WO2013135151A1 - 全向射频识别标签天线及射频识别标签 - Google Patents

全向射频识别标签天线及射频识别标签 Download PDF

Info

Publication number
WO2013135151A1
WO2013135151A1 PCT/CN2013/072380 CN2013072380W WO2013135151A1 WO 2013135151 A1 WO2013135151 A1 WO 2013135151A1 CN 2013072380 W CN2013072380 W CN 2013072380W WO 2013135151 A1 WO2013135151 A1 WO 2013135151A1
Authority
WO
WIPO (PCT)
Prior art keywords
resonant
circuit
frequency identification
identification tag
radio frequency
Prior art date
Application number
PCT/CN2013/072380
Other languages
English (en)
French (fr)
Inventor
史纪元
Original Assignee
群淂数码科技(上海)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 群淂数码科技(上海)有限公司 filed Critical 群淂数码科技(上海)有限公司
Publication of WO2013135151A1 publication Critical patent/WO2013135151A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q7/00Loop antennas with a substantially uniform current distribution around the loop and having a directional radiation pattern in a plane perpendicular to the plane of the loop
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/2208Supports; Mounting means by structural association with other equipment or articles associated with components used in interrogation type services, i.e. in systems for information exchange between an interrogator/reader and a tag/transponder, e.g. in Radio Frequency Identification [RFID] systems
    • H01Q1/2225Supports; Mounting means by structural association with other equipment or articles associated with components used in interrogation type services, i.e. in systems for information exchange between an interrogator/reader and a tag/transponder, e.g. in Radio Frequency Identification [RFID] systems used in active tags, i.e. provided with its own power source or in passive tags, i.e. deriving power from RF signal

Definitions

  • the present invention relates to an antenna for a radio frequency identification tag, and more particularly to an omnidirectional radio frequency identification tag antenna. Background technique
  • RFID Radio Frequency Identification
  • RFID technology is a non-contact two-way communication using RF signals from the 1990s to automatically identify target objects and obtain relevant information.
  • Information wireless communication technology With the advancement of science and technology, RFID has been involved in all aspects of people's daily life, and is widely used in many fields such as industrial automation, commercial automation, traffic computing control management, such as train traffic monitoring systems, highway toll collection systems, and goods. Management, assembly line automation, access control systems, financial transactions, warehouse management, livestock management, vehicle theft, etc., RFID technology will become a basic technology for the future construction of the information society.
  • the most basic RFID system consists of three parts: a tag, consisting of a coupling element and a chip, each tag having a unique electronic code attached to the object to identify the target object; a reader (Reader), reading (sometimes still Equipment that can be written to) tag information, can be designed as handheld or fixed; antenna
  • Antenna transmitting RF signals between tags and readers.
  • an antenna is a key part of a wireless communication system. It is an interface between free space and transmission line. Among the performance parameters of the antenna, the most influential is its impedance matching, anti-interference, read range and directivity.
  • the antenna has different radiation or receiving capabilities in different directions of the space. This is the directionality of the antenna. Depending on the directivity, the antenna has both directional and omnidirectional directions.
  • the directional antenna is radiated in a certain angle range on the horizontal direction and appears as a beam with a certain width on the vertical direction.
  • the directional antenna is generally used in communication systems for communication distance, coverage, target density, and frequency utilization. High rate occasions.
  • the omnidirectional antenna exhibits 360° uniform radiation on the horizontal pattern and a certain width on the vertical pattern. It is generally used in communication systems where the distance is close and the coverage is large.
  • the omnidirectionality of the existing omnidirectional antenna is only in the horizontal direction, but there is no radiation in the vertical direction (that is, the radiation in the direction of the axis of the vibrator is zero), so it is not true.
  • the invention provides an omnidirectional radio frequency identification tag antenna, comprising:
  • a resonant circuit surface circuit pattern portion disposed on the tag substrate, further comprising at least one resonant circuit
  • circuit resonant arm surface circuit pattern portion disposed on the tag substrate, further comprising at least two circuit resonant arms connected to the resonant circuit surface circuit pattern portion, wherein the circuit resonant arms correspond to each other, and Forming a first planar radiation surface;
  • metal resonant arms are connected to the resonant circuit surface circuit pattern portion, and the metal resonant arms correspond to each other and form a second planar radiating surface and a third planar radiating surface.
  • first planar radiating surface, the second planar radiating surface and the third planar radiating surface are perpendicular to each other.
  • the resonant circuit surface circuit pattern portion includes:
  • each port further includes two electrical connection points, and two electrical connection points of one port are respectively connected to the other ends of the two resonant connection lines, and form a line together with the ring route
  • the two electrical connection points of the other port are respectively connected to the other ends of the other two resonant connecting lines, and form another resonant circuit together with the ring path; the signal phases of the two resonant circuits are different by about 90 degrees.
  • At least six radiating lines for connecting the resonant arms are connected to the loop path.
  • the number of the radiation connection lines is eight, and is connected at an angle of 45° and uniformly distributed on the periphery of the ring path.
  • circuit resonant arm surface circuit pattern portion is provided with four circuit resonant arms
  • the metal resonant arm comprises eight outline lines, and the eight outline lines are connected end to end in sequence.
  • the invention also provides a radio frequency identification tag comprising a casing, a bracket, a reflecting surface and an omnidirectional radio frequency identification tag antenna, the reflecting surface being disposed in the casing, the bracket being disposed on the reflecting surface, the omnidirectional radio frequency identification The tag antenna is placed on the bracket.
  • the reflecting surface is a bowl-shaped reflecting surface having a diameter of 125 cm.
  • the omnidirectional radio frequency identification tag antenna of the present invention has a radiating surface on three coordinate axes, and the corresponding radiating arms are uniformly distributed at phase points every 45 degrees, which is generated.
  • the antenna effective gain map covers all directions of the sphere and can be called a true omnidirectional antenna.
  • Another effective identification of the radio frequency identification tag proposed by the present invention is to enhance the application of the above-described omnidirectional radio frequency identification target antenna to the surface and interior of various media through the reflection of the reflective surface.
  • FIG. 1 is an isometric assembly view of an omnidirectional radio frequency identification tag antenna of the present invention
  • FIG. 2 is an isometric perspective view of the omnidirectional radio frequency identification tag antenna of the present invention
  • Figure 3 is a plan view showing a portion of the circuit pattern of the resonant circuit surface of Figure 1;
  • FIG. 4 is a plan view showing a portion of the circuit pattern of the circuit resonator arm surface of FIG. 1;
  • FIG. 5 is a structural view of the metal resonator arm of FIG.
  • Figure 6 is a side elevational view of the omnidirectional radio frequency identification tag antenna of the present invention attached to a surface;
  • Figure 7 is an isometric assembly view of the radio frequency identification tag of the present invention;
  • FIG. 8 is an isometric perspective view of the radio frequency identification tag of the present invention.
  • Figure 9 is a side view of the RFID tag installation and testing of the present invention.
  • FIG. 10 is a top plan view of the installation and testing of the RFID tag of the present invention. detailed description
  • the omnidirectional radio frequency identification tag antenna includes a tag substrate 01, and a resonant circuit surface circuit
  • the pattern portion XI, the circuit resonance arm surface circuit pattern portion Y1, and the four metal resonance arms F1, F2, F3, F4, the resonance circuit surface circuit pattern portion XI, and the circuit resonance arm surface circuit pattern portion Y1 are all disposed on the label substrate 01.
  • the four metal resonant arms F1, F2, F3, and F4 are electrically connected to the resonant circuit surface circuit pattern portion XI.
  • the resonant circuit surface circuit pattern portion XI includes a loop path C1, four resonant connecting lines B1, B2, B3, and B4, and eight radiating connections. Lines D1, D2, D3, D4, El, E2, E3, E4, and tag chip pads A1.
  • the tag chip pad A1 is provided with two ports, each of which includes two electrical connection points, which can solder a dual port chip produced by companies such as impinj.
  • the pad of one connection point of the first port is connected to one end of the resonance connection line B4, and the other end of the resonance connection line B4 is connected to the ring path C1 at the phase point PF1, and is connected to the resonance connection line B2 at the phase point through the ring route C1.
  • PF3 the other end of the resonant connection line B2 is connected to the pad of the other connection point of the first port, thereby forming a resonant circuit of the first port.
  • the pad of one connection point of the second port is connected to the resonance connection line B1, and the other end of the resonance connection line B1 is connected to the loop route C1 at the phase point PF2, and is connected to the resonance connection line B3 at the phase point PF4 through the loop route C1,
  • the other end of the resonant connection line B3 is connected to the pad of the other connection point of the second port, thereby forming a resonant circuit of the second port.
  • the signal phases of the two resonant circuits are about 90 degrees out of phase.
  • the radiation connection line D1 is connected to the loop route C1 at the phase point PF1
  • the radiation connection line E1 is connected to the loop route C1 at the phase point PH1
  • the radiation connection line D2 is connected to the loop route C1 at the phase point PF2
  • the radiation connection line E2 is connected to the loop route C1 at the phase point.
  • the radiation connection line D3 is connected to the loop route C1 at the phase point PF3
  • the radiation connection line E3 is connected to the loop route C1 at the phase point PH3
  • the radiation connection line D4 is connected to the loop route C1 at the phase point PF4
  • the radiation connection line E4 is connected to the loop route C1.
  • the phase point is defined as: the center point of the tag chip pad A1 is the center of the circle, the angular phase of 360 degrees, the phase points PF1 ⁇ PF4 are respectively 90 degrees apart, and the phase points PH1 ⁇ PH4 are respectively 90 degrees apart, and the phase points PF1 and PH1 are respectively The difference is 45 degrees. That is, 8 radiation connection lines D1, D2, D3, D4, El, E2, E3, E4 are 45. The angle is evenly distributed on the periphery of the loop path CI.
  • the circuit resonant arm surface circuit pattern portion Y1 includes four circuit resonant arms H1, H2, H3, and H4.
  • the circuit resonant arm HI is connected to the radiating connecting line El at the phase point PHI
  • the circuit resonant arm H2 is connected to the radiating connecting line E2 at the phase point PH2
  • the circuit resonant arm H3 is connected to the radiating connecting line E3 at the phase point PH3
  • the circuit resonant arm H4 is connected To the radiation connection line E4 at the phase point PH4.
  • the metal resonant arm F1 is connected to the radiation connection line D1 at the phase point PF1
  • the metal resonant arm F2 is connected to the radiation connection line D2 at the phase point PF2
  • the metal resonant arm F3 is connected to the radiation connection.
  • Line D3 is at phase point PF3
  • metal resonant arm F4 is connected to radiation connection line D4 at phase point PF4.
  • the metal resonant arm F1 corresponds to the metal resonant arm F3, and constitutes one radiating surface of the tag antenna (i.e., the aforementioned second planar radiating surface) in the XZ plane.
  • the metal resonant arm F2 corresponds to the metal resonant arm F4, which constitutes a radiation of the tag antenna in the YZ plane Face (ie the aforementioned third plane radiating surface).
  • the circuit resonant arm HI corresponds to the circuit resonant arm H3, and the circuit resonant arm H2 corresponds to the circuit resonant arm H4, which forms the radiating surface of the tag antenna (ie, the aforementioned first planar radiating surface) in the XY plane.
  • the tag antenna Since the tag antenna has a radiating surface on the 3 coordinate axes, and the corresponding radiating arm is hooked at every 45 degree phase point, the generated antenna effective gain map covers all directions of the spherical surface, and can be called a true omnidirectional antenna.
  • the metal resonant arm includes eight outline lines J1, J2, J3, J4, J5, J6, J7, J8, and the metal resonant arm is defined by its contour.
  • the outline line determines its size and shape, and the eight outline lines are connected end to end.
  • the distance from the outline J1 to the outline J4 determines the resonant frequency of the resonant arm.
  • the distance between the contour lines J5 of a set of mutually corresponding metal resonant arms affects the capacitive component of the metal resonant arm in the resonant tank.
  • the distance from the J6 to the outline J4 affects the capacitive component of the metal resonator arm.
  • the distance from the outline J3 to the outline J7 affects the inductive component of the metal resonant arm of the corresponding port.
  • the length of the outline J2 and the outer line J8 affect the inductive component of the metal resonant arm.
  • the omnidirectional radio frequency identification tag antenna of the invention is widely used, and the tag antenna is wrapped in a sphere, such as tennis balls and billiards, and can play the role of a tag antenna in the process of flying in the air and rolling on the desktop, and the working distance can reach 0. ⁇ 3 meters, if you use a large gain reader can reach more than ten meters, enough to cover the entire tennis court.
  • the tag antenna can also be attached to a certain surface.
  • the surface type can be a surface of a high dielectric constant material such as a water surface, or a surface of a conductive material such as a metal, or a surface of a low dielectric constant material such as a foam. Almost all types of surfaces achieve a good RF range by adjusting the distance L1 from the antenna body to the surface.
  • the invention also proposes a radio frequency identification tag, see Figs. 7 and 8, which are an isometric assembly view and an isometric perspective view of the radio frequency identification tag, respectively.
  • the RFID tag includes a housing P1, a bracket Z1, a reflecting surface W1 and an omnidirectional radio frequency identification tag antenna.
  • the housing P1 is internally provided with a reflecting surface W1, preferably a bowl-shaped reflecting surface having a diameter of 125 cm, and the bracket Z1 is disposed on the reflecting surface W1.
  • the RFID tag antenna is placed on the bracket Z1.
  • the bracket Z1 can be made of an elastic material (such as a sponge) to cushion the vibration of the road surface and keep the tag antenna at a certain distance from the reflecting surface W1.
  • FIG. 9 and FIG. 10 Please refer to FIG. 9 and FIG. 10 for a side view and a top view of the RFID tag installation and test.
  • the RFID tag is set on the ground, and the distance A is the actual test distance from the handset to the tag antenna.
  • the angle B is the actual test. angle. After testing, it uses a circularly polarized internal antenna (3 ⁇ 4dBi) or an external linear polarized antenna (5 ⁇ 6dBi).
  • the distance A in the case of power 1W can be used. To reach 0 to 3 meters or so.
  • the angle B when the distance A is 1.3 meters can reach 55 to 60 degrees or more.
  • the performance can be improved by increasing the area of the reflecting surface, increasing the area of the circuit resonant arm and the metal resonant arm, etc., but based on cost and performance considerations, it is preferable to form a bowl-shaped reflecting surface having a diameter of about 125 mm. If there is a layer of water on the ground tag launch window, the measured data will be slightly smaller, but it will not affect the standard use effect.
  • the test points in Figure 10 are standard test points, but the test angles do not necessarily correspond to the phase points in the label of Figure 3.
  • the reader used in the test can be equipped with a linearly polarized antenna or a circularly polarized antenna.
  • This label can also be used as a label floating under the water, just to ensure that the antenna body is not too far from the water surface. Otherwise, it is equivalent to being used directly in water, and the working distance A will be greatly affected.
  • the phase point in the present invention divides the angular phase 8 of 360 degrees into 45 degrees, but does not exclude dividing the angle into more equal parts, so that the tag has more resonant connecting lines to connect the resonant arms on more radiating surfaces (radiation) Body), making the omnidirectional antenna radiation direction more comprehensive and full.

Landscapes

  • Aerials With Secondary Devices (AREA)

Abstract

本发明提出一种全向射频识别标签天线,包括标签基片、谐振回路面电路图案部分、电路谐振臂面电路图案部分及四个金属谐振臂,谐振回路面电路图案部分设置在标签基片上,其包括至少一个谐振回路;电路谐振臂面电路图案部分设置在标签基片上,其包括至少两个电路谐振臂,电路谐振臂与该谐振回路面电路图案部分相连,且电路谐振臂两两对应,并形成一第一平面辐射面;四个金属谐振臂均与谐振回路面电路图案部分相连,金属谐振臂两两对应,并形成第二平面辐射面和第三平面辐射面。本发明的全向射频识别标签天线在3坐标轴都有辐射面,而且对应的辐射臂在每隔45度的相位点均匀分布,其产生的天线有效增益图涵盖球面所有方向,可以称为真正的全向天线。

Description

全向射频识别标签天线及射频识别标签
技术领域
本发明涉及一种无线射频识别标签的天线, 特别涉及一种全向的射频 识别标签天线。 背景技术
RFID是无线射频识别技术 ( Radio Frequency Identification ) 的缩写, RFID俗称电子标签, RFID技术是从二十世纪九十年代兴起的一项利用射 频信号进行非接触式双向通信, 自动识别目标对象并获取相关信息的无线 通信技术。 随着科学技术的进步, RFID已涉及到人们日常生活的各个方 面, 被广泛应用于工业自动化、 商业自动化、 交通运算控制管理等众多领 域, 例如火车的交通监控系统、 高速公路自动收费系统、 物品管理、 流水 线生产自动化、 门禁系统、 金融交易、 仓库管理、 畜牧管理、 车辆防盗等、 RFID技术将成为未来信息社会建设的一项基础技术。最基本的 RFID系统 由三部分组成: 标签(Tag ), 由耦合元件及芯片组成, 每个标签具有唯一 的电子编码, 附着在物体上标识目标对象; 阅读器 (Reader ), 读取 (有 时还可以写入) 标签信息的设备, 可设计为手持式或固定式; 天线
( Antenna ), 在标签和读写器间传递射频信号。 天线作为一种接收和发射 电磁波的设备, 是无线通讯系统中的一个关键部分, 它是自由空间和传输 线的接口。 在天线的性能参数中, 影响最大的是其阻抗匹配、 抗干扰性、 读取范围和方向性。
天线对空间不同方向具有不同的辐射或接收能力, 这就是天线的方向 性, 根据方向性的不同, 天线有定向和全向两种。 定向天线在水平方向图 上表现为一定角度范围辐射, 在垂直方向图上表现为有一定宽度的波束, 定向天线在通信系统中一般应用于通信距离远,覆盖范围小, 目标密度大, 频率利用率高的场合。全向天线在水平方向图上表现为 360° 都均匀辐射, 在垂直方向图上表现为有一定宽度的波束, 其在通信系统中一般应用距离 近, 覆盖范围大的场合。
但是, 现有全向天线的全向性只体现在水平方向上, 在垂直方向上却 没有辐射 (即在振子的轴线方向上辐射为零), 因而并不是真正意义上的
"全向", 在应用时造成一定局限。 发明内容
本发明的目的是提供一种全向射频识别标签天线, 以解决现有的天线 很难实现真正意义上 "全向" 的问题。
本发明提出一种全向射频识别标签天线, 包括:
一标签基片;
一谐振回路面电路图案部分, 设置在该标签基片上, 其进一步包括至 少一个谐振回路;
一电路谐振臂面电路图案部分, 设置在该标签基片上, 其进一步包括 至少两个电路谐振臂, 该电路谐振臂与该谐振回路面电路图案部分相连, 且该电路谐振臂两两对应, 并形成一第一平面辐射面;
四个金属谐振臂, 均与该谐振回路面电路图案部分相连, 该金属谐振 臂两两对应, 并形成一第二平面辐射面和一第三平面辐射面。
进一步的, 该第一平面辐射面、 该第二平面辐射面和该第三平面辐射 面均相互垂直。
进一步的, 该谐振回路面电路图案部分包括:
一环路线;
四个谐振连接线, 一端均与该环路线相连;
一标签芯片焊盘, 其设置有两个端口, 每个端口又包括两个电气连接 点, 且一个端口的两个电气连接点分别连接两个谐振连接线另一端, 与该 环路线一起形成一谐振回路, 另一端口的两个电气连接点分别连接另两个 谐振连接线另一端, 与该环路线一起形成另一谐振回路; 两个谐振回路的 信号相位相差 90度左右。
用于连接谐振臂的至少六个辐射连接线, 均与该环路线相连。
进一步的, 该辐射连接线的数量为 8个, 且以 45° 的夹角连接并均匀 分布在该环路线的外围。
进一步的, 该电路谐振臂面电路图案部分上设置有 4个电路谐振臂,
4个电路谐振臂和 4个金属谐振臂交错连接在 8个辐射连接线上。
进一步的, 该金属谐振臂包括 8条外形线, 8条外形线依次首尾相连。 本发明还提出一种射频识别标签, 包括一外壳、 一支架, 一个反射面 及一全向射频识别标签天线, 该反射面设置在外壳内, 该支架设置在反射 面上, 该全向射频识别标签天线设置在该支架上。 进一步的, 该反射面为直径 125cm的碗形反射面。
相对于现有技术, 本发明的有益效果是: 本发明的全向射频识别标签 天线在 3坐标轴都有辐射面, 而且对应的辐射臂在每隔 45度的相位点均 匀分布, 其产生的天线有效增益图涵盖球面所有方向, 可以称为真正的全 向天线。
本发明提出的另一种射频识别标签的有效增益是将上述全向射频识 别标天线通过反射面的反射增强其在各种介质的表面和内部的应用。 附图说明
图 1为本发明全向射频识别标签天线的一种等轴测组装图;
图 2为本发明全向射频识别标签天线的一种等轴测透视图;
图 3为图 1中谐振回路面电路图案部分部分的平面示意图;
图 4为图 1中电路谐振臂面电路图案部分部分的平面示意图; 图 5为图 1中金属谐振臂的结构图;
图 6为本发明全向射频识别标签天线依附于一种表面上的侧视图; 图 7为本发明射频识别标签的一种等轴测组装图;
图 8为本发明射频识别标签的一种等轴测透视图;
图 9为本发明射频识别标签安装和测试的一种侧视图;
图 10为本发明射频识别标签安装和测试的一种俯视图。 具体实施方式
以下结合附图具体说明本发明。
请参见图 1和图 2, 其分别为本发明全向射频识别标签天线的一种等 轴测组装图及等轴测透视图, 全向射频识别标签天线包括标签基片 01、 谐振回路面电路图案部分 XI、电路谐振臂面电路图案部分 Y1以及四个金 属谐振臂 Fl、 F2、 F3、 F4, 谐振回路面电路图案部分 XI和电路谐振臂面 电路图案部分 Y1均设置在标签基片 01上, 四个金属谐振臂 Fl、 F2、 F3、 F4均与谐振回路面电路图案部分 XI电性连接。
请参见图 3 ,其为图 1中谐振回路面电路图案部分部分的平面示意图, 谐振回路面电路图案部分 XI包括环路线 C1 , 四个谐振连接线 Bl、 B2、 B3、 B4, 八个辐射连接线 Dl、 D2、 D3、 D4、 El、 E2、 E3、 E4, 以及标 签芯片焊盘 Al。 标签芯片焊盘 A1设置有两个端口,每个端口又包括两个电气连接点, 其可以焊接 impinj等公司所生产的双端口芯片。第一个端口的一个连接点 的焊盘连接于谐振连接线 B4的一端, 谐振连接线 B4的另一端连接环路 线 C1于相位点 PF1 ,并通过环路线 C1连接到谐振连接线 B2于相位点 PF3 , 谐振连接线 B2另一端连接第一个端口的另一个连接点的焊盘, 从而构成 第一个端口的谐振回路。
第二个端口的一个连接点的焊盘连接于谐振连接线 B1 , 谐振连接线 B1的另一端连接环路线 C1于相位点 PF2 , 并通过环路线 C1连接到谐振 连接线 B3于相位点 PF4,谐振连接线 B3另一端连接第二个端口的另一个 连接点的焊盘, 从而构成第二个端口的谐振回路。
两个谐振回路的信号相位相差 90度左右。
辐射连接线 D1连接环路线 C1于相位点 PF1 , 辐射连接线 E1连接环 路线 C1于相位点 PH1 , 辐射连接线 D2连接环路线 C1于相位点 PF2, 辐 射连接线 E2连接环路线 C1于相位点 PH2, 辐射连接线 D3连接环路线 C1于相位点 PF3 , 辐射连接线 E3连接环路线 C1于相位点 PH3 , 辐射连 接线 D4连接环路线 C1于相位点 PF4, 辐射连接线 E4连接环路线 C1于 相位点 PH4。 其中, 相位点定义为: 以标签芯片焊盘 A1的中心点为圓心, 360度的角度相位, 相位点 PF1~PF4分别相差 90度, 相位点 PH1~PH4分 别相差 90度,相位点 PF1和 PH1相差 45度。 即 8个辐射连接线 Dl、 D2、 D3、 D4、 El、 E2、 E3、 E4以 45。 的夹角均匀分布在环路线 CI的外围。
请参见图 4, 其为图 1中电路谐振臂面电路图案部分部分的平面示意 图, 电路谐振臂面电路图案部分 Y1包括四个电路谐振臂 Hl、 H2、 H3、 H4。 电路谐振臂 HI连接到辐射连接线 El于相位点 PHI , 电路谐振臂 H2 连接到辐射连接线 E2于相位点 PH2, 电路谐振臂 H3连接到辐射连接线 E3于相位点 PH3 , 电路谐振臂 H4连接到辐射连接线 E4于相位点 PH4。
请结合参见图 1、 图 2和图 3 , 金属谐振臂 F1连接到辐射连接线 D1 于相位点 PF1 , 金属谐振臂 F2连接到辐射连接线 D2于相位点 PF2, 金属 谐振臂 F3连接到辐射连接线 D3于相位点 PF3 , 金属谐振臂 F4连接到辐 射连接线 D4于相位点 PF4。
由此可见在本实施例中, 金属谐振臂 F1对应于金属谐振臂 F3 , 在 XZ平面中构成标签天线的一个辐射面(即前述的第二平面辐射面)。 金属 谐振臂 F2对应于金属谐振臂 F4, 在 YZ平面中构成标签天线的一个辐射 面 (即前述的第三平面辐射面)。 电路谐振臂 HI对应电路谐振臂 H3 , 电 路谐振臂 H2对应电路谐振臂 H4 , 在 XY平面构成标签天线的辐射面(即 前述的第一平面辐射面)。 由于标签天线在 3坐标轴都有辐射面, 而且对 应的辐射臂在每隔 45度的相位点均勾分布, 其产生的天线有效增益图涵 盖球面所有方向, 可以称为真正的全向天线。
请参见图 5 , 其为图 1中金属谐振臂的结构图, 金属谐振臂包括 8条 外形线 Jl、 J2、 J3、 J4、 J5、 J6、 J7、 J8 , 金属谐振臂是由其轮廓上的外 形线决定其尺寸形状, 8条外形线依次首尾相连。 其中, 外形线 J1到外形 线 J4的距离决定谐振臂谐振频率的大小。 一组相互对应的金属谐振臂的 外形线 J5之间的距离影响的金属谐振臂在谐振回路中容性分量大小。 夕卜 形线 J6到外形线 J4的距离影响金属谐振臂容性分量的大小。 外形线 J3 到外形线 J7的距离影响对应端口的金属谐振臂感性分量。 外形线 J2和外 形线 J8的长度影响金属谐振臂感性分量。
本发明全向射频识别标签天线应用极为广泛, 将标签天线包裹在球体 中, 比如网球, 台球中, 可以在其在空中飞行和桌面滚动过程中, 都发挥 标签天线的作用, 作用距离可达 0~3米, 如果使用大增益读取器可以达到 十几米以上, 足够覆盖整个网球场。
标签天线也可以依附于某种表面, 如图 6所示, 表面的类型可以是水 面等高介电常数材料表面, 也可以是金属等导电材料表面, 更可以是泡沫 等低介电常数材料表面, 几乎所有类型的表面, 通过调整天线本体到表面 的距离 L1 , 达到良好的射频作用距离。
本发明还提出一种射频识别标签, 请参见图 7和图 8 , 其分别是射频 识别标签的一种等轴测组装图及等轴测透视图。 射频识别标签包括外壳 Pl、 支架 Zl、 反射面 W1及全向射频识别标签天线, 外壳 P1内部设置有 一层反射面 W1 , 优选直径 125cm的碗形反射面, 支架 Z1设置在反射面 W1上, 全向射频识别标签天线设置在支架 Z1上。 支架 Z1可以采用弹性 材料(如海绵), 以起到緩沖路面震动的作用, 并使标签天线到反射面 W1 保持一定距离。
请参见图 9、图 10其分别为射频识别标签安装和测试的一种侧视图及 俯视图, 此射频识别标签设置于地面, 距离 A为手持机到标签天线的实际 测试距离, 角度 B为实际测试角度。 经过测试, 其在使用圓极化内置天线 ( 3~4dBi ) 或者外置线极化天线 (5~6dBi ), 功率 1W情况下的距离 A可 以达到 0到 3米左右。距离 A为 1.3米时的角度 B可以达到 55~60度以上。 性能上可以通过增加反射面面积, 增加电路谐振臂和金属谐振臂面积等得 到改进, 但是基于成本和性能考虑, 优选做成直径 125mm左右尺寸的碗 型反射面。地面标签发射窗口上如果有一层积水,实测的数据会稍微变小, 但是不影响标准使用效果。 图 10中的测试点为标准测试点, 但是测试角 度并不一定和图 3标签中的相位点相互对应。 图中测试所用读写器可以装 备线极化天线或者圓极化天线。
此标签还可以作为漂浮在水面下的标签使用, 只是需要保证天线本体 到水面的距离不能太远。 否则相当于直接在水中使用, 作用距离 A会受到 比较大的影响。
本发明中的相位点将 360度的角度相位 8等分成 45度, 但不排除将 角度分成更多等分, 使标签拥有更多谐振连接线, 以连接更多辐射面上的 谐振臂 (辐射体), 使全向天线的辐射方向更加全面和饱满。
以上公开的仅为本发明的几个具体实施例, 但本发明并非局限于此, 任何本领域的技术人员能思之的变化, 只要不超出所附权利要求书所述范 围, 都应落在本发明的保护范围内。

Claims

权 利 要 求 书
1、 一种全向射频识别标签天线, 其特征在于, 包括:
一标签基片;
一谐振回路面电路图案部分, 设置在该标签基片上, 其进一步包括至 少一个谐振回路;
一电路谐振臂面电路图案部分, 设置在该标签基片上, 其进一步包括 至少两个电路谐振臂, 该电路谐振臂与该谐振回路面电路图案部分相连, 且该电路谐振臂两两对应, 并形成一第一平面辐射面;
四个金属谐振臂, 均与该谐振回路面电路图案部分相连, 该金属谐振 臂两两对应, 并形成一第二平面辐射面和一第三平面辐射面。
2、 如权利要求 1所述的全向射频识别标签天线, 其特征在于, 该第 一平面辐射面、 该第二平面辐射面和该第三平面辐射面均相互垂直。
3、 如权利要求 1所述的全向射频识别标签天线, 其特征在于, 该谐 振回路面电路图案部分包括:
一环路线;
四个谐振连接线, 一端均与该环路线相连;
一标签芯片焊盘, 其设置有两个端口, 每个端口又包括两个电气连接 点, 且一个端口的两个电气连接点分别连接两个谐振连接线另一端, 并与 该环路线一起形成一谐振回路, 另一端口的两个电气连接点分别连接另两 个谐振连接线另一端, 并与该环路线一起形成另一谐振回路;
用于连接谐振臂的至少六个辐射连接线, 均与该环路线相连。
4、 如权利要求 3所述的全向射频识别标签天线, 其特征在于, 该辐 射连接线的数量为 8个,且以 45° 的夹角连接并均匀分布在该环路线的外 围。
5、 如权利要求 4所述的全向射频识别标签天线, 其特征在于, 该电 路谐振臂面电路图案部分上设置有 4个电路谐振臂, 4个电路谐振臂和 4 个金属谐振臂交错连接在 8个辐射连接线上。
6、 如权利要求 1所述的全向射频识别标签天线, 其特征在于, 该金 属谐振臂包括 8条外形线, 8条外形线依次首尾相连。
7、 一种射频识别标签, 其特征在于, 包括一外壳、 一支架及一如权 利要求 1~6任一项所述的全向射频识别标签天线, 该外壳底面设置有一层 反射面, 该支架设置在该外壳的底面上, 该全向射频识别标签天线设置在 该支架上。
8、 如权利要求 7所述的地面射频识别标签, 其特征在于, 该反射面 为直径 125cm的碗形反射面。
PCT/CN2013/072380 2012-03-12 2013-03-11 全向射频识别标签天线及射频识别标签 WO2013135151A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201210062780.3 2012-03-12
CN201210062780.3A CN102570025B (zh) 2012-03-12 2012-03-12 全向射频识别标签天线及射频识别标签

Publications (1)

Publication Number Publication Date
WO2013135151A1 true WO2013135151A1 (zh) 2013-09-19

Family

ID=46414857

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/072380 WO2013135151A1 (zh) 2012-03-12 2013-03-11 全向射频识别标签天线及射频识别标签

Country Status (2)

Country Link
CN (1) CN102570025B (zh)
WO (1) WO2013135151A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102570025B (zh) * 2012-03-12 2016-12-28 群淂数码科技(上海)有限公司 全向射频识别标签天线及射频识别标签
CN102760938B (zh) * 2012-07-20 2013-08-07 深圳市龙侨华实业有限公司 一种增强型全向天线振子
CN110972417B (zh) * 2019-12-23 2021-05-14 Oppo广东移动通信有限公司 透波壳体组件及其制备方法、天线组件和电子设备

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040125020A1 (en) * 2002-06-04 2004-07-01 Hendler Jason M. Wideband printed monopole antenna
US20090322631A1 (en) * 2006-07-21 2009-12-31 Commissariat A L'energie Atomique Antenna and associated measurement sensor
CN201408840Y (zh) * 2009-05-05 2010-02-17 中兴通讯股份有限公司 圆极化天线
CN101656352A (zh) * 2009-09-25 2010-02-24 厦门大学 双频镜像分形偶极子天线
CN101667678A (zh) * 2009-10-12 2010-03-10 嘉兴佳利电子有限公司 一种射频识别天线
CN202153366U (zh) * 2011-07-06 2012-02-29 中兴通讯股份有限公司 一种陶瓷基板和电子标签
CN102570025A (zh) * 2012-03-12 2012-07-11 群淂数码科技(上海)有限公司 全向射频识别标签天线及射频识别标签
CN202474205U (zh) * 2012-03-12 2012-10-03 群淂数码科技(上海)有限公司 全向射频识别标签天线及射频识别标签

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2876507B1 (fr) * 2004-10-12 2006-12-01 K Sa As Etiquette sans contact a antenne en y omnidirectionnelle
US7505008B2 (en) * 2005-09-26 2009-03-17 Electronics And Telecommunications Research Institute Electrical loop antenna with unidirectional and uniform current radiation source
CN201789075U (zh) * 2010-09-08 2011-04-06 国民技术股份有限公司 一种射频识别标签天线装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040125020A1 (en) * 2002-06-04 2004-07-01 Hendler Jason M. Wideband printed monopole antenna
US20090322631A1 (en) * 2006-07-21 2009-12-31 Commissariat A L'energie Atomique Antenna and associated measurement sensor
CN201408840Y (zh) * 2009-05-05 2010-02-17 中兴通讯股份有限公司 圆极化天线
CN101656352A (zh) * 2009-09-25 2010-02-24 厦门大学 双频镜像分形偶极子天线
CN101667678A (zh) * 2009-10-12 2010-03-10 嘉兴佳利电子有限公司 一种射频识别天线
CN202153366U (zh) * 2011-07-06 2012-02-29 中兴通讯股份有限公司 一种陶瓷基板和电子标签
CN102570025A (zh) * 2012-03-12 2012-07-11 群淂数码科技(上海)有限公司 全向射频识别标签天线及射频识别标签
CN202474205U (zh) * 2012-03-12 2012-10-03 群淂数码科技(上海)有限公司 全向射频识别标签天线及射频识别标签

Also Published As

Publication number Publication date
CN102570025B (zh) 2016-12-28
CN102570025A (zh) 2012-07-11

Similar Documents

Publication Publication Date Title
US7561107B2 (en) RFID device with microstrip antennas
US8077044B2 (en) RFID tags with enhanced range and bandwidth obtained by spatial antenna diversity
JP4825582B2 (ja) 無線タグ及び無線タグ用アンテナ
US6441740B1 (en) Radio frequency identification transponder having a reflector
US9355349B2 (en) Long range RFID tag
US20080122629A1 (en) Radio frequency identification tag
WO2000017813A1 (fr) Dispositif de communication a semi-conducteurs sans contact
WO2011088597A1 (zh) 小型化射频识别标签及其中的微带贴片天线
US9317798B2 (en) Inverted F antenna system and RFID device having same
WO2013135151A1 (zh) 全向射频识别标签天线及射频识别标签
JP2003249820A (ja) 無線通信装置
CN112151935A (zh) 一种液体不敏感超高频rfid柔性标签天线
CN201194252Y (zh) 一种线极化微带天线
CN202474205U (zh) 全向射频识别标签天线及射频识别标签
WO2018170968A1 (zh) 一种平衡式非均匀圆极化环天线
US8570230B2 (en) Antenna
KR100999110B1 (ko) 3축 편파 구형 rfid 태그 안테나
US20070103308A1 (en) Antenna structure for the radio frequency identification tag
TW201737554A (zh) 高效能無線射頻標籤天線
WO2012163293A1 (zh) 超小型化无源抗金属射频识别标签
JP5092600B2 (ja) 無線icデバイス
Kumar et al. Bendable ultra‐high frequency radio‐frequency identification tag antenna for retail garments using nonuniform meandered lines
JP3569256B2 (ja) 非接触通信式半導体装置
CN217768740U (zh) 一种可多角度应用的耦合式rfid标签天线
TWI803957B (zh) 無線射頻晶片模組及其rfid接收器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13760450

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13760450

Country of ref document: EP

Kind code of ref document: A1