WO2013134966A1 - 用于非球面测量的波长扫描干涉仪及其应用方法 - Google Patents

用于非球面测量的波长扫描干涉仪及其应用方法 Download PDF

Info

Publication number
WO2013134966A1
WO2013134966A1 PCT/CN2012/072659 CN2012072659W WO2013134966A1 WO 2013134966 A1 WO2013134966 A1 WO 2013134966A1 CN 2012072659 W CN2012072659 W CN 2012072659W WO 2013134966 A1 WO2013134966 A1 WO 2013134966A1
Authority
WO
WIPO (PCT)
Prior art keywords
measured
aspherical
ccd camera
mirror
beam splitter
Prior art date
Application number
PCT/CN2012/072659
Other languages
English (en)
French (fr)
Inventor
汪凯巍
白剑
沈亦兵
杨甬英
Original Assignee
浙江大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 浙江大学 filed Critical 浙江大学
Publication of WO2013134966A1 publication Critical patent/WO2013134966A1/zh
Priority to US14/245,996 priority Critical patent/US9062959B2/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B9/00Measuring instruments characterised by the use of optical techniques
    • G01B9/02Interferometers
    • G01B9/02041Interferometers characterised by particular imaging or detection techniques
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/24Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures
    • G01B11/2441Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures using interferometry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B9/00Measuring instruments characterised by the use of optical techniques
    • G01B9/02Interferometers
    • G01B9/02034Interferometers characterised by particularly shaped beams or wavefronts
    • G01B9/02038Shaping the wavefront, e.g. generating a spherical wavefront
    • G01B9/02039Shaping the wavefront, e.g. generating a spherical wavefront by matching the wavefront with a particular object surface shape
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M11/00Testing of optical apparatus; Testing structures by optical methods not otherwise provided for
    • G01M11/005Testing of reflective surfaces, e.g. mirrors

Definitions

  • the present invention relates to an aspherical high precision interferometric technique, and more particularly to a wavelength scanning interferometer and method for aspherical measurements.
  • aspheric surfaces are widely used because they can effectively simplify the system structure while maintaining corresponding performance.
  • the use of aspheric surfaces tends to make the components of the optical system less and lighter. For this reason, aspheric surfaces are widely used in fields such as deep ultraviolet lithography, high quality imaging systems, astronomical telescopes, and high density optical storage.
  • the stylus-based profiler and coordinate measuring machine are more time consuming to measure because of the point-by-point measurement method, and there is a risk of damaging the surface to be measured.
  • An interferometer based on sub-aperture stitching requires a high-precision multi-dimensional rotary translation stage, which uses the overlapping area data of adjacent sub-apertures to complete the splicing and obtain the entire examined surface topography.
  • the shearing interferometer usually measures the slope information of the surface to be inspected, so the cumulative measurement error is introduced when the surface reconstruction is performed on the slope integral.
  • An interferometer using a computational hologram and a zero compensation mirror is susceptible to introducing errors by the compensation component.
  • the patent proposes a method for measuring aspherical surface and wavefront using a mechanical scanning interferometer.
  • the patent is based on a method of measuring the interferometric optical path difference from the aspherical apex and tangent, using spatial filtering to filter out light from other locations into the detector for interference.
  • the patent uses a special length measuring interferometer to measure the displacement of the measured aspheric surface driven by the translation stage.
  • a point detector is used to measure the optical path difference. Since it is a point-by-point measurement, it takes up to several tens of minutes to measure a complete surface.
  • the use of additional length measuring interferometers also increases the complexity and cost of the system, reducing the reliability of the measurement to some extent.
  • the invention can obtain the absolute optical path difference of the interferometer, and only acquires and is received at a time
  • the interference data information of the tangent part of the inspection surface has the characteristics of high measurement accuracy, different caliber, large asphericity, and no need for zero compensation components.
  • a wavelength scanning interferometer for aspherical measurement comprising a translation stage, an aspherical surface to be measured, a first mirror group, a beam splitter, a beam expander, a tunable laser, an imaging lens, a CCD camera, a reference plane mirror, an image card , computer and data card; wherein, the measured aspheric surface is fixed on the translation stage, the measured aspheric surface, the first mirror group, the beam splitter, the imaging lens and the CCD camera are sequentially placed coaxially, and the reference plane mirror is placed at the bottom of the beam splitter, CCD
  • the camera, the image card, the computer and the data card are connected in sequence, the beam expander is connected to the tunable laser, and the translation stage and the tunable laser are respectively connected to the data card; the beam emitted by the tunable laser is expanded into a parallel beam after being expanded by the beam expander.
  • the wavefront is split into two beams by a beam splitter; one of the beams is incident on the reference plane mirror as a reference beam, and the other beam is focused by the first mirror group and incident on the aspheric surface to be measured, from the reference mirror and the aspherical surface to be measured.
  • the light is superimposed on the beam splitter to form an interference, and the interference fringe is taken by the CCD camera after passing through the imaging lens, and passes through the CCD phase.
  • the analog card is converted by the image card, and finally enters the computer for signal processing to obtain the optical path difference and the surface shape information.
  • the wavelength scanning interferometer further includes a plane mirror that reflects the parallel beam expanded by the beam expanding mirror to the beam splitter.
  • a wavelength scanning interferometer for aspherical measurement comprising a translation stage, an aspherical surface to be measured, a second mirror, a beam splitter, a beam expander, a tunable laser, an imaging lens, a CCD camera, an image card, a computer, and a data card; wherein, the measured aspheric surface 2 is fixed on the translation stage, and the measured aspheric surface, the second mirror group, the beam splitter, the imaging lens, and the CCD camera are sequentially placed coaxially, the CCD camera, the image card, the computer, and the data card Connected in turn, the beam expander is connected to the tunable laser, and the translation stage and the tunable laser are respectively connected to the data card; the beam emitted from the tunable laser is expanded by the beam expander to become a parallel beam, and a part of the beam is reflected by the beam splitter.
  • the last surface of the second mirror group is not coated with an anti-reflection film, so that a part of the light incident on the surface is reflected back to the beam splitter, and another part is focused by the second mirror group and then incident on the aspheric surface to be measured. Reflected back; two parts of the light are superimposed on the beam splitter to form an interference; the interference fringes are taken by the CCD camera after passing through the imaging lens. After completion of the CCD camera through the photoelectric conversion by the image of the analog to digital conversion card, and finally into the computer performs signal processing to obtain an optical path difference and surface shape information.
  • An aspheric measuring method using the above-mentioned wavelength scanning interferometer includes the following steps: Step 1.
  • Cat eye position setting Adjust the vertex of the detected aspheric surface to coincide with the focus of the interferometer measuring beam, and this position 0c is called the cat's eye position.
  • the criterion of coincidence is that the interference fringes are the least;
  • Step 2 scanning the wavelength of the light source, recording the interference fringes at the same time, and calculating the absolute optical path difference of the cat's eye position, recorded as
  • Step 3 Move the detected aspheric surface to the vertex ball position through the translation stage. At this time, the measuring beam wave surface coincides with the aspherical surface vertex ball.
  • Step 4 Scan the wavelength of the light source, simultaneously record the interference fringe, and calculate the absolute optical path difference of the vertex position.
  • Step 5 moving the aspheric surface step by step through the translation stage, in each step Scanning the wavelength of the light source simultaneously records the interference fringes, and calculates the absolute optical path difference of each point until the entire aperture of the aspheric surface is covered.
  • the invention has the beneficial effects that the interferometric measuring method proposed by the invention has the characteristics of high precision and non-contact, and can be used for measuring aspherical surface or wavefront of large asphericity compared with the existing aspherical measuring technology.
  • the method does not require a complicated and often expensive multi-dimensional rotary translation stage, and does not require a compensating element. Since the interferometer has the ability to measure the absolute optical path difference, there is no need for an additional length measuring interferometer to detect the displacement of the examined surface.
  • 1 is a system schematic diagram of a wavelength scanning interferometer for aspherical measurement of the present invention
  • FIG. 2 is a system schematic diagram of another form of a wavelength scanning interferometer for aspherical measurement of the present invention.
  • FIG. 3 is a cat's eye position of a measurement process of a wavelength scanning interferometer for aspherical measurement of the present invention
  • FIG. 4 is a schematic diagram of an annulus measurement of a wavelength scanning interferometer for aspherical measurement of the present invention; , measured aspheric surface 2, first mirror group 3, beam splitter 4, plane mirror 5, beam expander
  • Example 1 is a system schematic diagram of a wavelength scanning interferometer for aspherical measurements of the present invention.
  • the wavelength scanning interferometer and method for aspherical measurement of the present invention comprises a translation stage 1, an aspherical surface to be measured 2, a first mirror group 3, a beam splitter 4, a plane mirror 5, a beam expander 6, and The tuned laser 7, the imaging lens 8, the CCD camera 9, the reference plane mirror 10, the image card 11, the computer 12, and the data card 13 are tuned.
  • the measured aspheric surface 2 is fixed on the translation stage 1, the measured aspheric surface 2, the first mirror group 3, the beam splitter 4, the imaging lens 8 and the CCD camera 9 are sequentially placed coaxially, and the plane mirror 5 and the reference plane mirror 10 are respectively placed.
  • the bottom and top of the beam splitter 4, the CCD camera 9, the image card 11, the computer 12 and the data card 13 are sequentially connected, the beam expander 6 is connected to the tunable laser 7, and the translation stage 1 and the tunable laser 7 are respectively connected to the data card 13. .
  • the most important feature of this embodiment is the use of a variable wavelength tunable laser 7 in place of the single wavelength laser used in conventional measurement methods.
  • the light beam emitted from the tunable laser 7 is expanded by the beam expander 6 to become a parallel beam, and after being reflected by the plane mirror 5, the wavefront is split into two beams by the beam splitter 4.
  • One of the beams is incident on the reference plane mirror 10 as a reference light, and the other beam is focused by the first lens group 3 and incident on the aspheric surface 2 to be measured.
  • the light reflected from the reference mirror 10 and the aspheric surface 2 to be measured is again superimposed on the beam splitter 4 to form an interference.
  • the interference fringes are taken by the CCD camera 9 after passing through the imaging lens 8.
  • the computer 12 is subjected to signal processing to obtain the optical path difference and the surface shape information.
  • the aspherical surface 2 to be measured can be moved along the optical axis by the translation of the translation stage 1.
  • the movement of the translation stage 1 and the wavelength scanning of the tunable laser 7 can be controlled by the computer 12 via the data card 13.
  • the plane mirror 5 acts as a light path turning, can be removed as needed, and rotates the beam expander 6 and the tunable laser 7 90 degrees counterclockwise.
  • FIG. 2 is another system schematic diagram of a wavelength scanning interferometer for aspherical measurements of the present invention. It takes the form of a Fizeau interferometer. Different from Fig. 1, the reference beam is formed by Fresnel reflection of the last surface of the second mirror group 14 (the leftmost side of the second mirror group in the figure). The light beam emitted from the tunable laser 7 is expanded by the beam expander 6 to become a parallel beam, a part of which is reflected by the beam splitter 4 to the second mirror group 14, and the last surface of the second mirror group 14 is not coated with an anti-reflection film.
  • a portion of the light incident thereon is reflected back to the beam splitter 4, and another portion is focused by the second mirror group 14 and incident on the aspheric surface 2 to be measured and reflected back.
  • the two portions of light are superimposed on the beam splitter 4 to form an interference.
  • the interference fringes are taken by the CCD camera 9 after passing through the imaging lens 8.
  • the computer 12 is subjected to signal processing to obtain the optical path difference and the surface information.
  • the aspheric surface to be measured can be moved along the optical axis by the translation stage 1.
  • the movement of the translation stage 1 and the wavelength scanning of the tunable laser 7 can be controlled by the computer 11 via the data card 12.
  • the aspherical measuring method of the above-mentioned wavelength scanning interferometer comprises the following steps: Step 1. Setting the cat's eye position: adjusting the vertex of the aspheric surface to be inspected to coincide with the focus of the interferometer measuring beam, and the position 0c is called the cat's eye position. . As shown in Figure 3, the criterion for coincidence is that the interference fringes are the least. Step 2: Scan the wavelength of the light source and record the interference fringes at the same time. Calculate the absolute optical path difference of the cat's eye position. The calculation method of the optical path difference of OPDc will be given later.
  • Step 3 Move the inspected aspheric surface to the vertex ball position through the translation stage. At this time, the measuring beam wavefront coincides with the aspherical vertex ball. As shown in the AO position in Fig. 4, where SO is an aspherical surface and W0 is a measuring wavefront.
  • Step 4 Scan the wavelength of the light source and record the interference fringes at the same time, calculate the absolute optical path difference of the vertex position, denoted as OPDa; then the distance between the position and the cat's eye position in step 1 is the radius of curvature of the vertex of the measured surface:
  • Step 5 As shown in Figure 4, according to the measurement resolution requirements, move the aspheric surface step by step through the translation stage, and simultaneously record the interference fringe at the wavelength of the scanning source in each step, and calculate the absolute optical path difference of each point until Cover the entire diameter of the aspheric surface.
  • Sn is an aspherical surface that moves parallel to this position. If the aspherical part is not deformed, it should be exactly the same as the SO surface.
  • the d in Fig. 4 is gradually increased, and the tangent point Tn of the measured wavefront Wn and the measured aspherical surface Sn is expanded outward from the aspherical vertex position until all the aspherical apertures are measured. Finished.
  • Step 6 Combine the measurement results of steps 1-5 to obtain aspherical surface information.
  • the measured wavefront Wn is tangent to the measured aspherical surface Sn at Tn, and only the interference fringes near the vicinity and the vicinity of the vertex An can be resolved by the CCD. In other places, the interference fringe is too dense to be used by the CCD. Solution Analysis.
  • the angle ⁇ between the beam and the optical axis and the position on the CCD can be calibrated in advance, that is, the pixel position on the CCD has a corresponding relationship with the angle a.
  • the distance Rn between the Tn point and the focus of the mirror group 3 can be obtained by the absolute optical path difference OPDtn at this point:
  • a pixel point (X, y) on the CCD (corresponding to a certain point (x', ⁇ ' ⁇ ) of the detected aspheric surface can be expressed as:
  • phase of the interference signal ⁇ (x, y; k) 2 ⁇ ⁇ , ⁇ ) (5)
  • the value of the absolute difference can be expressed by:

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Instruments For Measurement Of Length By Optical Means (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

一种用于非球面测量的波长扫描干涉仪,包括一套可调谐激光器(7)作为光源,一个泰曼——格林干涉仪用于产生干涉条纹,一个平移台(1)用于沿光轴扫描光程差,一个用于将干涉数据转为数字信号并传入计算机(12)的图像卡(11),以及一个用于同步CCD相机(9)和平移台(1)动作的数据卡(13)。与传统非球面测量方法不同的是,该干涉仪可以测量大非球面度的表面或波前,且无需补偿零位镜。还提供了一种用于非球面测量的波长扫描干涉仪的应用方法,该方法无需复杂且通常较为昂贵的多维运动平台。

Description

用于非球面测量的波长扫描干涉仪及其应用方法
技术领域
本发明涉及一种非球面的高精度干涉测量技术, 尤其涉及一种用于非球面 测量的波长扫描干涉仪及方法。
背景技术
与传统使用多个球面元件的光学系统相比, 由于非球面能够在有效简化系 统结构的同时保持相应的性能, 因此被广为采用。 使用非球面往往能够使光学 系统的元件更少、 重量更轻。 正因如此, 非球面在诸如深紫外光刻、 高质量成 像系统、 天文望远镜、 高密度光存储等领域广泛应用。
目前在非球面测量领域存在很多种方法和相应的一起, 例如基于触针方法 的轮廓仪和坐标测量机、 基于子孔径拼接的干涉仪、 剪切干涉仪、 白光扫描干 涉仪, 基于零位补偿和部分零位补偿的干涉仪、 基于计算全息的干涉仪、 双波 长干涉仪, 等等。 相较于当今非球面测量的高精度和灵活性要求等方面, 这些 方法在测量能力和测量精度上存在着一些问题。
基于触针方法的轮廓仪和坐标测量机由于采用逐点测量的方法, 其测量较 耗费时间, 且存在损伤被测表面的风险。 基于子孔径拼接的干涉仪需要高精度 的多维旋转平移台, 利用相邻子孔径的重叠区域数据完成拼接并获取整个被检 面形貌。 剪切干涉仪通常测量到的是被检面的坡度信息, 因此在对坡度积分进 行面形重构时会引入累计测量误差。 使用计算全息和零位补偿镜的干涉仪容易 由补偿元件引入误差。 以上这些现有方法在测量时间、 测量精度、 附加零位镜、 夹具、 通用性、 造价等方面存在不足。
专利(US20020160672 )提出了一种使用机械扫描干涉仪测量非球面面形和 波前的方法。 该专利基于测量从非球面顶点与切线处的干涉光程差的方法, 使 用空间滤波的方式滤除其它位置的光进入探测器产生干涉。 为了获取整个非球 面面形, 另外该专利使用了一个专门的测长干涉仪测量有平移台带动的被测非 球面的位移。 在该专利中使用了点探测器测量光程差, 由于是逐点测量, 需要 长达数十分钟才能测量一个完整的表面。 使用额外的测长干涉仪也增加了系统 的复杂性和成本, 一定程度上降低了测量的可靠性。
发明内容
本发明的目的在于针对现有技术的不足, 提供了一种用于非球面测量的波 长扫描干涉仪及方法。 本发明能够获取干涉仪绝对光程差, 且每次仅获取与被 检面相切部分的干涉数据信息, 因而具有测量精度高、 能够适用不同口径、 大 非球面度、 且无需零位补偿元件的特点。
一种用于非球面测量的波长扫描干涉仪, 它包括平移台、 被测非球面、 第 一镜组、 分光镜、 扩束镜、 可调谐激光器、 成像透镜、 CCD相机、 参考平面镜、 图像卡、 计算机和数据卡; 其中, 被测非球面固定在平移台, 被测非球面、 第 一镜组、 分光镜、 成像透镜和 CCD相机依次同轴放置, 参考平面镜置于分光镜 的底部, CCD相机、 图像卡、 计算机和数据卡依次相连, 扩束镜和可调谐激光 器相连, 平移台和可调谐激光器分别与数据卡相连; 可调谐激光器出射的光束 经过扩束镜扩束后成为平行光束, 波前被分光镜分为两束; 其中一束入射到参 考平面镜上作为参考光, 另外一束经由第一镜组聚焦后入射到被测非球面上, 从参考反射镜和被测非球面反射的光重新在分光镜上叠加形成干涉, 干涉条紋 经过成像透镜后由 CCD相机获取, 经过 CCD相机完成光电转换后由图像卡完 成模数转换, 最后进入计算机进行信号处理获得光程差和面形信息。
进一步地, 该波长扫描干涉仪还包括一平面镜, 平面镜将扩束镜扩束的平 行光束反射到分光镜。
一种用于非球面测量的波长扫描干涉仪, 它包括平移台、 被测非球面、 第 二镜组、 分光镜、 扩束镜、 可调谐激光器、 成像透镜、 CCD相机、 图像卡、 计 算机和数据卡; 其中, 所述被测非球面 2 固定在平移台, 被测非球面、 第二镜 组、 分光镜、 成像透镜和 CCD相机依次同轴放置, CCD相机、 图像卡、 计算机 和数据卡依次相连, 扩束镜和可调谐激光器相连, 平移台和可调谐激光器分别 与数据卡相连; 从可调谐激光器出射的光束经过扩束镜扩束后成为平行光束, 其中一部分被分光镜反射到第二镜组, 第二镜组的最后一个表面没有镀增透膜, 因此入射到上面的光会有一部分被反射回分光镜, 另外一部分由第二镜组聚焦 后入射到被测非球面上并被反射回来; 两部分光重新在分光镜上叠加形成干涉; 干涉条紋经过成像透镜后由 CCD相机获取, 经过 CCD相机完成光电转换后由 图像卡完成模数转换, 最后进入计算机进行信号处理获得光程差和面形信息。
一种应用上述波长扫描干涉仪的非球面测量方法, 包括以下步骤: 步骤 1、猫眼位置设置: 将被检非球面的顶点调整到与干涉仪测量光束的焦点重 合, 此位置 0c称为猫眼位置, 重合的判据是干涉条紋最少; 步骤 2、 扫描光源的波长, 同时记录干涉条紋, 计算猫眼位置绝对光程差, 记为
OPDc ; 步骤 3、通过平移台将被检非球面移至顶点球位置, 此时测量光束波面与非球面 顶点球重合; 步骤 4、 扫描光源的波长, 同时记录干涉条紋, 计算顶点位置绝对光程差, 记为 OPDa; 则该顶点球位置与步骤 1 中猫眼位置的距离 d为被测面的顶点球曲率半 径: R0 = OPDa - OPDc ; 步骤 5、通过平移台分步移动非球面, 每一步中扫描光源的波长同时记录干涉条 紋, 计算各点的绝对光程差, 直至覆盖非球面的整个口径, 随着被测非球面的 移动, 顶点球位置与猫眼位置的距离 d逐渐增加, 测量波前与被测非球面的切 点会从非球面顶点位置依次向外扩, 直到所有的非球面口径全部测量完毕; 步骤 6、 综合步骤 1-5的测量结果获得非球面面形信息。 本发明的有益效果是, 相较于现有非球面测量技术, 本发明提出的干涉测 量方法具有高精度、 非接触的特点, 能够用于测量大非球面度的非球面表面或 波前。 另外, 该方法无需复杂且通常较为昂贵的多维转动平移台, 无需补偿元 件, 由于干涉仪具有测量绝对光程差的能力, 因而无需额外的测长干涉仪检测 被检面的位移。
附图说明
图 1是本发明用于非球面测量的波长扫描干涉仪的系统原理图;
图 2 是本发明用于非球面测量的波长扫描干涉仪的另外一种形式的系统原 理图;
图 3是本发明用于非球面测量的波长扫描干涉仪的测量过程的猫眼位置; 图 4是本发明用于非球面测量的波长扫描干涉仪的环带测量原理图; 图中, 平移台 1、 被测非球面 2、 第一镜组 3、 分光镜 4、 平面镜 5、 扩束镜
6、 可调谐激光器 7、 成像透镜 8、 CCD相机 9、 参考平面镜 10、 图像卡 11、 计 算机 12、 数据卡 13、 第二镜组 14。
具体实施方式
下面根据附图和实施例详细描述本发明, 本发明的目的和效果将变得更加 明显。
实施例 1 图 1是本发明用于非球面测量的波长扫描干涉仪的系统原理图。 如图 1所 示, 本发明用于非球面测量的波长扫描干涉仪及方法包括平移台 1、被测非球面 2、 第一镜组 3、 分光镜 4、 平面镜 5、 扩束镜 6、 可调谐激光器 7、 成像透镜 8、 CCD相机 9、 参考平面镜 10、 图像卡 11、 计算机 12和数据卡 13。 其中, 被测 非球面 2固定在平移台 1, 被测非球面 2、 第一镜组 3、 分光镜 4、 成像透镜 8 和 CCD相机 9依次同轴放置, 平面镜 5和参考平面镜 10分别置于分光镜 4的 底部和顶部, CCD相机 9、 图像卡 11、 计算机 12和数据卡 13依次相连, 扩束 镜 6和可调谐激光器 7相连,平移台 1和可调谐激光器 7分别与数据卡 13相连。
该实施例最重要的特点是使用了一个波长可变的可调谐激光器 7代替了传 统测量方法用的单波长激光器。 从可调谐激光器 7出射的光束经过扩束镜 6扩 束后成为平行光束, 经平面镜 5反射后, 波前被分光镜 4分为两束。 其中一束 入射到参考平面镜 10上作为参考光, 另外一束经由第一镜组 3聚焦后入射到被 测非球面 2上。 从参考反射镜 10和被测非球面 2反射的光重新在分光镜 4上叠 加形成干涉。干涉条紋经过成像透镜 8后由 CCD相机 9获取。经过 CCD相机 9 完成光电转换后由图像卡 11完成模数转换, 最后进入计算机 12进行信号处理 获得光程差和面形信息。 被测非球面 2可以在平移台 1的驱动下沿着光轴移动。 平移台 1 的移动和可调谐激光器 7的波长扫描可以通过数据卡 13 由计算机 12 控制。
所述干涉测量系统中, 平面镜 5起光路转折作用, 可以根据需要去除, 并 将扩束镜 6与可调谐激光器 7逆时针旋转 90度。
实施例 2:
图 2 是本发明用于非球面测量的波长扫描干涉仪的另外一个系统原理图。 它采用了斐索干涉仪的形式。 与图 1不同的是, 参考光束由第二镜组 14的最后 一个表面 (图中第二镜组的最左边一个面) 的菲涅尔反射形成。 从可调谐激光 器 7出射的光束经过扩束镜 6扩束后成为平行光束, 其中一部分被分光镜 4反 射到第二镜组 14, 第二镜组 14的最后一个表面没有镀增透膜, 因此入射到上面 的光会有一部分被反射回分光镜 4, 另外一部分由第二镜组 14聚焦后入射到被 测非球面 2上并被反射回来。 两部分光重新在分光镜 4上叠加形成干涉。 干涉 条紋经过成像透镜 8后由 CCD相机 9获取。 经过 CCD相机 9完成光电转换后 由图像卡 11完成模数转换, 最后进入计算机 12进行信号处理获得光程差和面 形信息。 被测非球面可以在平移台 1 的驱动下沿着光轴移动。 平移台 1 的移动 和可调谐激光器 7的波长扫描可以通过数据卡 12由计算机 11控制。
所述干涉测量系统, 被检非球面与入射光波前只有两处是相切的, 其一是 在非球面顶点处, 其二位于非球面的某个圆上, 且该圆与顶点的距离随着被检 面在光轴上的移动而变化。
本发明应用上述波长扫描干涉仪的非球面测量方法, 包括以下步骤: 步骤 1、猫眼位置设置: 将被检非球面的顶点调整到与干涉仪测量光束的焦点重 合, 此位置 0c称为猫眼位置。 如图 3所示, 重合的判据是干涉条紋最少。 步骤 2: 扫描光源的波长同时记录干涉条紋, 计算猫眼位置绝对光程差, 记为 OPDc光程差的计算方法将会随后给出。
步骤 3: 通过平移台将被检非球面移至顶点球位置, 此时测量光束波面与非球面 顶点球重合。 如图 4的 AO位置所示, 其中 SO为非球面面形, W0为测量波前。 步骤 4: 扫描光源的波长同时记录干涉条紋, 计算顶点位置绝对光程差, 记为 OPDa; 则该位置与步骤 1中猫眼位置的距离 d为被测面的顶点球曲率半径:
R0 = OPDa - OPDc 。 ( 1 ) 步骤 5: 如图 4所示, 按照测量分辨率要求, 通过平移台分步移动非球面, 每一 步中扫描光源的波长同时记录干涉条紋, 计算各点的绝对光程差, 直至覆盖非 球面的整个口径。 此时 Sn为平行移动至此位置的非球面面形, 若非球面零件没 有形变, 应该与 SO面形完全相同。 随着被测非球面的移动, 图 4中的 d逐渐增 加, 测量波前 Wn与被测非球面 Sn的切点 Tn会从非球面顶点位置依次向外扩, 直到所有的非球面口径全部测量完毕。
步骤 6: 综合步骤 1-5的测量结果获得非球面面形信息。 不失一般性, 设其中某个扫描到某个位置时, 通过波长扫描计算干涉仪绝对光 程差为 OPDn, 则该位置非球面顶点与前述 AO位置的距离 d为: d = OPDa - OPDn 。 (2 ) 此时测量波前 Wn与被测非球面 Sn在 Tn处相切, 只有该处附近以及顶点 An附 近区域的干涉条紋才能被 CCD解析, 其它地方由于干涉条紋过密无法被 CCD解 析。 由于切点 Tn附近的光束为原路返回, 因此该光束与光轴的夹角 α与其入射 到 CCD上的位置可事先标定得出, 即 CCD上的像素位置与夹角 a存在对应关系。 而 Tn点与镜组 3的焦点的距离 Rn则可以通过该处的绝对光程差 OPDtn求出:
Rn = OPDtn - OPDc (3)
绝对光程差的测量原理如下:
干涉信号的处理: CCD上某像素点 (X, y) (对应于被检非球面某点 (x', γ'ϊ) 探测到的光强可以表示为:
I(x, y; k) = a(x, y k) + b(x, y k) cos(2 ( , ), (4)
式中, a (x, y, k)和 b (x, y, k) 分别表示背景光强和干涉条紋的对比 度, 是波数及光波长的倒数 1/ , h (x, y) 表示干涉仪的两臂光程差。
干涉信号的位相 φ (x, y;k) 由下式给出: φ(χ,γ k) = 2ύύι χ,γ) (5)
通过连续改变加在可调谐滤光器的信号频率可以连续改变进入干涉 数, 由 (5) 式可以看出, 此时干涉信号的位相也会产生连续改变:
Αφ(χ,γ Ak) = 2nlskh x, y) (6) 可知位相的变化量与波数的变化量成正比, 则所求光程差 A (x, v)可以表
2πΑφ(χ,γ,Α^
h(x, y) - (7)
Ak
因此, 问题就集中在如何获取位相, 继而求取位相变化上来。
不失一般性, 我们仅考虑某个像素的位相变化, 式 (4) 可以改写为: ί{σ) = 0 (σ) +— ρ{σ) Qxp[4moi] +— ρ{σ) exp[-4^z'o] (8) 式中 σ为波数 (为波长的倒数), i0 (σ) 为直流偏置, ρ (σ) 为信号振幅, φ=4πσΙ即为干涉信号的相位。 对上式进行傅里叶变换:
I(f) = I0(f) + P(f-2l) + P(f + 2l)。 (9) 其中大写字母为相对应的小写字母的傅里叶频谱, 等式右边三项在频域上分布 各不相同, 单独取出 P (f-2D 项, 并对其进行傅里叶反变换得:
IFFT{P{f -2/) = ρ{σ) Qxp[4md], (10) 对上式等号右边取对数得:
log{ p(a)exp[ ΑπίσΙ]} = log[ ^ρ(σ)] + ίφ(σ), (11) 式中的虚部即为被测位相。
则被绝对程差的值可以由下式表示:
/ = 4τΔσ/Δ 。 (12) 式中 Δσ为扫频过程中光波数的变化量, >为相位变化量。

Claims

权 利 要 求 书
1、 一种用于非球面测量的波长扫描干涉仪, 其特征在于, 它包括平移台 (1 )、 被测非球面(2)、 第一镜组(3 )、 分光镜(4)、扩束镜(6)、 可调谐激光器(7)、 成像透镜 (8)、 CCD相机 (9)、 参考平面镜 (10)、 图像卡 (11 )、 计算机 (12) 和数据卡 (13 ); 其中, 被测非球面 (2) 固定在平移台 (1 ), 被测非球面 (2)、 第一镜组 (3 )、 分光镜 (4)、 成像透镜 (8) 和 CCD相机 (9) 依次同轴放置, 参考平面镜 (10) 置于分光镜 (4) 的底部, CCD相机 (9)、 图像卡 (11 )、 计 算机 (12) 和数据卡 (13 ) 依次相连, 扩束镜 (6) 和可调谐激光器 (7) 相连, 平移台 (1 )和可调谐激光器(7)分别与数据卡(13 )相连; 可调谐激光器(7 ) 出射的光束经过扩束镜 (6) 扩束后成为平行光束, 波前被分光镜 (4) 分为两 束; 其中一束入射到参考平面镜 (10 ) 上作为参考光, 另外一束经由第一镜组
(3 )聚焦后入射到被测非球面(2)上, 从参考反射镜(10)和被测非球面(2) 反射的光重新在分光镜 (4) 上叠加形成干涉, 干涉条紋经过成像透镜 (8 ) 后 由 CCD相机 (9) 获取, 经过 CCD相机 (9) 完成光电转换后由图像卡 (11 ) 完成模数转换, 最后进入计算机 (12) 进行信号处理获得光程差和面形信息。
2、 根据权利要求 1所述用于非球面测量的波长扫描干涉仪, 其特征在于, 还包 括一平面镜(5 ), 平面镜(5 )将扩束镜(6)扩束的平行光束反射到分光镜(4)。
3、 一种用于非球面测量的波长扫描干涉仪, 其特征在于, 它包括平移台 (1 )、 被测非球面(2)、第二镜组(14)、分光镜(4)、扩束镜(6)、可调谐激光器(7)、 成像透镜(8)、 CCD相机(9)、 图像卡(11 )、 计算机(12)和数据卡(13 )等; 其中,所述被测非球面(2)固定在平移台(1 ),被测非球面(2)、第二镜组(14)、 分光镜 (4)、 成像透镜 (8) 和 CCD相机 (9) 依次同轴放置, CCD相机 (9)、 图像卡 (11 )、 计算机 (12) 和数据卡 (13 ) 依次相连, 扩束镜 (6) 和可调谐 激光器(7)相连, 平移台 (1 )和可调谐激光器(7)分别与数据卡 (13 )相连; 从可调谐激光器 (7 ) 出射的光束经过扩束镜 (6) 扩束后成为平行光束, 其中 一部分被分光镜 (4) 反射到第二镜组 (14), 第二镜组 (14) 的最后一个表面 没有镀增透膜, 因此入射到上面的光会有一部分被反射回分光镜 (4), 另外一 部分由第二镜组 (14) 聚焦后入射到被测非球面 (2) 上并被反射回来; 两部分 光重新在分光镜 (4) 上叠加形成干涉; 干涉条紋经过成像透镜 (8 ) 后由 CCD 相机 (9) 获取, 经过 CCD相机 (9) 完成光电转换后由图像卡 (11 ) 完成模数 转换, 最后进入计算机 (12) 进行信号处理获得光程差和面形信息。
4、 一种应用权利要求 1、 2或 3所述波长扫描干涉仪的非球面测量方法, 其特征在于, 该方法包括以下步骤:
步骤 1、猫眼位置设置: 将被检非球面的顶点调整到与干涉仪测量光束的焦点重 合, 此位置 0c称为猫眼位置, 重合的判据是干涉条紋最少;
步骤 2、 扫描光源的波长, 同时记录干涉条紋, 计算猫眼位置绝对光程差, 记为
OPDc;
步骤 3、通过平移台将被检非球面移至顶点球位置, 此时测量光束波面与非球面 顶点球重合;
步骤 4、 扫描光源的波长, 同时记录干涉条紋, 计算顶点位置绝对光程差, 记为 OPDa; 则该顶点球位置与步骤 1 中猫眼位置的距离 d为被测面的顶点球曲率半 径: R0 = OPDa - OPDc ;
步骤 5、通过平移台分步移动非球面, 每一步中扫描光源的波长同时记录干涉条 紋, 计算各点的绝对光程差, 直至覆盖非球面的整个口径, 随着被测非球面的 移动, 顶点球位置与猫眼位置的距离 d逐渐增加, 测量波前与被测非球面的切 点会从非球面顶点位置依次向外扩, 直到所有的非球面口径全部测量完毕; 步骤 6、 综合步骤 1-5的测量结果获得非球面面形信息。
PCT/CN2012/072659 2012-03-15 2012-03-21 用于非球面测量的波长扫描干涉仪及其应用方法 WO2013134966A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/245,996 US9062959B2 (en) 2012-03-15 2014-04-04 Wavelength scanning interferometer and method for aspheric surface measurement

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201210067757.3 2012-03-15
CN201210067757.3A CN102589416B (zh) 2012-03-15 2012-03-15 用于非球面测量的波长扫描干涉仪及方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/245,996 Continuation US9062959B2 (en) 2012-03-15 2014-04-04 Wavelength scanning interferometer and method for aspheric surface measurement

Publications (1)

Publication Number Publication Date
WO2013134966A1 true WO2013134966A1 (zh) 2013-09-19

Family

ID=46478411

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/072659 WO2013134966A1 (zh) 2012-03-15 2012-03-21 用于非球面测量的波长扫描干涉仪及其应用方法

Country Status (3)

Country Link
US (1) US9062959B2 (zh)
CN (1) CN102589416B (zh)
WO (1) WO2013134966A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114252242A (zh) * 2021-11-23 2022-03-29 中国航空工业集团公司洛阳电光设备研究所 用于望远系统、包含前置望远的光学系统的光轴标定工装及方法

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102011115027A1 (de) * 2011-10-07 2013-04-11 Polytec Gmbh Kohärenzrasterinterferometer und Verfahren zur ortsaufgelösten optischen Vermessung der Oberflächengeometrie eines Objekts
CN102589416B (zh) 2012-03-15 2014-05-07 浙江大学 用于非球面测量的波长扫描干涉仪及方法
CN103170733B (zh) * 2013-04-01 2015-12-23 深圳市木森科技有限公司 一种同轴激光加工机构
CN103234452B (zh) * 2013-04-16 2015-10-21 清华大学 固体激光回馈干涉仪
CN104315972B (zh) * 2014-10-31 2017-02-15 中国科学院长春光学精密机械与物理研究所 一种基于旋转平移绝对检测的干涉仪出射波前检测方法
CZ306463B6 (cs) * 2016-01-26 2017-02-01 Ăšstav fyziky plazmatu AV ÄŚR, v.v.i. Interferometrické zařízení pro měření odchylek tvaru optických prvků
CN106175689B (zh) * 2016-07-29 2020-06-02 东北大学秦皇岛分校 全场光学相干层析方法及装置
CN107063125B (zh) * 2017-06-15 2019-08-02 清华大学 一种光频梳参考的波长扫描三维形貌测量系统
CN107576277B (zh) * 2017-08-28 2018-10-09 广东大黄蜂机器人有限公司 一种3d空间扫描成像系统及其成像方法
CN108478684A (zh) * 2018-04-26 2018-09-04 于泉 一种月子补气方及其制备方法
CN110987371B (zh) * 2019-11-15 2021-11-16 北京空间机电研究所 一种大口径凹非球面的定心系统和方法
CN112525104B (zh) * 2020-12-18 2021-11-05 昆明理工大学 一种数字全息三维形貌测量装置及方法
CN112684462A (zh) * 2020-12-21 2021-04-20 武汉光目科技有限公司 一种放大型面阵扫频测量装置和方法
CN112711029A (zh) * 2020-12-21 2021-04-27 武汉光目科技有限公司 一种面阵扫频测量装置和方法
CN112711030A (zh) * 2020-12-21 2021-04-27 武汉光目科技有限公司 一种显微镜面阵扫频测量装置和方法
CN112762817B (zh) * 2020-12-23 2022-07-08 广东工业大学 倾斜斐索波数扫描干涉仪
CN113028981B (zh) * 2021-03-04 2022-09-30 安徽大学 用于自由曲面干涉检测的自适应补偿环形腔装置与方法
CN113029366B (zh) * 2021-03-11 2022-09-23 深圳中科飞测科技股份有限公司 零相位差位置寻找方法、扫描系统及存储介质
CN112923871B (zh) * 2021-03-31 2021-12-28 中国科学院长春光学精密机械与物理研究所 一种自由曲面反射镜曲率半径检测装置及方法
CN114353694B (zh) * 2022-01-07 2022-12-27 中国科学院长春光学精密机械与物理研究所 光学自由曲面中低频段像差检测装置及方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10141927A (ja) * 1996-11-14 1998-05-29 Rikagaku Kenkyusho 実時間表面形状計測方法及び装置
US20050157311A1 (en) * 2002-06-26 2005-07-21 Michael Kuchel Scanning interferometer for aspheric surfaces and wavefronts
CN200950056Y (zh) * 2006-04-25 2007-09-19 成都太科光电技术有限责任公司 通过波长变化进行面形检测的相移干涉仪
US7397570B2 (en) * 2005-05-18 2008-07-08 Mitutoyo Corporation Interferometer and shape measuring method
CN101290218A (zh) * 2008-05-23 2008-10-22 浙江大学 用于校正非球面非零位检测时的原理误差的方法
CN102155926A (zh) * 2011-03-09 2011-08-17 浙江大学 一种非球面顶点球曲率半径的测量系统及方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000097669A (ja) * 1998-09-18 2000-04-07 Canon Inc 光波干渉計装置、及び該装置におけるデータ処理方法
JP2000146541A (ja) * 1998-11-10 2000-05-26 Nikon Corp 面形状測定装置
JP2002242690A (ja) 2001-02-15 2002-08-28 Yamaha Motor Co Ltd 水ジェット推進艇
GB0325622D0 (en) * 2003-11-03 2003-12-10 Cambridge Consultants System for determining positional information
JP2006214856A (ja) * 2005-02-03 2006-08-17 Canon Inc 測定装置及び方法
US7612893B2 (en) * 2006-09-19 2009-11-03 Zygo Corporation Scanning interferometric methods and apparatus for measuring aspheric surfaces and wavefronts
CN100585362C (zh) * 2007-01-04 2010-01-27 四川大学 一种大口径非球面镜全场检测方法
JP2011022003A (ja) * 2009-07-15 2011-02-03 Canon Inc 測定装置及び光学系の製造方法
CN101876540B (zh) * 2010-05-07 2012-02-22 中国科学院光电技术研究所 基于多波前透镜补偿器的非球面绝对测量系统
CN102589416B (zh) 2012-03-15 2014-05-07 浙江大学 用于非球面测量的波长扫描干涉仪及方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10141927A (ja) * 1996-11-14 1998-05-29 Rikagaku Kenkyusho 実時間表面形状計測方法及び装置
US20050157311A1 (en) * 2002-06-26 2005-07-21 Michael Kuchel Scanning interferometer for aspheric surfaces and wavefronts
US7397570B2 (en) * 2005-05-18 2008-07-08 Mitutoyo Corporation Interferometer and shape measuring method
CN200950056Y (zh) * 2006-04-25 2007-09-19 成都太科光电技术有限责任公司 通过波长变化进行面形检测的相移干涉仪
CN101290218A (zh) * 2008-05-23 2008-10-22 浙江大学 用于校正非球面非零位检测时的原理误差的方法
CN102155926A (zh) * 2011-03-09 2011-08-17 浙江大学 一种非球面顶点球曲率半径的测量系统及方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
HOU, XI ET AL.: "Study on the measurement of large-aperture aspheric surfaces with annular sub-aperture scanning method", OPTO-ELECTRONIC ENGINEERING, vol. 31, no. 9, September 2004 (2004-09-01), pages 26 - 28 AND 65 *
JING, MINJUAN: "The Study of Wavelength Scanning Interference Testing Method for Aspherical Surface", SCIENCE-ENGINEERING (B), CHINESE SELECTED DOCTORAL DISSERTATIONS AND MASTER'S THESES FULL-TEXT DATABASES (MASTER), vol. 1, 15 March 2003 (2003-03-15), pages 23 - 25 AND 37-44 *
LANG, ZHIGUO: "Study on Measuring Large Aperture Aspheric Surface Technique Based on Ultra-precise Rotary Scanning", SCIENCE-ENGINEERING (B), CHINA DOCTORAL DISSERTATIONS FULL-TEXT DATABASE, no. 4, 15 April 2011 (2011-04-15), pages 12 - 13 *
YU, JIE: "Study of Laser wavelength scanning interference testing method for testing aspheric surface", ELECTRONIC TECHNOLOGY & INFORMATION SCIENCE, CHINA MASTER'S THESES FULL-TEXT DATABASE, no. 7, 15 July 2009 (2009-07-15), pages 12 - 13, 17-19 AND 28-30 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114252242A (zh) * 2021-11-23 2022-03-29 中国航空工业集团公司洛阳电光设备研究所 用于望远系统、包含前置望远的光学系统的光轴标定工装及方法
CN114252242B (zh) * 2021-11-23 2024-05-31 中国航空工业集团公司洛阳电光设备研究所 用于望远系统、包含前置望远的光学系统的光轴标定工装及方法

Also Published As

Publication number Publication date
US9062959B2 (en) 2015-06-23
US20140218750A1 (en) 2014-08-07
CN102589416B (zh) 2014-05-07
CN102589416A (zh) 2012-07-18

Similar Documents

Publication Publication Date Title
WO2013134966A1 (zh) 用于非球面测量的波长扫描干涉仪及其应用方法
Chen et al. Measurement of freeform optical surfaces: trade‐off between accuracy and dynamic range
US11808656B2 (en) Device and method for measuring interfaces of an optical element
US4869593A (en) Interferometric surface profiler
US6195168B1 (en) Infrared scanning interferometry apparatus and method
JP3237309B2 (ja) システムエラー測定方法及びそれを用いた形状測定装置
EP1853875A2 (en) Scanning interferometer for aspheric surfaces and wavefronts
EP1444482A1 (en) Scanning interferometer for aspheric surfaces and wavefronts
EP1405030A1 (en) Scanning interferometer for aspheric surfaces and wavefronts
US9435640B2 (en) Interferometer and method for measuring non-rotationally symmetric surface topography having unequal curvatures in two perpendicular principal meridians
US20070177156A1 (en) Surface profiling method and apparatus
CN108061514B (zh) 一种利用轴向扫描光干涉法检测非球面的动态建模方法
Stahl Aspheric surface testing techniques
US20230332885A1 (en) Device and method for measuring interfaces of an optical element
US7545511B1 (en) Transmitted wavefront metrology of optics with high aberrations
US4391526A (en) Interferometric surface contour measuring arrangement
US7042578B2 (en) Method and apparatus for absolute figure metrology
Zendejas-Hernández et al. Spatial and temporal methods for fringe pattern analysis: a review
US7403290B1 (en) Method and means for determining the shape of a rough surface of an object
US11098999B2 (en) Cascade Fourier domain optical coherence tomography
CN114396887A (zh) 一种动态干涉仪及测量方法
US8018602B1 (en) Metrology of optics with high aberrations
Pérez et al. Experimental results of an innovative dynamic low-coherent interferometer for characterizing a gravitational wave detector
Asfour et al. Measurement of inner centration of an asphere with computer generated holograms compared to an optical profiler
Palum Surface profile error measurement for small rotationally symmetric surfaces

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12871490

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12871490

Country of ref document: EP

Kind code of ref document: A1