WO2017084296A1 - 数据传输方法、装置及系统 - Google Patents

数据传输方法、装置及系统 Download PDF

Info

Publication number
WO2017084296A1
WO2017084296A1 PCT/CN2016/084196 CN2016084196W WO2017084296A1 WO 2017084296 A1 WO2017084296 A1 WO 2017084296A1 CN 2016084196 W CN2016084196 W CN 2016084196W WO 2017084296 A1 WO2017084296 A1 WO 2017084296A1
Authority
WO
WIPO (PCT)
Prior art keywords
symbol
data
sig
stf
time domain
Prior art date
Application number
PCT/CN2016/084196
Other languages
English (en)
French (fr)
Inventor
刘晟
刘云
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2017084296A1 publication Critical patent/WO2017084296A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/261Details of reference signals
    • H04L27/2613Structure of the reference signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W80/00Wireless network protocols or protocol adaptations to wireless operation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/10Small scale networks; Flat hierarchical networks
    • H04W84/12WLAN [Wireless Local Area Networks]

Definitions

  • the present invention relates to the field of communications technologies, and in particular, to a data transmission method, apparatus, and system.
  • 802.11ax is a wireless LAN communication standard.
  • an access point (English: Access Point; abbreviation: AP) and multiple sites (English: Station; abbreviation: STA) can transmit data frames to each other.
  • AP Access Point
  • STA Station
  • the data frame is composed of a basic preamble, a high efficiency WLAN (High Efficiency WLAN; referred to as HEW) preamble and a data part, wherein the base preamble and the HEW preamble are used to carry parameter information of the data frame, data.
  • HEW High Efficiency WLAN
  • the basic preamble can include: traditional short training field (English: Legacy Short Training Field; abbreviation: L-STF), traditional long training field (English: Legacy Long Training Field; abbreviation: L-LTF) and traditional signaling fields (English : Legacy Signal Field, referred to as L-SIG).
  • the AP when the AP needs to transmit data to the STA, the AP is the transmitting end, and the STA is the receiving end.
  • the AP can generate a data frame according to the data to be transmitted and the structure of the data frame specified in 802.11ax, and send the data frame.
  • the STA After receiving the data frame, the STA may parse the data part of the data frame according to the basic preamble in the data frame and the parameter information of the data frame carried in the HEW preamble, obtain data in the data frame, and complete the data. Transmission.
  • the transmitting end Due to the limitation of the properties of some receiving devices or environmental factors, the transmitting end generates a large noise during the transmission of data frames to the receiving end, so that the signal-to-noise in the process of transmitting data frames is relatively low, and the receiving end receives The data quality of the data frame is poor, and the data in the data frame cannot be effectively obtained. Therefore, the reliability of the data transmission is low.
  • the present invention provides a data transmission method, device and system, and the technical solution is as follows:
  • a data transmission apparatus for a transmitting end, and the data transmission apparatus includes:
  • a processing unit configured to generate a data frame according to the data to be transmitted, where the data frame includes: a low rate LR preamble, a basic preamble, a high efficiency wireless local area network HEW preamble and a data part, where the LR preamble includes: a low rate short training field LR -STF, the LR-STF includes: at least two first symbols arranged in a time domain, the content of each first symbol is the same, and the period of the time domain corresponding to the first symbol is 1.6 microseconds.
  • the LR-STF is used for timing synchronization;
  • a sending unit configured to send the data frame to the receiving end.
  • the data frames generated by the processing unit include, in order, an LR preamble, a base preamble, an HEW preamble, and a data portion.
  • the LR preamble includes: LR-STF, and the LR-STF can be used for timing synchronization. Since the frame header of the data frame is LR-STF, and the signal-to-noise ratio supported by the LR-STF is relatively low, the receiving end supporting the LR mode can easily receive the data frame when transmitting the data frame, and can The data in the data frame is effectively acquired, so the reliability of the data frame transmission is improved.
  • the LR-STF further includes: a second symbol for identifying the LR-STF tail. Since the LR-STF is adjacent to the L-STF in the data frame generated by the processing unit, and both the LR-STF and the L-STF can be used for timing synchronization of the data frame, the first part for identifying the LR-STF tail is used. The two symbol B can effectively distinguish LR-STF and L-STF.
  • the frequency domain waveform corresponding to the first symbol includes: a DC subcarrier, a protection subcarrier, and an intermediate subcarrier, where the intermediate subcarrier is in the frequency domain.
  • An element is located between the DC subcarrier and the protection subcarrier, and an element in a frequency domain sequence of the first symbol is in one-to-one correspondence with the frequency domain waveform.
  • an element in the frequency domain sequence corresponding to the intermediate subcarrier includes at least two non-zero elements, there is one zero element between every two of the non-zero elements. Since there is one zero element between every two non-zero elements, the period of the time domain waveform corresponding to the first symbol A is two of the periods of the time domain waveform corresponding to the L-STF symbol in the L-STF in the related art. Times.
  • the number of non-zero elements in the frequency domain sequence of the first symbol is greater than fourteen.
  • the number of non-zero elements in the frequency domain sequence of the first symbol is equal to twenty-eight.
  • the number of non-zero elements in the frequency domain sequence of the candidate symbol is equal to fourteen. In the embodiment of the present invention, the number of non-zero elements in the frequency domain sequence of the candidate symbol is greater than fourteen. Therefore, the present invention In the embodiment, when a certain candidate symbol is selected as the first symbol in the at least one candidate symbol, the selected base number is larger. Therefore, the peak-to-average ratio of the time domain waveform corresponding to the first symbol determined in the embodiment of the present invention is larger.
  • a peak-to-average ratio of a time domain waveform corresponding to the first symbol determined by the method of the related art, and an autocorrelation function of the time domain waveform corresponding to the first symbol determined in the embodiment of the present invention is greater than a correlation coefficient of the related art.
  • the probability of the peak-to-valley ratio of the autocorrelation function of the time domain waveform corresponding to the first symbol determined by the method is large.
  • the basic preamble includes: a traditional short training field L-STF, a traditional long training field L-LTF, and traditional signaling a field L-SIG
  • the L-STF includes at least two L-STF symbols
  • the content of each L-STF symbol is the same
  • the period of the time domain waveform corresponding to each L-STF symbol is 0.8 microseconds
  • the time domain waveform corresponding to the second symbol is a waveform processed by the first waveform by using a preset transformation manner.
  • the first waveform is: a time domain waveform corresponding to the first symbol, a time domain waveform corresponding to the first symbol of a half period, a time domain waveform corresponding to the L-STF symbol, or a half cycle period
  • the preset conversion method includes: multiplying by -1, taking a reverse waveform, multiplying by -1 and then taking a reverse waveform, multiplying by j, multiplying by -j, multiplying by j, taking a reverse waveform, or multiplying by After the -j, the reverse waveform is taken, and the j is an imaginary unit.
  • the HEW preamble includes: repeating a traditional signaling field RL-SIG, repeating a traditional long training field RL-LTF, a signaling field, and performing a short-term training with high efficiency A field HE-STF and a high efficiency long training field HE-LTF, the RL-LTF comprising: at least one of the L-LTFs arranged in the time domain. Since the RL-LTF is a repetition of the L-LTF, the reliability of the L-LTF transmission is ensured.
  • the signaling field includes: at least one low-rate signaling field LR-SIG symbol arranged in a time domain Or, at least one LR-SIG symbol arranged in the frequency domain, and the content of each of the LR-SIG symbols is the same, and each of the LR-SIG symbols includes a high efficiency signaling A field LR-SIG- A symbol, or, each The LR-SIG symbol includes the LR-SIG-A symbol and the high efficiency signaling B field LR-SIG-B symbol. Since the LR-SIG symbol can include LR-SIG-A and LR-SIG-B, the data frame can be adapted to support the receiving end of the HEW mode.
  • the signaling field includes: at least one LR-SIG module arranged in a time domain, or At least one LR-SIG module arranged on the domain, the LR-SIG module comprising: a cyclic prefix of the LR-SIG body processed in a cyclic shift manner and the LR-SIG body, the LR-SIG body
  • the LR-SIG symbol processed by the dual carrier modulation DCM method is included, and the content of each of the LR-SIG symbols is the same, and each of the LR-SIG symbols includes a high efficiency signaling A field LR-SIG-A symbol.
  • each of the LR-SIG symbols includes the LR-SIG-A symbol and the high efficiency signaling B field LR-SIG-B symbol.
  • the HE-LTF includes: p HE-LTF symbols arranged in a time domain, each HE- The content of the LTF symbol is the same, and the transmission power corresponding to the HE-LTF symbol is greater than the preset transmission power.
  • the data part adopts an orthogonal frequency division multiplexing multiple access OFDMA manner, and carries a low rate data field LR-DATA and a high efficiency data field HE- DATA, or, carrying the LR-DATA,
  • the LR-DATA includes at least one LR-DATA symbol arranged in the time domain, or at least one LR-DATA symbol arranged in the frequency domain, and the content of each of the LR-DATA symbols is the same .
  • the RL-SIG includes: at least one processed by a preset manner that is arranged in a time domain
  • the L-SIG the preset manner corresponds to the type of the data frame.
  • the signaling fields include three or four LR-SIG modules arranged in the time domain, or three or four LR-SIG modules arranged in the frequency domain.
  • the data frame is LR-STF, L-STF, L-LTF, L-SIG, RL-SIG, RL-LTF, signaling
  • the fields, HE-STF, HE-LTF, and data sections are in turn composed.
  • a data transmission apparatus for a receiving end, and the data transmission apparatus includes:
  • a receiving unit configured to receive a data frame sent by the sending end, where the data frame includes: a low rate LR preamble, a basic preamble, a high efficiency wireless local area network HEW preamble, and a data part, where the LR preamble includes: a low rate short training field LR -STF, the LR-STF includes: at least two first symbols arranged in a time domain, the content of each first symbol is the same, and the period of the time domain corresponding to the first symbol is 1.6 microseconds.
  • the LR-STF is used for timing synchronization;
  • a processing unit configured to generate a reference frame according to the data frame, where the reference frame is delayed by a preset time in the time domain than the data frame, where the preset time is a period of a time domain waveform corresponding to the first symbol At least doubled;
  • the processing unit is further configured to perform autocorrelation detection on the data frame and the reference frame;
  • the processing unit is further configured to determine a valid part of the data frame according to the detection result
  • the processing unit is further configured to parse the data frame according to the valid part to obtain data to be transmitted in the data frame.
  • the data frames received by the receiving unit include: LR preamble, base preamble, HEW preamble and data part, and the LR preamble includes: LR-STF, and LR-STF is used for timing synchronization. Since the signal-to-noise ratio supported by the LR-STF is low, the receiving end supporting the LR mode can effectively acquire data in the data frame, thereby improving the reliability of the data frame transmission.
  • the LR receiving end delays the data frame by an integer multiple of 1.6 microseconds of the period of the first symbol in the LR preamble, so that the LR receiving end can detect the LR-STF, and the HEW receiving end delays the data frame.
  • the period of the L-STF symbol in the preamble is 0.8 microseconds to obtain a reference frame. Therefore, the HEW receiving end cannot detect the LR-STF, that is, the LR receiving end can perform timing synchronization using the LR-STF in the data frame, and can satisfy the HEW.
  • the receiving end uses the L-STF for timing synchronization, so the usability of the data frame is high.
  • a data transmission method for a transmitting end, where the method includes:
  • the data frame sequentially includes: a low rate LR preamble, a base preamble, a high efficiency wireless local area network HEW preamble and a data part, the LR preamble comprising: a low rate short training field LR-STF,
  • the LR-STF includes: at least two first symbols arranged in the time domain, the content of each first symbol is the same, and the period of the time domain waveform corresponding to the first symbol is 1.6 microseconds, the LR-STF Used for timing synchronization;
  • the data frame is sent to the receiving end.
  • the LR-STF further includes: a second symbol for identifying the LR-STF tail.
  • the frequency domain waveform corresponding to the first symbol includes: a DC subcarrier, a protection subcarrier, and an intermediate subcarrier, where the intermediate subcarrier is in the frequency domain.
  • An element is located between the DC subcarrier and the protection subcarrier, and an element in a frequency domain sequence of the first symbol is in one-to-one correspondence with the frequency domain waveform.
  • an element in the frequency domain sequence corresponding to the intermediate subcarrier includes at least two non-zero elements, there is one zero element between every two of the non-zero elements.
  • the number of non-zero elements in the frequency domain sequence of the first symbol is greater than fourteen.
  • the number of non-zero elements in the frequency domain sequence of the first symbol is equal to twenty-eight.
  • the basic preamble includes: a traditional short training field L-STF, a traditional long training field L-LTF, and traditional signaling.
  • a field L-SIG the L-STF includes at least two L-STF symbols, and the content of each L-STF symbol is the same, and the period of the time domain waveform corresponding to each L-STF symbol is 0.8 microseconds
  • the time domain waveform corresponding to the second symbol is a waveform processed by the first waveform by using a preset transformation manner.
  • the first waveform is: a time domain waveform corresponding to the first symbol, a time domain waveform corresponding to the first symbol of a half period, a time domain waveform corresponding to the L-STF symbol, or a half cycle period
  • the preset conversion method includes: multiplying by -1, taking a reverse waveform, multiplying by -1 and then taking a reverse waveform, multiplying by j, multiplying by -j, multiplying by j, taking a reverse waveform, or multiplying by After the -j, the reverse waveform is taken, and the j is an imaginary unit.
  • the HEW preamble includes: Repeating the legacy signaling field RL-SIG, the repetition legacy long training field RL-LTF, the signaling field, the high efficiency short training field HE-STF, and the high efficiency long training field HE-LTF, the RL-LTF including: in the time domain At least one of the L-LTFs arranged above.
  • the signaling field includes: at least one low-rate signaling field LR-SIG symbol arranged in a time domain Or, at least one LR-SIG symbol arranged in the frequency domain, and the content of each of the LR-SIG symbols is the same, and each of the LR-SIG symbols includes a high efficiency signaling A field LR-SIG- The A symbol, or each of the LR-SIG symbols includes the LR-SIG-A symbol and the high efficiency signaling B field LR-SIG-B symbol.
  • the signaling field includes: at least one LR-SIG module arranged in a time domain, or At least one LR-SIG module arranged on the domain, the LR-SIG module comprising: a cyclic prefix of the LR-SIG body processed in a cyclic shift manner and the LR-SIG body, the LR-SIG body
  • the LR-SIG symbol processed by the dual carrier modulation DCM method is included, and the content of each of the LR-SIG symbols is the same, and each of the LR-SIG symbols includes a high efficiency signaling A field LR-SIG-A symbol.
  • each of the LR-SIG symbols includes the LR-SIG-A symbol and the high efficiency signaling B field LR-SIG-B symbol.
  • the HE-LTF includes: p HE-LTF symbols arranged in a time domain, each HE- The content of the LTF symbol is the same, and the transmission power corresponding to the HE-LTF symbol is greater than the preset transmission power.
  • the data part adopts an orthogonal frequency division multiplexing multiple access OFDMA manner, and carries a low rate data field LR-DATA and a high efficiency data field HE- DATA, or, carrying the LR-DATA,
  • the LR-DATA includes at least one LR-DATA symbol arranged in the time domain, or at least one LR-DATA symbol arranged in the frequency domain, and the content of each of the LR-DATA symbols is the same .
  • the RL-SIG includes at least one L-SIG processed in a preset manner in a time domain, the preset manner corresponding to the type of the data frame.
  • the signaling field includes: three or four LR-SIG modules arranged in a time domain, Or, three or four LR-SIG modules arranged in the frequency domain.
  • the data frame is LR-STF, L-STF, L-LTF, L-SIG, RL-SIG, RL-LTF, signaling
  • the fields, HE-STF, HE-LTF, and data sections are in turn composed.
  • a fourth aspect provides a data transmission method for a receiving end, where the method includes:
  • a data frame receives, by the sending end, a data frame, where the data frame includes: a low rate LR preamble, a basic preamble, a high efficiency wireless local area network HEW preamble and a data part, where the LR preamble includes: a low rate short training field LR-STF,
  • the LR-STF includes: at least two first symbols arranged in the time domain, the period of the time domain corresponding to the first symbol is 1.6 microseconds;
  • a data transmission system where the data transmission system includes: a transmitting end and a receiving end,
  • the transmitting end is the data transmission device of any one of the third aspect or the third aspect;
  • the receiving end is the data transmission device of any one of the fourth aspect or the fourth aspect.
  • a data transmission apparatus for a transmitting end, where the data transmission apparatus includes: a processor and a transmitter,
  • the processor is configured to generate a data frame according to the data to be transmitted, where the data frame includes: a low rate LR preamble, a basic preamble, a high efficiency wireless local area network HEW preamble and a data part, where the LR preamble includes: a low rate short training field LR - STF, the LR-STF includes: at least arranged in the time domain Two first symbols, the content of each first symbol is the same, the period of the time domain waveform corresponding to the first symbol is 1.6 microseconds, and the LR-STF is used for timing synchronization;
  • the transmitter is configured to send the data frame to a receiving end.
  • the LR-STF further includes: a second symbol for identifying the LR-STF tail.
  • the frequency domain waveform corresponding to the first symbol includes: a DC subcarrier, a protection subcarrier, and an intermediate subcarrier, where the intermediate subcarrier is in a frequency domain.
  • An element is located between the DC subcarrier and the protection subcarrier, and an element in a frequency domain sequence of the first symbol is in one-to-one correspondence with the frequency domain waveform.
  • an element in the frequency domain sequence corresponding to the intermediate subcarrier includes at least two non-zero elements, there is one zero element between every two of the non-zero elements.
  • the number of non-zero elements in the frequency domain sequence of the first symbol is greater than fourteen.
  • the number of non-zero elements in the frequency domain sequence of the first symbol is equal to twenty-eight.
  • the basic preamble includes: a traditional short training field L-STF, a traditional long training field L-LTF, and traditional signaling.
  • a field L-SIG the L-STF includes at least two L-STF symbols, and the content of each L-STF symbol is the same, and the period of the time domain waveform corresponding to each L-STF symbol is 0.8 microseconds,
  • the time domain waveform corresponding to the second symbol is a waveform processed by the first waveform by using a preset transformation manner.
  • the first waveform is: a time domain waveform corresponding to the first symbol, a time domain waveform corresponding to the first symbol of a half period, a time domain waveform corresponding to the L-STF symbol, or a half cycle period
  • the preset conversion method includes: multiplying by -1, taking a reverse waveform, multiplying by -1 and then taking a reverse waveform, multiplying by j, multiplying by -j, multiplying by j, taking a reverse waveform, or multiplying by After the -j, the reverse waveform is taken, and the j is an imaginary unit.
  • the HEW preamble includes: repeating the traditional signaling field RL-SIG, repeating the traditional long training field RL-LTF, signaling field, and performing high efficiency short training A field HE-STF and a high efficiency long training field HE-LTF, the RL-LTF comprising: at least one of the L-LTFs arranged in the time domain.
  • the signaling field includes: at least one low-rate signaling field LR-SIG symbol arranged in a time domain Or, at least one LR-SIG symbol arranged in the frequency domain, and the content of each of the LR-SIG symbols is the same, and each of the LR-SIG symbols includes a high efficiency signaling A field LR-SIG- The A symbol, or each of the LR-SIG symbols includes the LR-SIG-A symbol and the high efficiency signaling B field LR-SIG-B symbol.
  • the signaling field includes: at least one LR-SIG module arranged in a time domain, or At least one LR-SIG module arranged on the domain, the LR-SIG module comprising: a cyclic prefix of the LR-SIG body processed in a cyclic shift manner and the LR-SIG body, the LR-SIG body
  • the LR-SIG symbol processed by the dual carrier modulation DCM method is included, and the content of each of the LR-SIG symbols is the same, and each of the LR-SIG symbols includes a high efficiency signaling A field LR-SIG-A symbol.
  • each of the LR-SIG symbols includes the LR-SIG-A symbol and the high efficiency signaling B field LR-SIG-B symbol.
  • the HE-LTF includes: p HE-LTF symbols arranged in a time domain, each HE- The content of the LTF symbol is the same, and the transmission power corresponding to the HE-LTF symbol is greater than the preset transmission power.
  • the data part adopts an orthogonal frequency division multiplexing multiple access OFDMA manner, and carries a low rate data field LR-DATA and a high efficiency data field HE- DATA, or, carrying the LR-DATA,
  • the LR-DATA includes at least one LR-DATA symbol arranged in the time domain, or at least one LR-DATA symbol arranged in the frequency domain, and the content of each of the LR-DATA symbols is the same .
  • the RL-SIG includes: at least one processed by a preset manner that is arranged in a time domain
  • the L-SIG the preset manner corresponds to the type of the data frame.
  • the signaling field includes three or four LR-SIG modules arranged in the time domain, or three or four arranged in the frequency domain using the LR-SIG module.
  • the data frame is LR-STF, L-STF, L-LTF, L-SIG, RL-SIG, RL-LTF, signaling
  • the fields, HE-STF, HE-LTF, and data sections are in turn composed.
  • the data transmission device is a terminal.
  • a data transmission apparatus for a receiving end, the data transmission apparatus comprising: a receiver and a processor,
  • the receiver is configured to receive a data frame sent by a sender, where the data frame includes: a low rate LR preamble, a base preamble, a high efficiency WLAN HEW preamble and a data part, where the LR preamble includes: a low rate short training field LR-STF, the LR-STF includes: at least two first symbols arranged in a time domain, the content of each first symbol is the same, and the period of the time domain corresponding to the first symbol is 1.6 microseconds.
  • the LR-STF is used for timing synchronization;
  • the processor is configured to generate a reference frame according to the data frame, where the reference frame is delayed by a preset time in the time domain, and the preset time is a period of a time domain waveform corresponding to the first symbol. At least doubled;
  • the processor is further configured to perform autocorrelation detection on the data frame and the reference frame;
  • the processor is further configured to determine a valid part of the data frame according to the detection result
  • the processor is further configured to parse the data frame according to the valid part to obtain data to be transmitted in the data frame.
  • the data transmission device is a terminal.
  • a data transmission system includes: a transmitting end and a receiving end,
  • the transmitting end is the data transmission device described in any one of the sixth aspect or the sixth aspect;
  • the receiving end is the data transmission device of any one of the seventh aspect or the seventh aspect.
  • a data transmission apparatus for a transmitting end, and the data transmission apparatus package include:
  • a processing unit configured to generate a data frame according to the data to be transmitted, where the data frame includes: a basic preamble, a high-efficiency wireless local area network HEW preamble, and a data part, where the HEW preamble includes: repeating a traditional signaling field RL-SIG, repeating the tradition a long training field RL-LTF, a signaling field, a high efficiency short training field HE-STF, and a high efficiency long training field HE-LTF, the RL-LTF comprising: at least one of the L-LTFs arranged in the time domain .
  • a sending unit configured to send the data frame to the receiving end.
  • the basic preamble includes: a traditional short training field L-STF, a traditional long training field L-LTF, and a legacy signaling field L-SIG, the L-STF including at least two L-STF symbols, and each L-STF The contents of the symbols are the same, and the period of the time domain waveform corresponding to each L-STF symbol is 0.8 microseconds, and the L-STF is used for timing synchronization;
  • the signaling field includes: at least one low rate signaling field LR-SIG symbol arranged in the time domain, or at least one LR-SIG symbol arranged in the frequency domain, and each of the LR-SIG The contents of the symbols are all the same, each of the LR-SIG symbols includes a high efficiency signaling A field LR-SIG-A symbol, or each of the LR-SIG symbols includes the LR-SIG-A symbol and high efficiency Signaling B field LR-SIG-B symbol.
  • the signaling field includes: at least one LR-SIG module arranged in a time domain, or at least one LR-SIG module arranged in a frequency domain, the LR-SIG module comprising: using a cyclic shift a cyclic prefix of the LR-SIG body and the LR-SIG body, the LR-SIG body including the LR-SIG symbol processed by the dual carrier modulation DCM method, and each of the LR-SIG symbols
  • the content is the same, each of the LR-SIG symbols includes a high efficiency signaling A field LR-SIG-A symbol, or each of the LR-SIG symbols includes the LR-SIG-A symbol and high efficiency signaling B field LR-SIG-B symbol.
  • the HE-LTF includes: p HE-LTF symbols arranged in a time domain, the content of each HE-LTF symbol is the same, and the transmission power corresponding to the HE-LTF symbol is greater than a preset transmission power,
  • the data part adopts an orthogonal frequency division multiplexing multiple access OFDMA manner, and carries a low rate data field LR-DATA and a high efficiency data field HE-DATA, or carries the LR-DATA.
  • the LR-DATA includes at least one LR-DATA symbol arranged in the time domain, or at least one LR-DATA symbol arranged in the frequency domain, and the content of each of the LR-DATA symbols is the same .
  • the RL-SIG includes at least one L-SIG processed in a preset manner in a time domain, the preset manner corresponding to the type of the data frame.
  • the signaling fields include three or four LR-SIG modules arranged in the time domain, or three or four LR-SIG modules arranged in the frequency domain.
  • the data frame is composed of L-STF, L-LTF, L-SIG, RL-SIG, RL-LTF, signaling field, HE-STF, HE-LTF, and data part.
  • a data transmission apparatus for a receiving end, where the data transmission apparatus includes:
  • a receiving unit configured to receive a data frame sent by the sending end, where the basic preamble includes: a traditional short training field L-STF, a traditional long training field L-LTF, and a traditional signaling field L-SIG, where the L-STF includes at least Two L-STF symbols, and the contents of each L-STF symbol are the same, and the period of the time domain waveform corresponding to each L-STF symbol is 0.8 microseconds, and the L-STF is used for timing synchronization;
  • the basic preamble includes: a traditional short training field L-STF, a traditional long training field L-LTF, and a traditional signaling field L-SIG, where the L-STF includes at least Two L-STF symbols, and the contents of each L-STF symbol are the same, and the period of the time domain waveform corresponding to each L-STF symbol is 0.8 microseconds, and the L-STF is used for timing synchronization;
  • a processing unit configured to generate a reference frame according to the data frame, where the reference frame is delayed in a time domain from the data frame by a preset time, where the preset time is a time domain waveform corresponding to the L-STF symbol At least one time of the cycle;
  • the processing unit is further configured to perform autocorrelation detection on the data frame and the reference frame;
  • the processing unit is further configured to determine a valid part of the data frame according to the detection result
  • the processing unit is further configured to parse the data frame according to the valid part, to obtain the The data to be transmitted in the data frame.
  • a data transmission method for a transmitting end, and the method includes:
  • the data frame includes: a basic preamble, a high-efficiency wireless local area network HEW preamble and a data part
  • the HEW preamble includes: repeating the traditional signaling field RL-SIG, repeating the traditional long training field RL- LTF, signaling field, high efficiency short training field HE-STF and high efficiency long training field HE-LTF, the RL-LTF comprising: at least one of the L-LTFs arranged in the time domain.
  • the data frame is sent to the receiving end.
  • the basic preamble includes: a traditional short training field L-STF, a traditional long training field L-LTF, and a legacy signaling field L-SIG, the L-STF including at least two L-STF symbols, and each L-STF The contents of the symbols are the same, and the period of the time domain waveform corresponding to each L-STF symbol is 0.8 microseconds, and the L-STF is used for timing synchronization;
  • the signaling field includes: at least one low rate signaling field LR-SIG symbol arranged in the time domain, or at least one LR-SIG symbol arranged in the frequency domain, and each of the LR-SIG The contents of the symbols are all the same, each of the LR-SIG symbols includes a high efficiency signaling A field LR-SIG-A symbol, or each of the LR-SIG symbols includes the LR-SIG-A symbol and high efficiency Signaling B field LR-SIG-B symbol.
  • the signaling field includes: at least one LR-SIG module arranged in a time domain, or at least one LR-SIG module arranged in a frequency domain, the LR-SIG module comprising: using a cyclic shift a cyclic prefix of the LR-SIG body and the LR-SIG body, the LR-SIG body including the LR-SIG symbol processed by the dual carrier modulation DCM method, and each of the LR-SIG symbols
  • the content is the same, each of the LR-SIG symbols includes a high efficiency signaling A field LR-SIG-A symbol, or each of the LR-SIG symbols includes the LR-SIG-A symbol and high efficiency signaling B field LR-SIG-B symbol.
  • the HE-LTF includes: p HE-LTF symbols arranged in a time domain, the content of each HE-LTF symbol is the same, and the transmission power corresponding to the HE-LTF symbol is greater than a preset transmission power,
  • the data part adopts an orthogonal frequency division multiplexing multiple access OFDMA manner, and carries a low rate data field LR-DATA and a high efficiency data field HE-DATA, or carries the LR-DATA.
  • the LR-DATA includes at least one LR-DATA symbol arranged in the time domain, or at least one LR-DATA symbol arranged in the frequency domain, and the content of each of the LR-DATA symbols is the same .
  • the RL-SIG includes at least one L-SIG processed in a preset manner in a time domain, the preset manner corresponding to the type of the data frame.
  • the signaling fields include three or four LR-SIG modules arranged in the time domain, or three or four LR-SIG modules arranged in the frequency domain.
  • the data frame is composed of L-STF, L-LTF, L-SIG, RL-SIG, RL-LTF, signaling field, HE-STF, HE-LTF, and data part.
  • a data transmission method for a receiving end, where the method includes:
  • the basic preamble includes: a traditional short training field L-STF, a traditional long training field L-LTF, and a traditional signaling field L-SIG, the L-STF including at least two L-STFs a symbol, and the content of each L-STF symbol is the same, the period of the time domain waveform corresponding to each L-STF symbol is 0.8 microseconds, and the L-STF is used for timing synchronization;
  • a data transmission system includes: a transmitting end and a receiving end,
  • the transmitting end is the data transmission device of any one of the ninth aspect or the ninth aspect;
  • the receiving end is the data transmission device according to any one of the tenth or tenth aspects.
  • a data transmission apparatus for a transmitting end, the data transmission apparatus comprising: a processor and a transmitter,
  • the processor is configured to generate a data frame according to the data to be transmitted, where the data frame includes: a basic preamble, a high-efficiency wireless local area network HEW preamble, and a data part, where the HEW preamble includes: repeating the traditional signaling field RL-SIG, repeating the tradition a long training field RL-LTF, a signaling field, a high efficiency short training field HE-STF, and a high efficiency long training field HE-LTF, the RL-LTF comprising: at least one of the L-LTFs arranged in the time domain .
  • the transmitter is configured to send the data frame to a receiving end.
  • the basic preamble includes: a traditional short training field L-STF, a traditional long training field L-LTF, and a legacy signaling field L-SIG, the L-STF including at least two L-STF symbols, and each L-STF The contents of the symbols are the same, and the period of the time domain waveform corresponding to each L-STF symbol is 0.8 microseconds, and the L-STF is used for timing synchronization;
  • the signaling field includes: at least one low rate signaling field LR-SIG symbol arranged in the time domain, or at least one LR-SIG symbol arranged in the frequency domain, and each of the LR-SIG The contents of the symbols are all the same, each of the LR-SIG symbols includes a high efficiency signaling A field LR-SIG-A symbol, or each of the LR-SIG symbols includes the LR-SIG-A symbol and high efficiency Signaling B field LR-SIG-B symbol.
  • the signaling field includes: at least one LR-SIG module arranged in a time domain, or at least one LR-SIG module arranged in a frequency domain, the LR-SIG module comprising: using a cyclic shift The cyclic prefix of the LR-SIG body processed in the manner and the LR-SIG body, the LR-SIG body package The LR-SIG symbol processed by the dual carrier modulation DCM method is used, and the content of each of the LR-SIG symbols is the same, and each of the LR-SIG symbols includes a high efficiency signaling A field LR-SIG-A symbol. Or, each of the LR-SIG symbols includes the LR-SIG-A symbol and the high efficiency signaling B field LR-SIG-B symbol.
  • the HE-LTF includes: p HE-LTF symbols arranged in a time domain, the content of each HE-LTF symbol is the same, and the transmission power corresponding to the HE-LTF symbol is greater than a preset transmission power,
  • the data part adopts an orthogonal frequency division multiplexing multiple access OFDMA manner, and carries a low rate data field LR-DATA and a high efficiency data field HE-DATA, or carries the LR-DATA.
  • the LR-DATA includes at least one LR-DATA symbol arranged in the time domain, or at least one LR-DATA symbol arranged in the frequency domain, and the content of each of the LR-DATA symbols is the same .
  • the RL-SIG includes at least one L-SIG processed in a preset manner in a time domain, the preset manner corresponding to the type of the data frame.
  • the signaling fields include three or four LR-SIG modules arranged in the time domain, or three or four LR-SIG modules arranged in the frequency domain.
  • the data frame is composed of L-STF, L-LTF, L-SIG, RL-SIG, RL-LTF, signaling field, HE-STF, HE-LTF, and data part.
  • the data transmission device is a terminal.
  • a data transmission apparatus for a receiving end, where the apparatus includes: Receiver and processor,
  • the receiver is configured to receive a data frame sent by a sending end, where the basic preamble includes: a traditional short training field L-STF, a traditional long training field L-LTF, and a traditional signaling field L-SIG, where the L-STF includes At least two L-STF symbols, and the content of each L-STF symbol is the same, and the period of the time domain waveform corresponding to each L-STF symbol is 0.8 microseconds, and the L-STF is used for timing synchronization;
  • the basic preamble includes: a traditional short training field L-STF, a traditional long training field L-LTF, and a traditional signaling field L-SIG, where the L-STF includes At least two L-STF symbols, and the content of each L-STF symbol is the same, and the period of the time domain waveform corresponding to each L-STF symbol is 0.8 microseconds, and the L-STF is used for timing synchronization;
  • the processor is configured to generate a reference frame according to the data frame, where the reference frame is delayed by a preset time in the time domain than the data frame, where the preset time is a time domain waveform corresponding to the L-STF symbol. At least one time of the cycle;
  • the processor is further configured to perform autocorrelation detection on the data frame and the reference frame;
  • the processor is further configured to determine a valid part of the data frame according to the detection result
  • the processor is further configured to parse the data frame according to the valid part to obtain data to be transmitted in the data frame.
  • the data transmission device is a terminal.
  • a data transmission system includes: a transmitting end and a receiving end,
  • the transmitting end is the data transmission device of any one of the fourteenth aspects or the fourteenth aspect;
  • the receiving end is the data transmission device according to any one of the fifteenth aspect or the fifteenth aspect.
  • the invention provides a data transmission method, device and system.
  • the data frame generated by the transmitting end includes: an LR preamble, a basic preamble, an HEW preamble and a data part
  • the LR preamble includes: LR-STF, LR.
  • -STF is used for timing synchronization. Since the frame header of the data frame is LR-STF, and the signal-to-noise ratio supported by the LR-STF is relatively low, the receiving end supporting the LR mode can easily receive the data frame when transmitting the data frame, and can The data in the data frame is effectively acquired, so the reliability of the data frame transmission is improved.
  • 1-1 is a schematic diagram of an application scenario of a data transmission method according to an embodiment of the present invention.
  • 1-2 is a schematic structural diagram of a data frame provided in the related art
  • 1-3 are schematic structural diagrams of another data frame provided in the related art.
  • FIG. 2 is a structural block diagram of a data transmission apparatus according to an embodiment of the present invention.
  • FIG. 3 is a structural block diagram of another data transmission apparatus according to an embodiment of the present invention.
  • FIG. 5 is a flowchart of another method for data transmission according to an embodiment of the present invention.
  • 6-1 is a flowchart of still another method for data transmission according to an embodiment of the present invention.
  • FIG. 6-2 is a schematic structural diagram of a data frame according to an embodiment of the present disclosure.
  • 6-3 is a schematic structural diagram of an RL-STF according to an embodiment of the present invention.
  • 6-4 is a schematic diagram of a frequency domain waveform corresponding to an LR-STF according to an embodiment of the present invention
  • 6-5 is a schematic structural diagram of another RL-STF according to an embodiment of the present invention.
  • 6-6 are schematic structural diagrams of still another RL-STF according to an embodiment of the present invention.
  • FIG. 6 is a schematic structural diagram of a signaling field according to an embodiment of the present disclosure.
  • FIGS. 6-8 are schematic structural diagrams of another signaling field according to an embodiment of the present invention.
  • FIG. 6-9 is a schematic structural diagram of still another signaling field according to an embodiment of the present disclosure.
  • FIG. 6-10 is a schematic diagram of transmission of a signaling field according to an embodiment of the present invention.
  • FIG. 6-11 are schematic structural diagrams of a HE-LTF according to an embodiment of the present invention.
  • FIG. 6-12 are schematic structural diagrams of another HE-LTF according to an embodiment of the present invention.
  • FIG. 6-13 are schematic structural diagrams of still another HE-LTF according to an embodiment of the present invention.
  • FIGS. 6-14 are schematic structural diagrams of still another HE-LTF according to an embodiment of the present invention.
  • FIG. 6-15 are schematic structural diagrams of a HE-LTF according to another embodiment of the present invention.
  • 6-16 are schematic structural diagrams of another HE-LTF according to another embodiment of the present invention.
  • FIG. 6-17 are schematic structural diagrams of still another HE-LTF according to another embodiment of the present invention.
  • FIGS. 6-18 are schematic structural diagrams of another data frame according to an embodiment of the present invention.
  • FIGS. 6-19 are schematic diagrams showing frequency domain waveforms corresponding to data portions according to an embodiment of the present invention.
  • 6-20 are schematic diagrams of autocorrelation detection of an LR receiving end according to an embodiment of the present invention.
  • 6-21 are schematic diagrams of autocorrelation detection of a HEW receiving end according to an embodiment of the present invention.
  • FIG. 7 is a flowchart of still another method for data transmission according to an embodiment of the present invention.
  • FIG. 8 is a flowchart of a method for data transmission according to another embodiment of the present invention.
  • 9-1 is a flowchart of another method for data transmission according to another embodiment of the present invention.
  • 9-2 is a schematic diagram of data frame transmission according to an embodiment of the present invention.
  • FIG. 10 is a structural block diagram of a data transmission system according to an embodiment of the present invention.
  • FIG. 11 is a structural block diagram of still another data transmission apparatus according to an embodiment of the present invention.
  • FIG. 12 is a structural block diagram of still another data transmission apparatus according to an embodiment of the present invention.
  • FIG. 13 is a structural block diagram of another data transmission system according to an embodiment of the present invention.
  • Figure 1-1 is a schematic diagram of an application scenario of a data transmission method according to an embodiment of the present invention.
  • the application scenario may include: an AP and multiple STAs, and the application scenario in Figure 1-1.
  • the multiple STAs may include the STA-1 in the HEW mode and the STA-2 in the LR mode, and the AP may simultaneously support the HEW mode and the low rate (Low Rate; LR) mode, that is, the AP
  • the data frame can be transmitted to and from the STA-1 of the HEW mode, and the AP can also transmit data frames to and from the STA-2 of the LR mode.
  • the transmitted data frame may be a data frame in 802.11ax.
  • the STA-1 supporting the HEW mode may use a transmission rate corresponding to a modulation coding combination (English: Modulation and Coding Set; MCS) 10 when transmitting a data frame to the AP;
  • MCS Modulation and Coding Set
  • a transmission rate equal to the MCS10 may be adopted.
  • the data frame in 802.11ax may be composed of a basic preamble, an HEW preamble, and a data part, wherein the base preamble and the HEW preamble are used to carry parameter information of the data frame, and the data part is used to carry data.
  • Frame data For example, FIG. 1-2 is a schematic structural diagram of a data frame provided in the related art. As shown in FIG.
  • the basic preamble may include L-STF, L-LTF, and L-SIG in sequence;
  • the HEW preamble may be Including: repeating traditional signaling field (English: Repeated Legacy Signal field; RL-SIG for short), high efficiency signaling A field (English: High Efficiency Signal-A field; referred to as: HE-SIG-A), high efficiency letter Let B field (English: High Efficiency Signal-B field; referred to as HE-SIG-B), high efficiency short training field (English: High Efficiency Short Training field; referred to as: HE-STF) and high efficiency long training field (English: High Efficiency Long Training field; referred to as HE-LTF), the data portion can be composed of data fields (not shown in Figure 1-2).
  • the L-STF may be composed of at least two L-STF symbols, and the content of each L-STF symbol is the same, and the period of each L-STF symbol is 0.8 microseconds.
  • the AP When the AP needs to transmit data to STA-1, the AP is the transmitting end, and STA-1 is the receiving end.
  • the AP can generate a data frame according to the data to be transmitted and the structure of the data frame specified in 802.11ax, and the data frame is generated.
  • the STA-1 After being sent to the STA-1, the STA-1 can parse the data part of the data frame according to the basic preamble in the data frame and the parameter information of the data frame carried in the HEW preamble, and obtain the data frame. The data is completed and the data is transmitted.
  • the AP generates a large noise during the transmission of the data frame to the STA-2 of the LR mode, so that the data frame process is transmitted.
  • the signal-to-noise ratio is low.
  • the signal quality of the data frame received by STA-2 in LR mode is poor, and the data in the data frame cannot be effectively obtained. Therefore, the reliability of data frame transmission is low.
  • FIG. 1-3 is a schematic structural diagram of another data frame provided in the related art, where the data frame may include: a basic preamble, an LR preamble, and a data field.
  • the LR preamble may include: a low rate short training field (LR-STF), a low rate long training field (LR-LTF), and a low rate signaling field (Low). Rate Signal field, referred to as LR-SIG).
  • the basic preamble in Figure 1-3 is the same as the basic preamble in Figure 1-2.
  • the data part in Figure 1-3 is the same as the data part in Figure 1-2, that is, the basic preamble and data part in Figure 1-3.
  • the LR preamble in the data frame shown in FIG. 1-3 can support a lower signal to noise ratio, and the AP in FIG. 1-1 transmits to the STA-2 in the LR mode.
  • the signal-to-noise ratio in the process of the data frame is low, the signal quality of the data frame received by the STA-2 in the LR mode is good, and the data in the data frame can be effectively obtained, thereby improving the reliability of the data frame transmission.
  • the base preamble is located before the LR preamble in the data frame shown in FIG.
  • the STA-2 of the LR mode in FIG. 1-1 receives the data frame.
  • the base preamble cannot be effectively utilized, and the LR-SIG in the LR preamble is different from the LR-SIG-A and LR-SIG-B in the HEW preamble in FIG. 1-2, so the picture in Figure 1-1 STA-1 in HEW mode cannot use the data frame in Figure 1-3.
  • a data frame structure that can be applied to the LR transmitting end is provided, and the structure of the data frame can be the same as that of the data frame shown in FIG. 1-2, but both need to be improved by the power amplifier in the data frame.
  • the transmission power of the L-STF and the L-STF, and when transmitting the HE-SIG-A and the data portion in the data frame, may be transmitted using the transmission rate corresponding to the MCS10.
  • the signal quality of the data frame received by STA-2 in LR mode improves the reliability of data frame transmission.
  • STA-2 in FIG. 1-1 due to the limited power of the power amplifier, it is still impossible to implement the LR mode STA-2 in FIG. 1-1 to effectively acquire data in the data frame. Therefore, the reliability of data transmission is still poor.
  • the embodiment of the present invention provides a data transmission device 20, where the data transmission device 20 can be used for a transmitting end, and the transmitting end can be a transmitting end supporting the LR mode, and the transmitting end supporting the LR mode can be To support an LR mode AP or an LR mode enabled STA, the data transmission device 20 may include:
  • the processing unit 201 is configured to generate a data frame according to the data to be transmitted, where the data frame includes: a low rate LR preamble, a basic preamble, a high efficiency WLAN HEW preamble and a data part, and the LR preamble includes: LR-STF, and the LR-STF includes: At least two first symbols arranged in the time domain, the content of each first symbol is the same, the period of the time domain waveform corresponding to the first symbol is 1.6 microseconds, and the LR-STF is used for timing synchronization.
  • the sending unit 202 is configured to send a data frame to the receiving end.
  • the data frame generated by the processing unit includes: an LR preamble, a basic preamble, an HEW preamble, and a data part
  • the LR preamble includes: LR-STF, and LR-STF is used. Timing synchronization. Since the frame header of the data frame is LR-STF, and the signal-to-noise ratio supported by the LR-STF is low, the transmitting unit can support the LR mode receiving end when transmitting the data frame. The data frame is easily received, and the data in the data frame can be effectively acquired, so the reliability of the data frame transmission is improved.
  • the processing unit 201 in the embodiment of the present invention may be a processor, and the sending unit 202 may be a radio frequency module.
  • the LR-STF may further include: a second symbol for identifying a tail of the LR-STF.
  • the frequency domain waveform corresponding to the first symbol may include: a DC subcarrier, a protection subcarrier, and an intermediate subcarrier, where the intermediate subcarrier is located between the DC subcarrier and the protection subcarrier in the frequency domain, and the frequency of the first symbol
  • the elements in the domain sequence have a one-to-one correspondence with the frequency domain waveform.
  • the elements in the frequency domain sequence corresponding to the intermediate subcarriers include at least two non-zero elements, there is one zero element between every two non-zero elements.
  • the number of non-zero elements in the frequency domain sequence of the first symbol may be greater than fourteen.
  • the number of non-zero elements in the frequency domain sequence of the first symbol is equal to twenty-eight.
  • the basic preamble includes: L-STF, L-LTF, and L-SIG
  • the L-STF includes at least two L-STF symbols
  • the content of each L-STF symbol is the same
  • each L-STF symbol corresponds to
  • the period of the time domain waveform is 0.8 microseconds
  • the time domain waveform corresponding to the second symbol is a waveform processed by the first waveform in a preset transformation manner
  • the first waveform is: a time domain waveform corresponding to the first symbol, and a half
  • the preset transformation manner includes: multiplying by -1, taking the inverse waveform Multiply by -1 and then take the inverse waveform, multiply by j, multiply by -j, multiply by j, then take the inverse waveform or multiply by -j and then take the
  • the HEW preamble includes: RL-SIG, Repeat Legacy Long Training Field (English: Retired Legacy Long Training Field; RL-LTF for short), signaling field, HE-STF, and HE-LTF, and RL-LTF, and RL-LTF includes: At least one L-LTF arranged in the time domain.
  • the signaling field includes: at least one LR-SIG symbol arranged in the time domain, or at least one LR-SIG symbol arranged in the frequency domain, and the content of each LR-SIG symbol is the same
  • Each LR-SIG symbol includes a high efficiency signaling A field LR-SIG-A symbol, or each LR-SIG symbol includes an LR-SIG-A symbol and a high efficiency signaling B field LR-SIG-B symbol.
  • the signaling field includes: at least one LR-SIG module arranged in the time domain, or at least one LR-SIG module arranged in the frequency domain, and the LR-SIG module includes: adopting cyclic shift The cyclic prefix of the LR-SIG body and the LR-SIG body processed by the method, and the LR-SIG body includes the LR-SIG symbol processed by Dual Carrier Modulation (DCM), and each LR The contents of the -SIG symbol are the same, and each LR-SIG symbol includes high efficiency signaling A.
  • Field LR-SIG-A symbols, or each LR-SIG symbol includes an LR-SIG-A symbol and a high efficiency signaling B field LR-SIG-B symbol.
  • the HE-LTF includes: p HE-LTF symbols arranged in the time domain, the content of each HE-LTF symbol is the same, and the transmit power corresponding to the HE-LTF symbol is greater than the preset transmit power,
  • n is an integer greater than zero.
  • the data part adopts Orthogonal Frequency-Division Multiple Access (OFDMA) mode, and carries a low rate data field (English: Low Rate DATA; abbreviation: LR-DATA) And high efficiency data field (English: High Efficiency DATA; referred to as: HE-DATA), or, carrying LR-DATA, LR-DATA includes: at least one LR-DATA symbol arranged in the time domain, or, in the frequency domain At least one LR-DATA symbol arranged on the top, and the contents of each LR-DATA symbol are the same.
  • OFDMA Orthogonal Frequency-Division Multiple Access
  • the RL-SIG includes: at least one L-SIG processed in a preset manner in a time domain, and the preset manner corresponds to a type of the data frame.
  • the signaling field includes three or four LR-SIG modules arranged in the time domain, or three or four LR-SIG modules arranged in the frequency domain.
  • the data frame is composed of LR-STF, L-STF, L-LTF, L-SIG, RL-SIG, RL-LTF, signaling field, HE-STF, HE-LTF, and data part.
  • the data frame generated by the processing unit includes: an LR preamble, a basic preamble, an HEW preamble, and a data part
  • the LR preamble includes: LR-STF, and LR-STF is used. Timing synchronization. Since the frame header of the data frame is LR-STF, and the signal-to-noise ratio supported by the LR-STF is relatively low, the transmitting unit can easily receive the data frame when the transmitting unit transmits the data frame. And the data in the data frame can be effectively obtained, so the reliability of the data frame transmission is improved.
  • the embodiment of the present invention provides another data transmission device 30.
  • the data transmission device 30 can be used for a receiving end, and the receiving end can be a receiving end supporting the LR mode, and the receiving end supporting the LR mode.
  • the receiving end can be a receiving end supporting the LR mode, and the receiving end supporting the LR mode.
  • the data transmission device 30 can include:
  • the receiving unit 301 is configured to receive a data frame sent by the sending end, where the data frame includes: a low-rate LR preamble, a basic preamble, a high-efficiency WLAN HEW preamble and a data part, and the LR preamble includes: LR-STF, and the LR-STF includes: At least two first symbols arranged in the time domain, the content of each first symbol is the same, the period of the time domain waveform corresponding to the first symbol is 1.6 microseconds, and the LR-STF is used for timing synchronization.
  • the data frame includes: a low-rate LR preamble, a basic preamble, a high-efficiency WLAN HEW preamble and a data part
  • the LR preamble includes: LR-STF
  • the LR-STF includes: At least two first symbols arranged in the time domain, the content of each first symbol is the same, the period of the time domain waveform corresponding to the first symbol is 1.6 microseconds, and
  • the processing unit 302 is configured to generate a reference frame according to the data frame, where the reference frame is delayed by a preset time in the time domain, and the preset time is at least one time of a period of the time domain waveform corresponding to the first symbol.
  • the processing unit 302 is further configured to perform autocorrelation detection on the data frame and the reference frame.
  • the processing unit 302 is further configured to determine a valid portion in the data frame according to the detection result.
  • the processing unit 302 is further configured to parse the data frame according to the valid part to obtain data to be transmitted in the data frame.
  • the data frame received by the receiving unit includes: an LR preamble, a basic preamble, a HEW preamble, and a data part
  • the LR preamble includes: LR-STF, LR-STF. Synchronized at timing. Since the signal-to-noise ratio supported by the LR-STF is low, the receiving end supporting the LR mode can effectively acquire data in the data frame, thereby improving the reliability of the data frame transmission.
  • the processing unit 302 may be a processor, and the receiving unit 301 may be a radio frequency module.
  • the processing unit delays the data frame by an integer multiple of 1.6 microseconds of the period of the first symbol in the LR preamble, so that the LR receiver can detect the LR-STF, and the HEW receiver delays the data frame by the base preamble
  • the period of the L-STF symbol is 0.8 microseconds to obtain a reference frame. Therefore, the HEW receiving end cannot detect the LR-STF, that is, the receiving end in the embodiment of the present invention can perform timing synchronization using the LR-STF in the data frame.
  • the HEW receiving end can be used for timing synchronization using the L-STF, so the usability of the data frame is high.
  • the embodiment of the present invention provides a data transmission method, where the data transmission method can be used for a transmitting end, and the transmitting end can be a transmitting end supporting an LR mode, and the transmitting end supporting the LR mode can be supported.
  • the data transmission method may include:
  • Step 401 Generate a data frame according to the data to be transmitted, where the data frame includes: an LR preamble, a basic preamble, an HEW preamble, and a data part.
  • the LR preamble includes: LR-STF
  • the LR-STF includes: at least two arranged in the time domain.
  • the first symbol, the content of each first symbol is the same, and the time domain corresponding to the first symbol
  • the period of the waveform is 1.6 microseconds, and the LR-STF is used for timing synchronization;
  • Step 402 Send a data frame to the receiving end.
  • the data frame generated by the transmitting end includes: an LR preamble, a basic preamble, an HEW preamble, and a data part
  • the LR preamble includes: LR-STF, and LR-STF is used. Timing synchronization. Since the frame header of the data frame is LR-STF, and the signal-to-noise ratio supported by the LR-STF is relatively low, the receiving end supporting the LR mode can easily receive the data frame when transmitting the data frame, and can The data in the data frame is effectively acquired, so the reliability of the data frame transmission is improved.
  • the LR-STF further includes: a second symbol for identifying a tail of the LR-STF.
  • the frequency domain waveform corresponding to the first symbol includes: a DC subcarrier, a protection subcarrier, and an intermediate subcarrier, where the intermediate subcarrier is located between the DC subcarrier and the protection subcarrier in a frequency domain, and the frequency domain of the first symbol
  • the elements in the sequence correspond one-to-one with the frequency domain waveform.
  • the elements in the frequency domain sequence corresponding to the intermediate subcarriers include at least two non-zero elements, there is one zero element between every two non-zero elements.
  • the number of non-zero elements in the frequency domain sequence of the first symbol is greater than fourteen.
  • the number of non-zero elements in the frequency domain sequence of the first symbol is equal to twenty-eight.
  • the basic preamble includes: L-STF, L-LTF, and L-SIG
  • the L-STF includes at least two L-STF symbols
  • the content of each L-STF symbol is the same
  • each L-STF symbol corresponds to
  • the period of the time domain waveform is 0.8 microseconds
  • the time domain waveform corresponding to the second symbol is a waveform processed by the first waveform in a preset transformation manner
  • the first waveform is: a time domain waveform corresponding to the first symbol, and a half
  • the preset transformation manner includes: multiplying by -1, taking the inverse waveform Multiply by -1 and then take the inverse waveform, multiply by j, multiply by -j, multiply by j, then take the inverse waveform or multiply by -j and then take the
  • the HEW preamble includes: RL-SIG, RL-LTF, signaling field, HE-STF, and HE-LTF
  • the RL-LTF includes: at least one L-LTF arranged in the time domain.
  • the signaling field includes: at least one LR-SIG symbol arranged in the time domain, or at least one LR-SIG symbol arranged in the frequency domain, and the content of each LR-SIG symbol is the same
  • Each LR-SIG symbol includes an LR-SIG-A symbol, or each LR-SIG symbol includes an LR-SIG-A symbol and an LR-SIG-B symbol.
  • the signaling field includes: at least one LR-SIG module arranged in the time domain, or at least one LR-SIG module arranged in the frequency domain, and the LR-SIG module includes: adopting cyclic shift the way The cyclic prefix of the processed LR-SIG body and the LR-SIG body, the LR-SIG body includes the LR-SIG symbols processed by the DCM method, and the contents of each LR-SIG symbol are the same, and each LR-SIG symbol The high efficiency signaling A field LR-SIG-A symbol is included, or each LR-SIG symbol includes an LR-SIG-A symbol and a high efficiency signaling B field LR-SIG-B symbol.
  • the HE-LTF includes: p HE-LTF symbols arranged in the time domain, the content of each HE-LTF symbol is the same, and the transmit power corresponding to the HE-LTF symbol is greater than the preset transmit power,
  • n is an integer greater than zero.
  • the data part adopts OFDMA mode, carries LR-DATA and HE-DATA, or carries LR-DATA
  • LR-DATA includes: at least one LR-DATA symbol arranged in the time domain, or, in frequency At least one LR-DATA symbol arranged on the domain, and the contents of each LR-DATA symbol are the same.
  • the RL-SIG includes: at least one L-SIG processed in a preset manner in a time domain, and the preset manner corresponds to a type of the data frame.
  • the signaling field includes three or four LR-SIG modules arranged in the time domain, or three or four LR-SIG modules arranged in the frequency domain.
  • the data frame is composed of LR-STF, L-STF, L-LTF, L-SIG, RL-SIG, RL-LTF, signaling field, HE-STF, HE-LTF, and data part.
  • the data frame generated by the transmitting end includes: an LR preamble, a basic preamble, an HEW preamble, and a data part
  • the LR preamble includes: LR-STF, and LR-STF is used. Timing synchronization. Since the frame header of the data frame is LR-STF, and the signal-to-noise ratio supported by the LR-STF is relatively low, the receiving end supporting the LR mode can easily receive the data frame when transmitting the data frame, and can The data in the data frame is effectively acquired, so the reliability of the data frame transmission is improved.
  • the embodiment of the present invention provides another data transmission method, where the data transmission method can be used for a receiving end, and the receiving end can be a receiving end supporting the LR mode, and the receiving end supporting the LR mode can be Supporting LR mode AP or STA supporting LR mode, the data transmission method can be packaged include:
  • Step 501 Receive a data frame sent by the sending end, where the data frame includes: an LR preamble, a basic preamble, an HEW preamble, and a data part, where the LR preamble includes: LR-STF, and the LR-STF includes: at least two arranged in the time domain.
  • the first symbol, the content of each first symbol is the same, the period of the time domain waveform corresponding to the first symbol is 1.6 microseconds, and the LR-STF is used for timing synchronization.
  • Step 502 Generate a reference frame according to the data frame, where the reference frame is delayed by a preset time in the time domain than the data frame, and the preset time is at least one time of a period of the time domain waveform corresponding to the first symbol.
  • Step 503 Perform autocorrelation detection on the data frame and the reference frame.
  • Step 504 Determine a valid part in the data frame according to the detection result.
  • Step 505 Parse the data frame according to the valid part, and obtain data to be transmitted in the data frame.
  • the data frame received by the receiving end includes: an LR preamble, a basic preamble, an HEW preamble, and a data part
  • the LR preamble includes: LR-STF, LR-STF. Synchronized at timing. Since the signal-to-noise ratio supported by the LR-STF is low, the receiving end supporting the LR mode can effectively acquire data in the data frame, thereby improving the reliability of the data frame transmission.
  • the LR receiving end delays the data frame by an integer multiple of 1.6 microseconds of the period of the first symbol in the LR preamble, so that the LR receiving end can detect the LR-STF, and the HEW receiving end delays the data frame.
  • the period of the L-STF symbol in the preamble is 0.8 microseconds to obtain a reference frame. Therefore, the HEW receiving end cannot detect the LR-STF, that is, the LR receiving end can perform timing synchronization using the LR-STF in the data frame, and can satisfy the HEW.
  • the receiving end uses the L-STF for timing synchronization, so the usability of the data frame is high.
  • the embodiment of the present invention provides another data transmission method, which can be used for an LR sending end and an LR receiving end, and the LR sending end can be simultaneously supported in FIG. 1-1.
  • the LR receiving end may be the STA-2 supporting the LR mode in FIG. 1-1, and the data transmission method may include:
  • Step 601 The LR sending end generates a data frame according to the data to be transmitted.
  • FIG. 6-2 is a schematic structural diagram of a data frame according to an embodiment of the present invention. As shown in FIG.
  • the data frame may include: LR preamble, base preamble, HEW preamble and data part, wherein the LR preamble may include: LR-STF; the base preamble may include: L-STF, L-LTF, and L-SIG; and the HEW preamble may include: RL-SIG, RL - LTF, Signaling Field, HE-STF, and HE-LTF.
  • FIG. 6-3 is a schematic structural diagram of an RL-STF according to an embodiment of the present invention.
  • the RL-STF may include: at least two first symbols A arranged in a time domain, and each The first symbols A are all the same, and the period of the time domain waveform corresponding to each of the first symbols A is 1.6 microseconds, and the LR-STF can be used for timing synchronization.
  • the frame header of the data frame provided by the embodiment of the present invention is an LR preamble, and the signal-to-noise ratio supported by the LR-STF in the LR preamble is relatively low, so that the LR receiving end can be easily received when transmitting the data frame.
  • the data frame is capable of efficiently acquiring data in the data frame.
  • the period of the time domain waveform corresponding to the first symbol in the LR-STF is 1.6 microseconds
  • the L-STF in the base preamble may include at least two L-STF symbols, and the period of each L-STF symbol is 0.8 micro.
  • Seconds that is, the period of the time domain waveform corresponding to the first symbol is twice the period of the L-STF symbol.
  • the receiving end supporting the HEW mode obtains a reference frame of the L-STF symbol period (0.8 microseconds) in the data frame delay, and performs the data frame and the reference frame.
  • the period of the first symbol in the LR-STF generated by the transmitting end supporting the LR mode is 1.6 microseconds, and the receiving end supporting the HEW mode performs the self after receiving the data frame.
  • the correlation detection is performed, the LR-STF in the data frame is not detected, and the receiving end supporting the HEW mode first detects the L-STF in the base preamble.
  • the receiving end supporting the LR mode delays the data frame by the period of the LR-STF symbol in the LR-STF (1.6 microseconds) to obtain a reference frame, and the data frame and The auto-correlation detection is performed on the reference frame.
  • the period of the first symbol in the LR-STF generated by the transmitting end supporting the LR mode is 1.6 microseconds, and the receiving end supporting the LR mode receives the data frame.
  • the LR-STF in the data frame can be detected. Therefore, the receiving end supporting the LR mode can perform timing synchronization according to the LR-STF in the data frame, and the receiving end supporting the HEW mode can perform timing synchronization according to the L-STF in the data frame, so that the data frame provided by the embodiment of the present invention It can be applied to both the receiving end supporting the LR mode and the receiving end supporting the HEW mode. Therefore, the usability of the data frame in the embodiment of the present invention is high.
  • the frequency domain waveform corresponding to the first symbol A of the LR-STF may include: a DC subcarrier, a protection subcarrier, and an intermediate subcarrier, where the intermediate subcarrier is located between the DC subcarrier and the protection subcarrier in the frequency domain.
  • the frequency domain waveform corresponding to the first symbol A of the LR-STF may be in one-to-one correspondence with the elements in the frequency domain sequence of the first symbol A of the LR-STF, and the frequency domain sequence of the first symbol A is non-zero.
  • the number of the numbers may be greater than fourteen.
  • the number of non-zero elements in the frequency domain sequence of the first symbol A is equal to twenty-eight.
  • the element corresponding to the intermediate subcarrier includes at least two non-zero elements, and each of the two non-zero elements There may be a zero element between each other. Since there is one zero element between every two non-zero elements, the period of the time domain waveform corresponding to the first symbol A is corresponding to the L-STF symbol in the L-STF in the related art. The period of the time domain waveform is twice as large.
  • At least one candidate symbol may be first generated according to the data to be transmitted, and the number of non-zero elements in the frequency domain sequence of each candidate symbol More than fourteen, optionally, the frequency domain sequence of each candidate symbol may include twenty-eight non-zero elements; then, among the at least one candidate symbol to be generated, the peak-to-average ratio of the corresponding time domain waveform is minimum And the peak-lobe of the autocorrelation function of the corresponding time domain waveform is the first symbol compared to the largest candidate symbol.
  • the frequency domain sequence of the first symbol may include twenty-eight non-zero elements.
  • the number of non-zero elements in the frequency domain sequence of the candidate symbol is equal to fourteen. In the embodiment of the present invention, the number of non-zero elements in the frequency domain sequence of the candidate symbol is greater than fourteen. Therefore, the present invention In the embodiment, when a certain candidate symbol is selected as the first symbol in the at least one candidate symbol, the selected base number is larger. Therefore, the peak-to-average ratio of the time domain waveform corresponding to the first symbol determined in the embodiment of the present invention is larger.
  • a peak-to-average ratio of a time domain waveform corresponding to the first symbol determined by the method of the related art, and an autocorrelation function of the time domain waveform corresponding to the first symbol determined in the embodiment of the present invention is greater than a correlation coefficient of the related art.
  • the probability of the peak-to-valley ratio of the autocorrelation function of the time domain waveform corresponding to the first symbol determined by the method is large.
  • the peak-to-average ratio of the time domain waveform corresponding to the first symbol A in the RL-STF in the embodiment of the present invention may be smaller than the preset peak-to-average ratio threshold, which corresponds to the first symbol A in the RL-STF in the embodiment of the present invention.
  • the peak-to-valley ratio of the autocorrelation function of the time domain waveform may be greater than the preset peak-to-valley ratio threshold.
  • the preset peak-to-average ratio threshold may be a peak-to-average ratio of a time domain waveform of the L-STF symbol in the L-STF in the related art, and the preset peak-to-average ratio threshold may be 2.24 dB (decibel), and the preset peak-to-valley ratio threshold
  • the peak-to-valley ratio of the autocorrelation function of the time domain waveform corresponding to the L-STF symbol in the L-STF in the related art may be 10.9 dB.
  • the peak-to-average ratio of the time domain waveform corresponding to the first symbol A in the RL-STF in the embodiment of the present invention may be 1.82 dB, and the autocorrelation of the time domain waveform corresponding to the first symbol A in the RL-STF
  • the peak-to-valley ratio of the function can be 17.2 dB.
  • the peak-to-average ratio of the waveform is inversely proportional to the effective value of the waveform, and the peak-to-valve ratio of the autocorrelation function of a function is proportional to the amplitude of the waveform peak of the function.
  • the peak-to-average ratio of the time domain waveform corresponding to the first symbol A is smaller than the peak-to-average ratio of the time domain waveform corresponding to the L-STF symbol in the L-STF in the related art, and the time corresponding to the first symbol A in the LR-STF
  • the peak-to-valley ratio of the autocorrelation function of the domain waveform is smaller than the peak-to-valid ratio of the autocorrelation function of the time domain waveform corresponding to the L-STF symbol in the L-STF in the related art, and therefore, the LR-STF in the embodiment of the present invention
  • the effective value of the time domain waveform corresponding to a symbol A is greater than the effective value of the time domain waveform corresponding to the L-STF symbol in the L-STF in the related art.
  • the first symbol A in the LR-STF corresponds to the time.
  • the amplitude of the waveform peak of the autocorrelation function of the domain waveform is larger than the amplitude of the waveform peak of the autocorrelation function of the time domain waveform corresponding to the L-STF symbol in the L-STF in the related art, that is, in the LR-STF in the embodiment of the present invention.
  • the reliability of the first symbol A transmission is high.
  • the 64 frequency domain waveforms may be numbered from -32 to +31.
  • the DC subcarriers may be frequency domain waveforms numbered -1, 0, and +1, and the protection subcarriers may be numbered -32, -31, -30, -29, +29, +30, +31, respectively.
  • the frequency domain waveform, the intermediate subcarrier between the DC subcarrier and the guard subcarrier may be frequency domain waveforms numbered -28 to -2 and +2 to +28, respectively.
  • the first symbol A of the LR-STF may correspond to any one of the following eight frequency domain sequences S.
  • the eight frequency domain sequences S can be:
  • the LR-STF may further include: a second symbol B for identifying the tail of the LR-STF.
  • the LR-STF is adjacent to the L-STF, and both the LR-STF and the L-STF can be used for timing synchronization of the data frame, so the identifier for identifying the LR-STF tail is used.
  • the second symbol B is capable of effectively distinguishing the LR-STF from the L-STF.
  • the time domain waveform corresponding to the second symbol B is a waveform processed by using a preset transformation manner
  • the first waveform may be The time domain waveform corresponding to the first symbol A, the time domain waveform corresponding to the first symbol A of the half cycle, the time domain waveform corresponding to the L-STF symbol, or the time domain waveform corresponding to the L-STF symbol of the half cycle
  • the preset conversion method may include: multiplying by -1, taking a reverse waveform, multiplying by -1 and then taking a reverse waveform, multiplying by j, multiplying by -j, multiplying by j, taking a reverse waveform, or multiplying by Take the reverse waveform after -j.
  • the second symbol B of the LR-STF may be derived from the first symbol A in the LR-STF, but the second symbol B of the LR-STF is different from the first symbol A in the LR-STF; the LR-STF
  • the second symbol B can also be derived from the L-STF symbol in the L-STF, but the second symbol B of the LR-STF is different from the L-STF symbol.
  • the second symbol B in the LR-STF corresponds to The period of the time domain waveform may be 1.6 microseconds.
  • the second symbol B different from the first symbol A may be obtained according to the first symbol A in the LR-STF.
  • the second symbol B may be the following seven types. Any of the types:
  • B -A, that is, the time domain waveform corresponding to the second symbol B is equal to the negative waveform of the time domain waveform corresponding to the first symbol A;
  • the time domain waveform corresponding to the second symbol B is the reverse waveform of the time domain waveform corresponding to the first symbol A, and the last signal of the time domain waveform corresponding to the first symbol A is equal to the time domain waveform corresponding to the second symbol B.
  • the first signal, the second last signal of the time domain waveform corresponding to the first symbol A is equal to the second time domain signal of the time domain waveform corresponding to the second symbol B, and so on;
  • the time domain waveform corresponding to the second symbol B is that the inverse waveform of the time domain waveform corresponding to the first symbol A is negative, and the result of the negative of the last signal of the time domain waveform corresponding to the first symbol A is equal to the second symbol.
  • the first signal of the time domain waveform corresponding to B, the second last time signal of the time domain waveform corresponding to the first symbol A is negatively equal to the second time domain signal of the time domain waveform corresponding to the second symbol B, Such push;
  • B -j*A, that is, the time domain waveform corresponding to the second symbol B is the waveform of the time domain waveform corresponding to the first symbol A multiplied by -j.
  • the time domain waveform corresponding to the second symbol B is the inverse waveform of the time domain waveform corresponding to the first symbol A and multiplied by the waveform after j, that is, the last signal of the time domain waveform corresponding to the first symbol A is multiplied by j.
  • the subsequent result is equal to the first signal of the time domain waveform corresponding to the second symbol B, and the result of multiplying the penultimate signal of the time domain waveform corresponding to the first symbol A by j is equal to the time domain waveform corresponding to the second symbol B.
  • the time domain waveform corresponding to the second symbol B is the inverse waveform of the time domain waveform corresponding to the first symbol A and multiplied by -j, that is, the last signal of the time domain waveform corresponding to the first symbol A is multiplied by -
  • the result of j is equal to the first signal of the time domain waveform corresponding to the second symbol B
  • the result of multiplying the second to last signal of the time domain waveform corresponding to the first symbol A by -j is equal to the time domain waveform corresponding to the second symbol B
  • the second time domain signal, and so on is the inverse waveform of the time domain waveform corresponding to the first symbol A and multiplied by -j, that is, the last signal of the time domain waveform corresponding to the first symbol A is multiplied by -
  • the result of j is equal to the first signal of the time domain waveform corresponding to the second symbol B
  • the second symbol B in the LR-STF corresponds to The period of the time domain waveform may be 0.8 microseconds.
  • the second symbol B different from the first symbol A may be obtained according to the first symbol A in the LR-STF.
  • the second symbol B may include the following fourteen Any of the types:
  • the time domain waveform corresponding to the second symbol B is equal to the waveform after the waveform of the first half period of the time domain waveform corresponding to the first symbol A is negative;
  • the time domain waveform corresponding to the second symbol B is equal to the waveform after the negative half of the waveform of the time domain waveform corresponding to the first symbol A is negative;
  • the time domain waveform corresponding to the second symbol B is the inverse waveform of the waveform of the first half period of the time domain waveform corresponding to the first symbol A, that is, the last waveform of the first half period of the time domain waveform corresponding to the first symbol A a signal equal to the first signal of the time domain waveform corresponding to the second symbol B, the second to last signal of the waveform of the first half of the time domain waveform corresponding to the first symbol A, equal to the time domain corresponding to the second symbol B The second signal of the waveform, and so on.
  • the time domain waveform corresponding to the second symbol B is the inverse waveform of the waveform of the second half period of the time domain waveform corresponding to the first symbol A, that is, the waveform of the second half period of the time domain waveform corresponding to the first symbol A.
  • the last signal is equal to the first signal of the time domain waveform corresponding to the second symbol B, and the second to last signal of the waveform of the second half of the time domain waveform corresponding to the first symbol A is equal to the corresponding symbol of the second symbol B.
  • the second time domain signal of the time domain waveform, and so on is the inverse waveform of the waveform of the second half period of the time domain waveform corresponding to the first symbol A, that is, the waveform of the second half period of the time domain waveform corresponding to the first symbol A.
  • the time domain waveform corresponding to the second symbol B is that the inverse waveform of the waveform of the first half period corresponding to the first symbol A is negative, that is, the waveform of the first half period of the time domain waveform corresponding to the first symbol A
  • the result of taking the negative of the last signal is equal to the first signal of B
  • the result of the second-to-last signal of the waveform of the first half of the time domain waveform corresponding to the first symbol A is negative, equal to the time domain corresponding to the second symbol B.
  • the second time domain signal of the waveform and so on.
  • the time domain waveform corresponding to the second symbol B is negative for the reverse waveform of the waveform of the second half of the waveform A, that is, the last signal of the waveform of the second half of the time domain waveform corresponding to the first symbol A is negative.
  • the result is equal to the first signal of the time domain waveform corresponding to the second symbol B, and the second to last signal of the waveform of the second half of the time domain waveform corresponding to the first symbol A is negative, equal to the second symbol
  • the time domain waveform corresponding to the second symbol B is equal to the waveform of the first half period of the time domain waveform corresponding to the first symbol A multiplied by the waveform after j;
  • the time domain waveform corresponding to the second symbol B is equal to the waveform of the second half period of the time domain waveform corresponding to the first symbol A multiplied by the waveform after j;
  • the time domain waveform corresponding to the second symbol B is equal to the waveform of the first half period of the time domain waveform corresponding to the first symbol A multiplied by the waveform after -j;
  • the time domain waveform corresponding to the second symbol B is equal to the waveform of the second half period of the time domain waveform corresponding to the first symbol A multiplied by the waveform after -j;
  • the time domain waveform corresponding to the second symbol B is equal to the result of multiplying the inverse waveform of the waveform of the first half period of the time domain waveform corresponding to the first symbol A by j, that is, the first half of the time domain waveform corresponding to the first symbol A
  • the result of multiplying the last signal of the periodic waveform by j is equal to the first signal of the time domain waveform corresponding to the second symbol B, and the second to last signal of the waveform of the first half period of the time domain waveform corresponding to the first symbol A
  • the result of multiplying by j is equal to the second time domain signal of the time domain waveform corresponding to the second symbol B, and so on.
  • the time domain waveform corresponding to the second symbol B is equal to the result of multiplying the inverse waveform of the waveform of the second half of the time domain waveform corresponding to the first symbol A by j, that is, the time domain waveform corresponding to the first symbol A
  • the result of multiplying the last signal of the half cycle waveform by j is equal to the first signal of the time domain waveform corresponding to the second symbol B, and the reciprocal of the waveform of the second half of the time domain waveform corresponding to the first symbol A
  • the result of multiplying two signals by j is equal to the second time domain signal of the time domain waveform corresponding to the second symbol B, and so on.
  • the time domain waveform corresponding to the second symbol B is equal to the inverse waveform of the waveform of the first half period of the time domain waveform corresponding to the first symbol A multiplied by -j, that is, the first half of the time domain waveform corresponding to the first symbol A
  • the result of multiplying the last signal of the period of the period by -j is equal to the first signal of the time domain waveform corresponding to the second symbol B, and the second to last of the waveform of the first half of the time domain waveform corresponding to the first symbol A
  • the result of multiplying the signal by -j is equal to the second time domain signal of the time domain waveform corresponding to the second symbol B, and so on.
  • the time domain waveform corresponding to the second symbol B is equal to the inverse waveform of the waveform of the second half of the time domain waveform corresponding to the first symbol A multiplied by -j, that is, the time domain waveform corresponding to the first symbol A
  • the result of multiplying the last signal of the waveform of the second half of the period by -j is equal to the first signal of the time domain waveform corresponding to the second symbol B, and the waveform of the second half of the time domain waveform corresponding to the first symbol A
  • the result of multiplying the penultimate signal by -j is equal to the second time domain signal of the time domain waveform corresponding to the second symbol B, and so on.
  • the second symbol B in the LR-STF corresponds to The period of the time domain waveform may be 0.8 microseconds, and the period of the time domain waveform corresponding to the L-STF symbol C of the L-STF may also be 0.8 microseconds.
  • the L-STF symbol C in the L-STF may be used.
  • the second symbol B in the LR-STF different from the L-STF symbol C in the L-STF is obtained.
  • the second symbol B may include any one of the following 7 types:
  • B -C, that is, the time domain waveform corresponding to the second symbol B is equal to the negative waveform of the time domain waveform corresponding to the L-STF symbol C;
  • the time domain waveform corresponding to the second symbol B is the inverse waveform of the time domain waveform corresponding to the L-STF symbol C, and the last signal of the time domain waveform corresponding to the L-STF symbol C is equal to the time domain corresponding to the second symbol B.
  • the first signal of the waveform, the second-to-last signal of the time-domain waveform corresponding to the L-STF symbol C is equal to the second time-domain signal of the time-domain waveform corresponding to the second symbol B, and so on;
  • the time domain waveform corresponding to the second symbol B is the inverse waveform of the time domain waveform corresponding to the L-STF symbol C, and the negative waveform of the time domain waveform corresponding to the L-STF symbol C is negative.
  • the first signal of the time domain waveform corresponding to the two symbol B, the second signal of the time domain waveform corresponding to the L-STF symbol C is negative, and the second time domain of the time domain waveform corresponding to the second symbol B is equal to Signal, and so on;
  • B -j*C, that is, the time domain waveform corresponding to the second symbol B is the waveform of the time domain waveform corresponding to the L-STF symbol C multiplied by -j.
  • the time domain waveform corresponding to the second symbol B is the inverse waveform of the time domain waveform corresponding to the L-STF symbol C and multiplied by the waveform after j, that is, the last signal multiplication of the time domain waveform corresponding to the L-STF symbol C
  • the result after j is equal to the first signal of the time domain waveform corresponding to the second symbol B
  • the L-STF symbol C corresponds to
  • the result of multiplying the penultimate signal of the time domain waveform by j is equal to the second time domain signal of the time domain waveform corresponding to the second symbol B, and so on.
  • the time domain waveform corresponding to the second symbol B is the inverse waveform of the time domain waveform corresponding to the L-STF symbol C and multiplied by the result of -j, that is, the last signal multiplication of the time domain waveform corresponding to the L-STF symbol C
  • the result of -j is equal to the first signal of the time domain waveform corresponding to the second symbol B
  • the result of multiplying the second to last signal of the time domain waveform corresponding to the L-STF symbol C by -j is equal to the corresponding of the second symbol B
  • the second time domain signal of the time domain waveform, and so on is the inverse waveform of the time domain waveform corresponding to the L-STF symbol C and multiplied by the result of -j, that is, the last signal multiplication of the time domain waveform corresponding to the L-STF symbol C
  • the result of -j is equal to the first signal of the time domain waveform corresponding to the second symbol B
  • the second symbol B in the LR-STF corresponds to The period of the time domain waveform may be 1.6 microseconds, and the period of the time domain waveform corresponding to the L-STF symbol C of the L-STF may also be 0.8 microseconds.
  • the first half cycle waveform of the time domain waveform corresponding to the second symbol B may be composed of the above seven waveforms obtained by changing the L-STF symbol C, and the second half of the time domain waveform corresponding to the second symbol B.
  • the waveform may be composed of the above seven waveforms obtained by changing the L-STF symbol C, and the first half period and the second half period of the time domain waveform corresponding to the second symbol B constitute one period of the second symbol B,
  • the time domain waveform of the second symbol B may be any one of 49 types of time domain waveforms.
  • the LR-STF includes a total of seven first symbols A and one second symbol B, and the length of the time domain waveform corresponding to the first symbol A is 1.6 microseconds
  • the LR-STF The length of the time domain waveform corresponding to the second symbol B may be 0.8 microseconds.
  • the length of the time domain waveform corresponding to the LR-STF is 12 microseconds.
  • the LR-STF includes a total of nine first symbols A and one second symbol B, and the length of the time domain waveform corresponding to the first symbol A is 1.6 microseconds, and the LR-STF The length of the time domain waveform corresponding to the second symbol B may be 0.8 microseconds. At this time, the length of the time domain waveform corresponding to the LR-STF is 16 microseconds.
  • the L-STF, L-LTF, and L-SIG in the basic preamble may be the same as the L-STF, L-LTF, and L-SIG in the basic preamble in the related art, and the LR-STF in the LR preamble is
  • the L-STF in the base preamble can be used for packet detection of data frames and synchronization of data frames; the L-LTF can be used to detect a channel carrying a field of signaling, and the field of the bearer signaling can include: an L-SIG, The signaling field in the RL-SIG and HEW preamble in the HEW preamble.
  • the field carrying the signaling in the data frame can use the OFDM symbol of one symbol length. Therefore, the L-LTF can be used to double the detection.
  • the channel of the symbol length OFDM symbol; the L-SIG can be used to carry information such as length information of the data frame, transmission rate information of the data frame, and coding mode information of the data frame.
  • the RL-SIG in the HEW preamble may include at least one L-SIG processed in a preset manner in a time domain, the preset manner corresponding to the type of the data frame, and the RL-SIG may also carry The default way to handle this L-SIG. It should be noted that, when the RL-SIG is generated, the L-SIG in the basic preamble may be processed according to a preset manner corresponding to the type of the data frame to be generated, and the processed L-SIG is at least in the time domain.
  • Table 1 reflects the correspondence between the preset mode and the type of the data frame.
  • Table 1 if a data frame of the LR type is to be generated, the preset mode and the type of the data frame according to Table 1 may be used.
  • the L-SIG may be processed in the first preset manner, and the processed L-SIG is in the time domain. Repeat at least one time to get the RL-SIG.
  • the preset mode corresponding to the data frame of the LR type is determined to be the second preset mode according to the corresponding relationship between the preset mode and the type of the data frame.
  • the L-SIG may be processed in a second preset manner, and the processed L-SIG is repeated at least twice in the time domain to obtain an RL-SIG.
  • the RL-LTF in the HEW preamble may comprise at least one L-LTF arranged in the time domain, ie the RL-LTF is at least one repetition of the L-LTF.
  • the RL-LTF can include two L-LTFs, a total of three L-LTFs can be included in the data frame. Both the RL-LTF and the L-LTF can be used for the measurement of the channel of the signaling field.
  • the signaling field in the HEW preamble can include: at least one LR-SIG symbol arranged in the time domain, or at least one LR-SIG symbol arranged in the frequency domain, and each LR-SIG symbol The content is the same.
  • an LR-SIG symbol may be first generated according to the data to be transmitted, and the LR-SIG symbol is subjected to channel coding processing, and then the channel-coded LR-SIG symbol is multi-timed or frequency-multiplied.
  • the domain repeats to obtain at least one channel-coded LR-SIG symbol arranged in the time domain or the frequency domain, and finally at least one channel-coded LR-SIG symbol After the number is interleaved, a signaling field is obtained.
  • the channel coding mode may be a binary convolutional code mode. Since the LR-SIG symbol processed by the channel coding is subjected to multiple time domain or frequency domain repetition, at least one channel coding processed LR-SIG symbol arranged in the time domain or the frequency domain is obtained, thereby improving signaling. The reliability of field transfer. It should be noted that when the repetition multiple is 2, the channel coding manner may be the same as that in the MCS 10 in 802.11ax.
  • the signaling field in the HEW preamble may include at least one LR-SIG module arranged in the time domain or at least one LR-SIG module arranged in the frequency domain.
  • the LR-SIG module may include: a cyclic prefix of the LR-SIG body processed in a cyclic shift manner and an LR-SIG body, and the LR-SIG body may include an LR-SIG symbol processed by the DCM method, and each LR The contents of the -SIG symbol are the same, each LR-SIG symbol includes a high efficiency signaling A field LR-SIG-A symbol, or each LR-SIG symbol includes an LR-SIG-A symbol and a high efficiency signaling B field.
  • LR-SIG-B symbol may be any combination of the LR-SIG symbol.
  • the LR-SIG symbol can be processed by using the DCM method, and the LR-SIG symbol processed by the DCM method is used as the LR-SIG body, and then the cyclic shift mode can be used for the LR.
  • the SIG body repeats and adds a cyclic prefix to the LR-SIG body to generate a signaling field. It should be noted that processing the LR-SIG symbol by the DCM method can improve the diversity gain of the LR-SIG symbol in the frequency domain during transmission.
  • the LR-SIG symbol When generating the signaling field, the LR-SIG symbol may be first generated according to the data to be transmitted, and then the LR-SIG symbol is processed by the DCM method, and the LR-SIG symbol processed by the DCM method is obtained, and the DCM mode is processed.
  • the LR-SIG symbol is used as the LR-SIG body, and then the LR-SIG body is multi-folded in a cyclic shift manner, and a cyclic shift is used to add a loop to the LR-SIG body in the process of repeating.
  • the prefix obtains a signaling field containing at least one LR-SIG module.
  • the content of each LR-SIG symbol is the same, and the multiple repetition can be a 2-fold repetition, a 3-fold repetition, or a 4-fold repetition.
  • the LR-SIG symbol processed by the DCM method may be divided into four parts, which are respectively a first part D1, a second part D2, a third part D3, and a fourth part D4.
  • the signaling field can be first transmitted according to the to-be-transmitted.
  • the data generates the LR-SIG symbol, and then the LR-SIG symbol is processed by the DCM method, and the LR-SIG symbol processed by the DCM method is obtained, and the LR-SIG symbol processed by the DCM method is used as the LR-SIG body. Then, the LR-SIG body is double-repeated by cyclic shifting, and the process of performing 2-fold repetition is performed.
  • a cyclic prefix is added for each LR-SIG body to obtain a signaling field containing two LR-SIG modules.
  • the cyclic prefix of the LR-SIG body processed by the cyclic shift method can be the same as the fourth part D4, and is processed by cyclic shift.
  • the LR-SIG body may include a first portion D1, a second portion D2, a third portion D3, and a fourth portion D4 sequentially arranged in the time domain, and the cyclic prefix of the LR-SIG body that is cyclically shifted processed is located and Before the LR-SIG body processed by the cyclic shift; in the second LR-SIG module arranged in the time domain, the cyclic prefix of the LR-SIG body processed by the cyclic shift method can be the same as the first part D1
  • the LR-SIG body processed in the cyclic shift mode may include the second portion D2, the third portion D3, the fourth portion D4, and the first portion D1 sequentially arranged in the time domain, and is processed by a cyclic shift method.
  • the cyclic prefix of the LR-SIG body is located before the LR-SIG body that has been processed by the cyclic shift method.
  • the signaling field in FIG. 6-7 may be equivalent to an equivalent signaling field, which may include: an equivalent cyclic prefix, a second part D2, a third part D3, a fourth part D4, a a portion D1, a second portion D2, a third portion D3, a fourth portion D4, and a first portion D1,
  • the equivalent cyclic prefix may include: a fourth portion D4 and a first portion D1, with a cyclic prefix of 2 times the equivalent cyclic prefix Therefore, the anti-interference of the LR-SIG symbol in the process of transmission is enhanced, and the accuracy of the parsed LR-SIG symbol is higher when the receiving end parses the signaling field.
  • the signaling field can be first transmitted according to the to-be-transmitted.
  • the data generates the LR-SIG symbol, and then the LR-SIG symbol is processed by the DCM method, and the LR-SIG symbol processed by the DCM method is obtained, and the LR-SIG symbol processed by the DCM method is used as the LR-SIG body. Then, the LR-SIG body is cyclically shifted by 3 times. In the process of performing 3 times repetition, a cyclic prefix is added for each LR-SIG body to obtain a signaling field including three LR-SIG modules. .
  • the first LR-SIG module arranged in the time domain, the cyclic prefix of the LR-SIG body processed by the cyclic shift method can be the same as the fourth part D4, and is processed by the cyclic shift method.
  • the LR-SIG body may include a first portion D1, a second portion D2, a third portion D3, and a fourth portion D4 sequentially arranged in the time domain, and the LR-SIG body processed in a cyclic shift manner
  • the cyclically prefixed LR-SIG body is processed before the LR-SIG body processed in a cyclically shifted manner; in the second LR-SIG module arranged in the time domain, the cyclically shifted LR-SIG body is processed.
  • the prefix may be the same as the first part D1, and the LR-SIG body processed in a cyclic shift manner may include The second part D2, the third part D3, the fourth part D4 and the first part D1 are sequentially arranged in the time domain, and the cyclic prefix of the LR-SIG body processed by the cyclic shift method is located and cyclically shifted Before the processed LR-SIG body; in the third LR-SIG module arranged in the time domain, the cyclic prefix of the LR-SIG body processed by the cyclic shift method can be the same as the second part D2
  • the LR-SIG body processed in a cyclic shift manner may include a third portion D3, a fourth portion D4, a first portion D1, and a second portion D2 sequentially arranged in the time domain, and adopting cyclic shift
  • the cyclic prefix of the LR-SIG body handled by the mode is located before the LR-SIG body processed by the cyclic shift.
  • the signaling field in FIG. 6-8 may be equivalent to an equivalent signaling field, which may include: an equivalent cyclic prefix, a third portion D3, a fourth portion D4, a first portion D1, a second Part D2, third part D3, fourth part D4, first part D1, second part D2, third part D3, fourth part D4, first part D1 and second part D2, the equivalent cyclic prefix is the fourth part D4, the first part D1 and the second part D2, because the equivalent cyclic prefix is 3 times the cyclic prefix, the anti-interference of the LR-SIG symbol in the transmission process is enhanced, and when the receiving end parses the signaling field, The accuracy of the parsed LR-SIG symbol is higher.
  • the signaling field includes four LR-SIG modules (not shown in Figure 6-9) arranged in the time domain, when generating the signaling field, it can be based on the transmission to be transmitted.
  • the data generates the LR-SIG symbol, and then the LR-SIG symbol is processed by the DCM method, and the LR-SIG symbol processed by the DCM method is obtained, and the LR-SIG symbol processed by the DCM method is used as the LR-SIG body.
  • the LR-SIG body is subjected to 4-fold repetition in a cyclic shift manner, and a cyclic prefix is added for each LR-SIG body in the process of performing 4-fold repetition to obtain a signaling field including four LR-SIG modules.
  • the first LR-SIG module arranged in the time domain, the cyclic prefix of the LR-SIG body processed by the cyclic shift method can be the same as the fourth part D4, and is processed by the cyclic shift method.
  • the LR-SIG body may include a first portion D1, a second portion D2, a third portion D3, and a fourth portion D4 sequentially arranged in the time domain, and the LR-SIG body processed in a cyclic shift manner
  • the cyclically prefixed LR-SIG body is processed before the LR-SIG body processed in a cyclically shifted manner; in the second LR-SIG module arranged in the time domain, the cyclically shifted LR-SIG body is processed.
  • the prefix may be the same as the first portion D1, and the LR-SIG body processed in a cyclic shift manner may include the second portion D2, the third portion D3, the fourth portion D4, and the first portion D1 sequentially arranged in the time domain.
  • the cyclic prefix of the LR-SIG body processed in a cyclic shift manner is located and cyclically shifted Before the processed LR-SIG body; in the third LR-SIG module arranged in the time domain, the cyclic prefix of the LR-SIG body processed by the cyclic shift method can be the same as the second part D2 And the LR-SIG body processed in a cyclic shift manner may include a third portion D3, a fourth portion D4, a first portion D1, and a second portion D2 sequentially arranged in the time domain, and adopting cyclic shift
  • the cyclic prefix of the LR-SIG body processed by the mode is located before the LR-SIG body processed by the cyclic shift method; in the fourth LR-SIG module arranged in the time domain, the cyclic shift mode is adopted.
  • the cyclic prefix of the processed LR-SIG body may be the same as the third part D3, and the LR-SIG body processed in a cyclic shift manner may include the fourth part D4 and the first part D1 sequentially arranged in the time domain.
  • the second part D2 and the third part D3, and the cyclic prefix of the LR-SIG body processed by the cyclic shift method is located before the LR-SIG body processed by the cyclic shift.
  • the signaling field in FIG. 6-9 may be equivalent to an equivalent signaling field, which may include: an equivalent cyclic prefix, a fourth portion D4, a first portion D1, a second portion D2, and a third Part D3, fourth portion D4, first portion D1, second portion D2, third portion D3, fourth portion D4, first portion D1, second portion D2, third portion D3, fourth portion D4, first portion D1
  • an equivalent cyclic prefix may include: an equivalent cyclic prefix, a fourth portion D4, a first portion D1, a second portion D2, and a third Part D3, fourth portion D4, first portion D1, second portion D2, third portion D3, fourth portion D4, first portion D1
  • the second part D2 and the third part D3, the equivalent cyclic prefix is the fourth part D4, the first part D1, the second part D2 and the third part D3, since the equivalent cyclic prefix is 4 times the cyclic prefix, so the enhancement
  • the transmitting end may generate a data frame according to the data sent by each receiving end according to the need, and the data part in the data frame may include the sending end to the data The data sent by the receiving end.
  • the number of spatial streams serving the receiving end is three
  • the number of spatial streams corresponding to the data that the transmitting end needs to send to the receiving end is three, so The number of spatial streams corresponding to the data portion in the data frame is 3.
  • the transmitting end may generate a data frame according to the data sent by each receiving end according to the need.
  • the data part of the data frame may include the first data sent by the sending end to the first receiving end, the second data sent by the sending end to the second receiving end, and the third number sent by the sending end to the third receiving end.
  • the data and the fourth data sent by the transmitting end to the fourth receiving end Assume that the number of spatial streams on the receiving end of service No. 1 is 1, and the number of spatial streams on the receiving end of service No. 2 is 2, and that the receiving end of service No. 3 is empty.
  • the number of the inter-flow is 1, and the number of spatial streams on the receiving end of the fourth is 1.
  • the number of spatial streams corresponding to the first data is 1
  • the number of spatial streams corresponding to the second data is 2
  • the number of spatial streams corresponding to the data portion in the data frame is 5.
  • the signaling field may carry indication information indicating the number of spatial streams of each receiving end of the service, that is, the indication information on the signaling field may indicate a spatial stream corresponding to the data sent to each receiving end in the data part.
  • the number, and the sum of the number of spatial streams indicated by the indication information may be less than eight.
  • the sum of the number of spatial streams indicated by the indication information may be less than or equal to 4.
  • the number of total spatial streams indicated by the indication information may also be less than or equal to q, and q may be 5, 6, or 7.
  • each of the above LR-SIG symbols may include an LR-SIG-A symbol, or each LR-SIG symbol may include both an LR-SIG-A symbol and an LR-SIG-B symbol.
  • the LR-SIG-A symbol can be the same as the HE-SIG-A in the data frame shown in Figure 1-2, and the LR-SIG-A symbol can be processed using a specific MCS, such as MCS 0 or MCS 1, LR.
  • - SIG-A can carry: MCS, LR-SIG-B symbol length corresponding to LR-SIG-B symbol, base station identifier (English: Base Station color; abbreviation: BSS color), data frame type indication, transmission window duration (English: Transmission opportunity duration; referred to as: TXOP duration) at least one of them.
  • the LR-SIG-B symbol can be the same as the HE-SIG-B in the data frame shown in Figure 1-2.
  • the LR-SIG-B symbol can carry: the number of receiving ends and the identity number of the STA (English: Identification) Abbreviation: ID), the number of spatial streams corresponding to each receiving end (English: Number of Spatial Streams, NSTS for short), Transmit beamforming (English: Transmit beamforming; TxBF for short), MCS for data frame, channel coding the way.
  • the channel used for data transmission is an 80 MHz channel, and only the channel of 20 MHz (megahertz) is required to transmit the LR-SIG-A symbol, that is, the channel of 80 MHz is still 60 MHz.
  • the LR-SIG-A symbol can be transmitted on the remaining 60 MHz channel, that is, four LR-SIG-A symbols can be transmitted on the 80 MHz channel; if the LR-SIG-B symbol includes the first LR- The SIG-B symbol and the second LR-SIG-B symbol, and both the first LR-SIG-B symbol and the second LR-SIG-B symbol are required to occupy a channel of 20 MHz, and the 80 MHz channel can be equally divided.
  • a third can be used.
  • the 20 MHz channel retransmits the first LR-SIG-B symbol and the second 20 MHz channel transmits the second LR-SIG-B symbol again.
  • the HE-STF in the HEW preamble can be used to adjust the automatic gain control (English: Automatic Gain Control; abbreviation: AGC).
  • AGC Automatic Gain Control
  • the HE-LTF in the HEW preamble can be used to measure the channel of the data part, and the data part in the data frame can adopt the OFDM symbol of four times the symbol length. Therefore, the HE-LTF can be used to detect the OFDM symbol of the quadruple symbol length. Channel.
  • n is an integer greater than zero.
  • m is an upward couple of 3
  • m is a positive integer 4 that is larger than 3 and has the smallest difference from 3
  • p can be 4, 6, or 8 at this time.
  • n may also be 0, which is not limited by the embodiment of the present invention.
  • one spatial stream may correspond to one row element in the P matrix, and each row element may correspond to a HE-LTF symbol transmitted in each spatial stream when the data frame is generated.
  • the P matrix may be an 8 ⁇ 8 matrix, and two senders may exist in the space.
  • the two senders are respectively an LR sender and an HEW sender.
  • the HEW sender may To support the sender of HEW mode.
  • the number of spatial streams corresponding to the data part in the data frame generated by the LR transmitting end is 1, and the LR transmitting end can adopt 8 ⁇ 8.
  • the matrix generates HE-LTF in the data frame, and the LR sender can generate 8 HE-LTF symbols arranged in the time domain, and the contents of the 8 HE-LTF symbols are the same, and the HE-LTF symbols are in the time domain.
  • the time domain diversity was obtained repeatedly.
  • the number of spatial streams corresponding to the data part in the data frame generated by the HEW transmitting end is 1, and the HEW transmitting end can generate the HE in the data frame by using the 8 ⁇ 8 matrix.
  • the HEW sender can generate 8 HE-LTF symbols arranged in the time domain, and the contents of the 8 HE-LTF symbols are the same, and the HE-LTF symbols are repeatedly obtained in the time domain to obtain the time domain. separation.
  • the P matrix may be a 4 ⁇ 4 matrix, and two senders may exist in the space, the two The senders are an LR sender and a HEW sender.
  • the number of spatial streams corresponding to the data part in the data frame generated by the LR transmitting end is 1, and the LR transmitting end can adopt 4 ⁇ 4.
  • the matrix generates the HE-LTF in the data frame
  • the LR sender can generate four HE-LTF symbols arranged in the time domain, and the contents of the four HE-LTF symbols are the same, and then the four HEs can be
  • the LTF symbols are repeated to obtain eight HE-LTF symbols arranged in the time domain, and the contents of each HE-LTF symbol are the same, and the HE-LTF symbols are repeatedly obtained in the time domain to obtain time domain diversity.
  • the number of spatial streams corresponding to the data part in the data frame generated by the HEW transmitting end is 1, and the HEW transmitting end can generate the HE in the data frame by using the 4 ⁇ 4 matrix.
  • the HEW sender can generate 4 HE-LTF symbols arranged in the time domain, and the contents of the 4 HE-LTF symbols are the same, and then the 4 HE-LTF symbols can be repeated to obtain 8
  • the HE-LTF symbols arranged in the time domain, and the contents of each HE-LTF symbol are the same, and the HE-LTF symbols are repeatedly obtained in the time domain to obtain time domain diversity.
  • the P matrix may be a 4 ⁇ 4 matrix, or an 8 ⁇ 8 matrix.
  • the number of spatial streams corresponding to the data part in the data frame generated by the LR transmitting end is 1, and the LR transmitting end can adopt 8 ⁇ 8.
  • the matrix generates HE-LTF in the data frame, and the LR sender can generate 8 HE-LTF symbols arranged in the time domain, and the contents of the 8 HE-LTF symbols are the same, and the HE-LTF symbols are in the time domain.
  • the time domain diversity was obtained repeatedly.
  • the number of spatial streams corresponding to the data part in the data frame generated by the HEW transmitting end is 1, and the HEW transmitting end can generate the HE in the data frame by using the 4 ⁇ 4 matrix.
  • the HEW sender can generate 4 HE-LTF symbols arranged in the time domain, and the contents of the 4 HE-LTF symbols are the same.
  • the P matrix may be a 2 ⁇ 2 matrix, and two senders may exist in the space, and the two senders are respectively an LR sender and an HEW sender.
  • the number of spatial streams corresponding to the data part in the data frame generated by the LR transmitting end is 1, and the LR transmitting end can adopt 2 ⁇ 2.
  • the matrix generates the HE-LTF in the data frame, and the LR transmitter can generate two HE-LTF symbols arranged in the time domain, and the contents of the two HE-LTF symbols are the same.
  • the number of spatial streams corresponding to the data part in the data frame generated by the HEW transmitting end is 1, and the HEW transmitting end can generate the HE in the data frame by using the 2 ⁇ 2 matrix.
  • -LTF, HEW sender can generate 2 HE-LTF symbols arranged in time domain No., and the contents of the two HE-LTF symbols are the same.
  • the power of the HE-LTF sent by the LR transmitting end can be improved to improve the channel detecting capability of the HE-LTF in the data frame generated by the LR transmitting end.
  • the P matrix may be a 4 ⁇ 4 matrix, and two senders may exist in the space, and the two senders are respectively an LR sender and an HEW sender.
  • the number of spatial streams corresponding to the data part in the data frame generated by the LR transmitting end is 3, and the LR transmitting end can adopt 4 ⁇ .
  • the matrix of 4 generates HE-LTF in the data frame, and the LR transmitting end can generate 4 HE-LTF symbols arranged in the time domain on each spatial stream, and the contents of each HE-LTF symbol are the same.
  • the number of spatial streams corresponding to the data part in the data frame generated by the HEW transmitting end is 1, and the HEW transmitting end can generate the HE in the data frame by using the 4 ⁇ 4 matrix.
  • the HEW sender can generate 4 HE-LTF symbols arranged in the time domain, and the contents of the 4 HE-LTF symbols are the same.
  • the power of the HE-LTF sent by the LR transmitting end can be improved to improve the channel detecting capability of the HE-LTF in the data frame generated by the LR transmitting end.
  • the power of the HE-LTF sent by the LR transmitting end can be improved to improve the channel detecting capability of the HE-LTF in the data frame generated by the LR transmitting end.
  • the P matrix may be a 4 ⁇ 4 matrix, and two senders may exist in the space, and the two senders are respectively an LR sender and an HEW sender.
  • the number of spatial streams corresponding to the data part in the data frame generated by the LR sender is 1, and the LR sender can use 4 ⁇ .
  • the matrix of 4 generates HE-LTF in the data frame, and the LR transmitting end can generate four HE-LTF symbols arranged in the time domain on the spatial stream, and the contents of each HE-LTF symbol are the same.
  • the number of spatial streams corresponding to the data part in the data frame generated by the HEW transmitting end is 1, and the HEW transmitting end can generate the HE in the data frame by using the 4 ⁇ 4 matrix.
  • the HEW sender can generate 4 HE-LTF symbols arranged in the time domain, and the contents of the 4 HE-LTF symbols are the same.
  • the power of the HE-LTF sent by the LR transmitting end can be improved to improve the channel detecting capability of the HE-LTF in the data frame generated by the LR transmitting end.
  • the P matrix in the embodiment of the present invention may be replaced by 6 ⁇ 6 or 8 ⁇ 8, that is, the number of HE-LTF symbols generated by the LR sending end and the HEW sending end in FIG. 6-16 may be 6 or 8.
  • the power of the HE-LTF sent by the LR transmitting end can also be improved to improve the channel detecting capability of the HE-LTF in the data frame generated by the LR transmitting end.
  • the P matrix may be a 4 ⁇ 4 matrix, and two senders may exist in the space, the two The senders are the first LR sender and the second LR sender, respectively.
  • the number of spatial streams corresponding to the data part in the data frame generated by the LR transmitting end is 1, and the first LR transmitting end can
  • the HE-LTF in the data frame is generated by using a 4 ⁇ 4 matrix, and the first LR transmitting end can generate four HE-LTF symbols arranged in the time domain on the spatial stream, and each HE-LTF symbol is The content is the same.
  • the second LR transmitting end When there is one spatial stream in the space serving the second LR receiving end, the number of spatial streams corresponding to the data part in the data frame generated by the second LR transmitting end is 1, and the second LR transmitting end may adopt a 4 ⁇ 4 matrix.
  • the HE-LTF in the data frame is generated, and the second LR transmitting end is capable of generating four HE-LTF symbols arranged in the time domain, and the contents of the four HE-LTF symbols are the same.
  • the power of the two LR transmitting ends to transmit the HE-LTF can be improved to improve the channel detecting capability of the HE-LTF in the data frames generated by the two LR transmitting ends.
  • the P matrix in the embodiment of the present invention may be replaced by 6 ⁇ 6 or 8 ⁇ 8, that is, the number of HE-LTF symbols generated by the two LR transmitting ends in FIG. 6-17 may be 6 or 8.
  • the power of the two LR transmitting ends to transmit the HE-LTF can be improved to improve the channel detecting capability of the HE-LTF in the data frames generated by the two LR transmitting ends.
  • the sending power of the HE-LTF when the sending power of the HE-LTF is sent by the LR sending end, the sending power of the LR transmitting end to transmit the HE-LTF may be multiplied by multiple times.
  • the power may be doubled, tripled, or doubled. .
  • the data part may adopt an Orthogonal Frequency Division Multiple Access (OFDMA) mode to carry a low rate data field (English: Low Rate DATA field; abbreviation: LR-DATA ) and high efficiency data fields (English: High Efficiency DATA field; referred to as: HE-DATA), or carry LR-DATA.
  • the LR-DATA may include at least one LR-DATA symbol arranged in the time domain, or at least one LR-DATA symbol arranged in the frequency domain, and the contents of each LR-DATA symbol are the same.
  • the data part in the data frame generated by the LR sending end may adopt the OFDMA mode, and simultaneously carry the LR-DATA and the HE- DATA, the data part can carry the data to be transmitted.
  • the transmitting end is an AP that only supports the LR mode
  • the receiving end is also an STA-2 that only supports the LR mode
  • the data frame transmitted in the channel may all be LR-DATA.
  • the data part in the data frame may simultaneously carry multiple numbers generated by the multiple LR senders by using OFDMA.
  • the LR-DATA in the frame For example, when the LR-DATA of the multiple data frames generated by the multiple LR transmitting ends are LR-DATA1, LR-DATA2, and LE-DATA3, the data portion can simultaneously carry LR-DATA1, LR by means of OFDMA. -DATA2 and LE-DATA3.
  • the entire transmission bandwidth of the data part is divided into multiple resource units in the frequency domain (English: Resource Unit; abbreviated as: RU).
  • the frequency domain waveform corresponding to the data part can include 256 subcarriers, numbered -128, -127, ..., 126, 127, where the number is -1.
  • the subcarriers of 0, 1 are DC subcarriers, because these 3 subcarriers are susceptible to the DC offset of the transceiver system, and therefore are not used for data transmission; and 6 subcarriers numbered -128 to -123, and numbered
  • the five subcarriers from 123 to 127 are called protection subcarriers, which are used to reduce the out-of-band leakage of the transmitted signal and avoid interference to the adjacent channel, and therefore are not used for data transmission; that is, the subcarriers that can be used for data transmission are numbered.
  • the 242 intermediate subcarriers may be further divided into 9 RUs including 26 subcarriers, 4 RUs including 52 subcarriers, 2 RUs including 106 subcarriers, or 1 RU including 242 subcarriers.
  • the data part in the data frame generated by the LR transmitting end may adopt the OFDMA manner, use a part of the RU to carry the LR-DATA, and use another part of the RU to carry the HE-DATA, so that the data part simultaneously carries the LR-DATA and the HE-DATA, and the data Part of it can carry data to be transmitted.
  • the data frame sent by the LR sender and the data frame sent by the HEW sender may be set to use the same length of the cyclic prefix.
  • the data portion of the frame may each adopt an OFDM symbol of four times the symbol length.
  • the generated data frame may be composed of LR-STF, L-STF, L-LTF, L-SIG, RL-SIG, RL-LTF, signaling field, HE-STF, HE-
  • LTF and the data portion are in turn composed.
  • Step 602 The LR sending end sends a data frame to the LR receiving end.
  • the LR sender may send the generated data frame to the LR receiver.
  • the specific steps of the LR sending end to send the data frame to the LR receiving end reference may be made to the specific steps in the related art, in which the transmitting end sends the data frame to the receiving end, which is not described herein.
  • Step 603 The LR receiving end generates a reference frame according to the received data frame.
  • the LR receiving end may copy the data frame, and delay the copied data frame in the time domain by a preset time to obtain a reference frame, which is required to be described.
  • the preset time may be a week of a time domain waveform corresponding to the first symbol in the LR-STF of the data frame. At least double the period.
  • the preset time may be a period of 1.6 microseconds of a time domain waveform corresponding to the first symbol.
  • Step 604 The LR receiving end performs autocorrelation detection on the data frame and the reference frame.
  • the LR receiving end may perform autocorrelation detection on the received data frame and the reference frame generated in step 603. Specifically, autocorrelation detection may be performed on the data frame and the reference frame in the accumulation window Y, and the accumulation window Y may be Moving in the time domain, for example, the width of the cumulative window may be 3.2 microseconds, 4.8 microseconds, or 6.4 microseconds. As shown in Figure 6-20, the reference frame generated by the LR receiver is delayed by 1.6 microseconds in the time domain than the received data frame, that is, one period of the time domain waveform corresponding to the first symbol in the LR-STF.
  • the result of autocorrelation detection of the LR-STF in the data frame and the LR-STF in the reference frame is found to be non-zero as the cumulative window is gradually shifted backward.
  • the reference frame generated by the HEW receiving end is compared in the time domain.
  • the received data frame is delayed by 0.8 microseconds of the period of the L-STF symbol in the base preamble, that is, one period of the time domain waveform corresponding to the L-STF symbol in the L-STF, and the data frame and the reference frame are autocorrelated.
  • the cumulative window is gradually shifted back in the time domain, it is found that the result of the autocorrelation detection of the LR-STF in the data frame and the LR-STF in the reference frame is zero.
  • the LR-STF includes: at least two first symbols arranged in the time domain, the period of the time domain waveform corresponding to the first symbol is 1.6 microseconds, that is, the period of the time domain waveform corresponding to the first symbol It is twice the period of the L-STF symbol in the preamble.
  • the receiving end supporting the LR mode delays the data frame by the period of the LR-STF symbol in the LR-STF (1.6 microseconds) to obtain a reference frame, and performs self-determination on the data frame and the reference frame.
  • the period of the first symbol in the LR-STF generated by the transmitting end supporting the LR mode is 1.6 microseconds, and the receiving end supporting the LR mode is performing after receiving the data frame.
  • the LR-STF in the data frame can be detected, that is, the LR receiver can consider the LR-STF as a valid part.
  • the receiving end supporting the HEW mode delays the data frame by the period of the L-STF symbol in the base preamble (0.8 microseconds) to obtain a reference frame, and performs autocorrelation on the data frame and the reference frame.
  • the period of the first symbol in the LR-STF generated by the transmitting end supporting the LR mode is 1.6 microseconds, and the receiving end supporting the HEW mode performs autocorrelation after receiving the data frame.
  • the receiving end supporting the HEW mode first detects the L-STF in the base preamble, that is, the HEW receiving end can consider the LR-STF to be invalid. Part, L-STF is there Effective part.
  • the HEW receiving end When there is a HEW receiving end supporting the HEW mode in the space, and the AP supporting the LR mode and the HEW mode simultaneously sends a data frame to the HEW receiving end according to the structure of the data frame shown in FIG. 1-2, the HEW receiving end generates the data frame.
  • the reference frame is delayed in the time domain from the received data frame by 0.8 microseconds in the period of the L-STF in the base preamble, ie, one period of the time domain waveform corresponding to the L-STF symbol in the L-STF, in the data frame
  • the result of the autocorrelation detection of the L-STF in the data frame and the L-STF in the reference frame is not zero, that is, the HEW receiving end, as the cumulative window is gradually shifted backward.
  • L-STF can be considered as an effective part.
  • the data frame structure provided in the embodiment of the present invention can be used in a space together with the data frame structure in FIG. 1-2. Therefore, the structure of the data frame provided by the embodiment of the present invention is highly usable.
  • Step 605 The LR receiving end determines the valid part in the data frame according to the detection result.
  • Step 606 The LR receiving end parses the data frame according to the valid part in the data frame, and obtains data to be transmitted in the data frame.
  • the LR receiving end may determine that the data frame type may be an LR mode data frame, and the LR receiving end The data frame may also be time synchronized according to the LR-STF in the data frame or in combination with the LR-STF and the L-STF. Further, the LR receiving end may further perform carrier frequency offset (English: Carrier Frequency Offset; CFO) estimation according to the L-STF. The LR receiver may also measure the channel carrying the signaled field according to the L-LTF or in combination with the L-LTF and the RL-LTF.
  • carrier frequency offset English: Carrier Frequency Offset; CFO
  • the LR receiving end may determine the encoding mode of the data frame according to the L-SIG or the L-SIG and the RL-SIG, and determine the number of total spatial streams, the MCS corresponding to the data frame, and the channel coding mode of the data frame according to the LR-SIG. And the like; performing ACG adjustment on the data frame according to the HE-STF; measuring the channel of the data part according to the HE-LTF, and after measuring the channel of the data part, acquiring the data to be transmitted from the data part, completing the transmission of the data frame .
  • the data frame generated by the transmitting end includes: an LR preamble, a basic preamble, an HEW preamble, and a data part
  • the LR preamble includes: LR-STF, and LR-STF is used. Timing synchronization.
  • LR mode is supported due to the low signal-to-noise ratio supported by LR-STF.
  • the receiving end of the type can effectively acquire the data in the data frame, so the reliability of the data frame transmission is improved.
  • the LR receiving end delays the data frame by an integer multiple of 1.6 microseconds of the period of the first symbol in the LR preamble, so that the LR receiving end can detect the LR-STF, and the HEW receiving end delays the data frame.
  • the period of the L-STF symbol in the preamble is 0.8 microseconds to obtain a reference frame. Therefore, the HEW receiving end cannot detect the LR-STF, that is, the LR receiving end can perform timing synchronization using the LR-STF in the data frame, and can satisfy the HEW.
  • the receiving end uses the L-STF for timing synchronization, so the usability of the data frame is high.
  • the embodiment of the present invention provides a data transmission method, which can be used for an LR sending end and an LR receiving end, and the LR sending end can be a STA supporting the LR mode in FIG. 1-1.
  • the LR receiving end may be an AP supporting both the HEW mode and the LR mode in FIG. 1-1
  • the data transmission method may include:
  • Step 701 The LR receiving end sends a trigger frame including scheduling information to the LR sending end.
  • the LR receiving end may send a trigger frame for scheduling the LR sending end to send a data frame to the LR receiving end
  • the structure of the trigger frame may be the same as the structure of the data frame shown in FIG. 6-2.
  • the scheduling information may be carried in the data part of the trigger frame, and some resource units (English: Resource Unit; short: RU) of the data part may be used to send scheduling information, and the remaining RUs may be used to carry the bearer to the HEW receiving end.
  • the transmitted data may include information such as an identifier of the LR transmitting end scheduled to be transmitted by the uplink, an uplink transmission resource allocated to the LR transmitting end, and a coded modulation mode.
  • the scheduled LR receiving end knows whether the LR receiving end allows the LR sending end to send data, and the transmission resource, transmission format and the like used for transmitting the data, through the scheduling information in the trigger frame.
  • a part of the RU in the frequency domain sends a trigger frame to the LR receiving end, and other RU directions of the transmission bandwidth in the frequency domain may be used.
  • the LR sender or other LR sender sends a data frame. If the LR receiving end does not allow the LR transmitting end to transmit a data frame, the LR transmitting end prohibits the generation of the data frame and prohibits the transmission of the data frame to the LR receiving end.
  • Step 702 When the LR receiving end allows the LR sending end to send the data frame in the scheduling information, the LR sending end generates a data frame according to the data to be transmitted.
  • each LR-SIG symbol may include an LR-SIG-A symbol, and the LR-SIG-A symbol may be carried in the indication service.
  • the data part may adopt only LR-DATA, and when the data frame may include multiple LR-DATA, the data part may adopt the OFDMA method and bear more LR-DATA.
  • the data frame sent by the LR sender and the data frame sent by the HEW sender may be set to use the same length of the cyclic prefix.
  • the data portion of the frame may each adopt an OFDM symbol of four times the symbol length.
  • Step 703 The LR sending end sends a data frame to the LR receiving end.
  • the LR sender may send the generated data frame to the LR receiver.
  • the specific steps of the LR sending end to send the data frame to the LR receiving end reference may be made to the specific steps in the related art, in which the transmitting end sends the data frame to the receiving end, which is not described herein.
  • Step 704 The LR receiving end generates a reference frame according to the received data frame.
  • the specific step of the LR receiving end to generate a reference frame according to the received data frame may refer to the embodiment shown in FIG. 6-1.
  • the LR receiving end generates a specific reference frame according to the received data frame.
  • the receiving end of the embodiment of the present invention is an AP that supports both the HEW mode and the LR mode, and the AP sends a trigger frame to the LR sending end before receiving the data frame sent by the LR sending end, so the AP can Identifying the received data frame is sent by the LR sending end, and is not sent by the HEW transmitting end.
  • the reference frame generated by the AP is in the time domain than the time domain waveform corresponding to the first symbol in the data frame delay LR-STF. At least double the period.
  • the preset time may be a period of 1.6 microseconds of a time domain waveform corresponding to the first symbol.
  • Step 705 The LR receiving end performs autocorrelation detection on the data frame and the reference frame.
  • the step 705 can refer to the specific steps in the step 604 in the embodiment shown in FIG. 6-1, and the embodiments of the present invention are not described herein.
  • Step 706 The LR receiving end determines, according to the detection result, a valid part in the data frame.
  • the step 706 can refer to the specific steps in the step 605 in the embodiment shown in FIG. 6-1, and the embodiments of the present invention are not described herein.
  • Step 707 The LR receiving end parses the data frame according to the valid part in the data frame, and obtains the number. According to the data to be transmitted in the frame.
  • the step 707 can refer to the specific steps in the step 606 in the embodiment shown in FIG. 6-1, and the embodiments of the present invention are not described herein.
  • the data frame generated by the transmitting end includes: an LR preamble, a basic preamble, an HEW preamble, and a data part
  • the LR preamble includes: LR-STF, and LR-STF is used. Timing synchronization. Since the signal-to-noise ratio supported by the LR-STF is low, the receiving end supporting the LR mode can effectively acquire data in the data frame, thereby improving the reliability of the data frame transmission.
  • the LR receiving end delays the data frame by an integer multiple of 1.6 microseconds of the period of the first symbol in the LR preamble, so that the LR receiving end can detect the LR-STF, and the HEW receiving end delays the data frame.
  • the period of the L-STF symbol in the preamble is 0.8 microseconds to obtain the reference frame. Therefore, the HEW receiver cannot detect the LR-STF, that is, the LR receiver can use the LR-STF in the data frame for timing synchronization, and can satisfy the HEW reception.
  • the terminal uses L-STF for timing synchronization, so the usability of data frames is high.
  • another embodiment of the present invention provides a data transmission method, which can be used for an HEW transmitting end and an HEW receiving end, and the HEW transmitting end can support the HEW in FIG. 1-1 at the same time.
  • the mode and the LR mode AP, the HEW receiving end may be the STA-1 supporting the HEW mode in FIG. 1-1, and the data transmission method may include:
  • Step 801 The HEW sending end generates a data frame according to the data to be transmitted.
  • each LR-SIG symbol may include an LR-SIG-A symbol, or each LR-SIG symbol may include an LR-SIG-A. Symbol and LR-SIG-B symbol.
  • the data part may be carried with HE-DATA, or both HE-DATA and LR-DATA, and when the data frame can include multiple HE-DATA,
  • the data portion can be in the form of OFDMA and carries multiple HE-DATAs.
  • the data frame sent by the LR sender and the HEW sender may be set.
  • the data frame uses a cyclic prefix of the same length, and the data portion of the data frame can adopt an OFDM symbol of four times the symbol length.
  • Step 802 The HEW sending end sends a data frame to the HEW receiving end.
  • the HEW sender may send the generated data frame to the HEW receiver.
  • the specific steps of the data transmission frame sent by the HEW to the HEW receiving end may refer to the specific steps in the related art, and the sending end sends a data frame to the receiving end, which is not described herein.
  • Step 803 The HEW receiving end generates a reference frame according to the received data frame.
  • the HEW receiving end may copy the data frame, and delay the copied data frame in the time domain by a preset time to obtain a reference frame, which is required to be described.
  • the preset time may be at least one time of a period of the time domain waveform corresponding to the L-STF symbol in the L-STF of the data frame.
  • the preset time may be a time domain corresponding to the L-STF symbol.
  • the period of the waveform is 0.8 microseconds.
  • Step 804 The HEW receiving end performs autocorrelation detection on the data frame and the reference frame.
  • the HEW receiving end may perform autocorrelation detection on the received data frame and the reference frame generated in step 803. Specifically, autocorrelation detection may be performed on the data frame and the reference frame in the accumulation window Y, and the accumulation window Y may be Moving in the time domain, for example, the width of the cumulative window may correspond to a duration of 1.6 microseconds. As shown in Figure 6-21, the reference frame generated by the HEW receiver is delayed in the time domain from the received data frame by 0.8 microseconds in the period of the L-STF symbol in the base preamble, that is, the L-STF in the L-STF.
  • the LR-STF includes: at least two first symbols arranged in the time domain, the period of the time domain waveform corresponding to the first symbol is 1.6 microseconds, that is, the period of the time domain waveform corresponding to the first symbol It is twice the period of the L-STF symbol in the preamble.
  • the receiving end supporting the LR mode will delay the data frame by the period of the LR-STF symbol in the LR-STF (1.6 microseconds). And performing autocorrelation detection on the data frame and the reference frame.
  • the period of the first symbol in the LR-STF generated by the transmitting end supporting the LR mode is 1.6 microseconds, and the LR mode is supported.
  • the terminal After receiving the data frame, the terminal can detect the LR-STF in the data frame when performing autocorrelation detection, that is, the LR receiver can consider the LR-STF as a valid part.
  • the receiving end supporting the HEW mode delays the data frame by the period of the L-STF symbol in the base preamble (0.8 microseconds) to obtain a reference frame, and performs autocorrelation on the data frame and the reference frame.
  • the period of the first symbol in the LR-STF generated by the transmitting end supporting the LR mode is 1.6 microseconds, and the receiving end supporting the HEW mode performs autocorrelation after receiving the data frame.
  • the receiving end supporting the HEW mode When detecting, the LR-STF in the data frame is not detected, and the receiving end supporting the HEW mode first detects the L-STF in the base preamble, that is, the HEW receiving end can consider the LR-STF to be invalid.
  • L-STF is the effective part.
  • the HEW receiving end When there is a HEW receiving end supporting the HEW mode in the space, and the AP supporting the LR mode and the HEW mode simultaneously sends a data frame to the HEW receiving end according to the structure of the data frame shown in FIG. 1-2, the HEW receiving end generates the data frame.
  • the reference frame is delayed in the time domain from the received data frame by 0.8 microseconds in the period of the L-STF in the base preamble, ie, one period of the time domain waveform corresponding to the L-STF symbol in the L-STF, in the data frame
  • the result of the autocorrelation detection of the L-STF in the data frame and the L-STF in the reference frame is not zero, that is, the HEW receiving end, as the cumulative window is gradually shifted backward.
  • L-STF can be considered as an effective part.
  • the data frame structure provided in the embodiment of the present invention can be used in a space together with the data frame structure in FIG. 1-2. Therefore, the structure of the data frame provided by the embodiment of the present invention is highly usable.
  • Step 805 The HEW receiving end determines a valid part in the data frame according to the detection result.
  • the LR-STF in the data frame received by the HEW receiving end is an invalid part, and is considered to be located in the LR.
  • the part after -STF is the valid part of the data frame.
  • Step 806 The HEW receiving end parses the data frame according to the valid part in the data frame, and obtains data to be transmitted in the data frame.
  • the HEW receiving end can perform timing synchronization on the data frame according to the L-STF in the data frame. Further, the HEW receiving end can also perform CFO estimation of the data frame according to the L-STF. The HEW receiving end may also measure the channel carrying the signaled field according to the L-LTF or in combination with the L-LTF and the RL-LTF.
  • the HEW receiving end may determine the encoding mode of the data frame according to the L-SIG or the L-SIG and the RL-SIG, determine the type of the data frame according to the RL-SIG, and determine the total number of spatial streams and data according to the LR-SIG.
  • Information such as the MCS of the frame and the channel coding mode of the data frame; performing ACG adjustment on the data frame according to the HE-STF; measuring the channel of the data part according to the HE-LTF, and after measuring the channel of the data part, from the data part Obtain the data to be transmitted and complete the transmission of the data frame.
  • the related art provides a data transmission method, where the data transmission method can be used for the HEW sending end and the HEW receiving end, and the LR sending end can support both the HEW mode and the LR mode in FIG. 1-1.
  • the LR receiving end may be the STA-1 supporting the HEW mode in FIG. 1-1, and the LR sending end may also be an AP supporting only the HEW mode.
  • the data transmission method can include:
  • the HEW sender generates a data frame according to the data to be transmitted.
  • the HEW transmitting end may generate a data frame according to the data frame structure shown in Figure 1-2.
  • the specific step of generating the data frame by the HEW transmitting end may refer to the related art to generate the data frame as shown in Figure 1-2.
  • the specific steps are not described in detail in the embodiments of the present invention.
  • the HEW sender may send the generated data frame to the HEW receiver.
  • the specific steps of the data transmission frame sent by the HEW to the HEW receiving end may refer to the specific steps in the related art, and the sending end sends a data frame to the receiving end, which is not described herein.
  • the HEW receiving end generates a reference frame according to the received data frame.
  • the specific step of the HEW receiving end to generate a reference frame according to the received data frame may refer to the embodiment shown in FIG. 6-1.
  • the HEW receiving end generates a specific reference frame according to the received data frame.
  • the embodiments of the present invention are not described herein.
  • the HEW receiving end performs the auto-correlation detection on the data frame and the reference frame.
  • the specific steps refer to the specific steps in the step 604 in the embodiment shown in FIG. 6-1, which is not described herein.
  • the HEW receiving end can detect the data.
  • the L-STF in the frame and considers the L-STF to be a valid part.
  • the HEW receiving end determines the valid part in the data frame according to the detection result.
  • the HEW receiving end may parse the valid part in the data frame to obtain the data to be transmitted in the data part. , complete the transmission of the data frame.
  • the data frame generated by the transmitting end is The number includes: LR preamble, base preamble, HEW preamble and data part, LR preamble includes: LR-STF, LR-STF is used for timing synchronization.
  • the HEW receiving end delays the data frame by the period of the L-STF symbol in the base preamble by 0.8 microseconds to obtain the reference frame. Therefore, the HEW receiving end does not detect the LR-STF, that is, the data frame in the embodiment of the present invention is still
  • the timing synchronization using the L-STF can be applied to the HEW receiving end in the related art, and therefore, the usability of the data frame is high.
  • another embodiment of the present invention provides another data transmission method, which can be used for an HEW sender and an HEW receiver.
  • the HEW sender can be supported in Figure 1-1.
  • the HEW receiving end may be an AP supporting both the HEW mode and the LR mode in FIG. 1-1, and the data transmission method may include:
  • Step 901 The HEW receiving end sends a trigger frame including scheduling information to the HEW sending end.
  • the HEW receiving end may send a trigger frame for scheduling the HEW sending end to send a data frame to the HEW receiving end
  • the structure of the trigger frame may be the same as the structure of the data frame shown in FIG. 6-2.
  • the scheduling information may be carried in the data part of the trigger frame, and some resource units (English: Resource Unit; short: RU) of the data part may be used to send scheduling information, and the remaining RUs may be used to carry the bearer to the HEW receiving end.
  • the transmitted data may include information such as an identifier of the HEW transmitting end scheduled for uplink transmission, an uplink transmission resource allocated to the HEW transmitting end, and a code modulation mode.
  • the scheduled HEW receiving end obtains, by using the scheduling information in the trigger frame, whether the HEW receiving end allows the HEW transmitting end to send data, and information such as a transmission resource and a transmission format used for transmitting the data.
  • the HEW transmitting end prohibits the generation of the data frame and prohibits the sending of the data frame to the HEW receiving end.
  • Step 902 When the HEW receiving end allows the HEW sending end to send the data frame in the scheduling information, the HEW sending end generates a data frame according to the data to be transmitted.
  • the specific step of generating the data frame by the HEW transmitting end may refer to the specific step of generating the data frame by the LR sending end in the embodiment shown in FIG. 6-1, which is not described herein.
  • the data frame generated in the embodiment of the present invention does not include the LR-STF.
  • each LR-SIG symbol may include an LR-SIG-A symbol.
  • the LR-SIG-A symbol may carry indication information indicating the number of spatial streams of each receiving end of the service.
  • the data portion may be used only Only HE-DATA is carried. When the data frame can contain multiple HE-DATAs, the data part can be in the OFDMA mode and carry multiple HE-DATAs.
  • the data frame sent by the LR sender and the data frame sent by the HEW sender may be set to use the same length of the cyclic prefix.
  • the data portion of the frame may each adopt an OFDM symbol of four times the symbol length.
  • Step 903 The HEW sending end sends a data frame to the HEW receiving end.
  • the HEW sender may send the generated data frame to the HEW receiver.
  • the specific steps of the data transmission frame sent by the HEW to the HEW receiving end may refer to the specific steps in the related art, and the sending end sends a data frame to the receiving end, which is not described herein.
  • the sending end (the LR sending end or the HEW sending end) may determine, according to the triggering frame that includes the scheduling information, that the scheduling information in the triggering frame is used for the scheduled data frame to be the data frame sent by the LR sending end or the HEW sending end. .
  • the HEW transmitting end does not include the LR-STF in the data frame
  • the HEW sending end determines the HEW receiving end from the scheduling information of the trigger frame in the embodiment of the present invention (ie, simultaneously supports the LR mode and
  • the HEW sender can wait for the LR sender to send the LR-STF time after generating the data frame, and then start sending to the HEW receiver.
  • the data frame is used to ensure that the HEW receiving end has the same time in the data received by the transmitting end of the LR transmitting end and the data sent by the HEW transmitting end.
  • the scheduling information in the trigger frame Z1 generated by the HEW receiving end (the AP supporting both the LR mode and the HEW mode) is used for the scheduled data frame to be the data sent by the LR transmitting end and the HEW transmitting end.
  • the HEW receiver can simultaneously send the generated trigger frame to the LR sender and the HEW sender.
  • the LR sending end may generate a data frame Z2, and the data frame Z2 generated by the LR transmitting end includes: an LR preamble, a base preamble, an HEW preamble, and a data part, and the data Some can carry LR-DATA, and the LR preamble includes LR-STF.
  • the HEW may generate a data frame Z3, and the data frame Z3 generated by the HEW sender includes: a base preamble, an HEW preamble, and a data part, and the data part may carry There is HE-DATA.
  • the data frame generated by the HEW transmitting end does not include the LR preamble (ie, LR-STF), and the HEW transmitting end determines the HEW receiving end from the scheduling information of the trigger frame Z1 (ie, simultaneously supports the LR mode and AP in HEW mode needs to be scheduled
  • the HEW transmitting end may wait for the LR transmitting end to send the time ⁇ of the traditional preamble (LR-STF) after generating the data frame Z3, and then start transmitting to the HEW receiving end.
  • the data frame Z3 is used to ensure that the HEW receiving end has the same time at the receiving end of the data frame Z2 transmitted by the LR transmitting end and the data frame Z3 sent by the HEW transmitting end.
  • Step 904 The HEW receiving end generates a reference frame according to the received data frame.
  • the specific step of the HEW receiving end to generate a reference frame according to the received data frame may refer to the embodiment shown in FIG. 6-1.
  • the HEW receiving end generates a specific reference frame according to the received data frame.
  • the receiving end of the embodiment of the present invention is an AP that supports both the HEW mode and the LR mode, and the AP sends a trigger frame to the HEW sending end before receiving the data frame sent by the HEW transmitting end. Therefore, the AP can The received data frame is sent by the HEW transmitting end, and is not sent by the LR transmitting end.
  • the reference frame generated by the AP is in the time domain than the data frame delay L-STF L-STF symbol corresponding to the time domain waveform. The period is 0.8 microseconds.
  • Step 905 The HEW receiving end performs autocorrelation detection on the data frame and the reference frame.
  • the step 905 can refer to the specific steps in the step 604 in the embodiment shown in FIG. 6-1, and the embodiments of the present invention are not described herein. Since the delay of the reference frame is an integer multiple of the L-LTF period, the result of the autocorrelation detection of the L-STF in the data frame and the L-STF in the reference frame is not zero, that is, the HEW receiving end can detect the data. The L-STF in the frame, and considers the L-STF to be a valid part.
  • Step 906 The HEW receiving end determines a valid part in the data frame according to the detection result.
  • the data frame does not include the LR-STF, and the result of the autocorrelation detection of the L-STF in the data frame and the L-STF in the reference frame is not zero, it can be considered as L in the data frame received by the HEW receiving end.
  • the -STF and the part after the L-STF are all valid parts of the data frame.
  • Step 907 The HEW receiving end parses the data frame according to the valid part in the data frame, and obtains data to be transmitted in the data frame.
  • the HEW receiving end can perform timing synchronization on the data frame according to the L-STF in the data frame. Further, the HEW receiving end can also perform CFO estimation of the data frame according to the L-STF. The HEW receiving end may also measure the channel carrying the signaled field according to the L-LTF or in combination with the L-LTF and the RL-LTF.
  • the HEW receiving end may determine the data frame according to the L-SIG or in combination with the L-SIG and the RL-SIG Encoding method, determining the type of the data frame according to the RL-SIG; determining the number of total spatial streams, the MCS corresponding to the data frame, and the channel coding mode of the data frame according to the LR-SIG; and the data frame according to the HE-STF Perform ACG adjustment; measure the channel of the data part according to the HE-LTF, and after measuring the channel of the data part, acquire the data to be transmitted from the data part, and complete the transmission of the data frame.
  • the related art provides a data transmission method, where the data transmission method can be used for the HEW sending end and the HEW receiving end, and the LR sending end can support both the HEW mode and the LR mode in FIG. 1-1.
  • the LR receiving end may be the STA-1 supporting the HEW mode in FIG. 1-1, and the LR sending end may also be an AP supporting only the HEW mode.
  • the data transmission method can include:
  • the HEW sender generates a data frame according to the data to be transmitted.
  • the HEW transmitting end may generate a data frame according to the data frame structure shown in Figure 1-2.
  • the specific step of generating the data frame by the HEW transmitting end may refer to the related art to generate the data frame as shown in Figure 1-2.
  • the specific steps are not described in detail in the embodiments of the present invention.
  • the HEW sender may send the generated data frame to the HEW receiver.
  • the specific steps of the data transmission frame sent by the HEW to the HEW receiving end may refer to the specific steps in the related art, and the sending end sends a data frame to the receiving end, which is not described herein.
  • the HEW receiving end generates a reference frame according to the received data frame.
  • the specific step of the HEW receiving end to generate a reference frame according to the received data frame may refer to the embodiment shown in FIG. 6-1.
  • the HEW receiving end generates a specific reference frame according to the received data frame.
  • the embodiments of the present invention are not described herein.
  • the HEW receiving end performs the auto-correlation detection on the data frame and the reference frame.
  • the specific steps refer to the specific steps in the step 604 in the embodiment shown in FIG. 6-1, which is not described herein.
  • the HEW receiving end can detect the data.
  • the L-STF in the frame and considers the L-STF to be a valid part.
  • the HEW receiving end determines the valid part in the data frame according to the detection result.
  • the HEW receiving end may parse the valid part in the data frame to obtain the data to be transmitted in the data part. , complete the transmission of the data frame.
  • the HEW receiving end delays the received data frame by the period of 0.8 microseconds of the L-STF symbol in the basic preamble to obtain a reference frame, and therefore, the number According to the LR-STF in the frame, the receiving end can consider the L-STF as a valid part, that is, the data frame in the embodiment of the present invention still uses the L-STF for timing synchronization, and can be applied to the HEW receiving end in the related art. Therefore, the usability of data frames is high.
  • the embodiment of the present invention provides a data transmission system 100
  • the data transmission system 100 can include: a transmitting end 20 and a receiving end 30, the transmitting end 20 can be the data transmission device 20 shown in Figure 2;
  • the receiving end 30 can be the data transmission device 30 shown in FIG.
  • the data frame generated by the transmitting end includes: an LR preamble, a basic preamble, an HEW preamble, and a data part
  • the LR preamble includes: LR-STF, and LR-STF is used. Timing synchronization. Since the frame header of the data frame is LR-STF, and the signal-to-noise ratio supported by the LR-STF is relatively low, the transmitting end that supports the LR mode can easily receive the data frame when transmitting the data frame. And the data in the data frame can be effectively obtained, so the reliability of the data frame transmission is improved.
  • the embodiment of the present invention provides another data transmission device 110.
  • the data transmission device 110 can be used for a transmitting end, and the transmitting end can be a transmitting end supporting the LR mode, and the transmitting end supporting the LR mode.
  • the data transmission device 110 may include a processor 1101 and a transmitter 1102, which may be an AP supporting LR mode or an STA supporting LR mode.
  • the processor 1101 may be configured to generate a data frame according to the to-be-transmitted data, where the data frame includes: a low-rate LR preamble, a basic preamble, a high-efficiency WLAN HEW preamble, and a data portion, where the LR preamble includes: LR-STF,
  • the LR-STF includes: at least two first symbols arranged in the time domain, the content of each first symbol is the same, and the period of the time domain corresponding to the first symbol is 1.6 microseconds, and the LR- STF is used for timing synchronization;
  • Transmitter 1102 can be configured to transmit the data frame to a receiving end.
  • the data frame generated by the processor is The number includes: LR preamble, base preamble, HEW preamble and data part, LR preamble includes: LR-STF, LR-STF is used for timing synchronization. Since the frame header of the data frame is LR-STF, and the signal-to-noise ratio supported by the LR-STF is relatively low, the receiving end supporting the LR mode can easily receive the data frame when transmitting the data frame, and can The data in the data frame is effectively acquired, so the reliability of the data frame transmission is improved.
  • the processor 1101 in the embodiment of the present invention may perform the steps performed by the processing unit 201 in the data transmission device 20 shown in FIG. 2.
  • the transmitter 1102 in the embodiment of the present invention can perform the steps performed by the transmitting unit 202 in the data transmission device 20 shown in FIG. 2.
  • the LR-STF further includes: a second symbol for identifying a tail of the LR-STF.
  • the frequency domain waveform corresponding to the first symbol includes: a DC subcarrier, a protection subcarrier, and an intermediate subcarrier, where the intermediate subcarrier is located between the DC subcarrier and the protection subcarrier in a frequency domain, and the frequency domain of the first symbol
  • the elements in the sequence correspond one-to-one with the frequency domain waveform.
  • the elements in the frequency domain sequence corresponding to the intermediate subcarriers include at least two non-zero elements, there is one zero element between every two non-zero elements.
  • the number of non-zero elements in the frequency domain sequence of the first symbol is greater than fourteen.
  • the number of non-zero elements in the frequency domain sequence of the first symbol is equal to twenty-eight.
  • the basic preamble includes: L-STF, L-LTF, and L-SIG
  • the L-STF includes at least two L-STF symbols
  • the content of each L-STF symbol is the same
  • each L-STF symbol corresponds to
  • the period of the time domain waveform is 0.8 microseconds
  • the time domain waveform corresponding to the second symbol is a waveform processed by the first waveform in a preset transformation manner
  • the first waveform is: a time domain waveform corresponding to the first symbol, and a half
  • the preset transformation manner includes: multiplying by -1, taking the inverse waveform Multiply by -1 and then take the inverse waveform, multiply by j, multiply by -j, multiply by j, then take the inverse waveform or multiply by -j and then take the
  • the HEW preamble includes: RL-SIG, RL-LTF, signaling field, HE-STF, and HE-LTF
  • the RL-LTF includes: at least one L-LTF arranged in the time domain.
  • the signaling field includes: at least one LR-SIG symbol arranged in the time domain, or at least one LR-SIG symbol arranged in the frequency domain, and the content of each LR-SIG symbol is the same
  • Each LR-SIG symbol includes a high efficiency signaling A field LR-SIG-A symbol, or each LR-SIG symbol includes an LR-SIG-A symbol and a high efficiency signaling B field LR-SIG-B symbol.
  • the signaling field includes: at least one LR-SIG module that is processed in a cyclically shifted manner in the time domain, or at least one of which is processed in a frequency domain by using a cyclic shift
  • the LR-SIG module includes: a cyclic prefix of the LR-SIG symbol processed by the dual carrier modulation DCM method and an LR-SIG symbol processed by the dual carrier modulation DCM method, each LR-SIG symbol The contents are the same, each LR-SIG symbol includes a high efficiency signaling A field LR-SIG-A symbol, or each LR-SIG symbol includes an LR-SIG-A symbol and a high efficiency signaling B field LR-SIG -B symbol.
  • the HE-LTF includes: p HE-LTF symbols arranged in the time domain, the content of each HE-LTF symbol is the same, and the transmit power corresponding to the HE-LTF symbol is greater than the preset transmit power,
  • n is an integer greater than zero.
  • the data part adopts an orthogonal frequency division multiplexing multiple access OFDMA manner, and carries a low rate data field LR-DATA and a high efficiency data field HE-DATA, or carries LR-DATA
  • the LR-DATA includes: at the time At least one LR-DATA symbol arranged on the domain, or at least one LR-DATA symbol arranged in the frequency domain, and the contents of each LR-DATA symbol are the same.
  • the RL-SIG includes: at least one L-SIG processed in a preset manner in a time domain, and the preset manner corresponds to a type of the data frame.
  • the signaling field includes three or four LR-SIG modules arranged in the time domain, or three or four LR-SIG modules arranged in the frequency domain.
  • the data frame is composed of LR-STF, L-STF, L-LTF, L-SIG, RL-SIG, RL-LTF, signaling field, HE-STF, HE-LTF, and data part.
  • the data transmission device 110 can be a terminal.
  • the embodiment of the present invention provides a data transmission apparatus.
  • the data frame generated by the processor includes: an LR preamble, a basic preamble, a HEW preamble, and a data part, and the LR preamble includes: LR-STF, LR-STF. Used for timing synchronization. Since the frame header of the data frame is LR-STF, and the signal-to-noise ratio supported by the LR-STF is relatively low, the receiving end supporting the LR mode can easily receive the data frame when transmitting the data frame, and can The data in the data frame is effectively acquired, so the reliability of the data frame transmission is improved.
  • an embodiment of the present invention provides another data transmission device 120, and the data transmission is performed.
  • the device 120 may be used for a receiving end, where the receiving end may be a receiving end supporting the LR mode, and the receiving end supporting the LR mode may be an AP supporting the LR mode or an STA supporting the LR mode, and the data transmission device 120 may include: receiving Machine 1201 and processor 1202.
  • the receiver 1201 may be configured to receive a data frame sent by the sending end, where the data frame includes: a low rate LR preamble, a basic preamble, a high efficiency wireless local area network HEW preamble, and a data part, where the LR preamble includes: LR-STF,
  • the LR-STF includes: at least two first symbols arranged in the time domain, the content of each first symbol is the same, the period of the time domain waveform corresponding to the first symbol is 1.6 microseconds, and the LR-STF is used for timing. Synchronize;
  • the processor 1202 is configured to generate a reference frame according to the data frame, where the reference frame is delayed in a time domain from the data frame by a preset time, where the preset time is a time domain waveform corresponding to the first symbol. At least one time of the cycle;
  • the processor 1202 is further configured to perform autocorrelation detection on the data frame and the reference frame;
  • the processor 1202 is further configured to determine a valid part of the data frame according to the detection result
  • the processor 1202 is further configured to parse the data frame according to the valid part to obtain data to be transmitted in the data frame.
  • the embodiment of the present invention provides a data transmission apparatus.
  • the data frame received by the receiver includes: an LR preamble, a basic preamble, an HEW preamble, and a data part
  • the LR preamble includes: LR-STF, LR- STF is used for timing synchronization. Since the signal-to-noise ratio supported by the LR-STF is low, the receiving end supporting the LR mode can effectively acquire data in the data frame, thereby improving the reliability of the data frame transmission.
  • the receiver 1201 in the embodiment of the present invention may perform the steps performed by the receiving unit 301 in the data transmission device 30 shown in FIG. 3, and the processor 302 in the embodiment of the present invention may perform the process shown in FIG. The steps performed by processing unit 302 in data transmission device 30.
  • the data transmission device 120 can be a terminal.
  • the LR receiving end delays the data frame by an integer multiple of 1.6 microseconds of the period of the first symbol in the LR preamble, so that the LR receiving end can detect the LR-STF, and the HEW receiving end delays the data frame.
  • the period of the L-STF symbol in the preamble is 0.8 microseconds to obtain a reference frame. Therefore, the HEW receiving end cannot detect the LR-STF, that is, the LR receiving end can perform timing synchronization using the LR-STF in the data frame, and can satisfy the HEW.
  • the receiving end uses the L-STF for timing synchronization, so the usability of the data frame is high.
  • the embodiment of the present invention provides another data transmission system 130.
  • the data transmission system 130 may include: a transmitting end 110 and a receiving end 120.
  • the transmitting end 110 may be the data transmission device 110 shown in FIG.
  • the receiving end 120 can be the data transmission device 120 shown in FIG.
  • the data frame generated by the transmitting end includes: an LR preamble, a basic preamble, an HEW preamble, and a data part
  • the LR preamble includes: LR-STF, and LR-STF is used. Timing synchronization. Since the frame header of the data frame is LR-STF, and the signal-to-noise ratio supported by the LR-STF is relatively low, the transmitting end that supports the LR mode can easily receive the data frame when transmitting the data frame. And the data in the data frame can be effectively obtained, so the reliability of the data frame transmission is improved.
  • the disclosed data transmission method, data transmission apparatus, and data transmission system may be implemented in other manners.
  • the data transmission device embodiments described above are merely illustrative.
  • the division of each unit in the data transmission device is only a logical function division.
  • components may be combined or integrated into another system, or some features may be omitted or not performed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明公开了一种数据传输方法、装置及系统,属于数据通信技术领域。所述数据传输装置包括:处理单元,用于根据待传输数据生成数据帧,数据帧依次包括:低速率LR前导、基础前导、高效率无线局域网HEW前导和数据部分,LR前导包括:低速率短训练字段LR-STF,LR-STF包括:在时域上排布的至少两个第一符号,每个第一符号的内容相同,第一符号对应的时域波形的周期为1.6微秒,LR-STF用于定时同步;发送单元,用于向接收端发送数据帧。本发明解决了数据帧传输的可靠性较差的问题,提高了数据帧传输的可靠性,本发明用于数据的传输。

Description

数据传输方法、装置及系统
本申请要求于2015年11月17日提交中国专利局、申请号为201510790570.X、发明名称为“数据传输方法、装置及系统”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及通信技术领域,特别涉及一种数据传输方法、装置及系统。
背景技术
802.11ax是一种无线局域网通信标准。在802.11ax中,接入点(英文:Access Point;简称:AP)与多个站点(英文:Station;简称:STA)能够互相传输数据帧。
在802.11ax中,数据帧由基础前导、高效率无线局域网(英文:High Efficiency WLAN;简称:HEW)前导和数据部分依次组成,其中,基础前导和HEW前导用于承载数据帧的参数信息,数据部分用于承载数据帧的数据。基础前导可以依次包括:传统短训练字段(英文:Legacy Short Training Field;简称:L-STF)、传统长训练字段(英文:Legacy Long Training Field;简称:L-LTF)和传统信令字段(英文:Legacy Signal Field,简称L-SIG)。示例的,在AP需要向STA传输数据时,AP为发送端,STA为接收端,AP可以根据待传输的数据以及802.11ax中规定的数据帧的结构,生成数据帧,并将该数据帧发送至STA;STA在接收到该数据帧后,可以根据数据帧中的基础前导和HEW前导中承载的数据帧的参数信息,对数据帧的数据部分进行解析,获取数据帧中的数据,完成数据的传输。
由于一些接收端装置自身属性的限制或环境因素影响,发送端向该接收端传输数据帧的过程中会产生较大的噪声,使得传输数据帧过程中的信噪比较低,接收端接收到的数据帧的信号质量较差,进而无法有效获取数据帧中的数据,因此,数据传输的可靠性较低。
发明内容
为了解决数据传输的可靠性较低的问题,本发明提供了一种数据传输方法、装置及系统,所述技术方案如下:
第一方面,提供了一种数据传输装置,用于发送端,所述数据传输装置包括:
处理单元,用于根据待传输数据生成数据帧,所述数据帧依次包括:低速率LR前导、基础前导、高效率无线局域网HEW前导和数据部分,所述LR前导包括:低速率短训练字段LR-STF,所述LR-STF包括:在时域上排布的至少两个第一符号,每个第一符号的内容相同,所述第一符号对应的时域波形的周期为1.6微秒,所述LR-STF用于定时同步;
发送单元,用于向接收端发送所述数据帧。
处理单元生成的数据帧依次包括:LR前导、基础前导、HEW前导和数据部分,LR前导包括:LR-STF,LR-STF可以用于定时同步。由于数据帧的帧头为LR-STF,且LR-STF能够支持的信噪比较低,使得在传输该数据帧时,支持LR模式的接收端能够较容易的接收到该数据帧,并且能够有效的获取数据帧中的数据,所以,提高了数据帧传输的可靠性。
结合第一方面,在第一方面的第一种可实现方式中,所述LR-STF还包括:用于标识所述LR-STF尾部的第二符号。由于本处理单元生成的数据帧中,LR-STF与L-STF相邻,且LR-STF与L-STF均可以用于数据帧的定时同步,所以,该用于标识LR-STF尾部的第二符号B能够将LR-STF和L-STF有效的区分开来。
结合第一方面,在第一方面的第二种可实现方式中,所述第一符号对应的频域波形包括:直流子载波、保护子载波以及中间子载波,所述中间子载波在频域上位于所述直流子载波与所述保护子载波之间,所述第一符号的频域序列中的元素与所述频域波形一一对应,
当所述中间子载波对应的频域序列中的元素包括至少两个非零元素时,每两个所述非零元素之间存在一个零元素。由于每两个非零元素之间存在一个零元素,所以将该第一符号A对应的时域波形的周期是相关技术中L-STF中的L-STF符号对应的时域波形的周期的两倍。
结合第一方面的第二种可实现方式,在第一方面的第三种可实现方式中, 所述第一符号的频域序列中非零元素的个数大于十四。
结合第一方面的第三种可实现方式,在第一方面的第四种可实现方式中,所述第一符号的频域序列中非零元素的个数等于二十八。
相关技术中,待选符号的频域序列中非零元素的个数等于十四,本发明实施例中,待选符号的频域序列中非零元素的个数大于十四,因此,本发明实施例中在该至少一个待选符号中选择某一个待选符号作为第一符号时,选择的基数较大,因此,本发明实施例中确定的第一符号对应的时域波形的峰均比小于采用相关技术的方法确定的第一符号对应的时域波形的峰均比,以及本发明实施例中确定的第一符号对应的时域波形的自相关函数的峰瓣比大于采用相关技术的方法确定的第一符号对应的时域波形的自相关函数的峰瓣比的概率较大。
结合第一方面的第一种可实现方式,在第一方面的第五种可实现方式中,所述基础前导包括:传统短训练字段L-STF、传统长训练字段L-LTF和传统信令字段L-SIG,所述L-STF包括至少两个L-STF符号,且每个L-STF符号的内容相同,每个L-STF符号对应的时域波形的周期为0.8微秒,所述第二符号对应的时域波形为将第一波形采用预设变换方式处理后的波形,
所述第一波形为:所述第一符号对应的时域波形、半个周期的所述第一符号对应的时域波形、所述L-STF符号对应的时域波形或半个周期的所述L-STF符号对应的时域波形,
所述预设变换方式包括:乘以-1、取反向波形、乘以-1后再取反向波形、乘以j、乘以-j、乘以j后再取反向波形或乘以-j后再取反向波形,所述j为虚数单位。
结合第一方面,在第一方面的第六种可实现方式中,所述HEW前导包括:重复传统信令字段RL-SIG、重复传统长训练字段RL-LTF、信令字段、高效率短训练字段HE-STF和高效率长训练字段HE-LTF,所述RL-LTF包括:在时域上排布的至少一个所述L-LTF。由于RL-LTF为L-LTF的重复,保证了L-LTF传输的可靠性。
结合第一方面的第六种可实现方式,在第一方面的第七种可实现方式中,所述信令字段包括:在时域上排布的至少一个低速率信令字段LR-SIG符号,或者,在频域上排布的至少一个LR-SIG符号,且每个所述LR-SIG符号的内容均相同,每个所述LR-SIG符号包括高效率信令A字段LR-SIG-A符号,或,每个 所述LR-SIG符号包括所述LR-SIG-A符号和高效率信令B字段LR-SIG-B符号。由于该LR-SIG符号可以包括LR-SIG-A和LR-SIG-B,使得该数据帧能够适用于支持HEW模式的接收端。
结合第一方面的第六种可实现方式,在第一方面的第八种可实现方式中,所述信令字段包括:在时域上排布的至少一个LR-SIG模块,或者,在频域上排布的至少一个LR-SIG模块,所述LR-SIG模块包括:采用循环移位的方式处理过的LR-SIG主体的循环前缀以及所述LR-SIG主体,所述LR-SIG主体包括采用双载波调制DCM方式处理过的LR-SIG符号,且每个所述LR-SIG符号的内容均相同,每个所述LR-SIG符号包括高效率信令A字段LR-SIG-A符号,或,每个所述LR-SIG符号包括所述LR-SIG-A符号和高效率信令B字段LR-SIG-B符号。
结合第一方面的第六种可实现方式,在第一方面的第九种可实现方式中,所述HE-LTF包括:在时域上排布的p个HE-LTF符号,每个HE-LTF符号的内容均相同,且所述HE-LTF符号对应的发送功率大于预设发送功率,
其中,所述p=m+2n,当所述数据部分对应的空间流的个数为偶数时,所述m为所述数据部分对应的空间流的个数,当所述数据部分对应的空间流的个数为奇数时,所述m为所述数据部分对应的空间流的个数的向上取偶,所述数据部分对应的空间流的个数小于八,所述n为大于0的整数。由于HE-LTF符号的发送功率较大,且数据部分对应的空间流的个数小于八,所以本发明中能够将HE-LTF符号进行重复,提高了传输HE-LTF的可靠性。
结合第一方面,在第一方面的第十种可实现方式中,所述数据部分采用正交频分复用多址OFDMA的方式,承载低速率数据字段LR-DATA和高效率数据字段HE-DATA,或者,承载所述LR-DATA,
所述LR-DATA包括:在时域上排布的至少一个LR-DATA符号,或者,在频域上排布的至少一个LR-DATA符号,且每个所述LR-DATA符号的内容均相同。
结合第一方面的第六种可实现方式,在第一方面的第十一种可实现方式中,所述RL-SIG包括:在时域上排布的至少一个经过预设方式处理后的所述L-SIG,所述预设方式与所述数据帧的类型相对应。
结合第一方面的第八种可实现方式,在第一方面的第十二种可实现方式中, 所述信令字段包括:在时域上排布的三个或四个LR-SIG模块,或者,在频域上排布的三个或四个LR-SIG模块。
结合第一方面,在第一方面的第十三种可实现方式中,所述数据帧由LR-STF、L-STF、L-LTF、L-SIG、RL-SIG、RL-LTF、信令字段、HE-STF、HE-LTF和数据部分依次组成。
第二方面,提供了一种数据传输装置,用于接收端,所述数据传输装置包括:
接收单元,用于接收发送端发送的数据帧,所述数据帧依次包括:低速率LR前导、基础前导、高效率无线局域网HEW前导和数据部分,所述LR前导包括:低速率短训练字段LR-STF,所述LR-STF包括:在时域上排布的至少两个第一符号,每个第一符号的内容相同,所述第一符号对应的时域波形的周期为1.6微秒,所述LR-STF用于定时同步;
处理单元,用于根据所述数据帧生成参考帧,所述参考帧在时域上比所述数据帧延迟预设时间,所述预设时间为所述第一符号对应的时域波形的周期的至少一倍;
处理单元还用于对所述数据帧和所述参考帧进行自相关检测;
处理单元还用于根据检测结果确定所述数据帧中的有效部分;
处理单元还用于根据所述有效部分对所述数据帧进行解析,得到所述数据帧中的待传输数据。
接收单元接收到的数据帧依次包括:LR前导、基础前导、HEW前导和数据部分,LR前导包括:LR-STF,LR-STF用于定时同步。由于LR-STF能够支持的信噪比较低,使得支持LR模式的接收端能够有效的获取数据帧中的数据,所以,提高了数据帧传输的可靠性。
LR接收端将该数据帧延迟LR前导中的第一符号的周期1.6微秒的整数倍得到参考帧,因此,该LR接收端能够检测到LR-STF,且HEW接收端将该数据帧延迟基础前导中的L-STF符号的周期0.8微秒得到参考帧,因此,该HEW接收端无法检测到LR-STF,即LR接收端可以使用数据帧中的LR-STF进行定时同步,且能够满足HEW接收端使用L-STF进行定时同步,所以,数据帧的可使用性较高。
第三方面,提供了一种数据传输方法,用于发送端,所述方法包括:
根据待传输数据生成数据帧,所述数据帧依次包括:低速率LR前导、基础前导、高效率无线局域网HEW前导和数据部分,所述LR前导包括:低速率短训练字段LR-STF,所述LR-STF包括:在时域上排布的至少两个第一符号,每个第一符号的内容相同,所述第一符号对应的时域波形的周期为1.6微秒,所述LR-STF用于定时同步;
向接收端发送所述数据帧。
结合第三方面,在第三方面的第一种可实现方式中,所述LR-STF还包括:用于标识所述LR-STF尾部的第二符号。
结合第三方面,在第三方面的第二种可实现方式中,所述第一符号对应的频域波形包括:直流子载波、保护子载波以及中间子载波,所述中间子载波在频域上位于所述直流子载波与所述保护子载波之间,所述第一符号的频域序列中的元素与所述频域波形一一对应,
当所述中间子载波对应的频域序列中的元素包括至少两个非零元素时,每两个所述非零元素之间存在一个零元素。
结合第三方面的第二种可实现方式,在第三方面的第三种可实现方式中,所述第一符号的频域序列中非零元素的个数大于十四。
结合第三方面的第三种可实现方式,在第三方面的第四种可实现方式中,所述第一符号的频域序列中非零元素的个数等于二十八。
结合第三方面的第一种可实现方式,在第三方面的第五种可实现方式中,所述基础前导包括:传统短训练字段L-STF、传统长训练字段L-LTF和传统信令字段L-SIG,所述L-STF包括至少两个L-STF符号,且每个L-STF符号的内容相同,每个L-STF符号对应的时域波形的周期为0.8微秒,所述第二符号对应的时域波形为将第一波形采用预设变换方式处理后的波形,
所述第一波形为:所述第一符号对应的时域波形、半个周期的所述第一符号对应的时域波形、所述L-STF符号对应的时域波形或半个周期的所述L-STF符号对应的时域波形,
所述预设变换方式包括:乘以-1、取反向波形、乘以-1后再取反向波形、乘以j、乘以-j、乘以j后再取反向波形或乘以-j后再取反向波形,所述j为虚数单位。
结合第三方面,在第三方面的第六种可实现方式中,所述HEW前导包括: 重复传统信令字段RL-SIG、重复传统长训练字段RL-LTF、信令字段、高效率短训练字段HE-STF和高效率长训练字段HE-LTF,所述RL-LTF包括:在时域上排布的至少一个所述L-LTF。
结合第三方面的第六种可实现方式,在第三方面的第七种可实现方式中,所述信令字段包括:在时域上排布的至少一个低速率信令字段LR-SIG符号,或者,在频域上排布的至少一个LR-SIG符号,且每个所述LR-SIG符号的内容均相同,每个所述LR-SIG符号包括高效率信令A字段LR-SIG-A符号,或,每个所述LR-SIG符号包括所述LR-SIG-A符号和高效率信令B字段LR-SIG-B符号。
结合第三方面的第六种可实现方式,在第三方面的第八种可实现方式中,所述信令字段包括:在时域上排布的至少一个LR-SIG模块,或者,在频域上排布的至少一个LR-SIG模块,所述LR-SIG模块包括:采用循环移位的方式处理过的LR-SIG主体的循环前缀以及所述LR-SIG主体,所述LR-SIG主体包括采用双载波调制DCM方式处理过的LR-SIG符号,且每个所述LR-SIG符号的内容均相同,每个所述LR-SIG符号包括高效率信令A字段LR-SIG-A符号,或,每个所述LR-SIG符号包括所述LR-SIG-A符号和高效率信令B字段LR-SIG-B符号。
结合第三方面的第六种可实现方式,在第三方面的第九种可实现方式中,所述HE-LTF包括:在时域上排布的p个HE-LTF符号,每个HE-LTF符号的内容均相同,且所述HE-LTF符号对应的发送功率大于预设发送功率,
其中,所述p=m+2n,当所述数据部分对应的空间流的个数为偶数时,所述m为所述数据部分对应的空间流的个数,当所述数据部分对应的空间流的个数为奇数时,所述m为所述数据部分对应的空间流的个数的向上取偶,所述数据部分对应的空间流的个数小于八,所述n为大于0的整数。
结合第三方面,在第三方面的第十种可实现方式中,所述数据部分采用正交频分复用多址OFDMA的方式,承载低速率数据字段LR-DATA和高效率数据字段HE-DATA,或者,承载所述LR-DATA,
所述LR-DATA包括:在时域上排布的至少一个LR-DATA符号,或者,在频域上排布的至少一个LR-DATA符号,且每个所述LR-DATA符号的内容均相同。
结合第三方面的第六种可实现方式,在第三方面的第十一种可实现方式中, 所述RL-SIG包括:在时域上排布的至少一个经过预设方式处理后的所述L-SIG,所述预设方式与所述数据帧的类型相对应。
结合第三方面的第八种可实现方式,在第三方面的第十二种可实现方式中,所述信令字段包括:在时域上排布的三个或四个LR-SIG模块,或者,在频域上排布的三个或四个LR-SIG模块。
结合第三方面,在第三方面的第十三种可实现方式中,所述数据帧由LR-STF、L-STF、L-LTF、L-SIG、RL-SIG、RL-LTF、信令字段、HE-STF、HE-LTF和数据部分依次组成。
第四方面,提供了一种数据传输方法,用于接收端,所述方法包括:
接收发送端发送的数据帧,所述数据帧依次包括:低速率LR前导、基础前导、高效率无线局域网HEW前导和数据部分,所述LR前导包括:低速率短训练字段LR-STF,所述LR-STF包括:在时域上排布的至少两个第一符号,所述第一符号对应的时域波形的周期为1.6微秒;
根据所述数据帧生成参考帧,所述参考帧在时域上比所述数据帧延迟预设时间,所述预设时间为所述第一符号对应的时域波形的周期的至少一倍;
对所述数据帧和所述参考帧进行自相关检测;
根据检测结果确定所述数据帧中的有效部分;
根据所述有效部分对所述数据帧进行解析,得到所述数据帧中的待传输数据。
第五方面,提供了一种数据传输系统,所述数据传输系统包括:发送端和接收端,
所述发送端为第三方面或第三方面的任意一种可实现方式所述的数据传输装置;
所述接收端为第四方面或第四方面的任意一种可实现方式所述的数据传输装置。
第六方面,提供了一种数据传输装置,用于发送端,所述数据传输装置包括:处理器和发送机,
所述处理器用于根据待传输数据生成数据帧,所述数据帧依次包括:低速率LR前导、基础前导、高效率无线局域网HEW前导和数据部分,所述LR前导包括:低速率短训练字段LR-STF,所述LR-STF包括:在时域上排布的至少 两个第一符号,每个第一符号的内容相同,所述第一符号对应的时域波形的周期为1.6微秒,所述LR-STF用于定时同步;
所述发送机用于向接收端发送所述数据帧。
结合第六方面,在第六方面的第一种可实现方式中,所述LR-STF还包括:用于标识所述LR-STF尾部的第二符号。
结合第六方面,在第六方面的第二种可实现方式中,所述第一符号对应的频域波形包括:直流子载波、保护子载波以及中间子载波,所述中间子载波在频域上位于所述直流子载波与所述保护子载波之间,所述第一符号的频域序列中的元素与所述频域波形一一对应,
当所述中间子载波对应的频域序列中的元素包括至少两个非零元素时,每两个所述非零元素之间存在一个零元素。
结合第六方面的第二种可实现方式,在第六方面的第三种可实现方式中,所述第一符号的频域序列中非零元素的个数大于十四。
结合第六方面的第三种可实现方式,在第六方面的第四种可实现方式中,所述第一符号的频域序列中非零元素的个数等于二十八。
结合第六方面的第一种可实现方式,在第六方面的第五种可实现方式中,所述基础前导包括:传统短训练字段L-STF、传统长训练字段L-LTF和传统信令字段L-SIG,所述L-STF包括至少两个L-STF符号,且每个L-STF符号的内容相同,每个L-STF符号对应的时域波形的周期为0.8微秒,所述第二符号对应的时域波形为将第一波形采用预设变换方式处理后的波形,
所述第一波形为:所述第一符号对应的时域波形、半个周期的所述第一符号对应的时域波形、所述L-STF符号对应的时域波形或半个周期的所述L-STF符号对应的时域波形,
所述预设变换方式包括:乘以-1、取反向波形、乘以-1后再取反向波形、乘以j、乘以-j、乘以j后再取反向波形或乘以-j后再取反向波形,所述j为虚数单位。
结合第六方面,在第六方面的第六种可实现方式中,所述HEW前导包括:重复传统信令字段RL-SIG、重复传统长训练字段RL-LTF、信令字段、高效率短训练字段HE-STF和高效率长训练字段HE-LTF,所述RL-LTF包括:在时域上排布的至少一个所述L-LTF。
结合第六方面的第六种可实现方式,在第六方面的第七种可实现方式中,所述信令字段包括:在时域上排布的至少一个低速率信令字段LR-SIG符号,或者,在频域上排布的至少一个LR-SIG符号,且每个所述LR-SIG符号的内容均相同,每个所述LR-SIG符号包括高效率信令A字段LR-SIG-A符号,或,每个所述LR-SIG符号包括所述LR-SIG-A符号和高效率信令B字段LR-SIG-B符号。
结合第六方面的第六种可实现方式,在第六方面的第八种可实现方式中,所述信令字段包括:在时域上排布的至少一个LR-SIG模块,或者,在频域上排布的至少一个LR-SIG模块,所述LR-SIG模块包括:采用循环移位的方式处理过的LR-SIG主体的循环前缀以及所述LR-SIG主体,所述LR-SIG主体包括采用双载波调制DCM方式处理过的LR-SIG符号,且每个所述LR-SIG符号的内容均相同,每个所述LR-SIG符号包括高效率信令A字段LR-SIG-A符号,或,每个所述LR-SIG符号包括所述LR-SIG-A符号和高效率信令B字段LR-SIG-B符号。
结合第六方面的第六种可实现方式,在第六方面的第九种可实现方式中,所述HE-LTF包括:在时域上排布的p个HE-LTF符号,每个HE-LTF符号的内容均相同,且所述HE-LTF符号对应的发送功率大于预设发送功率,
其中,所述p=m+2n,当所述数据部分对应的空间流的个数为偶数时,所述m为所述数据部分对应的空间流的个数,当所述数据部分对应的空间流的个数为奇数时,所述m为所述数据部分对应的空间流的个数的向上取偶,所述数据部分对应的空间流的个数小于八,所述n为大于0的整数。
结合第六方面,在第六方面的第十种可实现方式中,所述数据部分采用正交频分复用多址OFDMA的方式,承载低速率数据字段LR-DATA和高效率数据字段HE-DATA,或者,承载所述LR-DATA,
所述LR-DATA包括:在时域上排布的至少一个LR-DATA符号,或者,在频域上排布的至少一个LR-DATA符号,且每个所述LR-DATA符号的内容均相同。
结合第六方面的第六种可实现方式,在第六方面的第十一种可实现方式中,所述RL-SIG包括:在时域上排布的至少一个经过预设方式处理后的所述L-SIG,所述预设方式与所述数据帧的类型相对应。
结合第六方面的第八种可实现方式,在第六方面的第十二种可实现方式中, 所述信令字段包括:在时域上排布的三个或四个LR-SIG模块,或者,在频域上排布的三个或四个采用LR-SIG模块。
结合第六方面,在第六方面的第十三种可实现方式中,所述数据帧由LR-STF、L-STF、L-LTF、L-SIG、RL-SIG、RL-LTF、信令字段、HE-STF、HE-LTF和数据部分依次组成。
结合第六方面,在第六方面的第十四种可实现方式中,所述数据传输装置为终端。
第七方面,提供了一种数据传输装置,用于接收端,所述数据传输装置包括:接收机和处理器,
所述接收机用于接收发送端发送的数据帧,所述数据帧依次包括:低速率LR前导、基础前导、高效率无线局域网HEW前导和数据部分,所述LR前导包括:低速率短训练字段LR-STF,所述LR-STF包括:在时域上排布的至少两个第一符号,每个第一符号的内容相同,所述第一符号对应的时域波形的周期为1.6微秒,所述LR-STF用于定时同步;
所述处理器用于根据所述数据帧生成参考帧,所述参考帧在时域上比所述数据帧延迟预设时间,所述预设时间为所述第一符号对应的时域波形的周期的至少一倍;
所述处理器还用于对所述数据帧和所述参考帧进行自相关检测;
所述处理器还用于根据检测结果确定所述数据帧中的有效部分;
所述处理器还用于根据所述有效部分对所述数据帧进行解析,得到所述数据帧中的待传输数据。
结合第七方面,在第七方面的第一种可实现方式中,所述数据传输装置为终端。
第八方面,提供了一种数据传输系统,所述数据传输系统包括:发送端和接收端,
所述发送端为第六方面或第六方面的任意一种可实现方式所述的数据传输装置;
所述接收端为第七方面或第七方面的任意一种可实现方式所述的数据传输装置。
第九方面,提供了一种数据传输装置,用于发送端,所述数据传输装置包 括:
处理单元,用于根据待传输数据生成数据帧,所述数据帧依次包括:基础前导、高效率无线局域网HEW前导和数据部分,所述HEW前导包括:重复传统信令字段RL-SIG、重复传统长训练字段RL-LTF、信令字段、高效率短训练字段HE-STF和高效率长训练字段HE-LTF,所述RL-LTF包括:在时域上排布的至少一个所述L-LTF。
发送单元,用于向接收端发送所述数据帧。
结合第九方面,在第九方面的第一种可实现方式中,
所述基础前导包括:传统短训练字段L-STF、传统长训练字段L-LTF和传统信令字段L-SIG,所述L-STF包括至少两个L-STF符号,且每个L-STF符号的内容相同,每个L-STF符号对应的时域波形的周期为0.8微秒,所述L-STF用于定时同步;
结合第九方面,在第九方面的第二种可实现方式中,
所述信令字段包括:在时域上排布的至少一个低速率信令字段LR-SIG符号,或者,在频域上排布的至少一个LR-SIG符号,且每个所述LR-SIG符号的内容均相同,每个所述LR-SIG符号包括高效率信令A字段LR-SIG-A符号,或,每个所述LR-SIG符号包括所述LR-SIG-A符号和高效率信令B字段LR-SIG-B符号。
结合第九方面,在第九方面的第三种可实现方式中,
所述信令字段包括:在时域上排布的至少一个LR-SIG模块,或者,在频域上排布的至少一个LR-SIG模块,所述LR-SIG模块包括:采用循环移位的方式处理过的LR-SIG主体的循环前缀以及所述LR-SIG主体,所述LR-SIG主体包括采用双载波调制DCM方式处理过的LR-SIG符号,且每个所述LR-SIG符号的内容均相同,每个所述LR-SIG符号包括高效率信令A字段LR-SIG-A符号,或,每个所述LR-SIG符号包括所述LR-SIG-A符号和高效率信令B字段LR-SIG-B符号。
结合第九方面,在第九方面的第四种可实现方式中,
所述HE-LTF包括:在时域上排布的p个HE-LTF符号,每个HE-LTF符号的内容均相同,且所述HE-LTF符号对应的发送功率大于预设发送功率,
其中,所述p=m+2n,当所述数据部分对应的空间流的个数为偶数时,所述 m为所述数据部分对应的空间流的个数,当所述数据部分对应的空间流的个数为奇数时,所述m为所述数据部分对应的空间流的个数的向上取偶,所述数据部分对应的空间流的个数小于八,所述n为大于0的整数。
结合第九方面,在第九方面的第五种可实现方式中,
所述数据部分采用正交频分复用多址OFDMA的方式,承载低速率数据字段LR-DATA和高效率数据字段HE-DATA,或者,承载所述LR-DATA,
所述LR-DATA包括:在时域上排布的至少一个LR-DATA符号,或者,在频域上排布的至少一个LR-DATA符号,且每个所述LR-DATA符号的内容均相同。
结合第九方面,在第九方面的第六种可实现方式中,
所述RL-SIG包括:在时域上排布的至少一个经过预设方式处理后的所述L-SIG,所述预设方式与所述数据帧的类型相对应。
结合第九方面的第三种可实现方式,在第九方面的第七种可实现方式中,
所述信令字段包括:在时域上排布的三个或四个LR-SIG模块,或者,在频域上排布的三个或四个LR-SIG模块。
结合第九方面,在第九方面的第八种可实现方式中,
所述数据帧由L-STF、L-LTF、L-SIG、RL-SIG、RL-LTF、信令字段、HE-STF、HE-LTF和数据部分依次组成。
第十方面,提供了一种数据传输装置,用于接收端,所述数据传输装置包括:
接收单元,用于接收发送端发送的数据帧,所述基础前导包括:传统短训练字段L-STF、传统长训练字段L-LTF和传统信令字段L-SIG,所述L-STF包括至少两个L-STF符号,且每个L-STF符号的内容相同,每个L-STF符号对应的时域波形的周期为0.8微秒,所述L-STF用于定时同步;
处理单元,用于根据所述数据帧生成参考帧,所述参考帧在时域上比所述数据帧延迟预设时间,所述预设时间为所述L-STF符号对应的时域波形的周期的至少一倍;
所述处理单元还用于对所述数据帧和所述参考帧进行自相关检测;
所述处理单元还用于根据检测结果确定所述数据帧中的有效部分;
所述处理单元还用于根据所述有效部分对所述数据帧进行解析,得到所述 数据帧中的待传输数据。
第十一方面,提供了一种数据传输方法,用于发送端,所述方法包括:
根据待传输数据生成数据帧,所述数据帧依次包括:基础前导、高效率无线局域网HEW前导和数据部分,所述HEW前导包括:重复传统信令字段RL-SIG、重复传统长训练字段RL-LTF、信令字段、高效率短训练字段HE-STF和高效率长训练字段HE-LTF,所述RL-LTF包括:在时域上排布的至少一个所述L-LTF。
向接收端发送所述数据帧。
结合第十一方面,在第十一方面的第一种可实现方式中,
所述基础前导包括:传统短训练字段L-STF、传统长训练字段L-LTF和传统信令字段L-SIG,所述L-STF包括至少两个L-STF符号,且每个L-STF符号的内容相同,每个L-STF符号对应的时域波形的周期为0.8微秒,所述L-STF用于定时同步;
结合第十一方面,在第十一方面的第二种可实现方式中,
所述信令字段包括:在时域上排布的至少一个低速率信令字段LR-SIG符号,或者,在频域上排布的至少一个LR-SIG符号,且每个所述LR-SIG符号的内容均相同,每个所述LR-SIG符号包括高效率信令A字段LR-SIG-A符号,或,每个所述LR-SIG符号包括所述LR-SIG-A符号和高效率信令B字段LR-SIG-B符号。
结合第十一方面,在第十一方面的第三种可实现方式中,
所述信令字段包括:在时域上排布的至少一个LR-SIG模块,或者,在频域上排布的至少一个LR-SIG模块,所述LR-SIG模块包括:采用循环移位的方式处理过的LR-SIG主体的循环前缀以及所述LR-SIG主体,所述LR-SIG主体包括采用双载波调制DCM方式处理过的LR-SIG符号,且每个所述LR-SIG符号的内容均相同,每个所述LR-SIG符号包括高效率信令A字段LR-SIG-A符号,或,每个所述LR-SIG符号包括所述LR-SIG-A符号和高效率信令B字段LR-SIG-B符号。
结合第十一方面,在第十一方面的第四种可实现方式中,
所述HE-LTF包括:在时域上排布的p个HE-LTF符号,每个HE-LTF符号的内容均相同,且所述HE-LTF符号对应的发送功率大于预设发送功率,
其中,所述p=m+2n,当所述数据部分对应的空间流的个数为偶数时,所述m为所述数据部分对应的空间流的个数,当所述数据部分对应的空间流的个数为奇数时,所述m为所述数据部分对应的空间流的个数的向上取偶,所述数据部分对应的空间流的个数小于八,所述n为大于0的整数。
结合第十一方面,在第十一方面的第五种可实现方式中,
所述数据部分采用正交频分复用多址OFDMA的方式,承载低速率数据字段LR-DATA和高效率数据字段HE-DATA,或者,承载所述LR-DATA,
所述LR-DATA包括:在时域上排布的至少一个LR-DATA符号,或者,在频域上排布的至少一个LR-DATA符号,且每个所述LR-DATA符号的内容均相同。
结合第十一方面,在第十一方面的第六种可实现方式中,
所述RL-SIG包括:在时域上排布的至少一个经过预设方式处理后的所述L-SIG,所述预设方式与所述数据帧的类型相对应。
结合第十一方面的第三种可实现方式,在第十一方面的第七种可实现方式中,
所述信令字段包括:在时域上排布的三个或四个LR-SIG模块,或者,在频域上排布的三个或四个LR-SIG模块。
结合第十一方面,在第十一方面的第八种可实现方式中,
所述数据帧由L-STF、L-LTF、L-SIG、RL-SIG、RL-LTF、信令字段、HE-STF、HE-LTF和数据部分依次组成。
第十二方面,提供了一种数据传输方法,用于接收端,所述方法包括:
接收发送端发送的数据帧,所述基础前导包括:传统短训练字段L-STF、传统长训练字段L-LTF和传统信令字段L-SIG,所述L-STF包括至少两个L-STF符号,且每个L-STF符号的内容相同,每个L-STF符号对应的时域波形的周期为0.8微秒,所述L-STF用于定时同步;
根据所述数据帧生成参考帧,所述参考帧在时域上比所述数据帧延迟预设时间,所述预设时间为所述L-STF符号对应的时域波形的周期的至少一倍;
对所述数据帧和所述参考帧进行自相关检测;
根据检测结果确定所述数据帧中的有效部分;
根据所述有效部分对所述数据帧进行解析,得到所述数据帧中的待传输数 据。
第十三方面,提供了一种数据传输系统,所述数据传输系统包括:发送端和接收端,
所述发送端为第九方面或第九方面的任意一种可实现方式所述的数据传输装置;
所述接收端为第十方面或第十方面的任意一种可实现方式所述的数据传输装置。
第十四方面,提供了一种数据传输装置,用于发送端,所述数据传输装置包括:处理器和发送机,
所述处理器用于根据待传输数据生成数据帧,所述数据帧依次包括:基础前导、高效率无线局域网HEW前导和数据部分,所述HEW前导包括:重复传统信令字段RL-SIG、重复传统长训练字段RL-LTF、信令字段、高效率短训练字段HE-STF和高效率长训练字段HE-LTF,所述RL-LTF包括:在时域上排布的至少一个所述L-LTF。
所述发送机用于向接收端发送所述数据帧。
结合第十四方面,在第十四方面的第一种可实现方式中,
所述基础前导包括:传统短训练字段L-STF、传统长训练字段L-LTF和传统信令字段L-SIG,所述L-STF包括至少两个L-STF符号,且每个L-STF符号的内容相同,每个L-STF符号对应的时域波形的周期为0.8微秒,所述L-STF用于定时同步;
结合第十四方面,在第十四方面的第二种可实现方式中,
所述信令字段包括:在时域上排布的至少一个低速率信令字段LR-SIG符号,或者,在频域上排布的至少一个LR-SIG符号,且每个所述LR-SIG符号的内容均相同,每个所述LR-SIG符号包括高效率信令A字段LR-SIG-A符号,或,每个所述LR-SIG符号包括所述LR-SIG-A符号和高效率信令B字段LR-SIG-B符号。
结合第十四方面,在第十四方面的第三种可实现方式中,
所述信令字段包括:在时域上排布的至少一个LR-SIG模块,或者,在频域上排布的至少一个LR-SIG模块,所述LR-SIG模块包括:采用循环移位的方式处理过的LR-SIG主体的循环前缀以及所述LR-SIG主体,所述LR-SIG主体包 括采用双载波调制DCM方式处理过的LR-SIG符号,且每个所述LR-SIG符号的内容均相同,每个所述LR-SIG符号包括高效率信令A字段LR-SIG-A符号,或,每个所述LR-SIG符号包括所述LR-SIG-A符号和高效率信令B字段LR-SIG-B符号。
结合第十四方面,在第十四方面的第四种可实现方式中,
所述HE-LTF包括:在时域上排布的p个HE-LTF符号,每个HE-LTF符号的内容均相同,且所述HE-LTF符号对应的发送功率大于预设发送功率,
其中,所述p=m+2n,当所述数据部分对应的空间流的个数为偶数时,所述m为所述数据部分对应的空间流的个数,当所述数据部分对应的空间流的个数为奇数时,所述m为所述数据部分对应的空间流的个数的向上取偶,所述数据部分对应的空间流的个数小于八,所述n为大于0的整数。
结合第十四方面,在第十四方面的第五种可实现方式中,
所述数据部分采用正交频分复用多址OFDMA的方式,承载低速率数据字段LR-DATA和高效率数据字段HE-DATA,或者,承载所述LR-DATA,
所述LR-DATA包括:在时域上排布的至少一个LR-DATA符号,或者,在频域上排布的至少一个LR-DATA符号,且每个所述LR-DATA符号的内容均相同。
结合第十四方面,在第十四方面的第六种可实现方式中,
所述RL-SIG包括:在时域上排布的至少一个经过预设方式处理后的所述L-SIG,所述预设方式与所述数据帧的类型相对应。
结合第十四方面的第三种可实现方式,在第十四方面的第七种可实现方式中,
所述信令字段包括:在时域上排布的三个或四个LR-SIG模块,或者,在频域上排布的三个或四个LR-SIG模块。
结合第十四方面,在第十四方面的第八种可实现方式中,
所述数据帧由L-STF、L-LTF、L-SIG、RL-SIG、RL-LTF、信令字段、HE-STF、HE-LTF和数据部分依次组成。
结合第十四方面,在第十四方面的第九种可实现方式中,
所述数据传输装置为终端。
第十五方面,提供了一种数据传输装置,用于接收端,所述装置包括:接 收机和处理器,
所述接收机用于接收发送端发送的数据帧,所述基础前导包括:传统短训练字段L-STF、传统长训练字段L-LTF和传统信令字段L-SIG,所述L-STF包括至少两个L-STF符号,且每个L-STF符号的内容相同,每个L-STF符号对应的时域波形的周期为0.8微秒,所述L-STF用于定时同步;
所述处理器用于根据所述数据帧生成参考帧,所述参考帧在时域上比所述数据帧延迟预设时间,所述预设时间为所述L-STF符号对应的时域波形的周期的至少一倍;
所述处理器还用于对所述数据帧和所述参考帧进行自相关检测;
所述处理器还用于根据检测结果确定所述数据帧中的有效部分;
所述处理器还用于根据所述有效部分对所述数据帧进行解析,得到所述数据帧中的待传输数据。
结合第十五方面,在第十五方面的第一种可实现方式中,
所述数据传输装置为终端。
第十六方面,提供了一种数据传输系统,所述数据传输系统包括:发送端和接收端,
所述发送端为第十四方面或第十四方面的任意一种可实现方式所述的数据传输装置;
所述接收端为第十五方面或第十五方面的任意一种可实现方式所述的数据传输装置。
本发明提供的技术方案带来的有益效果是:
本发明提供了一种数据传输方法、装置及系统,该数据传输方法中,发送端生成的数据帧依次包括:LR前导、基础前导、HEW前导和数据部分,LR前导包括:LR-STF,LR-STF用于定时同步。由于数据帧的帧头为LR-STF,且LR-STF能够支持的信噪比较低,使得在传输该数据帧时,支持LR模式的接收端能够较容易的接收到该数据帧,并且能够有效的获取数据帧中的数据,所以,提高了数据帧传输的可靠性。
应当理解的是,以上的一般描述和后文的细节描述仅是示例性和解释性的,并不能限制本发明。
附图说明
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1-1为本发明实施例提供的一种数据传输方法的应用场景示意图;
图1-2为相关技术中提供的一种数据帧的结构示意图;
图1-3为相关技术中提供的另一种数据帧的结构示意图;
图2为本发明实施例提供的一种数据传输装置的结构框图;
图3为本发明实施例提供的另一种数据传输装置的结构框图;
图4为本发明实施例提供的一种数据传输方法的方法流程图;
图5为本发明实施例提供的另一种数据传输方法的方法流程图;
图6-1为本发明实施例提供的又一种数据传输方法的方法流程图;
图6-2为本发明实施例提供的一种数据帧的结构示意图;
图6-3为本发明实施例提供的一种RL-STF的结构示意图;
图6-4为本发明实施例提供的一种LR-STF对应的频域波形示意图;
图6-5为本发明实施例提供的另一种RL-STF的结构示意图;
图6-6为本发明实施例提供的又一种RL-STF的结构示意图;
图6-7为本发明实施例提供的一种信令字段的结构示意图;
图6-8为本发明实施例提供的另一种信令字段的结构示意图;
图6-9为本发明实施例提供的又一种信令字段的结构示意图;
图6-10为本发明实施例提供的一种信令字段的传输示意图;
图6-11为本发明实施例提供的一种HE-LTF的结构示意图;
图6-12为本发明实施例提供的另一种HE-LTF的结构示意图;
图6-13为本发明实施例提供的又一种HE-LTF的结构示意图;
图6-14为本发明实施例提供的再一种HE-LTF的结构示意图;
图6-15为本发明另一实施例提供的一种HE-LTF的结构示意图;
图6-16为本发明另一实施例提供的另一种HE-LTF的结构示意图;
图6-17为本发明另一实施例提供的又一种HE-LTF的结构示意图;
图6-18为本发明实施例提供的另一种数据帧的结构示意图;
图6-19为本发明实施例提供的一种数据部分对应的频域波形示意图;
图6-20为本发明实施例提供的一种LR接收端的自相关检测示意图;
图6-21为本发明实施例提供的一种HEW接收端的自相关检测示意图;
图7为本发明实施例提供的再一种数据传输方法的方法流程图;
图8为本发明另一实施例提供的一种数据传输方法的方法流程图;
图9-1为本发明另一实施例提供的另一种数据传输方法的方法流程图;
图9-2为本发明实施例提供的一种数据帧传输示意图;
图10为本发明实施例提供的一种数据传输系统的结构框图;
图11为本发明实施例提供的又一种数据传输装置的结构框图;
图12为本发明实施例提供的再一种数据传输装置的结构框图;
图13为本发明实施例提供的另一种数据传输系统的结构框图。
通过上述附图,已示出本发明明确的实施例,后文中将有更详细的描述。这些附图和文字描述并不是为了通过任何方式限制本发明构思的范围,而是通过参考特定实施例为本领域技术人员说明本发明的概念。
具体实施方式
为使本发明的目的、技术方案和优点更加清楚,下面将结合附图对本发明实施方式作进一步地详细描述。
图1-1为本发明实施例提供了一种数据传输方法的应用场景示意图,如图1-1所示,该应用场景可以包括:AP和多个STA,图1-1中以该应用场景包括1个AP和3个STA为例。示例的,该多个STA可以包括HEW模式的STA-1和LR模式的STA-2,且该AP可以同时支持HEW模式和低速率(英文:Low Rate;简称:LR)模式,即该AP既可以与HEW模式的STA-1互相传输数据帧,该AP还可以与LR模式的STA-2互相传输数据帧。示例的,该被传输的数据帧可以为802.11ax中的数据帧。该支持HEW模式的STA-1在向AP传输数据帧时,可以采用大于调制编码组合(英文:Modulation and Coding Set;简称:MCS)10对应的传输速率;该支持LR模式的STA-2在向AP传输数据帧时,可以采用等于MCS10对应的传输速率。
802.11ax中的数据帧可以由基础前导、HEW前导和数据部分依次组成,其中,基础前导和HEW前导用于承载数据帧的参数信息,数据部分用于承载数据 帧的数据。示例的,图1-2为相关技术中提供的一种数据帧的结构示意图,如图1-2所示,基础前导可以依次包括:L-STF、L-LTF和L-SIG;HEW前导可以包括:重复传统信令字段(英文:Repeated Legacy Signal field;简称:RL-SIG)、高效率信令A字段(英文:High Efficiency Signal-A field;简称:HE-SIG-A)、高效率信令B字段(英文:High Efficiency Signal-B field;简称HE-SIG-B)、高效率短训练字段(英文:High Efficiency Short Training field;简称:HE-STF)和高效率长训练字段(英文:High Efficiency Long Training field;简称:HE-LTF),数据部分可以由数据字段(图1-2中未示出)组成。进一步的,该L-STF可以由至少两个L-STF符号组成,且每个L-STF符号的内容相同,每个L-STF符号的周期为0.8微秒。
在AP需要向STA-1传输数据时,AP为发送端,STA-1为接收端,AP可以根据待传输的数据以及802.11ax中规定的数据帧的结构,生成数据帧,并将该数据帧发送至STA-1;STA-1在接收到该数据帧后,可以根据数据帧中的基础前导和HEW前导中承载的数据帧的参数信息,对数据帧的数据部分进行解析,获取数据帧中的数据,完成数据的传输。但是,在实际应用中,由于LR模式的STA-2装置自身属性的限制或环境因素影响,AP向LR模式的STA-2传输数据帧的过程中会产生较大的噪声,使得传输数据帧过程中的信噪比较低,LR模式的STA-2接收到的数据帧的信号质量较差,进而无法有效获取数据帧中的数据,因此,数据帧传输的可靠性较低。
为了提高数据传输的可靠性,相关技术中提供了如下两种数据帧的结构:
一方面,如图1-3所示,图1-3为相关技术中提供的另一种数据帧的结构示意图,该数据帧可以包括:基础前导、LR前导和数据字段。其中,LR前导可以包括:低速率短训练字段(Low Rate Short Training field,简称LR-STF)、低速率长训练字段(Low Rate Long Training field,简称LR-LTF)和低速率信令字段(Low Rate Signal field,简称LR-SIG)。图1-3中的基础前导与图1-2中的基础前导相同,图1-3中的数据部分与图1-2中的数据部分相同,即图1-3中的基础前导与数据部分的具体结构可以分别参考图1-2中基础前导于数据部分的具体结构,本发明实施例在此不做赘述。需要说明的是,图1-3所示的数据帧中的LR前导可以支持较低的信噪比,在图1-1中的AP向LR模式的STA-2传输 数据帧的过程中的信噪比较低时,LR模式的STA-2接收到的数据帧的信号质量较好,且能够有效获取数据帧中的数据,因此,提高了数据帧传输的可靠性。但是,由于图1-3所示的数据帧中,基础前导位于LR前导之前,由于基础前导不支持较低的信噪比,图1-1中的LR模式的STA-2在接收到数据帧时,无法对基础前导进行有效的利用,且LR前导中的LR-SIG与图1-2中的HEW前导中的LR-SIG-A以及LR-SIG-B不同,因此图1-1中的HEW模式的STA-1无法使用图1-3中的数据帧。
另一方面,提供了一种能够适用于LR发送端的数据帧结构,该数据帧的结构可以与图1-2所示的数据帧的结构相同,但是,均需要通过功率放大器提高该数据帧中的L-STF和L-STF的发送功率,且在传输该数据帧中的HE-SIG-A和数据部分时,可以采用MCS10对应的传输速率进行传输。由于将基础前导中的L-STF和L-LTF的功率进行了提高,增加了数据帧传输过程中的增益,降低了该数据帧能够支持的信噪比,以便于提高图1-1中的LR模式的STA-2接收到的数据帧的信号质量,提高数据帧传输的可靠性。但是,由于功率放大器能够放大的功率有限,仍然无法实现图1-1中的LR模式的STA-2能够有效获取数据帧中的数据,因此,数据传输的可靠性仍然较差。
如图2所示,本发明实施例提供了一种数据传输装置20,该数据传输装置20可以用于发送端,该发送端可以为支持LR模式的发送端,该支持LR模式的发送端可以为支持LR模式的AP或支持LR模式的STA,该数据传输装置20可以包括:
处理单元201,用于根据待传输数据生成数据帧,数据帧依次包括:低速率LR前导、基础前导、高效率无线局域网HEW前导和数据部分,LR前导包括:LR-STF,LR-STF包括:在时域上排布的至少两个第一符号,每个第一符号的内容相同,第一符号对应的时域波形的周期为1.6微秒,LR-STF用于定时同步。
发送单元202,用于向接收端发送数据帧。
综上所述,本发明实施例提供的数据传输装置中,处理单元生成的数据帧依次包括:LR前导、基础前导、HEW前导和数据部分,LR前导包括:LR-STF,LR-STF用于定时同步。由于数据帧的帧头为LR-STF,且LR-STF能够支持的信噪比较低,使得发送单元在传输该数据帧时,支持LR模式的接收端能够较容 易的接收到该数据帧,并且能够有效的获取数据帧中的数据,所以,提高了数据帧传输的可靠性。
示例的,本发明实施例中的处理单元201可以为处理器,发送单元202可以为射频模块。
可选的,LR-STF还可以包括:用于标识LR-STF尾部的第二符号。
可选的,第一符号对应的频域波形可以包括:直流子载波、保护子载波以及中间子载波,中间子载波在频域上位于直流子载波与保护子载波之间,第一符号的频域序列中的元素与频域波形一一对应,当中间子载波对应的频域序列中的元素包括至少两个非零元素时,每两个非零元素之间存在一个零元素。
可选的,第一符号的频域序列中非零元素的个数可以大于十四。
可选的,第一符号的频域序列中非零元素的个数等于二十八。
可选的,基础前导包括:L-STF、L-LTF和L-SIG,L-STF包括至少两个L-STF符号,且每个L-STF符号的内容相同,每个L-STF符号对应的时域波形的周期为0.8微秒,第二符号对应的时域波形为将第一波形采用预设变换方式处理后的波形,第一波形为:第一符号对应的时域波形、半个周期的第一符号对应的时域波形、L-STF符号对应的时域波形或半个周期的L-STF符号对应的时域波形,预设变换方式包括:乘以-1、取反向波形、乘以-1后再取反向波形、乘以j、乘以-j、乘以j后再取反向波形或乘以-j后再取反向波形,j为虚数单位。
可选的,HEW前导包括:RL-SIG、重复传统长训练字段(英文:Repeated Legacy Long Training Field;简称:RL-LTF)、信令字段、HE-STF和HE-LTF,RL-LTF包括:在时域上排布的至少一个L-LTF。
可选的,信令字段包括:在时域上排布的至少一个LR-SIG符号,或者,在频域上排布的至少一个LR-SIG符号,且每个LR-SIG符号的内容均相同,每个LR-SIG符号包括高效率信令A字段LR-SIG-A符号,或,每个LR-SIG符号包括LR-SIG-A符号和高效率信令B字段LR-SIG-B符号。
可选的,信令字段包括:在时域上排布的至少一个LR-SIG模块,或者,在频域上排布的至少一个LR-SIG模块,LR-SIG模块包括:采用循环移位的方式处理过的LR-SIG主体的循环前缀以及LR-SIG主体,LR-SIG主体包括采用双载波调制(英文:Dual Carrier Modulation;简称:DCM)方式处理过的LR-SIG符号,且每个LR-SIG符号的内容均相同,每个LR-SIG符号包括高效率信令A 字段LR-SIG-A符号,或,每个LR-SIG符号包括LR-SIG-A符号和高效率信令B字段LR-SIG-B符号。
可选的,HE-LTF包括:在时域上排布的p个HE-LTF符号,每个HE-LTF符号的内容均相同,且HE-LTF符号对应的发送功率大于预设发送功率,
其中,p=m+2n,当数据部分对应的空间流的个数为偶数时,m为数据部分对应的空间流的个数,当数据部分对应的空间流的个数为奇数时,m为数据部分对应的空间流的个数的向上取偶,数据部分对应的空间流的个数小于八,n为大于0的整数。
可选的,数据部分采用正交频分复用多址(英文:Orthogonal Frequency-Division Multiple Access;简称:OFDMA)的方式,承载低速率数据字段(英文:Low Rate DATA;简称:LR-DATA)和高效率数据字段(英文:High Efficiency DATA;简称:HE-DATA),或者,承载LR-DATA,LR-DATA包括:在时域上排布的至少一个LR-DATA符号,或者,在频域上排布的至少一个LR-DATA符号,且每个LR-DATA符号的内容均相同。
可选的,RL-SIG包括:在时域上排布的至少一个经过预设方式处理后的L-SIG,预设方式与数据帧的类型相对应。
可选的,信令字段包括:在时域上排布的三个或四个LR-SIG模块,或者,在频域上排布的三个或四个LR-SIG模块。
可选的,数据帧由LR-STF、L-STF、L-LTF、L-SIG、RL-SIG、RL-LTF、信令字段、HE-STF、HE-LTF和数据部分依次组成。
综上所述,本发明实施例提供的数据传输装置中,处理单元生成的数据帧依次包括:LR前导、基础前导、HEW前导和数据部分,LR前导包括:LR-STF,LR-STF用于定时同步。由于数据帧的帧头为LR-STF,且LR-STF能够支持的信噪比较低,使得发送单元在传输该数据帧时,支持LR模式的接收端能够较容易的接收到该数据帧,并且能够有效的获取数据帧中的数据,所以,提高了数据帧传输的可靠性。
如图3所示,本发明实施例提供了另一种数据传输装置30,该数据传输装置30可以用于接收端,该接收端可以为支持LR模式的接收端,该支持LR模式的接收端可以为支持LR模式的AP或支持LR模式的STA,该数据传输装置 30可以包括:
接收单元301,用于接收发送端发送的数据帧,数据帧依次包括:低速率LR前导、基础前导、高效率无线局域网HEW前导和数据部分,LR前导包括:LR-STF,LR-STF包括:在时域上排布的至少两个第一符号,每个第一符号的内容相同,第一符号对应的时域波形的周期为1.6微秒,LR-STF用于定时同步。
处理单元302,用于根据数据帧生成参考帧,参考帧在时域上比数据帧延迟预设时间,预设时间为第一符号对应的时域波形的周期的至少一倍。
处理单元302还用于对数据帧和参考帧进行自相关检测。
处理单元302还用于根据检测结果确定数据帧中的有效部分。
处理单元302还用于根据有效部分对数据帧进行解析,得到数据帧中的待传输数据。
综上所述,本发明实施例提供的数据传输装置中,接收单元接收到的数据帧依次包括:LR前导、基础前导、HEW前导和数据部分,LR前导包括:LR-STF,LR-STF用于定时同步。由于LR-STF能够支持的信噪比较低,使得支持LR模式的接收端能够有效的获取数据帧中的数据,所以,提高了数据帧传输的可靠性。
示例的,本发明实施例中,处理单元302可以为处理器,接收单元301可以为射频模块。处理单元将该数据帧延迟LR前导中的第一符号的周期1.6微秒的整数倍得到参考帧,因此,该LR接收端能够检测到LR-STF,且HEW接收端将该数据帧延迟基础前导中的L-STF符号的周期0.8微秒得到参考帧,因此,该HEW接收端无法检测到LR-STF,即本发明实施例中的接收端可以使用数据帧中的LR-STF进行定时同步,且能够满足HEW接收端使用L-STF进行定时同步,所以,数据帧的可使用性较高。
如图4所示,本发明实施例提供了一种数据传输方法,该数据传输方法可以用于发送端,该发送端可以为支持LR模式的发送端,该支持LR模式的发送端可以为支持LR模式的AP或支持LR模式的STA,该数据传输方法可以包括:
步骤401、根据待传输数据生成数据帧,数据帧依次包括:LR前导、基础前导、HEW前导和数据部分,LR前导包括:LR-STF,LR-STF包括:在时域上排布的至少两个第一符号,每个第一符号的内容相同,第一符号对应的时域 波形的周期为1.6微秒,LR-STF用于定时同步;
步骤402、向接收端发送数据帧。
综上所述,本发明实施例提供的数据传输方法中,发送端生成的数据帧依次包括:LR前导、基础前导、HEW前导和数据部分,LR前导包括:LR-STF,LR-STF用于定时同步。由于数据帧的帧头为LR-STF,且LR-STF能够支持的信噪比较低,使得在传输该数据帧时,支持LR模式的接收端能够较容易的接收到该数据帧,并且能够有效的获取数据帧中的数据,所以,提高了数据帧传输的可靠性。
可选的,LR-STF还包括:用于标识LR-STF尾部的第二符号。
可选的,第一符号对应的频域波形包括:直流子载波、保护子载波以及中间子载波,中间子载波在频域上位于直流子载波与保护子载波之间,第一符号的频域序列中的元素与频域波形一一对应,当中间子载波对应的频域序列中的元素包括至少两个非零元素时,每两个非零元素之间存在一个零元素。
可选的,第一符号的频域序列中非零元素的个数大于十四。
可选的,第一符号的频域序列中非零元素的个数等于二十八。
可选的,基础前导包括:L-STF、L-LTF和L-SIG,L-STF包括至少两个L-STF符号,且每个L-STF符号的内容相同,每个L-STF符号对应的时域波形的周期为0.8微秒,第二符号对应的时域波形为将第一波形采用预设变换方式处理后的波形,第一波形为:第一符号对应的时域波形、半个周期的第一符号对应的时域波形、L-STF符号对应的时域波形或半个周期的L-STF符号对应的时域波形,预设变换方式包括:乘以-1、取反向波形、乘以-1后再取反向波形、乘以j、乘以-j、乘以j后再取反向波形或乘以-j后再取反向波形,j为虚数单位。
可选的,HEW前导包括:RL-SIG、RL-LTF、信令字段、HE-STF和HE-LTF,RL-LTF包括:在时域上排布的至少一个L-LTF。
可选的,信令字段包括:在时域上排布的至少一个LR-SIG符号,或者,在频域上排布的至少一个LR-SIG符号,且每个LR-SIG符号的内容均相同,每个LR-SIG符号包括LR-SIG-A符号,或,每个LR-SIG符号包括LR-SIG-A符号和LR-SIG-B符号。
可选的,信令字段包括:在时域上排布的至少一个LR-SIG模块,或者,在频域上排布的至少一个LR-SIG模块,LR-SIG模块包括:采用循环移位的方式 处理过的LR-SIG主体的循环前缀以及LR-SIG主体,LR-SIG主体包括采用DCM方式处理过的LR-SIG符号,且每个LR-SIG符号的内容均相同,每个LR-SIG符号包括高效率信令A字段LR-SIG-A符号,或,每个LR-SIG符号包括LR-SIG-A符号和高效率信令B字段LR-SIG-B符号。
可选的,HE-LTF包括:在时域上排布的p个HE-LTF符号,每个HE-LTF符号的内容均相同,且HE-LTF符号对应的发送功率大于预设发送功率,
其中,p=m+2n,当数据部分对应的空间流的个数为偶数时,m为数据部分对应的空间流的个数,当数据部分对应的空间流的个数为奇数时,m为数据部分对应的空间流的个数的向上取偶,数据部分对应的空间流的个数小于八,n为大于0的整数。
可选的,数据部分采用OFDMA的方式,承载LR-DATA和HE-DATA,或者,承载LR-DATA,LR-DATA包括:在时域上排布的至少一个LR-DATA符号,或者,在频域上排布的至少一个LR-DATA符号,且每个LR-DATA符号的内容均相同。
可选的,RL-SIG包括:在时域上排布的至少一个经过预设方式处理后的L-SIG,预设方式与数据帧的类型相对应。
可选的,信令字段包括:在时域上排布的三个或四个LR-SIG模块,或者,在频域上排布的三个或四个LR-SIG模块。
可选的,数据帧由LR-STF、L-STF、L-LTF、L-SIG、RL-SIG、RL-LTF、信令字段、HE-STF、HE-LTF和数据部分依次组成。
综上所述,本发明实施例提供的数据传输方法中,发送端生成的数据帧依次包括:LR前导、基础前导、HEW前导和数据部分,LR前导包括:LR-STF,LR-STF用于定时同步。由于数据帧的帧头为LR-STF,且LR-STF能够支持的信噪比较低,使得在传输该数据帧时,支持LR模式的接收端能够较容易的接收到该数据帧,并且能够有效的获取数据帧中的数据,所以,提高了数据帧传输的可靠性。
如图5所示,本发明实施例提供了另一种数据传输方法,该数据传输方法可以用于接收端,该接收端可以为支持LR模式的接收端,该支持LR模式的接收端可以为支持LR模式的AP或支持LR模式的STA,该数据传输方法可以包 括:
步骤501、接收发送端发送的数据帧,数据帧依次包括:LR前导、基础前导、HEW前导和数据部分,LR前导包括:LR-STF,LR-STF包括:在时域上排布的至少两个第一符号,每个第一符号的内容相同,第一符号对应的时域波形的周期为1.6微秒,LR-STF用于定时同步。
步骤502、根据数据帧生成参考帧,参考帧在时域上比数据帧延迟预设时间,预设时间为第一符号对应的时域波形的周期的至少一倍。
步骤503、对数据帧和参考帧进行自相关检测。
步骤504、根据检测结果确定数据帧中的有效部分。
步骤505、根据有效部分对数据帧进行解析,得到数据帧中的待传输数据。
综上所述,本发明实施例提供的数据传输方法中,接收端接收到的数据帧依次包括:LR前导、基础前导、HEW前导和数据部分,LR前导包括:LR-STF,LR-STF用于定时同步。由于LR-STF能够支持的信噪比较低,使得支持LR模式的接收端能够有效的获取数据帧中的数据,所以,提高了数据帧传输的可靠性。
LR接收端将该数据帧延迟LR前导中的第一符号的周期1.6微秒的整数倍得到参考帧,因此,该LR接收端能够检测到LR-STF,且HEW接收端将该数据帧延迟基础前导中的L-STF符号的周期0.8微秒得到参考帧,因此,该HEW接收端无法检测到LR-STF,即LR接收端可以使用数据帧中的LR-STF进行定时同步,且能够满足HEW接收端使用L-STF进行定时同步,所以,数据帧的可使用性较高。
如图6-1所示,本发明实施例提供了又一种数据传输方法,该数据传输方法可以用于LR发送端和LR接收端,该LR发送端可以为图1-1中的同时支持HEW模式和LR模式的AP,该LR接收端可以为图1-1中支持LR模式的STA-2,该数据传输方法可以包括:
步骤601、LR发送端根据待传输数据生成数据帧。
示例的,当同时支持HEW模式和LR模式的AP需要向支持LR模式的STA-2发送数据时,该AP可以直接根据待传输数据生成数据帧。图6-2为本发明实施例提供的一种数据帧的结构示意图,如图6-2所示,该数据帧可以依次包括: LR前导、基础前导、HEW前导和数据部分,其中,LR前导可以包括:LR-STF;基础前导可以包括:L-STF、L-LTF和L-SIG;HEW前导可以包括:RL-SIG、RL-LTF、信令字段、HE-STF和HE-LTF。
图6-3为本发明实施例提供的一种RL-STF的结构示意图,如图6-3所示,RL-STF可以包括:在时域上排布的至少两个第一符号A,每个第一符号A均相同,且每个第一符号A对应的时域波形的周期为1.6微秒,该LR-STF可以用于定时同步。由于本发明实施例提供的数据帧的帧头为LR前导,且LR前导中的LR-STF能够支持的信噪比较低,使得在传输该数据帧时,LR接收端能够较容易的接收到该数据帧,并能够有效的获取该数据帧中的数据。
进一步的,LR-STF中第一符号对应的时域波形的周期为1.6微秒,基础前导中L-STF可以包括至少两个L-STF符号,且每个L-STF符号的周期为0.8微秒,即该第一符号对应的时域波形的周期为L-STF符号的周期的两倍。一方面,支持HEW模式的接收端在接收到该数据帧后,会将该数据帧延迟中的L-STF符号的周期(0.8微秒)得到参考帧,并对该数据帧和参考帧进行自相关检测,由于本发明实施例中,该支持LR模式的发送端生成的LR-STF中第一符号的周期为1.6微秒,支持HEW模式的接收端在接收到该数据帧后,在进行自相关检测时,不会检测到该数据帧中的LR-STF,而该支持HEW模式的接收端首先检测到的是该基础前导中的L-STF。另一方面,支持LR模式的接收端在接收到该数据帧后,会将该数据帧延迟LR-STF中的LR-STF符号的周期(1.6微秒)得到参考帧,并对该数据帧和参考帧进行自相关检测,由于本发明实施例中,该支持LR模式的发送端生成的LR-STF中第一符号的周期为1.6微秒,支持LR模式的接收端在接收到该数据帧后,在进行自相关检测时,能够检测到该数据帧中的LR-STF。所以,支持LR模式的接收端可以根据该数据帧中的LR-STF进行定时同步,支持HEW模式的接收端可以根据数据帧中的L-STF进行定时同步,使得本发明实施例提供的数据帧能够同时适用于支持LR模式的接收端以及支持HEW模式的接收端,因此,本发明实施例中的数据帧的可使用性较高。
示例的,LR-STF的第一符号A对应的频域波形可以包括:直流子载波、保护子载波以及中间子载波,中间子载波在频域上位于直流子载波与保护子载波之间。需要说明的是,LR-STF的第一符号A对应的频域波形可以与LR-STF的第一符号A的频域序列中的元素一一对应,第一符号A的频域序列中非零元素 的个数可以大于十四,优选的,第一符号A的频域序列中非零元素的个数等于二十八。当LR-STF的第一符号A对应的频域波形与第一符号A的频域序列的对应关系中,中间子载波对应的元素包括至少两个非零元素时,每两个非零元素之间可以存在一个零元素,由于每两个非零元素之间存在一个零元素,所以将该第一符号A对应的时域波形的周期是相关技术中L-STF中的L-STF符号对应的时域波形的周期的两倍。
在根据待传输数据生成数据帧中的LR-STF中的第一符号时,可以首先根据待传输数据生成至少一个待选符号,且每个待选符号的频域序列中非零元素的个数大于十四,可选的,每个待选符号的频域序列均可以包括二十八个非零元素;然后,将生成的至少一个待选符号中,对应的时域波形的峰均比最小,且对应的时域波形的自相关函数的峰瓣比最大的待选符号作为第一符号,可选的,第一符号的频域序列可以包括二十八个非零元素。相关技术中,待选符号的频域序列中非零元素的个数等于十四,本发明实施例中,待选符号的频域序列中非零元素的个数大于十四,因此,本发明实施例中在该至少一个待选符号中选择某一个待选符号作为第一符号时,选择的基数较大,因此,本发明实施例中确定的第一符号对应的时域波形的峰均比小于采用相关技术的方法确定的第一符号对应的时域波形的峰均比,以及本发明实施例中确定的第一符号对应的时域波形的自相关函数的峰瓣比大于采用相关技术的方法确定的第一符号对应的时域波形的自相关函数的峰瓣比的概率较大。
本发明实施例中的RL-STF中的第一符号A对应的时域波形的峰均比可以小于预设峰均比阈值,本发明实施例中的RL-STF中的第一符号A对应的时域波形的自相关函数的峰瓣比可以大于预设峰瓣比阈值。预设峰均比阈值可以为相关技术中L-STF中的L-STF符号的时域波形的峰均比,该预设峰均比阈值可以为2.24dB(分贝),预设峰瓣比阈值可以为相关技术中L-STF中的L-STF符号对应的时域波形的自相关函数的峰瓣比,该预设峰瓣比阈值可以为10.9dB。可选的,本发明实施例中的RL-STF中的第一符号A对应的时域波形的峰均比可以为1.82dB,RL-STF中的第一符号A对应的时域波形的自相关函数的峰瓣比可以为17.2dB。
需要说明的是,波形的峰均比与波形的有效值成反比,某一函数的自相关函数的峰瓣比与该函数的波形峰值的振幅成正比。由于本发明实施例中LR-STF 中的第一符号A对应的时域波形的峰均比小于相关技术中L-STF中的L-STF符号对应的时域波形的峰均比,LR-STF中的第一符号A对应的时域波形的自相关函数的峰瓣比小于相关技术中L-STF中的L-STF符号对应的时域波形的自相关函数的峰瓣比,因此,本发明实施例中LR-STF中的第一符号A对应的时域波形的有效值大于相关技术中L-STF中的L-STF符号对应的时域波形的有效值,本发明实施例中LR-STF中的第一符号A对应的时域波形的自相关函数的波形峰值的振幅,大于相关技术中L-STF中的L-STF符号对应的时域波形的自相关函数的波形峰值的振幅,即本发明实施例中LR-STF中第一符号A传输的可靠性较高。
如图6-4所示,当该LR-STF的第一符号A可以对应64个频域波形时,该64个频域波形的编号可以为编号-32到+31。其中,直流子载波可以为编号分别为-1、0、+1的频域波形,保护子载波可以为编号分别为-32、-31、-30、-29、+29、+30、+31的频域波形,位于直流子载波和保护子载波之间的中间子载波可以为编号分别为-28到-2以及+2到+28的频域波形。可选的,当该LR-STF的第一符号A可以对应64个频域波形时,该LR-STF的第一符号A可以对应以下8种频域序列S中的任意一种频域序列,该8种频域序列S可以分别为:
S-32,+31=(1+j)*W;S-32,+31=-(1+j)*W;S-32,+31=(1-j)*W;S-32,+31=-(1-j)*W;
Figure PCTCN2016084196-appb-000001
Figure PCTCN2016084196-appb-000002
其中,j为虚数单位,W=[0,0,0,0,1,0,1,0,1,0,-1,0,-1,0,1,0,1,0,1,0,-1,0,-1,0,-1,0,-1,0,-1,0,-1,0,0,0,1,0,-1,0,1,0,-1,0,1,0,-1,0,-1,0,1,0,-1,0,-1,0,1,0,1,0,-1,0,1,0,0,0]。上述8种LR-STF中的第一符号A的频域序列经过快速傅里叶变换之后,得到的LR-STF中第一符号A对应的时域波形的周期可以为1.6微秒。
请继续参考图6-3,该LR-STF还可以包括:用于标识LR-STF尾部的第二符号B。由于本发明实施例提供的数据帧中,LR-STF与L-STF相邻,且LR-STF与L-STF均可以用于数据帧的定时同步,所以,该用于标识LR-STF尾部的第二符号B能够将LR-STF和L-STF有效的区分开来。示例的,该第二符号B对应的时域波形为将第一波形采用预设变换方式处理后的波形,该第一波形可以 为:第一符号A对应的时域波形、半个周期的第一符号A对应的时域波形、L-STF符号对应的时域波形或半个周期的L-STF符号对应的时域波形,该预设变换方式可以包括:乘以-1、取反向波形、乘以-1后再取反向波形、乘以j、乘以-j、乘以j后再取反向波形或乘以-j后再取反向波形。即该LR-STF的第二符号B可以根据LR-STF中的第一符号A得来,但LR-STF的第二符号B与LR-STF中的第一符号A不同;该LR-STF的第二符号B也可以根据L-STF中的L-STF符号得来,但LR-STF的第二符号B与L-STF符号不同。
具体的,当LR-STF中的第一符号A对应64个频域波形,且该第一符号A对应的时域波形的周期为1.6微秒时,LR-STF中的第二符号B对应的时域波形的周期可以为1.6微秒,此时,可以根据LR-STF中的第一符号A得到与第一符号A不同的第二符号B,示例的,第二符号B可以为以下7种类型中的任意一种类型:
1)B=-A,即第二符号B对应的时域波形等于第一符号A对应的时域波形的负波形;
2)第二符号B对应的时域波形为第一符号A对应的时域波形的反向波形,第一符号A对应的时域波形的最后一个信号等于第二符号B对应的时域波形的第一个信号,第一符号A对应的时域波形的倒数第二个信号等于第二符号B对应的时域波形的第二个时域信号,以此类推;
3)第二符号B对应的时域波形为第一符号A对应的时域波形的反向波形再取负,第一符号A对应的时域波形的最后一个信号取负的结果等于第二符号B对应的时域波形的第一个信号,第一符号A对应的时域波形的倒数第二个信号取负的结果等于第二符号B对应的时域波形的第二个时域信号,以此类推;
4)B=j*A,即第二符号B对应的时域波形为第一符号A对应的时域波形乘以j后的波形;
5)B=-j*A,即第二符号B对应的时域波形为第一符号A对应的时域波形乘以-j后的波形。
6)第二符号B对应的时域波形为第一符号A对应的时域波形的反向波形再乘以j后的波形,即第一符号A对应的时域波形的最后一个信号乘以j后的结果等于第二符号B对应的时域波形的第一个信号,第一符号A对应的时域波形的倒数第二个信号乘以j的结果等于第二符号B对应的时域波形的第二个时域信 号,以此类推。
7)第二符号B对应的时域波形为第一符号A对应的时域波形的反向波形再乘以-j的结果,即第一符号A对应的时域波形的最后一个信号乘以-j的结果等于第二符号B对应的时域波形的第一个信号,第一符号A对应的时域波形的倒数第二个信号乘以-j的结果等于第二符号B对应的时域波形的第二个时域信号,以此类推。
具体的,当LR-STF中的第一符号A对应64个频域波形,且该第一符号A对应的时域波形的周期为1.6微秒时,LR-STF中的第二符号B对应的时域波形的周期可以为0.8微秒,此时,可以根据LR-STF中的第一符号A得到与第一符号A不同的第二符号B,示例的,第二符号B可以包括以下十四种类型中的任意一种类型:
1)第二符号B对应的时域波形等于第一符号A对应的时域波形的前半个周期的波形取负之后的波形;
2)第二符号B对应的时域波形等于第一符号A对应的时域波形的后半个周期的波形取负之后的波形;
3)第二符号B对应的时域波形为第一符号A对应的时域波形的前半个周期的波形的反向波形,即第一符号A对应的时域波形的前半个周期的波形的最后一个信号,等于第二符号B对应的时域波形的第一个信号,第一符号A对应的时域波形的前半个周期的波形的倒数第二个信号,等于第二符号B对应的时域波形的第二个信号,以此类推。
4)第二符号B对应的时域波形为第一符号A对应的时域波形后半个周期的波形的反向波形,即第一符号A对应的时域波形的后半个周期的波形的最后一个信号,等于第二符号B对应的时域波形的第一个信号,第一符号A对应的时域波形的后半个周期的波形的倒数第二个信号,等于第二符号B对应的时域波形的第二个时域信号,以此类推。
5)第二符号B对应的时域波形为第一符号A对应的时域波形前半个周期的波形的反向波形取负,即第一符号A对应的时域波形的前半个周期的波形的最后一个信号取负的结果等于B的第一个信号,第一符号A对应的时域波形的前半个周期的波形的倒数第二个信号取负的结果,等于第二符号B对应的时域波形的第二个时域信号,以此类推。
6)第二符号B对应的时域波形为波形A后半个周期的波形的反向波形取负,即第一符号A对应的时域波形的后半个周期的波形的最后一个信号取负的结果,等于第二符号B对应的时域波形的第一个信号,第一符号A对应的时域波形的后半个周期的波形的倒数第二个信号取负的结果,等于第二符号B对应的时域波形的第二个时域信号,以此类推;
7)第二符号B对应的时域波形等于第一符号A对应的时域波形的前半个周期的波形乘以j之后的波形;
8)第二符号B对应的时域波形等于第一符号A对应的时域波形的后半个周期的波形乘以j之后的波形;
9)第二符号B对应的时域波形等于第一符号A对应的时域波形的前半个周期的波形乘以-j之后的波形;
10)第二符号B对应的时域波形等于第一符号A对应的时域波形的后半个周期的波形乘以-j之后的波形;
11)第二符号B对应的时域波形等于第一符号A对应的时域波形的前半个周期的波形的反向波形乘以j的结果,即第一符号A对应的时域波形的前半个周期的波形的最后一个信号乘以j的结果,等于第二符号B对应的时域波形的第一个信号,第一符号A对应的时域波形的前半个周期的波形的倒数第二个信号乘以j的结果,等于第二符号B对应的时域波形的第二个时域信号,以此类推。
12)第二符号B对应的时域波形等于第一符号A对应的时域波形的后半个周期的波形的反向波形乘以j的结果,即第一符号A对应的时域波形的后半个周期的波形的最后一个信号乘以j的结果,等于第二符号B对应的时域波形的第一个信号,第一符号A对应的时域波形的后半个周期的波形的倒数第二个信号乘以j的结果,等于第二符号B对应的时域波形的第二个时域信号,以此类推。
13)第二符号B对应的时域波形等于第一符号A对应的时域波形的前半个周期的波形的反向波形乘以-j的结果,即第一符号A对应的时域波形的前半个周期的波形的最后一个信号乘以-j的结果,等于第二符号B对应的时域波形的第一个信号,第一符号A对应的时域波形的前半个周期的波形的倒数第二个信号乘以-j的结果,等于第二符号B对应的时域波形的第二个时域信号,以此类 推。
14)第二符号B对应的时域波形等于第一符号A对应的时域波形的后半个周期的波形的反向波形乘以-j的结果,即第一符号A对应的时域波形的后半个周期的波形的最后一个信号乘以-j的结果,等于第二符号B对应的时域波形的第一个信号,第一符号A对应的时域波形的后半个周期的波形的倒数第二个信号乘以-j的结果等于第二符号B对应的时域波形的第二个时域信号,以此类推。
可选的,当LR-STF中的第一符号A对应64个频域波形,且该第一符号A对应的时域波形的周期为1.6微秒时,LR-STF中的第二符号B对应的时域波形的周期可以为0.8微秒,L-STF的L-STF符号C对应的时域波形的周期也可以为0.8微秒,此时,可以根据L-STF中的L-STF符号C得到与L-STF中的L-STF符号C不同的LR-STF中的第二符号B,示例的,第二符号B可以包括以下7种类型中的任意一种类型:
1)B=-C,即第二符号B对应的时域波形等于L-STF符号C对应的时域波形的负波形;
2)第二符号B对应的时域波形为L-STF符号C对应的时域波形的反向波形,L-STF符号C对应的时域波形的最后一个信号等于第二符号B对应的时域波形的第一个信号,L-STF符号C对应的时域波形的倒数第二个信号等于第二符号B对应的时域波形的第二个时域信号,以此类推;
3)第二符号B对应的时域波形为L-STF符号C对应的时域波形的反向波形再取负,L-STF符号C对应的时域波形的最后一个信号取负的结果等于第二符号B对应的时域波形的第一个信号,L-STF符号C对应的时域波形的倒数第二个信号取负的结果等于第二符号B对应的时域波形的第二个时域信号,以此类推;
4)B=j*C,即第二符号B对应的时域波形为L-STF符号C对应的时域波形乘以j后的波形;
5)B=-j*C,即第二符号B对应的时域波形为L-STF符号C对应的时域波形乘以-j后的波形。
6)第二符号B对应的时域波形为L-STF符号C对应的时域波形的反向波形再乘以j后的波形,即L-STF符号C对应的时域波形的最后一个信号乘以j后的结果等于第二符号B对应的时域波形的第一个信号,L-STF符号C对应的 时域波形的倒数第二个信号乘以j的结果等于第二符号B对应的时域波形的第二个时域信号,以此类推。
7)第二符号B对应的时域波形为L-STF符号C对应的时域波形的反向波形再乘以-j的结果,即L-STF符号C对应的时域波形的最后一个信号乘以-j的结果等于第二符号B对应的时域波形的第一个信号,L-STF符号C对应的时域波形的倒数第二个信号乘以-j的结果等于第二符号B对应的时域波形的第二个时域信号,以此类推。
可选的,当LR-STF中的第一符号A对应64个频域波形,且该第一符号A对应的时域波形的周期为1.6微秒时,LR-STF中的第二符号B对应的时域波形的周期可以为1.6微秒,L-STF的L-STF符号C对应的时域波形的周期也可以为0.8微秒。此时,第二符号B对应的时域波形的前半个周期波形,可以由上述7种由L-STF符号C变化而得到的波形构成,第二符号B对应的时域波形的后半个周期波形,可以由上述7种由L-STF符号C变化而得到的波形构成,且第二符号B对应的时域波形的前半个周期与后半个周期组成该第二符号B的一个周期,因此,第二符号B的时域波形可以为49种类型的时域波形中的任意一种。
如图6-5所示,假设该LR-STF共包括7个第一符号A和1个第二符号B,且第一符号A对应的时域波形的长度为1.6微秒时,LR-STF中的第二符号B对应的时域波形的长度可以为0.8微秒,此时,该LR-STF对应的时域波形的长度为12微秒。如图6-6所示,假设该LR-STF共包括9个第一符号A和1个第二符号B,且第一符号A对应的时域波形的长度为1.6微秒时,LR-STF中的第二符号B对应的时域波形的长度可以为0.8微秒,此时,该LR-STF对应的时域波形的长度为16微秒。
进一步的,基础前导中的L-STF、L-LTF和L-SIG可以与相关技术中的基础前导中的L-STF、L-LTF和L-SIG相同,且LR前导中的LR-STF与基础前导中的L-STF均可以用于数据帧的包检测以及数据帧的同步;L-LTF可以用于检测承载信令的字段的信道,该承载信令的字段可以包括:L-SIG、HEW前导中的RL-SIG和HEW前导中的信令字段,一般的,数据帧中的承载信令的字段可以采用一倍符号长度的OFDM符号,因此,该L-LTF可以用于检测一倍符号长度的OFDM符号的信道;L-SIG可以用于承载数据帧的长度信息、数据帧的传输速率信息和数据帧的编码方式信息等信息。
HEW前导中的RL-SIG可以包括在时域上排布的至少一个经过预设方式处理后的L-SIG,预设方式与数据帧的类型相对应,且该RL-SIG上还可以承载有处理该L-SIG的预设方式。需要说明的是,在生成RL-SIG时,可以根据待生成数据帧的类型对应的预设方式对基础前导中的L-SIG进行处理,并将处理后的L-SIG在时域上进行至少一倍的重复,得到HEW前导中的RL-SIG,以便于接收端在对RL-SIG进行解析时,能够根据生成RL-SIG时对L-SIG的处理方式确定数据帧的类型。
示例的,表1反映了预设方式与数据帧的类型的对应关系,如表1所示,若要生成LR类型的数据帧时,可以根据表1所述的预设方式与数据帧的类型的对应关系,确定该LR类型的数据帧对应的预设方式为第一预设方式,此时可以采用第一预设方式对L-SIG进行处理,并将处理后的L-SIG在时域上进行至少一倍的重复,得到RL-SIG。若要生成HEW类型的数据帧时,可以根据表1所述的预设方式与数据帧的类型的对应关系,确定该LR类型的数据帧对应的预设方式为第二预设方式,此时可以采用第二预设方式对L-SIG进行处理,并将处理后的L-SIG在时域上进行至少一倍的重复,得到RL-SIG。
表1
数据帧的类型 预设方式
LR 第一种预设方式
HEW 第二种预设方式
HEW前导中的RL-LTF可以包括:在时域上排布的至少一个L-LTF,即RL-LTF为L-LTF的至少一倍的重复。示例的,若RL-LTF可以包括两个L-LTF,则该数据帧中总共可以包括三个L-LTF。该RL-LTF和L-LTF均可以用于信令字段的信道的测量。
一方面,HEW前导中的信令字段可以包括:在时域上排布的至少一个LR-SIG符号,或者,在频域上排布的至少一个LR-SIG符号,且每个LR-SIG符号的内容均相同。在生成信令字段时,可以首先根据待传输数据生成一个LR-SIG符号,并将该LR-SIG符号进行信道编码处理,然后将信道编码处理后的LR-SIG符号进行多倍时域或频域重复,得到在时域或频域上排布的至少一个信道编码处理后的LR-SIG符号,最后将至少一个信道编码处理后的LR-SIG符 号经过交织处理,得到信令字段,可选的,信道编码的方式可以为二进制卷积码方式。由于将信道编码处理后的LR-SIG符号进行多倍时域或频域重复,得到在时域或频域上排布的至少一个信道编码处理后的LR-SIG符号,因此,提高了信令字段传输的可靠性。需要说明的是,当重复的倍数为2时,信道编码的方式可以与802.11ax中MCS10中的编码方式相同。
另一方面,HEW前导中的信令字段可以包括:在时域上排布的至少一个LR-SIG模块,或者,在频域上排布的至少一个LR-SIG模块。LR-SIG模块可以包括:采用循环移位的方式处理过的LR-SIG主体的循环前缀以及LR-SIG主体,LR-SIG主体可以包括采用DCM方式处理过的LR-SIG符号,且每个LR-SIG符号的内容均相同,每个LR-SIG符号包括高效率信令A字段LR-SIG-A符号,或,每个LR-SIG符号包括LR-SIG-A符号和高效率信令B字段LR-SIG-B符号。
优选的,本发明实施例中可以先采用DCM方式对LR-SIG符号进行处理,并将采用DCM方式处理过的LR-SIG符号作为LR-SIG主体,然后,可以采用循环移位的方式对LR-SIG主体进行重复,并为LR-SIG主体添加循环前缀,生成信令字段。需要说明的是,采用DCM方式对LR-SIG符号进行处理可以提高LR-SIG符号在传输过程中在频域上的分集增益。在生成信令字段时,可以首先根据待传输数据生成LR-SIG符号,然后采用DCM方式对LR-SIG符号进行处理,得到了采用DCM方式处理过的LR-SIG符号,并将采用DCM方式处理过的LR-SIG符号作为LR-SIG主体,然后采用循环移位的方式将该LR-SIG主体进行多倍重复,并在进行重复的过程中采用循环移位的方式为LR-SIG主体添加循环前缀,得到包含至少一个LR-SIG模块的信令字段。示例的,每个LR-SIG符号的内容均相同,该多倍重复可以为2倍重复、3倍重复或4倍重复。
具体的,可以将采用DCM方式处理过的LR-SIG符号(即LR-SIG主体)分为四部分,依次分别为第一部分D1、第二部分D2、第三部分D3和第四部分D4。
如图6-7所示,若信令字段包括在时域上排布的2个LR-SIG模块(图6-7中未标出),则在生成信令字段时,可以首先根据待传输数据生成LR-SIG符号,然后采用DCM方式对LR-SIG符号进行处理,得到了采用DCM方式处理过的LR-SIG符号,并将采用DCM方式处理过的LR-SIG符号作为LR-SIG主体,然后采用循环移位的方式将该LR-SIG主体进行2倍重复,在进行2倍重复的过程 中,为每个LR-SIG主体添加循环前缀,得到包含2个LR-SIG模块的信令字段。其中,在时域上排布的第一个LR-SIG模块中,采用循环移位的方式处理过的LR-SIG主体的循环前缀可以与第四部分D4相同,且采用循环移位处理过的LR-SIG主体可以包括在时域上依次排布的第一部分D1、第二部分D2、第三部分D3和第四部分D4,且采用循环移位处理过的LR-SIG主体的循环前缀位于且采用循环移位处理过的LR-SIG主体之前;在时域上排布的第二个LR-SIG模块中,采用循环移位方式处理过的LR-SIG主体的循环前缀可以与第一部分D1相同,且采用循环移位方式处理过的LR-SIG主体可以包括在时域上依次排布的第二部分D2、第三部分D3、第四部分D4和第一部分D1,且采用循环移位方式处理过的LR-SIG主体的循环前缀位于且采用循环移位方式处理过的LR-SIG主体之前。
可以将图6-7中的信令字段等效为等效信令字段,该等效信令字段可以包括:等效循环前缀、第二部分D2、第三部分D3、第四部分D4、第一部分D1、第二部分D2、第三部分D3、第四部分D4和第一部分D1,该等效循环前缀可以包括:第四部分D4和第一部分D1,由于等效循环前缀为2倍的循环前缀,因此增强了该LR-SIG符号在传输的过程中的抗干扰性,在接收端解析信令字段时,解析的LR-SIG符号的准确性较高。
如图6-8所示,若信令字段包括在时域上排布的3个LR-SIG模块(图6-8中未标出),则在生成信令字段时,可以首先根据待传输数据生成LR-SIG符号,然后采用DCM方式对LR-SIG符号进行处理,得到了采用DCM方式处理过的LR-SIG符号,并将采用DCM方式处理过的LR-SIG符号作为LR-SIG主体,然后采用循环移位的方式将该LR-SIG主体进行3倍重复,在进行3倍重复的过程中,为每个LR-SIG主体添加循环前缀,得到包含3个LR-SIG模块的信令字段。其中,在时域上排布的第一个LR-SIG模块中,采用循环移位的方式处理过的LR-SIG主体的循环前缀可以与第四部分D4相同,且采用循环移位的方式处理过的LR-SIG主体可以包括在时域上依次排布的第一部分D1、第二部分D2、第三部分D3和第四部分D4,且采用循环移位的方式处理过的LR-SIG主体的循环前缀位于且采用循环移位的方式处理过的LR-SIG主体之前;在时域上排布的第二个LR-SIG模块中,采用循环移位的方式处理过的LR-SIG主体的循环前缀可以与第一部分D1相同,且采用循环移位的方式处理过的LR-SIG主体可以包括 在时域上依次排布的第二部分D2、第三部分D3、第四部分D4和第一部分D1,且采用循环移位的方式处理过的LR-SIG主体的循环前缀位于且采用循环移位的方式处理过的LR-SIG主体之前;在时域上排布的第三个LR-SIG模块中,采用循环移位的方式处理过的LR-SIG主体的循环前缀可以与第二部分D2相同,且采用循环移位的方式处理过的LR-SIG主体可以包括在时域上依次排布的第三部分D3、第四部分D4、第一部分D1、第二部分D2,且采用循环移位的方式处理过的LR-SIG主体的循环前缀位于且采用循环移位的方式处理过的LR-SIG主体之前。
可以将图6-8中的信令字段等效为等效信令字段,该等效信令字段可以包括:等效循环前缀、第三部分D3、第四部分D4、第一部分D1、第二部分D2、第三部分D3、第四部分D4、第一部分D1、第二部分D2、第三部分D3、第四部分D4、第一部分D1和第二部分D2,该等效循环前缀为第四部分D4、第一部分D1和第二部分D2,由于等效循环前缀为3倍的循环前缀,因此增强了该LR-SIG符号在传输的过程中的抗干扰性,在接收端解析信令字段时,解析的LR-SIG符号的准确性较高。
如图6-9所示,若信令字段包括在时域上排布的4个LR-SIG模块(图6-9中未标出),则在生成信令字段时,可以首先根据待传输数据生成LR-SIG符号,然后采用DCM方式对LR-SIG符号进行处理,得到了采用DCM方式处理过的LR-SIG符号,并将采用DCM方式处理过的LR-SIG符号作为LR-SIG主体,然后采用循环移位的方式将该LR-SIG主体进行4倍重复,在进行4倍重复的过程中,为每个LR-SIG主体添加循环前缀,得到包含4个LR-SIG模块的信令字段。其中,在时域上排布的第一个LR-SIG模块中,采用循环移位的方式处理过的LR-SIG主体的循环前缀可以与第四部分D4相同,且采用循环移位的方式处理过的LR-SIG主体可以包括在时域上依次排布的第一部分D1、第二部分D2、第三部分D3和第四部分D4,且采用循环移位的方式处理过的LR-SIG主体的循环前缀位于且采用循环移位的方式处理过的LR-SIG主体之前;在时域上排布的第二个LR-SIG模块中,采用循环移位的方式处理过的LR-SIG主体的循环前缀可以与第一部分D1相同,且采用循环移位的方式处理过的LR-SIG主体可以包括在时域上依次排布的第二部分D2、第三部分D3、第四部分D4和第一部分D1,且采用循环移位的方式处理过的LR-SIG主体的循环前缀位于且采用循环移位 的方式处理过的LR-SIG主体之前;在时域上排布的第三个LR-SIG模块中,采用循环移位的方式处理过的LR-SIG主体的循环前缀可以与第二部分D2相同,且采用循环移位的方式处理过的LR-SIG主体可以包括在时域上依次排布的第三部分D3、第四部分D4、第一部分D1、第二部分D2,且采用循环移位的方式处理过的LR-SIG主体的循环前缀位于且采用循环移位的方式处理过的LR-SIG主体之前;在时域上排布的第四个LR-SIG模块中,采用循环移位的方式处理过的LR-SIG主体的循环前缀可以与第三部分D3相同,且采用循环移位的方式处理过的LR-SIG主体可以包括在时域上依次排布的第四部分D4、第一部分D1、第二部分D2和第三部分D3,且采用循环移位的方式处理过的LR-SIG主体的循环前缀位于且采用循环移位的方式处理过的LR-SIG主体之前。
可以将图6-9中的信令字段等效为等效信令字段,该等效信令字段可以包括:等效循环前缀、第四部分D4、第一部分D1、第二部分D2、第三部分D3、第四部分D4、第一部分D1、第二部分D2、第三部分D3、第四部分D4、第一部分D1、第二部分D2、第三部分D3、第四部分D4、第一部分D1、第二部分D2和、第三部分D3,该等效循环前缀为第四部分D4、第一部分D1、第二部分D2和第三部分D3,由于等效循环前缀为4倍的循环前缀,因此增强了该LR-SIG符号在传输的过程中的抗干扰性,在接收端解析信令字段时,解析的LR-SIG符号的准确性较高。
示例的,当发送端需要仅需要向一个接收端发送数据时,发送端可以根据需要向每个接收端发送的数据生成一个数据帧,且该数据帧中的数据部分可以包括该发送端向该接收端发送的数据。假设服务该接收端的空间流的个数为3,则在该发送端生成的数据帧中的数据部分中,该发送端需要向该接收端发送的数据对应的空间流的个数为3,所以,该数据帧中的数据部分对应的空间流的个数为3。
示例的,当发送端需要同时向一号接收端、二号接收端、三号接收端和四号接收端发送数据时,发送端可以根据需要向每个接收端发送的数据生成一个数据帧,且该数据帧中的数据部分可以包括该发送端向一号接收端发送的一号数据、该发送端向二号接收端发送的二号数据、该发送端向三号接收端发送的三号数据以及该发送端向四号接收端发送的四号数据。假设服务一号接收端的空间流的个数为1,服务二号接收端的空间流的个数为2,服务三号接收端的空 间流的个数为1,服务四号接收端的空间流的个数为1。则在该发送端生成的数据帧中的数据部分中,一号数据对应的空间流的个数为1,二号数据对应的空间流的个数为2,三号数据对应的空间流的个数为1,四号数据对应的空间流的个数为1,所以,该数据帧中的数据部分对应的空间流的个数为1+2+1+1=5,即该发送端生成的数据帧中的数据部分对应的空间流的个数为5。
上述信令字段中可以承载有用于指示服务每个接收端的空间流的个数的指示信息,即该信令字段上的指示信息可以指示数据部分中发向每个接收端的数据对应的空间流的个数,且指示信息所指示的空间流的个数的和可以小于八。优选的,该指示信息所指示的空间流的个数的和可以小于或等于4。可选的,该指示信息所指示的总空间流的个数还可以小于或等于q,q可以为5、6或7。
具体的,上述每个LR-SIG符号均可以包括LR-SIG-A符号,或者每个LR-SIG符号可以同时包括LR-SIG-A符号和LR-SIG-B符号。LR-SIG-A符号可以与图1-2所示的数据帧中的HE-SIG-A相同,且该LR-SIG-A符号可以使用特定的MCS进行处理,如MCS 0或MCS 1,LR-SIG-A上可以承载:LR-SIG-B符号对应的MCS、LR-SIG-B符号的长度、基站标识(英文:Base Station color;简称:BSS color)、数据帧类型指示、传输窗口时长(英文:Transmission opportunity duration;简称:TXOP duration)中的至少一个。LR-SIG-B符号可以与图1-2所示的数据帧中的HE-SIG-B相同,LR-SIG-B符号上可以承载:接收端的个数、STA的身份标识号(英文:Identification;简称:ID)、每个接收端对应的空间流数(英文:Number of Spatial Streams,简称:NSTS)、发射波束成型(英文:Transmit beamforming;简称:TxBF)、数据帧对应的MCS、信道编码方式。
如图6-10所示,假设用于数据传输的信道为80MHZ的信道,且传输LR-SIG-A符号时仅需要占用20MHZ(兆赫兹)的信道,即80MHZ的信道还剩余60MHZ的信道,则可以在该剩余的60MHZ的信道上传输3倍的LR-SIG-A符号,即该80MHZ的信道上可以传输4个LR-SIG-A符号;若LR-SIG-B符号包括第一LR-SIG-B符号和第二LR-SIG-B符号,且传输第一LR-SIG-B符号和第二LR-SIG-B符号时均需要占用20MHZ的信道,可以将该80MHZ的信道等分为4个20MHZ的信道,且使用第一个20MHZ的信道传输第一LR-SIG-B符号,使用第二个20MHZ的信道传输第二LR-SIG-B符号,此时80MHZ的信道还剩余第三个20MHZ的信道和第四个20MHZ的信道,则可以使用第三个 20MHZ的信道再次传输第一LR-SIG-B符号,使用第四个20MHZ的信道再次传输第二LR-SIG-B符号。
可选的,HEW前导中的HE-STF可以用于调整自动增益控制(英文:Automatic Gain Control;简称:AGC)。
HEW前导中的该HE-LTF可以用于测量数据部分的信道,数据帧中的数据部分可以采用四倍符号长度的OFDM符号,因此,该HE-LTF可以用于检测四倍符号长度的OFDM符号的信道。HE-LTF包括:在时域上排布的p个HE-LTF符号,每个HE-LTF符号的内容均相同,且HE-LTF符号对应的发送功率大于预设发送功率,其中,p=m+2n,当数据部分对应的空间流的个数为偶数时,m为数据部分对应的空间流的个数,当数据部分对应的空间流的个数为奇数时,m为数据部分对应的空间流的个数的向上取偶,数据部分对应的空间流的个数小于八,n为大于0的整数。示例的,当数据部分对应的空间流的个数为2时,m为2,此时,p可以取2、4、6或8。当数据部分对应的空间流的个数为3时,m为3的向上取偶,即m为比3大,且与3的差最小的正整数4,此时p可以取4、6或8。需要说明的是,本发明实施例中n也可以为0,本发明实施例对此不作限定。
实际应用中,一个空间流可以对应P矩阵中的一行元素,且每行元素可以对应生成数据帧时,每个空间流中传输的HE-LTF符号。
示例的,P矩阵可以为8×8的矩阵,空间中可以共存在2个发送端,该两个发送端分别为一个LR发送端和一个HEW发送端,需要说明的是,该HEW发送端可以为支持HEW模式的发送端。如图6-11所示,当空间中有1个空间流服务LR接收端时,LR发送端生成的数据帧中数据部分对应的空间流的个数为1,LR发送端可以采用8×8的矩阵生成数据帧中的HE-LTF,LR发送端能够生成8个在时域上排布的HE-LTF符号,且该8个HE-LTF符号的内容均相同,HE-LTF符号在时域上进行了重复获得了时域分集。当空间中有1个空间流服务HEW接收端时,HEW发送端生成的数据帧中数据部分对应的空间流的个数为1,HEW发送端可以采用8×8的矩阵生成数据帧中的HE-LTF,HEW发送端能够生成8个在时域上排布的HE-LTF符号,且该8个HE-LTF符号的内容均相同,HE-LTF符号在时域上进行了重复获得了时域分集。
示例的,P矩阵可以为4×4的矩阵,空间中可以共存在2个发送端,该两 个发送端分别为一个LR发送端和一个HEW发送端。如图6-12所示,当空间中有1个空间流服务LR接收端时,LR发送端生成的数据帧中数据部分对应的空间流的个数为1,LR发送端可以采用4×4的矩阵生成数据帧中的HE-LTF,LR发送端能够生成4个在时域上排布的HE-LTF符号,且该4个HE-LTF符号的内容均相同,然后可以将该4个HE-LTF符号进行重复,得到8个在时域上排布的HE-LTF符号,且每个HE-LTF符号的内容均相同,HE-LTF符号在时域上进行了重复获得了时域分集。当空间中有1个空间流服务HEW接收端时,HEW发送端生成的数据帧中数据部分对应的空间流的个数为1,HEW发送端可以采用4×4的矩阵生成数据帧中的HE-LTF,HEW发送端能够生成4个在时域上排布的HE-LTF符号,且该4个HE-LTF符号的内容均相同,然后可以将该4个HE-LTF符号进行重复,得到8个在时域上排布的HE-LTF符号,且每个HE-LTF符号的内容均相同,HE-LTF符号在时域上进行了重复获得了时域分集。
示例的,P矩阵可以为4×4的矩阵,或者8×8的矩阵,空间中可以共存在2个发送端,该两个发送端分别为一个LR发送端和一个HEW发送端。如图6-13所示,当空间中有1个空间流服务LR接收端时,LR发送端生成的数据帧中数据部分对应的空间流的个数为1,LR发送端可以采用8×8的矩阵生成数据帧中的HE-LTF,LR发送端能够生成8个在时域上排布的HE-LTF符号,且该8个HE-LTF符号的内容均相同,HE-LTF符号在时域上进行了重复获得了时域分集。当空间中有1个空间流服务HEW接收端时,HEW发送端生成的数据帧中数据部分对应的空间流的个数为1,HEW发送端可以采用4×4的矩阵生成数据帧中的HE-LTF,HEW发送端能够生成4个在时域上排布的HE-LTF符号,且该4个HE-LTF符号的内容均相同。
示例的,P矩阵可以为2×2的矩阵,空间中可以共存在2个发送端,该两个发送端分别为一个LR发送端和一个HEW发送端。如图6-14所示,当空间中有1个空间流服务LR接收端时,LR发送端生成的数据帧中数据部分对应的空间流的个数为1,LR发送端可以采用2×2的矩阵生成数据帧中的HE-LTF,LR发送端能够生成2个在时域上排布的HE-LTF符号,且该2个HE-LTF符号的内容均相同。当空间中有1个空间流服务HEW接收端时,HEW发送端生成的数据帧中数据部分对应的空间流的个数为1,HEW发送端可以采用2×2的矩阵生成数据帧中的HE-LTF,HEW发送端能够生成2个在时域上排布的HE-LTF符 号,且该2个HE-LTF符号的内容均相同。此时,可以提高LR发送端发送HE-LTF的功率,以提高LR发送端生成的数据帧中HE-LTF的信道检测能力。
可选的,P矩阵可以为4×4的矩阵,空间中可以共存在2个发送端,该两个发送端分别为一个LR发送端和一个HEW发送端。如图6-15所示,当空间中有3个空间流均服务LR接收端时,LR发送端生成的数据帧中数据部分对应的空间流的个数为3,LR发送端可以采用4×4的矩阵生成数据帧中的HE-LTF,LR发送端能够在每个空间流上生成4个在时域上排布的HE-LTF符号,且该每个HE-LTF符号的内容均相同。当空间中有1个空间流服务HEW接收端时,HEW发送端生成的数据帧中数据部分对应的空间流的个数为1,HEW发送端可以采用4×4的矩阵生成数据帧中的HE-LTF,HEW发送端能够生成4个在时域上排布的HE-LTF符号,且该4个HE-LTF符号的内容均相同。此时,可以提高LR发送端发送HE-LTF的功率,以提高LR发送端生成的数据帧中HE-LTF的信道检测能力。此时,可以提高LR发送端发送HE-LTF的功率,以提高LR发送端生成的数据帧中HE-LTF的信道检测能力。
可选的,P矩阵可以为4×4的矩阵,空间中可以共存在2个发送端,该两个发送端分别为一个LR发送端和一个HEW发送端。如图6-16所示,当空间中有1个空间流均服务LR接收端时,LR发送端生成的数据帧中数据部分对应的空间流的个数为1,LR发送端可以采用4×4的矩阵生成数据帧中的HE-LTF,LR发送端能够在该空间流上生成4个在时域上排布的HE-LTF符号,且该每个HE-LTF符号的内容均相同。当空间中有1个空间流服务HEW接收端时,HEW发送端生成的数据帧中数据部分对应的空间流的个数为1,HEW发送端可以采用4×4的矩阵生成数据帧中的HE-LTF,HEW发送端能够生成4个在时域上排布的HE-LTF符号,且该4个HE-LTF符号的内容均相同。此时,可以提高LR发送端发送HE-LTF的功率,以提高LR发送端生成的数据帧中HE-LTF的信道检测能力。
需要说明的是,本发明实施例中的P矩阵还可以替换为6×6或者8×8的,即图6-16中LR发送端和HEW发送端生成的HE-LTF符号的个数可以为6或者8。此时,还可以提高LR发送端发送HE-LTF的功率,以提高LR发送端生成的数据帧中HE-LTF的信道检测能力。
可选的,P矩阵可以为4×4的矩阵,空间中可以共存在2个发送端,该两 个发送端分别为第一LR发送端和第二LR发送端。如图6-17所示,当空间中有1个空间流服务第一LR接收端时,LR发送端生成的数据帧中数据部分对应的空间流的个数为1,第一LR发送端可以采用4×4的矩阵生成数据帧中的HE-LTF,第一LR发送端能够在该空间流上生成4个在时域上排布的HE-LTF符号,且该每个HE-LTF符号的内容均相同。当空间中有1个空间流服务第二LR接收端时,第二LR发送端生成的数据帧中数据部分对应的空间流的个数为1,第二LR发送端可以采用4×4的矩阵生成数据帧中的HE-LTF,第二LR发送端能够生成4个在时域上排布的HE-LTF符号,且该4个HE-LTF符号的内容均相同。此时,可以提高两个LR发送端发送HE-LTF的功率,以提高两个LR发送端生成的数据帧中HE-LTF的信道检测能力。需要说明的是,本发明实施例中的P矩阵还可以替换为6×6或者8×8的,即图6-17中两个LR发送端生成的HE-LTF符号的个数可以为6或者8。此时,可以提高两个LR发送端发送HE-LTF的功率,以提高两个LR发送端生成的数据帧中HE-LTF的信道检测能力。
可选的,上述提高LR发送端发送HE-LTF的发送功率时,可以将LR发送端发送HE-LTF时的发送功率进行多倍放大,示例的,可以进行2倍、3倍或者4倍放大。
可选的,数据部分可以采用正交频分复用多址(英文:Orthogonal Frequency Division Multiple Access;简称:OFDMA)的方式,承载低速率数据字段(英文:Low Rate DATA field;简称:LR-DATA)和高效率数据字段(英文:High Efficiency DATA field;简称:HE-DATA),或者承载LR-DATA。LR-DATA可以包括:在时域上排布的至少一个LR-DATA符号,或者,在频域上排布的至少一个LR-DATA符号,且每个LR-DATA符号的内容均相同。示例的,本发明实施例中,LR发送端为同时支持LR模式和HEW模式的AP时,该LR发送端生成的数据帧中的数据部分可以采用OFDMA的方式,同时承载LR-DATA和HE-DATA,数据部分可以承载有待传输数据。
需要说明的是,如图6-18所示,若该发送端为仅仅支持LR模式的AP,且该接收端也为仅仅支持LR模式的STA-2,此时,在信道中传输的数据帧中的数据部分可以均为LR-DATA,当多个LR发送端均需要发送的数据帧时,数据帧中的数据部分可以采用OFDMA的方式同时承载该多个LR发送端生成的多个数 据帧中的LR-DATA。示例的,当该多个LR发送端生成的多个数据帧中的LR-DATA为LR-DATA1、LR-DATA2和LE-DATA3时,该数据部分可以采用OFDMA的方式同时承载LR-DATA1、LR-DATA2和LE-DATA3。
示例的,数据部分的整个传输带宽在频域划分为多个资源单元(英文:Resource Unit;简称:RU)。如图6-19所示,以20MHz信道为例,数据部分对应的频域波形可以包括256个子载波,分别编号为-128、-127、...、126、127,其中,编号为-1、0、1的子载波为直流子载波,因为这3个子载波易受收发系统的直流偏移的影响,因此不用于数据传输;而编号为-128到-123的6个子载波,以及编号为123到127的5个子载波称为保护子载波,用于降低发射信号的带外泄漏,避免对邻信道产生干扰,因此也不用于数据传输;也就是说,可用于数据传输的子载波是编号为-122到-2,以及编号为2到122的共242个中间子载波。该242个中间子载波可以进一步划分为9个包含26个子载波的RU、4个包含52个子载波的RU、2个包含106个子载波的RU或1个包含242个子载波的RU。该LR发送端生成的数据帧中的数据部分可以采用OFDMA的方式,使用一部分RU承载LR-DATA,使用另一部分RU承载HE-DATA,实现该数据部分同时承载LR-DATA和HE-DATA,数据部分可以承载有待传输数据。
为了便于同时支持LR模式和HEW模式的AP对LR发送端和HEW发送端进行联合发送和接收,可以设置LR发送端发送的数据帧与HEW发送端发送的数据帧采用相同长度的循环前缀,数据帧中的数据部分均可以采用四倍符号长度的OFDM符号。
可选的,本发明实施例中,生成的数据帧可以由LR-STF、L-STF、L-LTF、L-SIG、RL-SIG、RL-LTF、信令字段、HE-STF、HE-LTF和数据部分依次组成。
步骤602、LR发送端向LR接收端发送数据帧。
示例的,LR发送端在生成数据帧后,可以向LR接收端发送生成的数据帧。LR发送端向LR接收端发送数据帧的具体步骤可以参考相关技术中,发送端向接收端发送数据帧的具体步骤,本发明实施例在此不做赘述。
步骤603、LR接收端根据接收到的数据帧生成参考帧。
可选的,LR接收端在接收到LR发送端发送的数据帧后,可以将该数据帧进行复制,并将复制的数据帧在时域上延迟预设时间,得到参考帧,需要说明的是,该预设时间可以为该数据帧的LR-STF中的第一符号对应的时域波形的周 期的至少一倍。优选的,该预设时间可以为该第一符号对应的时域波形的周期1.6微秒。
步骤604、LR接收端对数据帧和参考帧进行自相关检测。
LR接收端可以对接收到的数据帧和步骤603中生成的参考帧进行自相关检测,具体的,可以对累计窗Y内的数据帧和参考帧进行自相关检测,且该累计窗Y可以在时域上进行移动,示例的,该累计窗的宽度对应的时长可以为3.2微秒、4.8微秒或6.4微秒。如图6-20所示,LR接收端生成的参考帧在时域上比接收到的数据帧延迟了1.6微秒,即LR-STF中的第一符号对应的时域波形的一个周期,在将数据帧和参考帧进行自相关检测时,随着累计窗的逐渐后移,发现在数据帧中的LR-STF和参考帧中的LR-STF的自相关检测的结果不为零。如图6-21所示,当空间中还存在HEW接收端,且该同时支持LR模式和HEW模式的AP也向HEW接收端发送数据帧时,HEW接收端生成的参考帧在时域上比接收到的数据帧延迟了基础前导中的L-STF符号的周期0.8微秒,即L-STF中的L-STF符号对应的时域波形的一个周期,在将数据帧和参考帧进行自相关检测时,随着累计窗在时域上的逐渐后移,发现在数据帧中的LR-STF和参考帧中的LR-STF的自相关检测的结果为零。
进一步的,由于LR-STF包括:在时域上排布的至少两个第一符号,第一符号对应的时域波形的周期为1.6微秒,即该第一符号对应的时域波形的周期为基础前导中L-STF符号的周期的两倍。支持LR模式的接收端在接收到该数据帧后,会将该数据帧延迟LR-STF中的LR-STF符号的周期(1.6微秒)得到参考帧,并对该数据帧和参考帧进行自相关检测,由于本发明实施例中,该支持LR模式的发送端生成的LR-STF中第一符号的周期为1.6微秒,支持LR模式的接收端在接收到该数据帧后,在进行自相关检测时,能够检测到该数据帧中的LR-STF,即该LR接收端可以认为LR-STF为有效部分。支持HEW模式的接收端在接收到该数据帧后,会将该数据帧延迟基础前导中的L-STF符号的周期(0.8微秒)得到参考帧,并对该数据帧和参考帧进行自相关检测,由于本发明实施例中,该支持LR模式的发送端生成的LR-STF中第一符号的周期为1.6微秒,支持HEW模式的接收端在接收到该数据帧后,在进行自相关检测时,不会检测到该数据帧中的LR-STF,而该支持HEW模式的接收端首先检测到的是该基础前导中的L-STF,即该HEW接收端可以认为LR-STF为无效部分,L-STF为有 效部分。
当空间中还存在支持HEW模式的HEW接收端,且该同时支持LR模式和HEW模式的AP根据图1-2所示的数据帧的结构向HEW接收端发送数据帧时,HEW接收端生成的参考帧在时域上比接收到的数据帧延迟了基础前导中的L-STF的周期0.8微秒,即L-STF中的L-STF符号对应的时域波形的一个周期,在将数据帧和参考帧进行自相关检测时,随着累计窗的逐渐后移,发现在数据帧中的L-STF和参考帧中的L-STF的自相关检测的结果不为零,即该HEW接收端可以认为L-STF为有效部分。由于本发明实施例中提供的数据帧结构可以和图1-2中的数据帧结构共同在一个空间中使用,因此,本发明实施例提供的数据帧的结构的可使用性较高。
步骤605、LR接收端根据检测结果确定数据帧中的有效部分。
由于步骤604中数据帧中的LR-STF和参考帧中的LR-STF的自相关检测的结果不为零,则可以认为该LR接收端接收到的数据帧中的LR-STF以及位于LR-STF之后的部分均为该数据帧的有效部分。
步骤606、LR接收端根据数据帧中的有效部分对数据帧进行解析,得到数据帧中的待传输数据。
在确定数据帧中的LR-STF以及位于LR-STF之后的部分均为该数据帧的有效部分后,该LR接收端可以确定该数据帧的类型可以为LR模式的数据帧,该LR接收端还可以根据该数据帧中的LR-STF或者结合该LR-STF与L-STF对数据帧进行定时同步。进一步的,LR接收端还可以根据L-STF进行数据帧的载波频率偏置(英文:Carrier Frequency Offset;简称:CFO)估计。该LR接收端还可以根据L-LTF或者结合L-LTF以及RL-LTF测量承载有信令的字段的信道。
该LR接收端可以根据L-SIG或者结合L-SIG以及RL-SIG确定该数据帧的编码方式,根据LR-SIG确定总空间流的个数、数据帧对应的MCS和数据帧的信道编码方式等信息;根据HE-STF对该数据帧进行ACG调整;根据HE-LTF测量数据部分的信道,并在测量到数据部分的信道后,从数据部分中获取待传输的数据,完成数据帧的传输。
综上所述,本发明实施例提供的数据传输方法中,发送端生成的数据帧依次包括:LR前导、基础前导、HEW前导和数据部分,LR前导包括:LR-STF,LR-STF用于定时同步。由于LR-STF能够支持的信噪比较低,使得支持LR模 式的接收端能够有效的获取数据帧中的数据,所以,提高了数据帧传输的可靠性。
LR接收端将该数据帧延迟LR前导中的第一符号的周期1.6微秒的整数倍得到参考帧,因此,该LR接收端能够检测到LR-STF,且HEW接收端将该数据帧延迟基础前导中的L-STF符号的周期0.8微秒得到参考帧,因此,该HEW接收端无法检测到LR-STF,即LR接收端可以使用数据帧中的LR-STF进行定时同步,且能够满足HEW接收端使用L-STF进行定时同步,所以,数据帧的可使用性较高。
如图7所示,本发明实施例提供了再一种数据传输方法,该数据传输方法可以用于LR发送端和LR接收端,该LR发送端可以为图1-1中支持LR模式的STA-2,该LR接收端可以为图1-1中的同时支持HEW模式和LR模式的AP,该数据传输方法可以包括:
步骤701、LR接收端向LR发送端发送包含调度信息的触发帧。
需要说明的是,该LR接收端可以向LR发送端发送用于调度LR发送端向LR接收端发送数据帧的触发帧,该触发帧的结构可以与图6-2所示的数据帧的结构相同,该调度信息可以承载在该触发帧的数据部分中,数据部分的某些资源单元(英文:Resource Unit;简称:RU)可以用于发送调度信息,其余RU可以用于承载向HEW接收端发送的数据,该调度信息可以包括被调度上行传输的LR发送端的标识符、分配给LR发送端的上行传输资源、编码调制方式等信息。被调度的LR接收端通过该触发帧中的调度信息,获知该LR接收端是否允许LR发送端发送数据,以及传输数据所使用的传输资源、传输格式等信息。
示例的,在LR发送端(同时支持HEW模式和LR模式的AP)使用传输带宽在频域上的一部分RU向LR接收端发送触发帧的同时,可以使用传输带宽在频域上的其他RU向该LR发送端或其他LR发送端发送数据帧。若LR接收端不允许LR发送端发送数据帧,则该LR发送端禁止生成数据帧,并禁止向LR接收端发送数据帧。
步骤702、在调度信息中指示LR接收端允许LR发送端发送数据帧时,LR发送端根据待传输数据生成数据帧。
具体的,该LR发送端生成数据帧的具体步骤可以参考图6-1所示的实施例 中,在步骤601中LR发送端生成数据帧的具体步骤,本发明实施例在此不做赘述。需要说明的是,本发明实施例中生成的数据帧的信令字段中,每个LR-SIG符号可以包括LR-SIG-A符号,且该LR-SIG-A符号中可以承载有用于指示服务每个接收端的空间流的个数的指示信息。本发明实施例中生成的数据帧的数据部分中,数据部分可以采用仅仅承载有LR-DATA,当该数据帧中可以包含多个LR-DATA时,该数据部分可以采用OFDMA的方式,承载多个LR-DATA。
为了便于同时支持LR模式和HEW模式的AP对LR发送端和HEW发送端进行联合发送和接收,可以设置LR发送端发送的数据帧与HEW发送端发送的数据帧采用相同长度的循环前缀,数据帧中的数据部分均可以采用四倍符号长度的OFDM符号。
步骤703、LR发送端向LR接收端发送数据帧。
示例的,LR发送端在生成数据帧后,可以向LR接收端发送生成的数据帧。LR发送端向LR接收端发送数据帧的具体步骤可以参考相关技术中,发送端向接收端发送数据帧的具体步骤,本发明实施例在此不做赘述。
步骤704、LR接收端根据接收到的数据帧生成参考帧。
示例的,该LR接收端根据接收到的数据帧生成参考帧的具体步骤可以参考图6-1所示的实施例中,在步骤603中LR接收端根据接收到的数据帧生成参考帧的具体步骤,本发明实施例在此不做赘述。特别的,由于本发明实施例中的接收端为同时支持HEW模式和LR模式的AP,且AP在接收LR发送端发送的数据帧之前,向LR发送端发送了触发帧,因此,该AP能够识别接收到的数据帧是LR发送端发送的,且不是HEW发送端发送的,此时,AP生成的参考帧在时域上比数据帧延迟LR-STF中第一符号对应的时域波形的周期的至少一倍。优选的,该预设时间可以为该第一符号对应的时域波形的周期1.6微秒。
步骤705、LR接收端对数据帧和参考帧进行自相关检测。
步骤705可以参考图6-1所示的实施例中,步骤604中的具体步骤,本发明实施例在此不做赘述。
步骤706、LR接收端根据检测结果确定数据帧中的有效部分。
步骤706可以参考图6-1所示的实施例中,步骤605中的具体步骤,本发明实施例在此不做赘述。
步骤707、LR接收端根据数据帧中的有效部分对数据帧进行解析,得到数 据帧中的待传输数据。
步骤707可以参考图6-1所示的实施例中,步骤606中的具体步骤,本发明实施例在此不做赘述。
综上所述,本发明实施例提供的数据传输方法中,发送端生成的数据帧依次包括:LR前导、基础前导、HEW前导和数据部分,LR前导包括:LR-STF,LR-STF用于定时同步。由于LR-STF能够支持的信噪比较低,使得支持LR模式的接收端能够有效的获取数据帧中的数据,所以,提高了数据帧传输的可靠性。
LR接收端将该数据帧延迟LR前导中的第一符号的周期1.6微秒的整数倍得到参考帧,因此,该LR接收端能够检测到LR-STF,且HEW接收端将该数据帧延迟基础前导中的L-STF符号的周期0.8微秒得到参考帧,因此,HEW接收端无法检测到LR-STF,即LR接收端可以使用数据帧中的LR-STF进行定时同步,且能够满足HEW接收端使用L-STF进行定时同步,所以,数据帧的可使用性较高。
如图8所示,本发明另一实施例提供了一种数据传输方法,该数据传输方法可以用于HEW发送端和HEW接收端,该HEW发送端可以为图1-1中的同时支持HEW模式和LR模式的AP,该HEW接收端可以为图1-1中支持HEW模式的STA-1,该数据传输方法可以包括:
步骤801、HEW发送端根据待传输数据生成数据帧。
具体的,该HEW发送端生成数据帧的具体步骤可以参考图6-1所示的实施例中,在步骤601中LR发送端生成数据帧的具体步骤,本发明实施例在此不做赘述。需要说明的是,本发明实施例中生成的数据帧的信令字段中,每个LR-SIG符号可以包括LR-SIG-A符号,或者,每个LR-SIG符号可以包括LR-SIG-A符号和LR-SIG-B符号。本发明实施例中生成的数据帧的数据部分中,数据部分可以采用承载有HE-DATA,或同时承载有HE-DATA和LR-DATA,当该数据帧中可以包含多个HE-DATA时,该数据部分可以采用OFDMA的方式,承载多个HE-DATA。
为了便于同时支持LR模式和HEW模式的AP对LR发送端和HEW发送端进行联合发送和接收,可以设置LR发送端发送的数据帧与HEW发送端发送的 数据帧采用相同长度的循环前缀,数据帧中的数据部分均可以采用四倍符号长度的OFDM符号。
步骤802、HEW发送端向HEW接收端发送数据帧。
示例的,HEW发送端在生成数据帧后,可以向HEW接收端发送生成的数据帧。HEW发送端向HEW接收端发送数据帧的具体步骤可以参考相关技术中,发送端向接收端发送数据帧的具体步骤,本发明实施例在此不做赘述。
步骤803、HEW接收端根据接收到的数据帧生成参考帧。
可选的,HEW接收端在接收到HEW发送端发送的数据帧后,可以将该数据帧进行复制,并将复制的数据帧在时域上延迟预设时间,得到参考帧,需要说明的是,该预设时间可以为该数据帧的L-STF中的L-STF符号对应的时域波形的周期的至少一倍,优选的,该预设时间可以为该L-STF符号对应的时域波形的周期0.8微秒。
步骤804、HEW接收端对数据帧和参考帧进行自相关检测。
HEW接收端可以对接收到的数据帧和步骤803中生成的参考帧进行自相关检测,具体的,可以对累计窗Y内的数据帧和参考帧进行自相关检测,且该累计窗Y可以在时域上进行移动,示例的,该累计窗的宽度对应的时长可以为1.6微秒。如图6-21所示,HEW接收端生成的参考帧在时域上比接收到的数据帧延迟了基础前导中的L-STF符号的周期0.8微秒,即L-STF中的L-STF符号对应的时域波形的一个周期,在将数据帧和参考帧进行自相关检测时,随着累计窗的逐渐后移,发现在数据帧中的LR-STF和参考帧中的LR-STF的自相关检测的结果为零。如图6-20所示,当空间中还存在LR接收端,且该同时支持LR模式和HEW模式的AP也向LR接收端发送数据帧时,LR接收端生成的参考帧在时域上比接收到的数据帧延迟了1.6微秒,即LR-STF中的第一符号对应的时域波形的一个周期,在将数据帧和参考帧进行自相关检测时,随着累计窗的逐渐后移,发现在数据帧中的LR-STF和参考帧中的LR-STF的自相关检测的结果不为零。
进一步的,由于LR-STF包括:在时域上排布的至少两个第一符号,第一符号对应的时域波形的周期为1.6微秒,即该第一符号对应的时域波形的周期为基础前导中L-STF符号的周期的两倍。支持LR模式的接收端在接收到该数据帧后,会将该数据帧延迟LR-STF中的LR-STF符号的周期(1.6微秒)得到参考 帧,并对该数据帧和参考帧进行自相关检测,由于本发明实施例中,该支持LR模式的发送端生成的LR-STF中第一符号的周期为1.6微秒,支持LR模式的接收端在接收到该数据帧后,在进行自相关检测时,能够检测到该数据帧中的LR-STF,即该LR接收端可以认为LR-STF为有效部分。支持HEW模式的接收端在接收到该数据帧后,会将该数据帧延迟基础前导中的L-STF符号的周期(0.8微秒)得到参考帧,并对该数据帧和参考帧进行自相关检测,由于本发明实施例中,该支持LR模式的发送端生成的LR-STF中第一符号的周期为1.6微秒,支持HEW模式的接收端在接收到该数据帧后,在进行自相关检测时,不会检测到该数据帧中的LR-STF,而该支持HEW模式的接收端首先检测到的是该基础前导中的L-STF,即该HEW接收端可以认为LR-STF为无效部分,L-STF为有效部分。
当空间中还存在支持HEW模式的HEW接收端,以及该同时支持LR模式和HEW模式的AP根据图1-2所示的数据帧的结构向HEW接收端发送数据帧时,HEW接收端生成的参考帧在时域上比接收到的数据帧延迟了基础前导中的L-STF的周期0.8微秒,即L-STF中的L-STF符号对应的时域波形的一个周期,在将数据帧和参考帧进行自相关检测时,随着累计窗的逐渐后移,发现在数据帧中的L-STF和参考帧中的L-STF的自相关检测的结果不为零,即该HEW接收端可以认为L-STF为有效部分。由于本发明实施例中提供的数据帧结构可以和图1-2中的数据帧结构共同在一个空间中使用,因此,本发明实施例提供的数据帧的结构的可使用性较高。
步骤805、HEW接收端根据检测结果确定数据帧中的有效部分。
由于数据帧中的LR-STF和参考帧中的LR-STF的自相关检测的结果为零,则可以认为该HEW接收端接收到的数据帧中的LR-STF为无效部分,且认为位于LR-STF之后的部分均为该数据帧的有效部分。
步骤806、HEW接收端根据数据帧中的有效部分对数据帧进行解析,得到数据帧中的待传输数据。
在确定数据帧中位于LR-STF之后的部分均为该数据帧的有效部分后,该HEW接收端可以根据该数据帧中的L-STF对数据帧进行定时同步。进一步的,HEW接收端还可以根据L-STF进行数据帧的CFO估计。该HEW接收端还可以根据L-LTF或者结合L-LTF以及RL-LTF测量承载有信令的字段的信道。
该HEW接收端可以根据L-SIG或者结合L-SIG以及RL-SIG确定该数据帧的编码方式,根据RL-SIG确定该数据帧的类型;根据LR-SIG确定总空间流的个数、数据帧对应的MCS和数据帧的信道编码方式等信息;根据HE-STF对该数据帧进行ACG调整;根据HE-LTF测量数据部分的信道,并在测量到数据部分的信道后,从数据部分中获取待传输的数据,完成数据帧的传输。
可选的,相关技术中提供了一种数据传输方法,该数据传输方法可以用于HEW发送端和HEW接收端,该LR发送端可以为图1-1中的同时支持HEW模式和LR模式的AP,该LR接收端可以为图1-1中支持HEW模式的STA-1,该LR发送端还可以为仅仅支持HEW模式的AP。该数据传输方法可以包括:
HEW发送端根据待传输数据生成数据帧。具体的,该HEW发送端可以根据图1-2所示的数据帧结构生成数据帧,该HEW发送端生成数据帧的具体步骤可以参考相关技术中生成如图1-2所示的数据帧的具体步骤,本发明实施例对此不做赘述。示例的,HEW发送端在生成数据帧后,可以向HEW接收端发送生成的数据帧。HEW发送端向HEW接收端发送数据帧的具体步骤可以参考相关技术中,发送端向接收端发送数据帧的具体步骤,本发明实施例在此不做赘述。
HEW接收端根据接收到的数据帧生成参考帧。示例的,该HEW接收端根据接收到的数据帧生成参考帧的具体步骤可以参考图6-1所示的实施例中,在步骤603中HEW接收端根据接收到的数据帧生成参考帧的具体步骤,本发明实施例在此不做赘述。HEW接收端对数据帧和参考帧进行自相关检测,具体的步骤可以参考图6-1所示的实施例中,步骤604中的具体步骤,本发明实施例在此不做赘述。由于参考帧的延迟为L-LTF周期的整数倍,因此,该数据帧中L-STF和参考帧中的L-STF的自相关检测的结果不为零,即该HEW接收端能够检测到数据帧中的L-STF,并认为该L-STF为有效部分。HEW接收端根据检测结果确定数据帧中的有效部分,由于数据帧不包括LR-STF,且数据帧中的L-STF和参考帧中的L-STF的自相关检测的结果不为零,则可以认为该HEW接收端接收到的数据帧中的L-STF以及位于L-STF之后的部分均为该数据帧的有效部分。在确定数据帧中位于L-STF以及L-STF之后的部分均为该数据帧的有效部分后,该HEW接收端可以对该数据帧中的有效部分进行解析,获取数据部分中的待传输数据,完成数据帧的传输。
综上所述,本发明实施例提供的数据传输方法中,发送端生成的数据帧依 次包括:LR前导、基础前导、HEW前导和数据部分,LR前导包括:LR-STF,LR-STF用于定时同步。且HEW接收端将该数据帧延迟基础前导中的L-STF符号的周期0.8微秒得到参考帧,因此,该HEW接收端不会检测到LR-STF,即本发明实施例中的数据帧仍然使用L-STF进行定时同步,能够适用于相关技术中的HEW接收端,所以,数据帧的可使用性较高。
如图9-1所示,本发明另一实施例提供了另一种数据传输方法,该数据传输方法可以用于HEW发送端和HEW接收端,该HEW发送端可以为图1-1中支持HEW模式的STA-1,该HEW接收端可以为图1-1中的同时支持HEW模式和LR模式的AP,该数据传输方法可以包括:
步骤901、HEW接收端向HEW发送端发送包含调度信息的触发帧。
需要说明的是,该HEW接收端可以向HEW发送端发送用于调度HEW发送端向HEW接收端发送数据帧的触发帧,该触发帧的结构可以与图6-2所示的数据帧的结构相同,该调度信息可以承载在该触发帧的数据部分中,数据部分的某些资源单元(英文:Resource Unit;简称:RU)可以用于发送调度信息,其余RU可以用于承载向HEW接收端发送的数据,该调度信息可以包括被调度上行传输的HEW发送端的标识符、分配给HEW发送端的上行传输资源、编码调制方式等信息。被调度的HEW接收端通过该触发帧中的调度信息,获知该HEW接收端是否允许HEW发送端发送数据,以及传输数据所使用的传输资源、传输格式等信息。
若HEW接收端不允许HEW发送端发送数据帧,则该HEW发送端禁止生成数据帧,并禁止向HEW接收端发送数据帧。
步骤902、在调度信息中指示HEW接收端允许HEW发送端发送数据帧时,HEW发送端根据待传输数据生成数据帧。
具体的,该HEW发送端生成数据帧的具体步骤可以参考图6-1所示的实施例中,在步骤601中LR发送端生成数据帧的具体步骤,本发明实施例在此不做赘述。需要说明的是,本发明实施例中生成的数据帧不包括LR-STF,本发明实施例中生成的数据帧的信令字段中,每个LR-SIG符号可以包括LR-SIG-A符号,且该LR-SIG-A符号中可以承载有用于指示服务每个接收端的空间流的个数的指示信息。本发明实施例中生成的数据帧的数据部分中,数据部分可以采用仅 仅承载有HE-DATA,当该数据帧中可以包含多个HE-DATA时,该数据部分可以采用OFDMA的方式,承载多个HE-DATA。
为了便于同时支持LR模式和HEW模式的AP对LR发送端和HEW发送端进行联合发送和接收,可以设置LR发送端发送的数据帧与HEW发送端发送的数据帧采用相同长度的循环前缀,数据帧中的数据部分均可以采用四倍符号长度的OFDM符号。
步骤903、HEW发送端向HEW接收端发送数据帧。
示例的,HEW发送端在生成数据帧后,可以向HEW接收端发送生成的数据帧。HEW发送端向HEW接收端发送数据帧的具体步骤可以参考相关技术中,发送端向接收端发送数据帧的具体步骤,本发明实施例在此不做赘述。
特别的,发送端(LR发送端或HEW发送端)可以根据包含调度信息的触发帧中,确定该触发帧中的调度信息用于调度的数据帧为LR发送端或HEW发送端发送的数据帧。由于本发明实施例中HEW发送端生成的数据帧中并不包含LR-STF,当本发明实施例中的HEW发送端从该触发帧的调度信息中确定HEW接收端(即同时支持LR模式和HEW模式的AP)需要调度的数据帧中包含LR发送端发送的数据帧时,该HEW发送端可以在生成数据帧后,等待LR发送端发送LR-STF的时间,才开始向HEW接收端发送数据帧,以保证该HEW接收端在接收完毕LR发送端发送端数据帧和HEW发送端发送的数据中的时间相同。
如图9-2所示,当该HEW接收端(同时支持LR模式和HEW模式的AP)生成的触发帧Z1中的调度信息用于调度的数据帧为LR发送端和HEW发送端发送的数据帧时,HEW接收端可以将生成的触发帧同时发送给LR发送端和HEW发送端。LR发送端在接收到该触发帧并解析该触发帧后,可以生成数据帧Z2,且该LR发送端生成的数据帧Z2依次包括:LR前导、基础前导、HEW前导和数据部分,且该数据部分可以承载有LR-DATA,LR前导包括LR-STF。HEW发送端在接收到该触发帧并解析该触发帧后,可以生成数据帧Z3,且该HEW发送端生成的数据帧Z3依次包括:基础前导、HEW前导和数据部分,且该数据部分可以承载有HE-DATA。由于本发明实施例中HEW发送端生成的数据帧中并不包含LR前导(即LR-STF),当HEW发送端从该触发帧Z1的调度信息中确定HEW接收端(即同时支持LR模式和HEW模式的AP)需要调度的 数据帧中包含LR发送端发送的数据帧Z2时,该HEW发送端可以在生成数据帧Z3后,等待LR发送端发送传统前导(LR-STF)的时间α之后,才开始向HEW接收端发送数据帧Z3,以保证该HEW接收端在接收完毕LR发送端发送端数据帧Z2和HEW发送端发送的数据帧Z3的时间相同。
步骤904、HEW接收端根据接收到的数据帧生成参考帧。
示例的,该HEW接收端根据接收到的数据帧生成参考帧的具体步骤可以参考图6-1所示的实施例中,在步骤603中HEW接收端根据接收到的数据帧生成参考帧的具体步骤,本发明实施例在此不做赘述。特别的,由于本发明实施例中的接收端为同时支持HEW模式和LR模式的AP,且AP在接收HEW发送端发送的数据帧之前,向HEW发送端发送了触发帧,因此,该AP能够识别接收到的数据帧是HEW发送端发送的,且不是LR发送端发送的,此时,AP生成的参考帧在时域上比数据帧延迟L-STF中L-STF符号对应的时域波形的周期0.8微秒。
步骤905、HEW接收端对数据帧和参考帧进行自相关检测。
步骤905可以参考图6-1所示的实施例中,步骤604中的具体步骤,本发明实施例在此不做赘述。由于参考帧的延迟为L-LTF周期的整数倍,因此,该数据帧中L-STF和参考帧中的L-STF的自相关检测的结果不为零,即该HEW接收端能够检测到数据帧中的L-STF,并认为该L-STF为有效部分。
步骤906、HEW接收端根据检测结果确定数据帧中的有效部分。
由于数据帧不包括LR-STF,且数据帧中的L-STF和参考帧中的L-STF的自相关检测的结果不为零,则可以认为该HEW接收端接收到的数据帧中的L-STF以及位于L-STF之后的部分均为该数据帧的有效部分。
步骤907、HEW接收端根据数据帧中的有效部分对数据帧进行解析,得到数据帧中的待传输数据。
在确定数据帧中位于L-STF以及L-STF之后的部分均为该数据帧的有效部分后,该HEW接收端可以根据该数据帧中的L-STF对数据帧进行定时同步。进一步的,HEW接收端还可以根据L-STF进行数据帧的CFO估计。该HEW接收端还可以根据L-LTF或者结合L-LTF以及RL-LTF测量承载有信令的字段的信道。
该HEW接收端可以根据L-SIG或者结合L-SIG以及RL-SIG确定该数据帧 的编码方式,根据RL-SIG确定该数据帧的类型;根据LR-SIG确定总空间流的个数、数据帧对应的MCS和数据帧的信道编码方式等信息;根据HE-STF对该数据帧进行ACG调整;根据HE-LTF测量数据部分的信道,并在测量到数据部分的信道后,从数据部分中获取待传输的数据,完成数据帧的传输。
可选的,相关技术中提供了一种数据传输方法,该数据传输方法可以用于HEW发送端和HEW接收端,该LR发送端可以为图1-1中的同时支持HEW模式和LR模式的AP,该LR接收端可以为图1-1中支持HEW模式的STA-1,该LR发送端还可以为仅仅支持HEW模式的AP。该数据传输方法可以包括:
HEW发送端根据待传输数据生成数据帧。具体的,该HEW发送端可以根据图1-2所示的数据帧结构生成数据帧,该HEW发送端生成数据帧的具体步骤可以参考相关技术中生成如图1-2所示的数据帧的具体步骤,本发明实施例对此不做赘述。示例的,HEW发送端在生成数据帧后,可以向HEW接收端发送生成的数据帧。HEW发送端向HEW接收端发送数据帧的具体步骤可以参考相关技术中,发送端向接收端发送数据帧的具体步骤,本发明实施例在此不做赘述。
HEW接收端根据接收到的数据帧生成参考帧。示例的,该HEW接收端根据接收到的数据帧生成参考帧的具体步骤可以参考图6-1所示的实施例中,在步骤603中HEW接收端根据接收到的数据帧生成参考帧的具体步骤,本发明实施例在此不做赘述。HEW接收端对数据帧和参考帧进行自相关检测,具体的步骤可以参考图6-1所示的实施例中,步骤604中的具体步骤,本发明实施例在此不做赘述。由于参考帧的延迟为L-LTF周期的整数倍,因此,该数据帧中L-STF和参考帧中的L-STF的自相关检测的结果不为零,即该HEW接收端能够检测到数据帧中的L-STF,并认为该L-STF为有效部分。HEW接收端根据检测结果确定数据帧中的有效部分,由于数据帧不包括LR-STF,且数据帧中的L-STF和参考帧中的L-STF的自相关检测的结果不为零,则可以认为该HEW接收端接收到的数据帧中的L-STF以及位于L-STF之后的部分均为该数据帧的有效部分。在确定数据帧中位于L-STF以及L-STF之后的部分均为该数据帧的有效部分后,该HEW接收端可以对该数据帧中的有效部分进行解析,获取数据部分中的待传输数据,完成数据帧的传输。
综上所述,本发明实施例提供的数据传输方法中,HEW接收端将接收到的数据帧延迟基础前导中的L-STF符号的周期0.8微秒得到参考帧,因此,且该数 据帧中不包括LR-STF,该接收端可以认为该L-STF为有效部分,即本发明实施例中的数据帧仍然使用L-STF进行定时同步,能够适用于相关技术中的HEW接收端,所以,数据帧的可使用性较高。
需要说明的是,本发明实施例提供的数据传输方法步骤的先后顺序可以进行适当调整,步骤也可以根据情况进行相应增减,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到变化的方法,都应涵盖在本发明的保护范围之内,因此不再赘述。
如图10所示,本发明实施例提供了一种数据传输系统100,该数据传输系统100可以包括:发送端20和接收端30,发送端20可以为图2所示的数据传输装置20;接收端30可以为图3所示的数据传输装置30。
综上所述,本发明实施例提供的数据传输系统中,发送端生成的数据帧依次包括:LR前导、基础前导、HEW前导和数据部分,LR前导包括:LR-STF,LR-STF用于定时同步。由于数据帧的帧头为LR-STF,且LR-STF能够支持的信噪比较低,使得发送端在传输该数据帧时,支持LR模式的接收端能够较容易的接收到该数据帧,并且能够有效的获取数据帧中的数据,所以,提高了数据帧传输的可靠性。
如图11所示,本发明实施例提供了又一种数据传输装置110,该数据传输装置110可以用于发送端,该发送端可以为支持LR模式的发送端,该支持LR模式的发送端可以为支持LR模式的AP或支持LR模式的STA,该数据传输装置110可以包括:处理器1101和发送机1102,
处理器1101可以用于根据待传输数据生成数据帧,所述数据帧依次包括:低速率LR前导、基础前导、高效率无线局域网HEW前导和数据部分,所述LR前导包括:LR-STF,所述LR-STF包括:在时域上排布的至少两个第一符号,每个第一符号的内容相同,所述第一符号对应的时域波形的周期为1.6微秒,所述LR-STF用于定时同步;
发送机1102可以用于向接收端发送所述数据帧。
综上所述,本发明实施例提供的数据传输装置中,处理器生成的数据帧依 次包括:LR前导、基础前导、HEW前导和数据部分,LR前导包括:LR-STF,LR-STF用于定时同步。由于数据帧的帧头为LR-STF,且LR-STF能够支持的信噪比较低,使得在传输该数据帧时,支持LR模式的接收端能够较容易的接收到该数据帧,并且能够有效的获取数据帧中的数据,所以,提高了数据帧传输的可靠性。
需要说明的是,本发明实施例中的处理器1101可以执行图2所示的数据传输装置20中的处理单元201所执行的步骤。本发明实施例中的发送机1102可以执行图2所示的数据传输装置20中的发送单元202所执行的步骤。
可选的,LR-STF还包括:用于标识LR-STF尾部的第二符号。
可选的,第一符号对应的频域波形包括:直流子载波、保护子载波以及中间子载波,中间子载波在频域上位于直流子载波与保护子载波之间,第一符号的频域序列中的元素与频域波形一一对应,当中间子载波对应的频域序列中的元素包括至少两个非零元素时,每两个非零元素之间存在一个零元素。
可选的,第一符号的频域序列中非零元素的个数大于十四。
可选的,第一符号的频域序列中非零元素的个数等于二十八。
可选的,基础前导包括:L-STF、L-LTF和L-SIG,L-STF包括至少两个L-STF符号,且每个L-STF符号的内容相同,每个L-STF符号对应的时域波形的周期为0.8微秒,第二符号对应的时域波形为将第一波形采用预设变换方式处理后的波形,第一波形为:第一符号对应的时域波形、半个周期的第一符号对应的时域波形、L-STF符号对应的时域波形或半个周期的L-STF符号对应的时域波形,预设变换方式包括:乘以-1、取反向波形、乘以-1后再取反向波形、乘以j、乘以-j、乘以j后再取反向波形或乘以-j后再取反向波形,j为虚数单位。
可选的,HEW前导包括:RL-SIG、RL-LTF、信令字段、HE-STF和HE-LTF,RL-LTF包括:在时域上排布的至少一个L-LTF。
可选的,信令字段包括:在时域上排布的至少一个LR-SIG符号,或者,在频域上排布的至少一个LR-SIG符号,且每个LR-SIG符号的内容均相同,每个LR-SIG符号包括高效率信令A字段LR-SIG-A符号,或,每个LR-SIG符号包括LR-SIG-A符号和高效率信令B字段LR-SIG-B符号。
可选的,信令字段包括:在时域上排布的至少一个采用循环移位的方式处理过的LR-SIG模块,或者,在频域上排布的至少一个采用循环移位的方式处理 过的LR-SIG模块,LR-SIG模块包括:采用双载波调制DCM方式处理过的LR-SIG符号的循环前缀以及采用双载波调制DCM方式处理过的LR-SIG符号,每个LR-SIG符号的内容均相同,每个LR-SIG符号包括高效率信令A字段LR-SIG-A符号,或,每个LR-SIG符号包括LR-SIG-A符号和高效率信令B字段LR-SIG-B符号。
可选的,HE-LTF包括:在时域上排布的p个HE-LTF符号,每个HE-LTF符号的内容均相同,且HE-LTF符号对应的发送功率大于预设发送功率,
其中,p=m+2n,当数据部分对应的空间流的个数为偶数时,m为数据部分对应的空间流的个数,当数据部分对应的空间流的个数为奇数时,m为数据部分对应的空间流的个数的向上取偶,数据部分对应的空间流的个数小于八,n为大于0的整数。
可选的,数据部分采用正交频分复用多址OFDMA的方式,承载低速率数据字段LR-DATA和高效率数据字段HE-DATA,或者,承载LR-DATA,LR-DATA包括:在时域上排布的至少一个LR-DATA符号,或者,在频域上排布的至少一个LR-DATA符号,且每个LR-DATA符号的内容均相同。
可选的,RL-SIG包括:在时域上排布的至少一个经过预设方式处理后的L-SIG,预设方式与数据帧的类型相对应。
可选的,信令字段包括:在时域上排布的三个或四个LR-SIG模块,或者,在频域上排布的三个或四个LR-SIG模块。
可选的,数据帧由LR-STF、L-STF、L-LTF、L-SIG、RL-SIG、RL-LTF、信令字段、HE-STF、HE-LTF和数据部分依次组成。示例的,该数据传输装置110可以为终端。
综上所述,本发明实施例提供了一种数据传输装置,由于处理器生成的数据帧依次包括:LR前导、基础前导、HEW前导和数据部分,LR前导包括:LR-STF,LR-STF用于定时同步。由于数据帧的帧头为LR-STF,且LR-STF能够支持的信噪比较低,使得在传输该数据帧时,支持LR模式的接收端能够较容易的接收到该数据帧,并且能够有效的获取数据帧中的数据,所以,提高了数据帧传输的可靠性。
如图12所示,本发明实施例提供了再一种数据传输装置120,该数据传输 装置120可以用于接收端,该接收端可以为支持LR模式的接收端,该支持LR模式的接收端可以为支持LR模式的AP或支持LR模式的STA,该数据传输装置120可以包括:接收机1201和处理器1202。
接收机1201可以用于接收发送端发送的数据帧,所述数据帧依次包括:低速率LR前导、基础前导、高效率无线局域网HEW前导和数据部分,所述LR前导包括:LR-STF,所述LR-STF包括:在时域上排布的至少两个第一符号,每个第一符号的内容相同,第一符号对应的时域波形的周期为1.6微秒,LR-STF用于定时同步;
处理器1202可以用于根据所述数据帧生成参考帧,所述参考帧在时域上比所述数据帧延迟预设时间,所述预设时间为所述第一符号对应的时域波形的周期的至少一倍;
处理器1202还可以用于对所述数据帧和所述参考帧进行自相关检测;
处理器1202还可以用于根据检测结果确定所述数据帧中的有效部分;
处理器1202还可以用于根据所述有效部分对所述数据帧进行解析,得到所述数据帧中的待传输数据。
综上所述,本发明实施例提供了一种数据传输装置,由于接收机接收到的数据帧依次包括:LR前导、基础前导、HEW前导和数据部分,LR前导包括:LR-STF,LR-STF用于定时同步。由于LR-STF能够支持的信噪比较低,使得支持LR模式的接收端能够有效的获取数据帧中的数据,所以,提高了数据帧传输的可靠性。
需要说明的是,本发明实施例中的接收机1201可以执行图3所示的数据传输装置30中接收单元301所执行的步骤,本发明实施例中的处理器302可以执行如图3所示的数据传输装置30中处理单元302所执行的步骤。
示例的,该数据传输装置120可以为终端。LR接收端将该数据帧延迟LR前导中的第一符号的周期1.6微秒的整数倍得到参考帧,因此,该LR接收端能够检测到LR-STF,且HEW接收端将该数据帧延迟基础前导中的L-STF符号的周期0.8微秒得到参考帧,因此,该HEW接收端无法检测到LR-STF,即LR接收端可以使用数据帧中的LR-STF进行定时同步,且能够满足HEW接收端使用L-STF进行定时同步,所以,数据帧的可使用性较高。
如图13所示,本发明实施例提供了另一种数据传输系统130,该数据传输系统130可以包括:发送端110和接收端120,发送端110可以为图11所示的数据传输装置110;接收端120可以为图12所示的数据传输装置120。
综上所述,本发明实施例提供的数据传输系统中,发送端生成的数据帧依次包括:LR前导、基础前导、HEW前导和数据部分,LR前导包括:LR-STF,LR-STF用于定时同步。由于数据帧的帧头为LR-STF,且LR-STF能够支持的信噪比较低,使得发送端在传输该数据帧时,支持LR模式的接收端能够较容易的接收到该数据帧,并且能够有效的获取数据帧中的数据,所以,提高了数据帧传输的可靠性。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的数据传输装置和数据传输系统的具体工作过程,可以参考前述数据传输方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的数据传输方法、数据传输装置和数据传输系统,可以通过其它的方式实现。例如,以上所描述的数据传输装置实施例仅仅是示意性的,例如,数据传输装置中各个单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。
上述所有可选技术方案,可以采用任意结合形成本发明的可选实施例,在此不再一一赘述。以上所述仅为本发明的较佳实施例,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (36)

  1. 一种数据传输装置,其特征在于,用于发送端,所述数据传输装置包括:处理单元,用于根据待传输数据生成数据帧,所述数据帧依次包括:低速率LR前导、基础前导、高效率无线局域网HEW前导和数据部分,所述LR前导包括:低速率短训练字段LR-STF,所述LR-STF包括:在时域上排布的至少两个第一符号,每个第一符号的内容相同,所述第一符号对应的时域波形的周期为1.6微秒,所述LR-STF用于定时同步;
    发送单元,用于向接收端发送所述数据帧。
  2. 根据权利要求1所述的数据传输装置,其特征在于,
    所述LR-STF还包括:用于标识所述LR-STF尾部的第二符号。
  3. 根据权利要求1所述的数据传输装置,其特征在于,
    所述第一符号对应的频域波形包括:直流子载波、保护子载波以及中间子载波,所述中间子载波在频域上位于所述直流子载波与所述保护子载波之间,所述第一符号的频域序列中的元素与所述频域波形一一对应,
    当所述中间子载波对应的频域序列中的元素包括至少两个非零元素时,每两个所述非零元素之间存在一个零元素。
  4. 根据权利要求3所述的数据传输装置,其特征在于,
    所述第一符号的频域序列中非零元素的个数大于十四。
  5. 根据权利要求4所述的数据传输装置,其特征在于,
    所述第一符号的频域序列中非零元素的个数等于二十八。
  6. 根据权利要求2所述的数据传输装置,其特征在于,
    所述基础前导包括:传统短训练字段L-STF、传统长训练字段L-LTF和传统信令字段L-SIG,所述L-STF包括至少两个L-STF符号,且每个L-STF符号的内容相同,每个L-STF符号对应的时域波形的周期为0.8微秒,所述第二符号 对应的时域波形为将第一波形采用预设变换方式处理后的波形,
    所述第一波形为:所述第一符号对应的时域波形、半个周期的所述第一符号对应的时域波形、所述L-STF符号对应的时域波形或半个周期的所述L-STF符号对应的时域波形,
    所述预设变换方式包括:乘以-1、取反向波形、乘以-1后再取反向波形、乘以j、乘以-j、乘以j后再取反向波形或乘以-j后再取反向波形,所述j为虚数单位。
  7. 根据权利要求1所述的数据传输装置,其特征在于,
    所述HEW前导包括:重复传统信令字段RL-SIG、重复传统长训练字段RL-LTF、信令字段、高效率短训练字段HE-STF和高效率长训练字段HE-LTF,所述RL-LTF包括:在时域上排布的至少一个所述L-LTF。
  8. 根据权利要求7所述的数据传输装置,其特征在于,
    所述信令字段包括:在时域上排布的至少一个低速率信令字段LR-SIG符号,或者,在频域上排布的至少一个LR-SIG符号,且每个所述LR-SIG符号的内容均相同,每个所述LR-SIG符号包括高效率信令A字段LR-SIG-A符号,或,每个所述LR-SIG符号包括所述LR-SIG-A符号和高效率信令B字段LR-SIG-B符号。
  9. 根据权利要求7所述的数据传输装置,其特征在于,
    所述信令字段包括:在时域上排布的至少一个LR-SIG模块,或者,在频域上排布的至少一个LR-SIG模块,所述LR-SIG模块包括:采用循环移位的方式处理过的LR-SIG主体的循环前缀以及所述LR-SIG主体,所述LR-SIG主体包括采用双载波调制DCM方式处理过的LR-SIG符号,且每个所述LR-SIG符号的内容均相同,每个所述LR-SIG符号包括高效率信令A字段LR-SIG-A符号,或,每个所述LR-SIG符号包括所述LR-SIG-A符号和高效率信令B字段LR-SIG-B符号。
  10. 根据权利要求7所述的数据传输装置,其特征在于,
    所述HE-LTF包括:在时域上排布的p个HE-LTF符号,每个HE-LTF符号 的内容均相同,且所述HE-LTF符号对应的发送功率大于预设发送功率,
    其中,所述p=m+2n,当所述数据部分对应的空间流的个数为偶数时,所述m为所述数据部分对应的空间流的个数,当所述数据部分对应的空间流的个数为奇数时,所述m为所述数据部分对应的空间流的个数的向上取偶,所述数据部分对应的空间流的个数小于八,所述n为大于0的整数。
  11. 根据权利要求1所述的数据传输装置,其特征在于,
    所述数据部分采用正交频分复用多址OFDMA的方式,承载低速率数据字段LR-DATA和高效率数据字段HE-DATA,或者,承载所述LR-DATA,
    所述LR-DATA包括:在时域上排布的至少一个LR-DATA符号,或者,在频域上排布的至少一个LR-DATA符号,且每个所述LR-DATA符号的内容均相同。
  12. 根据权利要求7所述的数据传输装置,其特征在于,
    所述RL-SIG包括:在时域上排布的至少一个经过预设方式处理后的所述L-SIG,所述预设方式与所述数据帧的类型相对应。
  13. 根据权利要求9所述的数据传输装置,其特征在于,
    所述信令字段包括:在时域上排布的三个或四个LR-SIG模块,或者,在频域上排布的三个或四个LR-SIG模块。
  14. 根据权利要求1所述的数据传输装置,其特征在于,
    所述数据帧由LR-STF、L-STF、L-LTF、L-SIG、RL-SIG、RL-LTF、信令字段、HE-STF、HE-LTF和数据部分依次组成。
  15. 一种数据传输装置,其特征在于,用于接收端,所述数据传输装置包括:
    接收单元,用于接收发送端发送的数据帧,所述数据帧依次包括:低速率LR前导、基础前导、高效率无线局域网HEW前导和数据部分,所述LR前导包括:低速率短训练字段LR-STF,所述LR-STF包括:在时域上排布的至少两个第一符号,每个第一符号的内容相同,所述第一符号对应的时域波形的周期 为1.6微秒,所述LR-STF用于定时同步;
    处理单元,用于根据所述数据帧生成参考帧,所述参考帧在时域上比所述数据帧延迟预设时间,所述预设时间为所述第一符号对应的时域波形的周期的至少一倍;
    处理单元还用于对所述数据帧和所述参考帧进行自相关检测;
    处理单元还用于根据检测结果确定所述数据帧中的有效部分;
    处理单元还用于根据所述有效部分对所述数据帧进行解析,得到所述数据帧中的待传输数据。
  16. 一种数据传输方法,其特征在于,用于发送端,所述方法包括:
    根据待传输数据生成数据帧,所述数据帧依次包括:低速率LR前导、基础前导、高效率无线局域网HEW前导和数据部分,所述LR前导包括:低速率短训练字段LR-STF,所述LR-STF包括:在时域上排布的至少两个第一符号,每个第一符号的内容相同,所述第一符号对应的时域波形的周期为1.6微秒,所述LR-STF用于定时同步;
    向接收端发送所述数据帧。
  17. 根据权利要求16所述的方法,其特征在于,
    所述LR-STF还包括:用于标识所述LR-STF尾部的第二符号。
  18. 根据权利要求16所述的方法,其特征在于,
    所述第一符号对应的频域波形包括:直流子载波、保护子载波以及中间子载波,所述中间子载波在频域上位于所述直流子载波与所述保护子载波之间,所述第一符号的频域序列中的元素与所述频域波形一一对应,
    当所述中间子载波对应的频域序列中的元素包括至少两个非零元素时,每两个所述非零元素之间存在一个零元素。
  19. 根据权利要求18所述的方法,其特征在于,
    所述第一符号的频域序列中非零元素的个数大于十四。
  20. 根据权利要求19所述的方法,其特征在于,
    所述第一符号的频域序列中非零元素的个数等于二十八。
  21. 根据权利要求17所述的方法,其特征在于,
    所述基础前导包括:传统短训练字段L-STF、传统长训练字段L-LTF和传统信令字段L-SIG,所述L-STF包括至少两个L-STF符号,且每个L-STF符号的内容相同,每个L-STF符号对应的时域波形的周期为0.8微秒,所述第二符号对应的时域波形为将第一波形采用预设变换方式处理后的波形,
    所述第一波形为:所述第一符号对应的时域波形、半个周期的所述第一符号对应的时域波形、所述L-STF符号对应的时域波形或半个周期的所述L-STF符号对应的时域波形,
    所述预设变换方式包括:乘以-1、取反向波形、乘以-1后再取反向波形、乘以j、乘以-j、乘以j后再取反向波形或乘以-j后再取反向波形,所述j为虚数单位。
  22. 根据权利要求16所述的方法,其特征在于,
    所述HEW前导包括:重复传统信令字段RL-SIG、重复传统长训练字段RL-LTF、信令字段、高效率短训练字段HE-STF和高效率长训练字段HE-LTF,所述RL-LTF包括:在时域上排布的至少一个所述L-LTF。
  23. 根据权利要求22所述的方法,其特征在于,
    所述信令字段包括:在时域上排布的至少一个低速率信令字段LR-SIG符号,或者,在频域上排布的至少一个LR-SIG符号,且每个所述LR-SIG符号的内容均相同,每个所述LR-SIG符号包括高效率信令A字段LR-SIG-A符号,或,每个所述LR-SIG符号包括所述LR-SIG-A符号和高效率信令B字段LR-SIG-B符号。
  24. 根据权利要求22所述的方法,其特征在于,
    所述信令字段包括:在时域上排布的至少一个LR-SIG模块,或者,在频域上排布的至少一个LR-SIG模块,所述LR-SIG模块包括:采用循环移位的方式处理过的LR-SIG主体的循环前缀以及所述LR-SIG主体,所述LR-SIG主体包括采用双载波调制DCM方式处理过的LR-SIG符号,且每个所述LR-SIG符号 的内容均相同,每个所述LR-SIG符号包括高效率信令A字段LR-SIG-A符号,或,每个所述LR-SIG符号包括所述LR-SIG-A符号和高效率信令B字段LR-SIG-B符号。
  25. 根据权利要求22所述的方法,其特征在于,
    所述HE-LTF包括:在时域上排布的p个HE-LTF符号,每个HE-LTF符号的内容均相同,且所述HE-LTF符号对应的发送功率大于预设发送功率,
    其中,所述p=m+2n,当所述数据部分对应的空间流的个数为偶数时,所述m为所述数据部分对应的空间流的个数,当所述数据部分对应的空间流的个数为奇数时,所述m为所述数据部分对应的空间流的个数的向上取偶,所述数据部分对应的空间流的个数小于八,所述n为大于0的整数。
  26. 根据权利要求16所述的方法,其特征在于,
    所述数据部分采用正交频分复用多址OFDMA的方式,承载低速率数据字段LR-DATA和高效率数据字段HE-DATA,或者,承载所述LR-DATA,
    所述LR-DATA包括:在时域上排布的至少一个LR-DATA符号,或者,在频域上排布的至少一个LR-DATA符号,且每个所述LR-DATA符号的内容均相同。
  27. 根据权利要求22所述的方法,其特征在于,
    所述RL-SIG包括:在时域上排布的至少一个经过预设方式处理后的所述L-SIG,所述预设方式与所述数据帧的类型相对应。
  28. 根据权利要求24所述的方法,其特征在于,
    所述信令字段包括:在时域上排布的三个或四个LR-SIG模块,或者,在频域上排布的三个或四个LR-SIG模块。
  29. 根据权利要求16所述的方法,其特征在于,
    所述数据帧由LR-STF、L-STF、L-LTF、L-SIG、RL-SIG、RL-LTF、信令字段、HE-STF、HE-LTF和数据部分依次组成。
  30. 一种数据传输方法,其特征在于,用于接收端,所述方法包括:
    接收发送端发送的数据帧,所述数据帧依次包括:低速率LR前导、基础前导、高效率无线局域网HEW前导和数据部分,所述LR前导包括:低速率短训练字段LR-STF,所述LR-STF包括:在时域上排布的至少两个第一符号,每个第一符号的内容相同,所述第一符号对应的时域波形的周期为1.6微秒,所述LR-STF用于定时同步;
    根据所述数据帧生成参考帧,所述参考帧在时域上比所述数据帧延迟预设时间,所述预设时间为所述第一符号对应的时域波形的周期的至少一倍;
    对所述数据帧和所述参考帧进行自相关检测;
    根据检测结果确定所述数据帧中的有效部分;
    根据所述有效部分对所述数据帧进行解析,得到所述数据帧中的待传输数据。
  31. 一种数据传输系统,其特征在于,所述数据传输系统包括:发送端和接收端,
    所述发送端为权利要求1至14任一所述的数据传输装置;
    所述接收端为权利要求15所述的数据传输装置。
  32. 一种数据传输装置,其特征在于,用于发送端,所述数据传输装置包括:处理器和发送机,
    所述处理器用于根据待传输数据生成数据帧,所述数据帧依次包括:低速率LR前导、基础前导、高效率无线局域网HEW前导和数据部分,所述LR前导包括:低速率短训练字段LR-STF,所述LR-STF包括:在时域上排布的至少两个第一符号,每个第一符号的内容相同,所述第一符号对应的时域波形的周期为1.6微秒,所述LR-STF用于定时同步;
    所述发送机用于向接收端发送所述数据帧。
  33. 根据权利要求32所述的数据传输装置,其特征在于,
    所述数据传输装置为终端。
  34. 一种数据传输装置,其特征在于,用于接收端,所述数据传输装置包 括:接收机和处理器,
    所述接收机用于接收发送端发送的数据帧,所述数据帧依次包括:低速率LR前导、基础前导、高效率无线局域网HEW前导和数据部分,所述LR前导包括:低速率短训练字段LR-STF,所述LR-STF包括:在时域上排布的至少两个第一符号,每个第一符号的内容相同,所述第一符号对应的时域波形的周期为1.6微秒,所述LR-STF用于定时同步;
    所述处理器用于根据所述数据帧生成参考帧,所述参考帧在时域上比所述数据帧延迟预设时间,所述预设时间为所述第一符号对应的时域波形的周期的至少一倍;
    所述处理器还用于对所述数据帧和所述参考帧进行自相关检测;
    所述处理器还用于根据检测结果确定所述数据帧中的有效部分;
    所述处理器还用于根据所述有效部分对所述数据帧进行解析,得到所述数据帧中的待传输数据。
  35. 根据权利要求34所述的数据传输装置,其特征在于,
    所述数据传输装置为终端。
  36. 一种数据传输系统,其特征在于,所述数据传输系统包括:发送端和接收端,
    所述发送端为权利要求32或33所述的数据传输装置;
    所述接收端为权利要求34或35所述的数据传输装置。
PCT/CN2016/084196 2015-11-17 2016-05-31 数据传输方法、装置及系统 WO2017084296A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510790570.XA CN106712917B (zh) 2015-11-17 2015-11-17 数据传输方法、装置及系统
CN201510790570.X 2015-11-17

Publications (1)

Publication Number Publication Date
WO2017084296A1 true WO2017084296A1 (zh) 2017-05-26

Family

ID=58717280

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/084196 WO2017084296A1 (zh) 2015-11-17 2016-05-31 数据传输方法、装置及系统

Country Status (2)

Country Link
CN (1) CN106712917B (zh)
WO (1) WO2017084296A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10785682B2 (en) * 2017-12-06 2020-09-22 Mediatek Inc. Data unit processing method and communication device applying the data unit processing method
CN111262805B (zh) * 2018-11-30 2023-01-13 华为技术有限公司 数据传输方法、装置及系统
CN110996342B (zh) * 2019-12-16 2022-03-04 展讯通信(上海)有限公司 Stf发送、接收方法及装置、存储介质、终端
CN115065986B (zh) * 2022-07-19 2023-04-25 上海物骐微电子有限公司 Wi-Fi信号处理方法、装置、电子设备及存储介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103733712A (zh) * 2011-07-15 2014-04-16 马维尔国际贸易有限公司 正常速率物理层和低速率物理层在无线网络中的共存
CN103748809A (zh) * 2011-08-24 2014-04-23 英特尔公司 用于低速率phy结构的系统、方法和设备
CN103999392A (zh) * 2011-11-02 2014-08-20 马维尔国际贸易有限公司 用于在无线局域网(wlan)中自动检测数据单元的物理层(phy)模式的方法和装置
US20140362935A1 (en) * 2013-06-06 2014-12-11 Broadcom Corporation Preamble with modified signal field (SIG) for use in wireless communications

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103733712A (zh) * 2011-07-15 2014-04-16 马维尔国际贸易有限公司 正常速率物理层和低速率物理层在无线网络中的共存
CN103748809A (zh) * 2011-08-24 2014-04-23 英特尔公司 用于低速率phy结构的系统、方法和设备
CN103999392A (zh) * 2011-11-02 2014-08-20 马维尔国际贸易有限公司 用于在无线局域网(wlan)中自动检测数据单元的物理层(phy)模式的方法和装置
US20140362935A1 (en) * 2013-06-06 2014-12-11 Broadcom Corporation Preamble with modified signal field (SIG) for use in wireless communications

Also Published As

Publication number Publication date
CN106712917B (zh) 2020-04-03
CN106712917A (zh) 2017-05-24

Similar Documents

Publication Publication Date Title
US9893784B2 (en) LTF design for WLAN system
JP6262852B2 (ja) 無線lanにおけるマルチユーザアップリンク受信方法及び装置
US9832772B2 (en) System and method for packet information indication in communication systems
AU2015328533B2 (en) System and method for synchronization for OFDMA transmission
TWI499236B (zh) 無線系統中實現多天線通信的裝置及發信號方法
WO2019174556A1 (en) Full-duplex communication method in high efficient wireless lan network and station apparatus
EP3433989B1 (en) System and method for a wireless network having multiple station classes
WO2018218220A1 (en) Doppler mode in a wireless network
JP2018510541A (ja) 混合レートのワイヤレス通信における信号反復によるロバスト早期検出
JP2018509816A (ja) 無線通信システムにおける多重ユーザ送受信のための方法及びこのための装置
US20180014216A1 (en) Low power and long range preambles for a wireless local area network
KR20160098209A (ko) 무선랜에서 복수의 sta으로 데이터를 전송하는 방법 및 장치
WO2017084296A1 (zh) 数据传输方法、装置及系统
WO2017160774A1 (en) Long-range low-power frame structure
US9485334B2 (en) Response time relaxation for high efficiency WLAN
CN106304357B (zh) 一种无线信号的传输方法及系统
WO2016033386A1 (en) Frame transmitting method and frame receiving method
US20190253226A1 (en) Quick acknowledgement reply method and apparatus
WO2016206652A2 (zh) 一种无线信号的传输方法及系统
KR100929705B1 (ko) 무선통신 시스템을 위한 시간동기화 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16865477

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16865477

Country of ref document: EP

Kind code of ref document: A1