WO2013135065A1 - 偏光装置、3d显示器和3d显示系统 - Google Patents

偏光装置、3d显示器和3d显示系统 Download PDF

Info

Publication number
WO2013135065A1
WO2013135065A1 PCT/CN2012/084465 CN2012084465W WO2013135065A1 WO 2013135065 A1 WO2013135065 A1 WO 2013135065A1 CN 2012084465 W CN2012084465 W CN 2012084465W WO 2013135065 A1 WO2013135065 A1 WO 2013135065A1
Authority
WO
WIPO (PCT)
Prior art keywords
crystal substrate
voltage
polarized light
display
electrode
Prior art date
Application number
PCT/CN2012/084465
Other languages
English (en)
French (fr)
Inventor
吴行吉
张亮
王立岩
汪建明
Original Assignee
京东方科技集团股份有限公司
北京京东方显示技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 北京京东方显示技术有限公司 filed Critical 京东方科技集团股份有限公司
Publication of WO2013135065A1 publication Critical patent/WO2013135065A1/zh

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133528Polarisers
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B30/00Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images
    • G02B30/20Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes
    • G02B30/22Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the stereoscopic type
    • G02B30/25Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the stereoscopic type using polarisation techniques

Definitions

  • Embodiments of the present invention relate to a polarizing device, a 3D (Three Dimensional) display, and a 3D display system. Background technique
  • 3D display has become a major trend in the display field, and more and more people want to apply 3D technology to smart terminals such as computers, televisions or mobile phones.
  • the existing visual aid 3D technologies mainly include: polarized 3D display technology and shutter 3D display technology.
  • the polarized 3D display system mainly includes a 3D display and a 3D glasses worn by a viewer.
  • the 3D display mainly uses a spectroscopy method to decompose an image to be displayed into two sets of polarized light of different polarization directions, that is, left.
  • the eye image and the right eye image, the two polarized lenses in the 3D glasses are respectively used to receive polarized light of different polarization directions, so that the left eye and the right eye respectively receive the left eye image and the right eye image, thereby synthesizing 3D in the brain. image.
  • the principle of the shutter type 3D technology is to control the active shutter glasses by the signal transmitter, so that the left and right lenses are alternately switched, and the left and right eye parallax images respectively for the left and right eyes are simultaneously displayed alternately on the 2D display panel.
  • the frequency of the left and right lenses alternately switches is greater than or equal to 60 Hz, the left and right eyes can respectively see the left and right eye parallax images, thereby synthesizing the 3D images in the human brain.
  • Embodiments of the present invention provide a polarizing device, a 3D display, and a 3D display system for solving the problems of low resolution and flicker of a 3D display in the prior art.
  • An embodiment of the present invention provides a polarizing device, including: a first electrode; a second electrode; a driving power source, respectively connected to the first electrode and the second electrode to apply an alternating to the first electrode and the second electrode a voltage; and a crystal substrate disposed between the first electrode and the second electrode, according to Alternatively, when the alternating voltage is applied to the crystal substrate, an angle between polarization directions of the two sets of polarized light outputted through the crystal substrate ranges from 0 to 90 degrees.
  • the frequency of the alternating voltage of the drive power output is greater than or equal to 60 Hz.
  • the voltage values of the alternating voltage are respectively a first voltage and a second voltage; the polarized light outputs the first polarized light after the crystal substrate to which the first voltage is applied, and passes through a crystal base to which the second voltage is applied.
  • the second polarized light is output after the sheet; the angle between the polarization directions of the first polarized light and the second polarized light ranges from 0 to 90 degrees.
  • the first voltage is 0, the second voltage is U, and when the voltage on the crystal substrate is 0, the polarization direction before the polarized light is input to the crystal substrate and the crystal base
  • the polarization direction after the output of the sheet is the same; when the voltage on the crystal substrate is U, the angle between the polarization direction before the polarized light is input to the crystal substrate and the polarization direction after output from the crystal substrate in
  • Is the refractive index of 0 light in the crystal substrate
  • U is the voltage applied to the crystal substrate by the driving power source
  • ⁇ 63 is the electro-optic coefficient of the crystal substrate
  • is the wavelength of the polarized beam in vacuum .
  • the calculated light intensity I after the output of the polarized light through the crystal substrate is calculated by the following formula:
  • k is a scale factor associated with the material of the crystal substrate
  • A is the amplitude of the polarized light
  • U is the amplitude of the polarized light
  • U is the amplitude of the polarized light
  • U is the amplitude of the polarized light
  • U is the amplitude of the polarized light
  • U And d are respectively a voltage, a dielectric constant and a thickness on the crystal substrate
  • is a phase difference between the 0-light and the e-light which the polarized light decomposes in the crystal substrate.
  • the crystal substrate is composed of an electro-optic crystal material comprising potassium bismuthate, potassium dihydrogenate, quartz or potassium arsenate.
  • Embodiments of the present invention also provide a 3D display including a display panel and any of the above-described polarizing devices.
  • Embodiments of the present invention also provide a 3D display system, including the above-described 3D display and polarized glasses, which are located between a human eye and a 3D display and include respectively for transmitting
  • FIG. 1 is a schematic structural view of a polarizing device according to an embodiment of the present invention.
  • FIG. 2 is a schematic structural diagram of a 3D display according to an embodiment of the present invention.
  • FIG. 3 is a schematic structural diagram of a 3D display system according to an embodiment of the present invention.
  • FIG. 4 is a polarization diagram of polarized light when the output voltage of the driving power source is 0 in FIG. 3;
  • Fig. 5 is a polarization diagram of polarized light when the output voltage of the driving power source is U in Fig. 3. detailed description
  • FIG. 1 is a schematic structural view of a polarizing device according to an embodiment of the present invention.
  • the polarizing device in this embodiment includes: a driving power source 100, a first electrode 101, a second electrode 102, and a crystal substrate 103.
  • the driving power source 100 is connected to the first electrode 101 and the second electrode 102, respectively.
  • An alternating voltage is applied to the first electrode 101 and the second electrode 102, and the crystal substrate 103 is disposed between the first electrode 101 and the second electrode 102.
  • the crystal substrate 103 is composed of, for example, an electro-optical crystal material
  • the driving power source 100 applies an alternating voltage of a predetermined frequency on the crystal substrate 103 through the first electrode 101 and the second electrode 102 to polarize the crystal substrate 103.
  • the polarization direction of the light is correspondingly deflected.
  • the voltage values applied to the crystal substrate 103 are different, the polarized light is output from the crystal substrate 103 and polarized.
  • the direction of deflection of the direction is also different.
  • the alternating voltage refers to a voltage at which the output voltage value changes according to a preset frequency.
  • the preset frequency may be 60 Hz or the like.
  • the alternating voltage outputs a first voltage U1 and a second voltage U2, respectively, and the first voltage U1 and the second voltage U2 may both be positive voltages, may be negative voltages, or may be a positive voltage or a negative voltage.
  • one of the first voltage U1 and the second voltage U2 may be a zero voltage and the other is a positive voltage or a negative voltage.
  • the polarized light passes through the crystal substrate to which the first voltage U1 is applied, and then outputs the first polarized light, and after the crystal substrate to which the second voltage U2 is applied, the second polarized light is output, and the polarization directions of the first polarized light and the second polarized light are between
  • the included angle ranges from 0 to 90 degrees, and the first polarized light and the second polarized light correspond to the left eye/right eye image and the right eye/left eye image, respectively.
  • the first voltage U1 and the second voltage U2 of the alternating voltage may be 0 and U, respectively.
  • the polarization direction of the polarized light after passing through the crystal substrate 103 is There will be no change.
  • the voltage applied to the crystal substrate 103 by the driving power source 100 is U
  • the polarized light is deflected by a certain angle after being output through the crystal substrate 103.
  • the polarization direction of the polarized light after being output from the crystal substrate 103 alternates with the alternating voltage applied from the driving power source 100 at the same frequency. Since the electro-optic crystal material has a fast response speed, the response time is usually in the microsecond or nanosecond order, which avoids the flicker phenomenon when the polarizing device outputs polarized light of different polarization directions.
  • the polarized light emitted by all the pixels of the display panel is output by the polarizing device and then received by the eyes of the viewer, so the resolution of the image formed by the light source is not reduced.
  • the alternating voltage of the output of the driving power source is not limited, as long as the alternating voltage of the driving power source output can have an angle between the polarization directions of the two sets of polarized light passing through the crystal substrate 103, thereby It is achieved that the two sets of polarized light are respectively received by different polarized lenses.
  • the voltage values of the alternating voltages are taken as 0 and U respectively to introduce the technical solution.
  • the voltage value on the crystal substrate 103 is 0, the polarization direction of the polarized light before and after passing through the crystal substrate 103 is the same.
  • the voltage value on the crystal substrate 103 is U, the polarization direction of the polarized light after passing through the crystal substrate 103 is polarized. It will be deflected by an angle which is the angle between the polarization directions of the two sets of polarized light output from the crystal substrate 103.
  • the 3D display in this embodiment includes a polarizing device 10 and a display panel 20.
  • the polarizing device 10 is disposed on the light emitting side of the display panel 20.
  • the polarizing device 10 and the display panel 20 can be mounted and fixed together, and can also be movable. Mounted, that is, detachably mounted together to facilitate the polarizing device 10 and the display panel 20 separation.
  • the polarizing device 10 is configured by the structure shown in FIG. 1.
  • the display panel 20 includes a first polarizing plate 201, an array substrate 202, a liquid crystal layer 203, a color filter substrate 204, and a second polarizing plate 205 in order from bottom to top, and a liquid crystal layer.
  • the 203 is packaged between the array substrate 202 and the color filter substrate 204; the polarized light output from the display panel 20 is sequentially output through the first electrode 101, the crystal substrate 103, and the second electrode 102 in the polarizing device 10.
  • the display panel 20 of the embodiment of the present invention may also be an OLED display panel, a plasma display unit, an electronic ink display unit, etc., and the embodiment of the present invention does not particularly limit the structure of the display panel 20.
  • the polarized light M input from the pixels in the display panel 20 to the crystal substrate 103 is input light
  • the polarized light N outputted through the crystal substrate 103 is output light
  • the polarized light M of the right eye image comes from all the pixels in the display panel 20, and thus does not lower the resolution of the image displayed by the display panel.
  • the voltage on the crystal substrate 103 is 0, the polarization directions of the polarized light M and the polarized light N are the same, and when the voltage on the crystal substrate 103 is U, the 0-light of the polarized light M decomposed in the crystal substrate 103 is There is a phase difference ⁇ between the e lights.
  • the value of ⁇ ranges between 0 ⁇ ⁇ ⁇ 2 ⁇ , there is an angle between the polarization direction of the polarization pupil outputted from the crystal substrate 103 and the polarization direction of the polarization diaphragm.
  • the polarization direction of the polarization pupil outputted through the crystal substrate 103 and the polarization direction of the polarization pupil are perpendicular to each other, and the polarization direction of the polarization pupil output from the crystal substrate 103 is alternating with the application of the driving power source 100.
  • the voltage is alternated with the same frequency.
  • the intensity I of the polarized light is calculated by the formula (1), and the formula (1) is as follows.
  • A is the amplitude of the polarized light N
  • U and d are the voltage and dielectric of the crystal substrate 103, respectively.
  • the constant and thickness k is a proportional coefficient associated with the material of the crystal substrate
  • is the phase difference between the 0-light and the e-light which the polarized light M decomposes in the crystal substrate 103.
  • Equation (2) the phase difference ⁇ between the 0-light and the e-light decomposed by the polarization pupil in the crystal substrate can pass Equation (2) is calculated, and formula (2) is as follows:
  • the light intensity after the output of the polarized light through the crystal substrate 103 can be calculated, and when the voltage of the crystal substrate 103 is U, The polarization direction of the polarized light output from the crystal substrate 103 will be deflected at an angle, and the angle between the polarization directions of the polarized light before and after passing through the crystal substrate 103 is in the range of 0-90 degrees.
  • the phase difference ⁇ between the 0-light and the e-light decomposed by the polarized light M in the crystal substrate is ⁇
  • the angle between the polarization directions of the polarized light beam before and after passing through the crystal substrate 103 is 90 degrees
  • the polarization directions of the two polarized lights output from the crystal substrate 103 are perpendicular, which will facilitate the user to receive polarized light of different polarization directions, respectively.
  • the electro-optical crystal material may include potassium dibasic acid ( ⁇ ), potassium dihydrogen phosphate (KDP) or potassium arsenate (KDA).
  • KDP potassium dihydrogen phosphate
  • KDA potassium arsenate
  • the crystal substrate 103 is potassium dipotassium phosphate, its electro-optic coefficient is 25 pm/V.
  • the crystal substrate composed of the electro-optic crystal material in the polarizing device has a fast response speed, and the response time is usually in the microsecond or nanosecond order, which can effectively avoid the flickering of the polarizing device when alternately outputting polarized lights of different polarization directions. phenomenon.
  • the polarized light from all the pixels of the display panel can be received by the eyes of the viewer after being output by the polarizing means, so that the resolution of the image formed by the light source is not lowered.
  • FIG. 3 is a schematic structural diagram of a 3D display system according to an embodiment of the present invention.
  • the 3D display system of the present embodiment includes a 3D display and 3D glasses that are worn by the user, that is, between the human eye and the 3D display, that is, polarized glasses, wherein the left eyepiece in the 3D eyepiece mirror
  • the lens 301 and the right eye lens 302 are respectively used for receiving polarized light of different polarization directions output by the 3D display, 3D display
  • the structure shown in Fig. 2 is used for the display.
  • the polarized light M is polarized light input to the crystal substrate 103
  • the polarized light N is polarized light output from the crystal substrate 103
  • the alternating voltages output from the driving power source 100 are, for example, 0 and U, respectively.
  • the voltage value on the crystal substrate 103 is 0, the polarization directions of the polarized light M and the polarized light N are the same.
  • the voltage value on the crystal substrate 103 is U
  • the upper voltage value U is such that the angle between the polarization direction of the polarized light M and the polarized light N at this time is ⁇ /2.
  • FIG. 4 is an optical path diagram of the output polarized light when the voltage applied to the crystal substrate of FIG. 3 is 0, and FIG. 5 is an optical path diagram of the output polarized light when the voltage applied to the crystal substrate of FIG. 3 is U.
  • the polarization direction of the polarization pupil is the same as the polarization direction of the polarization pupil output from the crystal substrate 103;
  • the angle between the polarization direction of the polarization pupil and the polarization direction of the polarization pupil is ⁇ /2.
  • the polarization pupil output from the crystal substrate 103 includes horizontally polarized light and vertically polarized light, and horizontally polarized light and vertically polarized light in the polarized light
  • the alternating voltage alternates with the frequency.
  • the lens of the 3D eyepiece is adapted to the polarized light of two polarization directions output by the polarizing device 10.
  • the left eye lens 301 and the right eye lens 302 are respectively used to receive the output of the polarizing device 10. Horizontally polarized light and vertically polarized light.
  • the left eyeglasses 301 and the right eyeglasses 302 may also be used to receive the vertically polarized light and the horizontally polarized light output by the polarizing device 10, which are not limited in the present invention.
  • the driving power source 100 applies an alternating voltage of a preset frequency on the crystal substrate 103
  • the polarization pupil output from the crystal substrate 103 alternates according to a preset frequency
  • the left eye of the viewer wearing the 3D glasses The right eye and the right eye will respectively receive the two sets of polarized light of different deflection directions output from the polarizing means 10.
  • the two sets of polarized light of different deflection directions may be horizontally polarized light and vertically polarized light, respectively.
  • the left and right eyes may be at 1 A slightly different picture greater than or equal to 60 frames is seen in seconds to form a 3D image in the human brain.
  • the two sets of polarized light of different deflection directions output from the crystal substrate 103 are derived from all the pixels on the display panel in the 3D display, the resolution of the image displayed by the 3D display is not lowered.
  • the crystal substrate 103 composed of the electro-optic crystal has a fast response speed, and the response speed is usually in the order of microseconds or nanoseconds, which can effectively avoid the left eye and the right eye of the viewer. The phenomenon of flickering when receiving different images reduces the feeling of fatigue of the audience.
  • the crystal substrate composed of the electro-optic crystal material has a fast response speed, and the response time is usually in the order of microseconds or nanoseconds, which avoids flicker which occurs on the polarizing means when the viewer views the 3D image.
  • the polarized light emitted from all the pixels in the display panel is received by the eyes of the viewer after being outputted by the polarizing means, so that the resolution of the image formed by the light source is not lowered.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Nonlinear Science (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Liquid Crystal (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)
  • Testing, Inspecting, Measuring Of Stereoscopic Televisions And Televisions (AREA)

Abstract

一种偏光装置包括:驱动电源(100)、第一电极(101)、第二电极(102)和晶体基片(103);驱动电源(100)分别与第一电极(101)和第二电极(102)连接,向第一电极(101)和第二电极(102)施加交变电压;晶体基片(103)设置在第一电极(101)和第二电极(102)之间,根据第一电极(101)和第二电极(102)的电压值对偏振光的偏振方向进行相应的偏转。使用该偏光装置的3D显示器和3D显示系统。该偏光装置、3D显示器和3D显示系统响应时间快,可以有效避免闪烁现象,且不会降低图像的分辨率。

Description

偏光装置、 3D显示器和 3D显示系统 技术领域
本发明的实施例涉及一种偏光装置、 3D(Three Dimensional,三维)显示器 和 3D显示系统。 背景技术
近来, 3D显示已经成为显示领域的一大趋势, 越来越多的人希望将 3D 技术应用到计算机、 电视机或手机等智能终端上。
现有的助视型 3D技术主要包括: 偏光式 3D显示技术和快门式 3D显示 技术。其中,偏光式 3D显示系统主要包括 3D显示器和观众佩戴的 3D眼镜, 3D显示器主要是釆用分光法 ,把所要显示的图像分解成两组由不同偏振方向 的偏振光组成的图像, 即, 左眼图像和右眼图像, 3D眼镜中的两片偏光镜片 分别用于接收不同偏振方向的偏振光, 使人的左眼和右眼分别接收左眼图像 和右眼图像,从而在大脑中合成 3D图像。快门式 3D技术的原理是通过信号 发射器来控制主动式快门眼镜, 使其中的左右镜片交替开关, 同时分别用于 左眼和右眼的左右眼视差图像也同步交替地显示在 2D显示面板上, 当左右 镜片交替开关的频率大于或等于 60Hz, 左右眼可以分别看到左右眼视差图 像, 从而在人脑中合成 3D图像。
然而, 偏光式 3D显示技术中, 由于每只眼睛就只能看到显示面板中一 半的像素发出的光, 所以图像的分辨率会减半。 快门式 3D显示装置中容易 出现画面闪烁的问题, 画面闪烁将造成眼疲劳。 发明内容
本发明的实施例提供一种偏光装置、 3D显示器和 3D显示系统, 用于解 决现有技术中 3D显示的分辨率低、 画面闪烁的问题。
本发明的实施例提供一种偏光装置, 包括: 第一电极; 第二电极; 驱动 电源, 分别与所述第一电极和第二电极连接以向所述第一电极和第二电极施 加交变电压; 以及晶体基片, 设置在所述第一电极和第二电极之间, 根据所 备选地, 所述交变电压施加到所述晶体基片时, 经过所述晶体基片输出 的两组偏振光的偏振方向之间的夹角范围在 0~90度之间。
备选地, 所述驱动电源输出的交变电压的频率大于或等于 60Hz。
备选地, 所述交变电压的电压值分别为第一电压和第二电压; 偏振光经 过施加第一电压的所述晶体基片后输出第一偏振光, 经过施加第二电压的晶 体基片后输出第二偏振光; 所述第一偏振光和第二偏振光的偏振方向之间的 夹角范围在 0~90度之间。
备选地, 所述第一电压为 0, 所述第二电压为 U, 在所述晶体基片上的 电压为 0时, 偏振光输入所述晶体基片前的偏振方向与从所述晶体基片输出 后的偏振方向相同; 在所述晶体基片上的电压为 U时, 偏振光输入所述晶体 基片前的偏振方向与从所述晶体基片输出后的偏振方向之间的夹角范围在
0~ 90度之间。
备选地, 所述偏振光经过所述晶体基片时分解为 0光与 e光, 所述偏振 光分解的 0光和 e光在所述晶体基片中的相位差 Φ通过如下公式计算得到: Φ=2π^3 0γ63υ/λ
其中, Ν。为所述晶体基片中的 0光的折射率, U为所述驱动电源施加在 所述晶体基片的电压, γ63为晶体基片的电光系数, λ为偏振光 Μ在真空中的 波长。
备选地, 在所述晶体基片上的电压为 U时, 计算偏振光经过所述晶体基 片输出后的光强 I通过如下公式计算得到:
I=kA2 =k (U/£-rd)2 sin2 (0 / 2) 其中, k为与所述晶体基片的材料相关的比例系数, A为所述偏振光的 振幅, U、 和 d分别为所述晶体基片上的电压、 介电常数和厚度, Φ为所 述偏振光在所述晶体基片中分解的 0光和 e光之间的相位差。
备选地, 所述晶体基片由电光晶体材料构成, 所述电光晶体材料包括碑 酸二氘钾、 碑酸二氢钾、 石英或砷酸钾。
本发明的实施例还提供一种 3D显示器, 包括显示面板和上述的任意一 种偏光装置。 本发明的实施例还提供一种 3D显示系统,包括上述的 3D显示器以及偏 振光眼镜, 该偏振光眼镜位于人眼与 3D显示器之间且包括分别用于透过所
附图说明
为了更清楚地说明本发明实施例的技术方案, 下面将对实施例的附图作 简单地介绍,显而易见地,下面描述中的附图仅仅涉及本发明的一些实施例, 而非对本发明的限制。
图 1为本发明实施例的偏光装置的结构示意图;
图 2为本发明实施例的 3D显示器的结构示意图;
图 3为本发明实施例的 3D显示系统的结构示意图;
图 4为图 3中驱动电源输出电压为 0时偏振光的偏振方向图;
图 5为图 3中驱动电源输出电压为 U时偏振光的偏振方向图。 具体实施方式
为使本发明实施例的目的、 技术方案和优点更加清楚, 下面将结合本发 明实施例的附图,对本发明实施例的技术方案进行清楚、 完整地描述。显然, 所描述的实施例是本发明的一部分实施例, 而不是全部的实施例。 基于所描 述的本发明的实施例, 本领域普通技术人员在无需创造性劳动的前提下所获 得的所有其他实施例, 都属于本发明保护的范围。
下面结合附图对本发明实施例提供的偏光装置、 3D显示器和 3D显示系 统进行详细描述。
图 1为才艮据本发明实施例偏光装置的结构示意图。 如图 1所示, 本实施 例中偏光装置包括: 驱动电源 100、 第一电极 101、第二电极 102和晶体基片 103 ,驱动电源 100分别与第一电极 101和第二电极 102连接, 以向第一电极 101和第二电极 102施加交变电压, 晶体基片 103设置在第一电极 101和第 二电极 102之间。 其中, 晶体基片 103由例如电光晶体材料构成, 驱动电源 100通过第一电极 101和第二电极 102在晶体基片 103上施加预设频率的交 变电压, 以使经过晶体基片 103的偏振光的偏振方向发生相应的偏转, 当晶 体基片 103上所施加的电压值不同时, 偏振光从晶体基片 103输出后其偏振 方向的偏转角度也不同。
在实际应用中, 交变电压是指输出的电压值按照预设频率进行变化的电 压, 作为示例, 该预设频率可以为 60Hz等。 交变电压分别输出第一电压 U1 和第二电压 U2, 第一电压 U1和第二电压 U2可以均为正电压, 可以均为负 电压, 也可以是一个正电压、 一个负电压。 或者, 第一电压 U1和第二电压 U2中的一个可以是零电压,另一个为正电压或负电压。偏振光经过施加第一 电压 U1的晶体基片后输出第一偏振光,经过施加第二电压 U2的晶体基片后 输出第二偏振光, 第一偏振光和第二偏振光的偏振方向之间的夹角范围在 0-90度之间, 而且第一偏振光和第二偏振光分别对应于左眼 /右眼图像和右 目艮 /左眼图像。 例如, 交变电压的第一电压 U1和第二电压 U2可以分别为 0 和 U, 当驱动电源 100施加在晶体基片 103上的电压为 0时, 偏振光经过晶 体基片 103后其偏振方向将不发生变化,当驱动电源 100施加在晶体基片 103 上的电压为 U时,偏振光经过晶体基片 103输出后其偏振方向将偏转一定角 度。 而且, 偏振光从晶体基片 103输出后其偏振方向与驱动电源 100施加的 交变电压同频率交替变化。 由于电光晶体材料的响应速度快, 响应时间通常 在微秒或纳秒级, 避免了偏光装置在输出不同偏振方向的偏振光时的闪烁现 象。 同时, 显示面板所有像素发出的偏振光经偏光装置输出后被观众的双眼 接收, 所以不会降低光源所成图像的分辨率。
本发明的实施例中, 对驱动电源输出的交变电压不做限定, 只要驱动电 源输出的交变电压能使经过晶体基片 103的两组偏振光的偏振方向之间有一 个夹角, 从而实现通过不同偏光镜片分别接收上述两组偏振光即可。
在本发明提供的各实施例中, 作为示例, 交变电压的电压值分别取 0和 U为例来介绍技术方案。 当晶体基片 103上的电压值为 0时, 偏振光经过晶 体基片 103前后的偏振方向相同, 当晶体基片 103上的电压值为 U时, 偏振 光经过晶体基片 103后其偏振方向将偏转一定角度, 该角度即为从晶体基片 103输出的两组偏振光偏振方向之间的夹角。
图 2为才艮据本发明实施例的 3D显示器的结构示意图。 如图 2所示, 本 实施例中 3D显示器包括偏光装置 10和显示面板 20, 偏光装置 10设置在显 示面板 20的出光侧,偏光装置 10和显示面板 20可以安装固定在一起,也可 以活动式安装, 即, 可拆卸地安装在一起, 以方便将偏光装置 10和显示面板 20分离。 其中, 偏光装置 10釆用图 1所示的结构, 显示面板 20从下到上依 次包括第一偏振片 201、 阵列基板 202、 液晶层 203、 彩膜基板 204和第二偏 振片 205, 液晶层 203对合封装在阵列基板 202和彩膜基板 204之间; 显示 面板 20输出的偏振光依次经过偏光装置 10中的第一电极 101、晶体基片 103 和第二电极 102后输出。
备选地, 偏光装置 10和显示面板 20之间可以具有间隙, 或者偏光装置 10和显示面板 20之间可以不具有间隙, 即, 无间隔设置。
备选地, 本发明实施例的显示面板 20也可以为 OLED显示面板、 等离 子体显示单元、 电子墨水显示单元等,本发明的实施例对显示面板 20的结构 不做特别限定。
在本实施例中,从显示面板 20中所有像素输入到晶体基片 103的偏振光 M为输入光, 经过晶体基片 103后输出的偏振光 N为输出光, 其中, 用于左 眼图像或右眼图像的偏振光 M来自于显示面板 20中的所有像素, 因此不会 降低显示面板所显示图像的分辨率。 当晶体基片 103上的电压为 0时, 偏振 光 M和偏振光 N的偏振方向相同, 当晶体基片 103上的电压为 U时, 偏振 光 M在晶体基片 103中分解的 0光和 e光之间具有相位差 Φ。 当 Φ的取值 范围在 0<Φ<2π之间时,经过晶体基片 103 输出的偏振光 Ν的偏振方向与偏 振光 Μ的偏振方向之间存在夹角。 当 Φ=π时, 经过晶体基片 103输出的偏 振光 Ν的偏振方向与偏振光 Μ的偏振方向相互垂直, 从晶体基片 103输出 的偏振光 Ν的偏振方向与驱动电源 100施加的交变电压进行相同频率的交替 变化。 其中, 偏振光 Ν的光强 I通过公式 (1)计算得到, 公式 (1)如下所示,
I=kA2=k(U/£-rd)2 sin2 (0 / 2) (1) 其中, A为偏振光 N的振幅, U、 和 d分别为晶体基片 103的电压、 介电常数和厚度, k为与晶体基片的材料相关的比例系数, Φ为偏振光 M在 晶体基片 103中分解的 0光和 e光之间的相位差。 在公式 (1)中, U/^d为晶体基片中的电场强度 E。 根据公式 (1)可知, 当 Φ/2=π/2时, 偏振光 Β的光强 I最大。
其中, 偏振光 Μ在晶体基片中分解的 0光和 e光的相位差 Φ可以通过 公式 (2)计算得到, 公式 (2)如下所示:
Φ=2π^3 0γ63υ/λ (2) 其中, No为晶体基片中 0光的折射率, U为晶体基片上的电压, γ63为 晶体基片的电光系数, λ为偏振光 Μ在真空中的波长。
根据公式 (1)和公式 (2)可得公式 (3), 公式 (3)如下所示:
I=kA2=kE2 sin20rN 3U//i) (3) 根据公式 (3)可以计算出偏振光经过晶体基片 103输出后的光强, 晶体基 片 103的电压为 U时,偏振光从晶体基片 103输出后的偏振方向将发生一定 角度的偏转, 偏振光经过晶体基片 103 前后其偏振方向之间的夹角范围在 0-90度之间。
在实际应用中, 偏振光 M在晶体基片中分解的 0光和 e光的相位差 Φ 为 π时, 偏振光 Μ经过晶体基片 103前后的偏振方向之间的夹角为 90度, 由于从晶体基片 103输出的两束偏振光的偏振方向垂直, 将有利于用户分别 接收到不同偏振方向的偏振光。 根据公式 (1)可知, 偏振光 Μ在所述晶体基 片中分解的 0光和 e光的相位差 Φ为 π, 即 Φ / 2 =π/2时, 偏振光 Ν的光强 时,则经过晶体基片 103输出的偏振光 Ν为处于竖直方向偏振的竖直偏振光 时的光强最大。
在实际应用中, 电光晶体材料可以包括碑酸二氘钾 (Κϋ·Ρ)、 磷酸二氢钾 (KDP)或砷酸钾 (KDA)等。 当晶体基片 103 为磷酸二氘钾时, 其电光系数为 25pm/V。 通过公式 (1)-(3), 可以计算出偏振光 M和偏振光 N的偏振方向之 间的夹角为 π/2时,驱动电源 100施加在晶体基片 103上的电压 U的具体值。
在本实施例中, 偏光装置中由电光晶体材料构成的晶体基片响应速度 快, 响应时间通常在微秒或纳秒级, 可以有效避免偏光装置在交替输出不同 偏振方向的偏振光时的闪烁现象。 同时, 显示面板的所有像素发出的偏振光 经偏光装置输出后都能被观众的双眼接收, 所以不会降低光源所成图像的分 辨率。
图 3为才艮据本发明实施例的 3D显示系统的结构示意图。 如图 3所示, 本实施例 3D显示系统包括 3D显示器和用户佩戴的, 即, 位于人眼和 3D显 示器之间的 3D眼镜, 即, 偏振光眼镜, 其中, 3D目艮镜中的左目艮镜片 301和 右目艮镜片 302分别用于接收 3D显示器输出的不同偏振方向的偏振光, 3D显 示器釆用图 2所示的结构。 在本实施例中, 偏振光 M为输入到晶体基片 103 的偏振光, 偏振光 N为从晶体基片 103输出的偏振光, 驱动电源 100输出的 交变电压例如分别为 0和 U。 当晶体基片 103上的电压值为 0时, 偏振光 M 与偏振光 N的偏振方向相同。 当晶体基片 103上的电压值为 U时, 偏振光 M与偏振光 N的偏振方向之间存在一个夹角, 通过公式 (1)-(3)计算出驱动电 源 100施加在晶体基片 103上的电压值 U, 以使此时偏振光 M与偏振光 N 的偏振方向之间的夹角为 π/2。
图 4为图 3中晶体基片所施加的电压为 0时输出偏振光的光路图, 图 5 为图 3中晶体基片所施加的电压为 U时输出偏振光的光路图。 如图 4、 图 5 所示, 当驱动电源 100施加到晶体基片 103的电压为 0时,偏振光 Μ的偏振 方向与从晶体基片 103输出的偏振光 Ν的偏振方向相同; 当驱动电源 100施 加到晶体基片 103的电压为 U时, 偏振光 Μ的偏振方向与偏振光 Ν的偏振 方向之间的夹角为 π/2。 在本实施例中, 当偏振光 Μ为水平偏振光, 则从晶 体基片 103输出的偏振光 Ν包括水平偏振光和竖直偏振光, 偏振光 Ν中的 水平偏振光和竖直偏振光与交变电压同频率交替变化。 3D 目艮镜的镜片与偏 光装置 10输出的两种偏振方向的偏振光相适配, 在本实施例中, 作为示例, 左目艮镜片 301和右眼镜片 302分别用于接收偏光装置 10输出的水平偏振光 和竖直偏振光。
备选地,左眼镜片 301和右眼镜片 302也可以分别用于接收偏光装置 10 输出的竖直偏振光和水平偏振光, 本发明对此不做限制。
在实际应用中, 当驱动电源 100在晶体基片 103上施加预设频率的交变 电压时, 从晶体基片 103输出的偏振光 Ν按照预设频率交替变化, 佩戴 3D 眼镜的观众的左眼和右眼将分别接收到从偏光装置 10输出的两组不同偏转 方向的偏振光。 在本实施例中, 两组不同偏转方向的偏振光可以分别为水平 偏振光和竖直偏振光, 当水平偏振光和竖直偏振光的交替变化频率大于或等 于 60Hz时,左右眼可以在 1秒钟内分别看到大于或等于 60帧略有不同的画 面, 以在人脑中将形成 3D图像。 而且, 由于从晶体基片 103输出的两组不 同偏转方向的偏振光来自于 3D显示器中显示面板上的所有像素, 所以不会 降低 3D显示器所显示图像的分辨率。 而且电光晶体构成的晶体基片 103的 响应速度快, 响应速度通常为微秒或纳秒级, 可有效避免观众左眼和右眼接 收不同图像时的画面闪烁现象, 降低观众的疲劳感觉。
在本实施例中, 由电光晶体材料构成的晶体基片的响应速度快, 响应时 间通常在微秒或纳秒级, 避免了观众在观看 3D图像时在偏光装置上出现的 闪烁现象。 同时, 从显示面板中的所有像素发出的偏振光经偏光装置输出后 都被观众的双眼接收, 所以不会降低光源所成图像的分辨率。 例性实施方式, 然而本发明并不局限于此。 对于本领域内的普通技术人员而 言, 在不脱离本发明的精神和实质的情况下, 可以做出各种变型和改进, 这 些变型和改进也视为本发明的保护范围。

Claims

权利要求书
1. 一种偏光装置, 包括:
第一电极;
第二电极;
驱动电源, 分别与所述第一电极和第二电极连接以向所述第一电极和第 二电极施加交变电压; 以及
晶体基片, 设置在所述第一电极和第二电极之间, 根据所述第一电极和
2. 根据权利要求 1所述的偏光装置,其中所述交变电压施加到所述晶体 基片时, 经过所述晶体基片输出的两组偏振光的偏振方向之间的夹角范围在 0-90度之间。
3. 根据权利要求 1所述的偏光装置,其中所述驱动电源输出的交变电压 的频率大于或等于 60Hz。
4. 根据权利要求 1所述的偏光装置,其中所述交变电压的电压值分别为 第一电压和第二电压,
偏振光经过施加第一电压的在所述晶体基片后输出第一偏振光, 经过施 加第二电压的晶体基片输出第二偏振光;
所述第一偏振光和第二偏振光的偏振方向之间的夹角范围在 0~90度之 间。
5. 根据权利要求 4所述的偏光装置, 其中所述第一电压为 0, 所述第二 电压为 U,
在所述晶体基片上的电压为 0时, 偏振光输入所述晶体基片前的偏振方 向与从所述晶体基片输出后的偏振方向相同;
在所述晶体基片上的电压为 U时,偏振光输入所述晶体基片前的偏振方 向与从所述晶体基片输出后的偏振方向之间的夹角范围在 0~ 90度之间。
6. 根据权利要求 1所述的偏光装置,其中所述偏振光经过所述晶体基片 时分解为 0光与 e光, 所述偏振光分解的 0光和 e光在所述晶体基片中的相 位差 Φ通过如下公式计算得到: 其中, N。为所述晶体基片中的 o光的折射率, U为所述驱动电源施加在 所述晶体基片的电压, γ63为晶体基片的电光系数, λ为偏振光 Μ在真空中的 波长。
7. 根据权利要求 6所述的偏光装置,其中施加到所述晶体基片的电压为 U时, 偏振光经过所述晶体基片输出后的光强 I通过如下公式计算得到:
I=kA2=k(U/£-rd)2 sin2 (0 / 2) 其中, k为与所述晶体基片的材料相关的比例系数, A为所述偏振光的 振幅, U、 和 d分别为所述晶体基片上的电压、 介电常数和厚度, Φ为所 述偏振光在所述晶体基片中分解的 0光和 e光之间的相位差。
8. 根据权利要求 1所述的偏光装置,其中所述晶体基片由电光晶体材料 构成。
9.根据权利要求 8所述的偏光装置,其中所述电光晶体材料包括碑酸二 氘钾、 磷酸二氢钾、 石英或砷酸钾。
10. 根据权利要求 4所述的偏光装置, 其中所述第一电压和所述第二电 压均为正电压或负电压。
11. 根据权利要求 4所述的偏光装置, 其中所述第一电压为正电压且所 述第二电压为负电压。
12. 一种 3D显示器, 包括:
显示面板; 以及
如权利要求 1-11任一所述的偏光装置, 设置在所述显示面板的出光侧。
13. 根据权利要求 12所述的 3D显示器, 其中所述显示面板和所述偏光 装置固定在一起或者可拆卸地安装在一起。
14. 根据权利要求 12所述的 3D显示器, 其中所述显示面板和所述偏光 装置之间没有间隙。
15. 根据权利要求 12所述的 3D显示器, 其中所述显示面板和所述偏光 装置之间具有间隙。
16. 根据权利要求 12所述的 3D显示器, 其中所述显示面板是液晶显示 面板, 所述显示面板从入光侧到出光侧依次包括: 第一偏振片、 阵列基板、 液晶层、 彩膜基板和第二偏振片, 其中液晶层对合封装在阵列基板和彩膜基 板之间。
17. 根据权利要求 12所述的 3D显示器,其中所述显示面板是 OLED显 示面板、 等离子体显示单元或电子墨水显示单元。
18. 根据权利要求 17所述的 3D显示器, 还包括: 设置在所述显示面板 和所述偏光装置之间的偏振片。
19. 一种 3D显示系统, 包括:
权利要求 12所述的 3D显示器; 以及
偏振光眼镜, 位于人眼与 3D显示器之间, 且包括分别用于透过所述 3D 显示器输出的不同偏振方向的偏振光的左右镜片。
PCT/CN2012/084465 2012-03-16 2012-11-12 偏光装置、3d显示器和3d显示系统 WO2013135065A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN2012100715908A CN102629002A (zh) 2012-03-16 2012-03-16 一种偏光装置、3d显示器和3d显示系统
CN201210071590.8 2012-03-16

Publications (1)

Publication Number Publication Date
WO2013135065A1 true WO2013135065A1 (zh) 2013-09-19

Family

ID=46587288

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/084465 WO2013135065A1 (zh) 2012-03-16 2012-11-12 偏光装置、3d显示器和3d显示系统

Country Status (2)

Country Link
CN (1) CN102629002A (zh)
WO (1) WO2013135065A1 (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102629002A (zh) * 2012-03-16 2012-08-08 京东方科技集团股份有限公司 一种偏光装置、3d显示器和3d显示系统
CN108900828A (zh) * 2018-08-29 2018-11-27 深圳市时代华影科技股份有限公司 3d显示装置及图像显示方法、3d眼镜及控制方法、系统
CN109254414A (zh) * 2018-10-31 2019-01-22 深圳市时代华影科技股份有限公司 主动型3d眼镜及其控制方法、3d显示系统、两用眼镜
CN109683338A (zh) * 2019-02-21 2019-04-26 京东方科技集团股份有限公司 一种光场显示装置及方法
CN110095899A (zh) * 2019-05-29 2019-08-06 京东方科技集团股份有限公司 显示面板及其驱动方法、显示模组、显示装置
CN110504388B (zh) * 2019-09-19 2022-12-09 合肥京东方显示技术有限公司 显示亮度调节装置及显示装置
CN117289496B (zh) * 2023-11-21 2024-02-23 武汉光谷航天三江激光产业技术研究院有限公司 一种基于电光晶体的高精度激光束扫描装置及使用方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007264153A (ja) * 2006-03-28 2007-10-11 Sony Corp 光学装置および撮像装置
CN102088615A (zh) * 2010-11-05 2011-06-08 广东威创视讯科技股份有限公司 基于光控时分法的数字立体显示系统及显示方法
GB2476699A (en) * 2009-12-30 2011-07-06 Lg Display Co Ltd Three Dimensional Image System with Polarising Glasses and Liquid Crystal Shutter
CN201965369U (zh) * 2011-01-30 2011-09-07 福建中策光电科技有限公司 电光晶体调制器件
CN102223563A (zh) * 2011-07-12 2011-10-19 电子科技大学 一种三维影像液晶显示系统
CN102364563A (zh) * 2011-11-07 2012-02-29 广东威创视讯科技股份有限公司 一种消除lcd屏幕拼缝的装置及其应用方法
CN102629002A (zh) * 2012-03-16 2012-08-08 京东方科技集团股份有限公司 一种偏光装置、3d显示器和3d显示系统

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007264153A (ja) * 2006-03-28 2007-10-11 Sony Corp 光学装置および撮像装置
GB2476699A (en) * 2009-12-30 2011-07-06 Lg Display Co Ltd Three Dimensional Image System with Polarising Glasses and Liquid Crystal Shutter
CN102088615A (zh) * 2010-11-05 2011-06-08 广东威创视讯科技股份有限公司 基于光控时分法的数字立体显示系统及显示方法
CN201965369U (zh) * 2011-01-30 2011-09-07 福建中策光电科技有限公司 电光晶体调制器件
CN102223563A (zh) * 2011-07-12 2011-10-19 电子科技大学 一种三维影像液晶显示系统
CN102364563A (zh) * 2011-11-07 2012-02-29 广东威创视讯科技股份有限公司 一种消除lcd屏幕拼缝的装置及其应用方法
CN102629002A (zh) * 2012-03-16 2012-08-08 京东方科技集团股份有限公司 一种偏光装置、3d显示器和3d显示系统

Also Published As

Publication number Publication date
CN102629002A (zh) 2012-08-08

Similar Documents

Publication Publication Date Title
WO2013135065A1 (zh) 偏光装置、3d显示器和3d显示系统
WO2012048485A1 (zh) 2d/3d切换的液晶透镜组件及显示装置
US9772500B2 (en) Double-layered liquid crystal lens and 3D display apparatus
US20140028933A1 (en) Autostereoscopic display device and method
JP2012098689A (ja) 光学ユニット及びこれを含む表示装置
US10816816B2 (en) Tunable film apparatus
KR20120042688A (ko) 입체 디스플레이 시스템과 그 시스템에 사용되는 안경 및 그 디스플레이 방법
US20160282636A1 (en) Liquid crystal lens and liquid crystal spectacle
KR20120068443A (ko) 다중 시각 및 입체 영상 표시장치
WO2013179679A1 (ja) バックライト装置及びこれを用いた画像表示装置
WO2017173742A1 (zh) 液晶棱镜及其驱动方法、显示装置
KR101705566B1 (ko) 액정 표시장치 및 그 제조방법
CN103226247A (zh) 一种立体显示装置及立体显示方法
WO2013150803A1 (ja) 光偏向素子及び画像表示装置
CN207731065U (zh) 一种3d激光投影装置及系统
US20120086707A1 (en) 3-dimension display device
JPH075325A (ja) 立体表示偏光フィルムおよび立体表示装置
KR20170089472A (ko) 3차원 영상 표시 장치 및 그 구동 방법
WO2014012327A1 (zh) 3d显示装置以及3d显示系统
KR101188595B1 (ko) 투사형 입체 영상 시스템 및 입체 영상의 투사 방법
WO2011155111A1 (ja) 立体映像表示装置
KR20140147923A (ko) 입체영상 표시장치용 2d/3d 스위칭 렌티큘라 렌즈
US9176335B2 (en) Display panel and display apparatus having a display panel
TWI471609B (zh) 立體影像顯示裝置與立體影像驅動方法
KR100986115B1 (ko) 3차원 입체 영상장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12871285

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 23/01/2015)

122 Ep: pct application non-entry in european phase

Ref document number: 12871285

Country of ref document: EP

Kind code of ref document: A1