WO2018006660A1 - 一种信道估计序列的传输方法和装置 - Google Patents

一种信道估计序列的传输方法和装置 Download PDF

Info

Publication number
WO2018006660A1
WO2018006660A1 PCT/CN2017/085537 CN2017085537W WO2018006660A1 WO 2018006660 A1 WO2018006660 A1 WO 2018006660A1 CN 2017085537 W CN2017085537 W CN 2017085537W WO 2018006660 A1 WO2018006660 A1 WO 2018006660A1
Authority
WO
WIPO (PCT)
Prior art keywords
channel estimation
zeros
sequence
ppdu
field
Prior art date
Application number
PCT/CN2017/085537
Other languages
English (en)
French (fr)
Inventor
颜敏
薛鑫
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201610805100.0A external-priority patent/CN107592142B/zh
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2018006660A1 publication Critical patent/WO2018006660A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas

Definitions

  • the present application belongs to the field of communications technologies, and in particular, to a method and an apparatus for transmitting a channel estimation sequence.
  • Wireless Fidelity (English: Wireless Fidelity, Wi-Fi for short) is a brand of wireless network communication technology, which is held by the Wi-Fi Alliance to improve the interoperability between 802.11-based wireless network products.
  • the wireless LAN of the 802.11 series protocol can be called a Wi-Fi network.
  • 802.11ad is a branch of the 802.11 family of Institute of Electrical and Electronics Engineers (IEEE) that operates in the 60 GHz band.
  • IEEE Institute of Electrical and Electronics Engineers
  • the 802.11ad standard uses single channel transmission with a bandwidth of 2.16 GHz per channel.
  • 802.11ay will support Multiple Input Multiple Output (MIMO) and multiple channels.
  • MIMO Multiple Input Multiple Output
  • the existing channel estimation sequence of 802.11ad cannot support multi-antenna application scenarios, and a new channel estimation sequence needs to be designed.
  • the present application provides a method and apparatus for transmitting a channel estimation sequence, which is used to solve the problem that the existing 802.11ad channel estimation sequence does not support a multi-antenna application scenario.
  • an embodiment of the present invention provides a method for transmitting a channel estimation sequence, which is applied to a wireless communication system above 6 GHz, the method comprising: generating and transmitting a physical layer protocol data unit PPDU, where the PPDU includes a channel estimation field, The channel estimation field includes one or more channel estimation sequences, each channel estimation sequence of the one or more channel estimation sequences being derived from a channel estimation initial sequence conversion.
  • the foregoing transmission method is performed by a station, an access point, a user terminal, and a base station, and the PPDU in the above format can support an application scenario of multiple antennas.
  • the channel estimation initial sequence is ⁇ zeros(79), -Gb32, -Ga32, Gb32, Ga32, Gb32, -Gb16, 0, 0, 0, Ga16, -Ga32, Gb32, - Ga32, -Gb32, Ga32, zeros(78) ⁇ , zeros(n) is represented as a sequence of n zeros, and n is an integer.
  • the initial sequence of channel estimation is ⁇ zeros(79), Gb32, Ga32, -Gb32, -Ga32, -Gb32, Gb16, 0, 0, 0, -Ga16, Ga32, -Gb32, Ga32, Gb32, -Ga32, zeros (78) ⁇ .
  • the channel estimation initial sequence is ⁇ zeros(79), Ga32(24:32), -Gb32, -Gb32, Ga32, -Ga32, -Ga32, -Gb32(1:7), 0,0,0,-Gb32(8:32), Ga32, -Gb32, Gb16, -Ga16, Gb32, Ga32 (1:16), Ga32 (17:23), zeros (78) ⁇ .
  • the initial sequence of channel estimation is ⁇ zeros(79), -Ga32(24:32), Gb32, Gb32, -Ga32, Ga32, Ga32, Gb32(1:7), 0,0. , 0, Gb32 (8: 32), -Ga32, Gb32, -Gb16, Ga16, -Gb32, -Ga32 (1:16), -Ga32 (17:23), zeros (78) ⁇ .
  • the channel estimation initial sequence is ⁇ zeros(79), Ga32(24:32), -Gb32, -Gb32, Ga32, -Ga32, -Ga32, -Gb32(1:7), 0,0,0,-Gb32(8:32), Ga32, -Gb32, Gb16, -Ga16, Gb32, Gb16, Ga32 (17:23), zeros (78) ⁇ .
  • the initial sequence of the channel estimation is ⁇ zeros(79), -Ga32(24:32), Gb32, Gb32, -Ga32, Ga32, Ga32, Gb32(1:7), 0,0,0, Gb32(8:32), -Ga32, Gb32, -Gb16, Ga16, -Gb32, -Gb16, -Ga32 (17:23), zeros (78) ⁇ .
  • the number of channel estimation sequences in the channel estimation field is greater than or equal to the number of space-time streams supported by the PPDU.
  • the channel estimation field is used by a station supporting 802.11ay for channel estimation.
  • an embodiment of the present invention provides a transmission apparatus for a channel estimation sequence, which is applied to a wireless communication system above 6 GHz, the apparatus includes: a baseband processor and a transceiver, and the baseband processor is configured to generate a physical layer protocol data unit PPDU. And a transceiver for transmitting the PPDU, the PPDU including a channel estimation field, the channel estimation field including one or more channel estimation sequences, each of the one or more channel estimation sequences being initially estimated by a channel estimation The sequence conversion is obtained.
  • a transmission device using the above format PPDU can support a multi-antenna application scenario.
  • the channel estimation initial sequence is ⁇ zeros(79), -Gb32, -Ga32, Gb32, Ga32, Gb32, -Gb16, 0, 0, 0, Ga16, -Ga32, Gb32, - Ga32, -Gb32, Ga32, zeros(78) ⁇ , zeros(n) is represented as a sequence of n zeros, and n is an integer.
  • the initial sequence of channel estimation is ⁇ zeros(79), Gb32, Ga32, -Gb32, -Ga32, -Gb32, Gb16, 0, 0, 0, -Ga16, Ga32, -Gb32, Ga32, Gb32, -Ga32, zeros (78) ⁇ .
  • the channel estimation initial sequence is ⁇ zeros(79), Ga32(24:32), -Gb32, -Gb32, Ga32, -Ga32, -Ga32, -Gb32(1:7), 0,0,0,-Gb32(8:32), Ga32, -Gb32, Gb16, -Ga16, Gb32, Ga32 (1:16), Ga32 (17:23), zeros (78) ⁇ .
  • the initial sequence of channel estimation is ⁇ zeros(79), -Ga32(24:32), Gb32, Gb32, -Ga32, Ga32, Ga32, Gb32(1:7), 0,0. , 0, Gb32 (8: 32), -Ga32, Gb32, -Gb16, Ga16, -Gb32, -Ga32 (1:16), -Ga32 (17:23), zeros (78) ⁇ .
  • the channel estimation initial sequence is ⁇ zeros(79), Ga32(24:32), -Gb32, -Gb32, Ga32, -Ga32, -Ga32, -Gb32(1:7), 0 , 0, 0, - Gb32 (8: 32), Ga32, -Gb32, Gb16, -Ga16, Gb32, Gb16, Ga32 (17:23), zeros (78) ⁇ .
  • the initial sequence of channel estimation is ⁇ zeros(79), -Ga32(24:32), Gb32, Gb32, -Ga32, Ga32, Ga32, Gb32(1:7), 0,0. , 0, Gb32 (8: 32), -Ga32, Gb32, -Gb16, Ga16, -Gb32, -Gb16, -Ga32 (17:23), zeros (78) ⁇ .
  • the number of channel estimation sequences in the channel estimation field is greater than or equal to the number of space-time streams supported by the PPDU.
  • the channel estimation field is used by a station supporting 802.11ay for channel estimation.
  • the present application provides a data transmission method for a channel estimation sequence, the method comprising generating and transmitting a physical layer protocol data unit PPDU, the PPDU including a channel estimation field, wherein the channel estimation field includes one or more channel estimation sequences, and Each channel estimation sequence in one or more channel estimation sequences is derived from a channel estimation initial sequence conversion.
  • the present application also provides a transmission apparatus for a corresponding channel estimation sequence.
  • the PPDU based on the channel estimation field can support the characteristics of the multi-space stream.
  • the channel estimation initial sequence is designed based on the Gray Golay sequence, which can reduce additional storage resources.
  • FIG. 1 is an application scenario diagram of a wireless local area network.
  • FIG. 2 is an application scenario diagram of a cellular communication network.
  • FIG. 3 is a flowchart of a method according to Embodiment 1 of the present application.
  • FIG. 4 is a frame structure diagram of an embodiment of the present application.
  • FIG. 5 is a physical structural diagram of a device according to Embodiment 2 of the present application.
  • the embodiment of the present application can be applied to a WLAN.
  • the WLAN network may include a plurality of basic service sets (English: Basic Service Set, BSS for short), wherein multiple BSSs are connected to the core network device through the switching device, as shown in FIG. 1 .
  • Each basic service set may include a site of an access point class (AP, English: Access Point) and multiple non-access point classes (English: None Access Point Station, referred to as Non-AP STA).
  • Sites of access point classes also known as wireless access points or hotspots.
  • the AP is mainly deployed in the home, inside the building, and inside the park.
  • the typical coverage radius is tens of meters to hundreds of meters.
  • An AP is equivalent to a bridge connecting a wired network and a wireless network. Its main function is to connect the wireless network clients together and then connect the wireless network to the Ethernet.
  • the AP may be a WiFi chip or a terminal device with a WiFi chip or a network device with a WiFi chip.
  • APs can support multiple formats such as 802.11ay, 802.11ad, 802.11ax, 802.11ac, 802.11n, 802.11g, 802.11b, and 802.11a.
  • Non-AP STA A non-access point class (English: None Access Point Station, referred to as Non-AP STA), which can be a wireless communication chip, a wireless sensor, or a wireless communication terminal.
  • a smart phone, a tablet computer and a personal computer supporting WiFi communication functions, a set top box and a smart TV supporting WiFi communication functions, a smart wearable device supporting WiFi communication function, an in-vehicle communication device supporting WiFi communication function, and supporting WiFi Communication function drone.
  • the site can support multiple formats such as 802.11ay, 802.11ad, 802.11ax, 802.11ac, 802.11n, 802.11g, 802.11b, and 802.11a.
  • the Non-AP STA is simply referred to as STA below.
  • a cellular communication system is usually composed of a cell, and each cell includes a base station (English: Base Station, BS for short), and the base station is a user terminal (English: User Equipment, referred to as UE).
  • BS Base Station
  • UE User Equipment
  • the cellular communication system mentioned in the embodiments of the present application includes, but is not limited to, a narrowband Internet of Things system (English: Narrow Band-Internet of Things, referred to as NB-IoT), and a global mobile communication system (English: Global System) For Mobile Communications (GSM), Enhanced Data Rate for GSM Evolution (EDGE), Wideband Code Division Multiple Access (WCDMA) , Code Division Multiple Access (English: Code Division Multiple Access, CDMA2000 for short), Time Division-Synchronization Code Division Multiple Access (English: Time Division-Synchronization Code Division Multiple Access, TD-SCDMA), Long Term Evolution (English: Long Term Evolution, LTE for short) and the next generation mobile communication system.
  • GSM Global System
  • EDGE Enhanced Data Rate for GSM Evolution
  • WCDMA Wideband Code Division Multiple Access
  • CDMA2000 Code Division Multiple Access
  • Time Division-Synchronization Code Division Multiple Access English: Time Division-Synchronization Code Division Multiple Access, TD-SCDMA
  • the base station is a device deployed in a radio access network to provide a wireless communication function for the UE.
  • the base station may include various forms of macro base stations, micro base stations (also referred to as small stations), relay stations, access points, and the like.
  • the name of a device having a base station function may be different, for example, in an LTE system, an evolved Node B (evolved NodeB, eNB or eNodeB), in the third In the system (English: 3rd Generation, 3G for short), it is called Node B (English: Node B).
  • the foregoing apparatus for providing a wireless communication function to a UE is collectively referred to as a base station or a BS.
  • the UEs involved in the embodiments of the present application may include various handheld devices having wireless communication functions, in-vehicle devices, wearable devices, computing devices, or other processing devices connected to the wireless modem.
  • the UE may also be referred to as a mobile station (English: mobile station, MS for short), a terminal (English: terminal), a terminal device (English: terminal equipment), and may also include a subscriber unit (English: subscriber unit), a cellular phone.
  • Embodiment 1 of the present application provides a method for transmitting a channel estimation sequence, which may be applied to an access point and a station, for example, an AP and STA1-STA2 in FIG. 1, a base station in FIG. 2, and UE1-UE2.
  • Figure 3 is a flow chart of the transmission method, the specific steps are as follows:
  • Step 301 Generate a physical layer protocol data unit PPDU, where the PPDU includes a channel estimation field, where the channel estimation field includes one or more channel estimation sequences, and each channel estimation sequence in the one or more channel estimation sequences is Channel estimation is obtained by initial sequence conversion.
  • Step 302 Send the PPDU.
  • the transmission method is applied to a high frequency wireless communication system, and the high frequency includes a frequency band of 6 GHz or more.
  • the transmission method is applicable to the 28 GHz band or the 60 GHz band.
  • the PPDU includes a preamble portion and a payload portion, as shown in FIG. 4, wherein the preamble portion is composed of a traditional short training field (English: Legacy Short Training Field, L-STF for short) and a traditional channel estimation field (English: Legacy Channel Estimate Field (L-CEF) and the traditional header field (English: Legacy Header) and Enhanced Directional Multi-Gigabit Header A (English: Enhanced Directional Multi-Gigabit Header A, EDMG Header A)
  • the enhanced directional multi-gigabit short training field abbreviation: EDMG-STF
  • EDMG-CEF enhanced directional multi-gigabit channel estimation field
  • EDMG Header B The enhanced directional multi-gigabit header B field
  • the channel estimation field in step 301 is the enhanced directional multi-gigabit channel estimation field (abbreviation: EDMG-CEF) in FIG. 4, and the channel estimation field is used by the 802.11ay-supporting station for channel estimation.
  • the L-CEF in Figure 4 is used by 802.11ad-enabled sites for channel estimation.
  • 802.11ay supports the characteristics of multiple antennas (ie, multiple space-time streams).
  • the number of channel estimation sequences in the channel estimation field in the 802.11ay-based PPDU is greater than or equal to the number of space-time streams supported by the PPDU. For example, if the 802.11ay-based transmitter supports two antennas, then the channel estimation field in the PPDU transmitted by the 802.11ay transmitter includes two channel estimation sequences.
  • the 802.11ay-based transmitter supports three antennas, and the channel estimation field in the PPDU transmitted by the 802.11ay transmitter includes four channel estimation sequences.
  • each channel estimation sequence in the one or more channel estimation sequences in step 301 is obtained by channel estimation initial sequence conversion.
  • the conversion operations for the channel estimation initial sequence include operations mapped to different space-time streams, multiplied by the P matrix, cyclic shift diversity, and inverse discrete Fourier transform.
  • the above-mentioned conversion operation of the channel estimation initial sequence is similar to the VHT-LTF (very high rate long training sequence) generation process in the 802.11ac standard, and is not developed in detail.
  • the physical layer of 11ay adopts 512 modulated OFDM subcarriers, and the channel estimates the initial sequence length to be 512.
  • the channel estimation initial sequence is a frequency domain sequence and is composed based on a Gray Golay sequence, wherein the Golay sequence has good autocorrelation characteristics and cross-correlation features, which can be used for channel estimation.
  • Golay sequence in the present application mainly uses sequences such as Ga32, Gb32, Ga16 and Gb16.
  • Ga32 ⁇ +1,+1,+1,+1,+1,-1,+1,-1,-1,-1,+1,+1,+1,-1,-1, +1, +1, +1, -1, -1, +1, -1, -1, +1, -1, +1, -1, +1, -1, +1, -1, +1, -1 ⁇ .
  • Gb32 ⁇ -1,-1,-1,-1,1,-1,1,1,1,-1,-1,-1,1,1,-1,1,1,- 1,-1,1,-1,-1,1,-1,-1,-1,1,-1,1,-1 ⁇ .
  • Ga16 ⁇ -1,-1,1,1,-1,1,1,-1,1,1,1,1,-1,1,-1,1 ⁇ .
  • Gb16 ⁇ 1,1,1,1,1,-1,1,-1,-1,-1,1,1,1,-1,-1,1 ⁇ .
  • the channel estimation initial sequence includes at least the following implementation manners:
  • Embodiment 1 ⁇ zeros(79), -Gb32, -Ga32, Gb32, Ga32, Gb32, -Gb16, 0, 0, 0,
  • Zeros(n) represents a sequence of n zeros, and n is an integer.
  • Embodiment 1 is: ⁇ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
  • Embodiment 2 ⁇ zeros(79), Gb32, Ga32, -Gb32, -Ga32, -Gb32, Gb16, 0,0,0, -Ga16, Ga32, -Gb32, Ga32, Gb32, -Ga32,zeros(78) ⁇ .
  • Embodiments 1 and 2 are a set of sequences having opposite polarities.
  • the opposite polarity means that +1 becomes -1 in the sequence, -1 becomes +1, and 0 does not change.
  • Embodiment 3 ⁇ zeros(79), Ga32(24:32), -Gb32, -Gb32, Ga32, -Ga32, -Ga32, -Gb32(1:7), 0,0,0, -Gb32(8: 32), Ga32, -Gb32, Gb16, -Ga16, Gb32, Ga32 (1:16), Ga32 (17:23), zeros (78) ⁇ .
  • Embodiment 4 ⁇ zeros(79), -Ga32(24:32), Gb32, Gb32, -Ga32, Ga32, Ga32, Gb32(1:7), 0,0,0, Gb32(8:32),- Ga32, Gb32, -Gb16, Ga16, -Gb32, -Ga32 (1:16), -Ga32 (17:23), zeros (78) ⁇ .
  • Embodiment 3 and Embodiment 4 are a set of sequences having opposite polarities.
  • Embodiment 5 ⁇ zeros(79), Ga32(24:32), -Gb32, -Gb32, Ga32, -Ga32, -Ga32, -Gb32(1:7), 0,0,0, -Gb32 (8: 32), Ga32, -Gb32, Gb16, -Ga16, Gb32, Gb16, Ga32 (17:23), zeros (78) ⁇ .
  • Embodiment 6 ⁇ zeros(79), -Ga32(24:32), Gb32, Gb32, -Ga32, Ga32, Ga32, Gb32(1:7), 0,0,0, Gb32(8:32),- Ga32, Gb32, -Gb16, Ga16, -Gb32, -Gb16, -Ga32 (17:23), zeros (78) ⁇ .
  • Embodiment 5 and Embodiment 6 are a set of sequences having opposite polarities.
  • Embodiment 7 is a diagrammatic representation of Embodiment 7:
  • Embodiment 8 is a diagrammatic representation of Embodiment 8
  • Embodiment 1 gives a complete channel estimation initial sequence
  • Embodiments 2-6, Embodiments 7-8 can undoubtedly obtain a complete channel estimation initial sequence by Ga32, Ga16, Gb32, and Gb16 sequences, due to space limitations.
  • the complete channel estimation initial sequence is no longer provided.
  • the symbols of the payload portion of the PPDU adopt binary phase shift keying (English: Binary Phase Shift Keying, BPSK) modulation mode, ⁇ /2-BPSK modulation mode, and quadrature phase shift coding.
  • BPSK Binary Phase Shift Keying
  • QPSK Quadrature Phase Shift Keying
  • ⁇ /2-QPSK 16QAM
  • QAM Quadrature Amplitude Modulation
  • the action of the receiver in the transmission method of the channel estimation sequence includes at least the following implementations.
  • Step 1 Receive a physical layer protocol data unit PPDU, the PPDU including a channel estimation field, the channel estimation field including one or more channel estimation sequences, each channel estimation sequence in the one or more channel estimation sequences being Channel estimation is obtained by initial sequence conversion.
  • Step 2 Parse the PPDU, and obtain channel parameters through the channel estimation field.
  • the process of the receiver obtaining the channel parameters by parsing the channel estimation field of the PPDU is similar to the operation of the receiver in the 802.11ac standard for the VHT-LTF sequence, and details are not described herein.
  • Embodiment 1 of the present application provides a data transmission method for a channel estimation sequence
  • the data transmission method includes generating and transmitting a PPDU, where the PPDU includes a channel estimation field, where the channel estimation field includes one or more channel estimation sequences.
  • each channel estimation sequence of the one or more channel estimation sequences is obtained by channel estimation initial sequence conversion.
  • the PPDU based on the channel estimation field can support the characteristics of the multi-space stream.
  • the channel estimation initial sequence is designed based on the Golay sequence, which can reduce additional storage resources.
  • FIG. 5 A schematic block diagram of a transmission apparatus for a channel estimation sequence according to Embodiment 2 of the present application, as shown in FIG. 5, the apparatus is, for example, an access point, a station, a base station, or a UE, and the apparatus may also be dedicated to implement related functions.
  • Integrated Circuit (English: Application Specific Integrated Circuit, ASIC) or chip.
  • the apparatus 1000 includes a processor 1010, a memory 1020, a baseband processor 1030, a transceiver 1040, an antenna 1050, a bus 1060, and a user interface 1070.
  • the apparatus may be the AP and STA shown in FIG. 1, or the base station and UE shown in FIG. 2.
  • processor 1010 controls the operation of apparatus 1000, which may be a general purpose processor, a digital signal processor, an application specific integrated circuit, a field programmable gate array, or other programmable logic device.
  • Memory 1020 can include read only memory and random access memory and provides instructions and data to processor 1010, and a portion of memory 1020 can also include non-volatile random access memory (NVRAM).
  • the processor 1010 typically executes program instructions in the memory 1020 to implement the logical and arithmetic operations of the channel estimation sequence transmission method of the present application.
  • the baseband processor 1030 is configured to generate a baseband signal (eg, a frame or a data packet or a PPDU), or parse the received baseband signal to obtain data, wherein the baseband processor includes an encoder and a modulator, and the encoder can improve the baseband signal. Robustness to overcome interference in wireless propagation environments Fading, reducing errors caused by transmission.
  • the modulator can select the appropriate signal modulation method according to the wireless propagation environment.
  • the transceiver 1040 includes a transmitting circuit and a receiving circuit.
  • the transmitting circuit is used for the baseband signal generated by the baseband processor 1030 to adopt up-conversion modulation to obtain a high-frequency carrier signal.
  • the high-frequency carrier signal is transmitted through the antenna 1050, and the receiving circuit receives the antenna 1050.
  • the high frequency signal is subjected to a down conversion operation to obtain a low frequency baseband signal.
  • the number of antennas 1050 is one or more.
  • the device 1000 can also include a user interface 1070 that includes a keyboard, a pickup, and/or a touch screen. User interface 1070 can communicate content and control operations to access point 1000.
  • bus 1060 which in addition to the data bus includes a power bus, a control bus, and a status signal bus.
  • various buses are labeled as bus system 1060 in the figure. It should be noted that the foregoing description of the access point structure can be applied to subsequent embodiments.
  • the baseband processor 1030 is configured to generate a physical layer protocol data unit PPDU, where the PPDU includes a channel estimation field, where the channel estimation field includes one or more channel estimation sequences, each of the one or more channel estimation sequences
  • the channel estimation sequence is derived from the initial sequence of channel estimation.
  • the transceiver 1040 is configured to send the PPDU.
  • the number of channel estimation sequences in the channel estimation field is greater than or equal to the number of space-time streams supported by the PPDU.
  • the channel estimation field is used by a station supporting 802.11ay for channel estimation.
  • the channel estimation initial sequence specifically includes the following implementation manners:
  • Embodiment 1 is a diagrammatic representation of Embodiment 1:
  • ⁇ zeros(79), -Gb32, -Ga32, Gb32, Ga32, Gb32, -Gb16, 0,0,0, Ga16, -Ga32, Gb32, -Ga32, -Gb32, Ga32,zeros(78) ⁇ ,zeros( n) is represented as a sequence of n zeros, and n is an integer.
  • Embodiment 2 is a diagrammatic representation of Embodiment 1:
  • Embodiment 3 is a diagrammatic representation of Embodiment 3
  • Embodiment 4 is a diagrammatic representation of Embodiment 4:
  • Embodiment 5 is a diagrammatic representation of Embodiment 5:
  • Embodiment 6 is a diagrammatic representation of Embodiment 6
  • Embodiment 7 is a diagrammatic representation of Embodiment 7:
  • Embodiment 8 is a diagrammatic representation of Embodiment 8
  • Step 1 Receive a physical layer protocol data unit PPDU, the PPDU including a channel estimation field, the channel estimation field including one or more channel estimation sequences, each channel estimation sequence in the one or more channel estimation sequences being Channel estimation is obtained by initial sequence conversion.
  • Step 2 Parse the PPDU, and obtain channel parameters through the channel estimation field.
  • the receiver obtains the channel parameter by parsing the channel estimation field of the PPDU.
  • the process of the number is similar to the operation of the receiver in the 802.11ac standard for the VHT-LTF sequence, and will not be described again.
  • Embodiment 2 of the present application provides a transmission apparatus for a channel estimation sequence
  • the transmission apparatus includes a baseband processor and a transceiver, wherein the baseband processor is configured to generate a PPDU, and the transceiver is configured to send a PPDU, where the PPDU includes a channel estimation.
  • a field wherein the channel estimation field includes one or more channel estimation sequences, and each of the one or more channel estimation sequences is derived from a channel estimation initial sequence conversion, in the manner described above, based on the channel estimation field PPDUs can support the characteristics of multiple spatial streams.
  • the channel estimation initial sequence is designed based on the Golay sequence, which can reduce additional storage resources.
  • the present invention can be implemented by means of software plus a necessary general hardware platform, and of course, can also be through hardware, but in many cases, the former is a better implementation. the way.
  • the technical solution of the present invention which is essential or contributes to the prior art, can be embodied in the form of a software product stored in a readable storage medium, such as a floppy disk of a computer.
  • a hard disk or optical disk, etc. includes instructions for causing a computer device (which may be a personal computer, server, or network device, etc.) to perform the methods described in various embodiments of the present invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供了一种信道估计序列的数据传输方法,该方法包括生成并发送物理层协议数据单元PPDU,该PPDU包含信道估计字段,其中信道估计字段包含一个或多个信道估计序列,并且所述一个或多个信道估计序列中的每个信道估计序列由信道估计初始序列转换得到。本申请还提供了相应的信道估计序列的传输装置,通过上述方式,基于该信道估计字段的PPDU可以支持多空间流的特性。并且,该信道估计初始序列是基于格雷Golay序列进行设计的,可以减少额外的存储资源。

Description

一种信道估计序列的传输方法和装置
本申请要求于2016年7月8日提交中国专利局、申请号为CN201610543946.1、发明名称为“一种信道估计序列的传输方法和装置”的CN专利申请的全部优先权,其全部内容通过引用结合在本申请中。
本申请还要求于2016年9月6日提交中国专利局、申请号为CN201610805100.0、发明名称为“一种信道估计序列的传输方法和装置”的CN专利申请的部分优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请属于通信技术领域,尤其涉及一种信道估计序列的传输方法和装置。
背景技术
802.11系列标准对无线局域网络(英文:Wireless Local Area Networks,简称:WLAN)的标准化使得WLAN设备的成本大大降低。无线保真(英文:Wireless Fidelity,简称:Wi-Fi)是一个无线网络通信技术的品牌,由Wi-Fi联盟所持有,目的是改善基于802.11标准的无线网络产品之间的互通性,使用802.11系列协议的无线局域网可以称为Wi-Fi网络。
目前,802.11标准,历经802.11a,802.11b,802.11g,802.11n和802.11ac等各个版本,技术发展越来越成熟。802.11ad是电气和电子工程师协会(英文:Institute of Electrical and Electronics Engineers,简称:IEEE)802.11标准家族中的一个分支,工作于60GHz频段。802.11ad标准采用单信道传输,每个信道的带宽为2.16GHz。
目前,修订中的802.11ay标准致力于802.11ad标准的演进和升级。802.11ay将支持多入多出(英文:Multiple Input Multiple Output,简称:MIMO)和多信道。现有的802.11ad的信道估计序列不能支持多天线应用场景,需要设计新的信道估计序列。
发明内容
有鉴于此,本申请提供一种信道估计序列的传输方法和装置,用于解决现有的802.11ad信道估计序列不支持多天线应用场景的问题。
第一方面,本发明实施例提供了一种信道估计序列的传输方法,应用于6GHz以上的无线通信系统,该方法包括:生成并发送物理层协议数据单元PPDU,所述PPDU包含信道估计字段,所述信道估计字段包含一个或多个信道估计序列,所述一个或多个信道估计序列中的每个信道估计序列由信道估计初始序列转换得到。上述传输方法由站点、接入点、用户终端和基站执行,采用上述格式PPDU可以支持多天线的应用场景。
在一种可能的设计中,所述信道估计初始序列为{zeros(79),-Gb32,-Ga32,Gb32,Ga32,Gb32,-Gb16,0,0,0,Ga16,-Ga32,Gb32,-Ga32,-Gb32,Ga32,zeros(78)},zeros(n)表示为n个零组成的序列,n为整数。
在一种可能的设计中,所述信道估计初始序列为{zeros(79),Gb32,Ga32,-Gb32,-Ga32,-Gb32,Gb16,0,0,0,-Ga16,Ga32,-Gb32,Ga32,Gb32,-Ga32,zeros(78)}。
在一种可能的设计中,所述信道估计初始序列为{zeros(79),Ga32(24:32),-Gb32,-Gb32,Ga32,-Ga32,-Ga32,-Gb32(1:7),0,0,0,-Gb32(8:32),Ga32,-Gb32,Gb16,-Ga16,Gb32,Ga32(1:16),Ga32(17:23),zeros(78)}。
在一种可能的设计中,所述信道估计初始序列为{zeros(79),-Ga32(24:32),Gb32,Gb32,-Ga32,Ga32,Ga32,Gb32(1:7),0,0,0,Gb32(8:32),-Ga32,Gb32,-Gb16,Ga16,-Gb32,-Ga32(1:16),-Ga32(17:23),zeros(78)}。
在一种可能的设计中,所述信道估计初始序列为{zeros(79),Ga32(24:32),-Gb32,-Gb32,Ga32,-Ga32,-Ga32,-Gb32(1:7),0,0,0,-Gb32(8:32),Ga32,-Gb32,Gb16,-Ga16,Gb32,Gb16,Ga32(17:23),zeros(78)}。
在一种可能的设计中,所述信道估计初始序列为 {zeros(79),-Ga32(24:32),Gb32,Gb32,-Ga32,Ga32,Ga32,Gb32(1:7),0,0,0,Gb32(8:32),-Ga32,Gb32,-Gb16,Ga16,-Gb32,-Gb16,-Ga32(17:23),zeros(78)}。
可选地,所述信道估计字段中的信道估计序列的数目大于或等于所述PPDU支持的空时流数。
可选地,所述信道估计字段由支持802.11ay的站点用于信道估计。
第二方面,本发明实施例提供了一种信道估计序列的传输装置,应用于6GHz以上的无线通信系统,该装置包括:基带处理器和收发器,基带处理器用于生成物理层协议数据单元PPDU,收发器用于发送该PPDU,所述PPDU包含信道估计字段,所述信道估计字段包含一个或多个信道估计序列,所述一个或多个信道估计序列中的每个信道估计序列由信道估计初始序列转换得到。采用上述格式PPDU的传输装置可以支持多天线的应用场景。
在一种可能的设计中,所述信道估计初始序列为{zeros(79),-Gb32,-Ga32,Gb32,Ga32,Gb32,-Gb16,0,0,0,Ga16,-Ga32,Gb32,-Ga32,-Gb32,Ga32,zeros(78)},zeros(n)表示为n个零组成的序列,n为整数。
在一种可能的设计中,所述信道估计初始序列为{zeros(79),Gb32,Ga32,-Gb32,-Ga32,-Gb32,Gb16,0,0,0,-Ga16,Ga32,-Gb32,Ga32,Gb32,-Ga32,zeros(78)}。
在一种可能的设计中,所述信道估计初始序列为{zeros(79),Ga32(24:32),-Gb32,-Gb32,Ga32,-Ga32,-Ga32,-Gb32(1:7),0,0,0,-Gb32(8:32),Ga32,-Gb32,Gb16,-Ga16,Gb32,Ga32(1:16),Ga32(17:23),zeros(78)}。
在一种可能的设计中,所述信道估计初始序列为{zeros(79),-Ga32(24:32),Gb32,Gb32,-Ga32,Ga32,Ga32,Gb32(1:7),0,0,0,Gb32(8:32),-Ga32,Gb32,-Gb16,Ga16,-Gb32,-Ga32(1:16),-Ga32(17:23),zeros(78)}。
在一种可能的设计中,所述信道估计初始序列为{zeros(79),Ga32(24:32),-Gb32,-Gb32,Ga32,-Ga32,-Ga32,-Gb32(1:7),0 ,0,0,-Gb32(8:32),Ga32,-Gb32,Gb16,-Ga16,Gb32,Gb16,Ga32(17:23),zeros(78)}。
在一种可能的设计中,所述信道估计初始序列为{zeros(79),-Ga32(24:32),Gb32,Gb32,-Ga32,Ga32,Ga32,Gb32(1:7),0,0,0,Gb32(8:32),-Ga32,Gb32,-Gb16,Ga16,-Gb32,-Gb16,-Ga32(17:23),zeros(78)}。
可选地,所述信道估计字段中的信道估计序列的数目大于或等于所述PPDU支持的空时流数。
可选地,所述信道估计字段由支持802.11ay的站点用于信道估计。
本申请提供了一种信道估计序列的数据传输方法,该方法包括生成并发送物理层协议数据单元PPDU,该PPDU包含信道估计字段,其中信道估计字段包含一个或多个信道估计序列,并且所述一个或多个信道估计序列中的每个信道估计序列由信道估计初始序列转换得到。本申请还提供了相应的信道估计序列的传输装置,通过上述方式,基于该信道估计字段的PPDU可以支持多空间流的特性。并且,该信道估计初始序列是基于格雷Golay序列进行设计的,可以减少额外的存储资源。
附图说明
图1为无线局域网的应用场景图。
图2为蜂窝通信网的应用场景图。
图3为本申请实施例1的方法流程图。
图4为本申请实施例的帧结构图。
图5为本申请实施例2的装置物理结构图。
具体实施方式
为使本申请的目的、技术方案和优点更加清楚,下面结合附图对本申请具体实施例作进一步的详细描述。为了全面理解本申请,在以下详细描述中提到了众多具体细节。
本申请实施例可以应用于WLAN,目前WLAN采用的标准为IEEE802.11 系列。WLAN网络可以包括多个基本服务集(英文:Basic Service Set,简称:BSS),其中多个BSS通过交换设备连接到核心网设备,如图1所示。每个基本服务集可以包含一个接入点类的站点(简称:AP,英文:Access Point)和多个非接入点类的站点(英文:None Access Point Station,简称:Non-AP STA)。
接入点类的站点,也称之为无线访问接入点或热点等。AP主要部署于家庭、大楼内部以及园区内部,典型覆盖半径为几十米至上百米。AP相当于一个连接有线网和无线网的桥梁,其主要作用是将各个无线网络客户端连接到一起,然后将无线网络接入以太网。具体地,AP可以是WiFi芯片或者带有WiFi芯片的终端设备或者带有WiFi芯片的网络设备。AP可以支持802.11ay、802.11ad、802.11ax、802.11ac、802.11n、802.11g、802.11b及802.11a等多种制式。
非接入点类的站点(英文:None Access Point Station,简称:Non-AP STA),可以是无线通讯芯片、无线传感器或无线通信终端。具体地,例如:支持WiFi通讯功能的智能手机、平板电脑和个人计算机,支持WiFi通讯功能的机顶盒和智能电视,支持WiFi通讯功能的智能可穿戴设备,支持WiFi通讯功能的车载通信设备和支持WiFi通讯功能的无人机。站点可以支持802.11ay、802.11ad、802.11ax、802.11ac、802.11n、802.11g、802.11b及802.11a等多种制式。需要说明的是,下文将Non-AP STA简称为STA。
本申请实施例也可以应用于蜂窝通信系统,蜂窝通信系统通常由小区组成,每个小区包含一个基站(英文:Base Station,简称:BS),基站向用户终端(英文:User Equipment,简称:UE)提供通信服务,其中基站连接到核心网设备,如图2所示。
需要说明的是,本申请实施例提及的蜂窝通信系统包括但不限于:窄带物联网系统(英文:Narrow Band-Internet of Things,简称:NB-IoT)、全球移动通信系统(英文:Global System for Mobile Communications,简称:GSM)、增强型数据速率GSM演进系统(英文:Enhanced Data rate for GSM Evolution,简称:EDGE)、宽带码分多址系统(英文:Wideband Code Division Multiple Access,简称:WCDMA)、码分多址2000系统(英文:Code Division Multiple Access,简称:CDMA2000)、时分同步码分多址系统(英文:Time Division-Synchronization Code Division Multiple Access,简称:TD-SCDMA), 长期演进系统(英文:Long Term Evolution,简称:LTE)以及下一代移动通信系统。
本申请实施例中,所述基站是一种部署在无线接入网中用以为UE提供无线通信功能的装置。所述基站可以包括各种形式的宏基站,微基站(也称为小站),中继站,接入点等。在采用不同的无线接入技术的系统中,具备基站功能的设备的名称可能会有所不同,例如,在LTE系统中,称为演进的节点B(evolved NodeB,eNB或者eNodeB),在第三代(英文:3rd Generation,简称:3G)系统中,称为节点B(英文:Node B)等。为方便描述,本申请所有实施例中,上述为UE提供无线通信功能的装置统称为基站或BS。
本申请实施例中所涉及到的UE可以包括各种具有无线通信功能的手持设备、车载设备、可穿戴设备、计算设备或连接到无线调制解调器的其它处理设备。所述UE也可以称为移动台(英文:mobile station,简称:MS),终端(英文:terminal),终端设备(英文:terminal equipment),还可以包括用户单元(英文:subscriber unit)、蜂窝电话(英文:cellular phone)、智能电话(英文:smart phone)、无线数据卡、个人数字助理(英文:Personal Digital Assistant,PDA)电脑、平板型电脑、无线调制解调器(英文:modem)、手持设备(英文:handset)、膝上型电脑(英文:laptop computer)、机器类型通信(英文:Machine Type Communication,简称:MTC)终端等。为方便描述,本申请所有实施例中,上面提到的设备统称为UE。
实施例1
本申请实施例1提供了一种信道估计序列的传输方法,该方法可以应用于接入点和站点,例如:图1中的AP和STA1-STA2,图2中的基站和UE1-UE2。图3是传输方法的流程图,具体步骤如下:
步骤301:生成物理层协议数据单元PPDU,所述PPDU包含信道估计字段,所述信道估计字段包含一个或多个信道估计序列,所述一个或多个信道估计序列中的每个信道估计序列由信道估计初始序列转换得到。
步骤302:发送所述PPDU。
具体地,该传输方法应用于高频无线通信系统,所述高频包括6GHz以上的频段。优选地,该传输方法可应用于28GHz频段或者60GHz频段。
具体地,所述PPDU包含前导部分和净荷部分,如图4所示,其中前导部分由传统短训练字段(英文:Legacy Short Training Field,简称:L-STF)和传统信道估计字段(英文:Legacy Channel Estimate Field,简称:L-CEF)和传统头部字段(英文:Legacy Header)和增强定向多千兆比特头部A字段(英文:Enhanced Directional Multi-Gigabit Header A,简称EDMG Header A)和增强定向多吉比特短训练字段(简称:EDMG-STF)和增强定向多千兆比特信道估计字段(简称:EDMG-CEF)和增强定向多千兆比特头部B字段(简称EDMG Header B)组成。
需要说明的是,步骤301中的信道估计字段为图4中的增强定向多千兆比特信道估计字段(简称:EDMG-CEF),所述信道估计字段由支持802.11ay的站点用于信道估计。图4中的L-CEF由支持802.11ad的站点用于信道估计。
需要说明的是,802.11ay支持多天线(即多个空时流)的特性。其中基于802.11ay的PPDU中信道估计字段中的信道估计序列的数目大于或等于所述PPDU支持的空时流数。举例说明,基于802.11ay的发射机支持两个天线,那么该802.11ay发射机发送的PPDU中信道估计字段包含两个信道估计序列。基于802.11ay的发射机支持三个天线,那么该802.11ay发射机发送的PPDU中信道估计字段包含四个信道估计序列。
需要说明的是,步骤301中所述一个或多个信道估计序列中的每个信道估计序列由信道估计初始序列转换得到。对信道估计初始序列的转换操作包括映射到不同的空时流,与P矩阵相乘,循环移位分集以及逆离散傅里叶变换等操作。其中,上述对信道估计初始序列的转换操作与802.11ac标准中VHT-LTF(非常高速率长训练序列)的生成过程类似,不再详细展开。
具体地,11ay的物理层采用OFDM调制的子载波数为512个,该信道估计初始序列的长度为512。该信道估计初始序列为频域序列,并且基于格雷Golay序列组成,其中Golay序列具有良好的自相关特征和互相关特征,可以用于信道估计。
需要说明的是,本申请中的Golay序列主要采用Ga32,Gb32,Ga16和Gb16等序列。
其中,Ga32={+1,+1,+1,+1,+1,-1,+1,-1,-1,-1,+1,+1,+1,-1,-1,+1,+1,+1,-1, -1,+1,-1,-1,+1,-1,-1,-1,-1,+1,-1,+1,-1}。
Gb32={-1,-1,-1,-1,-1,1,-1,1,1,1,-1,-1,-1,1,1,-1,1,1,-1,-1,1,-1,-1,1,-1,-1,-1,-1,1,-1,1,-1}。
Ga16={-1,-1,1,1,-1,1,1,-1,1,1,1,1,-1,1,-1,1}。
Gb16={1,1,1,1,1,-1,1,-1,-1,-1,1,1,1,-1,-1,1}。
可选地,所述信道估计初始序列至少包括以下实施方式:
实施方式1:{zeros(79),-Gb32,-Ga32,Gb32,Ga32,Gb32,-Gb16,0,0,0,
Ga16,-Ga32,Gb32,-Ga32,-Gb32,Ga32,zeros(78)}。zeros(n)表示为n个零组成的序列,n为整数。
具体地,实施方式1的完整表示为:{0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,-1,1,-1,-1,-1,1,1,1,-1,-1,1,-1,-1,1,1,-1,1,1,-1,1,1,1,1,-1,1,-1,1,-1,-1,-1,-1,-1,1,-1,1,1,1,-1,-1,-1,1,1,-1,-1,-1,1,1,-1,1,1,-1,1,1,1,1,-1,1,-1,1,-1,-1,-1,-1,-1,1,-1,1,1,1,-1,-1,-1,1,1,-1,1,1,-1,-1,1,-1,-1,1,-1,-1,-1,-1,1,-1,1,-1,1,1,1,1,1,-1,1,-1,-1,-1,1,1,1,-1,-1,1,1,1,-1,-1,1,-1,-1,1,-1,-1,-1,-1,1,-1,1,-1,-1,-1,-1,-1,-1,1,-1,1,1,1,-1,-1,-1,1,1,-1,1,1,-1,-1,1,-1,-1,1,-1,-1,-1,-1,1,-1,1,-1,-1,-1,-1,-1,-1,1,-1,1,1,1,-1,-1,-1,1,1,-1,0,0,0,-1,-1,1,1,-1,1,1,-1,1,1,1,1,-1,1,-1,1,-1,-1,-1,-1,-1,1,-1,1,1,1,-1,-1,-1,1,1,-1,-1,-1,1,1,-1,1,1,-1,1,1,1,1,-1,1,-1,1,-1,-1,-1,-1,-1,1,-1,1,1,1,-1,-1,-1,1,1,-1,1,1,-1,-1,1,-1,-1,1,-1,-1,-1,-1,1,-1,1,-1,-1,-1,-1,-1,-1,1,-1,1,1,1,-1,-1,-1,1,1,-1,-1,-1,1,1,-1,1,1,-1,1,1,1,1,-1,1,-1,1,1,1,1,1,1,-1,1,-1,-1,-1,1,1,1,-1,-1,1,-1,-1,1,1,-1,1,1,-1,1,1,1,1,-1,1,-1,1,1,1,1,1,1,-1,1,-1,-1,-1,1,1,1,-1,-1,1,1,1,-1,-1,1,-1,-1,1,-1,-1,-1,-1,1,-1,1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0}。
实施方式2:{zeros(79),Gb32,Ga32,-Gb32,-Ga32,-Gb32,Gb16,0,0,0,-Ga16,Ga32,-Gb32,Ga32,Gb32,-Ga32,zeros(78)}。
需要说明的是,实施方式1和实施方式2为极性相反的一组序列。极性相反是指序列中+1变为-1,-1变为+1,0不变。
实施方式3:{zeros(79),Ga32(24:32),-Gb32,-Gb32,Ga32,-Ga32,-Ga32,-Gb32(1:7),0,0,0,-Gb32(8:32),Ga32,-Gb32,Gb16,-Ga16,Gb32, Ga32(1:16),Ga32(17:23),zeros(78)}。
实施方式4:{zeros(79),-Ga32(24:32),Gb32,Gb32,-Ga32,Ga32,Ga32,Gb32(1:7),0,0,0,Gb32(8:32),-Ga32,Gb32,-Gb16,Ga16,-Gb32,-Ga32(1:16),-Ga32(17:23),zeros(78)}。
需要说明的是,实施方式3和实施方式4为极性相反的一组序列。
实施方式5:{zeros(79),Ga32(24:32),-Gb32,-Gb32,Ga32,-Ga32,-Ga32,-Gb32(1:7),0,0,0,-Gb32(8:32),Ga32,-Gb32,Gb16,-Ga16,Gb32,Gb16,Ga32(17:23),zeros(78)}。
实施方式6:{zeros(79),-Ga32(24:32),Gb32,Gb32,-Ga32,Ga32,Ga32,Gb32(1:7),0,0,0,Gb32(8:32),-Ga32,Gb32,-Gb16,Ga16,-Gb32,-Gb16,-Ga32(17:23),zeros(78)}。
需要说明的是,实施方式5和实施方式6为极性相反的一组序列。
实施方式7:
{zeros(79),-Gb16,Ga16,-Gb16,-Ga16,Gb16,Ga16,-Gb16,-Ga16,-Gb16,-Ga16,-Gb16,0,0,0,Ga16,-Gb16,Ga16,-Gb16,Ga16,Gb16,-Ga16,-Gb16,Ga16,Gb16,Ga16,zeros(78)}
实施方式8:
{zeros(79),Gb16,-Ga16,Gb16,Ga16,-Gb16,-Ga16,Gb16,Ga16,Gb16,Ga16,Gb16,0,0,0,-Ga16,Gb16,-Ga16,Gb16,-Ga16,-Gb16,Ga16,Gb16,-Ga16,-Gb16,-Ga16,zeros(78)}
其中,实施方式1给出完整的信道估计初始序列,实施方式2-6,实施方式7-8通过Ga32、Ga16、Gb32和Gb16序列可以毫无疑义地得到完整的信道估计初始序列,由于篇幅限制,不再提供完整的信道估计初始序列。
需要说明的是,所述PPDU的净荷部分的符号采用二进制相移键控(英文:Binary Phase Shift Keying,简称:BPSK)调制方式、π/2-BPSK调制方式、正交相移编码(英文:Quadrature Phase Shift Keying,简称:QPSK)调制方式、π/2-QPSK或者16QAM(英文:Quadrature Amplitude Modulation,简称:QAM)。
需要补充的是,该信道估计序列的传输方法中接收机的动作至少包括下列实现方式。
步骤1:接收物理层协议数据单元PPDU,所述PPDU包含信道估计字段,所述信道估计字段包含一个或多个信道估计序列,所述一个或多个信道估计序列中的每个信道估计序列由信道估计初始序列转换得到。
步骤2:解析所述PPDU,通过所述信道估计字段获取信道参数。
需要说明的是,接收机通过解析所述PPDU的信道估计字段获取信道参数的过程与802.11ac标准中接收机对VHT-LTF序列的操作类似,不再赘述。
总结性地,本申请实施例1提供了一种信道估计序列的数据传输方法,该数据传输方法包括生成并发送PPDU,该PPDU包含信道估计字段,其中信道估计字段包含一个或多个信道估计序列,并且所述一个或多个信道估计序列中的每个信道估计序列由信道估计初始序列转换得到,通过上述方式,基于该信道估计字段的PPDU可以支持多空间流的特性。并且,信道估计初始序列是基于Golay序列进行设计的,可以减少额外的存储资源。
实施例2
本申请实施例2提供的一种信道估计序列的传输装置的示意性框图,如图5所示,该装置例如为接入点、站点、基站或者UE,该装置也可以为实现相关功能的专用集成电路(英文:Application Specific Integrated Circuit,简称:ASIC)或者芯片。该装置1000包括处理器1010、存储器1020、基带处理器1030、收发器1040、天线1050、总线1060和用户接口1070。该装置可以为图1中示出的AP和STA,或者图2中示出的基站和UE。
具体地,处理器1010控制装置1000的操作,处理器可以是通用处理器、数字信号处理器、专用集成电路、现场可编程门阵列或者其他可编程逻辑器件。存储器1020可以包括只读存储器和随机存取存储器,并向处理器1010提供指令和数据,存储器1020的一部分还可以包括非易失性随机存取存储器(NVRAM)。处理器1010通常执行存储器1020中的程序指令,实现本申请中信道估计序列传输方法的逻辑运算和算术运算。
基带处理器1030用于生成基带信号(例如:帧或数据包或PPDU),或者对接收到的基带信号进行解析获取数据,其中基带处理器包括编码器和调制器,编码器可以提高基带信号的鲁棒性,克服无线传播环境中的干扰和 衰落,减少传输产生的差错。调制器可以根据无线传播环境,选取合适的信号调制方式。
收发器1040包括发送电路和接收电路,发送电路用于基带处理器1030生成的基带信号采用上变频调制,得到高频的载波信号,高频的载波信号通过天线1050发射,接收电路将天线1050接收的高频信号采用下变频操作,得到低频的基带信号。其中天线1050的数目为一个或多个。装置1000还可以包括用户接口1070,用户接口1070包括键盘,拾音器和/或触摸屏。用户接口1070可传递内容和控制操作到接入点1000。
装置1000的各个组件通过总线1060耦合在一起,其中总线系统1060除包括数据总线之外,还包括电源总线、控制总线和状态信号总线。但是为了清楚说明起见,在图中将各种总线都标为总线系统1060。需要说明的是,上述对于接入点结构的描述,可应用于后续的实施例。
基带处理器1030,用于生成物理层协议数据单元PPDU,所述PPDU包含信道估计字段,所述信道估计字段包含一个或多个信道估计序列,所述一个或多个信道估计序列中的每个信道估计序列由信道估计初始序列转换得到。
收发器1040,用于发送所述PPDU。
具体地,所述信道估计字段中的信道估计序列的数目大于或等于所述PPDU支持的空时流数。
具体地,所述信道估计字段由支持802.11ay的站点用于信道估计。
需要说明的是,所述PPDU的结构在实施例1以及图4中已有详细阐释,不再赘述。
可选地,所述信道估计初始序列具体包括以下实施方式:
实施方式1:
{zeros(79),-Gb32,-Ga32,Gb32,Ga32,Gb32,-Gb16,0,0,0,Ga16,-Ga32,Gb32,-Ga32,-Gb32,Ga32,zeros(78)},zeros(n)表示为n个零组成的序列,n为整数。
实施方式2:
{zeros(79),Gb32,Ga32,-Gb32,-Ga32,-Gb32,Gb16,0,0,0,-Ga16,Ga32,-Gb32, Ga32,Gb32,-Ga32,zeros(78)}。
实施方式3:
{zeros(79),Ga32(24:32),-Gb32,-Gb32,Ga32,-Ga32,-Ga32,-Gb32(1:7),0,0,0,-Gb32(8:32),Ga32,-Gb32,Gb16,-Ga16,Gb32,Ga32(1:16),Ga32(17:23),zeros(78)}。
实施方式4:
{zeros(79),-Ga32(24:32),Gb32,Gb32,-Ga32,Ga32,Ga32,Gb32(1:7),0,0,0,Gb32(8:32),-Ga32,Gb32,-Gb16,Ga16,-Gb32,-Ga32(1:16),-Ga32(17:23),zeros(78)}。
实施方式5:
{zeros(79),Ga32(24:32),-Gb32,-Gb32,Ga32,-Ga32,-Ga32,-Gb32(1:7),0,0,0,-Gb32(8:32),Ga32,-Gb32,Gb16,-Ga16,Gb32,Gb16,Ga32(17:23),zeros(78)}。
实施方式6:
{zeros(79),-Ga32(24:32),Gb32,Gb32,-Ga32,Ga32,Ga32,Gb32(1:7),0,0,0,Gb32(8:32),-Ga32,Gb32,-Gb16,Ga16,-Gb32,-Gb16,-Ga32(17:23),zeros(78)}。
实施方式7:
{zeros(79),-Gb16,Ga16,-Gb16,-Ga16,Gb16,Ga16,-Gb16,-Ga16,-Gb16,-Ga16,-Gb16,0,0,0,Ga16,-Gb16,Ga16,-Gb16,Ga16,Gb16,-Ga16,-Gb16,Ga16,Gb16,Ga16,zeros(78)}
实施方式8:
{zeros(79),Gb16,-Ga16,Gb16,Ga16,-Gb16,-Ga16,Gb16,Ga16,Gb16,Ga16,Gb16,0,0,0,-Ga16,Gb16,-Ga16,Gb16,-Ga16,-Gb16,Ga16,Gb16,-Ga16,-Gb16,-Ga16,zeros(78)}
需要补充的是,该信道估计序列的传输装置中接收机的动作至少包括下列实现方式。
步骤1:接收物理层协议数据单元PPDU,所述PPDU包含信道估计字段,所述信道估计字段包含一个或多个信道估计序列,所述一个或多个信道估计序列中的每个信道估计序列由信道估计初始序列转换得到。
步骤2:解析所述PPDU,通过所述信道估计字段获取信道参数。
需要说明的是,接收机通过解析所述PPDU的信道估计字段获取信道参 数的过程与802.11ac标准中接收机对VHT-LTF序列的操作类似,不再赘述。
总结性地,本申请实施例2提供了一种信道估计序列的传输装置,该传输装置包括基带处理器和收发器,其中基带处理器用于生成PPDU,收发器用于发送PPDU,该PPDU包含信道估计字段,其中信道估计字段包含一个或多个信道估计序列,并且所述一个或多个信道估计序列中的每个信道估计序列由信道估计初始序列转换得到,通过上述方式,基于该信道估计字段的PPDU可以支持多空间流的特性。并且,信道估计初始序列是基于Golay序列进行设计的,可以减少额外的存储资源。
通过以上的实施方式的描述,所属领域的技术人员可以清楚地了解到本发明可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本发明的技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在可读取的存储介质中,如计算机的软盘,硬盘或光盘等,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本发明各个实施例所述的方法。

Claims (18)

  1. 一种信道估计序列的传输方法,应用于6GHz以上的无线通信系统,其特征在于,所述方法包括:
    生成物理层协议数据单元PPDU,所述PPDU包含信道估计字段,所述信道估计字段包含一个或多个信道估计序列,所述一个或多个信道估计序列中的每个信道估计序列由信道估计初始序列转换得到;
    发送所述PPDU。
  2. 根据权利要求1所述的方法,其特征在于,所述信道估计初始序列为{zeros(79),-Gb32,-Ga32,Gb32,Ga32,Gb32,-Gb16,0,0,0,Ga16,-Ga32,Gb32,-Ga32,-Gb32,Ga32,zeros(78)},zeros(n)表示为n个零组成的序列,n为整数。
  3. 根据权利要求1所述的方法,其特征在于,所述信道估计初始序列为{zeros(79),Gb32,Ga32,-Gb32,-Ga32,-Gb32,Gb16,0,0,0,-Ga16,Ga32,-Gb32,Ga32,Gb32,-Ga32,zeros(78)}。
  4. 根据权利要求1所述的方法,其特征在于,所述信道估计初始序列为{zeros(79),Ga32(24:32),-Gb32,-Gb32,Ga32,-Ga32,-Ga32,-Gb32(1:7),0,0,0,-Gb32(8:32),Ga32,-Gb32,Gb16,-Ga16,Gb32,Ga32(1:16),Ga32(17:23),zeros(78)}。
  5. 根据权利要求1所述的方法,其特征在于,所述信道估计初始序列为{zeros(79),-Ga32(24:32),Gb32,Gb32,-Ga32,Ga32,Ga32,Gb32(1:7),0,0,0,Gb32(8:32),-Ga32,Gb32,-Gb16,Ga16,-Gb32,-Ga32(1:16),-Ga32(17:23),zeros(78)}。
  6. 根据权利要求1所述的方法,其特征在于,所述信道估计初始序列为{zeros(79),Ga32(24:32),-Gb32,-Gb32,Ga32,-Ga32,-Ga32,-Gb32(1:7),0,0,0,-Gb32(8:32),Ga32,-Gb32,Gb16,-Ga16,Gb32,Gb16,Ga32(17:23),zeros(78)}。
  7. 根据权利要求1所述的方法,其特征在于,所述信道估计初始序列为{zeros(79),-Ga32(24:32),Gb32,Gb32,-Ga32,Ga32,Ga32,Gb32(1:7),0,0,0,Gb32(8:32),-Ga32,Gb32,-Gb16,Ga16,-Gb32,-Gb16,-Ga32(17:23),zeros(78)}。
  8. 根据权利要求1-7任一所述的方法,其特征在于,所述信道估计字段 中的信道估计序列的数目大于或等于所述PPDU支持的空时流数。
  9. 根据权利要求1-8任一所述的方法,其特征在于,所述信道估计字段由支持802.11ay的站点用于信道估计。
  10. 一种信道估计序列的传输装置,应用于6GHz以上的无线通信系统,其特征在于,所述装置包括:
    基带处理器,用于生成物理层协议数据单元PPDU,所述PPDU包含信道估计字段,所述信道估计字段包含一个或多个信道估计序列,所述一个或多个信道估计序列中的每个信道估计序列由信道估计初始序列转换得到;
    收发器,用于发送所述PPDU。
  11. 根据权利要求10所述的装置,其特征在于,所述信道估计初始序列为{zeros(79),-Gb32,-Ga32,Gb32,Ga32,Gb32,-Gb16,0,0,0,Ga16,-Ga32,Gb32,-Ga32,-Gb32,Ga32,zeros(78)},zeros(n)表示为n个零组成的序列,n为整数。
  12. 根据权利要求10所述的装置,其特征在于,所述信道估计初始序列为{zeros(79),Gb32,Ga32,-Gb32,-Ga32,-Gb32,Gb16,0,0,0,-Ga16,Ga32,-Gb32,Ga32,Gb32,-Ga32,zeros(78)}。
  13. 根据权利要求10所述的装置,其特征在于,所述信道估计初始序列为{zeros(79),Ga32(24:32),-Gb32,-Gb32,Ga32,-Ga32,-Ga32,-Gb32(1:7),0,0,0,-Gb32(8:32),Ga32,-Gb32,Gb16,-Ga16,Gb32,Ga32(1:16),Ga32(17:23),zeros(78)}。
  14. 根据权利要求10所述的装置,其特征在于,所述信道估计初始序列为{zeros(79),-Ga32(24:32),Gb32,Gb32,-Ga32,Ga32,Ga32,Gb32(1:7),0,0,0,Gb32(8:32),-Ga32,Gb32,-Gb16,Ga16,-Gb32,-Ga32(1:16),-Ga32(17:23),zeros(78)}。
  15. 根据权利要求10所述的装置,其特征在于,所述信道估计初始序列为
    {zeros(79),Ga32(24:32),-Gb32,-Gb32,Ga32,-Ga32,-Ga32,-Gb32(1:7),0,0,0 ,-Gb32(8:32),Ga32,-Gb32,Gb16,-Ga16,Gb32,Gb16,Ga32(17:23),zeros(78)}。
  16. 根据权利要求10所述的装置,其特征在于,所述信道估计初始序列为{zeros(79),-Ga32(24:32),Gb32,Gb32,-Ga32,Ga32,Ga32,Gb32(1:7),0,0,0,Gb32(8:32),-Ga32,Gb32,-Gb16,Ga16,-Gb32,-Gb16,-Ga32(17:23),zeros(78)}。
  17. 根据权利要求10-16任一所述的装置,其特征在于,所述信道估计字段中的信道估计序列的数目大于或等于所述PPDU支持的空时流数。
  18. 根据权利要求10-17任一所述的装置,其特征在于,所述信道估计字段由支持802.11ay的站点用于信道估计。
PCT/CN2017/085537 2016-07-08 2017-05-23 一种信道估计序列的传输方法和装置 WO2018006660A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201610543946 2016-07-08
CN201610543946.1 2016-07-08
CN201610805100.0A CN107592142B (zh) 2016-07-08 2016-09-06 一种信道估计序列的传输方法和装置
CN201610805100.0 2016-09-06

Publications (1)

Publication Number Publication Date
WO2018006660A1 true WO2018006660A1 (zh) 2018-01-11

Family

ID=60901708

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/085537 WO2018006660A1 (zh) 2016-07-08 2017-05-23 一种信道估计序列的传输方法和装置

Country Status (1)

Country Link
WO (1) WO2018006660A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111641971A (zh) * 2019-03-01 2020-09-08 华为技术有限公司 数据传输方法、装置及系统
CN112019470A (zh) * 2019-05-30 2020-12-01 华为技术有限公司 一种数据传输方法及装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130094481A1 (en) * 2011-10-18 2013-04-18 Electronics And Telecommunications Research Institute Apparatus and method for managing channel resource
CN103138870A (zh) * 2011-11-22 2013-06-05 华为技术有限公司 数据传输方法和数据传输装置
CN103326966A (zh) * 2013-05-16 2013-09-25 东莞中山大学研究院 适用于无线局域网ofdm系统的信道估计方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130094481A1 (en) * 2011-10-18 2013-04-18 Electronics And Telecommunications Research Institute Apparatus and method for managing channel resource
CN103138870A (zh) * 2011-11-22 2013-06-05 华为技术有限公司 数据传输方法和数据传输装置
CN103326966A (zh) * 2013-05-16 2013-09-25 东莞中山大学研究院 适用于无线局域网ofdm系统的信道估计方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"IEEE Standard for Information technology-Telecommu-nicaitons and information exchange between systems Local and Metropolitan area networks-Specific requirements, Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications", AMENDMENT 4: ENHANCEMENTS FOR VERY HIGH THROUGHPUT FOR OPERATION IN BANDS BELOW 6 GHZ , IEEE STD 802.11AC, 18 December 2013 (2013-12-18) *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111641971A (zh) * 2019-03-01 2020-09-08 华为技术有限公司 数据传输方法、装置及系统
US11831398B2 (en) 2019-03-01 2023-11-28 Huawei Technologies Co., Ltd. Data transmission method, apparatus, and system
CN111641971B (zh) * 2019-03-01 2024-04-12 华为技术有限公司 数据传输方法、装置及系统
CN112019470A (zh) * 2019-05-30 2020-12-01 华为技术有限公司 一种数据传输方法及装置
WO2020238368A1 (zh) * 2019-05-30 2020-12-03 华为技术有限公司 一种数据传输方法及装置
US11979343B2 (en) 2019-05-30 2024-05-07 Huawei Technologies Co., Ltd. Data transmission method and apparatus

Similar Documents

Publication Publication Date Title
US20230354417A1 (en) Method and apparatus for transmitting data in wireless communication system
CN105264991B (zh) 用于高效无线局域网通信的系统和方法
Cordeiro et al. IEEE 802.11 ad: Introduction and performance evaluation of the first multi-Gbps WiFi technology
US9451590B2 (en) Extending range and delay spread in WiFi bands
US9467259B2 (en) Methods and apparatus for wireless communication using a mixed format
KR20110036485A (ko) 무선랜 시스템에서의 데이터 전송방법 및 장치
JP2019503111A (ja) マルチプロトコル送信の方法およびシステム
US20180184409A1 (en) Methods of triggering simultaneous multi-user uplink and downlink ofdma transmissions for full- duplex communications
US11438204B2 (en) Physical layer convergence procedure protocol data unit communication method and related apparatus
WO2017041590A1 (zh) 一种传输信道状态信息的方法和装置
EP3355595A1 (en) Method of performing direct communication between stations in wireless local area network and associated equipment
US20240097816A1 (en) Information transmission method and apparatus
WO2018006660A1 (zh) 一种信道估计序列的传输方法和装置
CN107592142B (zh) 一种信道估计序列的传输方法和装置
US10673677B2 (en) Single carrier-based data transmission method and apparatus
US10045331B2 (en) Systems and methods for improved communication efficiency in high efficiency wireless networks
TW202349978A (zh) 用於無線區域網路(WLAN)的60GHz數位方案
TW202231040A (zh) 安全長訓練欄位(ltf)傳輸訊窗信號傳遞
CN114830567A (zh) 用于基于子采样的序列设计的方法和装置
CN115380498B (zh) 用于采用跳频时的正交序列传输的方法和装置
WO2017190555A1 (zh) 一种基于单载波的数据传输方法和装置
KR20240047290A (ko) Wlan 시스템에서 복수의 대역폭들을 이용한 통신을 지원하는 장치 및 방법
TW202402006A (zh) 用於無線區域網路 (wlans) 的單載波分頻多工(sc-fdm)
EP4139790A1 (en) Methods and apparatus for unified codebooks for orthogonal sequence transmission

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17823472

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17823472

Country of ref document: EP

Kind code of ref document: A1