WO2013135673A1 - Verfahren zur reduktion von kohlendioxid bei hohen temperaturen an katalysatoren auf insbesondere carbidischen trägern - Google Patents

Verfahren zur reduktion von kohlendioxid bei hohen temperaturen an katalysatoren auf insbesondere carbidischen trägern Download PDF

Info

Publication number
WO2013135673A1
WO2013135673A1 PCT/EP2013/054968 EP2013054968W WO2013135673A1 WO 2013135673 A1 WO2013135673 A1 WO 2013135673A1 EP 2013054968 W EP2013054968 W EP 2013054968W WO 2013135673 A1 WO2013135673 A1 WO 2013135673A1
Authority
WO
WIPO (PCT)
Prior art keywords
reaction
catalyst
carbon dioxide
heating
group
Prior art date
Application number
PCT/EP2013/054968
Other languages
English (en)
French (fr)
Inventor
Emanuel Kockrick
Daniel Gordon Duff
Alexander Karpenko
Vanessa GEPERT
Albert TULKE
Leslaw Mleczko
Original Assignee
Bayer Intellectual Property Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bayer Intellectual Property Gmbh filed Critical Bayer Intellectual Property Gmbh
Publication of WO2013135673A1 publication Critical patent/WO2013135673A1/de

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • C01B3/34Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
    • C01B3/38Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts
    • C01B3/40Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts characterised by the catalyst
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/42Platinum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/46Ruthenium, rhodium, osmium or iridium
    • B01J23/462Ruthenium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/745Iron
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/755Nickel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/20Carbon compounds
    • B01J27/22Carbides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/20Carbon compounds
    • B01J27/22Carbides
    • B01J27/224Silicon carbide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/50Catalysts, in general, characterised by their form or physical properties characterised by their shape or configuration
    • B01J35/56Foraminous structures having flow-through passages or channels, e.g. grids or three-dimensional monoliths
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10KPURIFYING OR MODIFYING THE CHEMICAL COMPOSITION OF COMBUSTIBLE GASES CONTAINING CARBON MONOXIDE
    • C10K3/00Modifying the chemical composition of combustible gases containing carbon monoxide to produce an improved fuel, e.g. one of different calorific value, which may be free from carbon monoxide
    • C10K3/02Modifying the chemical composition of combustible gases containing carbon monoxide to produce an improved fuel, e.g. one of different calorific value, which may be free from carbon monoxide by catalytic treatment
    • C10K3/026Increasing the carbon monoxide content, e.g. reverse water-gas shift [RWGS]
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0205Processes for making hydrogen or synthesis gas containing a reforming step
    • C01B2203/0227Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step
    • C01B2203/0238Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step the reforming step being a carbon dioxide reforming step
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • C01B2203/1047Group VIII metal catalysts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • C01B2203/1082Composition of support materials
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/12Feeding the process for making hydrogen or synthesis gas
    • C01B2203/1205Composition of the feed
    • C01B2203/1211Organic compounds or organic mixtures used in the process for making hydrogen or synthesis gas
    • C01B2203/1235Hydrocarbons
    • C01B2203/1241Natural gas or methane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/141Feedstock
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Definitions

  • the present invention relates to a process for reducing carbon dioxide comprising the step of reacting carbon dioxide and hydrogen in the presence of a catalyst to form carbon monoxide and water.
  • the invention further relates to the use of such a catalyst in the reduction of carbon dioxide.
  • WGS water gas shift reaction
  • WO 02/076885 A2 and US 6,207,609 disclose a molybdenum carbide compound obtained by reaction of a molybdate with a mixture of hydrogen and carbon monoxide. By heating the molybdate powder from a temperature below 300 ° C to a maximum temperature of 850 ° C, a controlled reaction can be carried out to form molybdenum carbide. A large surface area, metastable, nanocidal molybdenum carbide can be formed when the reaction temperature is below 750 ° C.
  • the metastable molybdenum carbide is particularly suitable as a catalyst for the dry reforming Reatkion of methane and, according to WO 02/076885 A2, for the WGS reaction.
  • the present invention therefore has the object to provide a method for carrying out the R WGS reaction, which with a cost-effective catalyst with high Activity and selectivity and long-term stability at high temperatures can be operated.
  • This object is achieved by a method for the reduction of carbon dioxide, comprising the step of the reaction of carbon dioxide and hydrogen in the presence of a catalyst to form carbon monoxide and water, wherein the reaction is carried out at a temperature of> 700 ° C and the catalyst
  • (I) is a metal Ml and / or at least two different metals Ml and M2 on and / or in a carrier, wherein the carrier is a carbide, oxycarbide, carbonitride, nitride, boride, silicide, germanide and / or selenide of the metals A and / or B is; and or
  • reaction products of (I) in the presence of a gas mixture comprising carbon dioxide, hydrogen, carbon monoxide and water at a temperature of> 700 ° C comprises;
  • Ml and M2 are independently selected from the group: Cr, Mn, Fe, Co, Ni, Re, Ru, Rh, Ir, Os, Pd, Pt, Zn, Cu, La, Ce, Pr, Nd, Sm, Eu , Gd, Tb, Dy, Ho, Er, Tm, Yb, and / or Lu; and
  • a and B are independently selected from the group: Be, Mg, Ca, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Y, Zr, Nb, Mo, 11 f. Ta, W, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, and / or Lu.
  • the catalysts used according to the invention or their conversion products under the prevailing reaction conditions are stable catalysts which are comparable with industrial benchmark systems in at least one respect.
  • the RWGS reaction can be selectively operated at the elevated temperatures according to the invention.
  • the present invention relates to the recovery of CO and IH) by RWGS reaction. This is in contrast to the WGS reaction, where possibly the reverse reaction also leads to CO and i H).
  • the process according to the invention is preferably carried out such that the conversion of CO 2 after completion of the reaction (in particular after leaving a reactor such as, for example, an axial flow reactor) is more than 35 mol%, preferably more than 40 mol%, more preferably more than 45 mol% and most preferably above 50 mole%.
  • Metal carbides and their (oxidic) precursors of type (I) can be prepared, inter alia, by physical (such as PVD) and chemical methods, the latter mainly in the solid phase and / or gas phase.
  • reaction products includes the catalyst phases present under reaction conditions. It is also possible that (I) is formed only in situ during the reaction.
  • an oxometalate such as a molybdate or tungstate with I h and CO and / or hydrocarbon (methane, Et hau and / or their mixtures (natural gas)) could be converted at correspondingly high temperatures to carbides.
  • the gas mixture to which the catalyst is exposed during the reaction comprising carbon dioxide, hydrogen, carbon monoxide and water may contain these four components, for example, in a content of> 80% by weight, preferably> 90% by weight and more preferably> 95% by weight ,
  • a reaction temperature of> 700 ° C is provided.
  • the reaction temperature is> 850 ° C, and more preferably> 900 ° C.
  • Preferred embodiments of the present invention will be described below. They can be combined with each other as long as the context does not clearly indicate the opposite.
  • hydrocarbon having 1 to 4 carbon atoms added.
  • Suitable hydrocarbons are, in particular, alkanes having 1 to 4 C atoms, methane being particularly suitable.
  • the addition of the hydrocarbon takes place at arbitrary positions along the longitudinal axis of the reactor. For example, hydrocarbon addition may occur at the reactor inlet, at the reactor outlet and / or at a position between inlet and outlet.
  • the hydrocarbon may be present, for example, in an amount of> 0.01% by volume to ⁇ 20% by volume, preferably> 0.1% by volume to ⁇ 10% by volume and more preferably> 1% by volume to ⁇ 10% by volume. %, based on the total volume of the reaction gases. Regardless, it is preferred that the concentration of the hydrocarbon after the reaction, in particular at the outlet of a reactor in which the reaction is carried out, ⁇ 20% by volume and preferably ⁇ 10% by volume.
  • the catalyst (I) comprises, as metals M1 and / or M2, Cr, Mn, Fe, Co, Ni, Re, Ru, Rh, Ir, Os, Pd, Pt, Zn, Cu, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, and / or Lu on M0 2 C and / or WC.
  • Preferred here are Ni-WC, Pt-WC, Ru-WC.
  • Ru-Pt-WC Ni-Mo 2 C, Pt-Mo 2 C, Ru-Mo 2 C and / or Pt-Ru-Mo 2 C.
  • the reaction is carried out at a temperature of> 700 ° C to ⁇ 1300 ° C. More preferred ranges are> 800 ° C to ⁇ 1200 ° C and> 900 ° C to ⁇ 1100 ° C, especially> 850 ° C to ⁇ 1050 ° C.
  • the reaction is carried out at a pressure of> 1 bar to ⁇ 200 bar.
  • the pressure is> 2 bar to ⁇ 50 bar, more preferably> 10 bar to ⁇ 30 bar.
  • the catalyst is applied to a support and the support is selected from the group comprising oxides, carbides, nitrides, phosphides and / or borides of aluminum, silicon and / or zirconium.
  • the support is selected from the group comprising oxides, carbides, nitrides, phosphides and / or borides of aluminum, silicon and / or zirconium.
  • An example of this is SiC. Further preferred is cordierite.
  • the reaction is operated in autothermal mode.
  • This can be achieved, for example, both by the addition of oxygen in the educt gas, as well as that hydrogen-rich residual gases such as anode residual gas, PSA residual gas, natural gas (preferably methane) and / or additional hydrogen in the presence of CO 2 fuel gas sources.
  • Another object of the present invention is the use of a metal carbide comprehensive catalyst in the reaction of carbon dioxide and hydrogen, wherein carbon monoxide and water are formed, wherein the catalyst
  • (I) is a metal Ml and / or at least two different metals Ml and M2 on and / or in a carrier, wherein the carrier is a carbide, oxycarbide, carbonitride, nitride, boride, silicide, germanide and / or selenide of the metals A and / or B is; and / or (II) reaction products of (I) in the presence of a gas mixture comprising carbon dioxide, hydrogen, carbon monoxide and water at a temperature of> 700 ° C;
  • M I and M2 are independently selected from the group: Cr, n, Fe, Co, Ni, Re, Ru,
  • Rh, Ir, Os, Pd, Pt, Zn Cu, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, and / or Lu;
  • a and B are independently selected from the group: Be, Mg, Ca, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Y, Zr, Nb, Mo, Hf, Ta, W, La, Ce , Pr, Nd, Sm, Eu, Gd, Tb, Dy. Ho, He, I m. Y b. and / or Lu.
  • reaction products includes the catalyst phases present under reaction conditions.
  • the catalyst comprises (I) as metals Ml and / or M2 Cr, Mn, Fe, Co, Ni, Re, Ru. Rh, Ir, Os, Pd, Pt, Zn, Cu, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, and / or Lu on Mo 2 C and / or WC.
  • the catalyst is applied to a support and the support is selected from the group comprising oxides, carbides, nitrides, phosphides and / or borides of aluminum, silicon and / or zirconium.
  • the support is selected from the group comprising oxides, carbides, nitrides, phosphides and / or borides of aluminum, silicon and / or zirconium.
  • An example of this is SiC.
  • Further preferred is cordierite.
  • FIG. 1 shows schematically an expanded view of a reactor for carrying out the method according to the invention.
  • the reaction can be carried out in a flow reactor which, viewed in the direction of flow of the reaction gases, comprises a plurality of heating levels 100, 101, 102, 103 which are electrically heated by means of heating elements 1 10, 11 1, 12 1. wherein the heating levels 100, 101, 102, 100 are flowed through by the reaction gases, wherein at least one heating element 1 10, 1 1 1, 112, 1 13, the catalyst is arranged and is heated there and at least once an intermediate level 200, 201, 202nd is arranged between two heating levels 100, 101, 102, 103, wherein the intermediate level 200, 201, 202 can also be flowed through by the reaction gases.
  • the reactor has a plurality of (in the present case four) Fleecebenen 100, 101, 102, 103, which by means of appropriate Heating elements 1 10, III, 1 1 2, 1 13 are electrically heated.
  • the heating levels 100, 101, 102, 103 are flowed through by the reaction gases in the operation of the reactor and the heating elements 1 10, III, 1 12, 1 13 are contacted by the reaction gases.
  • At least one heating element 1 10, 1 1 1, 1 12, 1 13, the catalyst is arranged and is heated there.
  • the catalyst may be directly or indirectly connected to the heating elements 1 10, 1 1 1, 1 12, 1 13, so that these heating elements represent the catalyst support or a support for the catalyst support.
  • the heat supply of the reaction takes place electrically and is not introduced from the outside by means of radiation through the walls of the reactor, but directly into the interior of the reaction space. It is realized a direct electrical heating of the catalyst.
  • an intermediate ceramic level 200, 201, 202 (which is preferably supported by a ceramic or metal support framework / plane) is arranged at least once between two heating levels 100, 101, 102, 103, the intermediate level (FIG. n) 200, 201, 202 or the contents 210, 2 1 1, 2 12 an intermediate level 200, 201, 202 are also flowed through in the operation of the reactor from the reaction gases. This has the effect of homogenizing the fluid flow. It is also possible that additional catalyst is present in one or more intermediate levels 200, 201, 202 or other isolation elements in the reactor. Then an adiabatic reaction can take place.
  • the pressure can be absorbed in the reactor via a pressure-resistant steel jacket.
  • suitable ceramic insulation materials it can be achieved that the pressure-bearing steel temperatures of less than 200 ° C and, where necessary, also less than 60 ° C is exposed.
  • the electrical connections are shown in FIG. 1 only shown very schematically. They can be performed in the cold area of the reactor within an insulation to the ends of the reactor or laterally from the heating elements 1 10, 1 1 1, 1 12, 1 1 3 are performed so that the actual electrical connections are provided in the cold region of the reactor can.
  • the electrical heating is done with direct current or alternating current.
  • the use of the electrically heated elements in the inlet region of the reactor also has a positive effect with regard to the cold start and starting behavior, in particular with regard to the rapid heating to the reaction temperature and the better controllability.
  • the catalyst can be present in principle as a loose bed, as a washcoat or as a monolithic shaped body on the heating elements 110, 111, 112, 13. However, it is preferred that the catalyst is directly or indirectly connected to the heating elements 11, 11, 13, so that these heating elements constitute the catalyst support or a support for the catalyst support. It is also possible that additional catalyst is present in one or more intermediate levels 200, 201, 202 or other isolation elements in the reactor.
  • Fleizetti 1 10, I I I, 1 12, 1 1 3 are arranged, which are constructed in a spiral, meandering, lattice-shaped and / or reticulated.
  • the (for example ceramic) intermediate levels 200, 201, 202 or their contents 210, 21 1, 212 comprise a material resistant to the reaction conditions, for example a ceramic foam. They serve for mechanical support of the heating levels 100, 101, 102, 103 and for mixing and distribution of the gas stream. At the same time an electrical insulation between two heating levels is possible.
  • the material of the content 210, 21 1, 212 of an intermediate level 200, 201, 202 comprises oxides, carbides, nitrides, phosphides and / or borides of aluminum, silicon and / or zirconium.
  • An example of this is SiC. Further preferred is cordierite.
  • the intermediate level 200, 201, 202 may include, for example, a loose bed of solids. These solids themselves may be porous or solid, so that the fluid flows through gaps between the solids. It is preferred that the material of the solids comprises oxides, carbides, nitrides, phosphides and / or borides of aluminum, silicon and / or zirconium. An example of this is SiC. Further preferred is cordierite. It is also possible that the intermediate plane 200, 201, 202 comprises a one-piece porous solid. In this case, the fluid flows through the intermediate plane via the pores of the solid. Preference is given to honeycomb monoliths, as used for example in the exhaust gas purification of internal combustion engines.
  • the average length of a heating level 100, 101, 102, 103 is viewed in the direction of flow of the fluid and the average length of an intermediate level 200, 201, 202 viewed in the direction of flow of the fluid is in a ratio of> 0.01: 1 to ⁇ 100: 1 to each other. Even more advantageous are ratios of> 0.1: 1 to ⁇ 10: 1 or 0.5: 1 to ⁇ 5: 1. It is also possible for at least one heating element 110, 111, 112, 113 to have a different amount and / or type of catalyst from the remaining Fleiz elements 110, 111, 112, 11.
  • the heating elements 110, 111, 112, 113 are arranged so that they can each be electrically heated independently of each other. Accordingly, in the method according to the invention, the individual heating elements 110, 111, 112, 113 can be operated with a different Fleiz intricate.
  • the individual heating levels can be individually controlled and regulated.
  • inlet area can be dispensed with a catalyst in the heating levels as needed, so that only the heating and no reaction takes place in the inlet area. This is particularly advantageous in terms of starting the reactor.
  • a temperature profile adapted for the respective reaction can be achieved. With regard to the application for endothermic equilibrium reactions, this is, for example, a temperature profile which achieves the highest temperatures and thus the highest conversion at the reactor outlet.
  • the reactor can be modular.
  • a module may include, for example, a heating level, an intermediate level, the electrical contact and the corresponding further insulation materials and thermal insulation materials.
  • Example 1 Synthesis of Various Transition-Metal or Precious-Metal-Containing Carbide Catalysts
  • the supported catalysts were prepared by slowly dropping the amount of salt solution indicated in the following table to 2 g of dried molybdenum carbide. After homogenization, the moist solid was dried in a vacuum oven at 80 ° C overnight. Subsequently, the calcination was carried out at 450 ° C for 4 h in synthetic air.
  • the catalytic investigations were carried out in a quartz glass U-tube fixed bed reactor at an oven temperature of 850 ° C. (with a space velocity of 100 000 1 / h). carried out.
  • the sample was heated to the target temperature of 850 ° C in a nitrogen flow (250 Nml / min). Subsequently, the reactive gases hydrogen (75 Nml / min) and carbon dioxide (50 Nml / min) were added with simultaneous reduction of the nitrogen flow to 125 Nml min in the bypass. After a mixing time of 30 min, these were applied to the catalyst system in the reactor. After a reaction time of up to 65 hours, the catalyst was cooled to room temperature under inert conditions. The analysis of the product gas mixture was carried out using a multichannel infrared analyzer.
  • Example 3 Comparison between nickel and / or iron-containing Mo2C systems
  • the following table summarizes the results of the catalyst comparison in the RWGS reaction.
  • X7.5h (C02) [%] means the conversion of CO2, here after 7.5 hours, expressed in mole percent.
  • r e fi (CO 2) indicates the average reaction rate of CO 2 and "X 7,5h (CO 2) / X 3h (CO 2)” is the quotient of the CC conversion after 7.5 hours and after 3 hours.
  • Example 4 Comparison of Ruthenium and / or Iron-Containing Mo2C Systems
  • the table below summarizes the results of catalyst comparison in the RWGS reaction.
  • the term "Xv.shCCC” [%] means the conversion of CO2, here after 7.5 hours, expressed in mole percent.
  • the term “r e fi (CO 2)” indicates the average reaction rate of CO 2 and 'j, 5h (CO 2) / X 3h (CO 2) "is the quotient of the CCV conversion after 7.5 hours and after 3 hours.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Combustion & Propulsion (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Catalysts (AREA)

Abstract

Ein Verfahren zur Reduktion von Kohlendioxid, umfassend den Schritt der Reaktion von Kohlendioxid und Wasserstoff in Gegenwart eines Katalysators unter Bildung von Kohlenmonoxid und Wasser, ist dadurch gekennzeichnet, dass die Reaktion bei einer Temperatur von ≥ 700 °C durchgeführt wird und dass der Katalysator umfasst: (I) ein Metall (M1) und/oder wenigstens zwei verschiedene Metalle (M1) und (M2) auf und/oder in einem Träger, wobei der Träger ein Carbid, Oxycarbid, Carbonitrid, Nitrid, Borid, Silicid, Germanid und/oder Selenid der Metalle A und/oder B ist; und/oder (II) Reaktionsprodukte von (I) in Gegenwart eines Gasgemischs umfassend Kohlendioxid, Wasserstoff, Kohlenmonoxid und Wasser bei einer Temperatur von ≥ 700 °C. M1 und M2 sind unabhängig voneinander ausgewählt aus der Gruppe: Cr, Mn, Fe, Co, Ni, Re, Ru, Rh, Ir, Os, Pd, Pt, Zn, Cu, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, und/oder Lu. A und B sind unabhängig voneinander ausgewählt aus der Gruppe: Be, Mg, Ca, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Y, Zr, Nb, Mo, Hf, Ta, W, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, und/oder Lu.

Description

Verfahren zur Reduktion von Kohlendioxid bei hohen Temperaturen an Katalysatoren auf insbesondere carbidischen Trägern
Die vorliegende Erfindung betrifft ein Verfahren zur Reduktion von Kohlendioxid, umfassend den Schritt der Reaktion von Kohlendioxid und Wasserstoff in Gegenwart eines Katalysators unter Bildung von Kohlenmonoxid und Wasser. Die Erfindung betrifft weiterhin die Verwendung eines solchen Katalysators in der Reduktion von Kohlendioxid.
Die sogenannte Wassergas-Verschiebungsreaktion (water gas shift reaction, WGS) wird seit Langem zur Verringerung des CO- Antei ls in Synthesegas eingesetzt und beinhaltet die Reaktion von Kohlenmonoxid mit Wasser unter Bildung von Kohlendioxid und Wasserstoff. Diese Reaktion ist eine Gleichgewichtsreaktion.
Sofern in einem chemischen Prozess nicht die Verringerung des Kohlenmonoxid-Gehaltes, sondern des Kohlendioxid-Gehaltes erwünscht ist, käme die umgekehrte Wassergas-Verschiebungsreaktion in Frage, welche in der engiischsprachigen Literatur auch als reverse water gas shift reaction oder RWGS bekannt ist. Über die R WG S-R eakti orten mit Hilfe eines Mo;C-K.atalysators bei 300 °C berichten Nagai und Kurakami in J. Chem. Eng. Japan 2005, 38 (10), 807-812. Claridge et al. behandeln Wolframcarbid und Molybdäncarbid als Katalysatorsysteme für die CO;--Refbrmierung. Huang et al. , Fuel Processing Technology 2010, 91 , 185 vergleichen Co- beziehungsweise Ni-haltige Moiybdäncarbide mit unbeladenen carbidischen Systemen in der CO:-R eiOrmierung. WO 02/076885 A2 sowie US 6,207,609 offenbaren eine Molybdäncarbid-Verbindung, die durch Reaktion eines Molybdats mit einer Mischung aus Wasserstoff und Kohlenmonoxid. Durch Erhitzen des Molybdatpulvers von einer Temperatur unterhalb von 300 ° C auf e ine Maximaltemperatur von 850 °C kann eine kontrollierte Reaktion durchgeführt werden, wobei Molybdäncarbid gebildet wird. Ein metastabiles, nanokörniges Molybdäncarbid mit einer großen Oberfläche kann gebildet werden, wenn die Reaktionstemperatur unter 750 °C liegt. Das metastabile Molybdäncarbid ist insbesondere geeignet als Katalysator für die Dry Reforming- Reatkion von Methan und, gemäß WO 02/076885 A2, für die WGS-Reaktion.
Um mit der R WGS-Reaktion einen wirtschaftlichen Umsatz zu erreichen, sollte sie bei einer deutlich höheren Temperatur betrieben werden (über 700 °C) als in der Literatur üblich, um das Gleichgewicht in Richtung Kohlenmonoxid zu verschieben.
Die vorliegende Erfindung hat sich daher die Aufgabe gestellt, ein Verfahren zur Durchführung der R WGS-Reaktion bereitzustellen, welches mit einem kostengünstigen Katalysator mit hoher Aktivität und Selektivität sowie einer Langzeitstabilität bei hohen Temperaturen betrieben werden kann.
Diese Aufgabe wird erfindungsgemäß gelöst durch ein Verfahren zur Reduktion von Kohlendioxid, umfassend den Schritt der Reaktion von Kohlendioxid und Wasserstoff in Gegenwart eines Katalysators unter Bildung von Kohlenmonoxid und Wasser, wobei die Reaktion bei einer Temperatur von > 700 °C durchgeführt wird und der Katalysator
(I) ein Metall Ml und/oder wenigstens zwei verschiedene Metalle Ml und M2 auf und/oder in einem Träger ist, wobei der Träger ein Carbid, Oxycarbid, Carbonitrid, Nitrid, Borid, Silicid, Germanid und/oder Selenid der Metalle A und/oder B ist; und/oder
(II) Reaktionsprodukte von (I) in Gegenwart eines Gasgemischs umfassend Kohlendioxid, Wasserstoff, Kohlenmonoxid und Wasser bei einer Temperatur von > 700 °C umfasst; wobei gilt:
Ml und M2 sind unabhängig voneinander ausgewählt aus der Gruppe: Cr, Mn, Fe, Co, Ni, Re, Ru, Rh, Ir, Os, Pd, Pt, Zn, Cu, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, und/oder Lu; und
A und B sind unabhängig voneinander ausgewählt aus der Gruppe: Be, Mg, Ca, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Y, Zr, Nb, Mo, 1 1 f. Ta, W, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, und/oder Lu.
Es wurde überraschenderweise gefunden, dass die erfindungsgemäß eingesetzten Katalysatoren beziehungsweise deren Umwandlungsprodukte unter den herrschenden Reaktionsbedingungen stabile Katalysatoren sind, welche mit industriellen Benchmarksystemen mindestens in einer Hinsicht vergleichbar sind. Die RWGS-Reaktion kann bei den erfindungsgemäß erhöhten Temperaturen selektiv betrieben werden.
Es sei an dieser Stelle ausdrücklich festgehalten, dass die vorliegende Erfindung die Gewinnung von CO und I H) durch RWGS-Reaktion betrifft. Dieses ist im Gegensatz zur WGS-Reaktion, in der möglicherweise die Rückreaktion auch zu CO und i H ) führt. Vorzugsweise wird das erfindungsgemäße Verfahren so durchgeführt, dass der Umsatz von CO2 nach Beendigung der Reaktion (insbesondere nach Verlassen eines Reaktors wie beispielsweise eines axialen Strömungsreaktors) über 35 Mol-%, bevorzugt über 40 Mol-%, mehr bevorzugt über 45 Mol-% und am meisten bevorzugt über 50 Mol-% liegt. Metallcarbide und deren (oxidische) Vorstufen des Typs (I) lassen sich unter anderem durch physikalische (wie PVD) sowie chemische Methoden herstellen, letztere vorwiegend in der Festphase und/oder Gasphase. Als Beispiele genannt seien Fällung, Co-Fällung, Sol-Gel- Verfahren, Imprägnierung, Zündungs- Verbrennungsmethoden mit anschließender Carburisierung. Erfindung s g em äß mit e ing e s ch l o s s en i st d er F a ll , da s s unter den herrs c henden Reaktionsbedingungen eine Umwandlung des Carbids, Oxycarbids, Carbonitrids, Nitrids, Borids, Silicids, Germanids und/oder Selenids (I) zu Reaktionsprodukten (II) stattfindet. Der Begriff "Reaktionsprodukte" schließt die unter Reaktionsbedingungen vorliegenden Katalysatorphasen mit ein. Es ist ebenfalls möglich, dass (I) erst in situ während der Reaktion gebildet wird. Beispielsweise ließe sich ein Oxometallat wie ein Molybdat oder Wolframat mit I h und CO und/oder Kohlenwasserstoff (Methan, Et hau und/oder deren Gemische (Erdgas)) bei entsprechend hohen Temperaturen zu Carbiden umsetzen.
Das Gasgemisch, dem der Katalysator während der Reaktion ausgesetzt wird, umfassend Kohlendioxid, Wasserstoff, Kohlenmonoxid und Wasser kann diese vier Komponenten beispielsweise in einem Gehalt von > 80 Gewichts-%, vorzugsweise > 90 Gewichts-% und mehr bevorzugt > 95 Gewichts-% enthalten.
Erfindungsgemäß vorgesehen ist eine Reaktionstemperatur von > 700 °C. Vorzugsweise beträgt die Reaktionstemperatur > 850 °C und mehr bevorzugt > 900 °C. Bevorzugte Ausführungsformen der vorliegenden Erfindung werden nachfolgend beschrieben. Sie können beliebig miteinander kombiniert werden, sofern sich aus dem Zusammenhang nicht eindeutig das Gegenteil ergibt.
In einer Ausführungsform des erfindungsgemäßen Verfahrens wird weiterhin während der
Reaktion ein Kohlenwasserstoff mit 1 bis 4 C-Atomen hinzugefügt. Geeignete Kohlenwasserstoffe sind insbesondere Alkane mit 1 bis 4 C-Atomen, besonders geeignet ist Methan. Auf diese Weise lässt sich zusätzlich zur RWGS-Reaktion auch eine Reformierung durchführen. Wenn die Reaktion in einem axialen Strömungsreaktor durchgeführt wird, ist es möglich, dass die Zugabe des Kohlenwasserstoffs an beliebigen Stellen entlang der Längsachse des Reaktors stattfindet. So kann beispielsweise eine Kohlenwasserstoffzugabe am Reaktoremlass, am Reaktorauslass und/Oder an einer Position zwischen Einlass und Auslass erfolgen. Der Kohlenwasserstoff kann beispielsweise in einem Antei l von > 0,01 Volumen- % bis < 20 Volumen-%, vorzugsweise > 0, 1 Volumen-% bis < 10 Volumen-% und besonders bevorzugt > 1 Volumen-% bis < 10 Volumen-%, bezogen auf das Gesamtvolumen der Reaktionsgase, hinzugefügt werden. Unabhängig davon ist es bevorzugt, dass die Konzentration des Kohlenwasserstoffs nach der Reaktion, insbesondere am Ausgang eines Reaktors, in dem die Reaktion durchgeführt wird, < 20 Volumen-% und vorzugsweise < 10 Volumen-% beträgt.
In einer weiteren Ausführungsform des erfindungsgemäßen Verfahrens umfasst der Katalysator (I) als Metalle Ml und/oder M2 Cr, Mn, Fe, Co, Ni, Re, Ru, Rh, Ir, Os, Pd, Pt, Zn, Cu, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, und/oder Lu auf M02C und/oder WC. Bevorzugt sind hierbei Ni-WC, Pt-WC, Ru-WC. Ru-Pt-WC, Ni-Mo2C, Pt-Mo2C, Ru-Mo2C und/oder Pt-Ru-Mo2C.
In einer weiteren Ausführungsform des erfindungsgemäßen Verfahrens wird die Reaktion bei einer Temperatur von > 700 °C bis < 1300 °C durchgeführt. Mehr bevorzugte Bereiche sind > 800 °C bis < 1200 °C und > 900 °C bis < 1100 °C, insbesondere > 850 °C bis < 1050 °C.
In einer weiteren Ausführungsform des erfindungsgemäßen Verfahrens wird die Reaktion bei einem Druck von > 1 bar bis < 200 bar durchgeführt. Vorzugsweise beträgt der Druck > 2 bar bis < 50 bar, mehr bevorzugt > 10 bar bis < 30 bar.
In einer weiteren Ausführungsform des erfindungsgemäßen Verfahrens ist der Katalysator auf einem Träger aufgebracht und der Träger ausgewählt ist aus der Gruppe umfassend Oxide, Carbide, Nitride, Phosphide und/oder Boride von Aluminium, Silizium und/oder Zirkonium. Ein Beispiel hierfür ist SiC. Ferner bevorzugt ist Cordierit.
In einer weiteren Ausfuhrungsform des erfindungsgemäßen Verfahrens wird die Reaktion in autothermaler Fahrweise betrieben. Diese lässt sich beispielsweise sowohl durch das Hinzufügen von Sauerstoff in das Eduktgas erreichen, als auch dadurch, dass wasserstoffreiche Restgase wie Anodenrestgas, PSA-Restgas, Erdgas (vorzugsweise Methan) und/oder zusätzlicher Wasserstoff in der Gegenwart von CO2 Brenngasquellen sind.
Ein weiterer Gegenstand der vorliegenden Erfindung ist die Verwendung eines ein Metallcarbid umfassenden Katalysators in der Reaktion von Kohlendioxid und Wasserstoff, wobei Kohlenmonoxid und Wasser gebildet werden, wobei der Katalysator
(I) ein Metall Ml und/oder wenigstens zwei verschiedene Metalle Ml und M2 auf und/oder in einem Träge ist, wobei der Träger ein Carbid, Oxycarbid, Carbonitrid, Nitrid, Borid, Silicid, Germanid und/oder Selenid der Metalle A und/oder B ist; und/oder (II) Reaktionsprodukte von (I) in Gegenwart eines Gasgemischs umfassend Kohlendioxid, Wasserstoff, Kohlenmonoxid und Wasser bei einer Temperatur von > 700 °C; wobei gilt:
M I und M2 sind unabhängig voneinander ausgewählt aus der Gruppe: Cr, n, Fe, Co, Ni, Re, Ru,
Rh, Ir, Os, Pd, Pt, Zn, Cu, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, und/oder Lu; und
A und B sind unabhängig voneinander ausgewählt aus der Gruppe: Be, Mg, Ca, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Y, Zr, Nb, Mo, Hf, Ta, W, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy. Ho, Er, I m. Y b. und/oder Lu.
Der Begriff "Reaktionsprodukte" schließt die unter Reaktionsbedingungen vorliegenden Katalysatorphasen mit ein.
Hinsichtlich weiterer Erläuterungen und Details wird zur Vermeidung von Wiederholungen auf die Ausführungen im Zusammenhang mit dem erfindungsgemäßen Verfahren verwies en. Vorzugsweise umfasst der Katalysator (I) als Metalle Ml und/oder M2 Cr, Mn, Fe, Co, Ni, Re, Ru. Rh, Ir, Os, Pd, Pt, Zn, Cu, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, und/oder Lu auf Mo2C und/oder WC.
Es ist weiterhin bevorzugt, dass der Katalysator auf einem Träger aufgebracht ist und der Träger ausgewählt ist aus der Gruppe umfassend Oxide, Carbide, Nitride, Phosphide und/oder Boride von Aluminium, Silizium und/oder Zirkonium. Ein Beispiel hierfür ist SiC. Ferner bevorzugt ist Cordierit.
Weitere Ausführungsformen des erfindungsgemäßen Verfahrens werden in Verbindung mit der nachfolgenden Figur erläutert, ohne hierauf beschränkt zu sein. FIG. 1 zeigt schematisch eine expandierte Ansicht eines Reaktors zur Durchführung des erfindungsgemäßen Verfahrens.
Im erfindungsgemäßen Verfahren kann die Reaktion in einem Strömungsreaktor durchgeführt werden, welcher in Strömungsrichtung der Reaktionsgase gesehen eine Mehrzahl von Heizebenen 100, 101, 102, 103 umfasst, welche mittels Heizelementen 1 10, 1 1 1 , 1 12. 1 13 elektrisch beheizt werden, wobei die Heizebenen 100, 101 , 102, 100 von den Reaktionsgasen durchströmbar sind, wobei an mindestens einem Heizelement 1 10, 1 1 1 , 112, 1 13 der Katalysator angeordnet ist und dort beheizbar ist und mindestens einmal eine Zwischenebene 200, 201 , 202 zwischen zwei Heizebenen 100, 101 , 102, 103 angeordnet ist, wobei die Zwischenebene 200, 201 , 202 ebenfalls von den Reaktionsgasen durchströmbar ist. In Strömungsrichtung der Reaktionsgase gesehen weist der Reaktor eine Mehrzahl von (im vorliegenden Fall vier) Fleizebenen 100, 101 , 102, 103 auf, welche mittels entsprechender Heizelemente 1 10, I I I , 1 1 2, 1 13 elektrisch beheizt werden. Die Heizebenen 100, 101 , 102, 103 werden im Betrieb des Reaktors von den Reaktionsgasen durchströmt und die Heizelemente 1 10, I I I , 1 12, 1 13 werden von den R eaktionsgasen kontaktiert.
An mindestens einem Heizelement 1 10, 1 1 1 , 1 12, 1 13 ist der Katalysator angeordnet und ist dort beheizbar. Der Katalysator kann direkt oder indirekt mit den Heizelementen 1 10, 1 1 1 , 1 12, 1 13 verbunden sein, so dass diese Heizelemente den Katalysatorträger oder einen Träger für den Katalysatorträger darstellen.
In dem Reaktor erfolgt somit die Wärmeversorgung der Reaktion elektrisch und wird nicht von Außen mittels Strahlung durch die Wandungen des Reaktors eingebracht, sondern direkt in das Innere des Reaktionsraumes. Es wird eine direkte elektrische Beheizung des Katalysators realisiert.
Für die Heizelemente 1 10, I I I , 1 1 2, 1 1 kommen bevorzugt Heizleiterlegierungen wie FeCrAl- Legierungen zum Einsatz. Alternativ zu metallischen Werkstoffen können zudem auch elektrisch leitfähige Si-basierte Materialien, besonders bevorzugt SiC, und/oder kohlenstoffbasierte Materialien eingesetzt werden. Im erfindungsgemäßen einzusetzenden Reaktor ist weiterhin mindestens einmal eine zum Beispiel keramische Zwischenebene 200, 201 , 202 (die vorzugsweise von einem keramischen oder metallischen Traggerüst/'-ebene getragen wird) zwischen zwei Heizebenen 100, 101 , 102, 103 angeordnet, wobei die Zwischenebene(n) 200, 201 , 202 beziehungsweise der Inhalt 210, 2 1 1 , 2 12 einer Zwischenebene 200, 201 , 202 ebenfalls im Betrieb des Reaktors vom den Reaktionsgasen durchströmt werden. Dieses hat den Effekt einer Homogenisierung der Fluidströmung Es ist auch möglich, dass zusätzlicher Katalysator in einer oder mehreren Zwischenebenen 200, 201 , 202 oder weiteren Isolationselementen im Reaktor vorhanden ist. Dann kann eine adiabatische Reaktion ablaufen.
Bei der Verwendung von FeCrAl-Heizieitern kann die Tatsache ausgenutzt werden, dass das Material durch Temperatureinwirkung in Gegenwart von Luft/Sauerstoff eine AkC -Schutzschicht ausbildet. Diese Passivierungsschicht kann als Grundlage eines Washcoats dienen, welcher als katalytisch aktive Besch i c htung fungiert. Damit ist die direkte Widerstandsbeheizung des Katalysators beziehungsweise die Wärmeversorgung der Reaktion direkt über die kataly t ische Struktur realisiert. Es ist auch, bei Verwendung anderer Fleizleiter, die Bildung anderer Schutzschichten wie beispielsweise von Si-O-C-Systemen möglich.
Di e Druckaufnahme i m Reaktor k ann über einen druckfesten Stah l mantel erfolgen. Unter Verwendung geeigneter keramischer Isolationsmaterialien kann erreicht werden, dass der drucktragende Stahl Temperaturen von weniger als 200 °C und, wo notwendig, auch weniger als 60 °C ausgesetzt wird. Durch entsprechende Vorrichtungen kann dafür gesorgt werden, dass bei Taupunktsunterschreitung keine Auskondensation von Wasser am Stahlmantel erfolgt.
Die elektrischen Anschlüsse sind in FIG. 1 nur sehr schematisch dargestellt. Sie können im kalten Bereich des Reaktors innerhalb einer Isolierung zu den Enden des Reaktors geführt oder seitlich aus den Heizelementen 1 10, 1 1 1 , 1 12, 1 1 3 durchgeführt werden, so dass die eigentlichen elektrischen Anschlüsse im kalten Bereich des Reaktors vorgesehen sein können. Die elektrische Beheizung erfolgt mit Gleichstrom oder Wechselstrom.
Der Einsatz der elektrisch beheizten Elemente im Eintrittsbereich des Reaktors wirkt sich auch positiv im Hinblick auf das Kaltstart- und Anfahrverhalten aus, insbesondere in Hinblick auf das rasche Aufheizen auf Reaktionstemperatur und die bessere Kontroilierbarkeit.
Der Katalysator kann prinzipiell als lose Schüttung, als Washcoat oder auch als monolithischer Formkörper auf den Heizelementen 1 10, 1 1 1 , 1 12, 1 13 vorliegen. Es ist jedoch bevorzugt, dass der Katalysator direkt oder indirekt mit den Heizelementen 1 10, I I I , 1 12, 1 13 verbunden ist, so dass diese Heizelemente den Katalysatorträger oder einen Träger für den Katalysatorträger darstellen. Es ist auch möglich, dass zusätzlicher Katalysator in einer oder mehreren Zwischenebenen 200, 201 , 202 oder weiteren Isolationselementen im Reaktor vorhanden ist.
Durch geeignete Formgebung kann eine Oberflächenvergrößerung erreicht werden. Es ist möglich, dass in den Heizebenen 100, 101 , 102, 103 Fleizelemente 1 10, I I I , 1 12, 1 1 3 angeordnet sind, welche spiralförmig, mäanderförmig, gitterförmig und/oder netzförmig aufgebaut sind. Die (beispielsweise keramischen) Zwischenebenen 200, 201 , 202 respektive ihr Inhalt 210, 21 1 , 212 umfassen ein gegenüber den Reaktionsbedingungen beständiges Material, beispielsweise einen keramischen Schaum. Sie dienen zur mechanischen Abstützung der Heizebenen 100, 101 , 102, 103 sowie zur Durchmischung und Verteilung des Gasstroms. Gleichzeitig ist so eine elektrische Isolierung zwischen zwei Heizebenen möglich. Es ist bevorzugt, dass das Material des Inhalts 210, 21 1 , 212 einer Zwischenebene 200, 201 , 202 Oxide, Carbide, Nitride, Phosphide und/oder Boride von Aluminium, Silizium und/oder Zirkonium umfasst. Ein Beispiel hierfür ist SiC. Ferner bevorzugt ist Cordierit.
Die Zwischenebene 200, 201 , 202 kann beispielsweise eine lose Schüttung von Festkörpern umfassen. Diese Festkörper selbst können porös oder massiv sein, so dass das Fluid durch Lücken zwischen den Festkörpern hindurchströmt. Es ist bevorzugt, dass das Material der Festkörper Oxide, Carbide, Nitride, Phosphide und/oder Boride von Aluminium, Si lizium und/oder Zirkonium umfasst. Ein Beispiel hierfür ist SiC. Ferner bevorzugt ist Cordierit. Es ist ebenfalls möglich, dass die Zwischenebene 200, 201, 202 einen einstückigen porösen Festkörper umfasst. In diesem Fall durchströmt das Fluid die Zwischenebene über die Poren des Festkörpers. Bevorzugt sind Wabenmonolithe, wie sie beispielsweise bei der Abgasreinigung von Verbrennungsmotoren eingesetzt werden. Flinsichtlich der baulichen Abmessungen ist bevorzugt, dass die durchschnittliche Länge einer Heizebene 100, 101, 102, 103 in Strömungsrichtung des Fluids gesehen und die durchschnittliche Länge einer Zwischenebene 200, 201, 202 in Strömungsrichtung des Fluids gesehen in einem Verhältnis von > 0,01:1 bis < 100:1 zueinander stehen. Noch vorteilhafter sind Verhältnisse von > 0,1:1 bis < 10:1 oder 0,5:1 bis < 5:1. Es ist weiterhin möglich, dass an zumindest einem Heizelement 110, 111, 112, 113 eine von den übrigen Fleizelementen 110, 111, 112, 11 verschiedene Menge und/oder Art des Katalysators vorliegt. Vorzugsweise sind die Heizelemente 110, 111, 112, 113 so eingerichtet, dass sie jeweils unabhängig voneinander elektrisch beheizt werden können. Entsprechend können im erfindungsgemäßen Verfahren die einzelnen Heizelemente 110, 111, 112, 113 mit einer unterschiedlichen Fleizleistung betrieben werden.
Im Endergebnis können die einzelnen Heizebenen einzeln gesteuert und geregelt werden. Im Reaktoreintrittsbereich kann nach Bedarf auch auf einen Katalysator in den Heizebenen verzichtet werden, so dass ausschließlich die Aufheizung und keine Reaktion im Eintrittsbereich erfolgt. Dieses ist insbesondere im Hinblick auf das Anfahren des Reaktors von Vorteil. Wenn sich die einzelnen Heizelemente 110, 111, 112, 113 in Leistungseintrag, Katalysatorbeladung und/oder Katalysatorart unterscheiden, kann ein für die jeweilige Reaktion angepasstes Temperaturprofil erreicht werden. In Hinblick auf die Anwendung für endotherme Gleichgewichtsreaktionen ist dieses beispielsweise ein Temperaturprofil, das die höchsten Temperaturen und damit den höchsten Umsatz am Reaktoraustritt erreicht. Der Reaktor kann modular aufgebaut sein. Ein Modul kann beispielsweise eine Heizebene, eine Zwischenebene, die elektrische Kontaktierung und die entsprechenden weiteren Isolationsmaterialien und Wärmedämmstoffe enthalten.
Die vorliegende Erfindung wird anhand der nachfolgenden Beispiele noch näher beschrieben, ohne jedoch hierauf beschränkt zu sein. Synthese der Katalysatoren:
Beispiel 1 : Synthese verschiedener Übergangsmetall- bzw. Edelmetall-haltiger Carbidkatalysatoren Die geträgerten Katalysatoren wurden durch langsames Zutropfen der in der folgenden Tabelle angegebenen Menge an Salzlösung zu 2 g von getrocknetem Molybdäncarbid hergestellt. Nach einer Homogenisierung wurde der feuchte Feststoff im Vakuumtrockenschrank über Nacht bei 80 °C getrocknet. Anschließend erfolgte die Calcinierung bei 450 °C für 4 h in synthetischer Luft. Nach dem Vermengen des Katalysators mit 210 mg an SiC wurden 4-6 mg der Metall-haltigen Systeme in einem verdünnten CH4/H2 Strom (N2: 1 5 Nml/ min, 1 1;: 80 Nml/min, CH4: 20 Nml/min) bei 700°C in dem bei der RWGS zu verwenden Ii -Kohr Reaktor carburisiert. Abschließend wurden die Proben im Stickstoffstrom von 250 Nml/min auf die Zieltemperatur von 850°C aufgeheizt.
Figure imgf000011_0001
KVVGS-Keaktionen :
Allgemeine Versuchsbeschreibung: im Rahmen der katalytischen Tests wurden zunächst jeweils von 0 bis 6 mg des Katalysators mit 210 mg eines SiC -Verdünnungsmaterials jeweils in der Siebgrößenfraktion von 100-200 tun beziehungsweise 125-185 11m miteinander intensiv vermischt.
Die katalytischen Untersuchungen wurden in einem U-rohrförmigen Festbettreaktor aus Quarzglas bei einer Ofentemperatur von 850 °C (mit einer Raumgeschwindigkeit von 1 00000 1 /h) durchgeführt. Hierbei wurde die Probe im Stickstofffluss (250 Nml/min) auf die Zieltemperatur von 850 °C aufgeheizt. Anschließend wurden die Reaktivgase Wasserstoff (75 Nml/min) und Kohlenstoffdioxid (50 Nml/min) unter gleichzeitiger Reduktion des Stickstoffflusses auf 125 Nml min im Bypass zudosiert. Nach einer Mischdauer von 30 min wurden diese auf das sich im Reaktor befindliche Katalysatorsystem beaufschlagt. Nach einer Reaktionsdauer von bis zu 65 h wurde der Katalysator unter Inertbedingungen auf Raumtemperatur abgekühlt. Die Analyse des Produktgasgemisches erfolgte mithiife eines Multikanalinfrarotanalysators.
Beispiel 2: Vergleich zwischen Siliciumcarbid und Molybdäncarbid in der RWGS-Reaktion
Die nachfolgende Tabelle fasst die Ergebnisse des Katalysatorvergleiches in der RWGS-Reaktion zusammen. Die Angabe
Figure imgf000012_0001
[%]" bedeutet den Umsatz an CO2, hier nach 7,5 Stunden, ausgedrückt in Mol-Prozent. Die Angabe "reff(C02)" gibt die mittlere Reaktionsgeschwindigkeit von CO2 an und "X7,5h(C02)/X3h(C02)" ist der Quotient aus dem CC -Umsatz nach 7,5 Stunden und nach 3 Stunden.
Figure imgf000012_0002
Anhand der Tabelle ist erkennbar, dass für das Mo. -System eine signifikant höhere Aktivität als für das SiC System resultiert, wobei keine Deaktivierung des Molybdäncarbids nachweisbar ist.
Beispiel 3: Vergleich zwischen Nickel und/oder Eisen haltigen Mo2C Systemen
Die nachfolgende Tabelle fasst die Ergebnisse des Katalysatorvergleiches in der RWGS-Reaktion zusammen. Die Angabe "X7,5h(C02) [%]" bedeutet den Umsatz an CO2, hier nach 7,5 Stunden, ausgedrückt in Mol-Prozent. Die Angabe "refi(C02)" gibt die mittlere Reaktionsgeschwindigkeit von CO2 an und "X7,5h(C02)/X3h(C02) " ist der Quotient aus dem CC -Umsatz nach 7,5 Stunden und nach 3 Stunden.
Figure imgf000012_0003
Figure imgf000013_0001
Anhand der Tabelle ist erkennbar, dass für die Übergangsmetal l-haltigen o:C-Systeme eine signifikant höhere Aktivität als für das nichtbeladene System resultiert.
Beispiel 4: Vergleich zwischen Ruthenium und/oder Eisen haltigen Mo2C Systemen Die nachfolgende Tabelle fasst die Ergebnisse des Katalysatorvergleiches in der RWGS-Reaktion zusammen. Die Angabe "Xv.shCCC ) [%]" bedeutet den Umsatz an CO2, hier nach 7,5 Stunden, ausgedrückt in Mol-Prozent. Die Angabe "refi(C02)" gibt die mittlere Reaktionsgeschwindigkeit von CO2 an und ' j,5h(C02)/X3h(C02)" ist der Quotient aus dem CCVUmsatz nach 7,5 Stunden und nach 3 Stunden.
Figure imgf000013_0002
Anhand der Tabelle ist erkennbar, dass für die Edelmetal l-haltigen Mo. -Systeme eine signifikant höhere Aktivität als für das nichtbeladene System resultiert.

Claims

Verfahren zur Reduktion von Kohlendioxid, umfassend den Schritt der Reaktion von Kohlendioxid und Wasserstoff in Gegenwart eines Katalysators unter Bildung von Kohlenmonoxid und Wasser, dadurch gekennzeichnet, dass die Reak tion bei einer Temperatur von > 700 °C durchgeführt wird und der Katalysator
(I) ein Metall Ml und/oder wenigstens zwei verschiedene Metalle Ml und M 2 auf und/oder in einem Träger ist, wobei der Träger ein Carbid, Oxycarbid, Carbonitrid, Nitrid, Borid, Silicid, Germanid und/oder Selenid der Metalle A und/oder B ist; und/oder
(II) Reaktionsprodukte von (I) in Gegenwart eines Gasgemischs umfassend Kohlendioxid, Wasserstoff, Kohlenmonoxid und Wasser bei einer Temperatur von > 700 °C umfasst; wobei gilt:
Ml und M2 sind unabhängig voneinander ausgewählt aus der Gruppe: Cr, Mn, Fe, Co, Ni,
Re, Ru, Rh, Ir, Os, Pd, Pt, Zn, Cu, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, und/oder Lu; und
A und B sind unabhängig voneinander ausgewählt aus der Gruppe: Be, Mg, Ca, Sc, Ti, V, Cr, Mn. Fe, Co, Ni, Y, Zr, Nb, Mo, I I f. Ta, W, La. Ce, Pr, Nd, Sm. Eu, Gd, Tb, Dy, Ho, Er,
Figure imgf000014_0001
Verfahren gemäß Anspruch 1, wobei weiterhin während der Reaktion ein Kohlenwasserstoff mit 1 bis 4 C-Atomen hinzugefügt wird.
Verfahren gemäß Anspruch 1 oder 2, wobei der Katalysator (I) als Metalle Ml und. oder M2
Cr, Mn, Fe, Co, Ni, Re, Ru, Rh, Ir, Os, Pd, Pt, Zn, Cu, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, und/oder Lu auf M02C und/oder WC umfasst.
Verfahren gemäß einem der Ansprüche 1 bis 3, wobei die Reaktion bei einer Temperatur von > 700 °C bis < 1300 °C durchgeführt wird.
Verfahren gemäß einem der Ansprüche 1 bis 4, wobei die Reaktion bei einem Druck von > 1 bar bis < 200 bar durchgeführt wird.
Verfahren gemäß einem der Ansprüche 1 bis 5, wobei der Katalysator auf einem Träger aufgebracht ist und der Träger ausgewählt ist aus der Gruppe umfassend Oxide, Carbide, Nitride, Phosphide und/oder Boride von Aluminium, Silizium und/oder Zirkonium.
7. Verfahren gemäß einem der Ansprüche 1 bis 6, wobei die Reaktion in autothermaler Fahrweise betrieben wird.
8. Verfahren gemäß einem der Ansprüche 1 bis 7, wobei die Reaktion in einem Strömungsreaktor durchgeführt werden, welcher in Strömungsrichtung der Reaktionsgase gesehen eine Mehrzahl von Heizebenen (100, 101, 102, 103) umfasst, welche mittels
Heizelementen (110, 111, 112, 113) elektrisch beheizt werden, wobei die Heizebenen (100, 101, 102, 100) von den Reaktionsgasen durchströmbar sind, wobei an mindestens einem Heizelement (110, 111, 112, 113) der Katalysator angeordnet ist und dort beheizbar ist und mindestens einmal eine Zwischenebene (200, 201, 202) zwischen zwei Heizebenen (100, 101, 102, 103) angeordnet ist, wobei die Zwischenebene (200, 201, 202) ebenfalls von den
Reaktionsgasen durchströmbar ist.
9. Verfahren gemäß Anspruch 8, wobei in den Heizebenen (100, 101, 102, 103) Heizelemente (110, 111, 112, 113) angeordnet sind, welche spiral örmi , mäanderförmig, gitterförmig und/oder netzförmig aufgebaut sind. 10. Verfahren gemäß Anspruch 8 oder 9, wobei das Material des Inhalts (210, 211, 212) einer Zwischenebene (200, 201, 202) Oxide, Carbide, Nitride, Phosphide und/oder Boride von Aluminium, Silizium und/oder Zirkonium umfasst.
11. Verfahren gemäß einem der Ansprüche 8 bis 10, wobei an zumindest einem Heizelement (110, 111, 112, 113) eine von den übrigen Heizelementen (110, 111, 112, 113) verschiedene Menge und/oder Art des Katalysators vorliegt.
12. Verfahren gemäß einem der Ansprüche 8 bis 11, wobei die einzelnen Heizelemente (110, 111, 112, 113) mit einer unterschiedlichen Heizleistung betrieben werden.
13. Verwendung eines ein Metallcarbid umfassenden Katalysators in der Reaktion von Kohlendioxid und Wasserstoff, wobei Kohlenmonoxid und Wasser gebildet werden, dadurch gekennzeichnet, dass der Katalysator
(I) ein Metall Ml und/oder wenigstens zwei verschiedene Metalle Ml und M2 auf und/oder in einem Träger ist, wobei der Träger ein Carbid, Oxycarbid, Carbonitrid, Nitrid, Borid, Silicid, Germanid und/oder Selenid der Metalle A und/oder B ist; und/oder
(II) Reaktionsprodukte von (I) in Gegenwart eines Gasgemischs umfassend Kohlendioxid, Wasserstoff, Kohlenmonoxid und Wasser bei einer Temperatur von > 700 °C umfasst; wobei gilt:
Ml und M2 sind unabhängig voneinander ausgewählt aus der Gruppe: Cr, Mn, Fe, Co, Ni, e, Ru, Rh, Ir, Os, Pd, Pt, Zn, Cu, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, und/oder Lu; und
A und B sind unabhängig voneinander ausgewählt aus der Gruppe: Be, Mg, Ca, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Y, Zr, Nb, Mo, I I f. Ta, W, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, I m. Yb, und/oder Lu.
Verwendung gemäß Anspruch 13, wobei der Katalysator als Metalle Ml und/oder M2 Cr, Mn, Fe, Co, Ni, Re, Ru. Rh. Ir, Os, Pd, Pt, Zn, Cu, La. Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho,
Er, Tm, Yb, und/oder Lu auf M02C und/oder WC umfasst.
Verwendung gemäß Anspruch 13 oder 14, wobei der Katalysator auf einem Träger aufgebracht ist und der Träger ausgewählt ist aus der Gruppe umfassend Oxide, Carbide, Nitride, Phosphide und/oder Boride von Aluminium, Silizium und/oder Zirkonium.
PCT/EP2013/054968 2012-03-13 2013-03-12 Verfahren zur reduktion von kohlendioxid bei hohen temperaturen an katalysatoren auf insbesondere carbidischen trägern WO2013135673A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102012203926 2012-03-13
DE102012203926.0 2012-03-13

Publications (1)

Publication Number Publication Date
WO2013135673A1 true WO2013135673A1 (de) 2013-09-19

Family

ID=47844375

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2013/054968 WO2013135673A1 (de) 2012-03-13 2013-03-12 Verfahren zur reduktion von kohlendioxid bei hohen temperaturen an katalysatoren auf insbesondere carbidischen trägern

Country Status (1)

Country Link
WO (1) WO2013135673A1 (de)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016152698A1 (ja) * 2015-03-20 2016-09-29 積水化学工業株式会社 有機物質の生産方法及び装置
CN109954507A (zh) * 2019-04-16 2019-07-02 宁夏大学 Ni-Rh/αβ-MoXC复合催化剂及制备和应用
CN112264073A (zh) * 2020-10-29 2021-01-26 电子科技大学 一种螺旋结构c3n4纳米纤维光催化剂的制备方法
CN112958124A (zh) * 2021-02-07 2021-06-15 同济大学 一种铟掺杂碳化钼纳米花核壳结构光催化剂及其制备和应用
US11958047B2 (en) 2018-06-29 2024-04-16 Shell Usa, Inc. Electrically heated reactor and a process for gas conversions using said reactor

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6207609B1 (en) 1999-09-30 2001-03-27 N.V. Union Miniere S.A. Method of forming molybdenum carbide catalyst
DE10023410A1 (de) * 2000-05-12 2001-11-15 Linde Gas Ag Verfahren zur Erzeugung eines CO- und H2-haltigen Behandlungsgases für die Wärmebehandlung von metallischem Gut, Gasgenerator und Wärmebehandlungsanlage
WO2002046676A1 (en) * 2000-12-05 2002-06-13 Texaco Development Corporation Apparatus and method for heating catalyst for start-up of a compact fuel processor
WO2002076885A2 (en) 2001-03-26 2002-10-03 Umicore Method of using molybdenum carbide catalyst

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6207609B1 (en) 1999-09-30 2001-03-27 N.V. Union Miniere S.A. Method of forming molybdenum carbide catalyst
DE10023410A1 (de) * 2000-05-12 2001-11-15 Linde Gas Ag Verfahren zur Erzeugung eines CO- und H2-haltigen Behandlungsgases für die Wärmebehandlung von metallischem Gut, Gasgenerator und Wärmebehandlungsanlage
WO2002046676A1 (en) * 2000-12-05 2002-06-13 Texaco Development Corporation Apparatus and method for heating catalyst for start-up of a compact fuel processor
WO2002076885A2 (en) 2001-03-26 2002-10-03 Umicore Method of using molybdenum carbide catalyst

Non-Patent Citations (7)

* Cited by examiner, † Cited by third party
Title
HUANG ET AL., FUEL PROCESSING TECHNOLOGY, vol. 91, 2010, pages 185
IOANNIS VALSAMAKIS ET AL: "Sulfur-tolerant lanthanide oxysulfide catalysts for the high-temperature water-gas shift reaction", APPLIED CATALYSIS. B, ENVIRONMENTAL, 1 May 2011 (2011-05-01), XP055064670, ISSN: 0926-3373, DOI: 10.1016/j.apcatb.2011.05.037 *
JIANGUO ZHANG ET AL: "Kinetic Studies of Carbon Dioxide Reforming of Methane over Ni-Co/Al-Mg-O Bimetallic Catalyst", INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, vol. 48, no. 2, 21 January 2009 (2009-01-21), pages 677 - 684, XP055064671, ISSN: 0888-5885, DOI: 10.1021/ie801078p *
NAGAI M ET AL: "Nano-structured nickel-molybdenum carbide catalyst for low-temperature water-gas shift reaction", APPLIED CATALYSIS A: GENERAL, ELSEVIER SCIENCE, AMSTERDAM, NL, vol. 313, no. 2, 4 October 2006 (2006-10-04), pages 137 - 145, XP028001859, ISSN: 0926-860X, [retrieved on 20061004], DOI: 10.1016/J.APCATA.2006.07.006 *
NAGAI; KURAKAMI, J. CHEM. ENG. JAPAN, vol. 38, no. 10, 2005, pages 807 - 812
SCHAIDLE J A ET AL: "Effects of sulfur on Mo2C and Pt/Mo2C catalysts: Water gas shift reaction", JOURNAL OF CATALYSIS, ACADEMIC PRESS, DULUTH, MN, US, vol. 272, no. 2, 15 June 2010 (2010-06-15), pages 235 - 245, XP027078050, ISSN: 0021-9517, [retrieved on 20100521], DOI: 10.1016/J.JCAT.2010.04.004 *
VIANA ET AL: "Catalytic properties of the proton conductor materials: Sr3CaZr0.5Ta1.5O8.75, BaCe0.9Y0.1O2.95 and Ba3Ca1.18Nb1.82O8.73 for reverse water gas shift", SOLID STATE IONICS, NORTH HOLLAND PUB. COMPANY. AMSTERDAM; NL, NL, vol. 178, no. 7-10, 1 May 2007 (2007-05-01), pages 717 - 722, XP022053467, ISSN: 0167-2738, DOI: 10.1016/J.SSI.2007.02.029 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016152698A1 (ja) * 2015-03-20 2016-09-29 積水化学工業株式会社 有機物質の生産方法及び装置
US11958047B2 (en) 2018-06-29 2024-04-16 Shell Usa, Inc. Electrically heated reactor and a process for gas conversions using said reactor
CN109954507A (zh) * 2019-04-16 2019-07-02 宁夏大学 Ni-Rh/αβ-MoXC复合催化剂及制备和应用
CN112264073A (zh) * 2020-10-29 2021-01-26 电子科技大学 一种螺旋结构c3n4纳米纤维光催化剂的制备方法
CN112264073B (zh) * 2020-10-29 2021-12-03 电子科技大学 一种螺旋结构c3n4纳米纤维光催化剂的制备方法
CN112958124A (zh) * 2021-02-07 2021-06-15 同济大学 一种铟掺杂碳化钼纳米花核壳结构光催化剂及其制备和应用
CN112958124B (zh) * 2021-02-07 2021-12-31 同济大学 一种铟掺杂碳化钼纳米花核壳结构光催化剂及其制备和应用

Similar Documents

Publication Publication Date Title
WO2013135707A1 (de) Verfahren zur herstellung eines kohlenmonoxid enthaltenden gasgemisches bei hohen temperaturen an mischmetalloxidkatalysatoren umfassend edelmetalle
DE69908242T2 (de) Reformer
DE69913037T2 (de) Reformierungsreaktor
DE69702190T2 (de) Anlage für teiloxidationsreaktionen
EP2033943B1 (de) Katalysator zur Methanierung von Kohlenstoffoxiden, Verfahren zur Herstellung des Katalysators und Methanierungsverfahren
DE60024462T2 (de) Katalysatorstruktur und Verfahren zur Fischer-Tropsch-Synthese
EP0787679B1 (de) Verfahren und Vorrichtung zur Gewinnung eines wasserstoffreichen, kohlenmonoxidarmen Gases
EP1542800B1 (de) Verfahren zur autothermen dampfreformierung von kohlenwasserstoffen mit einem mehrschichtigen katalysator
EP1157968B2 (de) Verfahren zur autothermen, katalytischen Dampfreformierung von Kohlenwasserstoffen
WO2013135673A1 (de) Verfahren zur reduktion von kohlendioxid bei hohen temperaturen an katalysatoren auf insbesondere carbidischen trägern
US20130183221A1 (en) Preparation of copper oxide-cerium oxide-supported nano-gold catalysts and its application in removal of carbon monoxide in hydrogen stream
WO2014139678A1 (de) Verfahren zur oxidation von ammoniak und dafür geeignete anlage
Khoshbin et al. Combustion dispersion of CuO–ZnO–Al2O3 nanocatalyst over HZSM-5 used in DME production as a green fuel: effect of citric acid to nitrate ratio on catalyst properties and performance
WO2013135667A1 (de) Verfahren für die synthesegasherstellung
WO2013135664A1 (de) Verfahren zur reduktion von kohlendioxid bei hohen temperaturen an mischmetalloxid-katalysatoren auf oxidischen mit aluminium, cer und/oder zirkonium dotierten trägern
WO2013135660A1 (de) Axialer strömungsreaktor mit heiz- und zwischenebenen
WO2013135668A1 (de) Chemisches reaktorsystem, umfassend einen axialen strömungsreaktor mit heiz- und zwischenebenen
EP1427668B9 (de) Vorrichtung zur erzeugung von wasserstoff
WO2013135662A1 (de) Verfahren zur reduktion von kohlendioxid bei hohen temperaturen an mischmetalloxidkatalysatoren
WO2013135665A1 (de) Verfahren zur reduktion von kohlendioxid bei hohen temperaturen an mischmetalloxid-katalysatoren in form von partiell substituierten hexaaluminaten
EP1562853A1 (de) Verfahren zur erzeugung eines wasserstoffhaltigen brenngases für brennstoffzellen sowie vorrichtung dafür
WO2013135666A1 (de) Axialer strömungsreaktor auf der basis einer fe-cr-al-legierung
WO2013135663A1 (de) Verfahren zur reduktion von kohlendioxid bei hohen temperaturen an mischmetalloxid-katalysatoren umfassend edelmetalle
Dehmani et al. Preparation by two simple methods and characterization of Ni3N and use in the hydrogenation of isopropanol
WO2013135656A1 (de) Verfahren zur reduktion von kohlendioxid bei hohen temperaturen an mischmetalloxid-katalysatoren in form von hexaaluminaten

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13708482

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13708482

Country of ref document: EP

Kind code of ref document: A1