WO2013135054A1 - 色偏平衡薄膜、侧入式背光模组及液晶显示装置 - Google Patents

色偏平衡薄膜、侧入式背光模组及液晶显示装置 Download PDF

Info

Publication number
WO2013135054A1
WO2013135054A1 PCT/CN2012/083904 CN2012083904W WO2013135054A1 WO 2013135054 A1 WO2013135054 A1 WO 2013135054A1 CN 2012083904 W CN2012083904 W CN 2012083904W WO 2013135054 A1 WO2013135054 A1 WO 2013135054A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
backlight
color shift
backlight module
light
Prior art date
Application number
PCT/CN2012/083904
Other languages
English (en)
French (fr)
Inventor
李德君
Original Assignee
京东方科技集团股份有限公司
合肥京东方显示光源有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 合肥京东方显示光源有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US14/127,431 priority Critical patent/US9291766B2/en
Publication of WO2013135054A1 publication Critical patent/WO2013135054A1/zh

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0033Means for improving the coupling-out of light from the light guide
    • G02B6/005Means for improving the coupling-out of light from the light guide provided by one optical element, or plurality thereof, placed on the light output side of the light guide
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0033Means for improving the coupling-out of light from the light guide
    • G02B6/0058Means for improving the coupling-out of light from the light guide varying in density, size, shape or depth along the light guide
    • G02B6/0061Means for improving the coupling-out of light from the light guide varying in density, size, shape or depth along the light guide to provide homogeneous light output intensity
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0033Means for improving the coupling-out of light from the light guide
    • G02B6/0035Means for improving the coupling-out of light from the light guide provided on the surface of the light guide or in the bulk of it
    • G02B6/0038Linear indentations or grooves, e.g. arc-shaped grooves or meandering grooves, extending over the full length or width of the light guide
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0033Means for improving the coupling-out of light from the light guide
    • G02B6/0035Means for improving the coupling-out of light from the light guide provided on the surface of the light guide or in the bulk of it
    • G02B6/004Scattering dots or dot-like elements, e.g. microbeads, scattering particles, nanoparticles
    • G02B6/0043Scattering dots or dot-like elements, e.g. microbeads, scattering particles, nanoparticles provided on the surface of the light guide
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0033Means for improving the coupling-out of light from the light guide
    • G02B6/0035Means for improving the coupling-out of light from the light guide provided on the surface of the light guide or in the bulk of it
    • G02B6/0045Means for improving the coupling-out of light from the light guide provided on the surface of the light guide or in the bulk of it by shaping at least a portion of the light guide
    • G02B6/0046Tapered light guide, e.g. wedge-shaped light guide
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0033Means for improving the coupling-out of light from the light guide
    • G02B6/005Means for improving the coupling-out of light from the light guide provided by one optical element, or plurality thereof, placed on the light output side of the light guide
    • G02B6/0053Prismatic sheet or layer; Brightness enhancement element, sheet or layer
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0033Means for improving the coupling-out of light from the light guide
    • G02B6/005Means for improving the coupling-out of light from the light guide provided by one optical element, or plurality thereof, placed on the light output side of the light guide
    • G02B6/0055Reflecting element, sheet or layer
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0066Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form characterised by the light source being coupled to the light guide
    • G02B6/0068Arrangements of plural sources, e.g. multi-colour light sources

Definitions

  • Embodiments of the present invention relate to a color shift balance film, a side-entry backlight module, and a liquid crystal display device using the side-entry backlight module. Background technique
  • LCD Liquid Crystal Display
  • LED backlight module Since the LCD itself does not emit light, the light quality of the backlight module of the LCD is particularly important. Compared with the traditional CCFL (Cold Cathode Fluorescent Lamp) backlight, LED (Light Emitting Diode) backlight has the advantages of high brightness and low energy consumption. Therefore, LED backlight modules have been more and more Applied to liquid crystal display devices.
  • CCFL Cold Cathode Fluorescent Lamp
  • the LED backlight module can be divided into two types: direct type and side-in type according to the way of light injection.
  • the side-in type backlight module uses the side end to enter the light, which can effectively reduce the LED.
  • the number of lamps used reduces power consumption, saves production costs, and effectively reduces the thickness of the display device.
  • the light guide plate converts parallel light incident from the side end into planar light that is emitted upward
  • the light guide plate includes a light guide plate substrate
  • the light guide plate substrate has an incident surface for receiving the light beam, a bottom surface connected to the incident surface, an exit surface connected to the incident surface and opposite to the bottom surface, and a side surface connected to the bottom surface and the exit surface and opposite to the incident surface.
  • light is incident from the incident surface and then reflected to the exit surface through the bottom surface to emit light.
  • a dot may be provided on the bottom surface or a dot layer may be attached on the bottom surface, so that light can be more efficiently reflected to the exit surface through the dot.
  • the side-lit backlight module includes a light guide plate 11 and a light source 12 .
  • the bottom surface of the light guide plate 11 is provided with a dot layer.
  • the light source 12 is an LED and is located on the incident surface 111 side of the light guide plate 11 .
  • the direction of illumination of the light emitted by the LED in the light guide plate 11 is as indicated by the arrow in the figure.
  • A is the absorbance
  • T is the transmittance, and represents the ratio of the transmitted light intensity to the incident light intensity
  • K is the molar absorption coefficient
  • c is the concentration of the light absorbing material
  • b is the thickness of the absorbing layer.
  • the cumulative absorption of light of a specific wavelength will continuously increase, causing the light intensity of light of a specific color to gradually decrease, resulting in illumination along the backlight.
  • the difference in light intensity of light of a specific color at a different position in the direction is large, causing variations in the chromaticity of the display screen.
  • the side-in backlight module will cause severe chromaticity deviation on the display.
  • Embodiments of the present invention provide a color shift balance film, a side-entry backlight module, and a liquid crystal display device.
  • the side-lit backlight module is applied to the liquid crystal display device, the difference in intensity of light at different positions along the illumination direction of the backlight can be reduced, and the problem of chromaticity deviation occurring on the display screen can be effectively improved.
  • One aspect of the present invention provides a color shift balance film for use in a side-entry backlight module, wherein thicknesses of both ends of the color shift balance film are decreased in the direction of backlight illumination.
  • the minimum thickness, the length of the color shifting balance film along the backlight irradiation direction is X
  • H is the maximum thickness of the color shift balance film
  • the proportional coefficient kl is the slope value of the thickness of the color shift balance film and the length along the backlight irradiation direction, The slope value is between -0.00005 and -0.00015.
  • the thickness of the color shift balance film and the slope along the length of the backlight irradiation direction are -0.00008.
  • the material of the color shift balance film is a photocurable resin.
  • a side-lit backlight module including a light guide plate and an optical film, the optical film is disposed on the light guide plate, and the edge-lit backlight module further includes the embodiment of the present invention. of Color balance film.
  • the side-lit backlight module may further include a light source, and the maximum thickness end of the color shift balance film is disposed near the light source.
  • the light guide plate includes a light guide plate substrate, the light guide plate substrate includes an incident surface for receiving a light beam, a bottom surface connected to the incident surface, and an exit surface connected to the incident surface and opposite to the bottom surface,
  • the bottom surface of the light guide plate is provided with a dot layer, wherein the dot density of the dot layer decreases along the backlight illumination direction.
  • the scale factor k2 is the slope density of the dot layer and the slope value along the length of the backlight.
  • the dot density of the dot layer and the slope along the length of the backlight are between -0.05 and -0.15. between.
  • the dot density of the dot layer and the slope value along the length of the backlight irradiation direction are -0.08.
  • the color shift balance film is disposed on the optical film or between the optical film and the light guide plate.
  • Another aspect of the present invention also provides a liquid crystal display device comprising the above-described side-entry backlight module.
  • FIG. 1 is a schematic structural view of a side-lit backlight module in the prior art
  • FIG. 2 is a schematic structural diagram of a backlight module according to an embodiment of the present invention.
  • FIG. 3 is a schematic structural diagram of another backlight module according to an embodiment of the present invention.
  • FIG. 4 is a comparison diagram of a color shifting balance film according to an embodiment of the present invention and an optical film material in the prior art
  • FIG. 5 is a schematic structural diagram of a dot layer of a light guide plate according to an embodiment of the present invention.
  • Figure 6 is a schematic illustration of the surface selection of a 18.5 inch liquid crystal display device.
  • Reference numeral 11, 21 light guide; 12, 23: light source; 111, 211: incident surface; 20: side-in backlight module; 210: light guide substrate; 212: bottom surface; 213: exit surface; 22: optical film ; 24: Color balance film.
  • Embodiments of the present invention provide a color shift balance film, a side-in type backlight module, and a liquid crystal display device.
  • a liquid crystal display device When a liquid crystal display device is applied with a side-in backlight module, the intensity of light at different positions along the backlight illumination direction can be reduced. The difference is effective in improving the chromaticity deviation of the display screen.
  • the embodiment of the invention provides a color shift balance film, which can be applied to a side-entry backlight module, wherein the thickness of the color shift balance film decreases along the backlight illumination direction.
  • the backlight illumination direction is specifically the direction indicated by the arrow in FIG. 2, FIG. 3 and FIG. 5, that is, the illumination direction parallel to the bottom surface of the light guide plate.
  • Y1 is the minimum thickness of the color shifting balance film (for example, the thickness of the end of the color shifting balance film away from the light source), and the length of the color shifting balance film along the backlight irradiation direction is X
  • H is the color shift balance.
  • the maximum thickness of the film (for example, the thickness of the end portion of the color shifting film adjacent to the light source), and the scale factor k1 is the slope value of the thickness of both ends of the color shifting balance film and the length along the backlight irradiation direction.
  • the scale factor kl is between -0.00005 and -0.00015, preferably -0.00008.
  • the color balance film may be made of a photocurable resin.
  • the color shifting balance film can be formed of a photocurable resin material by an optical exposure curing-etching process.
  • the present invention further provides a side-lit backlight module 20, including a light guide plate 21 and an optical film 22, the optical film 22 is disposed on the light guide plate 21, and the side-entry backlight module 20 Also included is a color shift balance film 24 as described above.
  • the thickness of the color shift balance film decreases in the direction of backlight illumination.
  • the side-entry backlight module provided by the invention comprises the color shifting balance film, and the thickness of the transmissive film decreases as the length of the backlight irradiation direction increases, and the absorbance of the light-absorbing substance in the transmissive film to the specific wavelength light also follows As the thickness of the transmissive film decreases, the intensity of the light near the source decreases more, and the intensity of the light away from the source decreases less, thereby reducing the intensity of light at different locations along the direction of illumination of the backlight. The difference is that when the side-lit backlight module is applied to the liquid crystal display device, the problem of chromaticity deviation occurring on the display screen is effectively improved.
  • the optical film material may be a diffusion film, a prism film or a composite film material for diffusion and brightness enhancement.
  • the color shifting balance film 24 may be disposed on the optical film 22; or the color shifting balance film 24 may be disposed between the optical film 22 and the light guide plate 21.
  • the color shift balance film 24 can be directly fabricated or directly disposed on the optical film 22 by using an existing manufacturing process. Further, as shown in Fig. 3, the color shift balance film 24 may be formed by a process such as printing or coating or disposed between the optical film 22 (not shown) and the light guide plate 21.
  • the color shift balancing film 24 of the present invention can be fabricated on various film layer structures in the side-entry backlight module to solve the problem of chromaticity deviation existing in the current product.
  • the color shift balance film 24 can be formed on the diffusion layer by a wet coating process.
  • the color shift balance film 24 can be formed on the prism layer by an ultraviolet drying process.
  • the color shift balance film 24 can be formed by a rolling process.
  • the coating nozzle for coating the color shifting balance film needs to be changed to variable flow spraying to achieve the purpose of changing the thickness of the color shifting film according to a predetermined trend. .
  • the spacing between the pressing rollers also needs to be continuously changed.
  • the slope value is between -0.00005 and -0.00015. Since the unequal thickness film of the embodiment of the present invention can be applied to the side-entry backlight modules of various sizes, the appropriate thickness variation trend of the product can be determined according to the size of the side-entry backlight module.
  • the color shift balance film 24 provided by the embodiment of the present invention has a significant change in shape compared with the optical film 22.
  • the intensity of light near the source is reduced more, and the intensity of light away from the source is less reduced, thereby reducing the intensity of light at different locations along the direction of backlight illumination. difference.
  • the side-lit backlight module is applied to a liquid crystal display device, the problem of chromaticity deviation occurring on the display screen is effectively improved.
  • a color shifting balance film is provided on the light guide plate or the optical film, and the thickness of the color shift balance film is decreased in the backlight irradiation direction. Since the thickness of the transmissive film decreases as the length of the backlight irradiation direction increases, the absorbance of the light absorbing material in the transmissive film to the specific wavelength light also decreases as the thickness of the transmissive film decreases. Therefore, the intensity of the light near the light source is reduced more, and the intensity of the light away from the light source is less reduced, so that the difference in intensity of light at different positions along the illumination direction of the backlight can be reduced, and the side input type is applied in the liquid crystal display device. When the backlight module is used, the problem of chromaticity deviation caused by the display screen is effectively improved.
  • the side-entry backlight module 20 further includes a light source 23, and the maximum thickness end of the color shift balance film 24 is disposed adjacent to the light source 23.
  • the light guide plate 21 includes a light guide plate substrate 210.
  • the light guide plate substrate 210 includes an incident surface 211 for receiving light, a bottom surface 212 connected to the incident surface, and an exit surface 213 connected to the incident surface and opposite to the bottom surface.
  • the bottom surface 212 of the light plate 21 is provided with a dot layer (not shown in Fig. 2). The dot density of the dot layer can be decreased in the direction of backlight illumination.
  • the scale factor k2 is the slope density of the dot layer and the slope value along the length of the backlight.
  • the dot density of the dot layer and the slope along the length of the backlight are -0.05. Between -0.15, the dot density of the dot layer and the slope value along the length of the backlight irradiation direction are preferably -0.08.
  • the dot density in the present invention refers to the dot coverage, that is, the percentage of the coverage area of the square dot per square millimeter, and the dot layer is processed on the light guide plate by a control program such as a professional dot cloth software of the light guide plate dot.
  • the density of the light absorbing material in the dot layer decreases as the length of the backlight illumination direction increases, the light intensity near the light source decreases more, and the light intensity away from the light source decreases less.
  • the difference in intensity of light at different locations along the direction of illumination of the backlight can be reduced.
  • the dot density of the halftone dot layer of the bottom surface 212 of the light guide plate 21 is decreased in the backlight irradiation direction (the direction indicated by the arrow in the figure).
  • the dot density of the dot layer is linear with the length along the backlight.
  • the slope density of the dot layer and the length along the backlight direction are between -0.05 and -0.15, preferably -0.08.
  • the bottom surface 212 of the light guide plate 21 may be rectangular, and the light source 23 is located at the short side end a of the bottom surface 212 of the light guide plate 21.
  • Placing the light source on the short side of the light guide plate and the dot layer can further reduce the number of light source lamps used, thereby reducing energy consumption and saving production costs.
  • the materials of the dot layer and the color shift balance film 24 may all be light curing trees, and the light curing resin has the advantages of low cost, easy processing and setting.
  • the color shifting balance film 24 formed of a photocurable resin has a certain absorption of the spectrum (focusing on light having a wavelength of 400 nm or less), so that light energy loss is caused, and thus the color shift balance film 24 should be thin.
  • the slope value kl of the length is between -0.00005 and -0.00015.
  • the thickness of both ends of the color balance film and the slope value k1 along the length of the backlight irradiation direction are preferably -0.00008, and H represents the maximum thickness of the color shift balance film 24 (for example, the thickness of the end of the color shift balance film 24 adjacent to the light source) .
  • the maximum value of the length X of the light irradiation direction is the length of the long side of the liquid crystal display device.
  • the slope value k2 is preferably -0.08.
  • p represents the maximum dot density of the dot layer.
  • Y2 is the coverage of the dot, that is, the percentage of the coverage area of the square point per square millimeter, and the X unit is mm.
  • the slope density of the dot density of the dot layer and the length along the backlight illumination direction is a unit coefficient, and the unit is /mm.
  • p is the maximum dot coverage of the dot layer.
  • the advantageous effects of the embodiments of the present invention will be described by taking a 18.5-inch liquid crystal display device as an example.
  • the light source of the liquid crystal display device is incident from the right end.
  • 9 points at different positions are selected on the surface of the liquid crystal display device, and the coordinates of the 9 points are selected according to the TCO 5.0 specification, wherein the lower right corner of the inside of the plastic frame is the origin (0, 0). ), the coordinates of test point 1 are (370.32, 208.76), the coordinates of test point 2 are (206.4, 208.76), the coordinates of test point 3 are (42.48, 208.76), and the coordinates of test point 4 are (370.32, 116.6).
  • test point 5 The coordinates of test point 5 are (206.4, 116.6), the coordinates of test point 6 are (42.48, 116.6), the coordinates of test point 7 are (370.32, 24.44), and the coordinates of test point 8 are (206.4, 24.44).
  • the coordinates of 9 are (42.48, 24.44), and the horizontal and vertical coordinates of each test point are in mm.
  • Each test point can determine a unique color on the chromaticity diagram by color coordinates.
  • the color coordinates (X, Y) of the nine test point colors are shown in Table 1:
  • the sample points 1, 2, 3 are on one optical path (1 point far end, 3 points near light end), 4, 5, 6 on one light path (4 points far end, 6 points near end) ), 7, 8, 9 on a light path (7-point high-beam end, 9-point near-light end), color shift is due to the propagation of light along the path of the optical path to the specific band of light
  • the accumulation of spectral absorption causes that in the case of large color shift, even the naked eye can distinguish the color of the light side and the light exit side, which causes a bad visual effect, so the difference between the light end and the light end color coordinate is used.
  • it is generally calculated by the measured value of the standard test point.
  • the color difference is a difference in chromaticity to describe the difference in color, that is, the difference described is the absolute value of the difference (deviation value). If there is a positive or negative direction, the former indicates that the former is greater than the latter. Indicates that the former is smaller than the latter, and if the difference is described, the maximum value is taken.
  • the chromaticity difference includes the X chromaticity difference and the Y chromaticity difference.
  • the standard specification requires the X chromaticity difference and the Y chromaticity difference to be 10%. Within, so the statistical chromaticity difference is calculated according to the largest difference. In general, there is a greater probability that the difference in Y chrominance is greater than the difference in X chrominance.
  • the color shift level of the product is expressed by the maximum data. Based on this example test data, the product has a color shift of 9.2%. (4 points vs. 6 points, the difference value of the color coordinate Y), it can be seen that the existing 18.5-inch side-lit backlight liquid crystal display device has a color shift of about 10% in the backlight illumination direction. Left and right, and the current standard specifications must be 10%. Within the above, the color shift level of the 18.5-inch liquid crystal display device is already in an over-warning state and may even cause a color shift defect. If the size of the liquid crystal display device is further expanded, the color shift problem will be more serious.
  • the 9 points of different positions are selected on the surface to be examined. The coordinates of the 9 points are also shown in Fig. 6. The color coordinates (X, ⁇ ) of each point are shown in Table 2:
  • the calculation method of the deviation value of Table 2 is the same as that of Table 1. It can be seen from Table 2 that the 18.5 inch side-entry backlight liquid crystal display device provided by the embodiment of the present invention has a color shift of about 2%. Within 9.2% of the current color deviation. In comparison, the color of the 18.5 inch side-entry backlight liquid crystal display device provided by the embodiment of the present invention The difference has been significantly reduced.
  • the sampling points in Tables 1 and 2 are measured by optical measuring instruments of liquid crystal display devices.
  • the popular use of SR-3 and BM-7 in the industry is the highest precision of the former.
  • the example uses the former measurement, the Chinese name of the instrument is: Spectroradiometer or Chroma Luminance Meter.
  • the side-lit backlight module includes a color shifting balance film. Since the thickness of the transmissive film decreases as the length of the backlight illumination increases, the absorbance of the light-absorbing substance in the transmissive film to the specific wavelength light also follows The thickness of the transmissive film is reduced and the intensity of the light near the light source is reduced more, and the intensity of the light away from the light source is less reduced, thereby reducing the difference in intensity of light at different positions along the illumination direction of the backlight.
  • the side-lit backlight module is applied to the liquid crystal display device, the problem of chromaticity deviation on the display screen is effectively improved.
  • the dot density of the dot layer decreases along the backlight illumination direction
  • the density of the light absorbing material in the dot layer decreases as the length of the backlight illumination direction increases, and the light intensity near the light source decreases more, while away from the light source.
  • the light intensity at the place is reduced less, so that the difference in intensity of light at different positions along the illumination direction of the backlight can be reduced.
  • Embodiments of the present invention also provide a liquid crystal display device including the above-described side-entry backlight module.
  • Y1 is the minimum thickness of the color balance film
  • the length of the color balance film in the backlight irradiation direction is X
  • H is the maximum thickness of the color balance film
  • the proportional coefficient kl is the thickness of the two ends of the color balance film.
  • the slope value with the length along the direction of illumination of the backlight is between -0.00005 and -0.00015, preferably -0.00008.
  • the color balance film may be made of a photocurable resin.
  • the backlight module comprises a color shift balance film, and the thickness of the color shift balance film decreases along the backlight illumination direction. Since the thickness of the transmissive film decreases as the length of the illumination direction of the backlight increases, the absorbance of the light absorbing material in the transmissive film to the light of a specific wavelength is also It will decrease as the thickness of the transmissive film decreases, the light intensity near the light source decreases more, and the light intensity away from the light source decreases less, thereby reducing the light at different positions along the backlight illumination direction. The difference in intensity is effective in improving the chromaticity deviation of the display screen when the side-lit backlight module is applied to the liquid crystal display device.
  • the coating nozzle in the prior art can be changed, and the original equal-flow sprayed film layer can be changed into variable flow coating, and the flow rate can be controlled by the computer.
  • the trend of the thickness of the reservation is made to produce a unequal thickness color shift balance film.
  • the unequal thickness film of the embodiment of the invention can be applied to the side-entry backlight module and the liquid crystal display device of various sizes, and the appropriate thickness of the product can be determined according to the requirements of the size of the side-entry backlight module and the liquid crystal display device.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Planar Illumination Modules (AREA)
  • Liquid Crystal (AREA)

Abstract

一种色偏平衡薄膜(24)、侧入式背光模组及液晶显示装置。该色偏平衡薄膜(24),可应用于侧入式背光模组中,所述色偏平衡薄膜(24)的厚度沿背光照射方向递减。该侧入式背光模组中设置有该色偏平衡薄膜(24),液晶显示装置内设置有具有此色偏平衡薄膜(24)的背光模组。在液晶显示装置中应用上述包括色偏平衡薄膜(24)的侧入式背光模组时,可以降低沿背光照射方向上的不同位置处光的强度差异,有效改善显示画面产生色度偏差的问题。

Description

色偏平衡薄膜、 侧入式背光模组及液晶显示装置 技术领域
本发明实施例涉及一种色偏平衡薄膜、 侧入式背光模组及应用此侧入式 背光模组的液晶显示装置。 背景技术
随着 LCD ( Liquid Crystal Display, 液晶显示器)显示技术的不断发展, LCD已广泛地应用于各种显示领域, 人们对 LCD显示的图像品质的要求也 在不断地提高。
由于 LCD 自身并不发光, LCD的背光模组的出光品质显得尤为重要。 与传统的 CCFL ( Cold Cathode Fluorescent Lamp, 冷阴极荧光灯管) 背光相 比, LED ( Light Emitting Diode, 发光二极管) 背光具有亮度高、 能耗低等 优点, 因此, LED背光模组已越来越多的应用于液晶显示装置。
LED背光模组可以按照光线射入的方式不同分为直下式和侧入式两种, 与直下式背光模组相比, 侧入式背光模组釆用侧端进光, 可以有效地减少 LED灯的使用个数, 从而降低能耗、 节省生产成本, 并且有效降低显示装置 的厚度。 在侧入式背光模组中, 导光板是将侧端入射的平行光转换成向上出 射的平面光, 导光板包括导光板基材, 该导光板基材具有一用以接收光束的 入射面、 一与入射面相连的底面、 一与入射面相连且与底面相对的出射面、 以及一与底面和出射面相连且与入射面相对的侧面。 在导光板中, 光从入射 面射入、 然后经底面反射至出射面而发射出光。 为了进一步提高光效可以在 底面上设置网点或者在底面上贴设网点层, 使得光线通过该网点能被更有效 地反射至出射面而射出。如图 1所示,侧入式背光模组包括导光板 11及光源 12, 所述导光板 11的底面设置有网点层, 所述光源 12为 LED, 位于导光板 11的入射面 111一侧, LED发出的光线在导光板 11内的照射方向如图中箭 头所示。
根据比尔 -朗伯定律, 当一束平行单色光垂直通过某一均匀非散射的吸 光物质时, 该吸光物质对该单色光的吸光度 A与吸光物质的浓度 c及吸收层 厚度 b成正比。 其比例关系如下式 1所示:
A=lg(l/T)=Kbc 式 1
其中, A为吸光度, T为透射比, 表示透射光强度与入射光强度的比值, K为摩尔吸收系数, c为吸光物质的浓度, b为吸收层厚度。 如图 1所示, 当 光线透射过导光板基材的时候, 导光板基材中的吸光物质对特定波长光的过 量吸收将造成特定波长的光在整个光语中的占有比例明显下降。 此外, 当光 线发生反射时, 特定波长的光也会被网点层中的吸光物质吸收。 随着光线在 导光板基材中的光程和反射次数的增加, 对特定波长的光的累计吸收量将会 持续地增加, 会造成特定颜色的光的光强度逐渐下降, 导致在沿背光照射方 向 (文中背光照射方向是指平行于导光板底面的光照方向)上的不同位置处 特定颜色的光的光强度差异较大, 使得显示画面的色度产生偏差。 尤其是当 应用于大尺寸 LCD 时, 侧入式背光模组将导致显示画面产生严重的色度偏
发明内容
本发明实施例提供一种色偏平衡薄膜、侧入式背光模组及液晶显示装置。 在液晶显示装置应用侧入式背光模组时, 可以降低沿背光照射方向上的不同 位置处光的强度差异, 有效改善显示画面产生色度偏差的问题。
本发明一个方面提供一种色偏平衡薄膜, 应用于侧入式背光模组中, 所 述色偏平衡薄膜两端的厚度沿背光照射方向递减。
在该色偏平衡薄膜中, 例如, 所述色偏平衡薄膜的厚度与该色偏平衡薄 膜沿背光照射方向的长度为 Yl=kl*X+H的线性关系; 其中, Y1为色偏平衡 薄膜的最小厚度, 该色偏平衡薄膜沿背光照射方向的长度为 X, H为色偏平 衡薄膜的最大厚度,比例系数 kl即为色偏平衡薄膜的厚度与沿背光照射方向 长度的斜率值, 该斜率值在 -0.00005至 -0.00015之间。
在该色偏平衡薄膜中, 例如, 所述色偏平衡薄膜的厚度与沿背光照射方 向长度的斜率值为 -0.00008。
在该色偏平衡薄膜中, 例如, 所述色偏平衡薄膜的材质为光固化树脂。 本发明的另一方面还提供一种侧入式背光模组,包括导光板及光学膜材, 光学膜材设置于导光板上, 所述侧入式背光模组还包括本发明实施例所述的 色偏平衡薄膜。
所述的侧入式背光模组, 可以还包括一光源, 该色偏平衡薄膜最大厚度 端靠近光源设置。
所述导光板包括导光板基材, 所述导光板基材包括一用以接收光束的入 射面、 一与入射面相连的底面、 和一与入射面相连且与底面相对的出射面, 所述导光板的底面设置有网点层, 其中, 所述网点层的网点密度沿背光照射 方向递减。
例如, 所述网点层的网点密度与沿背光照射方向长度为 Y2=k2*X+p 的 线性关系; 其中, Y2为网点层的网点密度, 该色偏平衡薄膜沿背光照射方向 的长度为 X, p表示网点层的最大网点密度, 比例系数 k2即为网点层的网点 密度与沿背光照射方向长度的斜率值, 网点层的网点密度与沿背光照射方向 长度的斜率值在 -0.05至 -0.15之间。
例如, 所述网点层的网点密度与沿背光照射方向长度的斜率值为 -0.08。 例如, 所述色偏平衡薄膜设置于所述光学膜材上或设置于光学膜材与导 光板之间。
本发明的另一方面还提供一种液晶显示装置, 包括上述所述的侧入式背 光模组。 附图说明
为了更清楚地说明本发明实施例的技术方案, 下面将对实施例的附图作 简单地介绍,显而易见地,下面描述中的附图仅仅涉及本发明的一些实施例, 而非对本发明的限制。
图 1为现有技术中侧入式背光模组的结构示意图;
图 2为本发明实施例提供的一种背光模组的结构示意图;
图 3为本发明实施例提供的另一背光模组的结构示意图;
图 4为本发明实施例提供的色偏平衡薄膜与现有技术中的光学膜材的比 较图;
图 5为本发明实施例提供的一种导光板网点层结构示意图;
图 6为 18.5英寸液晶显示装置的表面选点示意图。
附图标记 11、 21: 导光板; 12、 23: 光源; 111、 211: 入射面; 20: 侧入式背光 模组; 210: 导光板基材; 212: 底面; 213: 出射面; 22: 光学膜材; 24: 色偏平衡薄膜。
具体实施方式
为使本发明实施例的目的、 技术方案和优点更加清楚, 下面将结合本发 明实施例的附图,对本发明实施例的技术方案进行清楚、 完整地描述。显然, 所描述的实施例是本发明的一部分实施例, 而不是全部的实施例。 基于所描 述的本发明的实施例, 本领域普通技术人员在无需创造性劳动的前提下所获 得的所有其他实施例, 都属于本发明保护的范围。 需要说明的是, 本发明实 施例中的 "一" 或 "一个" 等并不用于数量限定。
本发明实施例提供一种色偏平衡薄膜、侧入式背光模组及液晶显示装置, 在液晶显示装置应用侧入式背光模组时, 可以降低沿背光照射方向上的不同 位置处光的强度差异, 有效改善显示画面产生色度偏差的问题。
本发明实施例提供一种色偏平衡薄膜, 可以应用于侧入式背光模组中, 该色偏平衡薄膜的厚度沿背光照射方向递减。
需要说明的是, 在本发明实施例中, 背光照射方向具体是图 2、 图 3及 图 5中箭头所示方向, 即, 平行于导光板底面的光照方向。
其中, 该色偏平衡薄膜的厚度与该色偏平衡薄膜沿背光照射方向的长度 为 Yl=kl*X+H的线性关系。其中, Y1为该色偏平衡薄膜的最小厚度(例如, 该色偏平衡薄膜的远离光源的端部的厚度) , 该色偏平衡薄膜沿背光照射方 向的长度为 X, H为该色偏平衡薄膜的最大厚度(例如, 该色偏平衡薄膜的 邻近光源的端部的厚度), 比例系数 kl为该色偏平衡薄膜两端的厚度与沿背 光照射方向长度的斜率值。 该比例系数 kl值为 -0.00005至 -0.00015之间, 优 选为 -0.00008。
该色偏平衡薄膜的材质可以为光固化树脂。
具体的,该色偏平衡薄膜可以由光固化树脂材质通过光学曝光固化 -蚀刻 工艺形成。
如图 2所示, 本发明还提供一种侧入式背光模组 20, 包括导光板 21及 光学膜材 22, 该光学膜材 22设置于该导光板 21上, 该侧入式背光模组 20 还包括如上所述的色偏平衡薄膜 24。
本发明实施例提供的色偏平衡薄膜, 该色偏平衡薄膜的厚度沿背光照射 方向递减。 本发明提供的侧入式背光模组包括此色偏平衡薄膜, 由于透射薄 膜的厚度随着背光照射方向长度的增大而减小, 透射薄膜中的吸光物质对特 定波长光的吸光度也会随着透射薄膜的厚度的减小而减小, 靠近光源处的光 强度减小较多, 而远离光源处的光强度减小较少, 从而可以降低沿背光照射 方向上的不同位置处光的强度差异,在液晶显示装置应用侧入式背光模组时, 有效改善显示画面产生色度偏差的问题。
在本发明实施例所提供的侧入式背光模组中, 光学膜材可以为扩散膜、 棱镜膜或是用于扩散、增亮的复合型膜材。相应的, 色偏平衡薄膜 24可以设 置于光学膜材 22上;或色偏平衡薄膜 24还可以设置于光学膜材 22与导光板 21之间。
由于现有的侧入式背光模组在导光板上通常也会制作有包括扩散层, 或 棱镜层, 或包括扩散层和棱镜层的复合膜层在内的光学膜材, 在如图 2所示 的本发明实施例提供的侧入式背光模组 20中, 色偏平衡薄膜 24可以釆用现 有的制作工艺直接制作或直接设置于光学膜材 22之上。 此外, 如图 3所示, 色偏平衡薄膜 24还可以釆用印刷或涂布等工艺制作或设置于光学膜材 22(图 中未示出)与导光板 21之间。 本发明的色偏平衡薄膜 24可以制作于侧入式 背光模组中的各种膜层结构之上, 用来解决目前产品存在的色度偏差问题。
例如, 当导光板 21上具有扩散层时,可以釆用湿法涂布工艺在扩散层上 形成色偏平衡薄膜 24。 当导光板 21上具有棱镜层时, 可以釆用紫外线烘干 工艺在棱镜层上形成色偏平衡薄膜 24。 当导光板 21上具有包括扩散膜层和 棱镜层的复合膜层时, 可以釆用滚压工艺形成色偏平衡薄膜 24。 其中, 相对 于现有的湿法涂布工艺以及紫外线烘干工艺, 用于涂布色偏平衡薄膜的涂布 喷头需要变更为变流量喷涂, 以达到色偏平衡薄膜厚度按照预定趋势变化的 目的。 在釆用滚压工艺形成色偏平衡薄膜时, 为了达到色偏平衡薄膜厚度的 趋势变化, 挤压滚轮之间的间距也需要持续变化。
色偏平衡薄膜 24的厚度与色偏平衡薄膜 24沿背光照射方向 (图中箭头 所示方向) 的长度为 Yl=kl*X+H 的线性关系; 其中, Y1 为色偏平衡薄膜 24的最小厚度(例如, 该色偏平衡薄膜 24的远离光源的端部的厚度) , 色 偏平衡薄膜 24沿背光照射方向的长度为 X, H为色偏平衡薄膜 24的最大厚 度(例如, 该色偏平衡薄膜 24的邻近光源的端部的厚度) , 比例系数 kl为 色偏平衡薄膜 24 两端的厚度与沿背光照射方向长度的斜率值, 该斜率值在 -0.00005至 -0.00015之间。 由于本发明实施例的不等厚薄膜可应用于各种尺 寸的侧入式背光模组中, 可以根据侧入式背光模组尺寸的需要确定产品合适 的厚度变化趋势。
如图 4所示,本发明实施例提供的色偏平衡薄膜 24与光学膜材 22相比, 形状具有明显的变化。 釆用这样一种不均勾的透射薄膜, 靠近光源处的光强 度减小较多, 而远离光源处的光强度减小较少, 从而可以降低沿背光照射方 向上的不同位置处光的强度差异。在液晶显示装置应用该侧入式背光模组时, 有效改善显示画面产生色度偏差的问题。
在上述的侧入式背光模组中 , 在导光板或是光学膜材上具有色偏平衡薄 膜, 该色偏平衡薄膜的厚度沿背光照射方向递减。 由于透射薄膜的厚度随着 背光照射方向长度的增大而减小, 所以透射薄膜中的吸光物质对特定波长光 的吸光度也会随着透射薄膜的厚度的减小而减小。 因此, 靠近光源处的光强 度减小较多, 而远离光源处的光强度减小较少, 从而可以降低沿背光照射方 向上的不同位置处光的强度差异, 在液晶显示装置应用侧入式背光模组时, 有效改善显示画面产生色度偏差的问题。
在如图 2所示的实施例中, 侧入式背光模组 20进一步包括一光源 23 , 色偏平衡薄膜 24的最大厚度端靠近光源 23设置。
导光板 21包括导光板基材 210,导光板基材 210包括一用以接收光的入 射面 211、 一与入射面相连的底面 212、一与入射面相连且与底面相对的出射 面 213 , 导光板 21的底面 212设置有网点层(图 2中未示出)。 该网点层的 网点密度可以沿背光照射方向递减。
具体的, 网点层的网点密度可以与沿背光照射方向长度为 Y2=k2*X+p 的线性关系; 其中, Y2为该网点层的网点密度, 该色偏平衡薄膜沿背光照射 方向的长度为 X, p为该网点层的最大网点密度, 比例系数 k2为该网点层的 网点密度与沿背光照射方向长度的斜率值, 该网点层的网点密度与沿背光照 射方向长度的斜率值在 -0.05至 -0.15之间, 该网点层的网点密度与沿背光照 射方向长度的斜率值优选为 -0.08。 需要说明的是: 本发明中网点密度指的是网点覆盖率, 即每平方毫米上 网点覆盖面积的百分比, 通过导光板网点专业布点软件等控制程序加工将网 点层加工在导光板上。
这样一来, 由于网点层中吸光物质的密度随着背光照射方向长度的增大 而减小, 所以靠近光源处的光强度减小较多, 而远离光源处的光强度减小较 少, 从而可以降低沿背光照射方向上的不同位置处光的强度差异。 在液晶显 示装置应用该侧入式 LED背光模组时,有效改善显示画面产生色度偏差的问 题。
如图 5所示,导光板 21的底面 212的网点层的网点密度沿背光照射方向 (图中箭头所示方向)递减。 网点层的网点密度与沿背光照射方向长度呈线 性关系, 网点层的网点密度与沿背光照射方向长度的斜率值在 -0.05 至 -0.15 之间, 优选为 -0.08。
同样, 如图 5所示, 作为本发明的一种优选实施例, 导光板 21 的底面 212可以为矩形, 光源 23位于导光板 21的底面 212的短边侧端 a。
将光源置于导光板和网点层的短边侧端可以进一步减少光源灯的使用数 量, 从而降低能耗、 节省生产成本。
在本发明实施例中,网点层和色偏平衡薄膜 24的材料均可以为光固化树 月旨, 光固化树脂具有成本低、 易加工定型等优点。 由光固化树脂形成的色偏 平衡薄膜 24对光谱(重点是 400nm以下波长的光)有一定的吸收, 所以会 导致光能量损失, 因此色偏平衡薄膜 24应当较薄。
例如, 色偏平衡薄膜 24的厚度 Y1与色偏平衡薄膜 24沿背光照射方向 的长度 X为 Yl=kl*X+H的线性关系, 其中, 色偏平衡薄膜 24两端的厚度 与沿背光照射方向长度的斜率值 kl在 -0.00005至 -0.00015之间。 色偏平衡薄 膜两端的厚度与沿背光照射方向长度的斜率值 kl优选为 -0.00008, H表示色 偏平衡薄膜 24的最大厚度(例如, 该色偏平衡薄膜 24的邻近光源的端部的 厚度) 。 当 H为 50 μ πι时, 色偏平衡薄膜 24的厚度 Y1与沿背光照射方向 长度 X满足线性关系: Υ1=-0.00008Χ+50, 其中, Y1的单位为 μ πι, X的单 位为 μ πι。 例如, 当沿背光照射方向长度 X为 10000 μ πι时, 色偏平衡薄膜 24的厚度 Υ1=-0.8+50=49.2 μ m,当沿背光照射方向长度 X为 200000 μ m时, 色偏平衡薄膜 24的厚度 Υ1=-16+50=34 μ πι。 对于液晶显示装置而言, 沿背 光照射方向长度 X的最大值为液晶显示装置的长边长度。
另一方面, 与色偏平衡薄膜 24的厚度 Y1与色偏平衡薄膜 24沿背光照 射方向的长度 X呈线性关系类似的, 网点层的网点密度 Y2与沿背光照射方 向长度 X同样也可以呈线性关系, 该线性关系为 Y2=k2*X+p, 网点层的网 点密度与沿背光照射方向长度的斜率值 k2在 -0.05至 -0.15之间, 网点层的网 点密度与沿背光照射方向长度的斜率值 k2优选为 -0.08。 p表示网点层的最大 网点密度。其中, Y2为网点覆盖率,即每平方毫米上网点覆盖面积的百分比, X单位为 mm, 网点层的网点密度与沿背光照射方向长度的斜率 k2是一个有 单位的系数, 其单位为 /mm, p为网点层的最大网点覆盖率。
以 18.5英寸液晶显示装置为例, 对本发明实施例的有益效果进行说明。 如图 5所示, 该液晶显示装置的光源由右端入射。 如图 6所示, 在液晶显示 装置的表面选取不同位置的 9个点来考察, 该 9个点的坐标依照 TCO5.0规 范进行选取, 其中, 以胶框内侧右下角为原点 (0,0 ) , 测试点 1 的坐标为 ( 370.32, 208.76 ) , 测试点 2的坐标为 ( 206.4, 208.76 ) , 测试点 3的坐标 为 ( 42.48, 208.76 ) , 测试点 4的坐标为 ( 370.32, 116.6 ) , 测试点 5的坐 标为 ( 206.4, 116.6 ) , 测试点 6的坐标为 ( 42.48, 116.6 ) , 测试点 7的坐 标为 (370.32, 24.44 ) , 测试点 8的坐标为 (206.4, 24.44 ) , 测试点 9的坐 标为 (42.48, 24.44 ) , 每个测试点的横纵坐标单位为 mm。 每个测试点可以 通过色坐标在色度图上确定一个唯一的颜色, 用来表示这 9个测试点颜色的 色坐标(X, Y )如表 1所示:
表 1
Figure imgf000009_0001
表 1中釆样点 1、 2、 3在一条光路上( 1点远光端, 3点近光端), 4、 5、 6在一条光路上(4点远光端, 6点近光端) , 7、 8、 9在一条光路上(7点 远光端, 9 点近光端) , 色偏是由于光沿着光程方向传播介质对特定波段光 谱吸收累积造成, 在色偏较大的情况下, 甚至肉眼可以分辨入光侧和出光侧 画面的颜色有差异, 造成不好的视觉效果, 所以釆用出光端与入光端色坐标 之差来衡量, 一般以标准测试点位的测量值来简要计算。 色差值是用色度差 异来描述颜色的差异, 即描述的差值, 是两者之差(偏差值) 的绝对值, 如 有描述方向则有正负, 正表示前者大于后者, 负表示前者小于后者, 如果描 述差异时则取最大值。 色度差异包含 X色度差异和 Y色度差异, 目前标准规 格要求 X色度差异和 Y色度差异均在 10%。以内, 所以统计色度差异, 按最 大的差异计算。通常情况下, Y色度的差值大于 X色度的差值的概率比较多。
参照本实例, 即 1点相对于 3点, 4点相对于 6点, 7点相对于 9点色度 的差异值, 以最大数据表述该产品的色偏水平。 以此实例测试数据看, 该产 品的色偏为 9.2%。(4点相对于 6点, 色坐标 Y的差异值), 由此可见, 现有 的 18.5英寸侧入式背光液晶显示装置沿背光照射方向存在的色偏约在 10%。 左右, 而目前标准规格要求必须在 10%。以内, 18.5英寸液晶显示装置的色偏 水平已经处于超警戒状态甚至可能产生色偏不良, 若液晶显示装置的尺寸进 一步扩大, 色偏问题将更为严重。
本发明实施例提供的 18.5英寸液晶显示装置, 其光源同样由右端入射, 网点层和色偏平衡薄膜的材料均为光固化树脂, 色偏平衡薄膜的厚度 Y1与 沿背光照射方向长度 X满足线性关系: Υ1=-0.08Χ+50。在其表面选取不同位 置的 9个点来考察,该 9个点的坐标同样参照图 6所示,每个点的色坐标(X, Υ )如表 2所示:
表 2
Figure imgf000010_0001
表 2的偏差值计算方法同表一相同。 根据表 2可以看到, 本发明实施例 提供的 18.5英寸侧入式背光液晶显示装置的色偏约在 2%。以内, 与目前的色 偏 9.2%。相比, 本发明实施例提供的 18.5英寸侧入式背光液晶显示装置的色 差得到了明显地降低。
需要说明的是: 表 2中的负值只是用来描述方向, 如果计算色差值, 应 该取偏差值的绝对值。
需要说明的是: 表一、 二中的釆样点是使用液晶显示器件光学测量仪器 测出, 业界广泛使用的是拓普康公司的 SR-3和 BM-7 , 其中前者精度更高, 本实例使用前者测量, 仪器中文名称为: 分光辐射度计或色度亮度计。
在表 2所示的实例中, 通过釆用 1、 4、 7点位置使用 25 μ πι厚度涂层以 及 3、 6、 9点位置釆用 50 μ πι厚度涂层进行模拟试验获得表 2的数据, 而没 有全部使用等斜率平衡膜成品试验, 故 2、 5、 8点数据未能有良好的规律性。
釆用本侧入式背光模组, 包括色偏平衡薄膜, 由于透射薄膜的厚度随着 背光照射方向长度的增大而减小, 透射薄膜中的吸光物质对特定波长光的吸 光度也会随着透射薄膜的厚度的减小而减小,靠近光源处的光强度减小较多, 而远离光源处的光强度减小较少, 从而可以降低沿背光照射方向上的不同位 置处光的强度差异, 在液晶显示装置应用侧入式背光模组时, 有效改善显示 画面产生色度偏差的问题。 另一方面, 由于网点层的网点密度沿背光照射方 向递减, 网点层中吸光物质的密度随着背光照射方向长度的增大而减小, 靠 近光源处的光强度减小较多, 而远离光源处的光强度减小较少, 从而可以降 低沿背光照射方向上的不同位置处光的强度差异, 在液晶显示装置应用侧入 式 LED背光模组时, 有效改善显示画面产生色度偏差的问题。
本发明实施例还提供一种液晶显示装置, 包括上述所述的侧入式背光模 组。 本发明提供的色偏平衡薄膜, 应用于该侧入式背光模组中, 该色偏平衡 薄膜的厚度与该色偏平衡薄膜沿背光照射方向的长度为 Yl=kl *X+H的线性 关系。 其中, Y1为该色偏平衡薄膜的最小厚度, 该色偏平衡薄膜沿背光照射 方向的长度为 X, H为该色偏平衡薄膜的最大厚度, 比例系数 kl为该色偏平 衡薄膜两端的厚度与沿背光照射方向长度的斜率值。 该比例系数 kl 值为 -0.00005至 -0.00015之间 , 优选为 -0.00008。
该色偏平衡薄膜的材质可以为光固化树脂。
本发明实施例提供的液晶显示装置, 其背光模组包括色偏平衡薄膜, 该 色偏平衡薄膜的厚度沿背光照射方向递减。 由于透射薄膜的厚度随着背光照 射方向长度的增大而减小, 透射薄膜中的吸光物质对特定波长光的吸光度也 会随着透射薄膜的厚度的减小而减小, 靠近光源处的光强度减小较多, 而远 离光源处的光强度减小较少, 从而可以降低沿背光照射方向上的不同位置处 光的强度差异, 在液晶显示装置应用侧入式背光模组时, 有效改善显示画面 产生色度偏差的问题。
需要说明的是, 相对于现有的加工工艺, 本发明所提供的色偏平衡薄膜 的制造方法变更如下:
相对于湿法涂布工艺及紫外烘干工艺, 可以对现有工艺中的涂布喷头进 行变更, 将原来的等流量喷涂产生均勾的膜层更改为变流量喷涂, 利用计算 机控制流量, 根据预订厚度的变化趋势制造出不等厚的色偏平衡薄膜。
相对于滚压工艺, 可以通过调整挤压滚轮之间的间距, 根据预订厚度的 变化趋势制造出不等厚的色偏平衡薄膜。
当然, 本发明实施例的不等厚薄膜可应用于各种尺寸的侧入式背光模组 及液晶显示装置中, 可以根据侧入式背光模组及液晶显示装置尺寸的需要确 定产品合适的厚度变化趋势。
以上所述仅是本发明的示范性实施方式, 而非用于限制本发明的保护范 围, 本发明的保护范围由所附的权利要求确定。

Claims

权利要求书
1、 一种色偏平衡薄膜, 应用于侧入式背光模组中, 其中, 所述色偏平衡 薄膜的厚度沿背光照射方向递减。
2、根据权利要求 1所述的色偏平衡薄膜, 其中, 所述色偏平衡薄膜的厚 度与所述色偏平衡薄膜沿背光照射方向的长度为 Yl=kl*X+H的线性关系; 其中, Y1为色偏平衡薄膜的最小厚度,该色偏平衡薄膜沿背光照射方向的长 度为 X, H为色偏平衡薄膜的最大厚度, 比例系数 kl即为色偏平衡薄膜的厚 度与沿背光照射方向长度的斜率值, 该斜率值在 -0.00005至 -0.00015之间。
3、根据权利要求 2所述的色偏平衡薄膜, 其中, 所述色偏平衡薄膜的厚 度与沿背光照射方向长度的斜率值为 -0.00008。
4、根据权利要求 1或 2所述的色偏平衡薄膜, 其中, 所述色偏平衡薄膜 的材质为光固化树脂。
5、 一种侧入式背光模组, 包括导光板及光学膜材, 光学膜材设置于导光 板上, 其中, 所述侧入式背光模组还包括如权利要求 1至 4任一所述的色偏 平衡薄膜。
6、根据权利要求 5所述的侧入式背光模组, 其中, 所述侧入式背光模组 还包括一光源,所述色偏平衡薄膜的具有最大厚度的部分为靠近光源的端部。
7、根据权利要求 5或 6所述的侧入式背光模组,所述导光板包括导光板 基材, 所述导光板基材包括一用以接收光束的入射面、 一与入射面相连的底 面、 和一与入射面相连且与底面相对的出射面, 所述导光板的底面设置有网 点层, 其中, 所述网点层的网点密度沿背光照射方向递减。
8、根据权利要求 7所述的侧入式背光模组, 其中, 所述网点层的网点密 度与沿背光照射方向长度为 Y2=k2*X+p的线性关系; 其中, Y2为网点层的 网点密度, 该色偏平衡薄膜沿背光照射方向的长度为 X, p为网点层的最大 网点密度, 比例系数 k2 为网点层的网点密度与沿背光照射方向长度的斜率 值, 网点层的网点密度与沿背光照射方向长度的斜率值在 -0.05至 -0.15之间。
9、根据权利要求 8所述的侧入式背光模组, 其中, 所述网点层的网点密 度与沿背光照射方向长度的斜率值为 -0.08。
10、 根据权利要求 5或 6所述的侧入式背光模组, 其中, 所述色偏平衡 薄膜设置于所述光学膜材上或设置于光学膜材与导光板之间。
11、一种液晶显示装置, 包括: 如权利要求 5至 10任一所述的侧入式背 光模组。
PCT/CN2012/083904 2012-03-12 2012-11-01 色偏平衡薄膜、侧入式背光模组及液晶显示装置 WO2013135054A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/127,431 US9291766B2 (en) 2012-03-12 2012-11-01 Color deviation balance thin film, side-type backlight module and liquid crystal display device

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201210063702 2012-03-12
CN201210063702.5 2012-03-12
CN201210119205.2A CN102681049B (zh) 2012-03-12 2012-04-20 色偏平衡薄膜、侧入式背光模组及液晶显示装置
CN201210119205.2 2012-04-20

Publications (1)

Publication Number Publication Date
WO2013135054A1 true WO2013135054A1 (zh) 2013-09-19

Family

ID=50681401

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/083904 WO2013135054A1 (zh) 2012-03-12 2012-11-01 色偏平衡薄膜、侧入式背光模组及液晶显示装置

Country Status (3)

Country Link
US (1) US9291766B2 (zh)
CN (1) CN102681049B (zh)
WO (1) WO2013135054A1 (zh)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102681049B (zh) 2012-03-12 2014-06-11 京东方科技集团股份有限公司 色偏平衡薄膜、侧入式背光模组及液晶显示装置
CN103017032A (zh) * 2012-12-07 2013-04-03 康佳集团股份有限公司 一种侧入式背光模组、液晶模组及液晶显示设备
WO2014097042A1 (en) * 2012-12-18 2014-06-26 Koninklijke Philips N.V. Sound absorbing lighting panel and modular surface system
TWD166188S (zh) * 2014-01-23 2015-02-21 鴻海精密工業股份有限公司 導光板
TWD165416S (zh) * 2014-04-10 2015-01-11 鴻海精密工業股份有限公司 導光板
TWD165415S (zh) * 2014-04-10 2015-01-11 鴻海精密工業股份有限公司 導光板
JP5959575B2 (ja) * 2014-06-30 2016-08-02 ミネベア株式会社 面状照明装置及びその製造方法
KR20170004205A (ko) * 2015-07-01 2017-01-11 엘지전자 주식회사 도광판 및 이를 포함하는 면광원 장치
CN106483597B (zh) * 2015-08-24 2019-08-09 瑞仪光电(苏州)有限公司 导光材、背光模块
CN106568029B (zh) * 2015-10-09 2020-10-30 瑞仪光电(苏州)有限公司 背光模组及显示装置
CN105487291A (zh) * 2016-01-08 2016-04-13 京东方科技集团股份有限公司 一种背光模组、其制备方法及显示装置
CN106199819B (zh) * 2016-09-30 2019-07-05 京东方科技集团股份有限公司 一种背光模组及显示装置
JP2018181729A (ja) * 2017-04-19 2018-11-15 株式会社ジャパンディスプレイ 照明装置
CN107102475A (zh) * 2017-06-08 2017-08-29 合肥京东方显示光源有限公司 一种背光模组及显示装置
CN109212818A (zh) * 2018-09-30 2019-01-15 联想(北京)有限公司 液晶显示屏及其制造方法
CN112216209B (zh) * 2020-10-14 2022-06-14 厦门天马微电子有限公司 一种显示面板以及电子设备
CN113156569A (zh) * 2021-04-23 2021-07-23 常州亚玛顿股份有限公司 一种低色偏的背光模组
WO2023184097A1 (zh) * 2022-03-28 2023-10-05 京东方科技集团股份有限公司 一种背光模组及显示装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1553227A (zh) * 2003-06-04 2004-12-08 鸿富锦精密工业(深圳)有限公司 导光板及面光源装置
CN101156106A (zh) * 2005-04-08 2008-04-02 姜凤燮 具有多反射结构的多反射设备、背光单元和显示设备
WO2010149583A1 (de) * 2009-06-23 2010-12-29 Seereal Technologies S.A. Beleuchtungseinheit für ein direktsichtdisplay
CN102128415A (zh) * 2010-01-19 2011-07-20 奇菱科技股份有限公司 导光板、背光模块及液晶显示装置
CN102681049A (zh) * 2012-03-12 2012-09-19 京东方科技集团股份有限公司 色偏平衡薄膜、侧入式背光模组及液晶显示装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4052044B2 (ja) * 2002-07-09 2008-02-27 セイコーエプソン株式会社 光学装置およびプロジェクタ
JP2007042479A (ja) * 2005-08-04 2007-02-15 Harison Toshiba Lighting Corp バックライト
EP2183623A1 (en) * 2007-07-31 2010-05-12 Qualcomm Mems Technologies, Inc. Devices for enhancing colour shift of interferometric modulators
CN102128377A (zh) * 2011-03-21 2011-07-20 中山伟强科技有限公司 Led导光板灯具组件
CN102588835B (zh) * 2012-02-08 2016-01-13 苏州晶智科技有限公司 一种用于液晶显示器的新型背光模组
TWI489056B (zh) * 2012-03-21 2015-06-21 Young Lighting Technology Inc 光源模組

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1553227A (zh) * 2003-06-04 2004-12-08 鸿富锦精密工业(深圳)有限公司 导光板及面光源装置
CN101156106A (zh) * 2005-04-08 2008-04-02 姜凤燮 具有多反射结构的多反射设备、背光单元和显示设备
WO2010149583A1 (de) * 2009-06-23 2010-12-29 Seereal Technologies S.A. Beleuchtungseinheit für ein direktsichtdisplay
CN102128415A (zh) * 2010-01-19 2011-07-20 奇菱科技股份有限公司 导光板、背光模块及液晶显示装置
CN102681049A (zh) * 2012-03-12 2012-09-19 京东方科技集团股份有限公司 色偏平衡薄膜、侧入式背光模组及液晶显示装置

Also Published As

Publication number Publication date
CN102681049B (zh) 2014-06-11
US9291766B2 (en) 2016-03-22
CN102681049A (zh) 2012-09-19
US20140132889A1 (en) 2014-05-15

Similar Documents

Publication Publication Date Title
WO2013135054A1 (zh) 色偏平衡薄膜、侧入式背光模组及液晶显示装置
US20190384095A1 (en) Liquid crystal display panel and liquid crystal display device using the same
CN103150062B (zh) 触控显示装置
JP2007003852A (ja) 拡散シート、拡散シートの製造方法、バックライト装置および液晶表示装置
US20190146139A1 (en) Microstructured and patterned light guide plates and devices comprising the same
JP4471014B2 (ja) 液晶表示装置、バックライト光源および光学フィルム
TWI739952B (zh) 微結構化光導板及包含其之裝置
TW201321845A (zh) 複合光學膜及應用其之背光模組
US11256133B2 (en) Direct-lit backlight source and manufacturing method thereof, display device
US11830279B2 (en) Screen fingerprint component and terminal device
US20140049778A1 (en) Device And A Method For Detecting A Transmittivity Spectrum Of A Light Guiding Plate
JP2020532833A (ja) 直下型バックライト用の多層反射器
KR101980698B1 (ko) 프리즘 시트, 이를 포함하는 백라이트 유닛 및 그 제조 방법
KR20090086759A (ko) 정면 휘도가 개선된 길이방향 웨이브 패턴의 프리즘 산을갖는 프리즘 시트, 이를 채용한 백라이트 유니트, 및 상기백라이트 유니트를 구비한 액정표시장치
CN104896366A (zh) 一种背光模组、显示模组和显示装置
US20170090097A1 (en) Light guide plate and back light unit and liquid crystal display having the light guide plate
KR20140067471A (ko) 확산용 도광필름, 백라이트부 및 이를 구비한 액정표시소자
KR102040255B1 (ko) 유리 도광판과 이를 포함하는 백라이트 유닛 및 디스플레이 장치
TW201329545A (zh) 液晶顯示裝置
TWI465778B (zh) A light control panel, a surface light source device, and a transmission type image display device
KR101522242B1 (ko) 광학시트 및 이를 포함하는 액정표시장치
TW201702657A (zh) 導光板、及應用其之背光模組與液晶顯示裝置
KR102467877B1 (ko) 액정표시패널 및 그를 갖는 액정표시장치
KR20190061164A (ko) 자유곡면 렌즈
TWI468798B (zh) 背光模組、液晶顯示裝置以及導光板的網點設計方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12871387

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14127431

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12871387

Country of ref document: EP

Kind code of ref document: A1