WO2013135665A1 - Verfahren zur reduktion von kohlendioxid bei hohen temperaturen an mischmetalloxid-katalysatoren in form von partiell substituierten hexaaluminaten - Google Patents

Verfahren zur reduktion von kohlendioxid bei hohen temperaturen an mischmetalloxid-katalysatoren in form von partiell substituierten hexaaluminaten Download PDF

Info

Publication number
WO2013135665A1
WO2013135665A1 PCT/EP2013/054954 EP2013054954W WO2013135665A1 WO 2013135665 A1 WO2013135665 A1 WO 2013135665A1 EP 2013054954 W EP2013054954 W EP 2013054954W WO 2013135665 A1 WO2013135665 A1 WO 2013135665A1
Authority
WO
WIPO (PCT)
Prior art keywords
reaction
catalyst
carbon dioxide
mixed metal
heating
Prior art date
Application number
PCT/EP2013/054954
Other languages
English (en)
French (fr)
Inventor
Leslaw Mleczko
Daniel Gordon Duff
Alexander Karpenko
Emanuel Kockrick
Vanessa GEPERT
Albert TULKE
Daniel Wichmann
Original Assignee
Bayer Intellectual Property Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bayer Intellectual Property Gmbh filed Critical Bayer Intellectual Property Gmbh
Publication of WO2013135665A1 publication Critical patent/WO2013135665A1/de

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • C01B3/34Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
    • C01B3/38Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts
    • C01B3/40Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts characterised by the catalyst
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J12/00Chemical processes in general for reacting gaseous media with gaseous media; Apparatus specially adapted therefor
    • B01J12/007Chemical processes in general for reacting gaseous media with gaseous media; Apparatus specially adapted therefor in the presence of catalytically active bodies, e.g. porous plates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/24Stationary reactors without moving elements inside
    • B01J19/248Reactors comprising multiple separated flow channels
    • B01J19/2485Monolithic reactors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/02Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the alkali- or alkaline earth metals or beryllium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/78Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with alkali- or alkaline earth metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/89Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals
    • B01J23/8933Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals also combined with metals, or metal oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/8946Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals also combined with metals, or metal oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with alkali or alkaline earth metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/008Details of the reactor or of the particulate material; Processes to increase or to retard the rate of reaction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/02Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds
    • B01J8/04Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid passing successively through two or more beds
    • B01J8/0446Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid passing successively through two or more beds the flow within the beds being predominantly vertical
    • B01J8/0449Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid passing successively through two or more beds the flow within the beds being predominantly vertical in two or more cylindrical beds
    • B01J8/0453Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid passing successively through two or more beds the flow within the beds being predominantly vertical in two or more cylindrical beds the beds being superimposed one above the other
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/02Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds
    • B01J8/04Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid passing successively through two or more beds
    • B01J8/0496Heating or cooling the reactor
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/40Carbon monoxide
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10KPURIFYING OR MODIFYING THE CHEMICAL COMPOSITION OF COMBUSTIBLE GASES CONTAINING CARBON MONOXIDE
    • C10K3/00Modifying the chemical composition of combustible gases containing carbon monoxide to produce an improved fuel, e.g. one of different calorific value, which may be free from carbon monoxide
    • C10K3/02Modifying the chemical composition of combustible gases containing carbon monoxide to produce an improved fuel, e.g. one of different calorific value, which may be free from carbon monoxide by catalytic treatment
    • C10K3/026Increasing the carbon monoxide content, e.g. reverse water-gas shift [RWGS]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00008Controlling the process
    • B01J2208/00017Controlling the temperature
    • B01J2208/00389Controlling the temperature using electric heating or cooling elements
    • B01J2208/00398Controlling the temperature using electric heating or cooling elements inside the reactor bed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00008Controlling the process
    • B01J2208/00017Controlling the temperature
    • B01J2208/00389Controlling the temperature using electric heating or cooling elements
    • B01J2208/00415Controlling the temperature using electric heating or cooling elements electric resistance heaters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00008Controlling the process
    • B01J2208/00017Controlling the temperature
    • B01J2208/00522Controlling the temperature using inert heat absorbing solids outside the bed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/24Stationary reactors without moving elements inside
    • B01J2219/2401Reactors comprising multiple separate flow channels
    • B01J2219/2402Monolithic-type reactors
    • B01J2219/2409Heat exchange aspects
    • B01J2219/2416Additional heat exchange means, e.g. electric resistance heater, coils
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/24Stationary reactors without moving elements inside
    • B01J2219/2401Reactors comprising multiple separate flow channels
    • B01J2219/2402Monolithic-type reactors
    • B01J2219/2425Construction materials
    • B01J2219/2427Catalysts
    • B01J2219/2428Catalysts coated on the surface of the monolith channels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/24Stationary reactors without moving elements inside
    • B01J2219/2401Reactors comprising multiple separate flow channels
    • B01J2219/2402Monolithic-type reactors
    • B01J2219/2425Construction materials
    • B01J2219/2427Catalysts
    • B01J2219/243Catalyst in granular form in the channels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2523/00Constitutive chemical elements of heterogeneous catalysts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/03Precipitation; Co-precipitation
    • B01J37/031Precipitation
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0205Processes for making hydrogen or synthesis gas containing a reforming step
    • C01B2203/0227Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step
    • C01B2203/0238Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step the reforming step being a carbon dioxide reforming step
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/08Methods of heating or cooling
    • C01B2203/0805Methods of heating the process for making hydrogen or synthesis gas
    • C01B2203/085Methods of heating the process for making hydrogen or synthesis gas by electric heating
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • C01B2203/1047Group VIII metal catalysts
    • C01B2203/1052Nickel or cobalt catalysts
    • C01B2203/1058Nickel catalysts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • C01B2203/1047Group VIII metal catalysts
    • C01B2203/1064Platinum group metal catalysts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • C01B2203/1047Group VIII metal catalysts
    • C01B2203/1064Platinum group metal catalysts
    • C01B2203/107Platinum catalysts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/141Feedstock
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Definitions

  • the present invention relates to a process for reducing carbon dioxide comprising the step of reacting carbon dioxide and hydrogen in the presence of a catalyst to form carbon monoxide and water.
  • the invention further relates to the use of such a catalyst in the reduction of carbon dioxide.
  • WGS water gas shift reaction
  • a composition comprising a catalytically active metal and a solid support, wherein a portion of the catalytically active metal is distributed on the outer surface of the support and another portion is in the core structure of the solid support and wherein the solid support is a refractory oxide and ion-conducting oxide.
  • WO 2008/031024 A1 describes a solid-state membrane for a reforming reactor which comprises at least one anion-conducting oxide from the group of hexaaluminates, devices, perovskites and other mixed metal oxides which can adsorb and dissociate molecular oxygen. The membrane absorbs and dissociates molecular oxygen to highly active atomic oxygen and allows oxygen anions to permeate through the membrane.
  • Embodiments of the membrane also have a catalytic activity in the reforming of hydrocarbons to synthesis gas.
  • a reformer with an inner wall which complies with the new membrane b is disclosed as well as a process for reforming hydrocarbons such as high sulfur diesel fuel to produce syngas for use in fuel lines.
  • WO 2009/058584 A2 relates to a water gas shift catalyst comprising a noble metal deposited on a carrier, wherein the carrier is obtained from a mixture comprising Low surface area material such as an aluminate, and more particularly a high surface area material such as a mixed metal oxide, particularly a mixture of zirconium oxide and cerium oxide, which also has one or more of the high surface area transition metal auminates group; an alkali or Erdalkalidot michsstoff and an additional dopant from the group Ga, Nd, Pr, W, Ge, Au, Ag, Fe, their oxides and mixtures thereof can be added.
  • Low surface area material such as an aluminate
  • a high surface area material such as a mixed metal oxide, particularly a mixture of zirconium oxide and cerium oxide, which also has one or more of the high surface area transition metal auminates group
  • WO 2005/026093 A1 describes, for example, a process for the preparation of dimethyl ether (DME) which comprises separating a C (-rich stream from a crude product stream with DME and CO2 from a synthesis of DME via synthesis gas introduced into an RWGS reactor in which it reacts with hydrogen in the presence of a catalyst to give a CO rich stream, and the CO rich stream is recycled back to the methanol synthesis step
  • DME dimethyl ether
  • the object of the present invention is therefore to provide a process for carrying out the RWGS reaction, which can be operated with a cost-effective catalyst having high activity and selectivity as well as long-term stability at high temperatures.
  • This object is achieved by a method for the reduction of carbon dioxide, comprising the step of the reaction of carbon dioxide and hydrogen in the presence of a catalyst to form carbon monoxide and water, wherein the reaction is carried out at a temperature of> 700 ° C and the catalyst Mixed metal oxide includes, soft
  • (I) is an oxide of the general formula LO x (M ( y / z ) Al (2-y / z) 03) z; and or
  • reaction products of (I) in the presence of carbon dioxide, hydrogen, carbon monoxide and / or water at a temperature of> 700 ° C comprises;
  • L is selected from the group: Na, K, Rb, Cs, Mg, Ca, Sr, Ba, Sc, Y, Sn, Pb, Pd, Mn, In, Tl, La, Ce, Pr, Nd, Sm, Eu , Gd, Tb, Dy, Ho, Er, Im, Yb and / or Lu; and
  • M is selected from the group: Ti, Zr, Li, V, Nb, Ta, Cr, Mo, W, Mn, Re, Fe, Ru, Os, Co, Rh, Ir, Ni, Pd, Pt, Zn, Cu , Ag and / or Au; and 1 ⁇ x ⁇ 2; 0 ⁇ y ⁇ 1 2; and 4 ⁇ z ⁇ 9.
  • the catalysts used according to the invention or their conversion products under the prevailing reaction conditions are stable catalysts which are comparable with industrial benchmark systems in at least one respect.
  • the RW ' GS reaction can be selectively operated at the elevated temperatures according to the invention.
  • the present invention relates to the recovery of CO and 1 LO by RWGS reaction. This is in contrast to the WGS reaction, where possibly the back reaction also leads to CO and 1 1).
  • the process according to the invention is preferably carried out such that the conversion of CO 2 after completion of the reaction (in particular after leaving a reactor such as, for example, an axial flow reactor) is more than 35 mol%, preferably more than 40 mol%, more preferably more than 45 mol% and most preferably above 50 mole%.
  • LAI12O 19 or LAI11O18 can be considered. This may alternatively be expressed as LO (Ah03) 6 or LOi, 5 (Ai203) 5.5.
  • L are in particular Ba, Sr, Ca, La, as well as other metals of alkaline earth (group 2) and rare earths (lanthanides) and mixtures thereof.
  • these simple hexaaluminate compositions may already have some basic activity for the RWGS or are suitable as high-temperature supports which can be loaded with active metal particles in a post-preparation step.
  • partial substitution with smaller, catalytically active metal ions in the 1 l exaaluminate group may be carried out, the substitution usually taking place at the site of the aluminum cations.
  • M is transition metals of the first, second, or third series, especially the transition metals of the first series, Cr, Mn, Fe, Co, Ni, and the noble metals, such as Ru, Rh, Pd, and Pt.
  • Multiple catalytically active dopants may be combinations of different first-row transition metals, combinations of different precious metals, or combinations of one or more noble metals with one or more transition metals of the first series. Further substitutions at L and / or M posts, also apart from the already named element groups, are partly also possible.
  • the thus substituted hexaaluminate can then be doped, loaded or mixed with further catalytic substances.
  • the formula can be postulated such that the ratio between LO and Al2O3, namely the parameter z in the structural formula LO supplemented by M (M ( y / z ) Al (2 - y / z) 03) z, according to 4 ⁇ z ⁇ 9 is varied.
  • L can also stand for a mixture of several divalent and / or trivalent cations (L, L ', L ",.
  • Flexaaluminate materials can also be described as” aluminates "(cf., US 2009/0 1 96822 A1
  • phase-separated portions of the catalytically active dopants L (and L ', L ", ...) can be alloyed or mixed with one another
  • any mixtures of the different states are possible, both under reaction conditions and in principle directly in the case of the fresh catalyst, which means that several states of the active components are possible side by side, wherein metal elements incorporated in the carrier lattice and also outside the same can be present simultaneously, as well as metal elements mixed as mixed metal oxide (or metal alloy) and also separated / segregated.
  • aluminas doped with "L” or the "[.”] -Containing aluminates, in particular including the L-hexaaluminates, are characterized by a particular thermal stability against sintering. Without being bound by theory, this could be related to the surprising stability of catalytic activity at high temperatures.
  • a physical mixture of oxidic constituents of a hexaaluminate, for example 1.0 and MO x mixed with gamma-A bO s, which at least temporarily turns into a hexaaluminate structure under reaction conditions at high temperatures, is likewise part of the present invention.
  • Suitable catalysts for use in accordance with the invention are, in particular, Ni- and Ru-substituted barium hexaaluminates.
  • Mixed metal oxides of type (I) can be prepared, inter alia, by physical (such as PVD) and chemical methods, the latter mainly in the solid phase or liquid phase. Examples include precipitation, co-precipitation, sol-gel process, impregnation, ignition / combustion methods and further gas phase methods such as CVD.
  • physical such as PVD
  • chemical methods the latter mainly in the solid phase or liquid phase. Examples include precipitation, co-precipitation, sol-gel process, impregnation, ignition / combustion methods and further gas phase methods such as CVD.
  • reaction products includes the catalyst phases present under reaction conditions.
  • the gas mixture to which the catalyst is exposed during the reaction including carbon dioxide, hydrogen, carbon monoxide and water, may be four components, for example, in a content of> 80% by weight, preferably> 90% by weight and more preferably> 95% -% contain.
  • a reaction temperature of> 700 ° C is provided.
  • the reaction temperature is> 850 ° C, and more preferably> 900 ° C.
  • a hydrocarbon having 1 to 4 C atoms is added during the reaction.
  • Suitable hydrocarbons are, in particular, alkanes having 1 to 4 C atoms, methane being particularly suitable.
  • the addition of the hydrocarbon takes place at arbitrary positions along the longitudinal axis of the reactor.
  • a hydrocarbon addition can take place at the reactor inlet, at the reactor outlet and / or at a position between inlet and outlet.
  • the hydrocarbon may, for example, in a Antei l of> 0.01% by volume to ⁇ 20% by volume, preferably> 0, 1 volume% to
  • the concentration of the hydrocarbon after the reaction, particularly at the outlet of a reactor in which the reaction is carried out is ⁇ 20% by volume and preferably ⁇ 1% by volume.
  • the mixed metal oxide (I) comprises BaNiAlnOi, CaNiAlnOi9,
  • the reaction is carried out at a temperature of> 700 ° C to ⁇ 1300 ° C. More preferred ranges are> 800 ° C to
  • the reaction is carried out at a pressure of> 1 bar to ⁇ 200 bar.
  • the pressure is> 2 bar to ⁇ 50 bar, more preferably> 10 bar to ⁇ 30 bar.
  • the catalyst is applied to a support and the support is selected from the group comprising oxides, carbides, nitrides, phosphides and / or borides of aluminum, silicon and / or zirconium.
  • the support is selected from the group comprising oxides, carbides, nitrides, phosphides and / or borides of aluminum, silicon and / or zirconium.
  • An example of this is SiC. Further preferred is cordierite.
  • the reaction is operated in autothermal mode.
  • This can be achieved, for example, both by the addition of oxygen in the educt gas, as well as that hydrogen-rich residual gases such as anode residual gas, PSA residual gas, natural gas (preferably methane) and / or additional hydrogen in the presence of CO2 fuel gas sources.
  • (I) is an oxide of the general formula LO x (M ( y / z ) Al (2- y / z) 03) z; and or
  • reaction products of (I) in the presence of carbon dioxide, hydrogen, carbon monoxide and / or water at a temperature of> 700 ° C comprises;
  • L is selected from the group: Na, K, Rb, Cs, Mg, Ca, Sr, Ba, Sc, Y, Sn, Pb, Pd, Mn, In, Tl, La, Ce, Pr, Nd, Sm, Eu , Gd, Tb, Dy, Ho, Er, Im, Yb and / or Lu; and
  • M is selected from the group: Ti, Zr, I I f. V, Nb, Ta, Cr, Mo, W, Mn, Re, Fe, Ru. Os, Co, Rh, Ir, Ni, Pd, Pt, Zn, Cu, Ag and / or Au; and
  • reaction products includes the catalyst phases present under reaction conditions.
  • the mixed metal oxide (I) comprises BaNiAlnOi, CaNiAlnOi9, BaNio, 975Ruo, o25AlnOi9, BaNio, 95Ruo, o5 Al n O19, BaNio, 92Ruo, o8Ali1019, BaNio, 84Pto, i6AinOi9 and / or BaRuo.osAii 1,95019.
  • the catalyst is applied to a support and the support is selected from the group comprising oxides, carbides, nitrides, phosphides and / or borides of aluminum, silicon and / or zirconium.
  • the support is selected from the group comprising oxides, carbides, nitrides, phosphides and / or borides of aluminum, silicon and / or zirconium.
  • An example of this is SiC.
  • Further preferred is cordierite.
  • F 1 G. 1 shows schematically an expanded view of a reactor for carrying out the method according to the invention.
  • FIG. 2-6 show turnover curves for CO 2 in various RWGS experiments
  • the reaction can be carried out in a flow reactor which, seen in the direction of flow of the reaction gases, comprises a plurality of fleece planes 100, 101, 102, 103 which are electrically heated by means of heating elements 11, 11, 12, 13 , Wherein the Fleizebenen 100, 101, 102, 100 are flowed through by the reaction gases, wherein at least one heating element 1 10, 1 1 1, 1 12, 1 13, the catalyst is arranged and heated there and at least once an intermediate level 200, 201 , 202 between two heating levels 100, 101, 102, 103, wherein the intermediate level 200, 201, 202 can also be flowed through by the reaction gases.
  • the reactor has a plurality of (in the present case four) heating levels 100, 101, 102, 103, which are electrically heated by means of corresponding heating elements 110, 111, 112, 13.
  • the heating levels 100, 101, 102, 103 are flowed through by the reaction gases in the operation of the reactor and the heating elements 1 10, 1 1 1, 112, 1 13 are contacted by the reaction gases.
  • At least one Fleizelement 1 10, 1 1 1, 1 12, 1 13, the catalyst is arranged and is heated there.
  • the catalyst may be directly or indirectly connected to the heating elements 1 10, 1 1 1, 1 12, 1 13, so that these heating elements represent the catalyst support or a support for the catalyst support.
  • the heat supply of the reaction takes place electrically and is not introduced from the outside by means of radiation through the walls of the reactor, but directly into the interior of the reaction space. It is realized a direct electrical heating of the catalyst.
  • the heating elements 1 10, 1 1 1, 1 12, 1 13 are preferably Schuleiterlegtechniken such as FeCrAl alloys used.
  • At least one intermediate ceramic level 200, 201, 202 (which is preferably supported by a ceramic or metal support framework / plane) is arranged between two heating levels 100, 101, 102, 103, the intermediate level (n ) 200, 201, 202 or the contents 210, 21 1, 212 of an intermediate level 200, 201, 202 are also flowed through in the operation of the reactor from the reaction gases. This has the effect of homogenizing the fluid flow. It is also possible that additional catalyst is present in one or more intermediate levels 200, 201, 202 or other isolation elements in the reactor. Then an adiabatic reaction can take place.
  • the material forms an AkC protective layer by the action of temperature in the presence of air / oxygen.
  • This passivation layer can serve as the basis of a washcoat which acts as a catalytically active coating.
  • the direct resistance heating of the catalyst or the heat supply of the reaction is realized directly through the catalytic structure. It is also possible, when using other heating conductors, the formation of other protective layers such as Si-O-C systems.
  • the pressure in the reactor can take place via a pressure-resistant steel jacket.
  • suitable ceramic insulation materials it can be achieved that the pressure-bearing steel is exposed to temperatures of less than 200 ° C and, if necessary, less than 60 ° C.
  • the electrical connections are shown in FIG. 1 only shown very schematically. They can be performed in the cold area of the reactor within an insulation to the ends of the reactor or laterally from the heating elements 1 10, 1 1 1, 1 12, 1 13 performed so that the actual electrical connections can be provided in the cold region of the reactor ,
  • the electrical heating is done with direct current or alternating current.
  • the use of the electrically heated elements in the inlet region of the reactor also has a positive effect with regard to the cold start and starting behavior, in particular with regard to rapid heating to the reaction temperature and better controllability.
  • the catalyst can be present in principle as a loose bed, as a washcoat or as a monolithic shaped body on the heating elements 110, 111, 112, 13. However, it is preferred that the catalyst is directly or indirectly connected to the heating elements 1 10, 1 1 1, 1 12, 1 13, so that these heating elements constitute the catalyst support or a support for Kätiysatormik. It is also possible that additional catalyst is present in one or more intermediate levels 200, 201, 202 or other isolation elements in the reactor.
  • heating levels 100, 101, 102, 103 heating elements 1 10, 1 1 1, 1 12, 1 13 are arranged, which are constructed in a spiral, meandering, lattice-shaped and / or reticulated.
  • the 212 comprise a material resistant to the reaction conditions, for example a ceramic foam. They serve for mechanical support of the heating levels 100, 101, 102, 103 and for mixing and distribution of the gas stream. At the same time an electrical insulation between two heating levels is possible. It is preferred that the material of the content 210, 2 1 1, 212 of an intermediate level 200, 201, 202 comprises oxides, carbides, nitrides, phosphides and / or borides of aluminum, silicon and / or zirconium. An example of this is SiC. Further preferred is cordierite.
  • the intermediate level 200, 201, 202 may include, for example, a loose bed of solids. These solids themselves may be porous or solid, so that the fluid flows through gaps between the solids. It is preferred that the material of the solid bodies comprises oxides, carbides, nitrides, phosphides and / or borides of aluminum, silicon and / or zirconium. An example of this is SiC. Further preferred is cordierite.
  • the intermediate plane 200, 201, 202 comprises a one-piece porous solid.
  • the fluid flows through the intermediate plane via the pores of the solid.
  • honeycomb monoliths as used for example in the exhaust gas purification of internal combustion engines.
  • the average length of a heating level 100, 101, 102, 103 is viewed in the direction of flow of the fluid and the average length of an intermediate level 200, 201, 202 in the direction of flow of the fluid is in a ratio of> 0.01: 1 to ⁇ 100: 1 to each other. Even more advantageous are ratios of> 0, 1: 1 to ⁇ 10: 1 or 0.5: 1 to ⁇ 5: 1.
  • heating elements 1 10, 1 1 1, 1 12, 1 13 one of the remaining heating elements 1 10, III, 1 1 2, 1 1 3 different amount and / or type of catalyst is present.
  • the heating elements 1 1 0, 1 1 1, 1 12, 1 13 are arranged so that they can each be electrically heated independently.
  • the individual heating elements 1 1 0, 1 1 1, 1 12, 1 1 3 are operated with a different heat output.
  • the individual heating levels can be individually controlled and regulated.
  • In the reactor inlet area can be dispensed with a catalyst in the heating levels as needed, so that only the heating and no reaction takes place in the inlet area. This is particularly advantageous in terms of starting the reactor.
  • the reactor can be modular.
  • a module may include a heating level, an intermediate level, the electrical contact, and corresponding higher insulation materials and thermal insulation materials.
  • Example 1 a Synthesis method Co-precipitation (see table):
  • Example 1b Synthesis Method "Sugar Route” (Catalysis Example 3)
  • the catalytic tests were carried out in a quartz glass U-tube fixed bed reactor at an oven temperature of 850 ° C (at a space velocity of 100,000 1 / h).
  • the sample was heated to the target temperature of 850 ° C in a nitrogen flow (250 Nml / min).
  • the reactive gases hydrogen (75 Nml / min) and carbon dioxide (50 Nml / min) were metered in with simultaneous reduction of the nitrogen flow to 125 Nml min in the bypass. After a mixing time of 30 min, these were applied to the catalyst system in the reactor.
  • the catalyst was cooled to room temperature under inert conditions.
  • the analysis of the product gas mixture was carried out using a u 11 i kana I in a fragrant ana lysator.
  • Example 2 Comparison between BaAli, Oi>) and BaNi Alum
  • the following table summarizes the results of the catalyst comparison in the RWGS reaction for catalysts from Example 1a.
  • X7.5h (C02) [%] means the conversion of CO2, here after 7.5 hours, expressed in mole percent.
  • the term “r e ff ; 7,5h (C02)” indicates the corresponding average reaction rate of CO2 and "X7,5h (C02) / X3h (C02)” is the quotient of the CC conversion after 7.5 hours and After 3 hours.
  • FIG. 2 shows the CO2 conversion curves over the reaction time for the BaAinOw catalyst (curve “BaAli 2 0i 9 ”) as well as the B aNiAli iOi 9 catalyst (curve “BaNiAlnOw”).
  • the thermodynamic limitation at about 60% conversion is indicated by "TD”. Both catalytic activity and stability increase with Ni addition.
  • Example 3 Comparison of Different Methods of Synthesis in the BaN i A 11 Analyzer
  • the following table summarizes the results of the catalyst comparison in the RWGS reaction for catalysts from Examples Ia and Ib.
  • the term "X?, 5h (C02) [%]” means the conversion of CO2, here after 7.5 hours, expressed in mole percent.
  • the term “r e ff; 7,5ii (C02)” indicates the corresponding average reaction rate of CO2 and "X7,5h (CO 2) X 3h (CO 2)” is the quotient of the CC conversion after 7.5 hours and after 3 hours.
  • FIG. 3 illustrates the CO2 turnover curves over the reaction time for these catalysts.
  • the thermodynamic limitation at about 60% conversion is indicated by "TD”
  • the curve for co-precipitation by "1”
  • the curve for the sugar method by "2”. Both the catalytic activity and the stability of the co-precipitated system are higher than those of the catalyst prepared by the sugar method.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Catalysts (AREA)

Abstract

Ein Verfahren zur Reduktion von Kohlendioxid, umfassend den Schritt der Reaktion von Kohlendioxid und Wasserstoff in Gegenwart eines Katalysators unter Bildung von Kohlenmonoxid und Wasser, ist dadurch gekennzeichnet, dass die Reaktion bei einer Temperatur von > 700 °C durchgeführt wird und dass der Katalysator ein Mischmetalloxid umfasst, welches (I) ein Oxid der allgemeinen Formel LOx(M(y/z)Al(2-y/z)O3)z ist und/oder (II) Reaktionsprodukte von (I) in Gegenwart von Kohlendioxid, Wasserstoff, Kohlenmonoxid und/oder Wasser bei einer Temperatur von > 700 °C umfasst. Es gilt: L ist ausgewählt aus der Gruppe: Mg, Ca, Sr, Ba, Sc, Y, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb und/oder Lu; M ist ausgewählt aus der Gruppe: Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, W, Mn, Re, Fe, Ru, Os, Co, Rh, Ir, Ni, Pd, Pt, Cu, Ag und/oder Au; 1 < x < 2; 0 < y < 12; und 4 ≤ z ≤ 9. In einigen Beispielen umfasst das Mischmetalloxid BaNiAl11O19 oder CaNiAl11O19.

Description

Verfahreii zur Reduktion von Kohlendioxid bei hohen Temperaturen an ischmetalloxid- katalvsatoren in Form von partiell substituierten Hexaaluminaten
Die vorliegende Erfindung betrifft ein Verfahren zur Reduktion von Kohlendioxid, umfassend den Schritt der Reaktion von Kohlendioxid und Wasserstoff in Gegenwart eines Katalysators unter Bildung von Kohlenmonoxid und Wasser. Die Erfindung betrifft weiterhin die Verwendung eines solchen Katalysators in der Reduktion von Kohlendioxid.
Die sogenannte Wassergas-Verschiebungsreaktion (water gas shift reaction, WGS) wird seit Langem zur Verringerung des CO- Antei ls in Synthesegas eingesetzt und beinhaltet die Reaktion von Kohlenmonoxid mit Wasser unter Bildung von Kohlendioxid und Wasserstoff. Diese Reaktion ist eine Gleichgewichtsreaktion.
Sofern in einem chemischen Prozess nicht die Verringerung des Kohlenmonoxid-Gehaltes, sondern des Kohlendioxid-Gehaltes erwünscht ist, käme die umgekehrte Wassergas-Verschiebungsreaktion in Frage, welche in der englischsprachigen Literatur auch als reverse water gas shift reaction oder RWGS bekannt ist. WO 2008/055776 A 1 o ffenb art ein V erfahren zur Herste llung einer katalytis chen
Zusammensetzung umfassend ein katalytisch aktives Metall und einen festen Träger, wobei ein Teil des katalytisch aktiven Metalls auf der äußeren Oberfläche des Trägers verteilt ist und ein weiterer Teil sich in der Kernstruktur des festen Trägers befindet und wobei der feste Träger ein Refraktäroxid und ionenleitendes Oxid ist. WO 2008/031024 A 1 beschreibt eine Festkörpermembran für einen Reformierungsreaktor, welche wenigstens ein anionenleitendes Oxid aus der Gruppe der Hexaaluminate, Gerate, Perowskite und anderen Mischmetalloxiden, welche molekularen Sauerstoff adsorbieren und dissoziieren können. Die Membran absorbiert und dissoziiert molekularen Sauerstoff zu hochaktivem atomaren Sauerstoff und ermöglicht Sauerstoffanionen die Diffusion durch die Membran hindurch. So wird eine hohe lokale Konzentration von Sauerstoff erreicht, um die Bildung und Abscheidung von Kohlenstoffablagerungen auf den Reformerwänden zu verhindern. Ausführungsformen der Membran weis en weiterhin eine katalytische Aktivität in der Reformierung von Kohlenwasserstoffen zu Synthesegas auf. Ein Reformer mit einer Innenwand, welche die neue Membran b einhaltet wird ebenso offenb art wie ein Verfahren zur Reformierung von Kohlenwasserstoffen, wie beispielsweise Dieseltreibstoff mit hohem Schwef elanteil, zur Herstellung von Synthesegas zum Einsatz in Brennstoffzeilen.
WO 2009/058584 A2 betrifft einen Wassergasshift-Katalysator, umfassend ein auf einem Träger abgeschiedenes Edelmetall, wobei der Träger erhalten wird aus einer Mischung umfassend ein Material mit einer geringen Oberfläche wie einem Aluminat und insbesondere einem I Iexaaluminat sowie einem Material mit einer hohen Oberfläche wie zum Beispiel einem Mischmetalloxid, insbesondere einer Mischung aus Zirkonoxid und Ceroxid, zu welchem auch noch ein oder mehrere aus der Gruppe der Übergangsmetallaiuminate mit großer Oberfläche, einem Alkali- oder Erdalkalidotierungsmittel und einem zusätzlichen Dotierungsmittel aus der Gruppe Ga, Nd, Pr, W, Ge, Au, Ag, Fe, deren Oxide und deren Mischungen hinzugefugt werden können.
WO 2005/026093 A 1 beschreibt beispielsweise ein Verfahren zur Herstellung von Dimethylether (DME), welches das Abtrennen eines C( -reiehen Stroms von einem Rohproduktstrom mit DME und CO2 aus einer DME-Synthese über Synthesegas beinhaltet. Der CO:-reiche Strom wird in einen RWGS-Reaktor eingeführt, in dem er mit Wasserstoff in Gegenwart eines Katalysators reagiert, wodurch ein CO-reicher Strom erhalten wird. Der CO-reiche Strom wird in den Schritt der Methanolsynthese wieder zurückgeführt. Gemäß dieser Veröffentlichung kann ein Großteil des C02-Gases aus der Herstellung von DME wiederverwertet werden, wodurch die Ausbeute an DME erhöht wird und die Menge an freigesetztem CO2 verringert wird. Naoufal et al. (Catalysis Letters (1 998), 54, 14 1 - 148) beschreibt die Synthese, Struktur und katalytischen Eigenschaften in der Methanoxidation von Fe-subsituierten Bariumhexaaluminaten.
Gardner et al. (Catalysis Today (201 0), 1 57(1 -4), 1 66- 1 69) berichten über di e katalytische Partialoxidation von Methan über Nickel-substituierten Bariumhexaaluminat-Katalysatoren vom Typ Bao,75NiyAli2-yOi9-deita. Salazar-Villalpando & Gardner (Carbon Dioxide Reduction Metallurgy, Proceedings of [a] Symposia hold during [the] TMS 2008 Annual Meeting & Exhibition, New Orleans, LA, United States, Mar. 9- 1 3 , 2008 (2008), 29-33. Editor(s): Neelameggham, Neale R.: Reddy, Ramana G. Publisher: Minerals, Metals & Materials Society, Warrendale, Pa.) haben BaNiyAli2-yOi9-deita für die CO^-Reduktion mittels Methanreformierung benutzt.
Verschiedene Trägerkatalysatoren wurden von Wheeler et al. (Journal of Catalysis 223 (2004) 1 91 -1 99) für die vorwärts-WGS bei kurzen Kontaktzeiten getestet. Dazu gehören Nickel- sowie Edelmetall-Katalysatoren, die auf Ceroxid getragen sind.
Um mit der RWGS-Reaktion einen wirtschaftlichen Umsatz zu erreichen, sollte sie bei einer deutlich höheren Temperatur betrieben werden (über 700 °C) als in der Literatur üblich, um das Gleichgewicht in Richtung Kohlenmonoxid zu verschieben. Die vorliegende Erfindung hat sich daher die Aufgabe gestellt, ein Verfahren zur Durchführung der RWGS-Reaktion bereitzustell en, welches mit einem kostengünstigen Katalysator mit hoher Aktivität und Selektivität sowie einer Langzeitstabilität bei hohen Temperaturen betrieben werden kann. Diese Aufgabe wird erfindungsgemäß gelöst durch ein Verfahren zur Reduktion von Kohlendioxid, umfassend den Schritt der Reaktion von Kohlendioxid und Wasserstoff in Gegenwart eines Katalysators unter Bildung von Kohlenmonoxid und Wasser, wobei die Reaktion bei einer Temperatur von > 700 °C durchgeführt wird und der Katalysator ein Mischmetalloxid umfasst, weiches
(I) ein Oxid der allgemeinen Formel LOx(M(y/z)Al(2-y/z)03)z ist; und/oder
(II) Reaktionsprodukte von (I) in Gegenwart von Kohlendioxid, Wasserstoff, Kohlenmonoxid und/oder Wasser bei einer Temperatur von > 700 °C umfasst; wobei gilt:
L ist ausgewählt aus der Gruppe: Na, K, Rb, Cs, Mg, Ca, Sr, Ba, Sc, Y, Sn, Pb, Pd, Mn, In, Tl, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, I m, Yb und/oder Lu; und
M ist ausgewählt aus der Gruppe: Ti, Zr, l i , V, Nb, Ta, Cr, Mo, W, Mn, Re, Fe, Ru, Os, Co, Rh, Ir, Ni, Pd, Pt, Zn, Cu, Ag und/oder Au; und 1 < x < 2; 0 < y < 1 2; und 4 < z < 9.
Es wurde überraschenderweise gefunden, dass die erfindungsgemäß eingesetzten Katalysatoren beziehungsweise deren Umwandlungsprodukte unter den herrschenden Reaktionsbedingungen stabile Katalysatoren sind, welche mit industriellen Benchmarksystemen mindestens in einer Hinsicht vergleichbar sind. Die RW'GS -Reaktion kann bei den erfindungsgemäß erhöhten Temperaturen selektiv betrieben werden.
Es sei an dieser Stelle ausdrücklich festgehalten, dass die vorliegende Erfindung die Gewinnung von CO und 1 LO durch RWGS-Reaktion betrifft. Dieses ist im Gegensatz zur WGS-Reaktion, in der möglicherweise die Rückreaktion auch zu CO und 1 1 ) führt. Vorzugsweise wird das erfindungsgemäße Verfahren so durchgeführt, dass der Umsatz von CO2 nach Beendigung der Reaktion (insbesondere nach Verlassen eines Reaktors wie beispielsweise eines axialen Strömungsreaktors) über 35 Mol-%, bevorzugt über 40 Mol-%, mehr bevorzugt über 45 Mol-% und am meisten bevorzugt über 50 Mol-% liegt.
Als idealisierte Leitstruktur für die Wirtsgitter der substituierten Hexaaluminate kann die Formel LAI12O 19 oder LAI11O18 angesehen werden. Dies kann alternativ als LO(Ah03)6 beziehungsweise LOi,5(Ai203)5,5 ausgedrückt werden. Als L kommen insbesondere in Frage Ba, Sr, Ca, La, sowie andere Metalle der Erdalkalien (Gruppe 2) und seltenen Erden (Lanthanoide) sowie deren Mischungen.
Diese einfache Hexaaluminat-Zusammensetzungen können unter Umständen bereits eine gewisse Grundaktivität für die RWGS aufweisen beziehungsweise eignen sich als hoch temperaturslabi le Träger, die in einem postpräparativen Herstellungsschritt mit aktiven Metalipartikeln beladen werden können. Alternativ kann man eine partielle Substitution mit kleineren, katalytisch aktiven Metallionen im 1 1 exaaluminat-G itter durchführen, wobei die Substitution üblicherweise an der Stelle der Aluminium-Kationen stattfindet.
Dies führt zu den folgenden allgemeinen Formeln der frischen Katalysatoren LMyAli2-yOi9 oder LMyAlii-yOi8 (0 < y < 1 2 resp . 1 1 ) . D abei hand e l t es sich b ei M typischerweise um Übergangsmetal le der ersten, zweiten oder dritten Reihe, insbesondere die Übergangsmetal le der ersten Reihe Cr, Mn, Fe, Co, Ni und die Edelmetalle wie Ru, Rh, Pd und Pt. Bei multiplen, katalytisch aktiven Dotierungen kann es sich um Kombinationen von unterschiedlichen Übergangsmetallen der ersten Reihe, um Kombinationen von unterschiedlichen Edelmetallen oder um Kombinationen von einem oder mehreren Edelmetallen mit einem oder mehreren Übergangsmetallen der ersten Reihe. Weitere Substitutionen an L- und/oder M-Stellen, auch abseits von den bereits benannten Elementgruppen, sind zum Teil auch möglich. Das so substituierte Hexaaluminat kann dann mit weiteren katalytischen Substanzen dotiert, beladen oder vermischt werden. Für den Fall eines zweiwertigen Ions an der Stelle von L kann die Formel derart postuliert werden, dass das Verhältnis zwischen LO und AI2O3, nämlich das Parameter z in der für die Substituierung durch M ergänzten Strukturformel LO(M(y/z)Al(2-y/z)03)z, gemäß 4 < z < 9 variiert wird. Dabei kann L auch für eine Mischung von mehreren zweiwertigen und/oder dreiwertigen Kationen (L, L', L", .. .) stehen. Flexaaluminat-Materialien können auch als "Aluminate" (vg l. US 2009/0 1 96822 A I ) beziehungsweise als "stabilisiertes Aluminiumoxid" oder "dotiertes Aluminiumoxid" (auch "beta- Aluminiumoxid") bezeichnet werden. Im strengen Sinne gilt die Bezeichnung "i lexaaluminat" nur für den Fall, dass genau z = 6. Bei dem erfindungsgemäß einzusetzenden Katalysator wird der Begriff aber im breiteren Sinne benutzt, wie oben angegeben (4 < z < 9). Damit sind die einfachen Spinelloxide mit z = 1 , die Monoaluminate, die als Katalysatoren in der Literatur auch für RWGS häufiger zu finden sind, ausgeschlossen.
Bei der Herstellung der erfindungsgemäß einzusetzenden Hexaaluminate sollte von einer perfekten Homogenität der verallgemeinerten Flexaaluminat-Phase nicht ausgegangen werden. ul tipl e Phasen können nach der Fällung und Kalzinierung in der Praxis bereits vorliegen, obwohl die Hexaaluminate im breiten Sinne überwiegen.
Ohne auf eine Theorie festgelegt zu sein wird angenommen dass in Gegenwart von Kohlendioxid, Wasserstoff, Kohlenmonoxid und/oder Wasser bei einer Temperatur von > 700 °C auch eine Phasentrennung und/oder eine Reduktion des Substituenten M stattfindet. Damit können unter Reaktionsbedingungen zum Teil metallische und/oder oxidische Partikel von M vorliegen, die sich auf oder in einer Matrix befinden, bei der es sich entweder um den Ausgangsmaterial oder um andere Zusammensetzungen des Systems LO(My/zAi(2-y/z)03)z beziehungsweise LO(Al2(>s)z handelt.
Beispiele für eine solche Matrix könnten unter anderem sein: LAI12O19, AI2O3 und sogar LAI2O4. Dabei können die phasengetrennten Anteile der katalytisch aktiven Dotierungen L (und L', L", .. .), falls es mehr als eine gibt, ineinander legiert oder vermischt sein. Insgesamt sind beliebige Mischungen der unterschiedlichen Zustände möglich, sowohl unter Reaktionsbedingungen als auch im Prinzip direkt beim frischen Katalysator. D as he ißt, das s einig e Zustände der Aktivkomponenten nebeneinander möglich sind, wobei Metallelemente eingebaut im Trägergitter un d auch außerh alb gleichzeitig vorliegen können, sowie Metallel emente gemischt als Mischmetalloxid (beziehungsweise als Metall-Legierung) und auch getrennt/segregiert sein können.
Die mit "L" dotierten Aluminas beziehungsweise die "[ ."-beinhaltenden Aluminate inklusive insbesondere der L-Hexaaluminate sind von einem besonderen thermischen Stabilität gegen Sinterung gekennzeichnet. Ohne auf eine Theorie festgelegt zu sein, könnte dieses mit der überraschenden Stabilität der katalytischen Aktivität bei hohen Temperaturen zusammenhängen.
Eine physikalische Mischung von oxidischen Bestandteile eines Hexaaiuminats, zum Beispiel 1.0 und MOx gemischt mit gamma- A bO s, die erst unter Reaktionsb edingungen b ei hohen Temperaturen mindestens zeitweise in eine Hexaaluminatstruktur übergeht, ist ebenfalls ein Teil der hier vorliegenden Erfindung.
Als erfindungsgemäß einzusetzende Katalysatoren (beziehungsweise deren Ausgangsstrukturen) kommen insbesondere Ni- und Ru-substituierte Bariumhexaaluminate in Frage.
Mischmetalloxide des Typs (I) lassen sich unter anderem durch physikalische (wie PVD) sowie chemische Methoden herstellen, letztere vorwiegend in der Festphase oder Flüssigphase. Als Beispiele genannt seien Fällung, Co-Fällung, Sol-Gel-Verfahren, Imprägnierung, Zündungs- /Verbrennungsmethoden und weiterhin Gasphasenmethoden wie CVD.
Erfindung s g em äß mit e ing e s chl o s s en i st d er F a ll , da s s unter den herrs c henden Reaktionsbedingungen eine Umwandlung des Mischmetal lox ids (I) zu Reaktionsprodukten (II) stattfindet. Der Begriff "Reaktionsprodukte" schließt die unter Reaktionsbedingungen vorliegenden Katalysatorphasen mit ein.
Das Gasgemisch, dem der Katalysator während der Reaktion ausgesetzt wird, umfassend Kohlendioxid, Wasserstoff, Kohlenmonoxid und Was ser kann dies e vier Komp onenten beispielsweise in einem Gehalt von > 80 Gewichts-%, vorzugsweise > 90 Gewichts-% und mehr bevorzugt > 95 Gewichts-% enthalten.
Erfindungsgemäß vorgesehen ist eine Reaktionstemperatur von > 700 °C. Vorzugsweise beträgt die Reaktionstemperatur > 850 °C und mehr bevorzugt > 900 °C.
Bevorzugte Ausführungsfonnen der vorliegenden Erfindung werden nachfolgend beschrieben. Sie können beliebig miteinander kombiniert werden, sofern sich aus dem Zusammenhang nicht eindeutig das Gegenteil ergibt.
In einer Ausfuhrungsform des erfindungsgemäßen Verfahrens wird weiterhin während der Reaktion ein Kohlenwasserstoff mit 1 bis 4 C-Atomen hinzugefügt. Geeignete Kohlenwasserstoffe sind insbesondere Alkane mit 1 bis 4 C-Atomen, besonders geeignet ist Methan. Auf diese Weise lässt sich zusätzlich zur RWGS-Reaktion auch eine Reformierung durchführen. Wenn die Reaktion in einem axialen Strömungsreaktor durchgeführt wird, ist es möglich, dass die Zugabe des Kohlenwasserstoffs an beliebigen Stellen entlang der Längsachse des Reaktors stattfindet. So kann beispielsweise eine Kohlenwasserstoffzugabe am Reaktoreinlass, am Reaktorauslass und/oder an einer Position zwischen Einiass und Auslass erfolgen. Der Kohlenwasserstoff kann beispielsweise in einem Antei l von > 0,01 Volumen- % bis < 20 Volumen-%, vorzugsweise > 0, 1 Volumen-% bis
< 10 Volumen-% und besonders bevorzugt > 1 Volumen-% bis < 10 Volumen-%, bezogen auf das Gesamtvolumen der Reaktionsgase, hinzugefügt werden. Unabhängig davon ist es bevorzugt, dass die Konzentration des Kohlenwasserstoffs nach der Reaktion, insbesondere am Ausgang eines Reaktors, in dem die Reaktion durchgeführt wird, < 20 Volumen-% und vorzugsweise < 1 0 Volumen-% beträgt.
In einer weiteren Ausfuhrungsform des erfindungsgemäßen Verfahrens umfas st das Mischmetalloxid (I) BaNiAlnO i«, CaNiAlnOi9,
Figure imgf000008_0001
BaNio,92Ruo,o8AlnOi9, BaNio,84Pto,i6AlnOi9 und/oder BaRuo.osAh 1,95019.
In einer weiteren Ausfuhrungsform des erfindungsgemäßen Verfahrens wird die Reaktion bei einer Temperatur von > 700 °C bis < 1300 °C durchgeführt. Mehr bevorzugte Bereiche sind > 800 °C bis
< 1200 °C und > 900 °C bis < 1 100 °C insbesondere > 850 °C bis < 1050 °C. In einer weiteren Ausführungsform des erfindungsgemäßen Verfahrens wird die Reaktion bei einem Druck von > 1 bar bis < 200 bar durchgeführt. Vorzugsweise beträgt der Druck > 2 bar bis < 50 bar, mehr bevorzugt > 10 bar bis < 30 bar.
In einer weiteren Ausführungsform des erfindungsgemäßen Verfahrens ist der Katalysator auf einem Träger aufgebracht und der Träger ausgewählt ist aus der Gruppe umfassend Oxide, Carbide, Nitride, Phosphide und/oder Boride von Aluminium, Silizium und/oder Zirkonium. Ein Beispiel hierfür ist SiC. Ferner bevorzugt ist Cordierit.
In einer weiteren Ausführungsform des erfindungsgemäßen Verfahrens wird die Reaktion in autothermaler Fahrweise betrieben. Diese lässt sich beispielsweise sowohl durch das Hinzufügen von Sauerstoff in das Eduktgas erreichen, als auch dadurch, dass wasserstoffreiche Restgase wie Anodenrestgas, PSA-Restgas, Erdgas (vorzugsweise Methan) und/oder zusätzlicher Wasserstoff in der Gegenwart von CO2 Brenngasquellen sind.
Ein weiterer Gegenstand der vorliegenden Erfindung i st die Verwendung eine s ein Mischmetalloxid umfassenden Katalysators in der Reaktion von Kohlendioxid und Wasserstoff, wobei Kohlenmonoxid und Wasser gebildet werden, wobei der Katalysator ein Mischmetalloxid umfasst welches
(I) ein Oxide der allgemeinen Formel LOx(M(y/z)Al(2-y/z)03)z ist; und/oder
(II) Reaktionsprodukte von (I) in Gegenwart von Kohlendioxid, Wasserstoff, Kohlenmonoxid und/oder Wasser bei einer Temperatur von > 700 °C umfasst; wobei gilt:
L ist ausgewählt aus der Gruppe: Na, K, Rb, Cs, Mg, Ca, Sr, Ba, Sc, Y, Sn, Pb, Pd, Mn, In, Tl, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, I m, Yb und/oder Lu; und
M ist ausgewählt aus der Gruppe: Ti, Zr, I I f. V, Nb, Ta, Cr, Mo, W, Mn, Re, Fe, Ru. Os, Co, Rh, Ir, Ni, Pd, Pt, Zn, Cu, Ag und/oder Au; und
1 < x < 2; 0 < y < 12; und 4 < z < 9.
Der Begriff "Reaktionsprodukte" sch ließt die unter Reak tionsbedin ungen vorliegenden Katalysatorphasen mit ein.
1 1 insichtlich weiterer Erläuterungen und Details wird zur Vermeidung von Wiederholungen auf die Ausführungen im Zusammenhang mit dem erfindungsgemäßen Verfahren verwies en. Vorzugsweise umfasst das Mischmetalloxid (I) BaNiAlnO i«, CaNiAlnOi9, BaNio,975Ruo,o25AlnOi9, BaNio,95Ruo,o5 AI n 019, BaNio,92Ruo,o8Ali 1O19, BaNio,84Pto,i6AinOi9 und/oder BaRuo.osAii 1,95019.
Es ist weiterhin bevorzugt, dass der Katalysator auf einem Träger aufgebracht ist und der Träger ausgewählt ist aus der Gruppe umfassend Oxide, Carbide, Nitride, Phosphide und/oder Boride von Aluminium, Silizium und/oder Zirkonium. Ein Beispiel hierfür ist SiC. Ferner bevorzugt ist Cordierit.
Weitere Ausführungsformen des erfindungsgemäßen Verfahrens werden in Verbindung mit den nachfolgenden Figuren erläutert, ohne hierauf beschränkt zu sein.
F 1 G . 1 zeigt schematisch eine expandierte Ansicht eines Reaktors zur Durchführung des erfindungsgemäßen Verfahrens.
FIG. 2-6 zeigen Umsatzkurven für CO2 in verschiedenen RWGS-Experimenten
I m erfindungsgemäßen Verfahren kann die Reaktion in einem Strömungsreaktor durchgeführt werden, welcher in Strömungsrichtung der Reaktionsgase gesehen eine Mehrzahl von Fleizebenen 100, 101 , 102, 103 umfasst, welche mittels Heizelementen 1 10, 1 1 1 , 1 12, 1 13 elektrisch beheizt werden, wobei die Fleizebenen 100, 101 , 102, 100 von den Reaktionsgasen durchströmbar sind, wobei an mindestens einem Heizelement 1 10, 1 1 1 , 1 12, 1 13 der Katalysator angeordnet ist und dort beheizbar ist und mindestens einmal eine Zwischenebene 200, 201 , 202 zwischen zwei Heizebenen 100, 101 , 102, 103 angeordnet ist, wobei die Zwischenebene 200, 201 , 202 ebenfalls von den Reaktionsgasen durchströmbar ist. In Strömungsrichtung der Reaktionsgase gesehen weist der Reaktor eine Mehrzahl von (im vorliegenden Fall vier) Heizebenen 100, 101 , 102, 103 auf, weiche mittels entsprechender Heizelemente 1 10, 1 1 1 , 1 12, 1 13 elektrisch beheizt werden. Die Heizebenen 100, 101 , 102, 103 werden im Betrieb des Reaktors von den Reaktionsgasen durchströmt und die Heizelemente 1 10, 1 1 1 , 112, 1 13 werden von den Reaktionsgasen kontaktiert. An mindestens einem Fleizelement 1 10, 1 1 1 , 1 12, 1 13 ist der Katalysator angeordnet und ist dort beheizbar. Der Katalysator kann direkt oder indirekt mit den Heizelementen 1 10, 1 1 1 , 1 12, 1 13 verbunden sein, so dass diese Heizelemente den Katalysatorträger oder einen Träger für den Katalysatorträger darstellen.
In dem Reaktor erfolgt somit die Wärmeversorgung der Reaktion elektrisch und wird nicht von Außen mittels Strahlung durch die Wandungen des Reaktors eingebracht, sondern direkt in das Innere des Reaktionsraumes. Es wird eine direkte elektrische Beheizung des Katalysators realisiert. Für die Heizelemente 1 10, 1 1 1 , 1 12, 1 13 kommen bevorzugt Heizleiterlegierungen wie FeCrAl- Legierungen zum Einsatz. Alternativ zu metallischen Werkstoffen können zudem auch elektrisch leitfähige Si-basierte Materialien, besonders bevorzugt SiC, und/oder kohlenstoffbasierte Materialien eingesetzt werden. Im erfindungsgemäßen einzusetzenden Reaktor ist weiterhin mindestens einmal eine zum Beispiel keramische Zwischenebene 200, 201 , 202 (die vorzugsweise von einem keramischen oder metallischen Traggerüst/ -ebene getragen wird) zwischen zwei Heizebenen 100, 101 , 102, 103 angeordnet, wobei die Zwischenebene(n) 200, 201 , 202 beziehungsweise der Inhalt 210, 21 1 , 212 einer Zwischenebene 200, 201 , 202 ebenfalls im Betrieb des Reaktors vom den Reaktionsgasen durchströmt werden. Dieses hat den Effekt einer Homogenisierung der Fluidströmung Es ist auch möglich, dass zusätzlicher Katalysator in einer oder mehreren Zwischenebenen 200, 201 , 202 oder weiteren Isolationselementen im Reaktor vorhanden ist. Dann kann eine adiabatische Reaktion ablaufen.
Bei der Verwendung von FeCrAl-Heizleitern kann die Tatsache ausgenutzt werden, dass das Material durch Temperatureinwirkung in Gegenwart von Luft/Sauerstoff eine AkC -Schutzschicht ausbildet. Diese Passivierungsschicht kann als Grundlage eines Washcoats dienen, welcher als katalytisch aktive Beschichtung fungiert. Damit ist die direkte Widerstandsbeheizung des Katalysators beziehungsweise die Wärmeversorgung der Reaktion direkt über die katalytische Struktur realisiert. Es ist auch, bei Verwendung anderer Heizleiter, die Bildung anderer Schutzschichten wie beispielsweise von Si-O-C-Systemen möglich.
Die Druckaufnahme im Reaktor kann über einen druckfesten Stahlmantel erfolgen. Unter Verwendung geeigneter keramischer Isolationsmaterialien kann erreicht werden, dass der drucktragende Stahl Temperaturen von weniger als 200 °C und, wo notwendig, auch weniger als 60 °C ausgesetzt wird. Durch entsprechende Vorrichtungen kann dafür gesorgt werden, dass bei Taupunktsunterschreitung keine Auskondensation von Wasser am Stahlmantel erfolgt.
Die elektrischen Anschlüsse sind in FIG. 1 nur sehr schematisch dargestellt. Sie können im kalten Bereich des Reaktors innerhalb einer Isolierung zu den Enden des Reaktors geführt oder seitlich aus den Heizelementen 1 10, 1 1 1 , 1 12, 1 13 durchgeführt werden, so dass die eigentlichen elektrischen Anschlüsse im kalten Bereich des Reaktors vorgesehen sein können. Die elektrische Beheizung erfolgt mit Gleichstrom oder Wechselstrom.
Der Einsatz der elektrisch beheizten Elemente im Eintrittsbereich des Reaktors wirkt sich auch positiv im Hinblick auf das Kaltstart- und Anfahrverhalten aus, insbesondere in Hinblick auf das rasche Aufheizen auf Reaktionstemperatur und die bessere Kontrollierbarkeit. Der Katalysator kann prinzipiell als lose Schüttung, als Washcoat oder auch als monolithischer Formkörper auf den Heizelementen 1 10, 1 1 1 , 1 12, 1 13 vorliegen. Es ist jedoch bevorzugt, dass der Katalysator direkt oder indirekt mit den Heizelementen 1 10, 1 1 1 , 1 12, 1 13 verbunden ist, so dass diese Heizelemente den Katalysatorträger oder einen Träger für den Kataiysatorträger darstellen. Es ist auch möglich, dass zusätzlicher Katalysator in einer oder mehreren Zwischenebenen 200, 201 , 202 oder weiteren Isolationselementen im Reaktor vorhanden ist.
Durch geeignete Formgebung kann eine Oberflächenvergrößerung erreicht werden. Es ist möglich, dass in den Heizebenen 100, 101 , 102, 103 Heizelemente 1 10, 1 1 1 , 1 12, 1 13 angeordnet sind, welche spiralförmig, mäanderförmig, gitterförmig und/oder netzförmig aufgebaut sind. Die (beispielsweise keramischen) Zwischenebenen 200, 201 , 202 respektive ihr Inhalt 2 1 0, 2 1 ) ,
212 umfassen ein gegenüber den Reaktionsbedingungen beständiges Material, beispielsweise einen keramischen Schaum. Sie dienen zur mechanischen Abstützung der Heizebenen 100, 101 , 102, 103 sowie zur Durchmischung und Verteilung des Gasstroms. Gleichzeitig ist so eine elektrische Isolierung zwischen zwei Heizebenen möglich. Es ist bevorzugt, dass das Material des Inhalts 210, 2 1 1 , 212 einer Zwischenebene 200, 201 , 202 Oxide, Carbide, Nitride, Phosphide und/oder Boride von Aluminium, Silizium und/oder Zirkonium umfasst. Ein Beispiel hierfür ist SiC. Ferner bevorzugt ist Cordierit.
Die Zwischenebene 200, 201 , 202 kann beispielsweise eine lose Schüttung von Festkörpern umfassen. Diese Festkörper selbst können porös oder massiv sein, so dass das Fluid durch Lücken zwischen den Festkörpern hindurchströmt. Es ist bevorzugt, dass das Material der Festkörper Oxide, Carbide, Nitride, Phosphide und/oder Boride von Aluminium, Silizium und/oder Zirkonium umfasst. Ein Beispiel hierfür ist SiC. Ferner bevorzugt ist Cordierit.
Es ist ebenfalls möglich, dass die Zwischenebene 200, 201 , 202 einen einstückigen porösen Festkörper umfasst. In diesem Fall durchströmt das Fluid die Zwischenebene über die Poren des Festkörpers. Bevorzugt sind Wabenmonolithe, wie sie beispielsweise bei der Abgasreinigung von Verbrennungsmotoren eingesetzt werden.
Hinsichtlich der baulichen Abmessungen ist bevorzugt, dass die durchschnittliche Länge einer Heizebene 100, 101 , 102, 103 in Strömungsrichtung des Fluids gesehen und die durchschnittliche Länge einer Zwischenebene 200, 201 , 202 in Strömungsrichtung des Fluids gesehen in einem Verhältnis von > 0,01 : 1 bis < 100: 1 zueinander stehen. Noch vorteilhafter sind Verhältnisse von > 0, 1 : 1 bis < 10: 1 oder 0,5: 1 bis < 5: 1.
Es ist weiterhin möglich, dass an zumindest einem Heizelement 1 10, 1 1 1 , 1 12, 1 13 eine von den übrigen Heizelementen 1 10, I I I , 1 1 2 , 1 1 3 verschiedene Menge und/oder Art des Katalysators vorliegt. Vorzugsweise sind die Heizelemente 1 1 0, 1 1 1 , 1 12, 1 13 so eingerichtet, dass sie jeweils unabhängig voneinander elektrisch beheizt werden können. Entspre chend können im erfindungsgemäßen Verfahren die einzelnen Heizelemente 1 1 0, 1 1 1 , 1 12, 1 1 3 mit einer unterschiedlichen Heizleistung betrieben werden. Im Endergebnis können die einzelnen Heizebenen einzeln gesteuert und geregelt werden. Im Reaktoreintrittsbereich kann nach Bedarf auch auf einen Katalysator in den Heizebenen verzichtet werden, so dass ausschließlich die Aufheizung und keine Reaktion im Eintrittsbereich erfolgt. Dieses ist insbesondere im Hinblick auf das Anfahren des Reaktors von Vorteil. Wenn sich die einzelnen Heizelemente 1 10, 1 1 1 , 1 12, 1 13 in Leistungseintrag, Kataiysatorbeladung und/oder Katalysatorart unterscheiden, kann ein für die jeweilige Reaktion angepasstes Temperaturprofil erreicht werden. In H inbl ick auf die Anwendung für endotherme Gleichgewichtsreaktionen ist dieses beispielsweise ein Temperaturprofil, das die höchsten Temperaturen und damit den höchsten Umsatz am Reaktoraustritt erreicht.
Der Reaktor kann modular aufgebaut sein. Ein Modul kann beispielsweise eine Heizebene, eine Zwis cheneb ene , die e l ektri s che Kontakti erung und di e entspre chenden we iteren Isolationsmaterialien und Wärmedämmstoffe enthalten.
Die vorliegende Erfindung wird anhand der nachfolgenden Beispiele noch näher beschrieben, ohne jedoch hierauf beschränkt zu sein.
Synthese der Katalysatoren:
Beispiel 1 a: Synthesemethode Co-Fällung (siehe Tabelle):
Eine Portion Ba(N03)2 (10 mmol) und weitere Portionen Metallsalze, wie in der Tabelle jeweils erläutert, wurden in 100 ml heißem entionisiertem Wasser aufgelöst und auf pH 1 mittels Zugabe von konzentrierter Salpetersäure eingestellt. Eine Portion A1(N03)3.9H20 (Menge wie in der Tabelle angegeben) wurde beim Rühren hinzugegeben und vollständig aufgelöst.
Eine Menge (NH4)2C03 (500 mmol) wurde in 250 ml Wasser aufgelöst, auf 60 °C aufgewärmt und bei der Temperatur gehalten. Die gemischte Metallsalzlösung wurde langsam, bei kräftigem Rühren, zur Ammoniumcarbonatlösung hinzugegeben. Das so gebildete Slurry wurde bei fortgeführtem Rühren 3h in der Mutterlauge bei 60 °C altern gelassen, dann filtriert, der Filterkuchen auf der Nutsche (möglichst mtratfrei) gewaschen und dann bei 110 °C in Luft über Nacht trocknen gelassen.
Danach wurde der Katalysator gemörsert und bei einer Temperatur (siehe Tabelle) während 5 h unter Luftatmosphäre kalziniert. Beispiel lb: Synthesemethode„Zucker-Route" (Katalyse-Ausfuhrungsbeispiel 3)
Eine Portion Ba(N03)2 (2 mmol), Ni(N03)2.6H20 (2 mmol) und A1(N03)3.9H20 (22 mmol) wurden in 120 g Millipore- Wasser gelöst. Eine Menge Poiyvinylalkohol (Mowiol 28-99; 16 g) und Sucrose
(160 g) wurden hinzugesetzt und die Mischung auf 90 °C beim Rühren für 2 h hochgeheizt, um alles hineinzulösen. Die Lösung wurde dann weiter bei 90 °C eingedämpft, bis das Volumen etwa 20% des Ausgangswerts betrug. Dann wurde ein Schaum dadurch generiert, dass die hochviskose Lösung für 2 h bei 220 °C beheizt wurde. Der Schaum wurde anschließend bei 530 °C (5h) i einem Muffelofen kalziniert. Danach wurde der Katalysator gemörsert und bei 1300 °C während 5 h unter Luftatmosphäre kalziniert.
Tabelle: Herstellungsparameter für mittels Co-Fällung hergestellten Hexaaluminat-Katalysatoren
Kat.- KennNi(N03)2. RuCI< H2PtCl6. AI(N03)3. Luft Kalz.- AtmosBeispiel zeich6H20 [mmol] xl O 9H20 0,5h Temp. phäre nung [mmol] [mmol] [mmol] 600 5 h
°C [°C]
2,3,4,5, A 10 1 10 nein 1300 Luft 6
2 B - - - 120 nein 1300 Luft
4 C 10 - - 110 nein 1000 Luft 5 D 9,75 0,25 - 1 10 nein 1300 Luft
5 E 9,5 0,5 - 1 10 nein 1300 Luft
5 F - 0,5 - 1 19,5 nein 1300 Luft
6 G 8,4 1 ,6 1 10 ja 1300 Stickstoff
RWGS-Keaktionen :
Allgemeine Versuchsbeschreibung: im Rahmen der katalytischen Tests wurden zunächst jeweils von 0,5 bis 4 mg des Katalysators mit 210 mg eines SiC -Verdünnungsmaterials jeweils in der Siebgrößenfraktion von 100-200 μητ beziehungsweise 125-185 μιη miteinander intensiv vermischt.
Die katalytischen Untersuchungen wurden in einem U-rohrförmigen Festbettreaktor aus Quarzglas bei einer Ofentemperatur von 850 °C (mit einer Raumgeschwindigkeit von 1 00000 1 /h) durchgeführt. Hierbei wurde die Probe im Stickstofffluss (250 Nml/min) auf die Zieltemperatur von 850 °C aufgeheizt. Anschließend wurden die Reaktivgase Wasserstoff (75 Nml/min) und K h lenstoffdio i d (50 Nml/min) unter gleichzeitiger Reduktion des Stickstoffflusses auf 125 Nml min im Bypass zudosiert. Nach einer Mischdauer von 30 min wurden diese auf das sich im Reaktor befindliche Katalysatorsystem beaufschlagt. Nach einer Reaktionsdauer von bis zu 65 h wurde der Katalysator unter Inertbedingungen auf Raumtemperatur abgekühlt. Die Analyse des Produktgasgemisches erfolgte mithilfe eines u 11 i kana I in frarot ana lysators. Beispiel 2: Vergleich zwischen BaAli ;Oi>) und BaNi Al nüm
Die nachfolgende Tabelle fasst die Ergebnisse des Katalysatorvergleiches in der RWGS-Reaktion für Katalysatoren aus Beispiel l a zusammen. Die Angabe "X7,5h(C02) [%]" bedeutet den Umsatz an CO2, hier nach 7,5 Stunden, ausgedrückt in Mol-Prozent. Die Angabe "reff;7,5h(C02)" gibt die entsprechende mittlere Reaktionsgeschwindigkeit von CO2 an und "X7,5h(C02)/X3h(C02) " ist der Quotient aus dem CC -Umsatz nach 7,5 Stunden und nach 3 Stunden.
Die Ergebnisse dieser Experimente sind weiterhin in FIG. 2 dargestellt, welche die CO2- Umsatzkurven über der Reaktionsdauer für den BaAinOw-Katalysator (Kurve "BaAli20i9") sowie den B aNiAli iOi9-Katalysator (Kurve "BaNiAlnOw") dargestellt. Die thermodynamische Limitierung bei ca. 60% Umsatz ist durch "TD" gekennzeichnet. Sowohl die katalytische Aktivität als auch die Stabilität nimmt durch Ni-Zusatz zu.
Beispiel 3 : Vergleich verschiedener Synthesemethoden bei dem BaN i A 11 iü m- atalysator Die nachfolgende Tabelle fasst die Ergebnisse des Katalysatorvergleiches in der RWGS-Reaktion für Katalysatoren aus den Beispielen l a und lb zusammen. Die Angabe "X? ,5h(C02) [%]" bedeutet den Umsatz an CO2, hier nach 7,5 Stunden, ausgedrückt in Mol-Prozent. Die Angabe "reff;7,5ii(C02)" gibt die entsprechende mittlere Reaktionsgeschwindigkeit von CO2 an und "X7,5h(C02) X3h(C02) " ist der Quotient aus dem CC -Umsatz nach 7,5 Stunden und nach 3 Stunden.
Synthesemethode für X7.5h(CO:) r, ff; 7.5h(C02) X7.5h(CC)2)/X<h(CO;) Ba AliiOw l% ! | niol/s/g* 10"6]
Co-Fällung (A) 50,8 4497 UP
Zucker-Methode 26,6 2354 1 ,02
Die Ergebnisse dieser Experimente sind weiterhin i n FIG. 3 dargestellt, welche die CO2- Umsatzkurven über der Reaktionsdauer für diese Katalysatoren dargestellt. Die thermodynamische Limitierung bei ca. 60% Umsatz ist durch "TD" gekennzeichnet, die Kurve für die Co-Fällung durch "1 ", die Kurve für die Zucker-Methode durch "2". Dabei ist sowohl die katalytische Aktivität als auch die Stabilität des mithilfe der über die Co-Fällung hergestellten Systems höher als die des Katalysators, der mit I Iilfe der Zucker-Methode hergestellt wurde.
Beispiel 4: Unterschiedliche Kalzinierungstemperaturen des BaN i A 11101 «-Katalysators
Die nachfolgende Tabelle fasst die Ergebnisse des Katalysatorvergleiches in der RWGS-Reaktion für Katalysatoren aus Beispiel l a zusammen. Die Angabe "X7,5h(C02) [%]" bedeutet den Umsatz an CO2, hier nach 7,5 Stunden, ausgedrückt in Mol-Prozent. Die Angabe "reff;7,5h(C02)" gibt die entsprechende mittlere Reaktionsgeschwindigkeit von CO; an und "X65h(C02)/'X3h(C02) " ist der Quotient aus dem CO?-Umsatz nach 65 Stunden und nach 3 Stunden.
BaMAlnOw kalziniert X7.5h(CO:) r. ff; 7.5h(C O2) X65h(C02)/X3h(C02) bei l% l | niol/s/g* 1 ""l
1000 °C, 5h (C) 51 ,7 4572 0,98
1300 °C, 5h (A) 50,8 4497 1 .0- Die Ergebnisse dieser Experimente sind weiterhin in FIG. 4 dargestellt, welche die CO:- Umsatzkurven über der Reaktionsdauer für diese Katalysatoren dargestellt. Die thermodynamische Limitierung bei ca. 60% Umsatz ist durch "TD" gekennzeichnet. Trotz einer etwas geringeren Aktivität resultiert eine deutlich höhere Langzeitstabilität für das bei 1300 °C getemperte System. Beispiel 5: Vergleich verschiedener Ba-Ni-Ru-Hexaaluminate
Die nachfolgende Tabelle fasst die Ergebnisse des Katalysatorvergleiches in der RWGS-Reaktion für Katalysatoren aus Beispiel l a zusammen. Die Angabe "X7,5h(C02) [%]" bedeutet den Umsatz an CO2, hier nach 7,5 Stunden, ausgedrückt in Mol-Prozent. Die Angabe "reff;7,5h(C02)" gibt die entsprechende mittlere Reaktionsgeschwindigkeit von CO2 an und "X65h(C02)/'X3h(CC>2) " ist der Quotient aus dem CC -Umsatz nach 65 Stunden und nach 3 Stunden. .
Ba ixRuyAliiOw X7,5h(C02) Teff; 7.5h(CC)2) X<,sh(CO2)/X<h(CC)2) l% ! | mol/s/g* 10"6]
1 : y - 0 (A) 50,8 4497 1 .07
x = 0,975; y = 0,025 (D) 33, 1 1 1 169 1 ,08
x = 0,95; y = 0,05 (E) 47,2 1 5938 1 ,06
x = 0; y = 0,05 (F) 7,9 2666 1 .^
Die Ergebnisse dieser Experimente sind weiterhin i n F 1 G . 5 dargestellt, welche die CO2- Umsatzkurven über der Reaktionsdauer für diese Katalysatoren dargestellt. Die thermodynamische Limitierung bei ca. 60% Umsatz ist durch "TD" gekennzeichnet. Dabei ist erkennbar, dass für Systeme mit Ru-Ni signifikant höhere Aktivitäten resultieren als für reine Ni- beziehungsweise Ru- dotierte Systeme.
Beispiel 6: Vergleich verschiedener Ba-Ni-Pt-Hexaaluminate
Die nachfolgende Tabelle fasst die Ergebnisse des Katalysatorvergleiches in der RWGS-Reaktion für Katalysatoren aus Beispiel l a zusammen. Die Angabe "X7,5h(C02) [%]" bedeutet den Umsatz an CO2, hier nach 7,5 Stunden, ausgedrückt in Mol-Prozent. Die Angabe "reff;7,5h(C02)" gibt die entsprechende mittlere Reaktionsgeschwindigkeit von CO2 an und "X7,5h(C02)/X3h(C02) " ist der Quotient aus dem CC Umsatz nach 7,5 Stunden und nach 3 Stunden. .
Ba iJtd-xjAlnOw X7.5h (COi) l",.ff, 7.5h(C02) X7,5h(C02)/X3h(C02)
i% ! | mol/s/g* 1 0"6l
x = l (A) 50,8 4497 1 .07
x = 0,84 (G) 38,5 1431 8 1 ,08 Die Ergebnisse dieser Experimente sind weiterhin in FIG. 6 dargestellt, welche die CO2- Umsatzkurven über der Reaktionsdauer für diese Katalysatoren dargestellt. Die thermodynamische Limitierung bei ca. 60% Umsatz ist durch "TD" gekennzeichnet. Dabei ist erkennbar, dass für Ni- Pt-Phasen signifikant höhere Aktivitäten resultieren als für reine Ni-Systeme.

Claims

Patentansprüche
Verfahren zur Reduktion von Kohlendioxid, umfassend den Schritt der Reaktion von Kohlendioxid und Wasserstoff in Gegenwart eines Katalysators unter Bildung von Kohlenmonoxid und Wasser, dadurch geken nzeichnet, dass die Reaktion bei einer Temperatur von > 700 °C durchgeführt wird und dass der Katalysator ein Mischmetalioxid umfasst, welches
(I) ein Oxid der allgemeinen Formel LOx(M(y Z)Al(2-y z)03)z ist; und/oder
(II) Reaktionsprodukte von (I) in Gegenwart von Kohlendioxid, Was sersto ff, Kohlenmonoxid und/oder Wasser bei einer Temperatur von > 700 °C umfasst; wobei gilt:
I ist ausgewählt aus der Gruppe: Na, K, R h, Cs, Mg, Ca, Sr, Ba, Sc, Y, Sn, Pb, Pd, Mn, In, Tl, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, I m, Yb und/oder Lu; und
M ist ausgewählt aus der Gruppe: Ti, Zr, i l , V, Nb, Ta, Cr, Mo, W, Mn, Re, Fe, Ru, Os, Co,
Rh, Ir, Ni, Pd, Pt, Zn, Cu, Ag und/Oder Au; und
1 < x < 2; 0 < y < 12; und 4 < z < 9.
Verfahren gemäß Anspruch 1 , wobei weiterhin während der Reaktion ein Kohlenwasserstoff mit 1 bis 4 C -Atomen hinzugefügt wird.
Verfahren gemäß Anspruch 1 oder 2, wobei das Mischmetalioxid (I) BaNiAlnOi9, CaNiAlnOi9,
Figure imgf000019_0001
BaNio,92Ruo,o8AlnOi9, BaNio,84Pto,i6Ali iOi9 und/oder BaRuo,o5Ali 1,95019 umfasst.
Verfahren gemäß einem der Ansprüche 1 bis 3, wobei die Reaktion bei einer Temperatur von > 700 °C bis < 1300 °C durchgeführt wird.
Verfahren gemäß einem der Ansprüche 1 bis 4, wobei die Reaktion bei einem Druck von > 1 bar bis < 200 bar durchgeführt wird.
6. Verfahren gemäß einem der Ansprüche 1 bis 5, wobei der Katalysator auf einem Träger aufgebracht ist und der Träger ausgewählt ist aus der Gruppe umfassend Oxide, Carbide, Nitride, Phosphide und/oder Boride von Aluminium, Silizium und/oder Zirkonium.
7. Verfahren gemäß einem der Ansprüche 1 bis 6, wobei die Reaktion in autothermaler Fahrweise betrieben wird.
8. Verfahren gemäß einem der Ansprüche 1 bis 7, wobei die Reaktion in einem Strömungsreaktor durchgeführt werden, welcher in Strömungsrichtung der Reaktionsgase gesehen eine Mehrzahl von Heizebenen (100, 101, 102, 103) umfasst, welche mittels
Heizelementen (110, 111, 112, 113) elektrisch beheizt werden, wobei die Heizebenen (100, 101, 102, 100) von den Reaktionsgasen durchströmbar sind, wobei an mindestens einem Heizelement (110, 111, 112, 113) der Katalysator angeordnet ist und dort beheizbar ist und mindestens einmal eine Zwischenebene (200, 201, 202) zwischen zwei Heizebenen (100, 101, 102, 103) angeordnet ist, wobei die Zwischenebene (200, 201, 202) ebenfalls von den
Reaktionsgasen durchströmbar ist.
9. Verfahren gemäß Anspruch 8, wobei in den Heizebenen (100, 101, 102, 103) Heizelemente (110, 111, 112, 113) angeordnet sind, welche spiral örmi , mäanderförmig, gitt eiförmig und/oder netzförmig aufgebaut sind. 10. Verfahren gemäß Anspruch 8 oder 9, wobei das Material des Inhalts (210, 211, 212) einer Zwischenebene (200, 201, 202) Oxide, Carbide, Nitride, Phosphide und/oder Boride von Aluminium, Silizium und/Oder Zirkonium umfasst.
11. Verfahren gemäß einem der Ansprüche 8 bis 10, wobei an zumindest einem Heizelement (110, 111, 112, 113) eine von den übrigen Heizelementen (110, III, 112, 113) verschiedene Menge und/oder Art des Katalysators vorliegt.
12. Verfahren gemäß einem der Ansprüche 8 bis 11, wobei die einzelnen Heizelemente (110,
111, 112, 113) mit einer unterschiedlichen Heizleistung betrieben werden.
13. Verwendung eines ein Mischmetalloxid umfassenden Katalysators in der Reaktion von Kohlendioxid und Wasserstoff, wobei Kohlenmonoxid und Wasser gebildet werden, dadurch gekennzeichnet, dass der Katalysator ein Mischmetalloxid umfasst, welches
(I) ein Oxid der allgemeinen Formel LOx(M(y/z)Ai(2-y/z)03)z ist; und/oder
(II) Reaktionsprodukte von (I) in Gegenwart von Kohlendioxid, Wasserstoff,
Kohlenmonoxid und/oder Wasser bei einer Temperatur von > 700 °C umfasst; wobei gilt: L ist ausgewählt aus der Gruppe: Na, K, Rb, Cs, Mg, Ca, Sr, Ba, Sc, Y, Sn, Pb, Pd, Mn, In,
Tl, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb und/oder Lu; und
M ist ausgewählt aus der Gruppe: Ti, Zr, l i , V, Nb, Ta, Cr, Mo, W, Mn, Re, Fe, Ru, Os, Co,
Rh, Ir, Ni, Pd, Pt, Zn, Cu, Ag und/oder Au; und
1 < x < 2; 0 < y < 12; und 4 < z < 9.
Verwendung gemäß Anspruch 13, wobei das Mischmetalloxid (I) BaNiAlnOw, CaNiAluOi9, BaNio, 75Ruo,o25Ali iO 19, BaNio^Ruo.osAlnO^, BaNio^Ruo.osA iO 19, BaNio,84Pto,i6AlnOi9 und/oder BaRucosAli 1,95019 umfasst.
Verwendung gemäß Anspruch 13 oder 14, wobei der Katalysator auf einem Träger aufgebracht ist und der Träger ausgewählt ist aus der Gruppe umfassend Oxide, Carbide, Nitride, Phosphide und/oder Boride von Aluminium, Silizium und/oder Zirkonium.
PCT/EP2013/054954 2012-03-13 2013-03-12 Verfahren zur reduktion von kohlendioxid bei hohen temperaturen an mischmetalloxid-katalysatoren in form von partiell substituierten hexaaluminaten WO2013135665A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102012203919.8 2012-03-13
DE102012203919 2012-03-13

Publications (1)

Publication Number Publication Date
WO2013135665A1 true WO2013135665A1 (de) 2013-09-19

Family

ID=47878028

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2013/054954 WO2013135665A1 (de) 2012-03-13 2013-03-12 Verfahren zur reduktion von kohlendioxid bei hohen temperaturen an mischmetalloxid-katalysatoren in form von partiell substituierten hexaaluminaten

Country Status (1)

Country Link
WO (1) WO2013135665A1 (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016062853A1 (de) * 2014-10-24 2016-04-28 Basf Se Hochtemperatursynthese von aluminaten durch flammen-sprühpyrolyse
CN107511074A (zh) * 2017-10-12 2017-12-26 中国华电科工集团有限公司 用于烟气脱硝反应器内的催化剂模块固定装置及固定方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4265868A (en) * 1978-02-08 1981-05-05 Koppers Company, Inc. Production of carbon monoxide by the gasification of carbonaceous materials
WO2005026093A1 (en) 2003-09-17 2005-03-24 Korea Institute Of Science And Technology Method for the production of dimethyl ether
WO2008031024A1 (en) 2006-09-08 2008-03-13 Eltron Research Inc. Catalytic membrane reactor and method for production of synthesis gas
WO2008033812A2 (en) * 2006-09-11 2008-03-20 Purdue Research Foundation System and process for producing synthetic liquid hydrocarbon
WO2008055776A1 (en) 2006-11-08 2008-05-15 L'air Liquide Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Process for the preparation of a supported noble metal catalyst and its use in sythesis gas production
WO2009058584A2 (en) 2007-10-31 2009-05-07 Sud-Chemie Inc. A water gas shift catalyst
US20090196822A1 (en) 2008-02-05 2009-08-06 Air Products And Chemicals, Inc. Hydrogen Production Using Complex Metal Oxide Pellets
EP2278247A1 (de) * 2000-12-05 2011-01-26 Texaco Development Corporation Vorrichtung und Verfahren zum Erhitzen eines Katalysatoren zum Hochfahren eines kompakten Kraftstoffprozessoren
DE102010033316A1 (de) * 2009-08-07 2011-04-28 GM Global Technology Operations, Inc., Detroit Steuersystem und -verfahren für elektrisch beheizten Katalysator

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4265868A (en) * 1978-02-08 1981-05-05 Koppers Company, Inc. Production of carbon monoxide by the gasification of carbonaceous materials
EP2278247A1 (de) * 2000-12-05 2011-01-26 Texaco Development Corporation Vorrichtung und Verfahren zum Erhitzen eines Katalysatoren zum Hochfahren eines kompakten Kraftstoffprozessoren
WO2005026093A1 (en) 2003-09-17 2005-03-24 Korea Institute Of Science And Technology Method for the production of dimethyl ether
WO2008031024A1 (en) 2006-09-08 2008-03-13 Eltron Research Inc. Catalytic membrane reactor and method for production of synthesis gas
WO2008033812A2 (en) * 2006-09-11 2008-03-20 Purdue Research Foundation System and process for producing synthetic liquid hydrocarbon
WO2008055776A1 (en) 2006-11-08 2008-05-15 L'air Liquide Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Process for the preparation of a supported noble metal catalyst and its use in sythesis gas production
WO2009058584A2 (en) 2007-10-31 2009-05-07 Sud-Chemie Inc. A water gas shift catalyst
US20090196822A1 (en) 2008-02-05 2009-08-06 Air Products And Chemicals, Inc. Hydrogen Production Using Complex Metal Oxide Pellets
DE102010033316A1 (de) * 2009-08-07 2011-04-28 GM Global Technology Operations, Inc., Detroit Steuersystem und -verfahren für elektrisch beheizten Katalysator

Non-Patent Citations (7)

* Cited by examiner, † Cited by third party
Title
GARDNER ET AL., CATALYSIS TODAY, vol. 157, no. 1-4, 2010, pages 166 - 169
GARDNER T H ET AL: "Catalytic partial oxidation of CH4 over Ni-substituted barium hexaaluminate catalysts", CATALYSIS TODAY, ELSEVIER, NL, vol. 157, no. 1-4, 17 November 2010 (2010-11-17), pages 166 - 169, XP027443992, ISSN: 0920-5861, [retrieved on 20100625], DOI: 10.1016/J.CATTOD.2010.05.033 *
KIKUCHI R ET AL: "Partial oxidation of CH4 and C3H8 over hexaaluminate-type oxides", APPLIED CATALYSIS A: GENERAL, ELSEVIER SCIENCE, AMSTERDAM, NL, vol. 281, no. 1-2, 18 March 2005 (2005-03-18), pages 61 - 67, XP025332880, ISSN: 0926-860X, [retrieved on 20050318], DOI: 10.1016/J.APCATA.2004.11.013 *
NAOUFAL ET AL., CATALYSIS LETTERS, vol. 54, 1998, pages 141 - 148
SALAZAR-VILLALPANDO; GARDNER: "Carbon Dioxide Reduction Metallurgy, Proceedings of [a] Symposia held during [the] TMS 2008 Annual Meeting & Exhibition, New Orleans, LA", 9 March 2008, MINERALS, METALS & MATERIALS SOCIETY, pages: 29 - 33
WHEELER ET AL., JOURNAL OF CATALYSIS, vol. 223, 2004, pages 191 - 199
ZHANLIN XU ET AL: "Carbon dioxide reforming of methane to synthesis gas over hexaaluminate ANiAl11O19-d (A=Ca, Sr, Ba and La) catalysts", CATALYSIS LETTERS, vol. 64, 1 February 2000 (2000-02-01), pages 157 - 161, XP055064466 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016062853A1 (de) * 2014-10-24 2016-04-28 Basf Se Hochtemperatursynthese von aluminaten durch flammen-sprühpyrolyse
CN107511074A (zh) * 2017-10-12 2017-12-26 中国华电科工集团有限公司 用于烟气脱硝反应器内的催化剂模块固定装置及固定方法
CN107511074B (zh) * 2017-10-12 2023-12-05 中国华电科工集团有限公司 用于烟气脱硝反应器内的催化剂模块固定装置及固定方法

Similar Documents

Publication Publication Date Title
WO2013135707A1 (de) Verfahren zur herstellung eines kohlenmonoxid enthaltenden gasgemisches bei hohen temperaturen an mischmetalloxidkatalysatoren umfassend edelmetalle
US9732010B2 (en) Catalyst for methanation of carbon oxides, preparation method of the catalyst and process for the methanation
EP2969937B1 (de) Verfahren zur oxidation von ammoniak und dafür geeignete anlage
DE69908242T2 (de) Reformer
Royer et al. Perovskites as substitutes of noble metals for heterogeneous catalysis: dream or reality
DE60115337T2 (de) Mischoxid und Katalysator zur Reinigung von Abgas
TWI374116B (en) Catalyst for hydrogen production by autothermal reforming, method of making same and use thereof
JP5610408B2 (ja) 遷移金属を含有するCeAlO3ペロフスカイト
EP1440731A2 (de) Ce/Cu/Mn-Katalysatoren und Verfahren zu deren Herstellung
DE19619791A1 (de) Katalysatoren und Verfahren zur Reinigung von Abgasen
WO2013135667A1 (de) Verfahren für die synthesegasherstellung
WO2013135673A1 (de) Verfahren zur reduktion von kohlendioxid bei hohen temperaturen an katalysatoren auf insbesondere carbidischen trägern
US20160288052A1 (en) Exhaust gas purifying catalyst
WO2013135665A1 (de) Verfahren zur reduktion von kohlendioxid bei hohen temperaturen an mischmetalloxid-katalysatoren in form von partiell substituierten hexaaluminaten
WO2013135664A1 (de) Verfahren zur reduktion von kohlendioxid bei hohen temperaturen an mischmetalloxid-katalysatoren auf oxidischen mit aluminium, cer und/oder zirkonium dotierten trägern
JP4768475B2 (ja) Pm燃焼触媒用複合酸化物およびフィルター
WO2013135660A1 (de) Axialer strömungsreaktor mit heiz- und zwischenebenen
WO2013135656A1 (de) Verfahren zur reduktion von kohlendioxid bei hohen temperaturen an mischmetalloxid-katalysatoren in form von hexaaluminaten
WO2013135668A1 (de) Chemisches reaktorsystem, umfassend einen axialen strömungsreaktor mit heiz- und zwischenebenen
WO2013135662A1 (de) Verfahren zur reduktion von kohlendioxid bei hohen temperaturen an mischmetalloxidkatalysatoren
DE102010027645A1 (de) CO2 tolerantes, gemischt leitendes Oxid und dessen Anwendung für die Wasserstoffabtrennung
JP7279203B2 (ja) 耐熱性ルテニウム複合体、並びにNOx吸蔵及び還元触媒としての用途
WO2013135663A1 (de) Verfahren zur reduktion von kohlendioxid bei hohen temperaturen an mischmetalloxid-katalysatoren umfassend edelmetalle
WO2013135659A1 (de) Verfahren zur reduktion von kohlendioxid bei hohen temperaturen an oxidischen katalysatoren umfassend nickel und ruthenium
DE102019204854A1 (de) Redoxstabiler Perowskit zur Speicherung von Stickoxiden aus Abgasen

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13709091

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13709091

Country of ref document: EP

Kind code of ref document: A1