WO2013135024A1 - 一种同步信号的发送方法和装置 - Google Patents

一种同步信号的发送方法和装置 Download PDF

Info

Publication number
WO2013135024A1
WO2013135024A1 PCT/CN2012/077918 CN2012077918W WO2013135024A1 WO 2013135024 A1 WO2013135024 A1 WO 2013135024A1 CN 2012077918 W CN2012077918 W CN 2012077918W WO 2013135024 A1 WO2013135024 A1 WO 2013135024A1
Authority
WO
WIPO (PCT)
Prior art keywords
synchronization signal
sequence
frame
symbols
primary
Prior art date
Application number
PCT/CN2012/077918
Other languages
English (en)
French (fr)
Inventor
鲁照华
张晓丹
刘锟
宁迪浩
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2013135024A1 publication Critical patent/WO2013135024A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/001Synchronization between nodes

Definitions

  • the present invention relates to the field of communications, and in particular to a method and apparatus for transmitting a synchronization signal. Background technique
  • the cellular mobile communication system is mainly designed for high-speed mobile, seamless telecommunication traditional telecommunication service design.
  • IP Internet Protocol
  • the efficiency is low and the cost is too high.
  • the LTE (Long Term Evolution) standard using OFDM (Orthogonal Frequency Division Multiplexing) technology is used in frame structure, resource allocation, control channel, pilot, and network architecture.
  • OFDM Orthogonal Frequency Division Multiplexing
  • the system control overhead is close to 30%, and the implementation complexity and cost of the product are increased.
  • the frequency offset is tolerated.
  • the main object of the embodiments of the present invention is to provide a method and apparatus for transmitting a synchronization signal to solve the problem of high terminal implementation cost caused by the synchronization channel standard in the existing wireless communication.
  • An embodiment of the present invention provides a method for transmitting a synchronization signal, the method comprising: transmitting, by a first communication node, a synchronization signal S1 in an Xth frame, and transmitting a synchronization signal S2 in the (X+K)th frame, the synchronization signal S1 and S2 is different, and K ⁇ 1.
  • the method also includes:
  • the second communication node After receiving the synchronization signal S1 from the Xth frame, the second communication node obtains synchronization information by using the synchronization signal S1; the synchronization information includes: timing estimation and/or frequency offset estimation;
  • the second communication node receives the synchronization signal S2 from the first ( ⁇ + ⁇ ) frame based on the timing estimate and/or the frequency offset estimate.
  • the Xth frame and the (X+K)th frame respectively include N symbols; N is a positive integer; the synchronization signal S1 occupies M1 symbols out of N symbols of the Xth frame; the synchronization signal S2 occupies the (X+K) M2 symbols out of N symbols of the frame;
  • the M1 and M2 are equal or unequal; the N>M1 ⁇ 1, N>M2 ⁇ 1.
  • the M1 symbols occupied by the synchronization signal S1 are located at the beginning of the Xth frame; the M2 symbols occupied by the synchronization signal S2 are located at the beginning of the (X+K)th frame.
  • the synchronizing signal S1 and the synchronizing signal S2 are generated by the same sequence through different arrangements or by different signal processing methods.
  • the primary synchronization signals of the synchronization signals S1 and S2 are subjected to different arrangements or different signals by the same sequence. Rational way to generate; or,
  • the primary synchronization signal and the synchronization signal S1 of the synchronization signal S2 are generated by the same sequence through different arrangements or different signal processing methods.
  • the same sequence is a constant envelope zero autocorrelation sequence of length Y.
  • the value of the Y does not exceed 1/(2 ⁇ ⁇ ) of available subcarriers or all subcarriers of one OFDM symbol, and the ⁇ is an integer greater than or equal to 0.
  • the different permutations include: an arrangement in which the sequence is repeated in the time domain; and an arrangement in which the sequence is repeated in a time domain by conjugate symmetry, the An integer greater than one.
  • the synchronizing signal of the synchronizing signal S1 and the synchronizing signal S2 are the same, and are generated by a Golay sequence of length G ⁇ or
  • the secondary synchronization signal of the synchronization signal S2 is generated by a Golay sequence of length G.
  • the value of G does not exceed 1/(2 ⁇ ⁇ ) of available subcarriers or all subcarriers of the OFDM symbol, and the ⁇ is an integer greater than or equal to 0. .
  • the Golay sequence set includes a number of sequences greater than or equal to the number of sequences included in the constant envelope zero autocorrelation sequence set.
  • An embodiment of the present invention further provides a synchronization signal sending apparatus, including: a setting module and Send module, where:
  • the setting module is configured to set synchronization signals S1 and S2 to make the two different;
  • the transmitting module is configured to transmit the synchronization signal S1 in the Xth frame, and to transmit the synchronization signal S2 in the (X+K)th frame, where K ⁇ 1.
  • the device also includes:
  • a receiving module configured to: after receiving the synchronization signal S1 from the Xth frame, acquire synchronization information by using the synchronization signal S1; the synchronization information includes: timing estimation and/or frequency offset estimation; and further, according to the timing estimation and/or frequency
  • the partial estimation receives the synchronization signal S2 from the first ( ⁇ + ⁇ ) frame.
  • the Xth frame and the (X+K)th frame respectively include N symbols; N is a positive integer; the synchronization signal S1 occupies M1 symbols out of N symbols of the Xth frame; the synchronization signal S2 occupies the (X+K) M2 symbols out of N symbols of the frame;
  • the M1 and M2 are equal or unequal; the N>M1 ⁇ 1, N>M2 ⁇ 1.
  • the setting module is further configured to set the M1 symbols occupied by the synchronization signal S1 to be located at a starting position of the Xth frame; and set the M2 symbols occupied by the synchronization signal S2 to be located at the beginning of the (X+K)th frame. position.
  • the setting module is further configured to generate the synchronization signal S1 and the synchronization signal S2 by using different sequences or different signal processing manners using the same sequence.
  • the setting module is further configured to generate the synchronization signals S1 and S2 by using different sequences or different signal processing manners using the same sequence.
  • the setting module is further configured to generate a primary synchronization signal and a synchronization signal S1 of the synchronization signal S2 by using different sequences or different signal processing manners in the same sequence.
  • the setting module is further configured to use a constant envelope zero autocorrelation sequence of length Y as the same sequence.
  • the symbol included in the frame is an OFDM symbol
  • the value of the Y does not exceed 1/(2 ⁇ ⁇ ) of available subcarriers or all subcarriers of one OFDM symbol
  • the ⁇ is an integer greater than or equal to 0; ,
  • the different permutations include: an arrangement in which the sequence is repeated in the time domain; and an arrangement in which the sequence is repeated in a time domain by conjugate symmetry, the An integer greater than one.
  • the setting module is further configured to generate a secondary synchronization signal of the synchronization signal S1 and the synchronization signal S2 by using a Golay sequence of length G when the synchronization signal S1 and the synchronization signal S2 are both primary and secondary synchronization signal structures; S1 and the synchronization signal of the synchronization signal S2 are the same; or, when the synchronization signal S2 is used as the primary and secondary synchronization signal structure, the secondary synchronization signal of the synchronization signal S2 is generated by using the Golay sequence of length G;
  • the value of G does not exceed 1/(2 ⁇ ⁇ ) of available subcarriers or all subcarriers of the OFDM symbol, and the ⁇ is an integer greater than or equal to 0. .
  • the setting module is further configured to use the Golay sequence set to include a sequence number greater than or equal to the number of sequences included in the constant envelope zero autocorrelation sequence set.
  • the embodiment of the invention further provides a method for sending a synchronization signal, including:
  • the first communication node transmits a synchronization signal S1 in the Xth frame, and the synchronization signal S1 is a primary and secondary synchronization signal structure.
  • the method also includes:
  • the synchronization information includes: a timing estimation and/or a frequency offset estimation
  • the second communication node receives the secondary synchronization signal of the synchronization signal S1, or the subsequent primary synchronization signal and the secondary synchronization signal from the Xth frame based on the timing estimate and/or the frequency offset estimate.
  • the Xth frame includes N symbols; N is a positive integer;
  • the synchronization signal S1 occupies M1 symbols among the N symbols of the Xth frame; the N>M1 ⁇ 1.
  • the number of symbols occupied by the primary synchronization signal of the synchronization signal S1 is greater than or equal to the number of symbols occupied by the secondary synchronization signal.
  • the primary synchronization signal occupies two or more symbols, and the primary synchronization signals transmitted on the two or more symbols are generated by the same sequence through different arrangements or by different signal processing methods.
  • the embodiment of the invention further provides a device for transmitting a synchronization signal, the device comprising: a setting module and a sending module, wherein:
  • the setting module is configured to set a synchronization signal S1, so that the synchronization signal S1 has a primary and secondary synchronization signal structure;
  • the transmitting module is configured to transmit the synchronization signal Sl in the Xth frame.
  • the apparatus further includes a receiving module configured to: after receiving a primary synchronization signal of the synchronization signal S1 from the Xth frame, acquire synchronization information by using the primary synchronization signal; the synchronization information includes: timing estimation and/or frequency offset Estimating; receiving, according to the timing estimate and/or frequency offset estimation, a subsequent secondary synchronization signal, or a subsequent primary synchronization signal and a secondary synchronization signal, from the Xth frame.
  • a receiving module configured to: after receiving a primary synchronization signal of the synchronization signal S1 from the Xth frame, acquire synchronization information by using the primary synchronization signal; the synchronization information includes: timing estimation and/or frequency offset Estimating; receiving, according to the timing estimate and/or frequency offset estimation, a subsequent secondary synchronization signal, or a subsequent primary synchronization signal and a secondary synchronization signal, from the Xth frame.
  • the Xth frame includes N symbols; N is a positive integer;
  • the synchronization signal S1 occupies M1 symbols among the N symbols of the Xth frame; the N>M1 ⁇ 1.
  • the setting module is further configured to set the M1 symbols occupied by the synchronization signal S1 to be located The starting position of the Xth frame.
  • the setting module is further configured to set the number of symbols occupied by the primary synchronization signal of the synchronization signal S1 to be greater than or equal to the number of symbols occupied by the secondary synchronization signal.
  • the setting module is further configured to use the same sequence to perform synchronization according to the embodiment of the present invention by using different sequences or different signal processing modes when the number of symbols occupied by the primary synchronization signal is two or more.
  • the signal transmission method by setting the synchronization signal structure and the transmission sequence, for example, the first communication node transmits the synchronization signal S1 in the Xth frame, and transmits the synchronization signal S2 in the (X+K) frame, the synchronization signals S1 and S2 are different.
  • the synchronization signal S1 and the synchronization signal S2 are differently arranged by the same sequence or generated by different signal processing methods, thereby optimizing the existing synchronization channel design, reducing the accuracy requirement of the crystal oscillator, and thus effectively reducing
  • the power consumption and implementation complexity of the terminal better meet the needs of the rapid development of data users and the future development of the wireless communication industry.
  • FIG. 1 is a schematic diagram of a sending process of a synchronization signal according to an embodiment of the present invention
  • FIG. 2 is a schematic diagram 1 of a frame structure for transmitting a synchronization signal according to an embodiment of the present invention
  • FIG. 3 is a second schematic structural diagram of a frame for transmitting a synchronization signal according to an embodiment of the present invention
  • FIG. 4 is a third schematic structural diagram of a frame for transmitting a synchronization signal according to an embodiment of the present invention.
  • FIG. 5 is a schematic diagram of another synchronization signal sending process according to an embodiment of the present invention.
  • FIG. 6 is a fourth schematic structural diagram of a frame for transmitting a synchronization signal according to an embodiment of the present invention. detailed description
  • Step 101 The first communication node sends a synchronization signal S1 in the Xth frame, and transmits a synchronization signal S2 in the (X+K)th frame.
  • the synchronization signals S1 and S2 are different, K ⁇ 1.
  • Step 102 The second communication node receives the synchronization signals S1 and S2 at the Xth frame and the (X+K frame), respectively.
  • the second communication node After receiving the synchronization signal S1 from the Xth frame, the second communication node acquires synchronization information by using the synchronization signal S1; the synchronization information includes: timing estimation and/or frequency offset estimation; and the second communication node according to the timing estimation and/or the frequency offset It is estimated that the synchronization signal S2 is received from the (X+K)th frame.
  • the Xth frame and the (X+K)th frame respectively comprise N symbols; N is a positive integer; the synchronization signal S1 occupies M1 symbols out of the N symbols of the Xth frame; the synchronization signal S2 occupies the (X+K) M2 symbols out of N symbols of the frame; M1 and M2 are equal or unequal; N>M1>1, N>M2>1.
  • the M1 symbols occupied by the synchronization signal S1 are located at the beginning of the Xth frame; the M2 symbols occupied by the synchronization signal S2 are located at the beginning of the (X+K)th frame.
  • the synchronizing signal S1 and the synchronizing signal S2 are generated by the same sequence through different arrangements or by different signal processing methods.
  • the main synchronizing signals of the synchronizing signals S1 and S2 are generated by the same sequence through different arrangements or different signal processing methods ⁇ or ,
  • the primary synchronization signal and the synchronization signal S1 of the synchronization signal S2 are generated by the same sequence through different arrangements or different signal processing methods.
  • the value of Y does not exceed 1/(2 ⁇ ⁇ ) of the available subcarriers or all subcarriers of one OFDM symbol, and ⁇ is an integer greater than or equal to 0;
  • the sequence combination of the constant envelope zero autocorrelation sequence selected to generate the synchronization signal the sum of the sequence identifiers of at least two constant envelope zero autocorrelation sequences is ⁇ , and the sequence identifier is a constant envelope of length ⁇ . The number of primes that are used for zero autocorrelation sequences.
  • the different permutations include: one arrangement is a sequence in which the sequence is repeated in the time domain; and the other arrangement is that the sequence is repeated in the time domain by a conjugate symmetry, and the sequence is large.
  • the synchronization signal S1 and the synchronization signal of the synchronization signal S2 are the same, and are generated by a Golay sequence of length G; or, the synchronization signal S2 is a primary and secondary synchronization signal.
  • the secondary synchronization signal of the synchronization signal S2 is generated by a Golay sequence of length G.
  • the value of G does not exceed 1/(2 ⁇ ⁇ ) of available subcarriers or all subcarriers of one OFDM symbol, and ⁇ is an integer greater than or equal to 0.
  • the Golay sequence set includes a number of sequences greater than or equal to the number of sequences included in the constant envelope zero autocorrelation sequence set.
  • the implementation of the first communication node transmitting the synchronization signal S1 in the Xth frame and the synchronization signal S2 in the (X+K) frame will be described below with reference to the first to the ninth embodiments.
  • the Xth frame and the (X+K)th frame respectively include N symbols, K ⁇ l, and preferably, the symbol is an OFDM symbol.
  • the first communication node uses M1 of the N symbols in the Xth frame and the (X+K)th frame, respectively.
  • the M2 symbols transmit the synchronization signals SI, S2, wherein the synchronization signal S1 and the synchronization signal S2 are different.
  • the synchronization signal is located at the frame header of the corresponding frame:
  • Synchronization signal S1 Located on symbol 1 of the Xth frame, the synchronization signal S2 is located on symbol 1 of the (X+K)th frame.
  • the synchronizing signal S1 and the synchronizing signal S2 can be generated by different arrangements of the same sequence.
  • the sequence is a constant envelope zero autocorrelation sequence of length Y, and may also be other binary sequences, where the value of Y does not exceed 1/(2) of available subcarriers or all subcarriers of one OFDM symbol.
  • at least two of the sequence combinations selected to generate the synchronization signal from the set of constant envelope zero autocorrelation sequences is Y, wherein the sequence identifier is the number of Y primes used to generate a constant envelope zero autocorrelation sequence of length Y.
  • the arrangement can be [1+i 1-i 2+i 2-i 1+i 1-i 2+ i 2-i] , that is, the [sequence sequence] mode, which is equivalent to repeating the sequence once in the time domain, or repeating it multiple times; or [1+i 1-i 2+i 2-i 2+i 2 -i 1+i 1-i] , which is the [conjugate sequence of sequence sequence] mode.
  • Any of the arrangement modes can be used as the synchronization signal S1 or S2, but it is necessary to ensure that the main synchronization signals of the synchronization signals S1 and S2 are different.
  • the second communication node receives the synchronization signal S1 and the synchronization signal S2 at the Xth frame and the (X+K frame), respectively, to acquire synchronization information.
  • the second communication node receives the synchronization signal S1 from the Xth frame, and then passes the synchronization signal.
  • S1 acquires synchronization information;
  • the synchronization information includes: timing estimation and/or frequency offset estimation; and
  • the second communication node receives the synchronization signal S2 from the (X+K)th frame according to the timing estimation and/or the frequency offset estimation.
  • the Xth frame and the (X+K)th frame respectively include N symbols, K ⁇ l, and preferably, the symbol is an OFDM symbol.
  • the synchronizing signal S1 and the synchronizing signal S2 can be generated by different arrangements of the same sequence.
  • the sequence selected is the same as that described in the first embodiment, and details are not described herein again.
  • the arrangement can be [1+i 1-i 2+i 2-i 2+i 2-i 1+ i 1-i] , that is, the [conjugate sequence of sequence sequence] mode, or [sequence sequence of the sequence ⁇ 1 J sequence is shared with the sequence ⁇ 1 J
  • the sequence conjugate symmetric sequence] pattern which corresponds to the conjugate symmetric sequence of the sequence, is repeatedly transmitted multiple times in the time domain. Any of the arrangement modes can be used as the synchronization signal S1 or S2, but it is necessary to ensure that the main synchronization signals of the synchronization signals S1 and S2 are different.
  • the process of the second communication node receiving the synchronization signal S1 and the synchronization signal S2 in the Xth frame and the (X+K frame) is the same as that in the first embodiment, and details are not described herein again.
  • the Xth frame and the (X+K)th frame respectively include N symbols, K ⁇ l, and preferably, the symbol is an OFDM symbol.
  • the synchronizing signal S1 and the synchronizing signal S2 can be generated by the same sequence (Sequence) through different signal processing methods.
  • sequence selected is the same as that described in the first embodiment, and details are not described herein again.
  • Different signal processing methods that is, how to generate a time domain sequence
  • changing from frequency domain to time domain is a way, or processing directly in the time domain is also a way.
  • the following is an example of a signal processing method from frequency domain to time domain.
  • sequence: [1+i 1-i 2+i 2-i] is mapped to all or part of available subcarriers of an OFDM symbol, And performing an IFFT transform, and obtaining the time domain signal, for example, mapping every other subcarrier, and after the IFFT transform, two periods of the same waveform are formed in the OFDM symbol, and preferably, in the two periodic signals
  • One performs a conjugate symmetric operation that is, one of the two periodic signals can be used as the synchronization signal S1
  • the other The line conjugate symmetry operation can be used as the synchronization signal S2.
  • the process of the second communication node receiving the synchronization signal S1 and the synchronization signal S2 in the Xth frame and the (X+K frame) is the same as that in the first embodiment, and details are not described herein again.
  • the Xth frame and the (X+K)th frame respectively include N symbols, K ⁇ l, and preferably, the symbol is an OFDM symbol.
  • the synchronization signals S1 and S2 both adopt a primary and secondary synchronization signal structure, wherein the primary synchronization signals of the synchronization signals S1 and S2 are different; the synchronization signals S1 and the secondary synchronization signals of the synchronization signal S2 are the same.
  • the main synchronizing signals of the synchronizing signals S1 and S2 are generated by different arrangements of the same sequence (Sequence).
  • sequence selected is the same as that described in the first embodiment, and details are not described herein again.
  • the arrangement can be [1+i 1-i 2+i 2-i 1+i 1-i 2+ i 2-i], that is, the [sequence sequence] arrangement mode, which is equivalent to repeating the sequence once in the time domain, or repeating it multiple times, or [1+i 1-i 2+i 2-i 2+i 2-i 1+i 1-i] , that is, the [conjugate sequence of sequence sequence] arrangement mode, wherein any one of the arrangement modes can be used as the main synchronization signal of the synchronization signal S1 or S2, but the synchronization signal S1 is guaranteed It is different from the main synchronization signal of S2.
  • the secondary synchronization signals of the synchronization signals S1 and S2 are generated by a Golay sequence of length G, and the value of G does not exceed the available subcarriers or all subcarriers of one OFDM symbol. 1/(2 ⁇ ⁇ ), n is an integer greater than or equal to 0.
  • the number of sequences included in the Golay sequence set when generating the secondary synchronization signal is greater than or equal to the number of sequences included in the constant envelope zero autocorrelation sequence set used when generating the primary synchronization signal, for example, a Golay sequence that can be used for the secondary synchronization signal.
  • a Golay sequence that can be used for the secondary synchronization signal.
  • the process of the second communication node receiving the synchronization signal S1 and the synchronization signal S2 in the Xth frame and the (X+K frame) is the same as that in the first embodiment, and details are not described herein again.
  • the Xth frame and the (X+K)th frame respectively include N symbols, and preferably, the symbols are OFDM symbols.
  • the first communication node uses M1 of the N symbols in the Xth frame and the (X+K)th frame, respectively.
  • the M2 symbols transmit the synchronization signals SI, S2, wherein the synchronization signal S1 and the synchronization signal S2 are different.
  • the synchronization signal is located at the frame header of the corresponding frame: the synchronization signal S1 Located on symbol 1 and symbol 2 of the Xth frame, the synchronization signal S2 is located on symbol 1 and symbol 2 of the (X+K)th frame.
  • the synchronization signals S1 and S2 both adopt a primary and secondary synchronization signal structure, wherein the primary synchronization signals of the synchronization signals S1 and S2 are different; the synchronization signals S1 and the secondary synchronization signals of the synchronization signal S2 are the same.
  • the main synchronizing signals of the synchronizing signals S1 and S2 are generated by different arrangements of the same sequence (Sequence).
  • sequence selected is the same as that described in the first embodiment, and details are not described herein again.
  • the arrangement can be [1+i 1-i 2+i 2-i 2+i 2-i 1+ i 1-i] , that is, the [conjugate sequence of sequence sequence] mode, or [sequence sequence of the sequence ⁇ 1 J sequence is shared with the sequence ⁇ 1 J
  • the conjugated sequence of the sequence is a sequence], which corresponds to the conjugate symmetric sequence of the sequence being repeatedly transmitted multiple times in the time domain.
  • any of the arrangement modes can be used as the main synchronization signal of the synchronization signal S1 or S2, but the main synchronization signals of the synchronization signals S1 and S2 are guaranteed to be different.
  • the secondary synchronization signals of the synchronization signals S1 and S2 are generated by a Golay sequence of length G, and the value of G does not exceed 1/(2 ⁇ ⁇ ) of the available subcarriers or all subcarriers of one OFDM symbol, ⁇ Is an integer greater than or equal to 0.
  • the number of sequences included in the Golay sequence set when generating the secondary synchronization signal is greater than or equal to the number of sequences included in the constant envelope zero autocorrelation sequence set used when generating the primary synchronization signal, for example, a Golay sequence that can be used for the secondary synchronization signal.
  • a Golay sequence that can be used for the secondary synchronization signal.
  • the process of the second communication node receiving the synchronization signal S1 and the synchronization signal S2 in the Xth frame and the (X+K frame) is the same as that in the first embodiment, and details are not described herein again.
  • the Xth frame and the (X+K)th frame respectively include N symbols, and preferably, the symbols are OFDM symbols.
  • the synchronization signals S1 and S2 both adopt a primary and secondary synchronization signal structure, wherein the primary synchronization signals of the synchronization signals S1 and S2 are different; the synchronization signals S1 and the secondary synchronization signals of the synchronization signal S2 are the same.
  • the primary synchronization signals of the synchronization signals S1 and S2 are by the same sequence (Sequence) Generated by different signal processing methods.
  • the selected sequence is the same as that described in the first embodiment, and details are not described herein again.
  • a conjugate symmetric operation is performed on one of the two periodic signals.
  • the secondary synchronization signals of the synchronization signals S1 and S2 are generated by a Golay sequence of length G, and the value of G does not exceed 1/(2 ⁇ ⁇ ) of the available subcarriers or all subcarriers of one OFDM symbol, ⁇ Is an integer greater than or equal to 0.
  • the number of sequences included in the Golay sequence set when generating the secondary synchronization signal is greater than or equal to the number of sequences included in the constant envelope zero autocorrelation sequence set used when generating the primary synchronization signal, for example, a Golay sequence that can be used for the secondary synchronization signal.
  • a Golay sequence that can be used for the secondary synchronization signal.
  • the process of the second communication node receiving the synchronization signal S1 and the synchronization signal S2 in the Xth frame and the (X+K frame) is the same as that in the first embodiment, and details are not described herein again.
  • the Xth frame and the (X+K)th frame respectively include N symbols, and preferably, the symbols are OFDM symbols.
  • the first communication node transmits the synchronization signals SI, S2 in the Xth frame and the (X+K)th frame using M1 and M2 symbols respectively of the N symbols, wherein the synchronization signal S1 and the synchronization signal S2 are different, preferably Ground, for example, as shown in FIG. 4, M1 is equal to 1 and M2 is equal to 2, (may also be M1 equals 2, M2 is equal to 1)
  • the synchronization signal is located at the frame header of the corresponding frame: Synchronization signal S1 is located on symbol 1 of the Xth frame, and is synchronized. Signal S2 is located on symbol 1 and symbol 2 of the (X+K)th frame.
  • the synchronization signal S2 adopts a primary and secondary synchronization signal structure, and the different signals S1 are not the primary and secondary synchronization signal structures, and the primary synchronization signal and the synchronization signal S1 of the synchronization signal S2 are generated by different arrangements of the same sequence (Sequence). .
  • the selected sequence is the same as that described in the first embodiment, and details are not described herein again.
  • the arrangement can be [1+i 1-i 2+i 2-i 1+i 1-i 2+ i 2-i] , that is, the [sequence sequence] mode, which is equivalent to repeating the sequence once in the time domain, or repeating it multiple times, or [1+i 1-i 2+i 2-i 2+i 2 -i 1+i 1-i] , which is the [conjugate sequence of sequence sequence] mode.
  • Any one of the arrangement modes can be used as the main synchronizing signal of the synchronizing signal S2 and the synchronizing signal S1, but it is necessary to ensure that the main synchronizing signal of the synchronizing signal S2 is different from the synchronizing signal S1.
  • the secondary synchronization signal of the synchronization signal S2 is generated by a Golay sequence of length G, and the value of G does not exceed 1/(2 ⁇ ⁇ ) of the available subcarriers or all subcarriers of one OFDM symbol, and ⁇ is greater than An integer equal to 0.
  • the number of sequences included in the Golay sequence set when generating the secondary synchronization signal is greater than or equal to the number of sequences included in the constant envelope zero autocorrelation sequence set used when generating the primary synchronization signal, for example, a Golay sequence that can be used for the secondary synchronization signal.
  • a Golay sequence that can be used for the secondary synchronization signal.
  • the process of the second communication node receiving the synchronization signal S1 and the synchronization signal S2 in the Xth frame and the (X+K frame) is the same as that in the first embodiment, and details are not described herein again.
  • the Xth frame and the (X+K)th frame respectively include N symbols, and preferably, the symbols are OFDM symbols.
  • the first communication node transmits the synchronization signals SI, S2 in the Xth frame and the (X+K)th frame using M1 and M2 symbols respectively of the N symbols, wherein the synchronization signal S1 and the synchronization signal S2 are not Similarly, preferably, for example, as shown in FIG. 4, M1 is equal to 1 and M2 is equal to 2, (may also be M1 is equal to 2, and M2 is equal to 1).
  • the synchronization signal is located at the frame header of the corresponding frame: the synchronization signal S1 is located at the symbol of the Xth frame.
  • the upper synchronization signal S2 is located on the symbol 1 and the symbol 2 of the (X+K)th frame.
  • the synchronization signal S2 adopts a primary and secondary synchronization signal structure, and the synchronization signal S1 is not a primary or secondary synchronization signal structure, and the primary synchronization signal and the synchronization signal S1 of the synchronization signal S2 are generated by different arrangements of the same sequence (Sequence). .
  • the sequence selected is the same as that described in Embodiment 1, and is not described here.
  • the arrangement can be [1+i 1-i 2+i 2-i 2+i 2-i 1+i 1-i], that is, the [sequence sequence symmetry sequence ⁇ 'J ] mode, or [ sequence sequence conjugate sequence conjugate sequence conjugate sequence ] mode, a conjugate symmetric sequence equivalent to a sequence is repeatedly transmitted multiple times in the time domain.
  • any one of the arrangement modes can be used as the main synchronizing signal of the synchronizing signal S2 and the synchronizing signal S1, but it is necessary to ensure that the main synchronizing signal of the synchronizing signal S2 is different from the synchronizing signal S1.
  • the secondary synchronization signal of the synchronization signal S2 is generated by a Golay sequence of length G, and the value of G does not exceed 1/(2 ⁇ ⁇ ) of the available subcarriers or all subcarriers of one OFDM symbol, and ⁇ is greater than An integer equal to 0.
  • the number of sequences included in the Golay sequence set when generating the secondary synchronization signal is greater than or equal to the number of sequences included in the constant envelope zero autocorrelation sequence set used when generating the primary synchronization signal, for example, a Golay sequence that can be used for the secondary synchronization signal.
  • a Golay sequence that can be used for the secondary synchronization signal.
  • the process of the second communication node receiving the synchronization signal S1 and the synchronization signal S2 in the Xth frame and the (X+K frame) is the same as that in the first embodiment, and details are not described herein again.
  • the Xth frame and the (X+K)th frame respectively include N symbols, preferably, The number is an OFDM symbol.
  • the first communication node transmits the synchronization signals SI, S2 in the Xth frame and the (X+K)th frame using M1 and M2 symbols respectively of the N symbols, wherein the synchronization signal S1 and the synchronization signal S2 are different, preferably Ground, for example, as shown in FIG. 4, M1 is equal to 1 and M2 is equal to 2, (may also be M1 equals 2, M2 is equal to 1)
  • the synchronization signal is located at the frame header of the corresponding frame: Synchronization signal S1 is located on symbol 1 of the Xth frame, and is synchronized. Signal S2 is located on symbol 1 and symbol 2 of the (X+K)th frame.
  • the synchronization signal S2 adopts a primary and secondary synchronization signal structure, and the synchronization signal S1 is not a primary or secondary synchronization signal structure, and the primary synchronization signal and the synchronization signal S1 of the synchronization signal S2 are generated by the same sequence (Sequence) through different signal processing methods. of.
  • the selected sequence is the same as that described in the first embodiment, and details are not described herein again.
  • the secondary synchronization signal of the synchronization signal S2 is generated by a Golay sequence of length G, and the value of G does not exceed 1/(2 ⁇ ⁇ ) of the available subcarriers or all subcarriers of one OFDM symbol, and ⁇ is greater than An integer equal to 0.
  • the number of sequences included in the Golay sequence set when generating the secondary synchronization signal is greater than or equal to the number of sequences included in the constant envelope zero autocorrelation sequence set used when generating the primary synchronization signal, for example, a Golay sequence that can be used for the secondary synchronization signal.
  • a Golay sequence that can be used for the secondary synchronization signal.
  • an embodiment of the present invention provides a synchronization signal sending apparatus, including: a setting module and a sending module, where:
  • a setting module for setting synchronization signals S1 and S2 to make the two different
  • the transmitting module is configured to send the synchronization signal S1 in the Xth frame, and send the synchronization signal S2, K ⁇ l in the (X+K) frame.
  • the device also includes:
  • a receiving module configured to: after receiving the synchronization signal S1 from the Xth frame, acquire synchronization information by using the synchronization signal S1; the synchronization information includes: timing estimation and/or frequency offset estimation; and then according to timing estimation and/or frequency offset estimation from the first ( ⁇ + ⁇ )
  • the frame receives the synchronization signal S2.
  • the Xth frame and the (X+K)th frame respectively include N symbols;
  • the synchronization signal S1 occupies M1 symbols of the N symbols of the Xth frame; the synchronization signal S2 occupies M2 symbols of the N symbols of the (X+K)th frame;
  • Ml is equal or unequal to M2; N>M1 ⁇ 1, N>M2>1 0
  • the setting module is further configured to set the M1 symbols occupied by the synchronization signal S1 at the start position of the Xth frame; and set the M2 symbols occupied by the synchronization signal S2 at the start position of the (X+K)th frame.
  • the synchronization signal S1 and the synchronization signal S2 are generated.
  • the module is set.
  • the setting module is also used to generate the primary synchronization signal and the synchronization signal Sl of the synchronization signal S2 by using the same sequence through different arrangements or different signal processing methods.
  • the setup module is also used to use the constant envelope zero autocorrelation sequence of length Y as the same sequence.
  • the symbol included in the frame is an OFDM symbol
  • the value of Y does not exceed 1/(2 ⁇ ⁇ ) of the available subcarriers or all subcarriers of one OFDM symbol, and ⁇ is an integer greater than or equal to 0; or
  • the sequence combination selected from the set of constant envelope zero autocorrelation sequences for generating the synchronization signal the sum of the sequence identifiers of at least two constant envelope zero autocorrelation sequences is ⁇ , and the sequence identification is to generate a constant packet of length ⁇ The number of primes that are used for the zero-correlation sequence.
  • the different permutations include: one arrangement in which the sequence is repeated in the time domain; the other arrangement is that the sequence is repeated in the time domain by a conjugate symmetry, and ⁇ is an integer greater than one.
  • the setting module is further configured to generate a secondary synchronization signal of the synchronization signal S1 and the synchronization signal S2 by using a Golay sequence of length G when the synchronization signal S1 and the synchronization signal S2 are both primary and secondary synchronization signal structures; the synchronization signal S1 and the synchronization signal The secondary synchronization signal of S2 is the same; or, when the synchronization signal S2 is used as the primary and secondary synchronization signal structures, the secondary synchronization signal of the synchronization signal S2 is generated by using the Golay sequence of length G;
  • the value of G does not exceed 1/(2 ⁇ ⁇ ) of the available subcarriers or all subcarriers of one OFDM symbol, and ⁇ is an integer greater than or equal to 0.
  • the setting module is further configured to use the Golay sequence set to include the number of sequences greater than or equal to the number of sequences included in the constant envelope zero autocorrelation sequence set.
  • Another embodiment of the present invention provides a method for transmitting a synchronization signal. As shown in FIG. 5, the method includes:
  • Step 501 The first communication node sends a synchronization signal S1 in the Xth frame, and the synchronization signal S1 is a primary and secondary synchronization signal structure.
  • Step 502 The second communication node receives the synchronization signal Sl through the Xth frame.
  • the second communication node After receiving the primary synchronization signal from the Xth frame, acquires synchronization information by using the primary synchronization signal; the synchronization information includes: timing estimation and/or frequency offset estimation; and the second communication node estimates according to the timing and/or Or the frequency offset estimation receives a subsequent secondary synchronization signal, or a subsequent primary synchronization signal and a secondary synchronization signal from the Xth frame.
  • the Xth frame includes N symbols; N is a positive integer; the synchronization signal S1 occupies M1 symbols of the N symbols of the Xth frame; N>M1 ⁇ 1.
  • the M1 symbols occupied by the synchronization signal S1 are located at the beginning of the Xth frame.
  • the number of symbols occupied by the primary synchronization signal of the synchronization signal S1 is greater than or equal to the number of symbols occupied by the secondary synchronization signal.
  • the main sync signal occupies two or more symbols and is generated in two or more symbol modes.
  • the Xth frame includes N symbols, and preferably, the symbol is an OFDM symbol.
  • the first communication node transmits the synchronization signal S1 using M symbols out of the N symbols in the Xth frame.
  • the synchronization signal S1 is a primary and secondary synchronization signal structure. As shown in FIG. 6, M is equal to 3 in the Xth frame.
  • the primary synchronization signal occupies 2 symbols, the secondary synchronization signal occupies 1 symbol, and the synchronization signal is located at the frame header of the corresponding frame: the primary synchronization signal occupies the first two symbols (symbol 1 and symbol 2), and the secondary synchronization signal occupies the third symbol. Symbols.
  • the main sync signals 1 and 2 are generated by the same sequence (Sequence) through different arrangements.
  • the selected sequence is the same as that described in the first embodiment, and is not mentioned here.
  • the arrangement can be [1+i 1-i 2+i 2-i 1+i 1-i 2+ i 2-i] , that is, the [sequence sequence] mode, which is equivalent to repeating the sequence once in the time domain, or repeating it multiple times, or [1+i 1-i 2+i 2-i 2+i 2 -i 1+i 1-i] , which is the [conjugate sequence of sequence sequence] mode.
  • any of the arrangement modes can be used as the main synchronizing signal 1 or 2 of the synchronizing signal S1, but it is necessary to ensure that the main synchronizing signal 1 is different from the main synchronizing signal 2.
  • the secondary synchronization signals of the synchronization signals S1 and S2 are generated by a Golay sequence of length G, and the value of G does not exceed 1/(2 ⁇ ⁇ ) of the available subcarriers or all subcarriers of one OFDM symbol, ⁇ Is an integer greater than or equal to 0.
  • the number of sequences included in the Golay sequence set used when generating the secondary synchronization signal is greater than or equal to the number of sequences included in the constant envelope zero autocorrelation sequence set used when generating the primary synchronization signal, for example, Golay which can be used for the secondary synchronization signal.
  • Golay which can be used for the secondary synchronization signal
  • the second communication node receives the synchronization signal S1 in the Xth frame, and acquires the synchronization information.
  • the second communication node acquires the synchronization information by using the first primary synchronization signal;
  • the synchronization information includes: a timing estimation and/or a frequency offset estimation; the second communication node receives the subsequent primary synchronization signal and the secondary synchronization signal from the Xth frame according to the timing estimation and/or the frequency offset estimation.
  • the Xth frame includes a symbol, and preferably, the symbol is an OFDM symbol.
  • the first communication node transmits the synchronization signal S1 using M symbols out of the N symbols in the Xth frame.
  • the synchronization signal S1 is a primary and secondary synchronization signal structure.
  • M is equal to 3 in the Xth frame.
  • the primary synchronization signal occupies 2 symbols
  • the secondary synchronization signal occupies 1 symbol
  • the synchronization signal is located at the frame header of the corresponding frame: the primary synchronization signal occupies the first two symbols (symbol 1 and symbol 2)
  • the secondary synchronization signal occupies the third symbol. Symbols.
  • the main sync signals 1 and 2 are generated by the same sequence (Sequence) through different arrangements.
  • the sequence selected is the same as that described in the first embodiment, and details are not described herein again.
  • the arrangement can be [1+i 1-i 2+i 2-i 2+i 2-i 1 +i 1-i] , that is, the conjugated symmetric sequence of the sequence sequence, or the conjugated symmetric sequence of the sequence sequence
  • the conjugate of the sequence is in a sequence] mode.
  • any one of the arrangement modes can be used as the main synchronizing signal 1 or 2 of the synchronizing signal S1, but it is necessary to ensure that the main synchronizing signal 1 is different from the main synchronizing signal 2.
  • the secondary synchronization signals of the synchronization signals S1 and S2 are generated by a Golay sequence of length G, and the value of G does not exceed 1/(2 ⁇ ⁇ ) of the available subcarriers or all subcarriers of one OFDM symbol, ⁇ Is an integer greater than or equal to 0.
  • the number of sequences included in the Golay sequence set used when generating the secondary synchronization signal is greater than or equal to the number of sequences included in the constant envelope zero autocorrelation sequence set used when generating the primary synchronization signal, for example, Golay which can be used for the secondary synchronization signal.
  • Golay which can be used for the secondary synchronization signal
  • the Xth frame includes N symbols, and preferably, the symbol is an OFDM symbol.
  • the first communication node transmits the synchronization signal S1 using M symbols out of the N symbols in the Xth frame.
  • the synchronization signal S1 is a primary and secondary synchronization signal structure. As shown in FIG. 6, M is equal to 3 in the Xth frame.
  • the primary synchronization signal occupies 2 symbols, the secondary synchronization signal occupies 1 symbol, and the synchronization signal is located at the frame header of the corresponding frame: the primary synchronization signal occupies the first two symbols (symbol 1 and symbol 2), and the secondary synchronization signal occupies the third symbol. Symbols.
  • the primary sync signals 1 and 2 are generated by the same sequence (Sequence) through different signal processing methods.
  • sequence selected is the same as that described in the first embodiment, and details are not described herein again.
  • Two cycles, preferably, one of the two periodic signals can be conjugate symmetrically operated.
  • the secondary synchronization signals of the synchronization signals S1 and S2 are generated by a Golay sequence of length G, and the value of G does not exceed 1/(2 ⁇ ⁇ ) of the available subcarriers or all subcarriers of one OFDM symbol, ⁇ Is an integer greater than or equal to 0.
  • the number of sequences included in the Golay sequence set used when generating the secondary synchronization signal is greater than or equal to the number of sequences included in the constant envelope zero autocorrelation sequence set used when generating the primary synchronization signal, for example, Golay which can be used for the secondary synchronization signal.
  • Golay which can be used for the secondary synchronization signal
  • an embodiment of the present invention provides a sending apparatus, including a setting module and a sending module, where:
  • a setting module configured to set a synchronization signal S1, so that the synchronization signal S1 has a primary and secondary synchronization signal structure
  • a sending module configured to send the synchronization signal Sl in the Xth frame.
  • the apparatus further includes a receiving module, configured to: after receiving a primary synchronization signal of the synchronization signal S1 from the Xth frame, acquire synchronization information by using a primary synchronization signal; the synchronization information includes: timing estimation and/or frequency offset estimation; And/or frequency offset estimation receives a subsequent secondary synchronization signal, or a subsequent primary synchronization signal and a secondary synchronization signal from the Xth frame.
  • a receiving module configured to: after receiving a primary synchronization signal of the synchronization signal S1 from the Xth frame, acquire synchronization information by using a primary synchronization signal; the synchronization information includes: timing estimation and/or frequency offset estimation; And/or frequency offset estimation receives a subsequent secondary synchronization signal, or a subsequent primary synchronization signal and a secondary synchronization signal from the Xth frame.
  • the Xth frame includes N symbols; N is a positive integer;
  • the synchronization signal S1 occupies M1 symbols out of the N symbols of the Xth frame; N>M1 ⁇ 1.
  • the setting module is also used to set the synchronization signal S1 to occupy the M1 symbols at the beginning of the Xth frame.
  • the setting module is further configured to set the number of symbols occupied by the main synchronization signal of the synchronization signal S1 to be greater than or Equal to the number of symbols occupied by the secondary sync signal.
  • the setting module is further configured to generate the main sent on two or more symbols by using the same sequence through different arrangements or different signal processing methods when the number of symbols occupied by the primary synchronization signal is two or more. Synchronization signal.
  • the content of the secondary synchronization signal depends on the primary synchronization signal, which means that different sequences sent by the primary synchronization signal may cause the secondary synchronization signal. Use different sequences to correspond to them.
  • the main synchronization signal occupies a symbol closer to the start position of the frame than the symbol occupied by the secondary synchronization signal.

Abstract

本发明公开了一种同步信号的发送方法,包括:第一通信节点在第X帧发送同步信号S1,在第(X+K)帧发送同步信号S2,同步信号S1和S2是不同的,K≥1;或者,第一通信节点在第X帧发送同步信号S1,S1为主、辅同步信号结构;本发明还公开了一种同步信号的发送装置。通过本发明,可以解决现有无线通信中同步信道标准导致的终端实现成本高的问题。

Description

一种同步信号的发送方法和装置 技术领域 本发明涉及通信领域, 特别是指一种同步信号的发送方法和装置。 背景技术
随着移动互联网的发展和智能手机的普及, 移动数据流量需求飞速增 长, 快速增长的数据业务对移动通信网络的传输能力提出了严峻挑战。 根 据权威机构预测, 未来十年内 (2011-2020年), 移动数据业务量还将每年 翻一番, 十年将增长一千倍。
大部分的移动数据业务主要发生在室内和热点环境, 体现为游牧 /本地 无线接入场景。 据统计, 目前移动数据业务量的近 70%发生在室内, 而且 这一比例还将继续增长, 预计到 2012年将会超过 80%。 数据业务主要为互 联网业务, 对服务质量的要求比较单一, 且远低于传统电信业务对服务质 量的要求。
蜂窝移动通信系统主要面向的是高速移动, 无缝切换的传统电信业务 设计, 当其承载大流量低速 IP (互联网协议)数据包业务时, 效率偏低, 成本过高。 以采用 OFDM ( Orthogonal Frequency Division Multiplexing , 正 交频分复用 )技术的 LTE ( Long Term Evolution, 长期演进)标准为例, 其 在帧结构、 资源分配、 控制信道、 导频、 网络架构等方面均是为满足高速 移动、 无缝切换的传统电信需求设计的, 导致系统控制开销接近 30%, 而 且增加了产品的实现复杂度和成本, 例如, 由于 LTE同步信道自身设计的 问题, 对频偏容忍的能力非常差, 要求晶体振荡器产生的频率误差不超过 正、 负一个子载波间隔( 15kHz ), 这导致 LTE终端必须采用昂贵的高精度 的晶体振荡器。 基于上述分析, 蜂窝移动通信领域需要有自己的低成本、 适合游牧或 本地无线数据接入的解决方案。 发明内容
有鉴于此, 本发明实施例的主要目的在于提供一种同步信号的发送方 法和装置, 以解决现有无线通信中同步信道标准导致的终端实现成本高的 问题。
为达到上述目的, 本发明的技术方案是这样实现的:
本发明实施例提供了一种同步信号的发送方法, 该方法包括: 第一通信节点在第 X帧发送同步信号 S1 , 在第 (X+K )帧发送同步信 号 S2, 所述同步信号 S1和 S2是不同的, 所述 K≥l。
该方法还包括:
第二通信节点从所述第 X帧接收同步信号 S1后, 通过同步信号 S1获 取同步信息; 所述同步信息包括: 定时估计和 /或频偏估计;
第二通信节点根据所述定时估计和 /或频偏估计从所述第 (Χ+Κ ) 帧接 收同步信号 S2。
所述第 X帧和第 (X+K ) 帧分别包括 N个符号; N为正整数; 所述同步信号 S1占用第 X帧的 N个符号中的 Ml个符号;所述同步信 号 S2占用第 (X+K ) 帧的 N个符号中的 M2个符号;
所述 Ml与 M2相等或不相等; 所述 N〉M1≥1、 N〉M2≥1。
所述同步信号 S1占用的 Ml个符号位于第 X帧的起始位置;所述同步 信号 S2占用的 M2个符号位于第 (X+K ) 帧的起始位置。
同步信号 S1和同步信号 S2由相同的序列经过不同的排列或由不同信 号处理方式生成。
所述同步信号 S1和同步信号 S2均为主、 辅同步信号结构时, 所述同 步信号 S1和 S2的主同步信号由相同的序列经过不同的排列或不同信号处 理方式生成; 或者,
所述同步信号 S2为主、 辅同步信号结构时, 所述同步信号 S2的主同 步信号和同步信号 S1由相同的序列经过不同的排列或不同信号处理方式生 成。
所述相同的序列为长度为 Y的恒定包络零自相关序列。
所述帧包括的符号为 OFDM符号时,所述 Y的取值不超过一个 OFDM 符号的可用子载波或所有子载波的 1/(2Λη), 所述 η为大于等于 0的整数。
从所述恒定包络零自相关序列集合中选择用来生成同步信号的序列组 合中, 至少有两条恒定包络零自相关序列的序列标识之和为 Υ, 所述序列 标识为生成所述长度为 Υ的恒定包络零自相关序列时采用的与 Υ互质的数
Ζ。
所述不同的排列包括: 一种排列为所述序列在时域上重复 Ρ次构成; 另一种排列为所述序列在时域上通过共轭对称的方式重复 Ρ次构成,所述 Ρ 为大于 1的整数。
所述同步信号 S1和同步信号 S2均为主、 辅同步信号结构时, 所述同 步信号 S1和同步信号 S2的辅同步信号相同, 由长度为 G的 Golay序列生 成 ^ 或者 ,
所述同步信号 S2为主、 辅同步信号结构时, 所述同步信号 S2的辅同 步信号由长度为 G的 Golay序列生成。
所述帧包括的符号为 OFDM符号时, 所述 G的取值不超过一个所述 OFDM符号的可用子载波或所有子载波的 1/(2Λη), 所述 η为大于等于 0的 整数。
Golay序列集合包括的序列个数大于等于恒定包络零自相关序列集合 包括的序列个数。
本发明实施例还提供了一种同步信号的发送装置, 包括: 设置模块和 发送模块, 其中:
所述设置模块, 设置为设置同步信号 S1和 S2, 使两者不同;
所述发送模块, 设置为在第 X帧发送所述同步信号 S1 , 在第 (X+K ) 帧发送所述同步信号 S2, 所述 K≥l。
该装置还包括:
接收模块, 设置为从所述第 X帧接收同步信号 S1后, 通过同步信号 S1获取同步信息; 所述同步信息包括: 定时估计和 /或频偏估计; 再根据所 述定时估计和 /或频偏估计从所述第 (Χ+Κ ) 帧接收同步信号 S2。
所述第 X帧和第 (X+K ) 帧分别包括 N个符号; N为正整数; 所述同步信号 S1占用第 X帧的 N个符号中的 Ml个符号;所述同步信 号 S2占用第 (X+K ) 帧的 N个符号中的 M2个符号;
所述 Ml与 M2相等或不相等; 所述 N〉M1≥1、 N〉M2≥1。
所述设置模块, 还设置为设置所述同步信号 S1占用的 Ml个符号位于 第 X帧的起始位置;设置所述同步信号 S2占用的 M2个符号位于第( X+K ) 帧的起始位置。
所述设置模块, 还设置为采用相同的序列经过不同的排列或不同信号 处理方式生成所述同步信号 S1和同步信号 S2。
所述同步信号 SI和同步信号 S2均为主、 辅同步信号结构时, 所述设 置模块, 还设置为采用相同的序列经过不同的排列或不同信号处理方式生 成所述同步信号 S1和 S2的主同步信号;
所述同步信号 S2为主、 辅同步信号结构时, 所述设置模块, 还设置为 采用相同的序列经过不同的排列或不同信号处理方式生成所述同步信号 S2 的主同步信号和同步信号 S1。
所述设置模块, 还设置为采用长度为 Y的恒定包络零自相关序列作为 所述相同的序列。 所述帧包括的符号为 OFDM符号时,所述 Y的取值不超过一个 OFDM 符号的可用子载波或所有子载波的 1/(2Λη), 所述 η为大于等于 0的整数; 或者,
从所述恒定包络零自相关序列集合中选择用来生成同步信号的序列组 合中, 至少有两条恒定包络零自相关序列的序列标识之和为 Υ, 所述序列 标识为生成所述长度为 Υ的恒定包络零自相关序列时采用的与 Υ互质的数 Ζ。
所述不同的排列包括: 一种排列为所述序列在时域上重复 Ρ次构成; 另一种排列为所述序列在时域上通过共轭对称的方式重复 Ρ次构成,所述 Ρ 为大于 1的整数。
所述设置模块, 还设置为在所述同步信号 S1和同步信号 S2均为主、 辅同步信号结构时,采用长度为 G的 Golay序列生成同步信号 S1和同步信 号 S2的辅同步信号;同步信号 S1和同步信号 S2的辅同步信号相同;或者, 还设置为所述同步信号 S2为主、辅同步信号结构时,采用长度为 G的 Golay 序列生成同步信号 S2的辅同步信号;
所述帧包括的符号为 OFDM符号时, 所述 G的取值不超过一个所述 OFDM符号的可用子载波或所有子载波的 1/(2Λη), 所述 η为大于等于 0的 整数。
所述设置模块, 还设置为采用的 Golay序列集合包括的序列个数大于 等于恒定包络零自相关序列集合包括的序列个数。
本发明实施例还提供了一种同步信号的发送方法, 包括:
第一通信节点在第 X帧发送同步信号 S1 , 所述同步信号 S1为主、 辅 同步信号结构。
该方法还包括:
第二通信节点从所述第 X帧接收到所述同步信号 S1的一个主同步信号 后, 通过所述主同步信号获取同步信息; 所述同步信息包括: 定时估计和 / 或频偏估计;
第二通信节点根据定时估计和 /或频偏估计从所述第 X帧接收所述同步 信号 S1的辅同步信号、 或者后续的主同步信号和辅同步信号。
所述第 X帧包括 N个符号; N为正整数;
所述同步信号 S1 占用第 X 帧的 N 个符号中的 Ml 个符号; 所述 N〉M1≥1。
所述同步信号 S1的主同步信号占用的符号数大于或等于所述辅同步信 号占用的符号数。
所述主同步信号占用的符号数为两个或两个以上, 在所述两个或两个 以上符号上发送的主同步信号由相同的序列经过不同的排列或经过不同的 信号处理方式生成。
本发明实施例还提供了一种同步信号的发送装置, 该装置包括: 设置 模块和发送模块, 其中:
所述设置模块, 设置为设置同步信号 S1 , 使所述同步信号 S1具有主、 辅同步信号结构;
所述发送模块, 设置为在在第 X帧发送所述同步信号 Sl。
该装置还包括接收模块,设置为从所述第 X帧接收到同步信号 S1的一 个主同步信号后, 通过所述主同步信号获取同步信息; 所述同步信息包括: 定时估计和 /或频偏估计;再根据所述定时估计和 /或频偏估计从所述第 X帧 接收后续的辅同步信号、 或者后续的主同步信号和辅同步信号。
所述第 X帧包括 N个符号; N为正整数;
所述同步信号 S1 占用第 X 帧的 N 个符号中的 Ml 个符号; 所述 N〉M1≥1。
所述设置模块, 还设置为设置所述同步信号 S1占用的 Ml个符号位于 第 X帧的起始位置。
所述设置模块, 还设置为设置同步信号 S1的主同步信号占用的符号数 大于或等于所述辅同步信号占用的符号数。
所述设置模块, 还设置为在所述主同步信号占用的符号数为两个或两 个以上时, 采用相同的序列经过不同的排列或经过不同的信号处理方式生 本发明实施例提供的同步信号的发送方法, 通过对同步信号结构和发 送序列的设置、例如第一通信节点在第 X帧发送同步信号 S1 ,在第(X+K ) 帧发送同步信号 S2, 同步信号 S1和 S2是不同的; 同步信号 S1和同步信 号 S2由相同的序列经过不同的排列或由不同信号处理方式生成等手段, 优 化了现有同步信道设计, 降低了对晶体振荡器的精度要求, 从而可以有效 减小终端的功耗及实现复杂度, 更好地满足了高速发展的数据用户和无线 通信产业未来发展的需要。 附图说明
图 1为本发明实施例一种同步信号的发送流程示意图;
图 2为本发明实施例发送同步信号的帧结构示意图一;
图 3为本发明实施例发送同步信号的帧结构示意图二;
图 4为本发明实施例发送同步信号的帧结构示意图三;
图 5为本发明实施例另一种同步信号的发送流程示意图;
图 6为本发明实施例发送同步信号的帧结构示意图四。 具体实施方式
本发明实施例提供的一种同步信号的发送方法如图 1包括:
步驟 101 , 第一通信节点在第 X帧发送同步信号 S1 , 在第 (X+K ) 帧 发送同步信号 S2, 同步信号 S1和 S2是不同的, K≥l。 步驟 102, 第二通信节点分别在第 X帧和第 (X+K帧 )接收同步信号 S1和 S2。
优选地: 第二通信节点从第 X帧接收同步信号 S1后, 通过同步信号 S1获取同步信息; 同步信息包括: 定时估计和 /或频偏估计; 第二通信节点 根据定时估计和 /或频偏估计从第 (X+K ) 帧接收同步信号 S2。
其中, 第 X帧和第 (X+K ) 帧分别包括 N个符号; N为正整数; 同步 信号 S1占用第 X帧的 N个符号中的 Ml个符号;同步信号 S2占用第( X+K ) 帧的 N个符号中的 M2个符号; Ml与 M2相等或不相等; N>M1>1、 N>M2>1。
同步信号 S1 占用的 Ml个符号位于第 X帧的起始位置; 同步信号 S2 占用的 M2个符号位于第 (X+K ) 帧的起始位置。
同步信号 S1和同步信号 S2由相同的序列经过不同的排列或由不同信 号处理方式生成。
同步信号 S1和同步信号 S2均为主、 辅同步信号结构时, 同步信号 S1 和 S2 的主同步信号由相同的序列经过不同的排列或不同信号处理方式生 成 ^ 或者 ,
同步信号 S2为主、 辅同步信号结构时, 同步信号 S2的主同步信号和 同步信号 S1由相同的序列经过不同的排列或不同信号处理方式生成。
上述相同的序列为长度为 Y的恒定包络零自相关序列。
优选地,当帧包括的符号为 OFDM符号时, Y的取值不超过一个 OFDM 符号的可用子载波或所有子载波的 1/(2Λη), η为大于等于 0的整数; 或者, 从恒定包络零自相关序列集合中选择用来生成同步信号的序列组合 中, 至少有两条恒定包络零自相关序列的序列标识之和为 Υ, 序列标识为 生成长度为 Υ的恒定包络零自相关序列时采用的与 Υ互质的数 。
优选地, 上述不同的排列包括: 一种排列为序列在时域上重复 Ρ次构 成; 另一种排列为序列在时域上通过共轭对称的方式重复 Ρ次构成, Ρ为大 于 1的整数。
同步信号 SI和同步信号 S2均为主、 辅同步信号结构时, 同步信号 S1 和同步信号 S2的辅同步信号相同, 由长度为 G的 Golay序列生成; 或者, 同步信号 S2为主、 辅同步信号结构时, 同步信号 S2的辅同步信号由 长度为 G的 Golay序列生成。
优选地, 帧包括的符号为 OFDM符号时, G的取值不超过一个 OFDM 符号的可用子载波或所有子载波的 1/(2Λη), η为大于等于 0的整数。
Golay序列集合包括的序列个数大于等于恒定包络零自相关序列集合 包括的序列个数。
下面结合实施例一至九说明第一通信节点在第 X帧发送同步信号 S1 , 在第 (X+K ) 帧发送同步信号 S2的实施过程。
实施例一
通信系统中, 第 X帧、 第 (X+K ) 帧分别包括 N个符号, K≥l , 优选 地, 符号是 OFDM符号。
第一通信节点在第 X帧、 第 (X+K )帧中分别使用 N个符号中的 Ml、
M2个符号发送同步信号 SI、 S2, 其中, 同步信号 S1和同步信号 S2是不 同的, 优选地, 例如图 2所示, M1=M2等于 1 , 同步信号位于对应帧的帧 头: 同步信号 S1位于第 X帧的符号 1上、 同步信号 S2位于第 (X+K ) 帧 的符号 1上。
同步信号 S1和同步信号 S2可以由相同的序列(sequence )经过不同的 排列生成。
优选地, 该 sequence为长度为 Y的恒定包络零自相关序列, 也可以是 其他二值序列, 其中, Y的取值不超过一个 OFDM符号的可用子载波或所 有子载波的 1/(2Λη), η为大于等于 0的整数, 例如 η=2。 优选地, 从恒定包 络零自相关序列集合中选择用来生成同步信号的序列组合中, 至少有两条 恒定包络零自相关序列的序列标识之和为 Y, 其中, 序列标识为生成长度 为 Y的恒定包络零自相关序列时采用的与 Y互质的数 。
关于不同的排列方式,以 sequence=[l+i 1-i 2+i 2-i]为例,排列可以为 [1+i 1-i 2+i 2-i 1+i 1-i 2+i 2-i] , 即 [sequence sequence]模式, 相当于序列在时域上 重复发送了一次, 也可以重复多次; 或者是 [1+i 1-i 2+i 2-i 2+i 2-i 1+i 1-i] , 即 [sequence sequence的共轭对称序列]模式。 任意一种排列模式都可以作为 同步信号 S1或 S2, 但要保证同步信号 S1和 S2的主同步信号不同。
第二通信节点分别在第 X帧和第 (X+K帧)接收同步信号 S1和同步 信号 S2, 获取同步信息, 优选地, 第二通信节点从第 X帧接收同步信号 S1 后, 通过同步信号 S1获取同步信息; 同步信息包括: 定时估计和 /或频偏估 计; 第二通信节点根据定时估计和 /或频偏估计从第 (X+K ) 帧接收同步信 号 S2。
实施例二
通信系统中, 第 X帧、 第 (X+K ) 帧分别包括 N个符号, K≥l , 优选 地, 符号是 OFDM符号。
第一通信节点在第 X帧、 第 (X+K )帧中分别使用 N个符号中的 Ml、 M2个符号发送同步信号 SI、 S2, 其中, 同步信号 S1和同步信号 S2是不 同的, 优选地, 例如图 2所示, M1=M2等于 1 , 同步信号位于对应帧的帧 头: 同步信号 S1位于第 X帧的符号 1上、 同步信号 S2位于第 (X+K ) 帧 的符号 1上。
同步信号 S1和同步信号 S2可以由相同的序列 ( sequence )经过不同的 排列生成。 其中, 选取的 sequence与实施例一中所述相同, 此处不再赘述。
关于不同的排列方式,以 sequence=[l+i 1-i 2+i 2-i]为例,排列可以是 [1+i 1-i 2+i 2-i 2+i 2-i 1+i 1-i] , 即 [sequence sequence的共轭对称序列]模式,也可 以是 [sequence sequence 的共辄 于 序歹1 J sequence 的共辄 于 序歹1 J sequence共轭对称序列 ]模式, 相当于序列的共轭对称序列在时域上重复发 送了多次。任意一种排列模式都可以作为同步信号 S1或 S2,但要保证同步 信号 S1和 S2的主同步信号不同。
第二通信节点分别在第 X帧和第 (X+K帧)接收同步信号 S1和同步 信号 S2的过程与实施例一相同, 此处不再赘述。
实施例三
通信系统中, 第 X帧、 第 (X+K ) 帧分别包括 N个符号, K≥l , 优选 地, 符号是 OFDM符号。
第一通信节点在第 X帧、 第 (X+K )帧中分别使用 N个符号中的 Ml、 M2个符号发送同步信号 SI、 S2, 其中, 同步信号 S1和同步信号 S2是不 同的, 优选地, 例如图 2所示, M1=M2等于 1 , 同步信号位于对应帧的帧 头: 同步信号 S1位于第 X帧的符号 1上、 同步信号 S2位于第 (X+K ) 帧 的符号 1上。
同步信号 S1和同步信号 S2可以由相同的序列 (Sequence )经过不同 的信号处理方式生成。 其中, 选取的 sequence与实施例一中所述相同, 此 处不再赘述。
关于不同的信号处理方式, 即如何生成时域序列的方式, 可以通过多 种手段获得, 例如, 从频域变换到时域是一种方式, 或者直接在时域进行 处理也是一种方式。
下面以从频域变换到时域的信号处理方式为例进行说明。
以 sequence: [1+i 1-i 2+i 2-i]为例 , sequence: [1+i 1-i 2+i 2-i]映射到一个 OFDM符号的全部或部分可用子载波上、 并进行 IFFT变换, 获得的时域信 号, 例如每隔一个子载波进行映射, 通过 IFFT变换后就会在 OFDM符号 内形成相同波形的两个周期, 优选地, 可以对这两个周期信号中的一个进 行共轭对称操作, 即两个周期信号的一个可以作为同步信号 S1 , 另一个进 行共轭对称操作后可以作为同步信号 S2。
第二通信节点分别在第 X帧和第 (X+K帧)接收同步信号 S1和同步 信号 S2的过程与实施例一相同, 此处不再赘述。
实施例四
通信系统中, 第 X帧、 第 (X+K ) 帧分别包括 N个符号, K≥l , 优选 地, 符号是 OFDM符号。
第一通信节点在第 X帧、 第 (X+K )帧中分别使用 N个符号中的 Ml、 M2个符号发送同步信号 SI、 S2, 其中, 同步信号 S1和同步信号 S2是不 同的, 优选地, 例如图 3所示, M1=M2等于 2, 同步信号位于对应帧的帧 头:同步信号 S1位于第 X帧的符号 1和符号 2上、同步信号 S2位于第( X+K ) 帧的符号 1和符号 2上。
优选地, 同步信号 S1和 S2均采用主、 辅同步信号结构, 其中, 同步 信号 S1和 S2的主同步信号不同; 同步信号 S1和同步信号 S2的辅同步信 号相同。
其中, 同步信号 S1和 S2的主同步信号是由相同的序列 (Sequence ) 经过不同的排列生成的。 其中, 选取的 sequence与实施例一中所述相同, 此处不再赘述。
关于不同的排列方式,以 sequence=[l+i 1-i 2+i 2-i]为例,排列可以是 [1+i 1-i 2+i 2-i 1+i 1-i 2+i 2-i], 即 [sequence sequence]排列模式, 相当于序列在时 域上重复发送了一次, 也可以重复多次, 或者是 [1+i 1-i 2+i 2-i 2+i 2-i 1+i 1-i] , 即 [sequence sequence的共轭对称序列]排列模式, 其中, 任意一种排 列模式都可以作为同步信号 S1或 S2的主同步信号, 但要保证同步信号 S1 和 S2的主同步信号不同。
优选地, 同步信号 S1和 S2的辅同步信号是由长度为 G的 Golay序列 生成的, G 的取值不超过一个 OFDM符号的可用子载波或所有子载波的 1/(2Λη), n为大于等于 0的整数。
生成辅同步信号时使用 Golay序列集合中包括的序列个数大于或等于 生成主同步信号时使用的恒定包络零自相关序列集合包括的序列个数, 例 如, 可以用于辅同步信号的 Golay序列有 264 个, 可用于主同步信号的 Sequence序列有 3个或 4个。 从上述两种序列集合中选取序列时, 可以选 择具有低峰均比、 良好的自相关或互相关特性等的序列。
第二通信节点分别在第 X帧和第 (X+K帧)接收同步信号 S1和同步 信号 S2的过程与实施例一相同, 此处不再赘述。
实施例五
通信系统中, 第 X帧、 第 (X+K ) 帧分别包括 N个符号, 优选地, 符 号是 OFDM符号。
第一通信节点在第 X帧、 第 (X+K )帧中分别使用 N个符号中的 Ml、
M2个符号发送同步信号 SI、 S2, 其中, 同步信号 S1和同步信号 S2是不 同的, 优选地, 例如图 3所示, M1=M2等于 2, 同步信号位于对应帧的帧 头:同步信号 S1位于第 X帧的符号 1和符号 2上、同步信号 S2位于第( X+K ) 帧的符号 1和符号 2上。
优选地, 同步信号 S1和 S2均采用主、 辅同步信号结构, 其中, 同步 信号 S1和 S2的主同步信号不同; 同步信号 S1和同步信号 S2的辅同步信 号相同。
其中, 同步信号 S1和 S2的主同步信号是由相同的序列 (Sequence ) 经过不同的排列生成的。 其中, 选取的 sequence与实施例一中所述相同, 此处不再赘述。
关于不同的排列方式,以 sequence=[l+i 1-i 2+i 2-i]为例,排列可以是 [1+i 1-i 2+i 2-i 2+i 2-i 1+i 1-i] , 即 [sequence sequence的共轭对称序列]模式,也可 以是 [sequence sequence 的共辄 于 序歹1 J sequence 的共辄 于 序歹1 J sequence的共轭堆成序列 ]模式, 相当于序列的共轭对称序列在时域上重复 发送多次。 其中, 任意一种排列模式都可以作为同步信号 S1或 S2的主同 步信号, 但要保证同步信号 S1和 S2的主同步信号不同。
优选地, 同步信号 S1和 S2的辅同步信号是由长度为 G的 Golay序列 生成的, G 的取值不超过一个 OFDM符号的可用子载波或所有子载波的 1/(2Λη), η为大于等于 0的整数。
生成辅同步信号时使用 Golay序列集合中包括的序列个数大于或等于 生成主同步信号时使用的恒定包络零自相关序列集合包括的序列个数, 例 如, 可以用于辅同步信号的 Golay序列有 264 个, 可用于主同步信号的 Sequence序列有 3个或 4个。 从上述两种序列集合中选取序列时, 可以选 择具有低峰均比、 良好的自相关或互相关特性等的序列。
第二通信节点分别在第 X帧和第 (X+K帧)接收同步信号 S1和同步 信号 S2的过程与实施例一相同, 此处不再赘述。
实施例六
通信系统中, 第 X帧、 第 (X+K ) 帧分别包括 N个符号, 优选地, 符 号是 OFDM符号。
第一通信节点在第 X帧、 第 (X+K )帧中分别使用 N个符号中的 Ml、 M2个符号发送同步信号 SI、 S2, 其中, 同步信号 S1和同步信号 S2是不 同的, 优选地, 例如图 3所示, M1=M2等于 2, 同步信号位于对应帧的帧 头:同步信号 S1位于第 X帧的符号 1和符号 2上、同步信号 S2位于第( X+K ) 帧的符号 1和符号 2上。
优选地, 同步信号 S1和 S2均采用主、 辅同步信号结构, 其中, 同步 信号 S1和 S2的主同步信号不同; 同步信号 S1和同步信号 S2的辅同步信 号相同。
其中, 同步信号 S1和 S2的主同步信号是由相同的序列 (Sequence ) 经过不同的信号处理方式生成的。 其中, 选取的 sequence与实施例一中所 述相同, 此处不再赘述。
关于不同的信号处理方式, 以 sequence=[l+i l-i 2+i 2-i]为例,信号处理 方式可以是: sequence=[l+i 1-i 2+i 2-i]映射到一个 OFDM符号的全部或部 分可用子载波上进行 IFFT变换, 获得时域信号, 例如每隔一个子载波进行 映射, 通过 IFFT变换后就会在 OFDM符号内形成相同波形的两个周期, 优选地, 可以对这两个周期信号中的一个进行共轭对称操作。
优选地, 同步信号 S1和 S2的辅同步信号是由长度为 G的 Golay序列 生成的, G 的取值不超过一个 OFDM符号的可用子载波或所有子载波的 1/(2Λη), η为大于等于 0的整数。
生成辅同步信号时使用 Golay序列集合中包括的序列个数大于或等于 生成主同步信号时使用的恒定包络零自相关序列集合包括的序列个数, 例 如, 可以用于辅同步信号的 Golay序列有 264 个, 可用于主同步信号的 Sequence序列有 3个或 4个。 从上述两种序列集合中选取序列时, 可以选 择具有低峰均比、 良好的自相关或互相关特性等的序列。
第二通信节点分别在第 X帧和第 (X+K帧)接收同步信号 S1和同步 信号 S2的过程与实施例一相同, 此处不再赘述。
实施例七
通信系统中, 第 X帧、 第 (X+K ) 帧分别包括 N个符号, 优选地, 符 号是 OFDM符号。
第一通信节点在第 X帧、 第 (X+K )帧中分别使用 N个符号中的 Ml、 M2个符号发送同步信号 SI、 S2, 其中, 同步信号 S1和同步信号 S2是不 同的, 优选地, 例如图 4所示, Ml等于 1 , M2等于 2, (也可以是 Ml等 于 2, M2等于 1 ) 同步信号位于对应帧的帧头: 同步信号 S1位于第 X帧 的符号 1上、 同步信号 S2位于第 (X+K ) 帧的符号 1和符号 2上。 其中, 同步信号 S2采用主、 辅同步信号结构, 不同信号 S1不是主、 辅同步信号结构, 则同步信号 S2的主同步信号与同步信号 S1是由相同的 序列 (Sequence )经过不同的排列生成的。 其中, 选取的 sequence与实施 例一中所述相同, 此处不再赘述。
关于不同的排列方式,以 sequence=[l+i 1-i 2+i 2-i]为例,排列可以是 [1+i 1-i 2+i 2-i 1+i 1-i 2+i 2-i] , 即 [sequence sequence]模式, 相当于序列在时域上 重复发送了一次, 也可以重复多次, 或者是 [1+i 1-i 2+i 2-i 2+i 2-i 1+i 1-i] , 即 [sequence sequence的共轭对称序列 ]模式。 其中, 任意一种排列模式都可 以作为同步信号 S2的主同步信号以及同步信号 S1 , 但要保证同步信号 S2 的主同步信号与同步信号 S1不同。
优选地,同步信号 S2的辅同步信号是由长度为 G的 Golay序列生成的, G的取值不超过一个 OFDM符号的可用子载波或所有子载波的 1/(2Λη), η 为大于等于 0的整数。
生成辅同步信号时使用 Golay序列集合中包括的序列个数大于或等于 生成主同步信号时使用的恒定包络零自相关序列集合包括的序列个数, 例 如, 可以用于辅同步信号的 Golay序列有 264 个, 可用于主同步信号的 Sequence序列有 3个或 4个。 从上述两种序列集合中选取序列时, 可以选 择具有低峰均比、 良好的自相关或互相关特性等的序列。
第二通信节点分别在第 X帧和第 (X+K帧)接收同步信号 S1和同步 信号 S2的过程与实施例一相同, 此处不再赘述。
实施例八
通信系统中, 第 X帧、 第 (X+K ) 帧分别包括 N个符号, 优选地, 符 号是 OFDM符号。
第一通信节点在第 X帧、 第 (X+K )帧中分别使用 N个符号中的 Ml、 M2个符号发送同步信号 SI、 S2, 其中, 同步信号 S1和同步信号 S2是不 同的, 优选地, 例如图 4所示, Ml等于 1 , M2等于 2, (也可以是 Ml等 于 2, M2等于 1 ) 同步信号位于对应帧的帧头: 同步信号 S1位于第 X帧 的符号 1上、 同步信号 S2位于第 (X+K ) 帧的符号 1和符号 2上。
其中, 同步信号 S2采用主、 辅同步信号结构, 同步信号 S1不是主、 辅同步信号结构, 则同步信号 S2的主同步信号与同步信号 S1是由相同的 序列 (Sequence ) 经过不同的排列生成的。 其中, 选取的 sequence与实施 例一中所述相同, 此处不再赘述。
关于不同的排列方式, 以 sequence=[l+i l-i 2+i 2-i]为例,排列可以是是 [1+i 1-i 2+i 2-i 2+i 2-i 1+i 1-i] , 即 [sequence sequence的共辄对称序歹 'J ]模式, 也可以是 [sequence sequence 的共辄于尔序歹l sequence 的共辄于尔序歹l sequence的共轭堆成序列 ]模式, 相当于序列的共轭对称序列在时域上重复 发送多次。 其中, 任意一种排列模式都可以作为同步信号 S2的主同步信号 以及同步信号 S1 ,但要保证同步信号 S2的主同步信号与同步信号 S1不同。
优选地,同步信号 S2的辅同步信号是由长度为 G的 Golay序列生成的, G的取值不超过一个 OFDM符号的可用子载波或所有子载波的 1/(2Λη), η 为大于等于 0的整数。
生成辅同步信号时使用 Golay序列集合中包括的序列个数大于或等于 生成主同步信号时使用的恒定包络零自相关序列集合包括的序列个数, 例 如, 可以用于辅同步信号的 Golay序列有 264 个, 可用于主同步信号的 Sequence序列有 3个或 4个。 从上述两种序列集合中选取序列时, 可以选 择具有低峰均比、 良好的自相关或互相关特性等的序列。
第二通信节点分别在第 X帧和第 (X+K帧)接收同步信号 S1和同步 信号 S2的过程与实施例一相同, 此处不再赘述。
实施例九
通信系统中, 第 X帧、 第 (X+K ) 帧分别包括 N个符号, 优选地, 符 号是 OFDM符号。
第一通信节点在第 X帧、 第 (X+K )帧中分别使用 N个符号中的 Ml、 M2个符号发送同步信号 SI、 S2, 其中, 同步信号 S1和同步信号 S2是不 同的, 优选地, 例如图 4所示, Ml等于 1 , M2等于 2, (也可以是 Ml等 于 2, M2等于 1 ) 同步信号位于对应帧的帧头: 同步信号 S1位于第 X帧 的符号 1上、 同步信号 S2位于第 (X+K ) 帧的符号 1和符号 2上。
其中, 同步信号 S2采用主、 辅同步信号结构, 同步信号 S1不是主、 辅同步信号结构, 同步信号 S2的主同步信号与同步信号 S1是由相同的序 列 (Sequence ) 经过不同的信号处理方式生成的。 其中, 选取的 sequence 与实施例一中所述相同, 此处不再赘述。
关于不同的信号处理方式, 以 sequence = [1+i l-i 2+i 2-i]为例, 信号处 理方式可以是: sequence=[l+i 1-i 2+i 2-i]映射到一个 OFDM符号的全部或 部分可用子载波上、 并进行 IFFT变换, 获得时域信号, 例如每隔一个子载 波进行映射, 通过 IFFT变换后就会在 OFDM符号内形成相同波形的两个 周期, 优选地, 可以对这两个周期信号中的一个进行共轭对称操作。
优选地,同步信号 S2的辅同步信号是由长度为 G的 Golay序列生成的, G的取值不超过一个 OFDM符号的可用子载波或所有子载波的 1/(2Λη), η 为大于等于 0的整数。
生成辅同步信号时使用 Golay序列集合中包括的序列个数大于或等于 生成主同步信号时使用的恒定包络零自相关序列集合包括的序列个数, 例 如, 可以用于辅同步信号的 Golay序列有 264 个, 可用于主同步信号的 Sequence序列有 3个或 4个。 从上述两种序列集合中选取序列时, 可以选 择具有低峰均比、 良好的自相关或互相关特性等的序列。
第二通信节点分别在第 X帧和第 (X+K帧)接收同步信号 S1和同步 信号 S2的过程与实施例一相同, 此处不再赘述。 为了实现上述发送方法, 本发明实施例提供了一种同步信号的发送装 置, 包括: 设置模块和发送模块, 其中:
设置模块, 用于设置同步信号 S1和 S2, 使两者不同;
发送模块, 用于在第 X帧发送同步信号 S1 , 在第 (X+K )帧发送同步 信号 S2, K≥l。
该装置还包括:
接收模块, 用于从第 X帧接收同步信号 S1后, 通过同步信号 S1获取 同步信息; 同步信息包括: 定时估计和 /或频偏估计; 再根据定时估计和 / 或频偏估计从第 (Χ+Κ ) 帧接收同步信号 S2。
第 X帧和第 (X+K ) 帧分别包括 N个符号;
同步信号 S1占用第 X帧的 N个符号中的 Ml个符号; 同步信号 S2占 用第 (X+K ) 帧的 N个符号中的 M2个符号;
Ml与 M2相等或不相等; N〉M1≥1、 N>M2>10
设置模块,还用于设置同步信号 S1占用的 Ml个符号位于第 X帧的起 始位置; 设置同步信号 S2占用的 M2个符号位于第(X+K )帧的起始位置。 式生成同步信号 S1和同步信号 S2。
同步信号 SI和同步信号 S2均为主、 辅同步信号结构时, 设置模块,
S1和 S2的主同步信号;
同步信号 S2为主、 辅同步信号结构时, 设置模块, 还用于采用相同的 序列经过不同的排列或不同信号处理方式生成同步信号 S2的主同步信号和 同步信号 Sl。
设置模块, 还用于采用长度为 Y的恒定包络零自相关序列作为相同的 序列。 帧包括的符号为 OFDM符号时, Y的取值不超过一个 OFDM符号的可 用子载波或所有子载波的 1/(2Λη), η为大于等于 0的整数; 或者,
从恒定包络零自相关序列集合中选择用来生成同步信号的序列组合 中, 至少有两条恒定包络零自相关序列的序列标识之和为 Υ, 序列标识为 生成长度为 Υ的恒定包络零自相关序列时采用的与 Υ互质的数 。
不同的排列包括: 一种排列为序列在时域上重复 Ρ次构成; 另一种排 列为序列在时域上通过共轭对称的方式重复 Ρ次构成, Ρ为大于 1的整数。
设置模块, 还用于在同步信号 S1和同步信号 S2均为主、 辅同步信号 结构时, 采用长度为 G的 Golay序列生成同步信号 S1和同步信号 S2的辅 同步信号; 同步信号 S1和同步信号 S2的辅同步信号相同; 或者, 还用于 同步信号 S2为主、辅同步信号结构时, 采用长度为 G的 Golay序列生成同 步信号 S2的辅同步信号;
帧包括的符号为 OFDM符号时, G的取值不超过一个 OFDM符号的可 用子载波或所有子载波的 1/(2Λη), η为大于等于 0的整数。
设置模块, 还用于采用的 Golay序列集合包括的序列个数大于等于恒 定包络零自相关序列集合包括的序列个数。
本发明实施例还提供了另一种同步信号的发送方法, 如图 5 所示, 包 括:
步驟 501 ,第一通信节点在第 X帧发送同步信号 S1 ,同步信号 S1为主、 辅同步信号结构。
步驟 502, 第二通信节点通过第 X帧接收同步信号 Sl。
优选地, 第二通信节点从第 X帧接收到一个主同步信号后, 通过该主 同步信号获取同步信息; 同步信息包括: 定时估计和 /或频偏估计; 第二通 信节点根据定时估计和 /或频偏估计从第 X帧接收后续的辅同步信号、 或者 后续的主同步信号和辅同步信号。 其中, 第 X帧包括 N个符号; N为正整数; 同步信号 S1 占用第 X帧 的 N个符号中的 Ml个符号; N〉M1≥1。
较佳地, 同步信号 S1占用的 Ml个符号位于第 X帧的起始位置。
优选地, 同步信号 S1的主同步信号占用的符号数大于或等于辅同步信 号占用的符号数。
主同步信号占用的符号数为两个或两个以上, 在两个或两个以上符号 方式生成。
下面结合实施例十到十二说明第一通信节点在第 X帧发送同步信号 S1 的实时过程。
实施例十
通信系统中, 第 X帧包括 N个符号, 优选地, 符号是 OFDM符号。 第一通信节点在第 X帧使用 N个符号中 M个符号发送同步信号 S1 , 优选地, 同步信号 S1为主、 辅同步信号结构, 如图 6所示, 第 X帧中 M 等于 3 , 其中, 主同步信号占用了 2个符号, 辅同步信号占用了 1个符号, 同步信号位于对应帧的帧头:主同步信号占用前两个符号(符号 1和符号 2 ), 辅同步信号占用第 3个符号。
主同步信号 1与 2是由相同的序列(Sequence )经过不同的排列生成的。 其中 , 选取的 sequence与实施例一中所述相同 , 此处不再赞述。
关于不同的排列方式, 以 sequence = [1+i 1-i 2+i 2-i]为例, 排列可以是 [1+i 1-i 2+i 2-i 1+i 1-i 2+i 2-i] , 即 [sequence sequence]模式, 相当于序列在时 域上重复发送了一次, 也可以重复多次, 或者是 [1+i 1-i 2+i 2-i 2+i 2-i 1+i 1-i] , 即 [sequence sequence 的共轭对称序列]模式。 其中, 任意一种排列模 式都可以作为同步信号 S1的主同步信号 1或 2, 但要保证主同步信号 1与 主同步信号 2不同。 优选地, 同步信号 S1和 S2的辅同步信号是由长度为 G的 Golay序列 生成的, G 的取值不超过一个 OFDM符号的可用子载波或所有子载波的 1/(2Λη), η为大于等于 0的整数。
生成辅同步信号时使用的 Golay序列集合中包括的序列个数大于或等 于生成主同步信号时使用的恒定包络零自相关序列集合包括的序列个数, 例如, 可以用于辅同步信号的 Golay序列有 264个, 可用于主同步信号的 Sequence序列有 3个或 4个。 从上述两种序列集合中选取序列时, 可以选 择具有低峰均比、 良好的自相关或互相关特性等的序列。
第二通信节点分别在第 X帧接收同步信号 S1 ,获取同步信息,优选地, 第二通信节点从第 X帧接收到第一个主同步信号后, 通过第一个主同步信 号获取同步信息; 同步信息包括: 定时估计和 /或频偏估计; 第二通信节点 根据定时估计和 /或频偏估计从第 X 帧接收后续的主同步信号和辅同步信 实施例十一
通信系统中, 第 X帧包括 Ν个符号, 优选地, 符号是 OFDM符号。 第一通信节点在第 X帧使用 N个符号中 M个符号发送同步信号 S1 , 优选地, 同步信号 S1为主、 辅同步信号结构, 如图 6所示, 第 X帧中 M 等于 3 , 其中, 主同步信号占用了 2个符号, 辅同步信号占用了 1个符号, 同步信号位于对应帧的帧头:主同步信号占用前两个符号(符号 1和符号 2 ), 辅同步信号占用第 3个符号。
主同步信号 1与 2是由相同的序列(Sequence )经过不同的排列生成的。 其中 , 选取的 sequence与实施例一中所述相同 , 此处不再赘述。
关于不同的排列方式, 以 sequence = [1+i 1-i 2+i 2-i]为例, 排列可以是 是 [1+i 1-i 2+i 2-i 2+i 2-i 1+i 1-i] , 即 [sequence sequence的共轭对称序列]模 式, 也可以是 [sequence sequence的共辄对称序歹l sequence的共辄对称序列 sequence的共轭堆成序列]模式。 其中, 任意一种排列模式都可以作为同步 信号 S1的主同步信号 1或 2,但要保证主同步信号 1与主同步信号 2不同。
优选地, 同步信号 S1和 S2的辅同步信号是由长度为 G的 Golay序列 生成的, G 的取值不超过一个 OFDM符号的可用子载波或所有子载波的 1/(2Λη), η为大于等于 0的整数。
生成辅同步信号时使用的 Golay序列集合中包括的序列个数大于或等 于生成主同步信号时使用的恒定包络零自相关序列集合包括的序列个数, 例如, 可以用于辅同步信号的 Golay序列有 264个, 可用于主同步信号的 Sequence序列有 3个或 4个。 从上述两种序列集合中选取序列时, 可以选 择具有低峰均比、 良好的自相关或互相关特性等的序列。
第二通信节点在第 X帧接收同步信号 S1的过程与实施例十相同,此处 不再赘述。
实施例十二
通信系统中, 第 X帧包括 N个符号, 优选地, 符号是 OFDM符号。 第一通信节点在第 X帧使用 N个符号中 M个符号发送同步信号 S1 , 优选地, 同步信号 S1为主、 辅同步信号结构, 如图 6所示, 第 X帧中 M 等于 3 , 其中, 主同步信号占用了 2个符号, 辅同步信号占用了 1个符号, 同步信号位于对应帧的帧头:主同步信号占用前两个符号(符号 1和符号 2 ), 辅同步信号占用第 3个符号。
主同步信号 1与 2是由相同的序列(Sequence )经过不同的信号处理方 式生成的。 其中, 选取的 sequence与实施例一中所述相同, 此处不再赘述。
关于不同的信号处理方式, 以 sequence = [1+i l-i 2+i 2-i]为例, 信号处 理方式可以是 sequence = [1+i 1-i 2+i 2-i]通过映射到一个 OFDM符号的全部 或部分可用子载波上进行 IFFT变换获得的时域信号获得的 , 例如每隔一个 子载波进行映射, 通过 IFFT变换后就会在 OFDM符号内形成相同波形的 两个周期, 优选地, 可以对这两个周期信号中的一个进行共轭对称操作。 优选地, 同步信号 S1和 S2的辅同步信号是由长度为 G的 Golay序列 生成的, G 的取值不超过一个 OFDM符号的可用子载波或所有子载波的 1/(2Λη), η为大于等于 0的整数。
生成辅同步信号时使用的 Golay序列集合中包括的序列个数大于或等 于生成主同步信号时使用的恒定包络零自相关序列集合包括的序列个数, 例如, 可以用于辅同步信号的 Golay序列有 264个, 可用于主同步信号的 Sequence序列有 3个或 4个。 从上述两种序列集合中选取序列时, 可以选 择具有低峰均比、 良好的自相关或互相关特性等的序列。
第二通信节点在第 X帧接收同步信号 S1的过程与实施例十相同,此处 不再赘述。
为了实现图 5 所示的发送方法, 本发明实施例提供了一种发送装置, 包括设置模块和发送模块, 其中:
设置模块, 用于设置同步信号 S1 , 使同步信号 S1具有主、辅同步信号 结构;
发送模块, 用于在在第 X帧发送同步信号 Sl。
该装置还包括接收模块,用于从第 X帧接收到同步信号 S1的一个主同 步信号后, 通过主同步信号获取同步信息; 同步信息包括: 定时估计和 /或 频偏估计;再根据定时估计和 /或频偏估计从第 X帧接收后续的辅同步信号、 或者后续的主同步信号和辅同步信号。
其中, 第 X帧包括 N个符号; N为正整数;
同步信号 S1占用第 X帧的 N个符号中的 Ml个符号; N〉M1≥1。
设置模块,还用于设置同步信号 S1占用的 Ml个符号位于第 X帧的起 始位置。
设置模块,还用于设置同步信号 S1的主同步信号占用的符号数大于或 等于辅同步信号占用的符号数。
设置模块, 还用于在主同步信号占用的符号数为两个或两个以上时, 采用相同的序列经过不同的排列或经过不同的信号处理方式生成两个或两 个以上符号上发送的主同步信号。
需要指出的是, 上述实施例一到实施例十二中, 当有主、 辅同步信号 时, 辅同步信号的内容依赖于主同步信号, 是指主同步信号发送的不同序 列会导致辅同步信号采用不同的序列与之对应。 另外, 主同步信号所占用 的符号比辅同步信号占用的符号更靠近帧的起始位置。
以上所述, 仅为本发明的较佳实施例而已, 并非用于限定本发明实施 例的保护范围。

Claims

权利要求书
1、 一种同步信号的发送方法, 该方法包括:
第一通信节点在第 X帧发送同步信号 S1 , 在第 (X+K )帧发送同步 信号 S2, 所述同步信号 S1和 S2是不同的, 所述 K≥l。
2、根据权利要求 1所述同步信号的发送方法, 其中, 该方法还包括: 第二通信节点从所述第 X帧接收同步信号 S1后, 通过同步信号 S1 获取同步信息; 所述同步信息包括: 定时估计和 /或频偏估计;
第二通信节点根据所述定时估计和 /或频偏估计从所述第 (Χ+Κ ) 帧 接收同步信号 S2。
3、 根据权利要求 1或 2所述同步信号的发送方法, 其中,
所述第 X帧和第 (X+K ) 帧分别包括 N个符号; N为正整数; 所述同步信号 S1占用第 X帧的 N个符号中的 Ml个符号;所述同步 信号 S2占用第 (X+K ) 帧的 N个符号中的 M2个符号;
所述 Ml与 M2相等或不相等; 所述 N〉M1≥1、 N〉M2≥1。
4、 根据权利要求 3所述同步信号的发送方法, 其中, 所述同步信号 S1 占用的 Ml个符号位于第 X帧的起始位置; 所述同步信号 S2占用的 M2个符号位于第 (X+K ) 帧的起始位置。
5、 根据权利要求 1所述同步信号的发送方法, 其中,
同步信号 S1和同步信号 S2由相同的序列经过不同的排列或由不同 信号处理方式生成。
6、 根据权利要求 1所述同步信号的发送方法, 其中,
所述同步信号 S1和同步信号 S2均为主、 辅同步信号结构时, 所述 同步信号 S1和 S2的主同步信号由相同的序列经过不同的排列或不同信 号处理方式生成; 或者,
所述同步信号 S2为主、 辅同步信号结构时, 所述同步信号 S2的主 同步信号和同步信号 si由相同的序列经过不同的排列或不同信号处理方 式生成。
7、 根据权利要求 5或 6所述同步信号的发送方法, 其中, 所述相同 的序列为长度为 Y的恒定包络零自相关序列。
8、 根据权利要求 7所述同步信号的发送方法, 其中,
所述帧包括的符号为 OFDM 符号时, 所述 Y 的取值不超过一个 OFDM符号的可用子载波或所有子载波的 1/(2Λη), 所述 η为大于等于 0 的整数。
9、 根据权利要求 7所述同步信号的发送方法, 其中, 从所述恒定包 络零自相关序列集合中选择用来生成同步信号的序列组合中, 至少有两 条恒定包络零自相关序列的序列标识之和为 Υ, 所述序列标识为生成所 述长度为 Υ的恒定包络零自相关序列时采用的与 Υ互质的数 。
10、 根据权利要求 5或 6所述同步信号的发送方法, 其中, 所述不 同的排列包括: 一种排列为所述序列在时域上重复 Ρ次构成; 另一种排 列为所述序列在时域上通过共轭对称的方式重复 Ρ次构成, 所述 Ρ为大 于 1的整数。
11、 根据权利要求 6所述同步信号的发送方法, 其中,
所述同步信号 S1和同步信号 S2均为主、 辅同步信号结构时, 所述 同步信号 S1和同步信号 S2的辅同步信号相同, 由长度为 G的 Golay序 列生成; 或者,
所述同步信号 S2为主、 辅同步信号结构时, 所述同步信号 S2的辅 同步信号由长度为 G的 Golay序列生成。
12、 根据权利要求 11所述同步信号的发送方法, 其中, 所述帧包括 的符号为 OFDM符号时, 所述 G的取值不超过一个所述 OFDM符号的 可用子载波或所有子载波的 1/(2Λη), 所述 η为大于等于 0的整数。
13、 根据权利要求 8、 9、 11或 12所述同步信号的发送方法, 其中, Golay序列集合包括的序列个数大于等于恒定包络零自相关序列集合包 括的序列个数。
14、 一种同步信号的发送装置, 其中, 包括: 设置模块和发送模块, 其中:
所述设置模块, 设置为设置同步信号 S1和 S2, 使两者不同; 所述发送模块,设置为在第 X帧发送所述同步信号 S1 ,在第(X+K ) 帧发送所述同步信号 S2, 所述 K≥l。
15、 根据权利要求 14所述同步信号的发送系统, 其中, 该装置还包 括:
接收模块,设置为从所述第 X帧接收同步信号 S1后, 通过同步信号 S1获取同步信息; 所述同步信息包括: 定时估计和 /或频偏估计; 再根据 所述定时估计和 /或频偏估计从所述第 (Χ+Κ ) 帧接收同步信号 S2。
16、 根据权利要求 14或 15所述同步信号的发送系统, 其中, 所述 第 X帧和第 (X+K ) 帧分别包括 N个符号; N为正整数;
所述同步信号 S1占用第 X帧的 N个符号中的 Ml个符号;所述同步 信号 S2占用第 (X+K ) 帧的 N个符号中的 M2个符号;
所述 Ml与 M2相等或不相等; 所述 N〉M1≥1、 N〉M2≥1。
17、 根据权利要求 16所述同步信号的发送系统, 其中, 所述设置模 块,还设置为设置所述同步信号 S1占用的 Ml个符号位于第 X帧的起始 位置; 设置所述同步信号 S2占用的 M2个符号位于第 (X+K )帧的起始 位置。
18、 根据权利要求 14所述同步信号的发送系统, 其中,
所述设置模块, 还设置为采用相同的序列经过不同的排列或不同信 号处理方式生成所述同步信号 S1和同步信号 S2。
19、 根据权利要求 14所述同步信号的发送系统, 其中, 所述同步信号 S1和同步信号 S2均为主、 辅同步信号结构时, 所述 设置模块, 还设置为采用相同的序列经过不同的排列或不同信号处理方 式生成所述同步信号 S1和 S2的主同步信号;
所述同步信号 S2为主、 辅同步信号结构时, 所述设置模块, 还设置 为采用相同的序列经过不同的排列或不同信号处理方式生成所述同步信 号 S2的主同步信号和同步信号 Sl。
20、 根据权利要求 18或 19所述同步信号的发送系统, 其中, 所述 设置模块, 还设置为采用长度为 Y的恒定包络零自相关序列作为所述相 同的序列。
21、 根据权利要求 20所述同步信号的发送系统, 其中,
所述帧包括的符号为 OFDM 符号时, 所述 Y 的取值不超过一个 OFDM符号的可用子载波或所有子载波的 1/(2Λη), 所述 η为大于等于 0 的整数; 或者,
从所述恒定包络零自相关序列集合中选择用来生成同步信号的序列 组合中, 至少有两条恒定包络零自相关序列的序列标识之和为 Υ, 所述 序列标识为生成所述长度为 Υ的恒定包络零自相关序列时采用的与 Υ互 质的数 ζ。
22、 根据权利要求 18或 19所述同步信号的发送系统, 其中, 所述 不同的排列包括: 一种排列为所述序列在时域上重复 Ρ次构成; 另一种 排列为所述序列在时域上通过共轭对称的方式重复 Ρ次构成, 所述 Ρ为 大于 1的整数。
23、 根据权利要求 19所述同步信号的发送系统, 其中,
所述设置模块, 还设置为在所述同步信号 S1和同步信号 S2均为主、 辅同步信号结构时,采用长度为 G的 Golay序列生成同步信号 S1和同步 信号 S2的辅同步信号; 同步信号 S1和同步信号 S2的辅同步信号相同; 或者, 还设置为所述同步信号 S2为主、 辅同步信号结构时, 采用长度为 G的 Golay序列生成同步信号 S2的辅同步信号;
所述帧包括的符号为 OFDM符号时, 所述 G的取值不超过一个所述 OFDM符号的可用子载波或所有子载波的 1/(2Λη), 所述 η为大于等于 0 的整数。
24、 根据权利要求 21或 23所述同步信号的发送系统, 其中, 所述 设置模块, 还设置为采用的 Golay序列集合包括的序列个数大于等于恒 定包络零自相关序列集合包括的序列个数。
25、 一种同步信号的发送方法, 其中, 包括:
第一通信节点在第 X帧发送同步信号 S1 , 所述同步信号 S1为主、 辅同步信号结构。
26、 根据权利要求 25所述同步信号的发送方法, 其中, 该方法还包 括:
第二通信节点从所述第 X帧接收到所述同步信号 S1的一个主同步信 号后, 通过所述主同步信号获取同步信息; 所述同步信息包括: 定时估 计和 /或频偏估计;
第二通信节点根据定时估计和 /或频偏估计从所述第 X帧接收所述同 步信号 S1的辅同步信号、 或者后续的主同步信号和辅同步信号。
27、 根据权利要求 25或 26所述同步信号的发送方法, 其中, 所述第 X帧包括 N个符号; N为正整数;
所述同步信号 S1 占用第 X帧的 N个符号中的 Ml 个符号; 所述 N〉M1≥1。
28、 根据权利要求 25所述同步信号的发送方法, 其中,
所述同步信号 S1的主同步信号占用的符号数大于或等于所述辅同步 信号占用的符号数。
29、 根据权利要求 28所述同步信号的发送方法, 其中, 所述主同步 信号占用的符号数为两个或两个以上, 在所述两个或两个以上符号上发 式生成。
30、 一种同步信号的发送装置, 其中, 该装置包括: 设置模块和发 送模块, 其中:
所述设置模块,设置为设置同步信号 S1 ,使所述同步信号 S1具有主、 辅同步信号结构;
所述发送模块, 设置为在在第 X帧发送所述同步信号 Sl。
31、 根据权利要求 30所述同步信号的发送装置, 其中, 该装置还包 括接收模块,设置为从所述第 X帧接收到同步信号 S1的一个主同步信号 后, 通过所述主同步信号获取同步信息; 所述同步信息包括: 定时估计 和 /或频偏估计;再根据所述定时估计和 /或频偏估计从所述第 X帧接收后 续的辅同步信号、 或者后续的主同步信号和辅同步信号。
32、 根据权利要求 30或 31所述同步信号的发送装置, 其中, 所述第 X帧包括 N个符号; N为正整数;
所述同步信号 S1 占用第 X帧的 N个符号中的 Ml 个符号; 所述 N〉M1≥1。
33、 根据权利要求 32所述同步信号的发送装置, 其中, 所述设置模 块,还设置为设置所述同步信号 S1占用的 Ml个符号位于第 X帧的起始 位置。
34、 根据权利要求 33所述同步信号的发送装置, 其中, 所述设置模 块, 还设置为设置同步信号 S1的主同步信号占用的符号数大于或等于所 述辅同步信号占用的符号数。
35、 根据权利要求 34所述同步信号的发送装置, 其中, 所述设置模 块, 还设置为在所述主同步信号占用的符号数为两个或两个以上时, 采 用相同的序列经过不同的排列或经过不同的信号处理方式生成所述两个 或两个以上符号上发送的主同步信号。
PCT/CN2012/077918 2012-03-15 2012-06-29 一种同步信号的发送方法和装置 WO2013135024A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201210068979.7A CN103313377B (zh) 2012-03-15 2012-03-15 一种同步信号的发送方法和装置
CN201210068979.7 2012-03-15

Publications (1)

Publication Number Publication Date
WO2013135024A1 true WO2013135024A1 (zh) 2013-09-19

Family

ID=49138039

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/077918 WO2013135024A1 (zh) 2012-03-15 2012-06-29 一种同步信号的发送方法和装置

Country Status (2)

Country Link
CN (1) CN103313377B (zh)
WO (1) WO2013135024A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018058547A1 (en) * 2016-09-30 2018-04-05 Nec Corporation Methods and apparatuses for synchronous signal transmission
US11259203B2 (en) * 2018-01-07 2022-02-22 Htc Corporation Device and method of handling communication device capabilities

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101222274A (zh) * 2008-01-25 2008-07-16 中兴通讯股份有限公司 时分双工系统中同步信号的发送方法和装置
CN101573899A (zh) * 2007-01-08 2009-11-04 Lm爱立信电话有限公司 用于在蜂窝通信系统中检测小区组的辅同步序列
WO2010120097A2 (en) * 2009-04-13 2010-10-21 Samsung Electronics Co., Ltd. Apparatus and method for transmitting system information block in a broadband wireless communication system
CN101883412A (zh) * 2010-07-02 2010-11-10 北京交通大学 Lte在高速移动条件下初始小区搜索方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
UA94482C2 (ru) * 2006-10-03 2011-05-10 Квелкомм Інкорпорейтед Передача синхронизации в системе беспроводной связи
US7912149B2 (en) * 2007-05-03 2011-03-22 General Motors Llc Synchronization and segment type detection method for data transmission via an audio communication system
US8441525B2 (en) * 2010-05-11 2013-05-14 Freescale Semiconductor, Inc. Method for synchronizing remote device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101573899A (zh) * 2007-01-08 2009-11-04 Lm爱立信电话有限公司 用于在蜂窝通信系统中检测小区组的辅同步序列
CN101222274A (zh) * 2008-01-25 2008-07-16 中兴通讯股份有限公司 时分双工系统中同步信号的发送方法和装置
WO2010120097A2 (en) * 2009-04-13 2010-10-21 Samsung Electronics Co., Ltd. Apparatus and method for transmitting system information block in a broadband wireless communication system
CN101883412A (zh) * 2010-07-02 2010-11-10 北京交通大学 Lte在高速移动条件下初始小区搜索方法

Also Published As

Publication number Publication date
CN103313377A (zh) 2013-09-18
CN103313377B (zh) 2018-11-06

Similar Documents

Publication Publication Date Title
CN103379079B (zh) 一种同步信号的发送方法及装置
WO2018123468A1 (ja) 基地局装置、端末装置、通信方法、および、集積回路
JP2019511174A (ja) 情報通信方法、ユーザー機器、およびネットワークデバイス
WO2014067472A1 (zh) 一种信号处理方法、基站、终端、及系统
WO2015018239A1 (zh) 设备发现方法和用户设备、网络侧设备
WO2018028490A1 (zh) 信息传输方法、终端及网络设备
KR20100046565A (ko) 무선 통신 시스템에서 순환 전치 길이 변경 방법 및 이를 위한 시스템
JP2019503111A (ja) マルチプロトコル送信の方法およびシステム
CN105307260A (zh) 同步信号序列的发送方法
WO2012151948A1 (zh) 无线通信系统中数据的发送方法和装置
WO2014173292A1 (zh) 一种导频信号的传输方法及设备
WO2012130087A1 (zh) 无线通信系统及其通信方法
WO2012139433A1 (zh) 一种无线参数配置和信号发送的方法及装置
WO2015109433A1 (zh) D2d通信同步信号的传输方法及系统、发送端及接收端
WO2010075731A1 (zh) 辅同步信道的配置方法和装置、子载波映射方法和装置
WO2014180265A1 (zh) 下行参考信号的传输方法、设备、系统及计算机存储介质
WO2015109585A1 (zh) 一种用户设备、基站及小区发现的方法
WO2020024818A1 (zh) 物理层聚合过程协议数据单元的通信方法和相关装置
WO2016065537A1 (zh) 一种注册方法、设备及系统
WO2011147167A1 (zh) 传输消息的方法、基站、终端及多通信制式系统
WO2014023214A1 (zh) 通信系统中信标信号的生成方法及装置
WO2010121541A1 (zh) 一种映射方法和相应的基站
CN105245482B (zh) 一种ofdm-pon上行链路时间同步方法
WO2017084296A1 (zh) 数据传输方法、装置及系统
WO2012024913A1 (zh) 数据发送、接收及传输方法、装置和系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12871450

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12871450

Country of ref document: EP

Kind code of ref document: A1