WO2020024818A1 - 物理层聚合过程协议数据单元的通信方法和相关装置 - Google Patents

物理层聚合过程协议数据单元的通信方法和相关装置 Download PDF

Info

Publication number
WO2020024818A1
WO2020024818A1 PCT/CN2019/096886 CN2019096886W WO2020024818A1 WO 2020024818 A1 WO2020024818 A1 WO 2020024818A1 CN 2019096886 W CN2019096886 W CN 2019096886W WO 2020024818 A1 WO2020024818 A1 WO 2020024818A1
Authority
WO
WIPO (PCT)
Prior art keywords
subcarriers
iot
frequency domain
sequence
sideband
Prior art date
Application number
PCT/CN2019/096886
Other languages
English (en)
French (fr)
Inventor
淦明
贾嘉
李云波
禄彼得
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP19843604.0A priority Critical patent/EP3833133A4/en
Publication of WO2020024818A1 publication Critical patent/WO2020024818A1/zh
Priority to US17/164,185 priority patent/US11438204B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/261Details of reference signals
    • H04L27/2613Structure of the reference signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/2603Signal structure ensuring backward compatibility with legacy system
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0044Arrangements for allocating sub-channels of the transmission path allocation of payload
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/52TPC using AGC [Automatic Gain Control] circuits or amplifiers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/54Signalisation aspects of the TPC commands, e.g. frame structure
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/10Small scale networks; Flat hierarchical networks
    • H04W84/12WLAN [Wireless Local Area Networks]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2647Arrangements specific to the receiver only
    • H04L27/2655Synchronisation arrangements
    • H04L27/2656Frame synchronisation, e.g. packet synchronisation, time division duplex [TDD] switching point detection or subframe synchronisation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present application relates to the field of communication technologies, and in particular, to a communication method and related device for a physical layer aggregation process protocol data unit.
  • IoT Internet of Things
  • the widely used IoT networks are mainly Narrowband-IoT (NB-IoT) based on mobile cellular communication and Long Range Internet of Things (LoRa) based on private protocols. Both of them have low power consumption.
  • NB-IoT Narrowband-IoT
  • LoRa Long Range Internet of Things
  • LoRa requires additional gateway support to complete the final interaction of data. LoRa deployment is relatively NB -IoT is more complicated.
  • NB-IoT is based on cellular networks and uses non-free spectrum, resulting in increased user costs.
  • the large-scale use of NB-IoT in smart homes and smart manufacturing will significantly increase the consumption costs of ordinary households and ordinary small and medium-sized enterprises.
  • LoRa uses free spectrum, because it cannot communicate with existing wireless local area network (WLAN) products that also apply free spectrum and are widely used, additional LoRa modules and protocol interaction gateways need to be purchased, which results in Difficulties in the deployment of ordinary households and SMEs.
  • WLAN wireless local area network
  • This application provides a communication method and related device for a physical layer aggregation process protocol data unit, which can provide a synchronization sequence in an IoT network, and can support time synchronization and automatic gain control of the IoT data part at a bandwidth level less than 20MHz. (Automatic Gain Control, AGC) adjustment function.
  • AGC Automatic Gain Control
  • a communication method for a physical layer aggregation process protocol data unit includes: a receiving device (for example, a STA) receives a physical layer aggregation process protocol data unit PPDU sent by a sending device (for example, an AP), that is, corresponding to In the downlink communication process, the PPDU includes synchronization adjustment indication information and a data field, and the sending device sends the synchronization adjustment indication information and the data field on a bandwidth less than 20 MHz;
  • a receiving device for example, a STA
  • a sending device for example, an AP
  • the sending device sends the synchronization adjustment indication information and the data field on a bandwidth less than 20 MHz
  • the receiving device receives the PPDU, and performs time synchronization and automatic gain control AGC on the data field in the PPDU according to the synchronization adjustment instruction information therein.
  • the PPDU further includes a traditional preamble L-Preamble, where the L-Preamble is sent on a bandwidth of 20 MHz as a unit.
  • a communication method for a physical layer aggregation process protocol data unit including: a sending device (such as an AP) sends a physical layer aggregation process protocol data unit PPDU, which corresponds to a downlink communication process, and the PPDU includes synchronization adjustment instruction information and Data field, the sending device sends synchronization adjustment instruction information and the data field on a bandwidth less than 20 MHz; so that the receiving device (for example, STA) performs time synchronization and automatic gain on the data field in the PPDU according to the synchronization adjustment instruction information therein Control AGC.
  • a sending device such as an AP
  • PPDU includes synchronization adjustment instruction information and Data field
  • the sending device sends synchronization adjustment instruction information and the data field on a bandwidth less than 20 MHz
  • the receiving device for example, STA
  • the receiving device can perform time synchronization and AGC adjustment on the data fields in the PPDU at a bandwidth level less than 20 MHz by extracting and processing the synchronization adjustment instruction information in the received PPDU.
  • the PPDU further includes a traditional preamble L-Preamble, where the L-Preamble is transmitted on a bandwidth of 20 MHz as a unit.
  • L-Preamble can be sent on a bandwidth of 20MHz, and for example, L-Preamble can also be sent on a bandwidth of 40MHz.
  • the transmitting device can not only communicate with a broadband receiving device, but also communicate with a receiving device occupying a relatively narrow bandwidth, which has good compatibility, can effectively avoid the probability of collision, and improves the performance of the network system.
  • a communication method for a physical layer aggregation process protocol data unit includes: a sending device (for example, a STA) sends a PPDU to a receiving device (for example, an AP), that is, a corresponding uplink communication process.
  • the PPDU includes synchronization adjustment indication information and a data field, and the sending device sends the synchronization adjustment indication information and the data field on a bandwidth less than 20 MHz;
  • the synchronization adjustment instruction information is used by the receiving device to perform time synchronization and automatic gain control AGC on the data field.
  • a communication method for a physical layer aggregation process protocol data unit including: a receiving device (for example, an AP) receives a PPDU sent by a sending device (for example, a STA), that is, a corresponding uplink communication process, and the PPDU includes synchronization Adjustment indication information and data fields, where the synchronization adjustment indication information and the data fields are sent on a bandwidth less than 20 MHz; the receiving device performs time synchronization and automatic gain control AGC on the data fields according to the synchronization adjustment indication information.
  • a receiving device for example, an AP
  • receives a PPDU sent by a sending device for example, a STA
  • the PPDU includes synchronization Adjustment indication information and data fields, where the synchronization adjustment indication information and the data fields are sent on a bandwidth less than 20 MHz
  • the receiving device performs time synchronization and automatic gain control AGC on the data fields according to the synchronization adjustment indication information.
  • the sending device sends a PPDU containing synchronization adjustment instruction information and data fields to the receiving device over a bandwidth of less than 20 MHz, so that the receiving device can extract and process the synchronization adjustment instruction information in the received PPDU, which can be implemented
  • the data fields in the PPDU are time synchronized and AGC adjusted on a bandwidth level less than 20 MHz.
  • the bandwidth less than 20 MHz includes frequency k subcarriers
  • the synchronization adjustment indication information includes the frequency Information obtained by inverse fast Fourier transform IFFT of sequence values of k subcarriers in the domain
  • the sequence values of the k subcarriers are sequences of the traditional short training sequence L-STF in the L-Preamble in the frequency domain A subset of the values.
  • the design idea of the L-STF in the prior art can be better inherited. Since the L-STF has good time synchronization and AGC adjustment functions, the synchronization adjustment instruction information based on the L-STF design also has similar The function can complete the time synchronization and AGC adjustment of the data fields in the PPDU at a bandwidth level less than 20MHz.
  • the sequence values of the k subcarriers in the frequency domain include: sequence values of 27 subcarriers in the frequency domain IoT-S1 -13,13 .
  • the sequence values of the k subcarriers in the frequency domain further include: the sequence values of 5 sideband subcarriers in the frequency domain
  • the sequence value of the sideband subcarriers is 0, where the two ends of the IoT- S1-13,13 respectively include a sideband subcarrier out of the 5 sideband subcarriers and the 5 sideband subcarriers.
  • sequence values of sideband subcarriers with a value of 0 By adding sequence values of sideband subcarriers with a value of 0 to both ends of IoT-S1 -13,13 , it can play a role of guard interval and prevent adjacent channel interference.
  • Adding sequence values of 5 sideband subcarriers with a value of 0 can constitute a 32-point frequency domain sequence, and 32-point IFFT can be performed.
  • IoT-S1 -13,13 is obtained by removing some (two) cyclically occurring 0 values at fixed intervals in S -26,26 corresponding to L-STF, so that IoT-S1 -13,13 and L -STF maintains consistent PAPR characteristics.
  • IoT-S1 -13,13 is obtained by removing the beginning and end 13 sequence values in S -26,26 corresponding to L-STF, and only retaining the middle 27 sequence values, so that IoT-S1 -13 , 13 and L-STF maintain consistent period characteristics in the time domain.
  • the bandwidth less than 20 MHz includes frequency k subcarriers
  • the synchronization adjustment indication information includes the frequency
  • the information obtained after the sequence values of the k subcarriers in the domain are subjected to IFFT.
  • the sequence values of the k subcarriers in the frequency domain include IoT-S1 -13,13 .
  • the IoT-S1 -13,13 is one of the following sequences. :
  • the above sequences are obtained by different combinations of values at the same non-zero position.
  • the absolute value of the peak / sub-peak ratio of these sequences is larger, and the PAPR value is smaller and the performance is better.
  • the sequence values of the k subcarriers in the frequency domain include: sequence values of 53 subcarriers in the frequency domain IoT-S2 -26,26 .
  • the sequence values of the k subcarriers in the frequency domain further include: sequence values of 11 sideband subcarriers in the frequency domain.
  • sequence values of sideband subcarriers with a value of 0 can play a role of guard interval and prevent adjacent channel interference.
  • Adding sequence values of 11 sideband subcarriers with a value of 0 can form a 64-point frequency domain sequence, and can perform 64-point IFFT.
  • IoT-S2 -26,26 and L-STF maintain the same PAPR characteristics, and they are in the time domain with L-STF. Maintain consistent cycle characteristics.
  • the sequence values of the k subcarriers in the frequency domain include: sequence values of 13 subcarriers in the frequency domain IoT-S3 -6,6 .
  • the sequence values of the k subcarriers in the frequency domain further include: sequence values of 3 sideband subcarriers in the frequency domain
  • the sequence value of the sideband subcarriers is 0, wherein the two ends of the IoT- S3-6,6 include a2 sideband subcarriers of the 3 sideband subcarriers and b2 of the sideband subcarriers, respectively.
  • IoT-S3 -6,6 is obtained by removing some (three) cyclically occurring 0 values at fixed intervals in S -26,26 corresponding to L-STF, so that IoT-S3 -6,6 and L -STF maintains consistent PAPR characteristics.
  • a communication device for a physical layer aggregation process protocol data unit is provided, which is applied to a station side.
  • the device may be a station STA or a chip in the station.
  • the device has a function of realizing the above-mentioned first or third aspect related to a station STA. This function can be realized by hardware, and can also be implemented by hardware executing corresponding software.
  • the hardware or software includes one or more units corresponding to the functions described above.
  • the communication device when the communication device is a station, the communication device includes a processing module and a transceiver module.
  • the processing module may be a processor
  • the transceiver module may be a transceiver
  • the transceiver may include a radio frequency. Circuits and baseband circuits.
  • the transceiver module is used to support communication between the station and the access point AP or other stations.
  • the transceiver module may further include a sending module and a receiving module.
  • the receiving module is configured to receive a physical layer aggregation process protocol data unit PPDU sent by a sending device (for example, an AP).
  • the PPDU includes synchronization adjustment instruction information and a data field, where the synchronization adjustment instruction information and the data field are less than 20 MHz.
  • a processing module configured to perform time synchronization and automatic gain control AGC on the data field according to the synchronization adjustment instruction information.
  • the device may further include a memory, which is used for coupling with the processor, and stores the program instructions and data necessary for the communication device.
  • the device includes: a processor, a baseband circuit, a radio frequency circuit, and an antenna.
  • the processor is used to control the functions of each circuit part, the baseband circuit, the radio frequency circuit and the antenna are used to indicate the communication between the site and other nodes.
  • the radio frequency circuit can perform digital conversion, filtering, amplification, and down conversion on the physical layer aggregation process protocol data unit sent by the access point received via the antenna, and then decode it via the baseband circuit according to the protocol solution. Encapsulate for synchronization adjustment instructions.
  • the device further includes a memory that stores program instructions and data necessary for the site; in uplink communication, a base layer circuit generates a physical layer protocol data unit carrying synchronization adjustment instruction information, and performs analog conversion, filtering, and After processing such as amplification and up-conversion, it is then sent by the antenna to the access point AP over a bandwidth of less than 20Mhz.
  • a base layer circuit in uplink communication, a base layer circuit generates a physical layer protocol data unit carrying synchronization adjustment instruction information, and performs analog conversion, filtering, and After processing such as amplification and up-conversion, it is then sent by the antenna to the access point AP over a bandwidth of less than 20Mhz.
  • the device includes a processor and a modem.
  • the processor may be used for instructions or an operating system to control the functions of the site.
  • the modem may encapsulate, encode, decode, and decode data according to a protocol. Adjustment, equalization, etc. to generate an uplink PPDU carrying the synchronization adjustment instruction information to support the station to perform the corresponding function in the first aspect or the third aspect; the modem can also be used to receive a downlink PPDU carrying the synchronization adjustment instruction information sent by the AP to Perform time synchronization and automatic gain control AGC on the data field according to the synchronization adjustment instruction information.
  • the chip when the device is a chip in a site, the chip includes: a processing module and a transceiver module.
  • the processing module may be, for example, a processor, and the processor may be used to communicate with the transceiver module.
  • the received data packet carrying the synchronization adjustment instruction information is processed for filtering, demodulation, power amplification, decoding, etc.
  • the transceiver module may be, for example, an input / output interface, a pin, or a circuit on the chip.
  • the processing module can execute computer execution instructions stored in the storage unit to support the site to perform the functions corresponding to the first aspect or the third aspect.
  • the storage unit may be a storage unit in the chip, such as a register, a cache, etc.
  • the storage unit may also be a storage unit located outside the chip in the site, such as a read-only memory ( read-only memory (ROM) or other types of static storage devices that can store static information and instructions, random access memory (RAM).
  • ROM read-only
  • the apparatus includes a processor, which is configured to be coupled to the memory, and read an instruction in the memory and execute the above-mentioned first or third aspect involving a station STA according to the instruction.
  • the memory can be located inside the processor or external to the processor.
  • a communication device for a physical layer aggregation process protocol data unit is provided, which is applied to an access point side.
  • the device may be an access point or a chip in an access point AP.
  • the device has the function of implementing the second aspect or the fourth aspect involving an access point AP. This function can be realized by hardware, and can also be implemented by hardware executing corresponding software.
  • the hardware or software includes one or more units corresponding to the functions described above.
  • the communication device when the communication device is an AP, the communication device includes a processing module and a transceiver module.
  • the processing module may be a processor
  • the transceiver module may be a transceiver
  • the transceiver may include a radio frequency. Circuits and baseband circuits.
  • the transceiver module is used to support communication between the access point and the site.
  • the transceiver module may further include a sending module and a receiving module, which may be used to support the AP for uplink communication and downlink communication.
  • the device in uplink communication, is a receiving device, and the receiving module may be used to receive a physical layer aggregation process protocol data unit PPDU sent by a sending device (such as a STA), where the PPDU includes synchronization adjustment instruction information and a data field, The synchronization adjustment instruction information and the data field are sent on a bandwidth less than 20 MHz; the processing module may be configured to perform time synchronization and automatic gain control AGC on the data field according to the synchronization adjustment instruction information; in downlink communication
  • the device is a transmitting device, and a transmitting module may be used to send PPDUs to the STA.
  • the device may further include a memory, which is used for coupling with the processor, and stores program instructions necessary for the communication device and data.
  • the device includes: a processor, a baseband circuit, a radio frequency circuit, and an antenna.
  • the processor is used to control the functions of each circuit part, and the baseband circuit, radio frequency circuit and antenna are used to support the communication between the access point and the site.
  • the device acts as a receiving device, and its radio frequency circuit can digitally convert, filter, amplify, and downconvert the physical layer aggregation process protocol data unit sent by the site received via the antenna, and then pass through the baseband.
  • the circuit decodes and decapsulates it according to the protocol to obtain synchronization adjustment instruction information.
  • the device further includes a memory that stores program instructions and data necessary for the site; for example, in downlink communication, the device serves as a transmitting device, and the baseband circuit generates a physical layer aggregation process protocol data unit that carries synchronization adjustment instruction information.
  • the antenna is sent to the access point AP in a bandwidth of less than 20 MHz.
  • the device includes a processor and a modem.
  • the processor can be used to run instructions or an operating system to control the access point's AP functions.
  • the modem can encapsulate, encode, and decode data according to the protocol. Modulation, demodulation, equalization, etc. to generate PPDUs carrying synchronization adjustment instruction information to support the access point to perform the corresponding function in the second or fourth aspect above; the modem can also be used to receive the synchronization adjustment instruction information sent by the station PPDU to perform time synchronization and automatic gain control AGC on the data field according to the synchronization adjustment instruction information.
  • the chip when the device is a chip in an access point, the chip includes a processing module and a transceiver module.
  • the processing module may be, for example, a processor.
  • the data packet received by the module carrying the synchronization adjustment instruction information is processed for filtering, demodulation, power amplification, decoding, etc.
  • the transceiver module may be, for example, an input / output interface, a pin or a circuit on the chip.
  • the processing module may execute computer execution instructions stored in the storage unit, so as to support the access point to perform the functions corresponding to the second aspect or the fourth aspect.
  • the storage unit may be a storage unit in the chip, such as a register, a cache, etc.
  • the storage unit may also be a storage unit located outside the chip in the site, such as a read-only memory ( read-only memory (ROM) or other types of static storage devices that can store static information and instructions, random access memory (RAM).
  • ROM read-only memory
  • RAM random access memory
  • the apparatus includes a processor, which is configured to be coupled to the memory, and read an instruction in the memory and execute the access point related to the second aspect or the fourth aspect according to the instruction.
  • Function of AP can be located inside the processor or external to the processor.
  • the present application provides a computer-readable storage medium, where the computer-readable storage medium stores instructions, and the instructions may be executed by one or more processors on a processing circuit.
  • the computer When running on a computer, the computer is caused to execute the method of any one of the first to fourth aspects.
  • a computer program product containing instructions, which when run on a computer, causes the computer to execute the method of any one of the first aspect to the fourth aspect of the first aspect or any possible implementation thereof.
  • the computer program product may be stored in whole or in part on a storage medium packaged in a processor, or may be stored in whole or in part in a storage medium packaged outside the processor.
  • the receiving device can perform time synchronization and AGC adjustment on the data fields in the PPDU at a bandwidth level less than 20 MHz by extracting and processing the synchronization adjustment instruction information in the received PPDU.
  • FIG. 1 is a schematic diagram of an IoT topology according to an embodiment of the present application.
  • FIG. 2 is a schematic diagram of a network topology according to an embodiment of the present application.
  • FIG. 3 is a schematic diagram of a single-user physical layer aggregation process protocol data unit according to an embodiment of the present application
  • FIG. 4 is a schematic diagram of an IoT network scenario provided by an embodiment of the present application.
  • FIG. 5 is a schematic flowchart of a communication method for a protocol data unit of a physical layer aggregation process according to an embodiment of the present application
  • FIG. 6 is a schematic diagram of an IoT physical layer aggregation process protocol data unit PPDU according to an embodiment of the present application
  • FIG. 7 is a schematic diagram of another IoT physical layer aggregation process protocol data unit PPDU provided by an embodiment of the present application.
  • FIG. 8 is a schematic structural diagram of a communication device according to an embodiment of the present application.
  • FIG. 9 is a schematic structural diagram of another communication device according to an embodiment of the present application.
  • FIG. 10 is a schematic structural diagram of another communication device according to an embodiment of the present application.
  • FIG. 11 is a schematic structural diagram of another communication device according to an embodiment of the present application.
  • the Internet of Things (IoT) network is an information carrier such as the Internet and traditional telecommunications networks. It is a network that allows all ordinary objects that can perform independent functions to achieve interconnection.
  • FIG. 1 is a schematic diagram of an IoT topology, in which various objects, products, and the like are connected together through a communication system.
  • IoT is generally a wireless network.
  • One possible IoT application scenario is that in the IoT, everyone can apply electronic tags to connect real objects to the Internet, and they can find their specific locations on the IoT.
  • Narrowband-IoT Narrowband-IoT
  • LoRa Long-range Internet of Things
  • NB-IoT and LoRa have the requirements of low power consumption, wide coverage and low cost required by IoT networks.
  • NB-IoT is based on a cellular network and uses charge spectrum
  • LoRa uses free spectrum and cannot communicate with Wireless Local Area Network (WLAN) products.
  • WLAN Wireless Local Area Network
  • the IEEE802.11ax network based on the free frequency band can provide a maximum data rate of 1.1G / 2.3G / 4.8G / 9.6Gbps at 20MHz / 40MHz / 80MHz / 160MHz, respectively. It has the characteristics of large power consumption, short transmission distance, and low delay. It can solve the problem of interoperability with WLAN products, and is based on free frequency bands. It can effectively reduce costs and facilitate deployment.
  • FIG. 2 is a schematic diagram of a network topology.
  • the AP manages the BSS and can be regarded as a central site.
  • the STA connects to the network through the AP and obtains the required data and services from the AP.
  • the BSS has a bidirectional communication function, and is connected to other BSSs through a distributed system (DS).
  • DS distributed system
  • the basic frequency resources of a network based on the IEEE 802.11ax protocol are divided by resource units (Rssource Units, RUs).
  • IEEE802.11ax the types of RUs included in IEEE802.11ax are 26-tone RU, 52-tone RU, 106-tone RU, 242-tone RU, 484-tone RU, and 996-tone RU, and RUs are allocated as basic frequency resource units. Different users are used for uplink and downlink data transmission within the BSS. RUs of different sizes have different bandwidths and can also carry services at different rates. Larger RUs can carry wireless transmissions with larger data volumes. It should be noted that IEEE802.11ax in existing broadband scenarios is not targeted The narrowband IoT is optimized for targeted design, so we cannot directly use the RU in IEEE802.11ax to serve IoT networks that only require a narrower bandwidth in the future.
  • FIG. 3 is a schematic diagram of a single-user (SU) physical layer aggregation process protocol data unit (Procedure Protocol Data Unit) format.
  • the SU PPDU includes a traditional preamble (L-Preamble), a high-efficiency preamble (HE-Preamble), and a physical layer service data unit (PSDU).
  • L-Preamble includes a traditional short training sequence (Legacy-Short Training Field, L-STF), a traditional long training sequence (Legacy-Long Training Field, L-LTF), and a traditional signaling field (Signaling Field, L-SIG).
  • L-STF is used for receiving equipment to realize the synchronization of signaling and data fields, automatic gain control (Automatic Gain Control, AGC), frequency deviation estimation and other functions.
  • STF can be a sequence containing multiple cycles, or it can contain only one Sequence of cycles.
  • L-LTF is used for channel estimation, more accurate time synchronization process and further frequency deviation estimation.
  • the L-SIG contains information such as the rate and length of the packet.
  • the HE-Preamble part also includes SIG, STF, and Long Training Field (LTF). Among them, HE-STF and HE-LTF are mainly used for automatic sampling at different sampling rates than traditional preambles. Gain control, channel estimation and other functions.
  • the PSDU carries the data part.
  • L-STF is obtained by a 64-point frequency-domain sequence after 64-point Inverse Fast Fourier Transform (IFFT), which is transmitted on a 20 MHz channel, and HE-Preamble and PSDU are also at 20 MHz. Channel.
  • IFFT Inverse Fast Fourier Transform
  • the technical solution of the present application can be applied to various communication systems, such as a WLAN network, an IoT network, a car networking network, and other networks.
  • the present application is not specifically limited.
  • the application scenario of this application may be a WLAN network based on the IEEE802.11ax standard, or an IoT network based on the IEEE802.11ax standard, or a Vehicle-to-X (V2X) based on the IEEE802.11ax standard.
  • FIG. 4 is a schematic diagram of an IoT network scenario.
  • the network architecture includes an AP and an IoT STA associated with the AP.
  • the AP is associated with multiple IoT STAs, respectively, so that the IoT STA can complete uplink and downlink communications.
  • the site IoT and STA involved in the embodiments of the present application may refer to user equipment, access terminals, user units, user stations, mobile stations, mobile stations, remote stations, remote terminals, mobile devices, user terminals, terminals, wireless communication devices, users Agent or user device.
  • the stations can also be cellular phones, cordless phones, session initiation protocol (SIP) phones, wireless local loop (WLL) stations, personal digital processing (PDA), and wireless communication capabilities Handheld devices, computing devices, or other processing devices connected to wireless modems, in-vehicle devices, wearable devices, terminal devices in the future 5G network, or terminals in the future evolved public land mobile network (PLMN)
  • PLMN public land mobile network
  • the access point AP involved in this embodiment of the present application may be a device for communicating with a station.
  • the access point can be any kind of device with wireless transceiver function or a chip that can be set on the device.
  • the device includes but is not limited to: evolved Node B (eNB), radio network controller (radio network) controller (RNC), Node B (Node B, NB), base station controller (BSC), base transceiver station (BTS), home base station (e.g., home NodeB, or home NodeB, HNB), baseband unit (BBU), access point (AP), wireless relay node, wireless backhaul node, and transmission point in wireless fidelity (WIFI) system TP) or transmission and reception point (TRP), etc., may also be 5G, such as NR, gNB in the system, or transmission point (TRP or TP), one or one of the base stations in the 5G system
  • a group (including multiple antenna panels) antenna panel may also be a network node constituting a
  • This application provides a method for designing a short training sequence in the protocol data unit of the physical layer aggregation process.
  • IoT-Short Training Field IoT-STF
  • IoT-STF IoT Short Training Sequence
  • the IoT-STF performs processing to complete the time synchronization and AGC adjustment functions of the narrowband PPDU transmitted in the IoT network, and then it can correctly receive and decode the data fields transmitted in the PPDU.
  • FIG. 5 is a schematic flowchart of a communication method for a protocol data unit of a physical layer aggregation process according to an embodiment of the present application. As shown in FIG. 5, the method includes, but is not limited to, the following steps:
  • the sending device sends a physical layer aggregation process protocol data unit PPDU to the receiving device.
  • the PPDU includes synchronization adjustment instruction information and a data field, and the synchronization adjustment instruction information and the data field are sent on a bandwidth less than 20 MHz.
  • the receiving device receives a physical layer aggregation process protocol data unit PPDU sent by the access device, and performs time synchronization and automatic gain adjustment AGC on the data field according to the synchronization adjustment instruction information included therein.
  • the sending device may be an AP
  • the receiving device may be an STA, corresponding to a downlink communication process.
  • the synchronization adjustment instruction information is used for time synchronization and AGC adjustment of the data field (that is, the IoT data part).
  • the synchronization adjustment instruction information can also be referred to as the IoT short training sequence IoT-STF. It can be understood that the synchronization adjustment instruction information is in the specific standard. Other names may be used. This application uses IoT-STF to indicate, but it is for the convenience of subsequent description and does not limit this.
  • the AP may send a downlink PPDU to the site after receiving the information request message sent by the site, or the AP may actively send a PPDU to the site according to other indication messages in the network.
  • the station After receiving the PPDU sent by the AP, the station extracts the IoT-STF therein, and completes the time synchronization and AGC adjustment functions of the narrowband PPDU transmitted in the IoT network according to the IoT-STF.
  • the PPDU further includes a traditional preamble L-Preamble, and the traditional preamble L-Preamble is sent on a bandwidth in a unit of 20 MHz.
  • L-Preamble can be sent at a bandwidth of 20MHz, and it can also be sent at a bandwidth greater than 20MHz. For example, it can be sent at a bandwidth of 40MHz (2 20MHz), and it can also be sent at 80MHz (3 20MHz). Sending on a bandwidth is not specifically limited in the embodiment of the present application.
  • a site associated with an AP may include IoT devices (devices that support narrowband communication) and traditional broadband devices (for example, devices that support 802.11ax or standards before 802.11ax).
  • IoT devices devices that support narrowband communication
  • traditional broadband devices for example, devices that support 802.11ax or standards before 802.11ax.
  • APs will not only send downlink to IoT devices PPDUs also send downlink PPDUs to some traditional broadband devices. Because traditional broadband devices have high-speed transmission requirements, APs need to send downlink PPDUs to traditional broadband devices over a large bandwidth of 20 MHz and above, while IoT device services have low speed and low power consumption characteristics. APs only need to Send PPDUs to IoT devices on a smaller bandwidth less than 20MHz.
  • the bandwidth involved in this application may be a resource unit in Orthogonal Frequency Division Multiplexing (OFDM) or other frequency resources, which is not limited in this application.
  • OFDM Orthogonal Frequency Division Multiplexing
  • sites such as IoT devices and broadband devices can use carrier sensing multiple access with collision avoidance (Carrier Sense Multiple Access (CSMA / CA) method to avoid sending collisions.
  • CSMA / CA Carrier Sense Multiple Access
  • the PPDU includes an L-Preamble and an IoT part.
  • the L-Preamble may include L-STF, L-LTF, and L-SIG; before the IoT part of the field, the PPDU may also include a frame type indication.
  • the L-STF is used by the receiving device to implement synchronization of signaling and data fields and AGC adjustment Function
  • L-SIG contains information such as packet rate and length.
  • L-LTF is used for channel estimation and more accurate frequency offset estimation.
  • the frame type indication is optional and is used to indicate the type of the frame structure.
  • the frame type indication is a symbol modulated by Binary Phase Shift Keying (BPSK);
  • the IoT part includes IoT-STF and other IoT part fields, and IoT-STF is used for other IoT part fields for time synchronization and AGC adjustment.
  • the other IoT part fields carry IoT services.
  • the PPDU sent by the AP to the STA may not include the L-Preamble.
  • FIG. 6 shows an IoT physical layer aggregation process protocol data unit PPDU provided by an embodiment of the present application.
  • the PPDU includes a traditional preamble part and an IoT part.
  • the traditional preamble part includes L-STF, L-LTF, L-SIG, and also includes a frame type indication. All are sent using a larger bandwidth, such as a 20MHz bandwidth; the IoT part Including IoT-STF, IoT-LTF, IoT-SIG and IoT data part (payload), send using bandwidth less than 20MHz, such as 5MHz bandwidth.
  • the traditional broadband device that received the PPDU (for example, a device that supports 802.11ax or a pre-802.11ax standard) can only decode and read the L-STF, L-LTF, and L-SIG in the traditional preamble part, and cannot decode the frame type indication.
  • IoT parts; next-generation broadband devices (such as those supporting the next-generation standard of 802.11ax) can read the traditional preamble part and the frame type indication.
  • the next-generation broadband device After reading the frame type indication, determine the content after the frame type field as IoT data part, the next-generation broadband device no longer continues to parse the IoT part of the PPDU, and directly performs the backoff process, which can further reduce power consumption; and, through decoding, read and understand the L-STF, L-LTF and L-SIG, the next-generation broadband device will know that the channel is already occupied, and will perform a backoff process to avoid conflicts; the IoT device that received the PPDU (such as a device that can decode the IoT data part involved in this application), because it works at The narrow band, so it ca n’t decode and read the traditional preamble part and the frame type indication. It can only decode the IoT part. Therefore, according to the IoT-STF sequence of the IoT part, the IoT data part can be decoded. The time synchronization and automatic gain control AGC are performed separately to obtain the IoT data carried in the analysis.
  • using the PPDU provided by the above application for data transmission can not only communicate with broadband devices, but also communicate with IoT devices that occupy a relatively narrow bandwidth, with good compatibility, and carry a frame type indicator before the IoT data part , Can prevent the next generation of broadband equipment from decoding the entire PPDU, and further reduce the power consumption of the next generation of broadband equipment.
  • the bandwidth less than 20 MHz includes k subcarriers in the frequency domain
  • the synchronization adjustment indication information includes that the sequence values of the k subcarriers in the frequency domain are subjected to an inverse fast Fourier transform (Inverse Fast Fourier Transform).
  • IFFT inverse fast Fourier transform
  • the sequence values of the k subcarriers are a subset of the sequence values of the traditional short training sequence L-STF in the L-Preamble in the frequency domain.
  • L-STF is a frequency-domain sequence value transmitted by 64 subcarriers (represented by L-S1 here) after IFFT transformation.
  • the sequence value of L-S1 transmitted on subcarriers [-26, 26] As shown in Equation 1:
  • the subscript (-26,26) in S -26,26 refers to 53 subcarriers with subcarrier numbers between -26 and 26, and S -26,26 corresponds to subcarrier numbers with -26 to 26
  • Formula 1 gives the value of 53 frequency domain sequences in L-S1.
  • Each value represents the value transmitted on one subcarrier.
  • the left end of the 53 subcarriers is also It includes 6 sideband subcarriers, whose sequence values are all 0.
  • At the right end of the 53 subcarriers there are also 5 sideband subcarriers whose sequence values are also 0. Together, they form a 64-point frequency domain sequence L-S1.
  • the IoT-STF involved in this application is obtained by IFFT transforming the sequence values of k subcarriers in the frequency domain.
  • the value range of k is a positive integer greater than 0 and less than or equal to 64, and the sequence values of the k subcarriers are The above-mentioned subset of L-S1 sequence values in the frequency domain.
  • the IoT-STF of the present application can be designed based on the existing L-STF.
  • the sequence values of the k subcarriers in the frequency domain include: the sequence values of 27 subcarriers in the frequency domain IoT-S1 -13,13 .
  • sequence values of the 27 subcarriers included in IoT- S1-13,13 are a subset of the sequence values of L-S1 in the frequency domain.
  • the sequence values of the five sideband subcarriers are similar to those of the 11 sideband subcarriers in the L-S1 described above, and play a role of guard interval to prevent adjacent channel interference. Together with IoT-S1 -13,13, they form the frequency domain 32-point frequency domain sequence IoT-S1.
  • the left end of IoT-S1 may include the sequence value of one sideband subcarrier, and the right end includes the sequence value of 4 sideband subcarriers.
  • the synchronization adjustment instruction information is information obtained after a series of sequence values on the frequency-domain subcarriers are subjected to IFFT.
  • the number of sequence values on the corresponding subcarriers should be The Nth power of 2 (N is a positive integer), such as 2, 4, 8, 16, 32, 64, etc., but in order to use frequency resources more efficiently, when the bandwidth B includes M subcarriers, the number of selected sequence values It can be the maximum value of N in 2 N ⁇ M; in other words, when the number of selected sequence values (IFFT points) is 2 N , the minimum number of subcarriers included in its bandwidth can be 2 N .
  • the bandwidth carrying synchronization indication information includes 52 subcarriers, such as 52-tone RU, and the interval between every two adjacent subcarriers is 78.125KHz. You can also choose to include the frequency domain proposed in the embodiment of this application. Frequency domain sequence of sequence values of 32 subcarriers.
  • a frequency domain sequence including sequence values of the 32 subcarriers in the frequency domain proposed in the embodiment of the present application may also be selected.
  • IoT-S1 -13,13 is transformed on the basis of S -26,26 corresponding to Formula 1, and is removed by the second position and the penultimate position at both ends of the S -26,26 .
  • the two sequence values with a value of 0 are periodically removed by a fixed interval (that is, every two sequence values).
  • the sequence values of the 27 subcarriers corresponding to IoT-S1 -13,13 can be obtained.
  • the two ends of the 27 subcarriers in the IoT-S1 -13,13 include a sequence value at both ends.
  • the role of guard intervals can prevent adjacent channel interference.
  • IoT-S1 -13,13 they form a 32-point frequency domain sequence IoT-S1.
  • IoT-S1-13,13 there are also 3 sideband subcarrier sequence values, and these 3 sequence values are all 0.
  • the right end includes 2 sideband subcarrier sequence values, and these 2 sequence values are also 0. , You can get a 32-point frequency domain sequence IoT-S1, which can perform 32-point IFFT.
  • the IoT-S1 since the IoT-S1 is obtained by S- 26,26 by removing a sequence of values with a value of 0 in a cyclic manner, according to the properties of the Fourier transform, the IoT-S1 performs a 32-point IFFT.
  • PAPR Peak-to-Average Power Ratio
  • L-S1 includes 4 cycles after IFFT, adding 25% After the cyclic prefix (Cyclic Prefix, CP), the number of cycles of each time-domain symbol in the L-STF is 5, and the IoT-S1 includes 2 cycles after IFFT, and a cyclic prefix (Cyclic Prefix, After CP), a time domain symbol (represented by IoT-s1) corresponding to each IoT-S1 contains 2.5 cycles.
  • a specific method for adding a cyclic prefix is not specifically limited in this application. For example, a 25% cycle length at the end of each cycle may be added to the beginning of each cycle.
  • the embodiment of the present application does not limit the subcarrier interval between the subcarriers corresponding to the frequency domain sequence, as long as it satisfies the transmission on a narrow band less than 20MHz. For example, if the bandwidth carrying the IoT data part includes 32 subcarriers, and the interval between each two subcarriers is 78.125KHz, after 32 points of IFFT transformation, it includes 2 cycles, and each cycle length is 6.4us.
  • the time domain expression IoT-STF1 corresponding to IoT-S1 may also include N time domain symbols, where N is an integer greater than or equal to 1. It is worth noting that the L-STF obtained after IFFT of a complete L-S1 contains two time-domain symbols, so the two time-domain symbols include a total of 10 cycle periods. If you want IoT-S1 to pass through IFFT to form IoT-STF1 that also contains 10 cycles, and each IoT-s1 contains 2.5 cycles, you can repeat IoT-s1 4 times to get IoT-STF1, which is IoT-STF1 It includes 4 time domain symbols, and its expression is shown in Equation 2:
  • IoT-STF1 ⁇ IoT-s1, IoT-s1, IoT-s1, IoT-s1 ⁇ Equation 2
  • IoT-STF1 represents a time domain expression corresponding to IoT-S1
  • IoT-s1 represents a time domain symbol corresponding to each IoT-S1.
  • IoT-S1 and IoT-STF1 form a functional relationship, and IoT-S1 can obtain the only IoT-STF1.
  • the PAPR corresponding to IoT-STF1 and the PAPR corresponding to L-STF provided by the above embodiments are consistent, and IoT-STF1 and L-STF have the same period characteristics.
  • IoT-STF1 also has the same periodicity as L-STF. Similar characteristics of STF, with good time synchronization and PAPR characteristics, can provide time synchronization and AGC adjustment functions for the IoT data part transmitted on narrowband, so that the receiving device can correctly receive and decode the IoT data part transmitted on narrowband .
  • the IoT-S1 -13,13 is also transformed on the basis of S -26,26 corresponding to Formula 1, and the beginning of the S -26,26 is removed by removing 13 sequence values and 13 sequence values at the end, only the 27 sequence values in the middle are retained.
  • the sequence values of the 27 subcarriers corresponding to IoT-S1 -13,13 can be obtained. It should be noted that the two ends of the corresponding 27 subcarriers of the IoT-S1 -13,13 include a sequence at both ends.
  • the IoT-S1 since the IoT-S1 is obtained by directly removing the sequence values at the beginning and end of the sequence at S -26, 26 , according to the properties of the Fourier transform, the IoT-S1 performs a 32-point IFFT and its PAPR The characteristics are similar to the corresponding PAPR characteristics of L-STF, but there are differences.
  • the original LPR value of 64-point L-S1 is 1.7084
  • the PAPR value of IoT-S1 after compression is 3.3604.
  • IoT-S1 includes 4 cycles after IFFT, and a 25% cyclic prefix is added to obtain a time domain symbol.
  • the number of cycles corresponding to each time domain symbol (represented by IoT-s1) is 5. Among them, each time domain symbol includes a CP of one period.
  • the time domain expression IoT-STF1 corresponding to IoT-S1 may also include N time domain symbols, where N is an integer greater than or equal to 1.
  • N is an integer greater than or equal to 1.
  • a complete L-S1 L-STF obtained after IFFT includes two time-domain symbols, each time-domain symbol includes 5 cycles, and these 5 cycles include a CP of one cycle, so two Each time domain symbol contains a total of 10 cycles. If you want IoT-S1 to pass IFFT to form IoT-STF1 that also includes 10 cycles, and each IoT-s1 contains 5 cycles, you only need to repeat IoT-s1 twice, that is, IoT-STF1 includes Two time-domain symbols, whose expressions are shown in Equation 3:
  • IoT-STF1 ⁇ IoT-s1, IoT-s1 ⁇ Equation 3
  • IoT-STF1 represents a time domain expression corresponding to IoT-S1
  • IoT-s1 represents a time domain symbol corresponding to each IoT-S1.
  • IoT-S1 and IoT-STF1 form a functional relationship, and IoT-S1 can obtain the only IoT-STF1.
  • the PAPR characteristics of the IoT-STF1 provided above are not completely consistent with the PAPR characteristics corresponding to the L-STF, the deviation is large, so another way is to make some adjustments to the IoT-S1.
  • the sequence has lower PAPR value and better synchronization performance.
  • the adjusted sequence needs to meet the same non-zero position as IoT-S1, but only non-zero.
  • the specific value in the value position is different, but it is still a combination of ⁇ 1 and ⁇ j.
  • a method of traversing a possible IoT-STF sequence and obtaining a sequence with a lower PAPR value and a better synchronization performance through simulation calculation may be specifically included:
  • Step 1 The frequency domain sequence (including the sequence value of the sideband subcarrier) corresponding to the IoT-STF is subjected to IFFT and converted into a time domain signal Z i .
  • the frequency-domain sequence corresponding to the IoT-STF here should include multiple sequences. These sequences have the same non-zero value position, but the values at the non-zero value position are different, and they are obtained after IFFT conversion.
  • a plurality of Z i, Z i is the digital domain signal (i.e., time-discrete signals).
  • Step 2 a plurality of cycle Z i Z i stored locally in the cross-correlated signals Y i, calculated by plurality of the second peak and the ratio of the peak (i.e., peak value divided by the peak times), a plurality of selected secondary peak Sequences in which the absolute value of the peak ratio is greater than the first threshold value ensure that the corresponding frequency-domain sequences have better synchronization performance.
  • the first threshold may be set as required, and is not limited in this application.
  • Step 3 When the absolute value of the ratio of the peak value to the sub-peak value is greater than the first threshold value, the time-domain signal after the IFFT transform of the sequence with the better synchronization performance selected in step 2 is oversampled.
  • the multiple can be set as required.
  • This application uses 5 times oversampling to obtain multiple time-domain signals X i after oversampling; calculate the PAPR corresponding to each X i and select the frequency domain sequence corresponding to the best PAPR.
  • the PAPR can be calculated by Equation 4, which is:
  • X i is a sampling signal in the time domain
  • i is a sampling number
  • max is a function of taking a maximum value
  • mean is a function of taking an average value.
  • Table 2 is a frequency domain sequence corresponding to the IoT-STF that obtains the best PAPR when the absolute value of the peak / sub-peak ratio is greater than the first threshold value selected in this application.
  • all selected frequency domain sequences not only include the sequence values of 27 subcarriers, but also the left end of the 27 subcarriers in the above frequency domain sequence includes a sideband subcarrier with a sequence value of 0.
  • the left end of the selected frequency domain sequence includes 3 sequence values of 0, which are 3
  • the sequence values correspond to 3 sideband subcarriers
  • the right end includes 2 sequence values of 0. These 2 sequence values correspond to 2 sideband subcarriers.
  • a 32-point frequency domain sequence can be obtained, and a 32-point IFFT can be performed.
  • IoT-S1 contains the sequence values of 27 subcarriers and the sequence values of 5 sideband subcarriers, and can perform 32-point IFFT. Therefore, when carrying the bandwidth of the IoT data part, including 32 subcarriers, 32 For point IFFT, IoT-STF can be obtained according to the above L-S1.
  • the sequences designed in the embodiments of the present application can be applied to not only the next-generation standard based on 802.11ax, but also other standards.
  • the payload in the IoT PPDU occupies a 52-tone RU bandwidth
  • the 52-tone RU includes 52 subcarriers, and the interval between every two subcarriers is 78.125KHz.
  • the 32-point IFFT requirement is met. Therefore, the IoT-S1 -13,13 sequence designed in the embodiment of the present application can be adopted, that is, the IoT-S1 -13,13 sequence can be applied to a 52-tone RU bandwidth.
  • the embodiment of the present application is not limited to the 52-tone RU.
  • the sequence provided in this application can be used, that is, the PSDU occupies 32-tone RU and 32-tone RU.
  • the IoT-S1 provided in the embodiment of the present application can be used, which is not limited in this application.
  • the receiving device can implement the time synchronization function and AGC adjustment function according to the IoT-STF sequence, and support IoT devices to achieve narrow-band transmission.
  • the embodiment of the present application also provides another sequence.
  • the sequence values of the k subcarriers in the frequency domain include: the sequence values of 53 subcarriers in the frequency domain IoT-S2 -26,26 .
  • sequence values of the 53 subcarriers included in IoT- S2-26 , 26 are a subset of the sequence values of L-S1 in the frequency domain.
  • the sequence values of the 11 sideband subcarriers function as a guard interval, and can prevent adjacent channel interference. Together with IoT-S2 -26,26, they form the frequency domain 64-point frequency domain sequence IoT-S2.
  • the left end of IoT-S2 can include the sequence values of 6 sideband subcarriers, and the right end includes the sequence values of 5 sideband subcarriers. ;
  • IoT-S2 -26,26 together with IoT-S2 -26,26, they form a frequency-domain sequence IoT-S2 with 64 points in the frequency domain.
  • the left side of the IoT-S2 -26,26 also includes the sequence values of the six sideband subcarriers, and these six sequence values are all 0.
  • the right side includes the sequence values of the five sideband subcarriers. These five sequences If the value is also 0, a 64-point frequency domain sequence IoT-S2 can be obtained, and a 64-point IFFT can be performed.
  • IoT-S2 -26,26 is similar to S -26,26 corresponding to formula 1, after IoT-S2 performs 64-point IFFT, it also has good synchronization performance and PAPR characteristics, but in the time domain After the IoT-S2 passes through the IFFT, the number of cycles is 4. After adding a 25% length CP, the time domain symbol (represented by IoT-s2) corresponding to each IoT-S2 contains 5 cycles.
  • the time domain expression IoT-STF2 corresponding to IoT-S2 may also include N time domain symbols, where N is an integer greater than or equal to 1. It is worth noting that the L-STF obtained after IFFT of a complete L-S1 contains two time-domain symbols, so the two time-domain symbols include a total of 10 cycle periods. If you want IoT-S2 to pass through IFFT to form IoT-STF2 that also includes 10 cycles, and each IoT-s2 contains 5 cycles, you only need to repeat IoT-s2 twice, that is, IoT-STF2 includes Two time-domain symbols, whose expressions in the time domain are shown in Equation 5:
  • IoT-STF2 ⁇ IoT-s2, IoT-s2 ⁇ Equation 5
  • IoT-STF2 represents a time domain expression corresponding to IoT-S2
  • IoT-s2 represents a time domain symbol corresponding to each IoT-S2.
  • IoT-S2 and IoT-STF2 form a functional relationship, and IoT-S2 can obtain the only IoT-STF2.
  • the PAPR corresponding to the IoT-STF2 and the PAPR corresponding to the L-STF provided in the foregoing embodiments are completely similar, and the time domain expressions corresponding to the IoT-STF2 and the L-STF have the same periodic characteristics.
  • the IoT- STF2 also has similar characteristics to L-STF, with good time synchronization characteristics and PAPR characteristics, which can provide time synchronization and AGC adjustment functions for IoT data parts transmitted on narrowband.
  • IoT-S2 contains the sequence values of 53 subcarriers and the sequence values of 11 sideband subcarriers, and can perform 64-point IFFT. Therefore, when the bandwidth of the IoT data part includes 64 subcarriers, 64 points can be performed.
  • IFFT the short training sequence can be obtained by using the frequency domain sequence value. For example, if the payload in the IoT PPDU (ie, IoT PSDU) occupies 106-tone RU bandwidth, including 106 subcarriers, and meets the requirements of 64-point IFFT, the sequence designed in the embodiment of this application can be applied to a bandwidth of 106-tone In the case of RU.
  • the IoT-STF2 provided in the embodiment of the present application is not limited to the application of 106-tone RU. As long as the IoT-STF that meets the IFFT size of 64 points, the sequence provided in this application can be used, that is, for IoT data When part of the bandwidth of 64-tone RU and more than 64-tone RU is used, the IoT-S2 provided in the embodiment of the present application may be used, which is not limited in this application.
  • sequence values of the k subcarriers in the frequency domain include: sequence values of 13 subcarriers in the frequency domain IoT- S3-6,6 .
  • sequence values of the 13 subcarriers included in IoT- S3-6,6 are a subset of the sequence values of L-S1 in the frequency domain.
  • the three sideband subcarriers are similar to the 11 sideband subcarriers in the L-S1 described above, and play a role of guard interval to prevent adjacent channel interference. Together with IoT- S3-6,6, they form a frequency-domain 16-point frequency-domain sequence IoT-S3.
  • IoT- S3-6,6 they form a frequency-domain 16-point frequency-domain sequence IoT-S3.
  • the left end of IoT-S3 can include the sequence value of 2 sideband subcarriers, and the right end includes the sequence of 1 sideband subcarrier.
  • Value, or the left end of IoT-S3 may include the sequence value of one sideband subcarrier, and the right end includes the sequence value of two sideband subcarriers, so the corresponding IoT-S3 performs a 16-point IFFT and subsequent series of processing. Transmit on narrowband channels much smaller than 20MHz.
  • IoT-S3 -6,6 are transformed from the basis of a formula corresponding to the S -26,26 by removing two values for each head position and the end position of the both ends of the S -26,26 A sequence value of 0.
  • the three sequence values with a value of 0 are periodically removed by a fixed interval (that is, every other sequence value).
  • the sequence values of the 13 subcarriers corresponding to IoT- S3-6,6 can be obtained.
  • the two ends of the 13 subcarriers in the IoT- S3-6,6 include a2 sequence values at both ends.
  • the left end of the IoT- S3-6,6 also includes the sequence values of two sideband subcarriers, and both of the two sequence values are 0, and the right end includes the sequence value of one sideband subcarrier, and the one sequence value is also When it is 0, a 16-point frequency domain sequence IoT-S3 can be obtained, and 16-point IFFT can be performed.
  • the IoT-S3 since the IoT-S3 is obtained by S- 26,26 by removing a sequence of values with a value of 0 in a periodic interval, according to the properties of the Fourier transform, the IoT-S3 performs a 16-point IFFT. After that, its PAPR characteristics are consistent with the corresponding PAPR characteristics of L-STF, and in the time domain, the number of cycles corresponding to IoT-S3 after IFFT is 1, after adding a 25% length CP, each IoT-S3 The corresponding time domain symbol (represented by IoT-s3) contains 1.25 cycles.
  • the time domain expression IoT-STF3 corresponding to IoT-S3 may also include N time domain symbols, where N is an integer greater than or equal to 1. It is worth noting that the L-STF obtained after IFFT of a complete L-S1 contains two time-domain symbols, so the two time-domain symbols include a total of 10 cycle periods. If you want IoT-S3 to pass IFFT to form IoT-STF3 that also includes 10 cycles, and each IoT-s3 contains 1.25 cycles, you only need to repeat IoT-s3 8 times, that is, IoT-STF3 includes Eight time domain symbols, whose expressions are shown in Equation 6:
  • IoT-STF3 ⁇ IoT-s3, IoT-s3, IoT-s3, IoT-s3, IoT-s3, IoT-s3, IoT-s3, IoT-s3 ⁇ Formula 6
  • IoT-STF3 represents the time domain expression corresponding to IoT-S3
  • IoT-s3 represents the time domain symbol corresponding to each IoT-S3.
  • IoT-S3 and IoT-STF3 form a functional relationship, and IoT-S3 can obtain the only IoT-STF3.
  • IoT-STF3 and the PAPR corresponding to L-STF provided by the above embodiments are consistent, and IoT-STF3 and L-STF have the same period characteristics.
  • IoT-STF3 also has the same STF has similar characteristics, that is, it has good time synchronization characteristics and PAPR characteristics, which can provide time synchronization and AGC adjustment functions for the IoT data part transmitted on narrowband.
  • IoT-S3 contains the sequence values of 13 subcarriers and the sequence values of 3 sideband subcarriers, and can perform 16-point IFFT. Therefore, when the bandwidth of the IoT data part includes 16 subcarriers, 16 points can be performed.
  • the short training sequence can be obtained by using the above frequency domain sequence values. For example, if the payload in the IoT PPDU (that is, the IoT PSDU) occupies a 26-tone RU bandwidth, this 26-tone RU includes 26 subcarriers and meets the requirements of 16-point IFFT. Therefore, the sequence designed in the embodiment of this application may be applicable In the case of a 26-tone bandwidth.
  • the IoT-S3 provided in the embodiment of the present application is not limited to 26-tone RU.
  • the sequence provided in this application can be used, that is, for IoT data
  • the IoT-S3 provided in the embodiment of the present application may be used, which is not limited in this application.
  • the short training sequence IoT-STF designed in this application can provide a time synchronization function and an AGC adjustment function for PPDUs transmitted on a narrow band.
  • the sequence designed in the embodiment of the present application can also be used in uplink communication, that is, carried in the uplink PPDU, that is, the sending device can be an STA, and the receiving device can be an AP, corresponding to the uplink communication process.
  • the station sends a PPDU to the AP, and the synchronization adjustment instruction information is used to perform time synchronization and AGC adjustment on the data field (that is, the IoT data part).
  • the synchronization adjustment instruction information can also be called the IoT short training sequence IoT-STF. It can be understood that the synchronization adjustment instruction information may use other names in specific standards. This application uses IoT-STF to represent it, but for the convenience of subsequent description, and There are no restrictions on this.
  • the IoT device may send a PPDU to the AP after receiving the information request message sent by the AP, or the IoT device may actively send a PPDU to the AP.
  • the IoT device since the IoT device operates in a narrow band, the IoT device needs to send a PPDU to the AP on a channel bandwidth much smaller than 20 MHz, for example, a bandwidth of 5 MHz.
  • bandwidth involved in this application may be a resource unit in Orthogonal Frequency Division Multiplexing (OFDM) or other frequency resources, which is not limited in this application.
  • OFDM Orthogonal Frequency Division Multiplexing
  • IoT-STF and other IoT part fields are included.
  • the IoT-STF is used for time synchronization and AGC adjustment of IoT data parts in other IoT part fields, and other IoT part fields carry IoT services.
  • FIG. 7 is another protocol data unit PPDU of an IoT physical layer aggregation process provided by an embodiment of the present application.
  • the IoT PPDU includes IoT-STF, IoT-LTF, IoT-SIG, and IoT data parts, which occupy less bandwidth.
  • IoT-STF is used for subsequent IoT data parts (that is, IoT PSDU ) Perform time synchronization and AGC adjustment. For specific functions of other IoT parts, this application will not discuss them.
  • the AP extracts the IoT-STF in it, and completes the time synchronization and AGC adjustment functions of the narrowband PPDU transmitted in the IoT network.
  • the short training sequence IoT-STF designed in this application can provide a time synchronization function and an AGC adjustment function for PPDUs transmitted on a narrow band.
  • FIG. 8 is a schematic structural diagram of a communication device according to an embodiment of the present application.
  • the communication device 100 is a receiving device and includes at least a receiving module 110 and a processing module 120. Among them:
  • the receiving module 110 is configured to receive a physical layer aggregation process protocol data unit PPDU sent by a sending device, where the PPDU includes synchronization adjustment instruction information and a data field, and the synchronization adjustment instruction information and the data field are sent on a bandwidth less than 20 MHz. ;
  • the processing module 120 is configured to perform time synchronization and automatic gain control AGC on the data field according to the synchronization adjustment instruction information.
  • the PPDUs received by the receiving module 110 in the communication device 100 in the embodiments of the present application may refer to the specific implementation manners of the PPDUs in the foregoing method embodiments, and are not repeated here.
  • the device 100 may be a device on the access point AP side, or a chip in the access point AP to support the access point AP to implement the corresponding functions in the above method; in the downlink communication, The device 100 may be a device on the station STA side, or a chip in the station STA to support the STA to implement the corresponding functions in the foregoing method.
  • FIG. 9 is a schematic structural diagram of another communication device according to an embodiment of the present application.
  • the communication device 200 is a transmitting device, and includes at least: a generating module 210 and a transmitting module 220. Among them:
  • a generating module 210 configured to generate a PPDU, where the PPDU includes synchronization adjustment instruction information and a data field;
  • a sending module 220 is configured to send the synchronization adjustment instruction information and the data field on a bandwidth less than 20 MHz, where the synchronization adjustment instruction information is used by the receiving device to time synchronize and automatically gain the data field. Control AGC.
  • the PPDU generated by the generating module 210 in the communication device 200 in the embodiment of the present application may refer to the specific implementation manner of the PPDU in each of the foregoing method embodiments, and details are not described herein again.
  • the device 200 may be a device on the access point AP side, or a chip in the access point AP; in the uplink communication, the device 200 may be a device on the site STA side or a station STA Inside the chip.
  • time synchronization and AGC adjustment of the IoT data part can be supported on a bandwidth level less than 20 MHz.
  • FIG. 10 is another communication apparatus 300 according to an embodiment of the present application.
  • the communication device 300 is a receiving device and includes at least a processor 310, a memory 320, and a transceiver 330.
  • the processor 310, the memory 320, and the transceiver 330 are connected to each other through a bus 340.
  • the memory 320 includes, but is not limited to, Random Access Memory (RAM), Read-Only Memory (ROM), or Erasable Programmable Read-Only Memory (EPROM) or flash memory. Flash memory), the memory 320 is used to store related instructions and data.
  • RAM Random Access Memory
  • ROM Read-Only Memory
  • EPROM Erasable Programmable Read-Only Memory
  • flash memory Flash memory
  • the transceiver 330 may include a receiver and a transmitter, for example, a radio frequency module.
  • the processor 310 described below receives or sends a message. Specifically, it can be understood that the processor 310 receives or sends a message through the transceiver 330. .
  • the processor 310 may be one or more central processing units (CPUs). When the processor 310 is a CPU, the CPU may be a single-core CPU or a multi-core CPU.
  • the processor 310 in the communication device 300 is configured to read the program code stored in the memory 320 and perform the following operations:
  • the processor 310 receives, via the transceiver 330, a PPDU sent by the sending device.
  • the PPDU includes synchronization adjustment instruction information and a data field, and the synchronization adjustment instruction information and the data field are transmitted on a bandwidth less than 20 MHz.
  • the processor 310 performs time synchronization and automatic gain control AGC on the data field according to the synchronization adjustment instruction information.
  • the receiving device 300 receives the PPDU and the specific design of the PPDU can also be implemented specifically according to the method in the foregoing method embodiment, and details are not described herein again.
  • the device 300 may be a device on the access point AP side, or a chip in the access point AP; in the downlink communication, the device 300 may be a device on the site STA side, or a station STA Inside the chip.
  • time synchronization and AGC adjustment of the IoT data part can be supported on a bandwidth level less than 20 MHz.
  • FIG. 11 is another communication apparatus 400 according to an embodiment of the present application.
  • the communication device 400 is a transmitting device and includes at least a processor 410, a memory 420, and a transceiver 430.
  • the processor 410, the memory 420, and the transceiver 430 are connected to each other through a bus 440.
  • the memory 420 includes, but is not limited to, Random Access Memory (RAM), Read-Only Memory (ROM), or Erasable Programmable Read-Only Memory, EPROM, or fast memory. Flash memory).
  • RAM Random Access Memory
  • ROM Read-Only Memory
  • EPROM Erasable Programmable Read-Only Memory
  • Flash memory Flash memory
  • the transceiver 430 may include a receiver and a transmitter, for example, a radio frequency module.
  • the processor 410 described below receives or sends a certain message. Specifically, it can be understood that the processor 410 receives or sends a message through the transceiver 430. .
  • the processor 410 may be one or more central processing units (CPUs). When the processor 410 is a CPU, the CPU may be a single-core CPU or a multi-core CPU.
  • the processor 410 in the communication device 400 is configured to read the program code stored in the memory 420 and perform the following operations:
  • the processor 410 generates a PPDU including the synchronization adjustment indication information and a data field.
  • the processor 410 sends the synchronization adjustment instruction information and the data field through a transceiver 430 on a bandwidth less than 20 MHz, where the synchronization adjustment instruction information is used by the receiving device to time synchronize and automatically perform the data field Gain Control AGC.
  • the sending device 400 sends the PPDU and the specific design of the PPDU can also be implemented specifically according to the method in the foregoing method embodiment, and details are not described herein again.
  • the device 400 may be a device on the access point AP side or a chip in the access point AP; in the uplink communication, the device 400 may be a device on the site STA side or a station STA Inside the chip.
  • time synchronization and AGC adjustment of the IoT data part can be supported on a bandwidth level less than 20 MHz.
  • An embodiment of the present application further provides a computer-readable storage medium.
  • the computer-readable storage medium stores instructions, and when the computer-readable storage medium runs on a computer or a processor, the computer or the processor executes any of the foregoing physical layer protocol data.
  • One or more steps in a unit's communication method When each component module of the above device is implemented in the form of a software functional unit and sold or used as an independent product, it may be stored in the computer-readable storage medium.
  • the computer-readable storage medium may be an internal storage unit of the communication device according to any one of the foregoing embodiments, such as a hard disk or a memory of the communication device.
  • the computer-readable storage medium may also be an external storage device of the communication device, such as a plug-in hard disk, a Smart Media Card (SMC), and a Secure Digital (SD) card provided on the communication device. Flash card (Flash card) and so on.
  • the computer-readable storage medium may further include both an internal storage unit of the communication device and an external storage device.
  • the computer-readable storage medium is used to store the computer program and other programs and data required by the communication device.
  • the computer-readable storage medium described above may also be used to temporarily store data that has been or will be output.
  • the program can be stored in a computer-readable storage medium.
  • the foregoing storage medium includes various media that can store program codes, such as a ROM, a RAM, a magnetic disk, or an optical disc.
  • the modules in the apparatus of the embodiment of the present application may be combined, divided, and deleted according to actual needs.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

提供了一种物理层聚合过程协议数据单元的通信方法和相关装置。其中,该方法包括:接收装置接收发送装置发送的物理层聚合过程协议数据单元PPDU,所述PPDU包括同步调整指示信息和数据字段,所述同步调整指示信息和所述数据字段在小于20MHz的带宽上发送;所述接收装置根据所述同步调整指示信息,对所述数据字段进行时间同步和自动增益控制AGC。基于此方案,接收装置可通过同步调整指示信息,完成在窄带宽上传输的PPDU的时间同步和自动增益控制AGC,从而方便接收端正确接收和解析此PPDU的数据部分。

Description

物理层聚合过程协议数据单元的通信方法和相关装置
本申请要求于2018年08月02日提交中国专利局、申请号为201810874155.6、申请名称为“物理层聚合过程协议数据单元的通信方法和相关装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,尤其涉及一种物理层聚合过程协议数据单元的通信方法和相关装置。
背景技术
随着时代的发展,物联网(Internet of Things,IoT)广泛应用于智能家庭、车载通信、智慧城市等场景中,IoT通信具有低速度、低功率、低成本、远距离等特点。目前应用较为广泛的IoT网络主要有基于移动蜂窝通信的窄带物联网(Narrowband-IoT,NB-IoT)和基于私有协议的远程物联网(Long Range Internet of Things,LoRa),它们都具有低功耗,广覆盖和低成本等特点,但NB-IoT基于广大的蜂窝网络基站的支撑,部署较为容易,而LoRa作为私有协议下的产物,需要额外网关支持以完成数据的最终交互,LoRa部署相对NB-IoT更加复杂。
此外,NB-IoT基于蜂窝网络,使用非免费频谱,造成用户使用成本的增加,如智能家庭和智能制造中如大规模使用NB-IoT,将显著增加普通家庭和一般中小企业的消费成本。而LoRa虽然使用免费频谱,但因为其无法与现有的同样适用免费频谱并且普及极为广泛的无线局域网(Wireless Local Area Network,WLAN)产品互通,需购置额外的LoRa模块和协议交互网关,这导致普通家庭和中小企业部署上的困难。
在NB-IoT和LoRa中,都无法为在窄带(小于20MHz)上发送的数据提供同步调整和自动增益控制调整的功能。
发明内容
本申请提供了一种物理层聚合过程协议数据单元的通信方法和相关装置,能够提供一种IoT网络中的同步序列,可以在小于20MHz的带宽级别上支持IoT数据部分进行时间同步和自动增益控制(Automatic Gain Control,AGC)调整功能。
第一方面,提供了一种物理层聚合过程协议数据单元的通信方法,所述方法包括:接收装置(例如STA)接收发送装置(例如AP)发送的物理层聚合过程协议数据单元PPDU,即对应下行的通信过程,所述PPDU包括同步调整指示信息和数据字段,所述发送装置在小于20MHz的带宽上发送所述同步调整指示信息和所述数据字段;
所述接收装置接收所述PPDU,并根据其中的同步调整指示信息,对PPDU中的数据字段进行时间同步和自动增益控制AGC。
结合第一方面,在一种可选的实现方式中,该PPDU还包括传统前导码L-Preamble, 所述L-Preamble在以20MHz为单位的带宽上发送。
第二方面,提供一种物理层聚合过程协议数据单元的通信方法,包括:发送装置(例如AP)发送物理层聚合过程协议数据单元PPDU,即对应下行通信过程,该PPDU包括同步调整指示信息和数据字段,发送装置在小于20MHz的带宽上发送同步调整指示信息和所述数据字段;以使得接收装置(例如STA)根据其中的同步调整指示信息,对PPDU中的数据字段进行时间同步和自动增益控制AGC。
基于该实施方式,接收装置通过对接收到的PPDU中的同步调整指示信息进行提取和处理,可以实现在小于20MHz的带宽级别上对PPDU中的数据字段进行时间同步和AGC调整。
结合第二方面,在一种可选的实现方式中,该PPDU还包括传统前导码L-Preamble,所述L-Preamble在以20MHz为单位的带宽上发送。例如,L-Preamble可以在20MHz上的带宽上发送,又例如,L-Preamble也可以在40MHz的带宽上发送。
基于该实施方式,发送装置不但可以与宽带接收装置进行通信,还可以与占用较窄带宽的接收装置进行通信,兼容性好,而且能够有效避免发生碰撞的概率,提高网络系统的性能。
第三方面,提供了一种物理层聚合过程协议数据单元的通信方法,所述方法包括:发送装置(例如STA)向接收装置(例如AP)发送PPDU,即对应的上行的通信过程,所述PPDU包括同步调整指示信息和数据字段,所述发送装置在小于20MHz的带宽上发送所述同步调整指示信息和所述数据字段;
所述同步调整指示信息用于所述接收装置对所述数据字段进行时间同步和自动增益控制AGC。
第四方面,提供一种物理层聚合过程协议数据单元的通信方法,包括:接收装置(例如AP)接收发送装置(例如STA)发送的PPDU,即对应的上行的通信过程,所述PPDU包括同步调整指示信息和数据字段,所述所述同步调整指示信息和所述数据字段在小于20MHz的带宽上发送;接收装置根据同步调整指示信息对所述数据字段进行时间同步和自动增益控制AGC。
基于该实施方式,发送装置通过向接收装置在小于20MHz的带宽上发送包含同步调整指示信息和数据字段的PPDU,使接收装置对接收到的PPDU中的同步调整指示信息进行提取和处理,可以实现在小于20MHz的带宽级别上对PPDU中的数据字段进行时间同步和AGC调整。
结合第一方面至第四方面中任一方面所述的方法,在一种可选的实现方式中,所述小于20MHz的带宽包括频域k个子载波,所述同步调整指示信息包括所述频域k个子载波的序列值经过反向快速傅里叶变换IFFT后得到的信息,所述k个子载波的序列值是所述L-Preamble中的传统短训练序列L-STF在频域上的序列值的子集。
基于该实施方式,可以更好的继承现有技术中的L-STF的设计思想,由于L-STF具有 良好的时间同步和AGC调整功能,所以基于L-STF设计的同步调整指示信息也具有类似的功能,能够完成在小于20MHz的带宽级别上对PPDU中的数据字段进行时间同步和AGC调整。
结合第一方面至第四方面中任一方面所述的方法,在一种可选的实现方式中,所述频域k个子载波的序列值包括:频域27个子载波的序列值IoT-S1 -13,13
结合第一方面至第四方面中任一方面所述的方法,在一种可选的实现方式中,所述频域k个子载波的序列值还包括:频域5个边带子载波的序列值,所述边带子载波的序列值为0,其中,所述IoT-S1 -13,13两端分别包括所述5个边带子载波中的a个边带子载波和所述5个边带子载波中的b个边带子载波,所述a和b为正整数且a+b=5。
通过在IoT-S1 -13,13的两端添加值为0的边带子载波的序列值,可以起到保护间隔的作用,防止邻近信道干扰,此外,在IoT-S1 -13,13的基础上添加5个值为0的边带子载波的序列值,可以构成32点的频域序列,能够进行32点的IFFT。
结合第一方面至第四方面中任一方面所述的方法,在一种可选的实现方式中,所述
Figure PCTCN2019096886-appb-000001
通过在L-STF所对应的S -26,26中,固定间隔移除部分(两个)循环出现的0值而得到IoT-S1 -13,13,从而使得IoT-S1 -13,13与L-STF保持一致的PAPR特性。
结合第一方面至第四方面中任一方面所述的方法,在一种可选的实现方式中,所述
Figure PCTCN2019096886-appb-000002
通过在L-STF所对应的S -26,26中,除去开头和结尾的13个序列值,只保留中间的27个序列值而得到IoT-S1 -13,13,从而使得IoT-S1 -13,13与L-STF在时域上保持一致的周期特性。
结合第一方面至第四方面中任一方面所述的方法,在一种可选的实现方式中,所述小于20MHz的带宽包括频域k个子载波,所述同步调整指示信息包括所述频域k个子载波的序列值经过IFFT后得到的信息,所述频域k个子载波的序列值包括IoT-S1 -13,13,所述IoT-S1 -13,13为以下序列中的其中之一:
Figure PCTCN2019096886-appb-000003
Figure PCTCN2019096886-appb-000004
Figure PCTCN2019096886-appb-000005
Figure PCTCN2019096886-appb-000006
Figure PCTCN2019096886-appb-000007
Figure PCTCN2019096886-appb-000008
Figure PCTCN2019096886-appb-000009
Figure PCTCN2019096886-appb-000010
基于该实施方式,上述这些序列是通过对相同的非零值位置上数值进行不同组合而得到,这些序列的峰值/次峰值的比值的绝对值较大,而PAPR值较小,性能较好。
结合第一方面至第四方面中任一方面所述的方法,在一种可选的实现方式中,所述频域k个子载波的序列值包括:频域53个子载波的序列值IoT-S2 -26,26
结合第一方面至第四方面中任一方面所述的方法,在一种可选的实现方式中,所述频域k个子载波的序列值还包括:频域11个边带子载波的序列值,所述边带子载波的序列值为0,其中,所述IoT-S2 -26,26两端分别包括所述11个边带子载波中的a1个边带子载波和所述11个边带子载波中的b1个边带子载波,所述a1和b1为正整数且a1+b1=11。
通过在IoT-S2 -26,26的两端添加值为0的边带子载波的序列值,可以起到保护间隔的作用,防止邻近信道干扰,此外,在IoT-S2 -26,26的基础上添加11个值为0的边带子载波的序列值,可以构成64点的频域序列,能够进行64点的IFFT。
结合第一方面至第四方面中任一方面所述的方法,在一种可选的实现方式中,所述
Figure PCTCN2019096886-appb-000011
通过使用与L-STF所对应的S -26,26相似的频域序列值,从而使得IoT-S2 -26,26与L-STF保持一致的PAPR特性,而且在时域上与L-STF在保持一致的周期特性。
结合第一方面至第四方面中任一方面所述的方法,在一种可选的实现方式中,所述频域k个子载波的序列值包括:频域13个子载波的序列值IoT-S3 -6,6
结合第一方面至第四方面中任一方面所述的方法,在一种可选的实现方式中,所述频域k个子载波的序列值还包括:频域3个边带子载波的序列值,所述边带子载波的序列值为0,其中,所述IoT-S3 -6,6两端分别包括所述3个边带子载波中的a2个边带子载波和所述边带子载波中的b2个边带子载波,所述a2和b2为正整数且a2+b2=3。
通过在IoT-S3 -6,6的两端添加值为0的边带子载波的序列值,可以起到保护间隔的作用,防止邻近信道干扰,此外,在IoT-S3 -6,6的基础上添加3个值为0的边带子载波的序列值,可以构成16点的频域序列,能够进行16点的IFFT。
结合第一方面至第四方面中任一方面所述的方法,在一种可选的实现方式中,所述
Figure PCTCN2019096886-appb-000012
通过在L-STF所对应的S -26,26中,固定间隔移除部分(三个)循环出现的0值而得到IoT-S3 -6,6,从而使得IoT-S3 -6,6与L-STF保持一致的PAPR特性。
第五方面,提供了一种物理层聚合过程协议数据单元的通信装置,应用于站点侧,该装置可以是站点STA,也可以是站点内的芯片。该装置具有实现上述第一方面或第三方面涉及站点STA的功能。该功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。该硬件或软件包括一个或多个与上述功能相对应的单元。
在一种可能的设计中,该通信装置为站点时,包括:处理模块和收发模块,所述处理模块例如可以是处理器,所述收发模块例如可以是收发器,所述收发器可以包括射频电路和基带电路。收发模块用于支持站点与接入点AP或其他站点之间的通信,一个示例中, 收发模块,还可以包括发送模块和接收模块。例如,接收模块,用于接收发送装置(例如AP)发送的物理层聚合过程协议数据单元PPDU,该PPDU包括同步调整指示信息和数据字段,所述同步调整指示信息和所述数据字段在小于20MHz的带宽上发送;处理模块,用于根据所述同步调整指示信息,对所述数据字段进行时间同步和自动增益控制AGC。可选的,该装置还可以包括存储器,所述存储器用于与处理器耦合,其保存该通信装置必要的程序指令和数据。
在另一种可能的设计中,该装置包括:处理器,基带电路,射频电路和天线。其中处理器用于实现对各个电路部分功能的控制,基带电路,射频电路和天线,用于指示站点与其他节点之间的通信。例如,在下行通信中,射频电路可以对经由天线接收到的接入点发送的物理层聚合过程协议数据单元进行数字转换、滤波、放大和下变频等处理后,经由基带电路进行解码按协议解封装以获取同步调整指示信息。可选的,该装置还包括存储器,其保存站点必要的程序指令和数据;在上行通信中,由基带电路生成携带同步调整指示信息的物理层协议数据单元,经由射频电路进行模拟转换、滤波、放大和上变频等处理后,再由天线在小于20Mhz的带宽上发送给接入点AP。
在又一种可能的实现方式中,该装置包括处理器和调制解调器,处理器可以用于指令或操作系统,以实现对站点功能的控制,调制解调器可以按协议对数据进行封装、编解码、调制解调、均衡等以生成携带同步调整指示信息的上行PPDU,以支持站点执行第一方面或第三方面中相应的功能;调制解调器还可以用于接收AP发送的携带同步调整指示信息的下行PPDU,以根据同步调整指示信息,对所述数据字段进行时间同步和自动增益控制AGC。
在又一种可能的实现方式中,当该装置为站点内的芯片时,该芯片包括:处理模块和收发模块,所述处理模块例如可以是处理器,此处理器可以用于对经由收发模块接收到的承载同步调整指示信息的数据分组进行滤波、解调、功率放大、解码等处理,所述收发模块例如可以是该芯片上的输入/输出接口、管脚或电路等。该处理模块可执行存储单元存储的计算机执行指令,以支持站点执行上述第一方面或第三方面相应的功能。可选地,所述存储单元可以为所述芯片内的存储单元,如寄存器、缓存等,所述存储单元还可以是所述站点内的位于所述芯片外部的存储单元,如只读存储器(read-only memory,简称ROM)或可存储静态信息和指令的其他类型的静态存储设备,随机存取存储器(random access memory,简称RAM)等。
在又一种可能的实现方式中,该装置包括处理器,该处理器用于与存储器耦合,并读取存储器中的指令并根据所述指令执行上述第一方面或第三方面中涉及站点STA的功能。该存储器可以位于该处理器内部,还可以位于该处理器外部。
第六方面,提供了一种物理层聚合过程协议数据单元的通信装置,应用于接入点侧,该装置可以是接入点,也可以是接入点AP内的芯片。该装置具有实现第二方面或第四方面涉及接入点AP的功能。该功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。该硬件或软件包括一个或多个与上述功能相对应的单元。
在一种可能的设计中,该通信装置为AP时,包括:处理模块和收发模块,所述处理 模块例如可以是处理器,所述收发模块例如可以是收发器,所述收发器可以包括射频电路和基带电路。收发模块用于支持接入点与站点之间的通信,一个示例中,收发模块,还可以包括发送模块和接收模块,可以用于支持AP进行上行通信、下行通信。例如,在上行通信中,该装置为接收装置,其中,接收模块,可以用于接收发送装置(例如STA)发送的物理层聚合过程协议数据单元PPDU,该PPDU包括同步调整指示信息和数据字段,所述同步调整指示信息和所述数据字段在小于20MHz的带宽上发送;处理模块,可以用于根据所述同步调整指示信息,对所述数据字段进行时间同步和自动增益控制AGC;在下行通信中,该装置为发送装置,发送模块,可以用于向STA发送PPDU,可选的,该装置还可以包括存储器,所述存储器用于与处理器耦合,其保存该通信装置必要的程序指令和数据。
在另一种可能的设计中,该装置包括:处理器,基带电路,射频电路和天线。其中处理器用于实现对各个电路部分功能的控制,基带电路,射频电路和天线,用于支持接入点与站点之间的通信。例如,在上行通信中,该装置作为接收装置,其射频电路可以对经由天线接收到的由站点发送的物理层聚合过程协议数据单元进行数字转换、滤波、放大和下变频等处理后,经由基带电路进行解码按协议解封装以获取同步调整指示信息。可选的,该装置还包括存储器,其保存站点必要的程序指令和数据;例如,在下行通信中,该装置作为发送装置,由基带电路生成携带同步调整指示信息的物理层聚合过程协议数据单元,经由射频电路进行模拟转换、滤波、放大和上变频等处理后,再由天线在小于20MHz的带宽上发送给接入点AP。
在又一种可能的设计中,该装置包括处理器和调制解调器,处理器可以用于运行指令或操作系统,以实现接入点AP功能的控制,调制解调器可以按协议对数据进行封装、编解码、调制解调、均衡等以生成携带同步调整指示信息的PPDU,以支持接入点执行上述第二方面或第四方面中相应的功能;调制解调器还可以用于接收站点发送的携带同步调整指示信息的PPDU,以根据同步调整指示信息,对所述数据字段进行时间同步和自动增益控制AGC。
在又一种可能的设计中,当该装置为接入点内的芯片时,该芯片包括:处理模块和收发模块,所述处理模块例如可以是处理器,此处理器可以用于对经由收发模块接收到的承载同步调整指示信息的数据分组进行滤波、解调、功率放大、解码等处理,所述收发模块例如可以是该芯片上的输入/输出接口、管脚或电路等。该处理模块可执行存储单元存储的计算机执行指令,以支持接入点执行上述第二方面或第四方面相应的功能。可选地,所述存储单元可以为所述芯片内的存储单元,如寄存器、缓存等,所述存储单元还可以是所述站点内的位于所述芯片外部的存储单元,如只读存储器(read-only memory,简称ROM)或可存储静态信息和指令的其他类型的静态存储设备,随机存取存储器(random access memory,简称RAM)等。
在又一种可能的实现方式中,该装置包括处理器,该处理器用于与存储器耦合,并读取存储器中的指令并根据所述指令执行上述第二方面或第四方面中涉及接入点AP的功能。该存储器可以位于该处理器内部,还可以位于该处理器外部。
第七方面,本申请提供了一种计算机可读存储介质,所述计算机可读存储介质中存储有指令,所述指令可以由处理电路上的一个或多个处理器执行。当其在计算机上运行时, 使得计算机执行上述第一方面至第四方面中任一方面的方法。
第八方面,提供了一种包含指令的计算机程序产品,其在计算机上运行时,使得计算机执行上述第一方面第一方面至第四方面中任一方面的方法或其任意可能的实现方式中的方法。该计算机程序产品可全部或部分的存储于封装于处理器当中的存储介质上,还可以全部或部分的存储在封装于处理器之外的存储介质中。
实施本申请实施例,接收装置通过对接收到的PPDU中的同步调整指示信息进行提取和处理,可以实现在小于20MHz的带宽级别上对PPDU中的数据字段进行时间同步和AGC调整。
附图说明
图1为本申请实施例提供的一种物联网拓扑示意图;
图2为本申请实施例提供的一种网络拓扑示意图;
图3为本申请实施例提供的一种单用户物理层聚合过程协议数据单元示意图;
图4为本申请实施例提供的一种IoT网络场景示意图;
图5为本申请实施例提供的一种物理层聚合过程协议数据单元的通信方法的流程示意图;
图6为本申请实施例提供的一种IoT物理层聚合过程协议数据单元PPDU示意图;
图7为本申请实施例提供的另一种IoT物理层聚合过程协议数据单元PPDU示意图;
图8为本申请实施例提供的一种通信装置的结构示意图;
图9为本申请实施例提供的另一种通信装置的结构示意图;
图10为本申请实施例提供的另一种通信装置的结构示意图;
图11为本申请实施例提供的另一种通信装置的结构示意图。
具体实施方式
首先结合图1-图4介绍本申请实施例涉及的相关技术知识。
物联网(Internet of Things,IoT)网络是互联网、传统电信网等信息载体,是让所有能行使独立功能的普通物体实现互联互通的网络。参见图1,图1是一种物联网拓扑示意图,各种物件、产品等通过通信系统连接在一起。IoT一般为无线网,一种可能的IoT应用场景为,在IoT中,每个人都可以应用电子标签将真实的物体上网联结,在IoT上都可以查出它们的具体位置。基于IoT,可以采用中心计算机对机器、设备、人员进行集中管理、控制,也可以对家庭设备、汽车进行遥控,以及搜索位置、防止物品被盗等,类似自动化操控系统,可以利用中心计算机对这些数据进行搜集,利用这些数据重新设计道路以减少车祸,或者是利用这些数据进行都市更新、灾害预测与犯罪防治、流行病控制等。
窄带物联网(Narrowband-IoT,NB-IoT)和远程物联网(Long Range Internet of Things,LoRa)是目前应用较为广泛的IoT网络,它们的技术参数对比如表1所示。
表1 NB-IoT与LoRa主要技术参数对比
IoT框架 NB-IoT LoRa
带宽 180kHz 125kHz
频谱授权 收费授权 免费授权
峰值速率 200kbps 10kbps
距离 18-21km 12-15km
模块成本 16-20美元 8-10美元
峰值电流 32mA 120-300mA
时延
从表1可以看出,NB-IoT和LoRa都具备IoT网络需要的低功耗,广覆盖和低成本等要求。但是,NB-IoT基于蜂窝网络,使用收费频谱,而LoRa使用免费频谱,不能与无线局域网(Wireless Local Area Network,WLAN)产品互通,需额外的LoRa模块和协议交互网关。
而基于免费频段的IEEE802.11ax网络,其可在20MHz/40MHz/80MHz/160MHz上分别提供最大1.1G/2.3G/4.8G/9.6Gbps的数据速率。其具有功耗较大,传输距离近,时延较低等特点,可以解决与WLAN产品互通问题,而且是基于免费频段的,能够有效降低成本且部署方便。
一个典型的IEEE802.11ax中,其由接入点(Access Point,AP)和一些站点(Station,STA)构成的集合也称为一个基本服务集(Basic Service Set,BSS)。参见图2,图2是一种网络拓扑示意图。其中,AP管理该BSS,可以将其视为中央站点,STA通过AP连接网络,并从AP获取需要的数据和服务。该BSS具有上下双向通信功能,并且通过分布式系统(Distributed System,DS)与其它BSS相连。基于IEEE802.11ax协议的网络的基本频率资源以资源单元(Rssource Unit,RU)进行划分。当前IEEE802.11ax中包含的RU类型主要有26-tone RU,52-tone RU,106-tone RU,242-tone RU,484-tone RU和996-tone RU,RU作为基本频率资源单位,分配给不同的用户用于在BSS内上下行传输数据。不同大小的RU具有不同的带宽,也可以承载不同速率的业务,较大的RU可以承载较大较高数据量的无线传输,需要说明的是,现有的宽带场景下的IEEE802.11ax未针对窄带工作的IoT进行有针对性的优化设计,故我们无法直接使用IEEE802.11ax中的RU去服务未来只需要较窄带宽的IoT网络。
基于IEEE802.11ax协议,参见图3,图3是一种单用户(Single User,SU)物理层聚合过程协议数据单元(Physical Layer Convergence Procedure Protocol Data Unit,PPDU)格式示意图。其中,该SU PPDU包含了传统前导码(Legacy Preamble,L-Preamble),高效率前导码(High Efficiency Preamble,HE-Preamble)和物理层业务数据单元(Physical Layer Convergence Protocol Service Data Unit,PSDU)。其中,L-Preamble中包括传统短训练序列(Legacy-Short Training Field,L-STF),传统长训练序列(Legacy-Long Training Field,L-LTF)和传统信令字段(Signaling Field,L-SIG),L-STF用于接收设备实现信令和数据字段同步,自动增益控制(Automatic Gain Control,AGC),频率偏差估计等功能,STF可以是包含多个周期的序列,也可以是只包含一个周期的序列。L-LTF用于信道估计,更精准的时间同步过程以及进一步的频率偏差估计。L-SIG包含分组的速率和长度等信息。类似的,HE-Preamble部分也包括SIG、STF和长训练训练序列(Long Training Field,LTF),其中 HE-STF和HE-LTF主要是用于不同于传统前导码所使用的采样率下的自动增益控制,信道估计等功能。PSDU承载数据部分。上述L-STF是由64点的频域序列经过64点反向快速傅里叶变换(Inverse Fast Fourier Transform,IFFT)后得到的,其在20MHz的信道上发送,HE-Preamble和PSDU也是在20MHz的信道进行发送。
本申请的技术方案可以应用于各种通信系统中,例如WLAN网络,IoT网络,还可以应用于车联网网络,还可以应用于其他网络等,本申请并不具体限定。举例来说,本申请的应用场景可以是基于IEEE802.11ax标准的WLAN网络,或者是基于IEEE802.11ax标准的IoT网络,或者是基于IEEE802.11ax标准的车联网(Vehicle-to-X,V2X)网络,或者是基于IEEE802.11ax标准的其它网络。
以IoT网络为例,参见图4,图4是一种IoT网络场景示意图。该网络架构包括AP,以及与AP相关联的IoT STA,AP分别与多个IoT STA关联,从而可以使IoT STA完成上下行通信。
本申请实施例涉及的站点IoT STA,可以指用户设备、接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置。站点还可以是蜂窝电话、无绳电话、会话启动协议(session initiation protocol,SIP)电话、无线本地环路(wireless local loop,WLL)站、个人数字处理(personal digital assistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备,未来5G网络中的终端设备或者未来演进的公用陆地移动通信网络(public land mobile network,PLMN)中的终端设备等,本申请实施例对此并不限定。
本申请实施例涉及的接入点AP可以是用于与站点通信的设备。该接入点可以是任意一种具有无线收发功能的设备或可设置于该设备的芯片,该设备包括但不限于:演进型节点B(evolved Node B,eNB)、无线网络控制器(radio network controller,RNC)、节点B(Node B,NB)、基站控制器(base station controller,BSC)、基站收发台(base transceiver station,BTS)、家庭基站(例如,home evolved NodeB,或home Node B,HNB)、基带单元(base band Unit,BBU),无线保真(wireless fidelity,WIFI)系统中的接入点(access point,AP)、无线中继节点、无线回传节点、传输点(transmission point,TP)或者发送接收点(transmission and reception point,TRP)等,还可以为5G,如,NR,系统中的gNB,或,传输点(TRP或TP),5G系统中的基站的一个或一组(包括多个天线面板)天线面板,或者,还可以为构成gNB或传输点的网络节点,如基带单元(BBU),或,分布式单元(distributed unit,DU)等。
本申请提供一种物理层聚合过程协议数据单元中的短训练序列的设计方法,为描述方便,简称为物联网短训练序列(IoT-Short Training Field,IoT-STF),可以在小于20MHz的带宽级别上支持IoT数据部分进行时间同步和AGC调整,使IoT网络中的AP、STA等在进行低速、低功率或远距离的信息传输时,对接收到的PPDU,提取其中包含的本申请提供的IoT-STF并进行处理,从而完成IoT网络中传输的窄带PPDU的时间同步和AGC调整功能,进而可以正确接收和解码得到该PPDU中所传输的数据字段。
需要说明的是,本申请的技术方案既可以应用于AP与AP之间的通信,还可以应用于 AP与STA之间的通信,也可以应用于STA与STA之间的通信。下面以AP与STA之间的通信为例进行说明,并不构成对本申请实施例的限定。
下面结合附图详细介绍本申请实施例的方法及相关装置。需要说明的是,本申请实施例的展示顺序仅代表实施例的先后顺序,并不代表实施例所提供的技术方案的优劣。
请参见图5,图5为本申请实施例提供的一种物理层聚合过程协议数据单元的通信方法的流程示意图。如图5所示,该方法包括但不限于以下步骤:
S101:发送装置向接收装置发送物理层聚合过程协议数据单元PPDU,所述PPDU包括同步调整指示信息和数据字段,所述同步调整指示信息和所述数据字段在小于20MHz的带宽上发送。
S102:接收装置接收接入装置发送的物理层聚合过程协议数据单元PPDU,并根据其中包括的同步调整指示信息,对所述数据字段进行时间同步和自动增益调整AGC。
具体地,发送装置可以是AP,接收装置可以是STA,对应下行通信过程。
同步调整指示信息用于对数据字段(即IoT数据部分)进行时间同步和AGC调整,同步调整指示信息也可称为物联网短训练序列IoT-STF,可以理解,同步调整指示信息在具体标准中可能会用其它名称,本申请选用IoT-STF来表示,只是为了后续叙述方便,并不对此做出限制。
具体地,AP可以是接收到站点发送的信息请求消息后向该站点发送下行PPDU,也可以是AP根据网络中的其它指示消息主动向站点发送PPDU。
具体地,站点在接收到AP发送的PPDU后,对其中的IoT-STF进行提取,并根据IoT-STF完成对IoT网络中传输的窄带PPDU的时间同步和AGC调整功能。
在一种可能的实现方式中,所述PPDU还包括传统前导码L-Preamble,所述传统前导码L-Preamble在以20MHz为单位的带宽上发送。也就是说,L-Preamble可以在20MHz的带宽上发送,还可以在大于20MHz的带宽上发送,例如,可以在40MHz(2个20MHz)的带宽上发送,还可以在80MHz(3个20MHz)的带宽上发送,本申请实施例并不具体限定。
在实际应用场景中,与AP关联的站点可以包括IoT设备(支持窄带通信的设备)和传统宽带设备(例如,支持802.11ax或802.11ax之前的标准的设备),AP不仅会向IoT设备发送下行PPDU,也会向一些传统的宽带设备发送下行PPDU。由于传统宽带设备具有高速率的传输需求,因此AP需要在20MHz及以上的较大的带宽上向传统的宽带设备发送下行PPDU,而IoT设备的业务具有低速低功耗等特点,AP只需要在小于20MHz的较小的带宽上向IoT设备发送PPDU。
值得说明的是,本申请涉及到的带宽可以是正交频分复用(Orthogonal Frequency Division Multiplexing,OFDM)中的资源单元,也可以是其它的频率资源,本申请并不对此做出限制。需要说明的是,由于该网络架构中同时存在IoT设备和宽带设备,为了提高性能,减小碰撞发送的概率,IoT设备和宽带设备等站点可以使用带碰撞避免的载波侦听多址(Carrier Sense Multiple Access,CSMA/CA)方法来避免发送碰撞。
在一种可能的PPDU的格式中,该PPDU包括L-Preamble和IoT部分。L-Preamble可以包括L-STF、L-LTF、L-SIG;在IoT部分字段之前,该PPDU中还可以包括帧类型指示, L-STF用于接收设备实现信令和数据字段同步以及AGC调整功能,L-SIG包含分组的速率和长度等信息,L-LTF用于信道估计和更精确的频率偏移估计,值得说明,帧类型指示是可选的,用于指示该帧结构的类型,且该帧类型指示是二进制相移键控(Binary Phase Shift Keying,BPSK)调制的符号;IoT部分包括IoT-STF和其它IoT部分字段,IoT-STF用于其它IoT部分字段进行时间同步和AGC调整,其它IoT部分字段承载IoT业务。需要说明的是,由AP发送给STA的PPDU,也可以不包括L-Preamble。
图6示出了本申请实施例提供的一种IoT物理层聚合过程协议数据单元PPDU。该PPDU包括传统前导码部分和IoT部分,传统前导码部分包括L-STF,L-LTF,L-SIG,此外还包括帧类型指示,都使用较大的带宽发送,例如20MHz的带宽;IoT部分包括IoT-STF,IoT-LTF,IoT-SIG和IoT数据部分(有效载荷),使用小于20MHz的带宽发送,例如5MHz的带宽。
接收到该PPDU的传统宽带设备(例如支持802.11ax或802.11ax之前标准的设备)仅能解码读懂传统前导码部分中的L-STF,L-LTF和L-SIG,而不能解码帧类型指示和IoT部分;下一代的宽带设备(例如支持802.11ax的下一代标准的设备),可以读懂传统前导码部分和帧类型指示,读取到帧类型指示后确定该帧类型字段后的内容为IoT数据部分,则下一代宽带设备不再继续解析该PPDU的IoT部分,直接执行退避过程,可以进一步降低功耗;并且,通过解码读懂传统前导码部分中的L-STF,L-LTF和L-SIG,下一代宽带设备会知晓信道已经被占用,会执行退避过程,避免产生冲突;接收到该PPDU的IoT设备(例如可解码本申请涉及的IoT数据部分的设备),由于其工作在窄带,所以不能解码读懂前面的传统前导码部分以及帧类型指示,只能解码IoT部分,因此,根据IoT部分的IoT-STF序列,可以对IoT数据部分的进行时间同步和自动增益控制AGC,从而解析得到其中承载的IoT数据。
可以看出,利用上述本申请提供的PPDU进行数据传输,不但可以与宽带设备进行通信,也可以与占用较窄带宽的IoT设备进行通信,兼容性好,且在IoT数据部分之前携带帧类型指示,可以避免下一代宽带设备解码整个PPDU,进一步降低下一代宽带设备的功耗。
在一种可能的实现方式中,所述小于20MHz的带宽包括频域k个子载波,所述同步调整指示信息包括所述频域k个子载波的序列值经过反向快速傅里叶变换(Inverse Fast Fourier Transform,IFFT)后得到的信息,所述k个子载波的序列值是所述L-Preamble中的传统短训练序列L-STF在频域上的序列值的子集。
具体地,L-STF是由64个子载波传输的频域序列值(这里用L-S1进行表示)经过IFFT变换后得到的,L-S1在子载波[-26,26]上传输的序列值如公式1所示:
Figure PCTCN2019096886-appb-000013
其中,S -26,26中的下角标(-26,26)指的是子载波编号为-26到26之间的53个子载波,S -26,26则对应子载波编号为-26到26之间的53个子载波的序列值,公式1给出了L-S1中的53个频域序列的值,每一个值代表一个子载波上传输的值,此外,在上述53个子载波 的左端还包括6个边带子载波,其序列值均为0,在上述53个子载波的右端还包括5个边带子载波,其序列值也为0,它们一起构成了64点的频域序列L-S1。由于左右两端靠近邻近信道,所以这11个值为0边带子载波起到了保护间隔的作用,可以防止邻近信道干扰。值得说明的是,每两个相邻子载波间的间隔是312.5kHz,L-S1中包括的64点的频域序列在进行64点IFFT及后续一系列处理后得到L-STF,在20MHz的信道上发送。
本申请涉及到的IoT-STF是由频域k个子载波的序列值经过IFFT变换后得到的,k的取值范围是大于0小于等于64的正整数,而且,这k个子载波的序列值是上述L-S1在频域上的序列值的子集。
可以理解,为了针对IoT网络进行设计和优化,实现IoT网络中的时间同步和AGC调整,可以基于现有的L-STF设计出本申请的IoT-STF。
在一种可能的实现方式中,所述频域k个子载波的序列值包括:频域27个子载波的序列值IoT-S1 -13,13
具体地,IoT-S1 -13,13中包含的27个子载波的序列值是L-S1在频域上的序列值的子集。
在一种可能的实现方式中,所述频域k个子载波的序列值还包括:频域5个边带子载波的序列值,所述5个边带子载波的序列值为0,其中,所述IoT-S1 -13,13两端分别包括所述5个边带子载波中的a个边带子载波和所述5个边带子载波中的b个边带子载波,所述a和b为正整数且a+b=5。
具体地,这5个边带子载波的序列值和上述L-S1中的11个的边带子载波的作用类似,起到保护间隔的作用,可以防止邻近信道干扰。它们与IoT-S1 -13,13一起构成了频域32点频域序列IoT-S1,例如,IoT-S1左端可以包括1个边带子载波的序列值,右端包括4个边带子载波的序列值;又例如IoT-S1左端可以包括2个边带子载波的序列值,右端包括3个边带子载波的序列值;或者是其它满足条件a+b=5的组合,本申请对此不做限定。
需要说明的是,同步调整指示信息是频域子载波上的一系列序列值经过IFFT后得到的信息,而为了满足IFFT快速算法的要求,其对应的子载波上的序列值的个数应为2的N次方(N为正整数),比如2,4,8,16,32,64等,但是为了更加高效的利用频率资源,当带宽B包括M个子载波,选用的序列值的个数可以为满足2 N≤M中的N的最大值;换句话说,也就是当选用的序列值的个数(IFFT点数)为2 N时,其带宽包括的子载波个数最小可以为2 N
举例来说,对于承载同步指示信息的带宽包括52个子载波,例如是52-tone RU,每两个相邻子载波间的间隔为78.125KHz,也可以选用包括本申请实施例提出的频域上32个子载波的序列值的频域序列。
又例如,对于承载同步指示信息的带宽包括32个子载波,也可以选用包括本申请实施例提出的频域上32个子载波的序列值的频域序列。
在一种可能的实现方式中,所述
Figure PCTCN2019096886-appb-000014
Figure PCTCN2019096886-appb-000015
具体地,IoT-S1 -13,13是在公式1所对应的S -26,26的基础上变换而来,通过在该S -26,26的两端的第二位置和倒数第二位置各去掉一个值为0的序列值,对于处于第二位置和倒数 第二位置之间的序列值,通过固定间隔(即每隔两个序列值)移除循环出现的两个值为0的序列值。通过上述变换,即可得到IoT-S1 -13,13对应的27个子载波的序列值,需要说明的是,该IoT-S1 -13,13中的27个子载波的两端分别包括a个序列值为0的边带子载波和b个序列值为0的边带子载波,a和b为正整数且满足a+b=5,和上述L-S1中的11个边带子载波的作用类似,起到保护间隔的作用,可以防止邻近信道干扰,它们与IoT-S1 -13,13一起构成了32点的频域序列IoT-S1。例如,在该IoT-S1 -13,13左端还包括3个边带子载波序列值,且这3个序列值都为0,右端包括2个边带子载波序列值,这2个序列值也为0,就可以得到32点的频域序列IoT-S1,可以进行32点的IFFT。
可以理解,由于该IoT-S1是S -26,26通过固定间隔移除部分循环出现的值为0的序列值而得到的,所以根据傅里叶变换的性质,该IoT-S1进行32点IFFT后,其功率峰均比(Peak-to-Average Power Ratio,PAPR)特性与L-STF对应的PAPR特性保持一致,而在时域上,L-S1经过IFFT后包括4个周期,添加25%的循环前缀(Cyclic Prefix,CP)后,得到的L-STF中每个时域符号的周期数为5,IoT-S1经过IFFT后包括2个周期,添加25%长度的循环前缀(Cyclic Prefix,CP)后,每个IoT-S1所对应的一个时域符号(用IoT-s1表示)就包含2.5个周期。添加循环前缀的具体方法,本申请不做具体限定,例如,可以将每个周期尾部的25%周期长度添加于每个周期的首部。
需要说明的是,本申请实施例并不限定频域序列对应的子载波之间的子载波间隔,只要满足在小于20MHz的窄带上传输即可。例如,若承载IoT数据部分的带宽包括32个子载波,且每两个子载波间的间隔为78.125KHz时,经过32点的IFFT变换后包括2个周期,且每个周期长度为6.4us。
一个示例中,IoT-S1所对应的时域表达式IoT-STF1中,也可以包括N个时域符号,N为大于等于1的整数。值得说明的是,一个完整的L-S1经过IFFT后得到的L-STF包含两个时域符号,所以两个时域符号一共包含了10个循环周期。若希望IoT-S1经过IFFT后构成也包含10个循环周期的IoT-STF1,而每个IoT-s1包含2.5个周期,所以可以将IoT-s1重复4次以得到IoT-STF1,即IoT-STF1中包括4个时域符号,其表达式如公式2所示:
IoT-STF1={IoT-s1,IoT-s1,IoT-s1,IoT-s1}      公式2
其中,IoT-STF1表示IoT-S1对应的时域表达式,IoT-s1表示每个IoT-S1所对应的时域符号。
可以理解,IoT-S1与IoT-STF1构成了函数关系,由IoT-S1可以得到唯一的IoT-STF1。
可以看出,上述实施例提供的IoT-STF1对应的PAPR与L-STF对应的PAPR特性保持一致,而且IoT-STF1与L-STF具有相同的周期特性,此外,IoT-STF1也具有与L-STF相似的特性,具有良好的时间同步特性和PAPR特性,可以为在窄带上传输的IoT数据部分提供时间同步和AGC调整功能,使得接收装置可以正确的接收和解码在窄带上传输的IoT数据部分。
在一种可能的实现方式中,所述
Figure PCTCN2019096886-appb-000016
Figure PCTCN2019096886-appb-000017
具体地,与上述实施例类似,该IoT-S1 -13,13也是在公式1所对应的S -26,26的基础上 变换而来,通过在该S -26,26的两端去掉开头的13个序列值和结尾的13个序列值,只保留中间的27个序列值。通过上述变换,即可得到IoT-S1 -13,13对应的27个子载波的序列值,需要说明的是,该IoT-S1 -13,13的对应的27个子载波的两端分别包括a个序列值为0的边带子载波,和b个序列值为0的边带子载波,a和b为正整数且满足a+b=5,和上述L-S1中的11个边带子载波的作用类似,起到保护间隔的作用,可以防止邻近信道干扰,它们与IoT-S1 -13,13一起构成了频域32点的频域序列IoT-S1,例如,在该IoT-S1左端加上3个边带子载波对应的3个序列值,这3个序列值为0,右端加上2个边带子载波对应的2个序列值,这2个序列值为0,就可以得到32点的频域序列IoT-S1,可以进行32点的IFFT。
可以理解,由于该IoT-S1是S -26,26通过直接去掉序列的开头和结尾的序列值而得到的,所以根据傅里叶变换的性质,该IoT-S1进行32点IFFT后,其PAPR特性与L-STF对应的PAPR特性类似,但有所区别,64点大小的原始L-S1的PAPR值为1.7084,而经过上述压缩后的IoT-S1的PAPR值为3.3604。而在时域上,IoT-S1经过IFFT后包括4个周期,添加25%的循环前缀后得到一个时域符号,每个时域符号(用IoT-s1表示)所对应的周期数为5,其中,每个时域符号包括1个周期的CP。
一个示例中,IoT-S1所对应的时域表达式IoT-STF1中,也可以包括N个时域符号,N为大于等于1的整数。现有协议中,一个完整的L-S1经过IFFT后得到的L-STF包含两个时域符号,每个时域符号包括5个周期,这5个周期中包括1个周期的CP,所以两个时域符号一共包含了10个循环周期。若希望IoT-S1经过IFFT后构成也包含10个循环周期的IoT-STF1,而每个IoT-s1包含5个周期,所以只需要将IoT-s1重复2次即可,即IoT-STF1中包括2个时域符号,其表达式如公式3所示:
IoT-STF1={IoT-s1,IoT-s1}      公式3
其中,IoT-STF1表示IoT-S1对应的时域表达式,IoT-s1表示每个IoT-S1所对应的时域符号。
可以理解,IoT-S1与IoT-STF1构成了函数关系,由IoT-S1可以得到唯一的IoT-STF1。
这里,由于上述提供的IoT-STF1的PAPR特性与L-STF对应的PAPR特性并不完全一致,偏差较大,所以另一种方式是对该IoT-S1做出一些调整,使调整后得到的序列具有更低的PAPR值和较好的同步性能。
而为了能够使调整后得到的序列仍具有良好的同步性能以及与上述提供的IoT-S1其它特性保持一致,所以调整后的序列需要满足与IoT-S1具有相同的非零值位置,只是非零值位置上的具体数值不同,但仍是±1与±j的组合。
本申请实施例中,可以采用遍历可能的IoT-STF序列的方式,通过仿真计算获得更低PAPR值和较好的同步性能的序列,具体包括:
步骤一:将IoT-STF所对应的频域序列(包含边带子载波的序列值)进行IFFT转化为时域信号Z i
值得说明的是,这里的IoT-STF所对应的频域序列应该是包含多个序列,这些序列具有相同的非零值位置,只是非零值位置上的数值不同,而且在进行IFFT转化后得到多个Z i,Z i为数字域信号(即时间离散信号)。
步骤二:将多个Z i与本地存储的Z i中的一个周期信号Y i进行互相关,计算得到多个峰值与次峰值的比值(即峰值除以次峰值),选取多个峰值与次峰值的比值的绝对值大于第一阈值的序列,保证其对应的频域序列具有较好的同步性能。其中,第一阈值可以根据需要进行设定,本申请不做限定。
步骤三:在峰值与次峰值的比值的绝对值大于第一阈值的情况下,对步骤二中选定出来的具有较好的同步性能的序列经过IFFT变换后的时域信号进行过采样,采样倍数可以根据需要进行设定,本申请采用5倍过采样,得到过采样后的多个时域信号X i;计算每个X i对应的PAPR,选取最佳PAPR所对应的频域序列。该PAPR可由公式4计算得到,公式4为:
Figure PCTCN2019096886-appb-000018
其中,X i为时域上的采样信号,i为采样序号,max为取最大值函数,mean为取平均值函数。通过计算仿真,选取在保持峰值与次峰值的比值的绝对值较大情况下获得最佳PAPR的IoT-STF序列。
参见表2,表2是本申请选取出的在保持峰值/次峰值的比值的绝对值大于第一阈值情况下获得最佳PAPR的IoT-STF所对应的频域序列。
表2 具有与IoT-S1相同的非零值位置,但PAPR较低的序列
Figure PCTCN2019096886-appb-000019
由表2可以看出,所有选出来的频域序列所对应的峰值/次峰值的比值的绝对值都较大,而且PAPR的值较小,具有良好的同步性能,可以任意选择一个序列,添加边带子载波的序列值后经过32点的IFFT得到IoT-STF。
值得说明的是,所有选出来的频域序列中不仅包含27个子载波的序列值,此外,在上 述的频域序列中的27个子载波的左端还包括a个序列值为0的边带子载波,右端包括b个序列值为0的边带子载波(表2没有表示出来),a和b满足条件:a和b为正整数且a+b=5,这5个序列值为0的边带子载波和上述L-S1中的11个边带子载波的作用类似,起到保护间隔的作用,可以防止邻近信道干扰,例如,在选出来的频域序列左端包括3个为0的序列值,这3个序列值对应3个边带子载波,右端包括2个为0的序列值,这2个序列值对应2个边带子载波,可以得到32点的频域序列,可以进行32点IFFT。
值得说明的是,IoT-S1中包含27个子载波的序列值和5个边带子载波的序列值,可以进行32点IFFT,因此,当承载IoT数据部分的带宽,包括32个子载波,可以进行32点的IFFT时,都可以根据上述L-S1得到IoT-STF。此外,本申请实施例设计的序列,既可以应用于基于802.11ax的下一代标准中,还可以应用于其他标准中。以802.11ax举例来说,若上述IoT PPDU中的有效载荷(即IoT PSDU)占用52-tone RU带宽时,该52-tone RU包括52个子载波,其每两个子载波间的间隔为78.125KHz,满足32点IFFT的需求,因此,可以采用本申请实施例设计的IoT-S1 -13,13序列,即IoT-S1 -13,13序列可以适用于带宽为52-tone RU的情形中。但本申请实施例并不局限应用于52-tone RU,只要满足32点的IFFT大小的IoT-STF,都可以采用本申请提供的序列,也就是说,对于PSDU占用32-tone RU以及32-tone RU以上的带宽时,都可以采用本申请实施例提供的IoT-S1,本申请对此不做限定。
基于本申请设计的短训练序列IoT-STF,接收装置可以根据IoT-STF序列实现时间同步功能和AGC调整功能,支持IoT设备实现窄带传输。
本申请实施例还提供另一种序列。在一种可能的实现方式中,所述频域k个子载波的序列值包括:频域53个子载波的序列值IoT-S2 -26,26
具体地,IoT-S2 -26,26中包含的53个子载波的序列值是L-S1在频域上的序列值的子集。
在一种可能的实现方式中,所述频域k个子载波的序列值还包括:频域11个边带子载波的序列值,所述11个边带子载波的序列值为0,其中,所述IoT-S2 -26,26两端分别包括所述11个边带子载波中的a1个边带子载波和所述11个边带子载波中的b1个边带子载波,所述a1和b1为正整数且a1+b1=11。
具体地,这11个边带子载波的序列值起到保护间隔的作用,可以防止邻近信道干扰。它们与IoT-S2 -26,26一起构成了频域64点频域序列IoT-S2,例如,IoT-S2左端可以包括6个边带子载波的序列值,右端包括5个边带子载波的序列值;或者是IoT-S2左端可以包括5个边带子载波的序列值,右端包括6个边带子载波的序列值;或者是其它满足条件a1+b1=11的组合,本申请对此不做限定。值得说明的是,IoT-S2进行64点IFFT及后续一系列处理后,将在小于20MHz的窄带信道上发送。
在一种可能的实现方式中,所述
Figure PCTCN2019096886-appb-000020
Figure PCTCN2019096886-appb-000021
具体地,IoT-S2 -26,26与公式1所对应的S -26,26相类似,都具有53个子载波的序列值, 需要说明的是,该IoT-S2 -26,26中的53个子载波的两端分别包括a1个序列值为0的边带子载波和b1个序列值为0的边带子载波,a1和b1为正整数且满足a1+b1=11,和上述L-S1中的11个值为0的边带子载波的作用类似,起到保护间隔的作用,可以防止邻近信道干扰,它们与IoT-S2 -26,26一起构成了频域64点的频域序列IoT-S2。举例来说,在该IoT-S2 -26,26左端还包括6个边带子载波的序列值,且这6个序列值都为0,右端包括5个边带子载波的序列值,这5个序列值也为0,就可以得到64点的频域序列IoT-S2,可以进行64点的IFFT。
可以理解,由于IoT-S2 -26,26与公式1所对应的S -26,26相类似,所以IoT-S2进行64点IFFT后,也具有良好的同步性能和PAPR特性,而在时域上,IoT-S2经过IFFT后周期数为4,添加25%的长度CP后,每个IoT-S2所对应的时域符号(用IoT-s2表示)就包含5个周期。
一个示例中,IoT-S2所对应的时域表达式IoT-STF2中,也可以包括N个时域符号,N为大于等于1的整数。值得说明的是,一个完整的L-S1经过IFFT后得到的L-STF包含两个时域符号所以两个时域符号一共包含了10个循环周期。若希望IoT-S2经过IFFT后构成也包含10个循环周期的IoT-STF2,而每个IoT-s2包含5个周期,所以只需要将IoT-s2重复2次即可,即IoT-STF2中包括2个时域符号,其在时域上的表达式如公式5所示:
IoT-STF2={IoT-s2,IoT-s2}      公式5
其中,IoT-STF2表示IoT-S2对应的时域表达式,IoT-s2表示每个IoT-S2所对应的时域符号。
可以理解,IoT-S2与IoT-STF2构成了函数关系,由IoT-S2可以得到唯一的IoT-STF2。
可以看出,上述实施例提供的IoT-STF2对应的PAPR与L-STF对应的PAPR特性完全类似,而且IoT-STF2与L-STF对应的时域表达式具有相同的周期特性,此外,IoT-STF2也具有与L-STF相似的特性,具有良好的时间同步特性和PAPR特性,可以为在窄带上传输的IoT数据部分提供时间同步和AGC调整功能。
值得说明的是,IoT-S2中包含53个子载波的序列值和11个边带子载波的序列值,可以进行64点IFFT,因此,当IoT数据部分的带宽,包括64个子载波,可以进行64点的IFFT时,都可以采用上述频域序列值得到短训练序列。例如,若上述IoT PPDU中的有效载荷(即IoT PSDU)占用106-tone RU带宽,包括106个子载波,满足64点IFFT的需求,因此本申请实施例设计的序列可以适用于带宽为106-tone RU的情形中。但本申请实施例所提供的IoT-STF2并不局限于应用于106-tone RU,只要满足64点的IFFT大小的IoT-STF,都可以采用本申请提供的序列,也就是说,对于IoT数据部分占用64-tone RU以及64-tone RU以上的带宽时,都可以采用本申请实施例提供的IoT-S2,本申请对此不做限定。
本申请实施例提供又一种序列,所述频域k个子载波的序列值包括:频域13个子载波的序列值IoT-S3 -6,6
具体地,IoT-S3 -6,6中包含的13个子载波的序列值是L-S1在频域上的序列值的子集。
在一种可能的实现方式中,所述频域k个子载波的序列值还包括:频域3个边带子载波的序列值,所述3个边带子载波的序列值为0,其中,所述IoT-S3 -6,6两端分别包括所 述3个边带子载波中的a2个边带子载波和所述边带子载波中的b2个边带子载波,所述a2和b2为正整数且a2+b2=3。
具体地,这3个边带子载波和上述L-S1中的11个边带子载波的作用类似,起到保护间隔的作用,可以防止邻近信道干扰。它们与IoT-S3 -6,6一起构成了频域16点频域序列IoT-S3,可以理解,IoT-S3左端可以包括2个边带子载波的序列值,右端包括1个边带子载波的序列值,或者是IoT-S3左端可以包括1个边带子载波的序列值,右端包括2个边带子载波的序列值,、所以对应的IoT-S3进行16点IFFT及后续一系列处理后,将在远小于20MHz的窄带信道上发送。
在一种可能的实现方式中,所述
Figure PCTCN2019096886-appb-000022
Figure PCTCN2019096886-appb-000023
具体地,IoT-S3 -6,6是在公式1所对应的S -26,26的基础上变换而来,通过在该S -26,26的两端的首部位置和尾部位置各去掉2个值为0的序列值,对于处于首部位置和尾部位置之间的序列值,通过固定间隔(即每隔一个序列值)移除循环出现的三个值为0的序列值。通过上述变换,即可得到IoT-S3 -6,6对应的13个子载波的序列值,需要说明的是,该IoT-S3 -6,6中的13个子载波的两端分别包括a2个序列值为0的边带子载波和b2个序列值为0的边带子载波,a2和b2为正整数且满足a2+b2=3,它们与IoT-S3 -6,6一起构成了频域16点的频域序列IoT-S3。例如,在该IoT-S3 -6,6左端还包括2个边带子载波的序列值,且这2个序列值都为0,右端包括1个边带子载波的序列值,这1个序列值也为0,就可以得到16点的频域序列IoT-S3,可以进行16点的IFFT。
可以理解,由于该IoT-S3是S -26,26通过固定间隔移除部分循环出现的值为0的序列值而得到的,所以根据傅里叶变换的性质,该IoT-S3进行16点IFFT后,其PAPR特性与L-STF对应的PAPR特性保持一致,而在时域上,IoT-S3经过IFFT后所对应的周期数为1,添加25%长度的CP后,每个IoT-S3所对应的时域符号(用IoT-s3表示)就包含1.25个周期。
一个示例中,IoT-S3所对应的时域表达式IoT-STF3中,也可以包括N个时域符号,N为大于等于1的整数。值得说明的是,一个完整的L-S1经过IFFT后得到的L-STF包含两个时域符号,所以两个时域符号一共包含了10个循环周期。若希望IoT-S3经过IFFT后构成也包含10个循环周期的IoT-STF3,而每个IoT-s3包含1.25个周期,所以只需要将IoT-s3重复8次即可,即IoT-STF3中包括8个时域符号,其表达式如公式6所示:
IoT-STF3={IoT-s3,IoT-s3,IoT-s3,IoT-s3,IoT-s3,IoT-s3,IoT-s3,IoT-s3}公式6
其中,IoT-STF3表示IoT-S3对应的时域表达式,IoT-s3表示每个IoT-S3所对应的时域符号。
可以理解,IoT-S3与IoT-STF3构成了函数关系,由IoT-S3可以得到唯一的IoT-STF3。
可以看出,上述实施例提供的IoT-STF3对应的PAPR与L-STF对应的PAPR特性保持一致,而且IoT-STF3与L-STF具有相同的周期特性,此外,IoT-STF3也具有与L-STF相似的特性,即具有良好的时间同步特性和PAPR特性,可以为在窄带上传输的IoT数据部分提供时间同步和AGC调整功能。
值得说明的是,IoT-S3中包含13个子载波的序列值和3个边带子载波的序列值,可以进行16点IFFT,因此,当IoT数据部分的带宽,包括16个子载波,可以进行16点的IFFT 时,都可以采用上述频域序列值得到短训练序列。例如,若IoT PPDU中的有效载荷(即IoT PSDU)占用26-tone RU带宽,此26-tone RU包括26个子载波,满足16点IFFT的需求,因此,本申请实施例设计的序列可以适用于带宽为26-tone的情形中。但本申请实施例所提供的IoT-S3并不局限于应用于26-tone RU,只要满足16点的IFFT大小的IoT-STF,都可以采用本申请提供的序列,也就是说,对于IoT数据部分占用16-tone RU以及16-tone RU以上的带宽时,都可以采用本申请实施例提供的IoT-S3,本申请对此不做限定。
基于该实施方式,可以通过本申请设计的短训练序列IoT-STF为窄带上传输的PPDU提供时间同步功能和AGC调整功能。
本申请实施例所设计的序列,还可以用于上行通信中,即携带在上行PPDU中,也就是说发送装置可以是STA,接收装置可以是AP,对应上行通信过程。
具体地,站点向AP发送PPDU,同步调整指示信息用于对数据字段(即IoT数据部分)进行时间同步和AGC调整。同步调整指示信息也可称为物联网短训练序列IoT-STF,可以理解,同步调整指示信息在具体标准中可能会用其它名称,本申请选用IoT-STF来表示,只是为了后续叙述方便,并不对此做出限制。
具体地,IoT设备可以是接收到AP发送的信息请求消息后向该AP发送PPDU,也可以是IoT设备主动向AP发送PPDU。
进一步地,由于IoT设备工作在窄带,所以IoT设备需要在远小于20MHz的信道带宽上,例如5MHz的带宽上向AP发送PPDU。
值得说明的是,本申请涉及到的带宽可以是正交频分复用(Orthogonal Frequency Division Multiplexing,OFDM)中的资源单元,也可以是其它的频率资源,本申请并不对此做出限制。
在一种可能的PPDU的格式中,包括IoT-STF和其它IoT部分字段,该IoT-STF用于其它IoT部分字段中的IoT数据部分进行时间同步和AGC调整,其它IoT部分字段承载IoT业务。
图7是本申请实施例提供的另一种IoT物理层聚合过程协议数据单元PPDU。在该IoT PPDU中,包括IoT-STF,IoT-LTF,IoT-SIG和IoT数据部分,它们所占用的带宽较小,需要说明的是,IoT-STF用于后续的IoT数据部分(即IoT PSDU)进行时间同步和AGC调整,对于其它IoT部分的具体功能等,本申请不做讨论。
值得说明的是,关于同步调整指示信息的具体设计和功能用途,可以参照上述图5方法实施例的叙述,本方法实施例与其相类似,故在此不再赘述。
此外,AP在接收到站点发送的PPDU后,对其中的IoT-STF进行提取,完成对IoT网络中传输的窄带PPDU的时间同步和AGC调整功能。
基于该实施方式,可以通过本申请设计的短训练序列IoT-STF为窄带上传输的PPDU提供时间同步功能和AGC调整功能。
为了便于更好地实施本申请实施例的上述方案,相应地,下面还提供用于配合实施上述方案的相关装置。
参见图8,图8为本申请实施例提供的一种通信装置的结构示意图,该通信装置100为接收装置,至少包括:接收模块110和处理模块120;其中:
接收模块110,用于接收发送装置发送的物理层聚合过程协议数据单元PPDU,所述PPDU包括同步调整指示信息和数据字段,所述同步调整指示信息和所述数据字段在小于20MHz的带宽上发送;
处理模块120,用于根据所述同步调整指示信息,对所述数据字段进行时间同步和自动增益控制AGC。
需要说明的是,本申请实施例中的通信装置100中的接收模块110接收的PPDU可对应参考上述各方法实施例中的PPDU的具体实现方式,这里不再赘述。
可以理解的,在上行通信中,装置100可以是接入点AP侧的装置,或,接入点AP内的芯片,以支持接入点AP实现上述方法中相应的功能;在下行通信中,装置100可以是站点STA侧的装置,或者是站点STA内的芯片,以支持STA实现上述方法中相应的功能。
参见图9,图9为本申请实施例提供的另一种通信装置的结构示意图,该通信装置200为发送装置,至少包括:生成模块210和发送模块220;其中:
生成模块210,用于生成PPDU,所述PPDU包括同步调整指示信息和数据字段;
发送模块220,用于在小于20MHz的带宽上发送所述同步调整指示信息和所述数据字段,其中,所述同步调整指示信息用于所述接收装置对所述数据字段进行时间同步和自动增益控制AGC。
需要说明的是,本申请实施例中的通信装置200中的生成模块210所生成的PPDU可对应参考上述各方法实施例中的PPDU的具体实现方式,这里不再赘述。
可以理解的,在下行通信中,装置200可以是接入点AP侧的装置,或,接入点AP内的芯片;在上行通信中,装置200可以是站点STA侧的装置,或者是站点STA内的芯片。
基于该实施方式,可以在小于20MHz的带宽级别上支持IoT数据部分进行时间同步和AGC调整。
参见图10,图10为本申请实施例提供的另一种通信装置300。该通信装置300是接收装置,至少包括:处理器310、存储器320和收发器330,该处理器310、存储器320和收发器330通过总线340相互连接。
存储器320包括但不限于是随机存取存储器(Random Access Memory,RAM)、只读存储器(Read-Only Memory,ROM)或可擦除可编程只读存储器(Erasable Programmable Read-Only Mmory,EPROM或者快闪存储器),该存储器320用于存储相关指令及数据。
该收发器330可以包括一个接收器和一个发送器,例如,无线射频模块,以下描述的处理器310接收或者发送某个消息,具体可以理解为该处理器310通过该收发器330来接收或者发送。
处理器310可以是一个或多个中央处理器(Central Processing Unit,CPU),在处理器310是一个CPU的情况下,该CPU可以是单核CPU,也可以是多核CPU。
该通信装置300中的处理器310用于读取该存储器320中存储的程序代码,执行以下 操作:
处理器310通过收发器330接收发送装置发送的PPDU,所述PPDU包括同步调整指示信息和数据字段,所述同步调整指示信息和所述数据字段在小于20MHz的带宽上发送。
处理器310根据所述同步调整指示信息,对所述数据字段进行时间同步和自动增益控制AGC。
需要说明的是,接收装置300如何接收PPDU以及PPDU的具体设计还可以根据上述方法实施例中的方法具体实现,此处不再赘述。
可以理解的,在上行通信中,装置300可以是接入点AP侧的装置,或者是接入点AP内的芯片;在下行通信中,装置300可以是站点STA侧的装置,或者是站点STA内的芯片。
基于该实施方式,可以在小于20MHz的带宽级别上支持IoT数据部分进行时间同步和AGC调整。
参见图11,图11为本申请实施例提供的另一种通信装置400。该通信装置400为发送装置,至少包括:处理器410、存储器420和收发器430,该处理器410、存储器420和收发器430通过总线440相互连接。
存储器420包括但不限于是随机存取存储器(Random Access Memory,RAM)、只读存储器(Read-Only Memory,ROM)或可擦除可编程只读存储器(Erasable Programmable Read-Only Mmory,EPROM或者快闪存储器),该存储器420用于存储相关指令及数据。
该收发器430可以包括一个接收器和一个发送器,例如,无线射频模块,以下描述的处理器410接收或者发送某个消息,具体可以理解为该处理器410通过该收发器430来接收或者发送。
处理器410可以是一个或多个中央处理器(Central Processing Unit,CPU),在处理器410是一个CPU的情况下,该CPU可以是单核CPU,也可以是多核CPU。
该通信装置400中的处理器410用于读取该存储器420中存储的程序代码,执行以下操作:
处理器410生成PPDU,所述PPDU包括同步调整指示信息和数据字段。
处理器410通过收发器430在小于20MHz的带宽上发送所述同步调整指示信息和所述数据字段,其中,所述同步调整指示信息用于所述接收装置对所述数据字段进行时间同步和自动增益控制AGC。
需要说明的是,发送装置400如何发送PPDU以及PPDU的具体设计还可以根据上述方法实施例中的方法具体实现,此处不再赘述。
可以理解的,在下行通信中,装置400可以是接入点AP侧的装置,或者是接入点AP内的芯片;在上行通信中,装置400可以是站点STA侧的装置,或者是站点STA内的芯片。
基于该实施方式,可以在小于20MHz的带宽级别上支持IoT数据部分进行时间同步和AGC调整。
本申请实施例还提供了一种计算机可读存储介质,该计算机可读存储介质中存储有指令,当其在计算机或处理器上运行时,使得计算机或处理器执行上述任一个物理层协议数据单元的通信方法中的一个或多个步骤。上述装置的各组成模块如果以软件功能单元的形 式实现并作为独立的产品销售或使用时,可以存储在所述计算机可读取存储介质中。
上述计算机可读存储介质可以是前述任一实施例所述的通信装置的内部存储单元,例如通信装置的硬盘或内存。上述计算机可读存储介质也可以是上述通信装置的外部存储设备,例如上述通信装置上配备的插接式硬盘,智能存储卡(Smart Media Card,SMC),安全数字(Secure Digital,SD)卡,闪存卡(Flash Card)等。进一步地,上述计算机可读存储介质还可以既包括上述通信装置的内部存储单元也包括外部存储设备。上述计算机可读存储介质用于存储上述计算机程序以及上述通信装置所需的其他程序和数据。上述计算机可读存储介质还可以用于暂时地存储已经输出或者将要输出的数据。
本领域普通技术人员可以理解实现上述实施例方法中的全部或部分流程,可通过计算机程序来指令相关的硬件来完成,该的程序可存储于计算机可读取存储介质中,该程序在执行时,可包括如上述各方法的实施例的流程。而前述的存储介质包括:ROM、RAM、磁碟或者光盘等各种可存储程序代码的介质。
本申请实施例方法中的步骤可以根据实际需要进行顺序调整、合并和删减。
本申请实施例装置中的模块可以根据实际需要进行合并、划分和删减。
以上所述,以上实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的范围。

Claims (34)

  1. 一种物理层聚合过程协议数据单元的通信方法,其特征在于,包括:
    接收装置接收发送装置发送的物理层聚合过程协议数据单元PPDU,所述PPDU包括同步调整指示信息和数据字段,所述同步调整指示信息和所述数据字段在小于20MHz的带宽上发送;
    所述接收装置根据所述同步调整指示信息,对所述数据字段进行时间同步和自动增益控制AGC。
  2. 一种物理层聚合过程协议数据单元的通信方法,其特征在于,包括:
    发送装置向接收装置发送物理层聚合过程协议数据单元PPDU,所述PPDU包括同步调整指示信息和数据字段,所述同步调整指示信息和所述数据字段在小于20MHz的带宽上发送;
    其中,所述同步调整指示信息用于所述接收装置对所述数据字段进行时间同步和自动增益控制AGC。
  3. 如权利要求1或2所述的方法,其特征在于,所述小于20MHz的带宽包括频域k个子载波,所述同步调整指示信息包括所述频域k个子载波的序列值经过反向快速傅里叶变换IFFT后得到的信息,所述k个子载波的序列值是传统前导码L-Preamble中的传统短训练序列L-STF在频域上的序列值的子集。
  4. 如权利要求3所述的方法,其特征在于,所述频域k个子载波的序列值包括:频域27个子载波的序列值IoT-S1 -13,13
  5. 如权利要求4所述的方法,其特征在于,所述频域k个子载波的序列值还包括:频域5个边带子载波的序列值,所述边带子载波的序列值为0,其中,所述IoT-S1 -13,13两端分别包括所述5个边带子载波中的a个边带子载波和所述5个边带子载波中的b个边带子载波,所述a和b为正整数且a+b=5。
  6. 如权利要求5所述的方法,其特征在于,所述
    Figure PCTCN2019096886-appb-100001
    {0,1+j,0,-1-j,0,1+j,0,-1-j,0,-1-j,0,1+j,0,0,0,-1-j,0,-1-j,0,1+j,0,1+j,0,1+j,0,1+j,0}。
  7. 如权利要求5所述的方法,其特征在于,所述
    Figure PCTCN2019096886-appb-100002
    {0,-1-j,0,0,0,-1-j,0,0,0,1+j,0,0,0,0,0,0,0,-1-j,0,0,0,-1-j,0,0,0,1+j,0}。
  8. 如权利要求1或2所述的方法,其特征在于,所述小于20MHz的带宽包括频域k个子载波,所述同步调整指示信息包括所述频域k个子载波的序列值经过IFFT后得到的信 息,所述频域k个子载波的序列值包括IoT-S1 -13,13,所述IoT-S1 -13,13为以下序列中的其中之一:
    Figure PCTCN2019096886-appb-100003
    {0,1+j,0,0,0,1+j,0,0,0,-1-j,0,0,0,0,0,0,0,-1-j,0,0,0,1+j,0,0,0,-1-j,0};
    Figure PCTCN2019096886-appb-100004
    {0,1+j,0,0,0,-1-j,0,0,0,1+j,0,0,0,0,0,0,0,1+j,0,0,0,-1-j,0,0,0,-1-j,0};
    Figure PCTCN2019096886-appb-100005
    {0,1+j,0,0,0,-1-j,0,0,0,1+j,0,0,0,0,0,0,0,-1-j,0,0,0,-1-j,0,0,0,1+j,0};
    Figure PCTCN2019096886-appb-100006
    {0,1+j,0,0,0,-1-j,0,0,0,-1-j,0,0,0,0,0,0,0,1+j,0,0,0,-1-j,0,0,0,1+j,0};
    Figure PCTCN2019096886-appb-100007
    {0,-1-j,0,0,0,1+j,0,0,0,1+j,0,0,0,0,0,0,0,-1-j,0,0,0,1+j,0,0,0,-1-j,0};
    Figure PCTCN2019096886-appb-100008
    {0,-1-j,0,0,0,1+j,0,0,0,-1-j,0,0,0,0,0,0,0,1+j,0,0,0,1+j,0,0,0,-1-j,0};
    Figure PCTCN2019096886-appb-100009
    {0,-1-j,0,0,0,1+j,0,0,0,-1-j,0,0,0,0,0,0,0,-1-j,0,0,0,1+j,0,0,0,1+j,0};
    Figure PCTCN2019096886-appb-100010
    {0,-1-j,0,0,0,-1-j,0,0,0,1+j,0,0,0,0,0,0,0,1+j,0,0,0,-1-j,0,0,0,1+j,0}。
  9. 如权利要求3所述的方法,其特征在于,所述频域k个子载波的序列值包括:频域53个子载波的序列值IoT-S2 -26,26
  10. 如权利要求9所述的方法,其特征在于,所述频域k个子载波的序列值还包括:频域11个边带子载波的序列值,所述边带子载波的序列值为0,其中,所述IoT-S2 -26,26两端分别包括所述11个边带子载波中的a1个边带子载波和所述11个边带子载波中的b1个边带子载波,所述a1和b1为正整数且a1+b1=11。
  11. 如权利要求10所述的方法,其特征在于,所述
    Figure PCTCN2019096886-appb-100011
    {0,0,1+j,0,0,0,-1-j,0,0,0,1+j,0,0,0,-1-j,0,0,0,-1-j,0,0,0,1+j,0,0,0,0,0,0,0,-1-j,0,0,0,-1-j,0,0,0,1+j,0,0,0,1+j,0,0,0,1+j,0,0,0,1+j,0,0}。
  12. 如权利要求3所述的方法,其特征在于,所述频域k个子载波的序列值包括:频域13个子载波的序列值IoT-S3 -6,6
  13. 如权利要求12所述的方法,其特征在于,所述频域k个子载波的序列值还包括:频域3个边带子载波的序列值,所述边带子载波的序列值为0,其中,所述IoT-S3 -6,6两端分别包括所述3个边带子载波中的a2个边带子载波和所述边带子载波中的b2个边带子载波,所述a2和b2为正整数且a2+b2=3。
  14. 如权利要求13所述的方法,其特征在于,所述
    Figure PCTCN2019096886-appb-100012
    {1+j,-1-j,1+j,-1-j,-1-j,1+j,0,-1-j,-1-j,1+j,1+j,1+j,1+j}。
  15. 如权利要求3至14任意一项所述的方法,其特征在于,所述PPDU还包括传统前导码L-Preamble,所述L-Preamble在以20MHz为单位的带宽上发送。
  16. 一种通信装置,其特征在于,包括:
    接收模块,用于接收发送装置发送的物理层聚合过程协议数据单元PPDU,所述PPDU包括同步调整指示信息和数据字段,所述同步调整指示信息和所述数据字段在小于20MHz的带宽上发送;
    处理模块,用于根据所述同步调整指示信息,对所述数据字段进行时间同步和自动增益控制AGC。
  17. 一种通信装置,其特征在于,包括:
    生成模块,用于生成物理层聚合过程协议数据单元PPDU,所述PPDU包括同步调整指示信息和数据字段;
    发送模块,用于向接收装置发送所述PPDU,所述同步调整指示信息和所述数据字段在小于20MHz的带宽上发送,其中,所述同步调整指示信息用于所述接收装置对所述数据字段进行时间同步和自动增益控制AGC。
  18. 如权利要求16或17所述的通信装置,其特征在于,所述小于20MHz的带宽包括频域k个子载波,所述同步调整指示信息包括所述频域k个子载波的序列值经过反向快速傅里叶变换IFFT后得到的信息,所述k个子载波的序列值是传统前导码L-Preamble中的传统短训练序列L-STF在频域上的序列值的子集。
  19. 如权利要求18所述的通信装置,其特征在于,所述频域k个子载波的序列值包括:频域27个子载波的序列值IoT-S1 -13,13
  20. 如权利要求19所述的通信装置,其特征在于,所述频域k个子载波的序列值还包括:频域5个边带子载波的序列值,所述边带子载波的序列值为0,其中,所述IoT-S1 -13,13两端分别包括所述5个边带子载波中的a个边带子载波和所述5个边带子载波中的b个边带子载波,所述a和b为正整数且a+b=5。
  21. 如权利要求20所述的通信装置,其特征在于,所述
    Figure PCTCN2019096886-appb-100013
    {0,1+j,0,-1-j,0,1+j,0,-1-j,0,-1-j,0,1+j,0,0,0,-1-j,0,-1-j,0,1+j,0,1+j,0,1+j,0,1+j,0}。
  22. 如权利要求20所述的通信装置,其特征在于,所述
    Figure PCTCN2019096886-appb-100014
    {0,-1-j,0,0,0,-1-j,0,0,0,1+j,0,0,0,0,0,0,0,-1-j,0,0,0,-1-j,0,0,0,1+j,0}。
  23. 如权利要求16或17所述的通信装置,其特征在于,所述小于20MHz的带宽包括频域k个子载波,所述同步调整指示信息包括所述频域k个子载波的序列值经过IFFT后得 到的信息,所述频域k个子载波的序列值包括IoT-S1 -13,13,所述IoT-S1 -13,13为以下序列中的其中之一:
    Figure PCTCN2019096886-appb-100015
    {0,1+j,0,0,0,1+j,0,0,0,-1-j,0,0,0,0,0,0,0,-1-j,0,0,0,1+j,0,0,0,-1-j,0};
    Figure PCTCN2019096886-appb-100016
    {0,1+j,0,0,0,-1-j,0,0,0,1+j,0,0,0,0,0,0,0,1+j,0,0,0,-1-j,0,0,0,-1-j,0};
    Figure PCTCN2019096886-appb-100017
    {0,1+j,0,0,0,-1-j,0,0,0,1+j,0,0,0,0,0,0,0,-1-j,0,0,0,-1-j,0,0,0,1+j,0};
    Figure PCTCN2019096886-appb-100018
    {0,1+j,0,0,0,-1-j,0,0,0,-1-j,0,0,0,0,0,0,0,1+j,0,0,0,-1-j,0,0,0,1+j,0};
    Figure PCTCN2019096886-appb-100019
    {0,-1-j,0,0,0,1+j,0,0,0,1+j,0,0,0,0,0,0,0,-1-j,0,0,0,1+j,0,0,0,-1-j,0};
    Figure PCTCN2019096886-appb-100020
    {0,-1-j,0,0,0,1+j,0,0,0,-1-j,0,0,0,0,0,0,0,1+j,0,0,0,1+j,0,0,0,-1-j,0};
    Figure PCTCN2019096886-appb-100021
    {0,-1-j,0,0,0,1+j,0,0,0,-1-j,0,0,0,0,0,0,0,-1-j,0,0,0,1+j,0,0,0,1+j,0};
    Figure PCTCN2019096886-appb-100022
    {0,-1-j,0,0,0,-1-j,0,0,0,1+j,0,0,0,0,0,0,0,1+j,0,0,0,-1-j,0,0,0,1+j,0}。
  24. 如权利要求18所述的通信装置,其特征在于,所述频域k个子载波的序列值包括:频域53个子载波的序列值IoT-S2 -26,26
  25. 如权利要求24所述的通信装置,其特征在于,所述频域k个子载波的序列值还包括:频域11个边带子载波的序列值,所述边带子载波的序列值为0,其中,所述IoT-S2 -26,26两端分别包括所述11个边带子载波中的a1个边带子载波和所述11个边带子载波中的b1个边带子载波,所述a1和b1为正整数且a1+b1=11。
  26. 如权利要求25所述的通信装置,其特征在于,所述
    Figure PCTCN2019096886-appb-100023
    {0,0,1+j,0,0,0,-1-j,0,0,0,1+j,0,0,0,-1-j,0,0,0,-1-j,0,0,0,1+j,0,0,0,0,0,0,0,-1-j,0,0,0,-1-j,0,0,0,1+j,0,0,0,1+j,0,0,0,1+j,0,0,0,1+j,0,0}。
  27. 如权利要求18所述的通信装置,其特征在于,所述频域k个子载波的序列值包括:频域13个子载波的序列值IoT-S3 -6,6
  28. 如权利要求27所述的通信装置,其特征在于,所述频域k个子载波的序列值还包括:频域3个边带子载波的序列值,所述边带子载波的序列值为0,其中,所述IoT-S3 -6,6两端分别包括所述3个边带子载波中的a2个边带子载波和所述边带子载波中的b2个边带子载波,所述a2和b2为正整数且a2+b2=3。
  29. 如权利要求28所述的通信装置,其特征在于,所述
    Figure PCTCN2019096886-appb-100024
    {1+j,-1-j,1+j,-1-j,-1-j,1+j,0,-1-j,-1-j,1+j,1+j,1+j,1+j}。
  30. 如权利要求18至29任意一项所述的通信装置,其特征在于,所述PPDU还包括传统前导码L-Preamble,所述L-Preamble在以20MHz为单位的带宽上发送。
  31. 一种通信装置,包括处理器和存储器,所述存储器用于存储指令,所述处理器用于读取所述存储器中的指令并执行所述指令以使得所述通信装置实现权利要求1至15中任一项所述的方法。
  32. 一种计算机可读存储介质,所述计算机可读存储介质中存储有指令,当所述指令在计算机上运行时,使得计算机执行权利要求1至15中任一项所述的方法。
  33. 一种计算机程序产品,当所述计算机程序产品运行时,使得计算机执行权利要求1至15中任一项所述的方法。
  34. 一种装置用于执行权利要求1至15中任一项所述的方法。
PCT/CN2019/096886 2018-08-02 2019-07-19 物理层聚合过程协议数据单元的通信方法和相关装置 WO2020024818A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP19843604.0A EP3833133A4 (en) 2018-08-02 2019-07-19 COMMUNICATION PROCEDURE FOR THE CONVERGENCE PROCEDURE OF A PHYSICAL LAYER, LOG DATA UNIT AND ASSOCIATED DEVICE
US17/164,185 US11438204B2 (en) 2018-08-02 2021-02-01 Physical layer convergence procedure protocol data unit communication method and related apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810874155.6 2018-08-02
CN201810874155.6A CN110798293B (zh) 2018-08-02 2018-08-02 物理层聚合过程协议数据单元的通信方法和相关装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/164,185 Continuation US11438204B2 (en) 2018-08-02 2021-02-01 Physical layer convergence procedure protocol data unit communication method and related apparatus

Publications (1)

Publication Number Publication Date
WO2020024818A1 true WO2020024818A1 (zh) 2020-02-06

Family

ID=69232364

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/096886 WO2020024818A1 (zh) 2018-08-02 2019-07-19 物理层聚合过程协议数据单元的通信方法和相关装置

Country Status (4)

Country Link
US (1) US11438204B2 (zh)
EP (1) EP3833133A4 (zh)
CN (1) CN110798293B (zh)
WO (1) WO2020024818A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116866133A (zh) * 2020-05-18 2023-10-10 华为技术有限公司 Ppdu传输方法及装置
CN113765951B (zh) * 2020-06-02 2024-06-04 华为技术有限公司 传输物理层协议数据单元的方法和装置
CN114978835A (zh) * 2021-02-27 2022-08-30 华为技术有限公司 物理层协议数据单元的传输方法和通信装置
WO2023201724A1 (zh) * 2022-04-22 2023-10-26 Oppo广东移动通信有限公司 一种无线通信方法及装置、设备

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170041928A1 (en) * 2015-08-04 2017-02-09 Lg Electronics Inc. Method and device for generating sequence for stf field in wireless lan system
CN106797278A (zh) * 2015-08-06 2017-05-31 Lg电子株式会社 在无线lan系统中利用预定二进制序列生成训练信号的方法和设备
CN106849962A (zh) * 2017-02-09 2017-06-13 武汉米风通信技术有限公司 超窄带无线物联网接收信号的agc控制方法
WO2018031134A1 (en) * 2016-08-09 2018-02-15 Intel IP Corporation Preamble for extended range mode packet detection

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013122377A1 (ko) * 2012-02-14 2013-08-22 엘지전자 주식회사 무선랜 시스템에서 데이터 유닛 전송 방법 및 이를 지원하는 장치
EP3982603B1 (en) * 2015-05-05 2023-05-31 Huawei Technologies Co., Ltd. Method and apparatus for transmitting physical layer protocol data unit
US10009840B2 (en) * 2016-03-09 2018-06-26 Intel IP Corporation Access point (AP), Station (STA) and method for subcarrier scaling
US10945219B2 (en) * 2016-04-15 2021-03-09 Huawei Technologies Co., Ltd. System and method for a wireless network having multiple station classes
CN116456438A (zh) * 2016-08-23 2023-07-18 韩国电子通信研究院 操作支持低功率模式的通信节点的方法
KR20230128141A (ko) * 2016-11-07 2023-09-01 주식회사 윌러스표준기술연구소 무선 통신 방법 및 이를 사용하는 무선 통신 단말
US11223507B2 (en) * 2017-04-18 2022-01-11 Qualcomm Incorporated Payload with synchronization information

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170041928A1 (en) * 2015-08-04 2017-02-09 Lg Electronics Inc. Method and device for generating sequence for stf field in wireless lan system
CN106797278A (zh) * 2015-08-06 2017-05-31 Lg电子株式会社 在无线lan系统中利用预定二进制序列生成训练信号的方法和设备
WO2018031134A1 (en) * 2016-08-09 2018-02-15 Intel IP Corporation Preamble for extended range mode packet detection
CN106849962A (zh) * 2017-02-09 2017-06-13 武汉米风通信技术有限公司 超窄带无线物联网接收信号的agc控制方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3833133A4

Also Published As

Publication number Publication date
EP3833133A1 (en) 2021-06-09
EP3833133A4 (en) 2021-11-03
US20210160113A1 (en) 2021-05-27
CN110798293B (zh) 2023-03-10
US11438204B2 (en) 2022-09-06
CN110798293A (zh) 2020-02-14

Similar Documents

Publication Publication Date Title
WO2020024818A1 (zh) 物理层聚合过程协议数据单元的通信方法和相关装置
CN111629388B (zh) 无线局域网数据的传输方法及装置
US10021722B2 (en) Method and device for receiving frame in wireless LAN
HUE029346T2 (en) System and procedure for improved communication over a wireless network
WO2016176877A1 (zh) 物理层协议数据单元的传输方法和装置
JP2005160098A (ja) ペイロード内でのフレーム分割方法
CN107005381B (zh) 在无线lan中基于不同的导频音图案发送数据的方法和装置
JP2019503111A (ja) マルチプロトコル送信の方法およびシステム
WO2022068689A1 (zh) 物理层协议数据单元ppdu传输方法及相关装置
CN106576362B (zh) 在无线lan系统中的多用户帧传输方法
CN102263722A (zh) 上行频域资源的映射方法和系统
US10045331B2 (en) Systems and methods for improved communication efficiency in high efficiency wireless networks
US20230171129A1 (en) Ppdu transmission method and related apparatus
CN110311875B (zh) 一种数据传输方法及装置
TWI829055B (zh) 資料傳輸方法、通信裝置、電腦可讀存儲介質、電腦程式產品及晶片
WO2018006660A1 (zh) 一种信道估计序列的传输方法和装置
WO2024082926A1 (zh) 信号传输方法、通信系统及通信装置
WO2021093616A1 (zh) 一种信号传输方法及装置
WO2024139664A1 (zh) 一种通信方法及装置
TW202408188A (zh) 一種通信方法及裝置
CN118283653A (zh) 一种通信方法及装置
WO2019029402A1 (zh) 一种发送信号的方法及设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19843604

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019843604

Country of ref document: EP

Effective date: 20210301