WO2013134983A1 - 可吸收紫外光波段的太阳能模块及其制作方法 - Google Patents

可吸收紫外光波段的太阳能模块及其制作方法 Download PDF

Info

Publication number
WO2013134983A1
WO2013134983A1 PCT/CN2012/074085 CN2012074085W WO2013134983A1 WO 2013134983 A1 WO2013134983 A1 WO 2013134983A1 CN 2012074085 W CN2012074085 W CN 2012074085W WO 2013134983 A1 WO2013134983 A1 WO 2013134983A1
Authority
WO
WIPO (PCT)
Prior art keywords
package
ultraviolet light
band
light absorber
ultraviolet
Prior art date
Application number
PCT/CN2012/074085
Other languages
English (en)
French (fr)
Inventor
李韦杰
蔡佳勋
杨峻鸣
Original Assignee
友达光电股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 友达光电股份有限公司 filed Critical 友达光电股份有限公司
Publication of WO2013134983A1 publication Critical patent/WO2013134983A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/048Encapsulation of modules
    • H01L31/0481Encapsulation of modules characterised by the composition of the encapsulation material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • the present invention relates to a solar module and a method of fabricating the same, and more particularly to a solar module capable of absorbing ultraviolet light and a method of fabricating the same. Background technique
  • the object of the present invention is to provide a solar module capable of absorbing ultraviolet light bands for improving the power generation efficiency of the solar module and reducing the deterioration of the back sheet due to ultraviolet light irradiation.
  • a solar module capable of absorbing ultraviolet light bands, comprising a light transmissive substrate, a back plate, a plurality of solar cells, a first package material and a second package material.
  • the solar cell can absorb the ultraviolet light band and is disposed between the light-transmitting substrate and the back plate, and the light-receiving surface of the solar cell faces the light-transmitting substrate.
  • the first encapsulant is located between the light transmissive substrate and the solar cell.
  • the second encapsulant is located between the backplane and the solar cell, and the ultraviolet transmittance of the first encapsulant is greater than the ultraviolet transmittance of the second encapsulation.
  • a method for fabricating a solar module capable of absorbing an ultraviolet light band including providing a light transmissive substrate, disposing a first encapsulant on the light transmissive substrate, and disposing a plurality of solar cells in the first package On the material, a second package is disposed on the solar cell, a back plate is disposed on the second package, and the transparent substrate, the first package, the solar cell, the second package, and the back plate are laminated.
  • the light-receiving surface of the solar cell faces the light-transmitting substrate, and the solar cell can absorb the ultraviolet light band.
  • the UV transmittance of the first package is greater than the UV transmittance of the second package.
  • the ultraviolet light transmittance of the first package between the solar cell and the transparent substrate is greater than the ultraviolet transmittance of the second package between the solar cell and the back plate, so that the ultraviolet light can be passed through the first package.
  • the solar cell absorbs and utilizes, and the ultraviolet light passing through the gap of the solar cell can be absorbed by the second package. Avoid degradation of the back sheet due to ultraviolet light.
  • Figure 1 is a partial cross-sectional view showing a first embodiment of a solar module capable of absorbing ultraviolet light in the present invention.
  • Figure 2 is a partial cross-sectional view showing a second embodiment of a solar module capable of absorbing ultraviolet light in the present invention.
  • Fig. 3 is a partial cross-sectional view showing a third embodiment of the solar module capable of absorbing ultraviolet light in the present invention.
  • Figure 4 is a partial cross-sectional view showing a fourth embodiment of a solar module capable of absorbing ultraviolet light in the present invention.
  • Fig. 5 is a partial cross-sectional view showing a fifth embodiment of the solar module capable of absorbing ultraviolet light in the present invention.
  • Figure 6 is a partial cross-sectional view showing a sixth embodiment of a solar module capable of absorbing ultraviolet light in the present invention.
  • Fig. 7 is a flow chart showing an embodiment of a method of fabricating a solar module capable of absorbing ultraviolet light in the present invention.
  • Figure 8 is a flow chart showing another embodiment of a method of fabricating a solar module capable of absorbing ultraviolet light in the present invention.
  • the present invention proposes an absorbable The solar module in the ultraviolet band solves the problem that the back plate is deteriorated by ultraviolet light irradiation.
  • the solar module 100 capable of absorbing ultraviolet light includes a light transmissive substrate 110, a back plate 120, a plurality of solar cells 130, a first encapsulant 140, and a second encapsulant 150.
  • the solar cell 130 is disposed between the transparent substrate 110 and the back plate 120, wherein the light receiving surface 132 of the solar cell 130, that is, the solar cell 130 is configured to receive a surface of the solar light and face the transparent substrate 110.
  • the first encapsulant 140 is located between the transparent substrate 110 and the solar cell 130
  • the second encapsulant 150 is located between the solar cell 130 and the backplane 120.
  • the transparent substrate 110, the solar cell 130, and the back plate 120 are glued through the first package 140 and the second package 150.
  • the solar cell 130 is located in the first package 140 and the second package.
  • a portion of the first encapsulant 140 contacts a portion of the second encapsulant 150.
  • the solar cell 130 is a solar cell that can absorb ultraviolet light.
  • the first package material 140 between the light-transmitting substrate 110 and the solar cell 130 is preferably a package material with high ultraviolet light transmittance, so that at least the ultraviolet light band is large. Part of the light can penetrate.
  • the second package 150 is preferably a package having low ultraviolet light transmittance. . In other words, the transmittance of the first encapsulant 140 to ultraviolet light is greater than the transmittance of the second encapsulant 150 to ultraviolet light.
  • the light transmissive substrate 110 may be a glass substrate.
  • the back plate 120 can be a plastic substrate.
  • the first encapsulant 140 and the second encapsulant 150 comprise adhesive materials of the same or different materials, and the adhesive material may include ethylene vinyl acetate resin (EVA) and low density polyethylene (low density).
  • EVA ethylene vinyl acetate resin
  • Low density polyethylene low density polyethylene
  • the first encapsulant 140 has an adhesive without any ultraviolet light absorber.
  • the second encapsulant 150 further includes a first ultraviolet light absorber 160.
  • the second encapsulating material 150 absorbs the light in the ultraviolet light band by the first ultraviolet light absorbing agent 160 to reduce the amount of irradiation of the ultraviolet light to the backing plate 120, thereby reducing the influence of the ultraviolet light on the backing plate 120.
  • the solar module 100 capable of absorbing ultraviolet light includes a light transmissive substrate 110, a back plate 120, a plurality of solar cells 130, a first encapsulant 140, and a second encapsulant 150.
  • the solar cell 130 is disposed between the transparent substrate 110 and the back plate 120.
  • the first encapsulant 140 is located between the transparent substrate 110 and the solar cell 130, and the second encapsulant 150 is located between the solar cell 130 and the backplane 120.
  • the solar cell 130 is a solar cell that can absorb ultraviolet light.
  • the ultraviolet transmittance of the first encapsulant 140 is greater than the ultraviolet transmittance of the second encapsulant 150.
  • the first encapsulant 140 and the second encapsulant 150 may include adhesive materials of different materials or materials.
  • the first encapsulant 140 and the second encapsulant 150 each include a first ultraviolet light absorber 160, and the first ultraviolet light absorber 160 in the first package 140 has a lower density than the first ultraviolet light in the second package 150.
  • the distribution density of the absorber 160 is such that most of the ultraviolet light band can be absorbed by the solar cell 130 through the first package material 140, but is not easily penetrated by the second package material 150 to the back plate 120.
  • the first ultraviolet light absorber 160 in the first package material 140 is, for example, because of direct contact between the first package material 140 and the second package material 150, such that the second package material 150 is in the process of heat lamination.
  • An ultraviolet light absorbing agent 160 is diffused into the first package member 140, but is not limited thereto.
  • the solar module 100 capable of absorbing ultraviolet light includes a light transmissive substrate 110, a back plate 120, a plurality of solar cells 130, a first encapsulant 140, and a second encapsulant 150.
  • the solar cell 130 is disposed between the transparent substrate 110 and the back plate 120.
  • the first encapsulant 140 is located between the transparent substrate 110 and the solar cell 130, and the second encapsulant 150 is located between the solar cell 130 and the backplane 120.
  • the solar cell 130 is a solar cell that can absorb the ultraviolet light band.
  • First encapsulant 140 The ultraviolet light transmittance is greater than the ultraviolet light transmittance of the second package 150.
  • the second encapsulant 150 includes an adhesive and a first ultraviolet absorber 16 ⁇ .
  • the first encapsulant 140 includes an adhesive and a second ultraviolet absorber 170.
  • the adhesive material of the first encapsulant 140 and the adhesive material of the second encapsulant 150 may comprise different materials or the same material.
  • the overlapping range of the absorption band and the ultraviolet band of the first ultraviolet light absorber 160 is larger than the overlapping range of the absorption band and the ultraviolet band of the second ultraviolet light absorber 170.
  • the ultraviolet light band that the solar module can absorb is 300 nm to 400 nm
  • the absorption band of the second ultraviolet light absorber 170 in the first package material 140 overlaps with the ultraviolet light band that the solar module can absorb.
  • the ultraviolet light in the 300 nm to 400 nm band is less absorbed by the second ultraviolet light absorber 170, and the ultraviolet light in the 300 nm to 400 nm band can penetrate the first package material 140 and be absorbed by the solar cell 130.
  • the absorption band of the first ultraviolet light absorber 160 in the second encapsulant 150 overlaps with the above ultraviolet light band to prevent the ultraviolet light band from being irradiated onto the back plate 120.
  • the solar module 100 capable of absorbing the ultraviolet light band includes, in addition to the transparent substrate 110, the back plate 120, the plurality of solar cells 130 capable of absorbing the ultraviolet light band, the first package 140, and the second package 150,
  • the third package 180 is disposed between the solar cell 130 and the second package 150.
  • the ultraviolet light transmittance of the third package material 180 is greater than the ultraviolet light transmittance of the second package material 150.
  • the third package material 180 serves as a buffer layer between the first package material 140 and the second package material 150 to avoid the second
  • the first ultraviolet light absorber 160 in the package material 150 is directly diffused by the heat lamination to the first package material 140 located on the light receiving surface 132 of the solar cell 130, thereby reducing the ultraviolet light transmittance of the first package material 140, Affecting the performance of the solar cell 130.
  • the solar cell 130 is located between the first package material 140 and the third package material 180, and a portion of the first package material 140 contacts a portion of the third package material 180.
  • the ultraviolet transmittance of the first encapsulant 140 is greater than the ultraviolet transmittance of the second encapsulant 150, so that the ultraviolet light can enter the solar cell 130 to be absorbed.
  • first encapsulant 140 and the second encapsulant 150 can be as detailed in the embodiment of Figures 1 to 3. In all of the following embodiments, only the changes to the third package 180 are described, as described in the foregoing.
  • the third encapsulating material 180 has an adhesive material without any ultraviolet light absorbing agent
  • the second packaging material 150 includes an adhesive material and a first ultraviolet light absorbing agent 160. Stickiness of the third package 180
  • the adhesive material of the material and the second encapsulant 150 may comprise different materials or the same material.
  • the second encapsulating material 150 absorbs the light in the ultraviolet light band by the first ultraviolet light absorbing agent 160 to reduce the amount of irradiation of the ultraviolet light to the backing plate 120, thereby reducing the influence of the ultraviolet light on the backing plate 120.
  • the thickness of the third encapsulant 180 is, for example, greater than the thickness of the second encapsulant 150 to avoid the risk that the first ultraviolet light absorber 160 gradually diffuses to the first encapsulant 140 under long-term use of the solar module 100.
  • the solar module 100 capable of absorbing ultraviolet light includes a light-transmitting substrate 110, a back plate 120, a plurality of solar cells 130 capable of absorbing ultraviolet light, a first package 140, a second package 150, and a third package 180.
  • the ultraviolet light transmittance of the third package material 180 is greater than the ultraviolet light transmittance of the second package material 150.
  • the solar cell 130 is located between the first package material 140 and the third package material 180, and the third package material 180 is used as the first package.
  • a buffer layer between the material 140 and the second encapsulant 150 is shown.
  • the thickness of the third encapsulant 180 is, for example, greater than the thickness of the second encapsulant 150 to avoid the risk that the first ultraviolet light absorber 160 gradually diffuses to the first encapsulant 140 under long-term use of the solar module 100.
  • the third package 180 and the second package 150 may include adhesive materials of the same or different materials.
  • the second encapsulant 150 and the third encapsulant 180 both include a first ultraviolet light absorber 160, and the first ultraviolet light absorber 160 in the third package 180 has a lower density than the first ultraviolet light in the second package 150.
  • the distribution density of the absorber 160 is such that most of the ultraviolet light band can penetrate the third package material 180 as a buffer layer but is less likely to penetrate the second package material 150 to illuminate the back sheet 120.
  • the first ultraviolet light absorber 160 in the third package material 180 is, for example, because of direct contact between the third package material 180 and the second package material 150, such that the first of the second package materials 150 during the heat lamination process
  • the ultraviolet light absorber 160 diffuses into the third package 180.
  • the third encapsulant 180 as a buffer layer, the diffusion of the first ultraviolet light absorber 160 can be restricted to the third package 180, and the probability of entering the first package 140 can be reduced to avoid affecting the pair of solar cells 130.
  • the solar module 100 capable of absorbing ultraviolet light includes a light-transmitting substrate 110, a back plate 120, a plurality of solar cells 130 capable of absorbing ultraviolet light, a first package 140, a second package 150, and a third package 180.
  • the ultraviolet light transmittance of the third package material 180 is greater than the ultraviolet light transmittance of the second package material 150.
  • the solar cell 130 is located between the first package material 140 and the third package material 180, and the third package material 180 is used as the first package.
  • a buffer layer between the material 140 and the second encapsulant 150 is used as the first package.
  • the thickness of the third package 180 is, for example, greater than the thickness of the second package 150 to avoid the solar module 100 Under long-term use, there is a risk that the first ultraviolet light absorber 160 gradually diffuses to the first package material 140.
  • the second encapsulant 150 includes an adhesive and a first ultraviolet absorber 160
  • the third encapsulant 180 includes an adhesive and a second ultraviolet absorber 170.
  • the adhesive material of the third encapsulant 180 and the adhesive material of the second encapsulant 150 may comprise different materials or the same material.
  • the overlapping range of the absorption band and the ultraviolet band of the first ultraviolet light absorber 160 is greater than the overlap range of the absorption band and the ultraviolet band of the second ultraviolet light absorber 170 & the first ultraviolet light absorption in the second package 150
  • the absorption band of the agent 160 overlaps with the ultraviolet light band to prevent the ultraviolet light band from being irradiated onto the back plate 120.
  • the diffusion of the first ultraviolet light absorber 160 can be restricted to the third package 180, and the probability of entering the first package 140 can be reduced to avoid affecting the solar energy.
  • the utilization efficiency of the battery 130 for ultraviolet light is the utilization efficiency of the battery 130 for ultraviolet light.
  • the third embodiment is adopted, that is, the solar module 100 does not have the third package 180, and the first package 140 and the second package 150 of the solar module 100 have different ultraviolet light absorbers,
  • the factory power is 265. 989 watts.
  • the solar module 100 having the third package material has a factory power of 266.819 watts. Therefore, the third package 180 as the buffer layer can surely limit the diffusion of the first ultraviolet absorber 160 to the third package 180, and reduce the probability of entering the first package 140.
  • Step slO is to provide a transparent substrate.
  • the light transmissive substrate may be a glass substrate.
  • step sl2 is to set the first package material on the transparent substrate.
  • the first encapsulant is preferably a package having a high degree of ultraviolet light transmission, allowing at least a majority of the light in the ultraviolet light band to be penetrated.
  • the first package material comprises an adhesive material, and the material of the adhesive material may include ethylene vinyl acetate resin (EVA), low density polyethylene (LDPE), high density polyethylene (HDPE). , silicone (Si l icone), epoxy (Epoxy), polyvinyl butyral (PVB), thermoplastic polyurethane (TPU) or combinations thereof, but Not limited to this.
  • EVA ethylene vinyl acetate resin
  • LDPE low density polyethylene
  • HDPE high density polyethylene
  • silicone Si l icone
  • epoxy Epoxy
  • PVB polyvinyl butyral
  • TPU thermoplastic polyurethane
  • step sl4 is to set a plurality of solar cells on the first package.
  • the solar cell can absorb the ultraviolet light band, and the light receiving surface of the solar cell faces the light transmitting substrate.
  • step sl6 is to set a second package on the solar cell.
  • the solar cell is located between the first encapsulating material and the second encapsulating material, and the light receiving surface of the solar cell directly contacts the first encapsulating material, and the solar cell directly contacts the second encapsulating material with respect to the other side of the light receiving surface.
  • the second encapsulating material comprises an adhesive material, and the material of the adhesive material may include ethylene vinyl acetate resin (EVA), low density polyethyl ene (LDPE), high density polyethylene (HDPE). , silicone (Si l icone), epoxy (Epoxy), polyvinyl butyral (PVB), Thermoplastic Polyurethane (TPU) or a combination thereof, but not limited to this.
  • the second encapsulant may further comprise a first ultraviolet light absorber.
  • the ultraviolet transmittance of the first encapsulant is greater than the ultraviolet transmittance of the second encapsulant, so that the solar cell can absorb and utilize the ultraviolet band.
  • the first encapsulant may have an adhesive without any ultraviolet light absorber.
  • the first encapsulant may optionally include a first ultraviolet light absorber, the first ultraviolet light absorber of the first package having a distribution density smaller than the distribution density of the first ultraviolet light absorber in the second package.
  • the first encapsulant may selectively include a second ultraviolet light absorber, and the first ultraviolet light absorber in the second package may have an overlap range of the absorption band and the ultraviolet band greater than that in the first package. The overlapping range of the absorption band of the second ultraviolet light absorber and the ultraviolet band.
  • step sl8 is to set the back plate on the second package.
  • the back plate can be a plastic substrate.
  • the second encapsulant can absorb most of the ultraviolet light to reduce the amount of ultraviolet light irradiated to the backing plate, thereby reducing the degradation of the backing plate due to ultraviolet light irradiation or avoiding the adhesion between the backing plate and the second packaging material. situation.
  • step s20 is to laminate the light transmissive substrate, the first encapsulant, the solar cell, the second encapsulant and the back plate to obtain a solar module capable of absorbing ultraviolet light.
  • the heat-transmissive substrate is further included, that is, the light-transmitting substrate is a direct heat-receiving surface in the lamination step.
  • the heating temperature is about 14 (T16 (TC.) Since the solar cells are arranged at intervals, a portion of the first package material directly contacts a portion of the second package material after lamination.
  • Step s30 is to provide a transparent substrate.
  • the light transmissive substrate may be a glass substrate.
  • step s32 is to set the first package material on the transparent substrate.
  • the first encapsulant is preferably a package having a high UV transmittance to allow at least a majority of the light in the ultraviolet band to penetrate.
  • the first package material comprises an adhesive material, and the material of the adhesive material may include ethylene vinyl acetate resin (EVA), low density polyethylene (LDPE), high density polyethylene (HDPE). , silicone (Si l icone), epoxy (Epoxy), polyvinyl butyral (PVB), thermoplastic polyurethane (TPU) or a combination thereof, but not Limited to this.
  • step s34 is to set a plurality of solar cells on the first package. The solar cell can absorb the ultraviolet light band, and the light receiving surface of the solar cell faces the light transmitting substrate.
  • step s36 is to set a third package on the solar cell.
  • the solar cell is located between the first package material and the third package material, and the light receiving surface of the solar cell directly contacts the first package material, and the solar cell directly contacts the third package material with respect to the other side of the light receiving surface.
  • the third packaging material comprises an adhesive material, and the material of the adhesive material may include ethylene vinyl acetate resin (EVA), low density polyethyl ene (LDPE), high density polyethylene (HDPE). , silicone (Si l icone), epoxy (Epoxy), polyvinyl butyral (PVB), thermoplastic polyurethane (TPU) or a combination thereof, but not Limited to this.
  • EVA ethylene vinyl acetate resin
  • LDPE low density polyethyl ene
  • HDPE high density polyethylene
  • silicone Si l icone
  • epoxy Epoxy
  • PVB polyvinyl butyral
  • TPU thermoplastic polyurethane
  • step s38 is to set a second package on the third package.
  • the third encapsulant serves as a buffer layer between the first encapsulant and the second encapsulant.
  • the second encapsulant comprises an adhesive material, and the material of the adhesive material may comprise ethylene vinyl acetate resin (EVA), low density polyethylene (LDPE), high density polyethylene (HDPE). , silicone (Si l icone), epoxy (Epoxy), polyvinyl butyral (PVB), thermoplastic polyurethane (TPU) or combinations thereof, but not Limited to this.
  • the second encapsulant may further comprise a first ultraviolet light absorber.
  • the ultraviolet transmittance of the first encapsulant is greater than the ultraviolet transmittance of the second encapsulant, so that the solar cell can absorb and utilize the ultraviolet band.
  • the ultraviolet light transmittance of the buffered third package material is greater than the ultraviolet light transmittance of the second package material, so that most of the ultraviolet light band is absorbed by the second package material.
  • the first package material or the third package material may have an adhesive material without any ultraviolet light absorption.
  • the first encapsulant or the third encapsulant may selectively include the first ultraviolet light absorber, and the first ultraviolet light absorber of the first package or the third package has a distribution density smaller than that in the second package. The distribution density of the first ultraviolet light absorber.
  • the first encapsulant or the third encapsulant may selectively include a second ultraviolet light absorber, and the first ultraviolet light absorber in the second package may have an overlap range of the absorption band and the ultraviolet band greater than The overlapping range of the absorption band and the ultraviolet band of the second ultraviolet light absorber in a package or a third package.
  • step s40 is to set the back plate on the second package.
  • the back plate can be a plastic substrate.
  • Low UV transmittance The second package absorbs most of the UV light to reduce the amount of UV light on the backplane, which in turn reduces the degradation of the backsheet due to UV light or avoids reducing the backplane and the second package. Between materials The case of adhesion.
  • step s42 is to laminate the transparent substrate, the first package, the solar cell, the third package, the second package and the back plate to obtain a solar module capable of absorbing ultraviolet light.
  • the heat-transmissive substrate is further included, that is, the light-transmitting substrate is a direct heat-receiving surface in the lamination step.
  • the heating temperature is about 14 (T16 (TC.) Since the solar cells are arranged at intervals, there is a portion of the first package that directly contacts a portion of the third package after lamination.
  • the third package as a buffer layer The material can reduce the diffusion of the first ultraviolet light absorber to be limited by the third package material, and reduce the probability of entering the first package material to avoid affecting the utilization efficiency of the solar cell for ultraviolet light.
  • the object of the present invention is to provide a solar module capable of absorbing ultraviolet light bands for improving the power generation efficiency of the solar module and reducing the deterioration of the back sheet due to ultraviolet light irradiation.

Abstract

提供一种可吸收紫外光波段的太阳能模块(100)及其制作方法。太阳能电池(130)与透光基板(110)之间的第一封装材(140)的紫外光穿透度大于太阳能电池(130)与背板(120)之间的第二封装材(150)的紫外光穿透度,使得紫外光可穿过第一封装材(140)被太阳能电池(130)吸收利用,而第二封装材(150)可在之后吸收紫外光,避免背板(120)因紫外光照射而劣化。

Description

可吸收紫外光波段的太阳能模块及其制作方法 技术领域
本发明是有关于一种太阳能模块与其制作方法, 且特别是有关于一种可吸 收紫外光波段的太阳能模块与其制作方法。 背景技术
近几年来, 由于世界各地的原油存量逐年的减少, 能源问题已成为全球注 目的焦点。 为了解决能源耗竭的危机, 各种替代能源的发展与利用实为当务之 急。 随着环保意识抬头, 加上太阳能具有零污染、 以及取之不尽用之不竭的优 点, 太阳能已成为相关领域中最受瞩目的焦点。 因此, 在日照充足的位置, 例 如建筑物屋顶、 广场等等, 愈来愈常见到太阳能面板的装设。 发明公开
本发明的目的就是在提供一种可吸收紫外光波段的太阳能模块, 用以提升 太阳能模块的发电效率, 并降低背板因紫外光照射而劣化的情形。
依照本发明一实施方式, 提出一种可吸收紫外光波段的太阳能模块, 包含 透光基板、 背板、 多个太阳能电池、 第一封装材与第二封装材。 太阳能电池可 吸收紫外光波段, 设置于透光基板与背板之间, 太阳能电池的受光面面对透光 基板。 第一封装材位于透光基板与太阳能电池之间。 第二封装材位于背板与太 阳能电池之间, 第一封装材的紫外光穿透度大于第二封装材的紫外光穿透度。
依照本发明的另一实施方式, 提出一种制作可吸收紫外光波段的太阳能模 块的方法, 包含提供透光基板、 设置第一封装材于透光基板上、 设置多个太阳 能电池于第一封装材上、 设置第二封装材于太阳能电池上、 设置背板于第二封 装材上, 以及层压透光基板、 第一封装材、 太阳能电池、 第二封装材与背板。 太阳能电池的受光面面对透光基板, 太阳能电池可吸收紫外光波段。 第一封装 材的紫外光穿透度大于第二封装材的紫外光穿透度。
太阳能电池与透光基板之间的第一封装材的紫外光穿透度大于太阳能电池 与背板之间的第二封装材的紫外光穿透度, 使得紫外光可穿过第一封装材被太 阳能电池吸收利用, 而穿过太阳能电池的间隙的紫外光可被第二封装材吸收, 避免背板因紫外光照射而劣化。 附图简要说明
图 1为本发明的可吸收紫外光波段的太阳能模块第一实施例的局部剖面示 意图。
图 2为本发明的可吸收紫外光波段的太阳能模块第二实施例的局部剖面示 意图。
图 3为本发明的可吸收紫外光波段的太阳能模块第三实施例的局部剖面示 意图。
图 4为本发明的可吸收紫外光波段的太阳能模块第四实施例的局部剖面示 意图。
图 5为本发明的可吸收紫外光波段的太阳能模块第五实施例的局部剖面示 意图。
图 6为本发明的可吸收紫外光波段的太阳能模块第六实施例的局部剖面示 意图。
图 7为本发明的制作可吸收紫外光波段的太阳能模块的方法一实施例的流 程图。
图 8为本发明的制作可吸收紫外光波段的太阳能模块的方法另一实施例的 流程图。
其中, 附图说明:
100: 太阳能模块
110: 透光基板
120: 背板
130: 太阳能电池
132: 受光面
140: 第一封装材
150: 第二封装材
160: 第一紫外光吸收剂
170: 第二紫外光吸收剂
180: 第三封装材 sl(Ts42 : 歩骤 实现本发明的最佳方式
以下将以附图及详细说明清楚说明本发明的精神, 任何所属技术领域的技 术人员在了解本发明的较佳实施例后, 当可由本发明所教示的技术, 加以改变 及修改, 其并不脱离本发明的精神与范围。
为了提升太阳能面板的发电效率, 开发出一种可以吸收部份紫外光波段的 太阳能电池, 由于此种太阳能模块中的背板容易因紫外光的照射而劣化, 本发 明便提出了一种可吸收紫外光波段的太阳能模块并解决背板因紫外光照射而劣 化的情形。
参照图 1, 其为本发明的可吸收紫外光波段的太阳能模块第一实施例的局 部剖面示意图。 可吸收紫外光波段的太阳能模块 100包含有透光基板 110、 背 板 120、 多个太阳能电池 130、 第一封装材 140, 以及第二封装材 150。 太阳能 电池 130设置于透光基板 110与背板 120之间, 其中太阳能电池 130的受光面 132, 即太阳能电池 130用以接受太阳光线的一表面, 面对透光基板 110。 第一 封装材 140位于透光基板 110与太阳能电池 130之间, 第二封装材 150位于太 阳能电池 130与背板 120之间。 在加热层压后, 可透过第一封装材 140与第二 封装材 150胶合透光基板 110、 太阳能电池 130以及背板 120, 此时, 太阳能电 池 130位于第一封装材 140与第二封装材 150之间, 部分的第一封装材 140接 触部分的第二封装材 150。
太阳能电池 130为可以吸收紫外光波段的太阳能电池。 为使紫外光波段可 以进入太阳能电池 130中, 位于透光基板 110与太阳能电池 130之间的第一封 装材 140较佳地为紫外光穿透度高的封装材, 让紫外光波段中至少大部分的光 线可穿透。 而为了保护背板 120不受紫外光照射而劣化或是避免降低背板 120 与第二封装材 150之间的黏合力, 第二封装材 150较佳地为紫外光穿透度低的 封装材。 换言之, 第一封装材 140对于紫外光的穿透度大于第二封装材 150对 于紫外光的穿透度。
透光基板 110可以为玻璃基板。背板 120可以为塑胶基板。第一封装材 140 与第二封装材 150包含有相同或不同材质的黏着材, 黏着材的材质可包含乙烯 醋酸乙烯月旨(ethylene vinyl acetate resin, EVA) ,低密度聚乙烯(low density polyethylene , LDPE) , 高密度聚乙烯(high density polyethyl ene, HDPE) 硅氧树脂 (Si l icone)、 环氧树脂 (Epoxy)、 聚乙烯丁醛树脂 (Polyvinyl
Butyral , PVB)、 热可塑聚胺基甲酸酯(Thermoplastic Polyurethane , TPU)或 其组合, 但不限于此。 本实施例中, 第一封装材 140具有黏着材而不具有任何 紫外光吸收剂。 除了黏着剂。 第二封装材 150中更包含有第一紫外光吸收剂 160。第二封装材 150藉由第一紫外光吸收剂 160吸收紫外光波段的光线, 以减 少紫外光波段照射到背板 120的照射量, 进而降低紫外光对背板 120的影响。
参照图 2, 其为本发明的可吸收紫外光波段的太阳能模块第二实施例的局 部剖面示意图。 可吸收紫外光波段的太阳能模块 100包含有透光基板 110、 背 板 120、 多个太阳能电池 130、 第一封装材 140, 以及第二封装材 150。 太阳能 电池 130设置于透光基板 110与背板 120之间。 第一封装材 140位于透光基板 110与太阳能电池 130之间, 第二封装材 150位于太阳能电池 130与背板 120 之间。
太阳能电池 130为可以吸收紫外光波段的太阳能电池。 第一封装材 140的 紫外光穿透度大于第二封装材 150的紫外光穿透度。 本实施例中, 第一封装材 140与第二封装材 150可包含有不同材质或相同材质的黏着材。第一封装材 140 与第二封装材 150皆包含第一紫外光吸收剂 160, 第一封装材 140中的第一紫 外光吸收剂 160的分布密度小于第二封装材 150中的第一紫外光吸收剂 160的 分布密度使得大部分的紫外光波段可以穿透第一封装材 140被太阳能电池 130 吸收利用, 但不易穿透第二封装材 150照射到背板 120。 第一封装材 140中的 第一紫外光吸收剂 160例如是因为第一封装材 140与第二封装材 150之间的直 接接触, 使得在加热层压的过程中第二封装材 150中的第一紫外光吸收剂 160 扩散到第一封装材 140之中, 然不限于此。
参照图 3, 其为本发明的可吸收紫外光波段的太阳能模块第三实施例的局 部剖面示意图。 可吸收紫外光波段的太阳能模块 100包含有透光基板 110、 背 板 120、 多个太阳能电池 130、 第一封装材 140, 以及第二封装材 150。 太阳能 电池 130设置于透光基板 110与背板 120之间。 第一封装材 140位于透光基板 110与太阳能电池 130之间, 第二封装材 150位于太阳能电池 130与背板 120 之间。
太阳能电池 130为可以吸收紫外光波段的太阳能电池。 第一封装材 140的 紫外光穿透度大于第二封装材 150的紫外光穿透度。 本实施例中, 第二封装材 150中包含有黏着材与第一紫外光吸收剂 16α第一封装材 140中包含有黏着材 与第二紫外光吸收剂 170。 第一封装材 140的黏着材与第二封装材 150的黏着 材可包含有不同材质或相同材质。 第一紫外光吸收剂 160的吸收波段与紫外光 波段的重迭范围大于第二紫外光吸收剂 170的吸收波段与紫外光波段的重迭范 围。 举例来说, 太阳能模块所能吸收运用的紫外光波段为 300nm至 400nm, 第 一封装材 140中的第二紫外光吸收剂 170的吸收波段与上述太阳能模块所能吸 收的紫外光波段重迭较少, 使得 300nm至 400 nm波段的紫外光较少被第二紫外 光吸收剂 170吸收, 而 300nm至 400 nm波段的紫外光多可以穿透第一封装材 140而被太阳能电池 130吸收利用。第二封装材 150中的第一紫外光吸收剂 160 的吸收波段与上述紫外光波段重迭较多, 可防止上述紫外光波段照射到背板 120上。
参照图 4, 其为本发明的可吸收紫外光波段的太阳能模块第四实施例的局 部剖面示意图。可吸收紫外光波段的太阳能模块 100除了前述的透光基板 110、 背板 120、 可吸收紫外光波段的多个太阳能电池 130、 第一封装材 140, 以及第 二封装材 150外, 更包含有设置于太阳能电池 130与第二封装材 150之间的第 三封装材 180。 第三封装材 180的紫外光穿透度大于第二封装材 150的紫外光 穿透度第三封装材 180作为第一封装材 140与第二封装材 150之间的缓冲层, 以避免第二封装材 150中的第一紫外光吸收剂 160因加热层压直接扩散至位于 太阳能电池 130受光面 132上的第一封装材 140, 因而降低第一封装材 140的 紫外光穿透度的情形, 影响到太阳能电池 130的效能。
太阳能电池 130位于第一封装材 140与第三封装材 180之间, 其中部分的 第一封装材 140接触部分的第三封装材 180。 第一封装材 140的紫外光穿透度 大于第二封装材 150的紫外光穿透度, 使得紫外光可进入太阳能电池 130被吸 收利用。
第一封装材 140与第二封装材 150之间的关系可如图 1至图 3的实施例所 详述。 在以下所有的实施例中, 仅针对第三封装材 180的变化进行描述, 合先 叙明。
本实施例中, 第三封装材 180具有黏着材而不具有任何紫外光吸收剂, 第 二封装材 150中包含有黏着材与第一紫外光吸收剂 160。 第三封装材 180的黏 着材与第二封装材 150的黏着材可包含有不同材质或相同材质。第二封装材 150 藉由第一紫外光吸收剂 160吸收紫外光波段的光线, 以减少紫外光波段照射到 背板 120的照射量, 进而降低紫外光对背板 120的影响。 另外, 第三封装材 180 的厚度例如大于第二封装材 150的厚度 以避免太阳能模块 100在长期使用下, 第一紫外光吸收剂 160逐渐扩散到第一封装材 140的风险。
参照图 5, 其为本发明的可吸收紫外光波段的太阳能模块第五实施例的局 部剖面示意图。 可吸收紫外光波段的太阳能模块 100包含有透光基板 110、 背 板 120、 可吸收紫外光波段的多个太阳能电池 130、 第一封装材 140、 第二封装 材 150与第三封装材 180。第三封装材 180的紫外光穿透度大于第二封装材 150 的紫外光穿透度太阳能电池 130位于第一封装材 140与第三封装材 180之间, 第三封装材 180作为第一封装材 140与第二封装材 150之间的缓冲层。 另外, 第三封装材 180的厚度例如大于第二封装材 150的厚度 以避免太阳能模块 100 在长期使用下, 第一紫外光吸收剂 160逐渐扩散到第一封装材 140的风险。
本实施例中, 第三封装材 180与第二封装材 150可包含有相同或不同材质 的黏着材。 第二封装材 150与第三封装材 180皆包含第一紫外光吸收剂 160, 第三封装材 180中的第一紫外光吸收剂 160的分布密度小于第二封装材 150中 的第一紫外光吸收剂 160的分布密度, 使得大部分的紫外光波段可以穿透作为 缓冲层的第三封装材 180但不易穿透第二封装材 150照射到背板 120。 第三封 装材 180中的第一紫外光吸收剂 160例如因为第三封装材 180与第二封装材 150 之间的直接接触, 使得在加热层压的过程中第二封装材 150中的第一紫外光吸 收剂 160扩散到第三封装材 180之中。 藉由作为缓冲层的第三封装材 180, 可 以使得第一紫外光吸收剂 160的扩散受限于第三封装材 180, 而降低进入第一 封装材 140的机率, 以避免影响太阳能电池 130对紫外光的利用效率。
参照图 6, 其为本发明的可吸收紫外光波段的太阳能模块第六实施例的局 部剖面示意图。 可吸收紫外光波段的太阳能模块 100包含有透光基板 110、 背 板 120、 可吸收紫外光波段的多个太阳能电池 130、 第一封装材 140、 第二封装 材 150与第三封装材 180。第三封装材 180的紫外光穿透度大于第二封装材 150 的紫外光穿透度太阳能电池 130位于第一封装材 140与第三封装材 180之间, 第三封装材 180作为第一封装材 140与第二封装材 150之间的缓冲层。 另外, 第三封装材 180的厚度例如大于第二封装材 150的厚度 以避免太阳能模块 100 在长期使用下, 第一紫外光吸收剂 160逐渐扩散到第一封装材 140的风险。 本实施例中, 第二封装材 150中包含有黏着材与第一紫外光吸收剂 160, 第三封装材 180中包含有黏着材与第二紫外光吸收剂 170。 第三封装材 180的 黏着材与第二封装材 150的黏着材可包含有不同材质或相同材质。 第一紫外光 吸收剂 160的吸收波段与紫外光波段的重迭范围大于第二紫外光吸收剂 170的 吸收波段与紫外光波段的重迭范 &第二封装材 150中的第一紫外光吸收剂 160 的吸收波段与紫外光波段重迭较多,可防止上述紫外光波段照射到背板 120上。
同样地, 藉由作为缓冲层的第三封装材 180, 可以使得第一紫外光吸收剂 160的扩散受限于第三封装材 180, 而降低进入第一封装材 140的机率, 以避免 影响太阳能电池 130对紫外光的利用效率。
根据实际测试的结果, 采用第三实施例, 也就是太阳能模块 100不具有第 三封装材 180, 且太阳能模块 100的第一封装材 140与第二封装材 150具有不 同的紫外光吸收剂, 其出厂功率为 265. 989瓦。 而采用第六实施例, 即多了第 三封装材的太阳能模块 100的出厂功率为 266. 819瓦。 故作为缓冲层的第三封 装材 180, 确实可以达到使第一紫外光吸收剂 160的扩散受限于第三封装材 180, 而降低进入第一封装材 140的机率。
参照图 7, 其为本发明的制作可吸收紫外光波段的太阳能模块的方法一实 施例的流程图。 歩骤 slO为提供透光基板。 透光基板可以为玻璃基板。
接着, 歩骤 sl2为设置第一封装材于透光基板上。 第一封装材较佳地为紫 外光穿透度高的封装材, 让紫外光波段中至少大部分的光线可穿透。 第一封装 材包含黏着材, 黏着材的材质可包含乙烯醋酸乙烯脂(ethylene vinyl acetate resin, EVA)、 低密度聚乙烯(low density polyethylene , LDPE)、 高密度聚乙 烯(high density polyethylene , HDPE)、 硅氧树脂(Si l icone)、 环氧树脂 (Epoxy)、 聚乙烯丁醛树脂 (Polyvinyl Butyral , PVB)、 热可塑聚胺基甲酸酯 (Thermoplastic Polyur ethane , TPU)或其组合等, 但不限于此。
接着, 歩骤 sl4为设置多个太阳能电池于第一封装材上。 太阳能电池可吸 收紫外光波段, 太阳能电池的受光面面对透光基板。
接着, 歩骤 sl6为设置第二封装材于太阳能电池上。 太阳能电池位于第一 封装材与第二封装材之间, 太阳能电池的受光面直接接触第一封装材, 太阳能 电池相对于受光面的另一面直接接触第二封装材。 第二封装材包含黏着材, 黏着材的材质可包含乙烯醋酸乙烯脂 (ethylene vinyl acetate resin, EVA),低密度聚乙烯 (low density polyethyl ene, LDPE) 高密度聚乙烯(high density polyethylene , HDPE)、 硅氧树脂(Si l icone)、 环 氧树脂 (Epoxy)、 聚乙烯丁醛树脂 (Polyvinyl Butyral , PVB)、 热可塑聚胺基甲 酸酯(Thermoplastic Polyurethane, TPU)或其组合, 然不限于此。 第二封装材 更可包含有第一紫外光吸收剂。
第一封装材的紫外光穿透度大于第二封装材的紫外光穿透度, 使太阳能电 池可吸收利用紫外光波段。 第一封装材中可以具有黏着材而不具有任何紫外光 吸收剂。 或者, 第一封装材可以选择性地包含有第一紫外光吸收剂, 第一封装 材的第一紫外光吸收剂的分布密度小于第二封装材中的第一紫外光吸收剂的分 布密度。 或者, 第一封装材中可以选择性地包含有第二紫外光吸收剂, 第二封 装材中的第一紫外光吸收剂的吸收波段与紫外光波段的重迭范围大于第一封装 材中的第二紫外光吸收剂的吸收波段与紫外光波段的重迭范围。
接着, 歩骤 sl8为设置背板于第二封装材上。 背板可以为塑胶基板。 第二 封装材可吸收大部分的紫外光, 以减少紫外光对背板的照射量, 进而降低背板 因紫外光照射而劣化或是避免降低背板与第二封装材之间的黏附力的情形。
最后, 歩骤 s20为层压透光基板、 第一封装材、 太阳能电池、 第二封装材 与背板, 以得到可吸收紫外光波段的太阳能模块。 层压歩骤 s20中, 更包含加 热透光基板, 即透光基板为层压歩骤中的直接受热面。 例如加热的温度约为 14(T16(TC。 由于太阳能电池为间隔地排列, 故在经过层压之后会有部分的第一 封装材直接接触部分的第二封装材。
参照图 8, 其为本发明的制作可吸收紫外光波段的太阳能模块的方法另一 实施例的流程图。 歩骤 s30为提供透光基板。 透光基板可以为玻璃基板。
接着, 歩骤 s32为设置第一封装材于透光基板上。 第一封装材较佳地为紫 外光穿透度高的封装材, 让紫外光波段中至少大部分的光线可穿透。 第一封装 材包含黏着材, 黏着材的材质可包含乙烯醋酸乙烯脂(ethylene vinyl acetate resin, EVA)、 低密度聚乙烯(low density polyethylene , LDPE)、 高密度聚乙 烯(high density polyethylene , HDPE)、 硅氧树脂(Si l icone)、 环氧树脂 (Epoxy)、 聚乙烯丁醛树脂 (Polyvinyl Butyral , PVB)、 热可塑聚胺基甲酸酯 (Thermoplastic Polyurethane , TPU) 或其组合等, 但不限于此。 接着, 歩骤 s34为设置多个太阳能电池于第一封装材上。 太阳能电池可吸 收紫外光波段, 太阳能电池的受光面面对透光基板。
接着, 歩骤 s36为设置第三封装材于太阳能电池上。 太阳能电池位于第一 封装材与第三封装材之间, 太阳能电池的受光面直接接触第一封装材, 太阳能 电池相对于受光面的另一面直接接触第三封装材。
第三封装材包含黏着材, 黏着材的材质可包含乙烯醋酸乙烯脂 (ethylene vinyl acetate resin, EVA),低密度聚乙烯 (low density polyethyl ene, LDPE) 高密度聚乙烯(high density polyethylene , HDPE)、 硅氧树脂(Si l icone)、 环 氧树脂 (Epoxy)、 聚乙烯丁醛树脂 (Polyvinyl Butyral , PVB)、 热可塑聚胺基甲 酸酯(Thermoplastic Polyurethane , TPU) 或其组合等, 但不限于此。
接着, 歩骤 s38为设置第二封装材于第三封装材上。 第三封装材作为第一 封装材与第二封装材之间的缓冲层。 第二封装材包含黏着材, 黏着材的材料可 包含乙烯醋酸乙烯脂(ethylene vinyl acetate resin, EVA),低密度聚乙烯(low density polyethylene , LDPE) 高密度聚乙稀 (high density polyethylene , HDPE) , 硅氧树脂(Si l icone)、 环氧树脂(Epoxy)、 聚乙烯丁醛树脂(Polyvinyl Butyral , PVB)、 热可塑聚胺基甲酸酯(Thermoplastic Polyurethane , TPU)或 其组合等, 但不限于此。 第二封装材更可包含有第一紫外光吸收剂。
第一封装材的紫外光穿透度大于第二封装材的紫外光穿透度, 使太阳能电 池可吸收利用紫外光波段。 作为缓冲的第三封装材的紫外光穿透度大于第二封 装材的紫外光穿透度, 使大部分的紫外光波段被第二封装材所吸收。
第一封装材或第三封装材中可以具有黏着材而不具有任何紫外光吸收 齐 1」。 或者, 第一封装材或第三封装材可以选择性地包含有第一紫外光吸收剂, 第一封装材或第三封装材的第一紫外光吸收剂的分布密度小于第二封装材中的 第一紫外光吸收剂的分布密度。 或者, 第一封装材或第三封装材中可以选择性 地包含有第二紫外光吸收剂, 第二封装材中的第一紫外光吸收剂的吸收波段与 紫外光波段的重迭范围大于第一封装材或第三封装材中的第二紫外光吸收剂的 吸收波段与紫外光波段的重迭范围。
接着, 歩骤 s40为设置背板于第二封装材上。 背板可以为塑胶基板。 紫外 光穿透度较低第二封装材可吸收大部分的紫外光, 以减少紫外光对背板的照射 量, 进而降低背板因紫外光照射而劣化或是避免降低背板与第二封装材之间的 黏附力的情形。
最后, 歩骤 s42为层压透光基板、 第一封装材、 太阳能电池、 第三封装材、 第二封装材与背板, 以得到可吸收紫外光波段的太阳能模块。层压歩骤 s42中, 更包含加热透光基板, 即透光基板为层压歩骤中的直接受热面。 加热的温度约 为 14(T16(TC。 由于太阳能电池为间隔地排列, 故会有部分的第一封装材在层 压后直接接触部分的第三封装材。 藉由作为缓冲层的第三封装材, 可以减少可 以使得第一紫外光吸收剂受热的扩散受限于第三封装材, 而减少进入第一封装 材中的机率, 以避免影响太阳能电池对紫外光的利用效率。
虽然本发明已以实施例公开如上, 但其并非用以限定本发明, 任何本领域 的技术人员, 在不脱离本发明的精神和范围内, 当可作各种的更动与修改, 因 此本发明的保护范围当视后附的权利要求书保护范围所界定者为准。 工业应用性
本发明的目的就是在提供一种可吸收紫外光波段的太阳能模块,用以提升 太阳能模块的发电效率, 并降低背板因紫外光照射而劣化的情形。

Claims

权利要求书
1.一种可吸收紫外光波段的太阳能模块, 其特征在于, 包含:
一透光基板;
一背板;
多个太阳能电池, 可吸收紫外光波段, 设置于该透光基板与该背板之间, 该些太阳能电池的受光面面对该透光基板;
一第一封装材, 位于该透光基板与该些太阳能电池之间; 以及
一第二封装材, 位于该背板与该些太阳能电池之间, 该第一封装材的紫 外光穿透度大于该第二封装材的紫外光穿透度。
2.如权利要求 1所述的可吸收紫外光波段的太阳能模块, 其特征在于, 该透光基板为玻璃基板。
3.如权利要求 1所述的可吸收紫外光波段的太阳能模块, 其特征在于, 该第一封装材与该第二封装材的材料各包含一黏着材, 该第二封装材包含一 第一紫外光吸收剂。
4.如权利要求 3所述的可吸收紫外光波段的太阳能模块, 其特征在于, 该第一封装材还包含该第一紫外光吸收剂, 该第一封装材的该第一紫外光吸 收剂分布密度小于该第二封装材的该第一紫外光吸收剂分布密度。
5.如权利要求 3所述的可吸收紫外光波段的太阳能模块, 其特征在于, 该第一封装材还包含一第二紫外光吸收剂, 该第一紫外光吸收剂的吸收波段 与紫外光波段的重迭范围大于该第二紫外光吸收剂的吸收波段与紫外光波段 的重迭范围。
6.如权利要求 1所述的可吸收紫外光波段的太阳能模块, 其特征在于, 部分的该第一封装材与部分的该第二封装材接触, 该些太阳能电池位于该第 一封装材与该第二封装材之间。
7.如权利要求 1所述的可吸收紫外光波段的太阳能模块, 还包含一第三 封装材, 设置于该些太阳能电池与该第二封装材之间, 该第三封装材的紫外 光穿透度大于该第二封装材的紫外光穿透度。
8.如权利要求 7所述的可吸收紫外光波段的太阳能模块, 其特征在于, 该第三封装材与该第二封装材的材料各包含一黏着材, 该第二封装材包含一 第一紫外光吸收剂。
9.如权利要求 8所述的可吸收紫外光波段的太阳能模块, 其特征在于, 该第三封装材还包含该第一紫外光吸收剂, 该第三封装材的该第一紫外光吸 收剂分布密度小于该第二封装材的该第一紫外光吸收剂分布密度。
10.如权利要求 8所述的可吸收紫外光波段的太阳能模块, 其特征在于, 该第三封装材还包含一第二紫外光吸收剂, 该第一紫外光吸收剂的吸收波段 与紫外光波段的重迭范围大于该第二紫外光吸收剂的吸收波段与紫外光波段 的重迭范围。
11.如权利要求 7所述的可吸收紫外光波段的太阳能模块, 其特征在于, 部分的该第一封装材与部分的该第三封装材接触, 该些太阳能电池位于该第 一封装材与该第三封装材之间。
12.—种制作可吸收紫外光波段的太阳能模块的方法, 其特征在于,包含: 提供一透光基板;
设置一第一封装材于该透光基板上;
设置多个太阳能电池于该第一封装材上, 该些太阳能电池的受光面面对 该透光基板, 其中该些太阳能电池可吸收紫外光波段;
设置一第二封装材于该些太阳能电池上, 该第一封装材的紫外光穿透度 大于该第二封装材的紫外光穿透度;
设置一背板于该第二封装材上; 以及
层压该透光基板、 该第一封装材、 该些太阳能电池、 该第二封装材与该 背板。
13.如权利要求 12所述的制作可吸收紫外光波段的太阳能模块的方法, 其特征在于, 层压该透光基板、 该第一封装材、 该些太阳能电池、 该第二封 装材与该背板的歩骤更包含加热该透光基板。
14.如权利要求 12所述的制作可吸收紫外光波段的太阳能模块的方法, 其特征在于, 该第一封装材与该第二封装材的材料各包含一黏着材, 该第二 封装材包含一第一紫外光吸收剂。
15.如权利要求 14所述的制作可吸收紫外光波段的太阳能模块的方法, 其特征在于, 该第一封装材还包含该第一紫外光吸收剂, 该第一封装材的该 第一紫外光吸收剂分布密度小于该第二封装材的该第一紫外光吸收剂分布密 度。
16.如权利要求 14所述的制作可吸收紫外光波段的太阳能模块的方法, 其特征在于, 该第一封装材还包含一第二紫外光吸收剂, 该第一紫外光吸收 剂的吸收波段与紫外光波段的重迭范围大于该第二紫外光吸收剂的吸收波段 与紫外光波段的重迭范围。
17.如权利要求 12所述的制作可吸收紫外光波段的太阳能模块的方法, 其特征在于, 部分的该第一封装材与部分的该第二封装材接触, 该些太阳能 电池位于该第一封装材与该第二封装材之间。
18.如权利要求 12所述的制作可吸收紫外光波段的太阳能模块的方法, 其特征在于, 还包含设置一第三封装材于该些太阳能电池上, 使该第三封装 材位于该些太阳能电池与该第二封装材之间, 该第三封装材的紫外光穿透度 大于该第二封装材的紫外光穿透度。
19.如权利要求 18所述的制作可吸收紫外光波段的太阳能模块的方法, 其特征在于, 该第三封装材与该第二封装材的材料各包含一黏着材, 该第二 封装材包含一第一紫外光吸收剂。
20.如权利要求 19所述的制作可吸收紫外光波段的太阳能模块的方法, 其特征在于, 该第三封装材还包含该第一紫外光吸收剂, 该第三封装材的该 第一紫外光吸收剂分布密度小于该第二封装材的该第一紫外光吸收剂分布密 度。
21.如权利要求 19所述的制作可吸收紫外光波段的太阳能模块的方法, 其特征在于, 该第三封装材还包含一第二紫外光吸收剂, 该第一紫外光吸收 剂的吸收波段与紫外光波段的重迭范围大于该第二紫外光吸收剂的吸收波段 与紫外光波段的重迭范围。
22.如权利要求 18所述的制作可吸收紫外光波段的太阳能模块的方法,其 特征在于, 部分的该第一封装材与部分的该第三封装材接触, 该些太阳能电池 位于该第一封装材与该第三封装材之间。
PCT/CN2012/074085 2012-03-16 2012-04-16 可吸收紫外光波段的太阳能模块及其制作方法 WO2013134983A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201210080613.1A CN102623533B (zh) 2012-03-16 2012-03-16 可吸收紫外光波段的太阳能模块及其制作方法
CN201210080613.1 2012-03-16

Publications (1)

Publication Number Publication Date
WO2013134983A1 true WO2013134983A1 (zh) 2013-09-19

Family

ID=46563329

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/074085 WO2013134983A1 (zh) 2012-03-16 2012-04-16 可吸收紫外光波段的太阳能模块及其制作方法

Country Status (4)

Country Link
US (1) US20130240020A1 (zh)
CN (1) CN102623533B (zh)
TW (1) TWI459573B (zh)
WO (1) WO2013134983A1 (zh)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI482305B (zh) * 2012-09-27 2015-04-21 Win Win Prec Technology Co Ltd 太陽能電池模組及其製造方法、提升太陽能電池元件散熱效果的方法以及散熱增強型太陽能電池元件
US8796061B2 (en) * 2012-12-21 2014-08-05 Sunpower Corporation Module assembly for thin solar cells
JP5650775B2 (ja) * 2013-03-01 2015-01-07 株式会社ブリヂストン 太陽電池モジュールの製造方法及び太陽電池モジュール
JP6334871B2 (ja) * 2013-09-11 2018-05-30 株式会社カネカ 太陽電池モジュール
WO2015190046A1 (ja) * 2014-06-13 2015-12-17 パナソニックIpマネジメント株式会社 太陽電池モジュール
US20170278992A1 (en) * 2014-09-22 2017-09-28 Panasonic Intellectual Property Management Co., Ltd. Solar cell module and method for manufacturing solar cell module
JP2016072391A (ja) * 2014-09-29 2016-05-09 大日本印刷株式会社 非受光面側用封止材シート及びそれを用いてなる太陽電池モジュール
WO2016067889A1 (ja) * 2014-10-27 2016-05-06 日立化成株式会社 波長変換型太陽電池モジュール
CN106935672A (zh) * 2015-12-29 2017-07-07 珠海兴业绿色建筑科技有限公司 一种基于紫外光固化技术的光伏组件封装工艺
CN106449892A (zh) * 2016-12-05 2017-02-22 珠海兴业节能科技有限公司 一种基于紫外光固化技术的真空光伏组件封装工艺
CN114958215B (zh) * 2022-06-23 2023-07-07 苏州赛伍应用技术股份有限公司 一种uv光转换封装胶膜及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201936904U (zh) * 2011-01-31 2011-08-17 李民 提高电池效率的太阳能电池组件结构
CN102185029A (zh) * 2011-04-11 2011-09-14 浙江正欣光电科技有限公司 一种晶体硅太阳能电池组件的封装方法
CN102280512A (zh) * 2010-06-11 2011-12-14 南通美能得太阳能电力科技有限公司 一种具有高转换效率的太阳能电池组件
CN102361043A (zh) * 2011-11-15 2012-02-22 阿特斯(中国)投资有限公司 一种太阳能电池封装用eva

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5650019A (en) * 1993-09-30 1997-07-22 Canon Kabushiki Kaisha Solar cell module having a surface coating material of three-layered structure
US6353042B1 (en) * 1997-07-24 2002-03-05 Evergreen Solar, Inc. UV-light stabilization additive package for solar cell module and laminated glass applications
JP3661600B2 (ja) * 2000-07-27 2005-06-15 住友化学株式会社 メタクリル酸メチル系樹脂組成物およびその成形体
JP2007067203A (ja) * 2005-08-31 2007-03-15 Sanyo Electric Co Ltd 太陽電池モジュールおよび太陽電池モジュールの製造方法
US20080185033A1 (en) * 2007-02-06 2008-08-07 Kalejs Juris P Solar electric module
CN102473781A (zh) * 2009-06-05 2012-05-23 道康宁公司 通过调整单独的部件的光学性质制作光伏组件的方法
CN102044583A (zh) * 2009-10-21 2011-05-04 无锡尚德太阳能电力有限公司 一种太阳电池组件及其层叠方法
US20110272004A1 (en) * 2010-05-06 2011-11-10 Davis Robert F Solar panels with opaque EVA film backseets
US20110272023A1 (en) * 2010-05-08 2011-11-10 Dj Solar Co., Ltd. Solar cell packaging structure
KR20120124571A (ko) * 2011-05-04 2012-11-14 엘지전자 주식회사 태양전지 모듈 및 이의 제조 방법
CN102208466A (zh) * 2011-05-16 2011-10-05 海南英利新能源有限公司 太阳能电池板

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102280512A (zh) * 2010-06-11 2011-12-14 南通美能得太阳能电力科技有限公司 一种具有高转换效率的太阳能电池组件
CN201936904U (zh) * 2011-01-31 2011-08-17 李民 提高电池效率的太阳能电池组件结构
CN102185029A (zh) * 2011-04-11 2011-09-14 浙江正欣光电科技有限公司 一种晶体硅太阳能电池组件的封装方法
CN102361043A (zh) * 2011-11-15 2012-02-22 阿特斯(中国)投资有限公司 一种太阳能电池封装用eva

Also Published As

Publication number Publication date
TWI459573B (zh) 2014-11-01
CN102623533B (zh) 2014-07-23
CN102623533A (zh) 2012-08-01
TW201340349A (zh) 2013-10-01
US20130240020A1 (en) 2013-09-19

Similar Documents

Publication Publication Date Title
TWI459573B (zh) 可吸收紫外光波段的太陽能模組及其製作方法
TWI430462B (zh) 封裝材料、矽晶太陽光電模組及薄膜太陽光電模組
KR101275651B1 (ko) Cis계 박막 태양 전지 모듈 및 이의 제조방법
US20080283117A1 (en) Solar Cell Module and Method of Manufacturing Solar Cell Module
KR102408270B1 (ko) 정렬 봉지재를 갖는 태양광 모듈
WO2009144715A3 (en) A monolithic low concentration photovoltaic panel based on polymer embedded photovoltaic cells and crossed compound parabolic concentrators
WO2009034858A1 (ja) 集積化タンデム型薄膜シリコン太陽電池モジュール及びその製造方法
CN107749428B (zh) 一种复合封装一体化功能性太阳能电池背板
US20140036486A1 (en) Solar lighting system
US20120138119A1 (en) Package structure of solar photovoltaic module and method of manufacturing the same
JP6613451B2 (ja) 太陽電池モジュール
JP6481212B2 (ja) ソーラーモジュール
WO2017049798A1 (zh) 一种抗pid耐风沙晶硅太阳能电池组件
WO2014180019A1 (zh) 太阳能模块
JP3363367B2 (ja) 太陽電池モジュール用カバーガラス構造
CN111403517A (zh) 表面印有网格状白色油墨的光伏组件用胶膜
JPWO2015190046A1 (ja) 太陽電池モジュール
JP2014132615A (ja) 太陽電池モジュール
JP2012253183A (ja) 太陽電池モジュール
TWI495129B (zh) 太陽能面板
CN218677164U (zh) 一种高反射型密封胶膜
CN220627820U (zh) 一种光伏组件
US11430900B2 (en) Wavelength-selective specularly reflecting photovoltaic module and manufacture thereof
EP3480858A1 (en) Solar cell module
CN220604699U (zh) 一种光伏组件

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12871166

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 15/01/2015)

122 Ep: pct application non-entry in european phase

Ref document number: 12871166

Country of ref document: EP

Kind code of ref document: A1