向する面とは反対側の面に突設して設けられる継手141Bまで貫通した流路141Aが設けられる。蓋部141は、継手141Bに送出流路部3Bが接続され、流路141Aを介して弁配置空間131Eと送出流路部3Bを連通させる。
 また蓋部141は、シリンダ部131に設けられる弁溝131Gと対向する位置に調整孔141Cが設けられる。調整孔141Cの径は、アンブレラ弁139の軸部139Aの径とほぼ同一の大きさとされる。
 蓋部141は、シリンダ部131との間に設けられるOリング142を介してねじ等の固定部材143によりシリンダ部131に固定される。
 蓋部141は、弁配置空間131Eと対向する面とは反対側の面側から調整孔141Cに弁位置調整機構160が挿入される。弁位置調整機構160は、弁位置調整機構150と同様に構成される。
 弁位置調整機構160は、蓋部141に取り付けられる際、調整孔141Cの側面の一部に形成されたねじ溝に軸部164のねじ溝166が螺合する。また弁位置調整機構160は、調整孔141Cにおけるねじ溝が形成された位置よりも外側(アンブレラ弁139が配される側とは反対側)の側面にOリング165が周方向にわたって当接する。
 そして弁位置調整機構160は、ウォームねじ162が回転させられることにより軸部164が回転し、蓋部141の調整孔141C内でアンブレラ弁139に接近する方向または離間する方向に当接部167が移動する。
 アンブレラ弁139は、アンブレラ弁138と同様の材質及び形状でなり、シリンダ部131の弁溝131Gの中心を基準とした流路131Cまでの長さより傘状部139Bの外径が大きな径に形成される。
 アンブレラ弁139は、シリンダ部131の弁配置空間131Eに配置される際、軸部139Aにおける傘状部139Bの内周面139E側の一端が弁溝131Gに挿入され、軸部139Aにおける傘状部139Bの外周面139D側の一端が蓋部141の調整孔141Cに挿入される。
 そしてアンブレラ弁139は、弁位置調整機構160の当接部167に押え付けられるようにして、弁溝131Gの底面と当接部167とにより挟持される。
 弁位置調整機構160は、当接部167によりアンブレラ弁139を弁溝131Gの底面とで挟持する際に、アンブレラ弁139を挟持する力を調整させて、アンブレラ弁139の位置を調整することができる。
 これにより、弁位置調整機構160は、軸部139Aの長さ方向における傘状部139Bの取り付け位置と弁当接面131Hとの位置関係、すなわち傘状部139Bの先端部139Cと弁当接面131Hとの位置関係を調整させることができる。
 アンブレラ弁139は、ノーマルクローズ状態、及びピストン12が上死点から下死点に移動されて内部空間131A、流路131B及び流路131Cの圧力が吸込流路部3Aにかけられた陽圧およびそれ以下の負圧の状態で、傘状部139Bの先端部139Cが弁当接面131Hに周方向にわたって当接した状態で、シリンダ部131の流路131Cと蓋部141の流路141Aとの間を塞ぎ、内部空間131Aから送出流路部3Bへ薬液を通過させない。
 一方、アンブレラ弁139は、ピストン12が下死点から上死点に移動されて内部空間131A、流路131B及び流路131Cの圧力がアンブレラ弁139の開弁圧以上の陽圧になると、該圧力により傘状部139Bが外周面139D側に開くようにして弾性変形し、先端部139Cが弁当接面131Hから離間する。
 これによりアンブレラ弁139は、シリンダ部131の流路131Cと蓋部141の流路141Aとの連通をさせ、内部空間131Aから送出流路部3Bへ薬液を通過させる。
 
[3.他の実施の形態]
[3-1.他の実施の形態1]
 上述した第1の実施の形態においては、流路部3に内部圧力を抑制させる部分が設けられていない場合について述べたが、本発明はこれにかぎらず、流路部3に内部圧力を抑制させる部分を設けるようにしてもよい。
 具体的には図15に示すように、薬液投与装置200は、流路部203におけるポンプ部4の下流側である送出流路部203Bの所定位置に、該流路部203の内部圧力を抑制させる抑制部203Cが設けられる。抑制部203Cは、例えば加えられる圧力に応じて弾性的に変形する材質でなる。なお薬液投与装置200において流路部203以外の構成は薬液投与装置1と同様である。
 薬液投与装置200は、制御部6の制御に基づいて駆動部5のステッピングモータ22が駆動してピストン12がシリンダ部11内で摺動する。このとき制御部6は、薬液投与装置1の場合と同様に、ステッピングモータ22を高駆動周波数で一定時間駆動させ、その後にステッピングモータ22を一定時間停止させる。
 従って薬液投与装置200では、ピストン12が高速で移動している際に流路部203の内部圧力が上昇するが、流路部203に抑制部203Cが設けられていることにより、内部圧力の上昇に応じて抑制部203Cが膨らむように変形して圧力上昇を低減させる。
 これにより薬液投与装置200は、薬液投与装置1と比して、駆動周波数を高くすることによる消費電流量の低減と流路部203の内部圧力の上昇低減とをより両立することができ、より一層の装置全体を小型化することができる。
 すなわち薬液投与装置200は、流路部203に抑制部203Cが設けられていることにより圧力上昇をより低減させることができるので、ステッピングモータ22をより高い駆動周波数で駆動させても流路部203の内部圧力の上昇を低減させることができ、高駆動周波数時の消費電流量を低減できる。
 また薬液投与装置200は、ステッピングモータ22をより高い駆動周波数で駆動させることにより該ステッピングモータ22の停止時間を長くすることができ、その分だけ消費電流量を低減できる。
[3-2.他の実施の形態2]
 上述した第1の実施の形態においては、設定された投与速度となるように、制御部6が高駆動周波数で所定回数のパルス信号を供給してステッピングモータ22を駆動させ、その後、所定時間だけパルス信号を供給せずにステッピングモータ22を停止させる動作を繰り返すようにした場合について述べた。
 しかしながら本発明はこれにかぎらず、制御部6は、ピストン12が引戻位置から押切位置に移動する際に、高駆動周波数で所定回数のパルス信号を供給してステッピングモータ22を駆動させ、その後、所定時間だけパルス信号を供給せずにステッピングモータ22を停止させるようにしても良い。
 そして制御部6は、ピストン12が押切位置から引戻位置に移動する際には、流路部3の内部圧力を上昇させることは無いので、ステッピングモータ22を高駆動周波数(例えば400PPS)で駆動させてピストン12が押切位置から引戻位置に一度で移動させる。
 これにより薬液投与装置1では、ピストン12が引戻位置から押切位置に移動する際には上述したようにステッピングモータ22を高い駆動周波数で駆動させて消費電流量を低減させると共に、全体としてピストン12の移動速度を遅くして流路部3の内部圧力の上昇を低減させ、ピストン12が押切位置から引戻位置に移動する際には高駆動周波数でステッピングモータ22を駆動して消費電流量を低減させる。これにより薬液投与装置1では、さらに消費電流量を低減させることができ、かくして装置をより小型化することができる。
 
[3-3.他の実施の形態3]
 上述した第2の実施の形態における弁位置調整機構150においては、アンブレラ弁138を挟持する際にウォームねじ152及びウォームホイール153を含む筐体部151や軸部154が蓋部140に固定される構成とした場合について述べたが、本発明はこれにかぎらず、調整による弁位置調整機構150が回転してしまう欠点、Oリング155(165)の調整孔140Cの摩擦とOリングの弾性による軸部のもどりによる調整しにくさへの対処と、構成の単純化を目的にした使用部品数の低減より、これらが蓋部から取り外せるようにしてもよい。弁位置調整機構160についても同様である。
 一例として、図16に示すように、ポンプ部500は、ポンプ部104の弁位置調整機構150及び160の一方又は双方に代えて弁位置調整機構510及び520が設けられ、蓋部140及び141に代えて蓋部540及び541が設けられる。
 弁位置調整機構510は、図17に示すように、内部にウォームねじ512及びウォームホイール513が設けられる筐体部511と、側面全体にねじ溝515Aが形成され一方の面に例えば六角穴515Bが形成されたねじ部515とにより構成される。
 ウォームねじ512の一端はプラス型の溝が形成されており、その部分が筐体部511から外部に露出される。ウォームホイール513は、一方の面に先端がねじ部515の六角穴515Bと係合する軸部514が取り付けられる。
 筐体部511には、蓋部540に突設される係合受部540Eと係合する係合部511Aが突設される。
 弁位置調整機構510は、ウォームねじ512がプラスドライバー等で回転させられると、該ウォームねじ512に螺合されたウォームホイール513が軸部514と共に回転する。
 弁位置調整機構510のねじ部515は、蓋部540の調整孔540Cに螺合される。蓋部540は、調整孔540Cの周囲に係合受部540Eが設けられている以外は蓋部140と同一の構成である。
 調整孔540Cは、側面に形成されたねじ溝にねじ部515が螺合される。このときねじ部515は、六角穴515Bが設けられていない面がアンブレラ弁138に当接する。
 弁位置調整機構510は、蓋部540に取り付けられる際、軸部514の先端をねじ部515の六角穴515Bに係合されて、筐体部511の係合部511Aを係合受部540Eに係合される。
 そして弁位置調整機構510は、ウォームねじ512が回転させられることによりウォームホイール513を介して軸部514が回転し、蓋部540の調整孔540C内でねじ部515だけをアンブレラ弁138に接近する方向または離間する方向に移動させる。
 なお、弁位置調整機構510を調整孔540Cに挿入する前にアンブレラ弁138の傘状部138Bが十分に弁当接面540Dに圧接していることが必要なので、弁溝131Fの底面深さ寸法は、弁溝131Fの底面と弁当接面540Dとの寸法がアンブレラ弁138の外周面138D側の軸部138Aの先端から傘状部138Bの先端部138Cまでの長さより十分に短く設定する。また、軸部514の長さ、ねじ部515の六角穴深さは、軸部514の先端がねじ部515の六角穴の底と接触しないようねじ部の調整位置に十分余裕のある長さ、深さ寸法とする。
 これにより弁位置調整機構510は、ねじ部515によりアンブレラ弁138を弁溝131Fの底面と挟持する際に、アンブレラ弁138を挟持する力を調整させて、アンブレラ弁138の位置を調整することができる。
 従って、弁位置調整機構510は、軸部138Aの長さ方向における中心位置と弁当接面540Dとの位置関係、すなわち傘状部138Bの先端部138Cと弁当接面540Dとの位置関係を調整することができる。
 これによりポンプ部500は、ノーマルクローズ状態での流路の閉鎖と、規定の開弁圧での流路の連通をより実現することができるので精度よく薬液を投与することができる。
 その後、弁位置調整機構510は、蓋部540から筐体部511が取り外され、ねじ部515のねじ溝515Aと調整孔540Cのねじ溝との間がモールド材により螺合ねじ山間の隙間を含めてモールドされて密閉し塞がれる。
 なお、弁位置調整機構520は弁位置調整機構510と同一の形状をしており、蓋部541は蓋部540と同様に、調整孔541Cの周囲に係合受部541Eが設けられる。そして弁位置調整機構520のねじ部525が調整孔541Cに取り付けられてアンブレラ弁139を挟持するが、上述した弁位置調整機構510と同様であるため説明は省略する。
[3-4.他の実施の形態4]
 上述した第2の実施の形態においては、ポンプ部104に弁位置調整機構150及び160を設けるようにした場合について述べたが、本発明はこれに限らず、弁位置調整機構150及び160を省略しても良い。この場合、蓋部140及び141において、調整孔140C及び141Cを貫通させずに所定の深さの孔とすればよい。
[3-5.他の実施の形態5]
 上述した第2の実施の形態においては、ポンプ部104において、軸部138A及び139Aが長さ方向にわたってほぼ同一径の略円柱形状に形成されるアンブレラ弁138及び139を用いるようにした場合について述べた。本発明はこれに限らず、軸部における長さ方向の中心位置を基準として両端側に他の部分よりも柔軟な部分を設けるようにしてもよい。
 例えば、ポンプ部104において、アンブレラ弁138及び139の一方又は両方に代えて、図18に示すアンブレラ弁600を用いる。
 アンブレラ弁600は、ゴム、樹脂等の弾性部材からなり、図18(A)及び(B)に示すように、略円柱形状をした長さLの軸部600Aの長さ方向の中心位置に、薄肉で傘状に形成された傘状部600Bが設けられる。
 アンブレラ弁600は、略円柱形状をした長さLの軸部600Aの長さ方向の中心位置から両端側の等距離の位置に、それぞれ、長さ方向に直交した方向に中央部分及び両側面部分が空洞な、該直交した方向に沿って中心から等間隔で所定幅を有する湾曲部600F及び600Gが設けられる。
 このアンブレラ弁600は、例えば弁配置空間131Dに配置される場合、軸部600Aの長さLがシリンダ部131と蓋部140とが当接している状態での弁溝131Fの底面から当接部157の底面までの距離より長く形成される。
 アンブレラ弁600は、弁配置空間131Dに配置される際、図18(C)に示すように、シリンダ部131と蓋部140とによって押し潰されて湾曲部600F及び600Gがそれぞれ同じだけ湾曲される(たわませる)ようにして挟持される。
 すなわちアンブレラ弁600は、軸部600Aが両側から押し潰される際の力を受けて湾曲部600F及び600Gが変形するので、軸部600Aにおいて傘状部600Bが設けられた位置が変形することを防止することができる。
 これにより、アンブレラ弁600は、軸部600Aの長さ方向における中心位置と弁当接面140Dとの位置関係、すなわち傘状部600Bの先端部600Cと弁当接面140Dとの位置関係を、アンブレラ弁138と比してより精度よく保つことができる。
 しかし、肉が薄い傘状部600Bは周方向に成型のひずみが生じる場合があり、弁当接面140Dとの間に隙間が生ずる場合がある。この場合、弁位置調整機構150を用い、開弁圧を調整することにより、該ひずみによる影響を排除できる。また、アンブレラ弁600は軸部の長さLの調整による傘状部600Bの先端部600Cと弁当接面140Dとの応力が湾曲部600F及び600Gにより緩和され、調整による該応力の変化が小さくなり精密な調整が可能となる。
 かくしてアンブレラ弁600を用いた薬液投与装置101では、アンブレラ弁600がノーマルクローズ状態及び開弁圧を想定される値に精度よく設定でき、アンブレラ弁138及び139を用いた場合より、薬液を精度よく投与することができる。
 なお、アンブレラ弁600が弁配置空間131Eに配置される場合についても同様である。ただし、弁配置空間131Dに配置される場合にはアンブレラ弁600の傘状部600Bの先端部600Cと弁当接面140Dとは調整前には十分に圧接し漏れのない状態に設定されていなければならないが、弁配置空間131Eに配置される場合にはその必要はない。
[3-6.他の実施の形態6]
 上述した第2の実施の形態においては、傘状部138B及び139Bが半径方向にわたってほぼ均一な厚さに形成されるアンブレラ弁138及び139を用いるようにした場合について述べた。本発明はこれに限らず、傘状部が壁面に当接する際に該壁面から受ける力を逸らす緩衝部が該傘状部に周方向に沿って設けられるようにしてもよい。
 例えば、ポンプ部104において、アンブレラ弁138及び139の一方又は両方に代えて、図19に示すアンブレラ弁610を用いる。
 アンブレラ弁610は、ゴム、樹脂等の弾性部材からなり、図19(A)及び(B)に示すように、略円柱形状をした長さLの軸部610Aの長さ方向の中心位置に、薄肉で傘状に形成される傘状部610Bが設けられる。
 またアンブレラ弁610は、傘状部610Bにおける外周面610Dの周方向に沿って円環状の溝からなる緩衝部610Fが設けられ、緩衝部610Fから先端部610C側が流路内の圧力変化により弾性変形する。なお緩衝部610Fは、例えばU字溝、角溝、V字溝等が適応される。
 またアンブレラ弁610は、緩衝部610Fから先端部610C側が流路内の圧力変化により外周面610D側に弾性変形する際に、外周面610D側に設けられる流路を先端部600C側で塞がない位置に緩衝部610Fが設けられる。
 このアンブレラ弁610は、例えば弁配置空間131Dに配置される場合、軸部610Aの長さLがシリンダ部131と蓋部140とが当接している状態での弁溝131Fの底面から当接部157の底面までの距離より長く形成される。
 この場合、アンブレラ弁610は、図19(C)に示すように、シリンダ部131と蓋部140とによって挟持される際、傘状部610Bの半径方向で最も厚さの薄い緩衝部610Fが設けられた位置で該傘状部610Bが外周面610D側に弾性的に屈曲する。
 これによりアンブレラ弁610は、ノーマルクローズ状態で、緩衝部610Fが設けられた位置で元の形状に戻ろうとする力により先端部610Cを弁当接面140Dに押し付けられる。
 なお、緩衝部610Fの形状は、元の形状に戻ろうとする力がピストン12による背圧で傘状部610Bに加えられる力よりも十分に小さくなるように決定されるので、アンブレラ弁610の開弁圧への影響が小さくでき、結果として、アンブレラ弁610の取り付け時の軸部610Aの長さ調整による開弁圧の変化の割合を小さくできることになり、より精密な調整が行える。
 このときアンブレラ弁610は、外周面610D側に設けられる流路131Bを傘状部610Bの先端部610C側で塞がない位置に緩衝部610Fが設けられているので、流路131Bを塞ぐことはない。
 また、アンブレラ弁610が弁配置空間131Eに配置される場合についても同様である。さらに、アンブレラ弁610は、アンブレラ弁600における湾曲部600F及び600Gの構成が設けられていてもよい。ただし、弁配置空間131Dに配置される場合にはアンブレラ弁610の傘状部610Bの先端部610Cと弁当接面140Dとは調整前には十分に圧接し漏れのない状態に設定されていなければならないが、弁配置空間131Eに配置される場合にはその必要はない。
 また、別例として、図20に示すようなアンブレラ弁620を、アンブレラ弁138及び139の一方又は両方に代えてポンプ部104に用いてもよい。
 アンブレラ弁620は、略円柱形状をした長さLの軸部620Aの長さ方向の中心位置に、薄肉で傘状に形成される傘状部620Bが設けられる。
 またアンブレラ弁620は、傘状部620Bにおいて、半径方向に沿った所定位置から先端部620Cまでの緩衝部620Fが根本部分よりも肉薄に形成される。
 アンブレラ弁620は、緩衝部620Fが流路内の圧力変化により外周面620D側に弾性変形する際に、外周面620D側に設けられる流路を緩衝部620Fで塞がない位置に該緩衝部620Fが設けられる。
 なお、弁位置調整機構150を調整孔140Cに挿入する前にアンブレラ弁620の傘状部620Bが十分に弁当接面140Dに圧接していることが必要なので、弁溝131Fの底面深さ寸法は、弁溝131Fの底面と弁当接面140Dとの寸法がアンブレラ弁620の外周面620D側の軸部620Aの先端から傘状部620Bの先端部620Cまでの長さより十分に短く設定する。
 この場合、アンブレラ弁620は、図20(B)に示すように、シリンダ部131と蓋部140とによって挟持される際、傘状部620Bにおいて緩衝部620Fで該傘状部620Bが外周面620D側に弾性的に屈曲し、先端部620Cが弁当接面140Dに押し付けられる。
 なお、緩衝部620Fの形状は、元の形状に戻ろうとする力がピストン12による背圧で傘状部620Bに加えられる力よりも十分に小さくなるように決定されるので、アンブレラ弁620の開弁圧への影響が小さくでき、結果として、アンブレラ弁の取り付け時の軸部の長さ調整による開弁圧変化の割合を小さくできることになり、より精密な調整が行える。
 このときアンブレラ弁620は、外周面620D側に設けられる流路131Bを傘状部620Bの先端部620C側で塞がない位置に緩衝部620Fが設けられているので、流路131Bを塞ぐことはない。
 アンブレラ弁620の硬度及び大きさの一例として、硬度が60°、軸部620Aの長さが1mmで直径が0.3mm、傘状部620Bの直径が2mm、傘状部620Bの根本部分の厚さが0.15mm、傘状部620Bの緩衝部620Fの半径方向の長さが0.25mmで厚さが0.08mmに形成される。またこのアンブレラ弁620を用いたポンプ部104における流路140Aの直径が0.4mm、当接部157の中心から流路140Aの中心までの距離が0.4mmとされる。
[3-7.他の実施の形態7]
 上述した第2の実施の形態においては、傘状部138B及び139Bが半径方向にわたってほぼ均一の厚さに形成されるアンブレラ弁138及び139を用い、先端部138Cと弁当接面140Dとの間、及び先端部139Cと弁当接面131Hとの間に何も設けないようにした場合について述べた。本発明はこれに限らず、先端部138Cと弁当接面140Dの間、先端部139Cと弁当接面131Hとの間にシリコンオイルを付着させるようにしても良い。
 また、ポンプ部104において、アンブレラ弁138及び139の一方又は両方に代えて、図21に示すアンブレラ弁630及びシリコンオイル660を用いるようにしてもよい。
 アンブレラ弁630は、ゴム、樹脂等の弾性部材からなり、図21(A)に示すように、略円柱形状をした長さLの軸部630Aの長さ方向の中心位置に、傘状に形成される傘状部630Bが設けられる。
 傘状部630Bは、図21(B)に示すように、軸部630Aとの接続位置から半径方向に沿って所定位置まで均一な厚さに形成され、その先が先端部630Cに近づくに連れて内周面630E側が徐々に深くなるオイル溝630Fが設けられ、該オイル溝630Fにシリコンオイル660が付着される。なお、図21(B)において傘状部630Bが半径方向にわたって均一な厚さの場合を破線で示す。
 このアンブレラ弁630は、例えば弁配置空間131Dに配置される場合、軸部610Aの長さLがシリンダ部131と蓋部140とが当接している状態での弁溝131Fの底面から当接部157の底面までの距離より長く形成され、シリンダ部131と蓋部140とによって挟持される。
 この場合、ポンプ部104では、先端部630Cと弁当接面140Dとの間に、オイル溝630Fに付着されたシリコンオイル660が流れ込み、先端部630Cと弁当接面140Dとの間にシリコンオイル660が満たされる。
 従って、アンブレラ弁630が樹脂成形(ゴム成形)により先端部630Cが周方向にわたって歪みが生じた場合においても、傘状部630Bのオイル溝630Fに付着されたシリコンオイル660が、ノーマルクローズ状態で先端部630Cと弁当接面140Dとの間に満たされるので、先端部630Cと弁当接面140Dとの間から薬液が漏洩してしまうことを防止することができる。
 またアンブレラ弁630では、先端部630Cが弁当接面140Dから離間して薬液が流れる際に、オイル溝630Fにシリコンオイル660が付着して薬液と共に流れてしまうことを防止することができる。これにより例えば数日間、薬液投与装置101が使用される場合であっても、その間にシリコンオイル660がオイル溝630Fに付着されたままの状態を維持することができる。これにより、調整後の経時変化によるアンブレラ弁630のクリープ変形によるノーマルクローズ状態の変化(漏れ)を防止可能となる。
 また、別例として、図22に示すアンブレラ弁640を用いるようにしてもよい。
 アンブレラ弁640は、ゴム、樹脂等の弾性部材からなり、図22(A)に示すように、略円柱形状をした長さLの軸部640Aの長さ方向の中心位置に、傘状に形成された傘状部640Bが設けられる。
 傘状部640Bは、図22(B)に示すように、軸部640Aとの接続位置から半径方向に沿って所定位置まで均一な厚さに形成され、その先が先端部640Cまで内周面640E側に凹形状のオイル溝640Fが設けられ、先端部640Cが内周面640E側に突起した断面略三角形状に形成される。
 傘状部640Bのオイル溝640Fにはシリコンオイル660が付着される。なお、図22(B)において傘状部640Bが半径方向にわたって均一な厚さの場合を破線で示す。
 このアンブレラ弁640は、例えば弁配置空間131Dに配置される場合、軸部640Aの長さLがシリンダ部131と蓋部140とが当接している状態での弁溝131Fの底面から当接部157の底面までの距離より長く形成され、シリンダ部131と蓋部140とによって挟持される。
 この場合、ポンプ部104では、先端部640Cと弁当接面140Dとの間に、オイル溝640Fに塗布されたシリコンオイル660が流れ込み、先端部640Cと弁当接面140Dとの間にシリコンオイル660が満たされる。
 従って、アンブレラ弁640はアンブレラ弁630と同様に、ノーマルクローズ状態で先端部640Cと弁当接面140Dとの間に満たされるので、先端部640Cと弁当接面140Dとの間から薬液が漏洩してしまうことを防止することができる。これにより、調整後の経時変化によるアンブレラ弁640のクリープ変形によるノーマルクローズ状態の変化(漏れ)を防止可能となる。
 さらに別例として、図23に示すアンブレラ弁650を用いるようにしてもよい。
 アンブレラ弁650は、ゴム、樹脂等の弾性部材からなり、図23(A)に示すように、略円柱形状をした長さLの軸部650Aの長さ方向の中心位置に、傘状に形成された傘状部650Bが設けられる。
 傘状部650Bは、図23(B)に示すように、軸部650Aとの接続位置から半径方向に沿って先端部650C付近まで均一な厚さに形成され、その先が先端部650Cまで内周面650E側に凹形状のオイル溝650Fが設けられ、先端部650Cが内周面650E側に突起した断面略半円状に形成される。
 傘状部650Bのオイル溝650Fにはシリコンオイル660が付着される。なお、図23(B)において傘状部650Bが半径方向にわたって均一な厚さの場合を破線で示す。
 このアンブレラ弁650は、例えば弁配置空間131Dに配置される場合、軸部650Aの長さLがシリンダ部131と蓋部140とが当接している状態での弁溝131Fの底面から当接部157の底面までの距離より長く形成され、シリンダ部131と蓋部140とによって挟持される。
 この場合、ポンプ部104では、先端部650Cと弁当接面140Dとの間に、オイル溝650Fに塗布されたシリコンオイル660が流れ込み、先端部650Cと弁当接面140Dとの間にシリコンオイル660が満たされる。
 従って、アンブレラ弁650はアンブレラ弁620及び630と同様に、ノーマルクローズ状態で先端部650Cと弁当接面140Dとの間に満たされるので、先端部650Cと弁当接面140Dとの間から薬液が漏洩してしまうことを防止することができる。これにより、調整後の経時変化によるアンブレラ弁650のクリープ変形によるノーマルクローズ状態の変化(漏れ)を防止可能となる。
[3-8.他の実施の形態8]
 上述した第2の実施の形態においては、外筒111の各部(111A~111F)が一体形成されているようにした場合について述べたが、本発明はこれに限らない。
 一例として、図24に示すように、薬液貯蔵部800は、薬液貯蔵部102(図11)の突出部111D及び外部ポート111Eに代えて、ステンレスパイプ804が設けられる。なお、ピストン802は、ピストン112と同様である。
 薬液貯蔵部800は、外筒801の先端部801Bの中央に設けられた開口801Gにステンレスパイプ804が設けられる。ステンレスパイプ804は、薬液貯蔵空間803内に挿入される部分の長さが突起部801Fの長さよりも短くなるように開口801Gに固定される。
 このような構成でなる薬液貯蔵部800は、図24(B)に示すように、ピストン802が最も先端部801B側に移動した際に突起部801Fと当接し、内接面801Cとピストン802との間に空間ができる。
 従って薬液貯蔵部800は、薬液貯蔵部102と同様に、薬液が送出される際に、本体部801Aの側面に付着した気泡がピストン802と突起部801Fとの間に設けられた空間に溜まり、ステンレスパイプ804の開口を通して外部に送出されることを防止できる。
 さらにステンレスパイプ804の開口は、合成樹脂に比して径を細くすることができるので、より気泡を外部に送出し難くすることができる。
[3-9.他の実施の形態9]
 上述した第2の実施の形態においては、外筒111における本体部111Aの内周面に、内側に突出する規制部111Fが設けられるようにした場合について述べたが、本発明はこれに限らず、ピストンが最も先端部側に移動した際に、ピストンと内接面とが当接しないように該ピストンの移動を制限する他の構造の規制部が設けられるようにしてもよい。
 一例として、図25に示すように、薬液貯蔵部810は、外筒811の内接面811Cに、開口を有し薬液貯蔵空間813側に突設された突出部811Dが設けられ、該突出部811Dと連通するようにして反対側に外部ポート811Eが突設される。
 また外筒811は、突出部811Dの外周側であって本体部811Aの内周側に、円環状に形成されるリブ状の規制部811Fが設けられる。規制部811Fは、突出部811Dよりも長く形成される。
 このような構成でなる薬液貯蔵部810では、図25(B)に示すように、ピストン812が最も先端部811B側に移動した際に規制部811Fと当接し、内接面811Cとピストン812との間に空間ができる。
 従って薬液貯蔵部810は、薬液貯蔵部102と同様に、薬液が送出される際に、本体部811Aの側面に付着した気泡がピストン812と規制部811Fとの間に設けられた空間に気泡が溜まり、突出部811Dの開口を通して外部に送出されることを防止できる。なお、ピストン812は、ピストン112と同様である。
[3-10.他の実施の形態10]
 上述した実施の形態においては、外筒111における本体部111Aの内周面に、内側に突出する規制部111Fが設けられるようにした場合について述べたが、本発明はこれに限らず、図26に示すように、規制部が設けられないようにしてもよい。
 薬液貯蔵部820は、外筒821の内接面821Cに、開口を有し薬液貯蔵空間823側に突設された突出部821Dが設けられ、該突出部821Dと連通するようにして反対側に外部ポート821Eが突設される。
 このような構成でなる薬液貯蔵部820では、図26(B)に示すように、ピストン822が最も先端部821B側に移動した際に突出部821Dと当接し、内接面821Cとピストン822との間に空間ができる。
 従って薬液貯蔵部820は、薬液貯蔵部102と同様に、薬液が送出される際に、本体部821Aの側面に付着した気泡がピストン822と突出部821Dとの間に設けられた空間に気泡が溜まり、突出部821Dの開口を通して外部に送出されることを防止できる。なお、ピストン822は、ピストン112と同様である。
[3-11.他の実施の形態11]
 上述した第2の実施の形態においては、ピストン112の薬液貯蔵空間113と接する面が平らである場合について述べたが、本発明はこれに限らず、本体部の突出部が入り込むための溝部がピストンに設けられていてもよい。
 一例として図27に示すように、薬液貯蔵部830は、外筒831の内接面831Cに、開口を有し薬液貯蔵空間833側に突出部831Dが突設され、該突出部831Dと連通するようにして反対側に外部ポート831Eが突設される。
 また先端部831Bは、突出部831Dの長さよりも短い突起からなる突起部831Fが内接面831Cに設けられる。
 ピストン832は、先端部831Bとは反対側の末端から外筒831に挿入され、本体部831Aの内側面に周方向に沿って当接し、該本体部831Aの筒軸方向に沿って液密に摺動可能に配される。
 ピストン832は、突出部831Dと対向する位置に、突出部831Dが挿入可能な溝部832Aが設けられる。溝部832Aは、突出部831Dの外形よりも大きな径で、該突出部831Dの長さよりも浅く、突出部831Dの長さと突起部831Fの高さとの差よりも深い円柱状の空間でなる。
 薬液貯蔵部830は、ピストン832が最も先端部831B側に位置する際に突起部831Fに当接する。このとき薬液貯蔵部830では、外筒831の内接面831Cとピストン832との間に突起部831Fにより若干の空間ができる。
 従って薬液貯蔵部830は、薬液貯蔵部102と同様に、薬液が送出される際に、本体部831Aの側面に付着した気泡がピストン832と突出部831Dとの間に設けられた空間に気泡が溜まり、突出部831Dの開口を通して外部に送出されることを防止できる。
 また別例として図28に示すように、薬液貯蔵部840は、外筒841の内接面841Cに、開口を有し薬液貯蔵空間843側に突設された突出部841Dが設けられ、該突出部841Dと連通するようにして反対側に外部ポート841Eが突設される。
 ピストン842は、本体部841Aの内側面に周方向に沿って当接し、該本体部841Aの筒軸方向に沿って液密に摺動可能に配される。
 ピストン842は、突出部841Dと対向する位置に、突出部841Dが挿入可能な溝部842Aが設けられる。またピストン842は、溝部842Aが設けられた面と同一面で、溝部842Aの周囲に、突起部842Bが設けられる。
 ピストン842は、溝部842Aの深さと突起部842Bの高さの合計が突出部841Dの長さよりも長く設定される。
 このような構成でなる薬液貯蔵部840は、ピストン842が最も先端部841B側に位置する際に内接面841Cに突起部842Bが当接する。このとき薬液貯蔵部840では、外筒841の内接面841Cとピストン842との間に若干の空間ができる。
 従って薬液貯蔵部102と同様に、薬液が送出される際に、本体部841Aの側面に付着した気泡がピストン842と突出部841Dとの間に設けられた空間に気泡が溜まり、突出部841Dの開口を通して外部に送出されることを防止できる。
 さらに別例として図29に示すように、薬液貯蔵部850は、外筒851の先端部851Bの中央に設けられた開口851Gに、ステンレスパイプ854が貫通して設けられる。
 ステンレスパイプ854は、薬液貯蔵空間853内に挿入される部分の長さが、突起部851Fの高さとピストン852の溝部852Aの深さとの合計長さよりも短くなるように開口851Gに固定される。
 このような構成でなる薬液貯蔵部850は、ピストン852が最も先端部851B側に移動した際に突起部851Fと当接し、内接面851Cとピストン852との間に空間ができる。
 従って薬液貯蔵部850は、薬液貯蔵部102と同様に、薬液が送出される際に、本体部851Aの側面に付着した気泡がピストン852と突起部851Fとの間に設けられた空間に溜まり、ステンレスパイプ854の開口を通して外部に送出されることを防止できる。
 ステンレスパイプ854の開口は、合成樹脂に比して径を細くすることができるので、より気泡を外部に送出し難くすることができる。なお、ピストン852は、ピストン832と同様である。
 さらに別例として図30に示すように、薬液貯蔵部860は、外筒861における先端部861Bの内接面861Cに、開口を有し薬液貯蔵空間863側に突設された突出部861Dが設けられ、該突出部861Dと連通するようにして反対側に外部ポート861Eが突設される。
 ピストン862は、突出部861Dと対向する位置に、突出部861Dが挿入可能な溝部862Aが設けられる。突出部861Dの長さは、溝部862Aの深さよりも長い。これにより薬液貯蔵部860では、ピストン862が最も先端部861B側に移動しても、突出部861Dの先端と溝部862Aの底面が当接して、ピストン862が内接面861Cに当接しない。
 従って薬液貯蔵部860は、ピストン862が最も先端部861B側に移動した際に、ピストン862と内接面861Cとの間に空間ができるので、薬液貯蔵空間863内に気泡が存在していてもピストン862と内接面861Cとの間の空間に気泡が溜まり、突出部861Dの開口を通して外部に気泡が送出されることを防止できる。
 本発明は、例えば医療分野に適用することができる。
 1、101……薬液投与装置、2、102……薬液貯蔵部、3……流路部、4、104……ポンプ部、5……駆動部、6……制御部、7……電源部、11……シリンダ部、12……ピストン、13、14……蓋部、15、16……一方向弁、21……土台部、22……ステッピングモータ、23……モータ軸、27……動作変換部、28……カップリング、31……磁石、32……コイル、111……外筒、111D……突出部、111F……規制部、131……シリンダ部、138、139……アンブレラ弁

Claims (5)

  1.  生体の皮膚に貼着されて使用される薬液投与装置であって、
     薬液が貯蔵される薬液貯蔵部と、
     前記薬液貯蔵部から生体内へ薬液が流れる流路を形成する流路部と、
     前記流路部に接続されるシリンダ部内で摺動し、最も押し切られた押切位置から最も引き戻された引戻位置に移動する際に前記薬液貯蔵部から薬液を前記流路部を介して吸出し、前記引戻位置から前記押切位置に移動する際に吸出された薬液を前記流路部を介して生体内に送出するピストンと、
     モータ軸に接続される前記ピストンを該モータ軸が回転することにより前記シリンダ部内で摺動させるステッピングモータと、
     設定されたピストン動作速度で薬液を投与する際に、設定された動作速度で駆動させるのに必要な駆動周波数よりも高い駆動周波数でステッピングモータを所定時間だけ駆動させてモータ軸を回転させ、その後に所定時間だけ前記ステッピングモータを停止させる動作を繰り返し行わせることで設定された投与速度で薬液を生体内に投与する制御部と、
     前記ステッピングモータに電気を供給する電源部と
     を有する薬液投与装置。
  2.  前記制御部は、
     前記ステッピングモータに対して、前記高い駆動周波数で前記ピストンに推力が生じるだけのパルス数以上の信号を供給してモータ軸を回転させ、その後に該ステッピングモータを停止させる動作を繰り返し行わせる
     ことを特徴とする請求項1に記載の薬液投与装置。
  3.  前記流路部は、
     前記シリンダ部が接続される位置よりも下流側に、内部圧力の変化に応じて変形することにより該内部圧力の変化を抑制させる抑制部を有する
     ことを特徴とする請求項1に記載の薬液投与装置。
  4.  前記制御部は、
     前記ピストンを前記引戻位置から前記押切位置に移動させる際には、前記高い駆動周波数でステッピングモータを所定時間だけ駆動させてモータ軸を回転させ、その後に所定時間だけ前記ステッピングモータを停止させる動作を繰り返し行わせ、前記ピストンを押切位置から前記引戻位置に移動させる際には前記ステッピングモータを連続的に駆動させる
     ことを特徴とする請求項1に記載の薬液投与装置。
  5.  前記流路部の途中に配され、軸部と、該軸部の周面に設けられ弾性を有する傘状部とを有するアンブレラ弁
     をさらに有し、
     前記流路部は、
     所定の壁面に形成された流路口に連接され、
     前記アンブレラ弁は、
     前記軸部を介して前記壁面に対し固定され、前記傘状部の先端部が前記弾性により前記壁面に周方向にわたって隙間なく当接したときに前記流路口を前記傘状部の内周面側に位置させて塞ぎ、前記流路部から前記流路口を介して前記薬液が流出されたときに前記傘状部を弾性変形させて前記先端部を前記壁面から離間させ前記流路口を解放する
     ことを特徴とする請求項1に記載の薬液投与装置。
     
     
PCT/JP2013/001721 2012-03-16 2013-03-14 薬液投与装置 WO2013136803A1 (ja)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2012060920A JP2013192640A (ja) 2012-03-16 2012-03-16 薬液投与装置
JP2012-060920 2012-03-16
JP2012-065270 2012-03-22
JP2012065270A JP2013192850A (ja) 2012-03-22 2012-03-22 薬液投与装置

Publications (1)

Publication Number Publication Date
WO2013136803A1 true WO2013136803A1 (ja) 2013-09-19

Family

ID=49160727

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/001721 WO2013136803A1 (ja) 2012-03-16 2013-03-14 薬液投与装置

Country Status (1)

Country Link
WO (1) WO2013136803A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11500038A (ja) * 1995-02-22 1999-01-06 マーク ティモシー スミス 電子式注射器
JPH11512596A (ja) * 1995-09-11 1999-10-26 アラリス メディカル システムズ インコーポレイテッド オープンループステップモータ制御システム
JP3151230B2 (ja) * 1991-04-12 2001-04-03 松下電工株式会社 ペン型注射装置
JP2004532670A (ja) * 2001-02-22 2004-10-28 インシュレット コーポレイション モジュール式の輸液装置及び方法
WO2010129583A1 (en) * 2009-05-04 2010-11-11 Valeritas, Inc. Fluid transfer device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3151230B2 (ja) * 1991-04-12 2001-04-03 松下電工株式会社 ペン型注射装置
JPH11500038A (ja) * 1995-02-22 1999-01-06 マーク ティモシー スミス 電子式注射器
JPH11512596A (ja) * 1995-09-11 1999-10-26 アラリス メディカル システムズ インコーポレイテッド オープンループステップモータ制御システム
JP2004532670A (ja) * 2001-02-22 2004-10-28 インシュレット コーポレイション モジュール式の輸液装置及び方法
WO2010129583A1 (en) * 2009-05-04 2010-11-11 Valeritas, Inc. Fluid transfer device

Similar Documents

Publication Publication Date Title
CA2819650C (en) Device for at least one of injection or aspiration
US9399095B2 (en) Compact non-electric medicament infuser
CN103206363A (zh) 微型定量供给泵和用于制造微型定量供给泵的方法
EP1944048B1 (en) Syringe assembly and an infusion pump assembly incorporating such
KR101852695B1 (ko) 밸브 제어를 위한 스텝 전환 기구를 포함한 이동식 주입 시스템
RU2755697C2 (ru) Инициализация амбулаторной инфузионной системы
AU2014360278B2 (en) Dose divider syringe
US9943642B2 (en) Medical solution administration device
WO2013136803A1 (ja) 薬液投与装置
JP2020520747A (ja) 輸液ポンプ用滅菌ポンプモジュール
CA3085511A1 (en) Micropump
JP2013192850A (ja) 薬液投与装置
JP2023538911A (ja) 流体送達装置の貯留部に外部配置された複動式伸縮スクリュー駆動ポンプ機構
JP2013192853A (ja) 薬液投与装置
CN111097082A (zh) 输送计量器及输液装置
JP2013192851A (ja) 薬液投与装置
JP2013192852A (ja) 薬液投与装置
EP3423908A2 (en) Mechanically driven sequencing manifold

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13760707

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13760707

Country of ref document: EP

Kind code of ref document: A1