WO2013134889A1 - 一种低成本洁净钢的生产方法 - Google Patents

一种低成本洁净钢的生产方法 Download PDF

Info

Publication number
WO2013134889A1
WO2013134889A1 PCT/CN2012/000311 CN2012000311W WO2013134889A1 WO 2013134889 A1 WO2013134889 A1 WO 2013134889A1 CN 2012000311 W CN2012000311 W CN 2012000311W WO 2013134889 A1 WO2013134889 A1 WO 2013134889A1
Authority
WO
WIPO (PCT)
Prior art keywords
sphere
desulfurization
dephosphorization
cao
powder
Prior art date
Application number
PCT/CN2012/000311
Other languages
English (en)
French (fr)
Inventor
唐复平
李镇
王晓峰
费鹏
孟劲松
张越
马勇
王文仲
张志文
王小善
郭猛
赵志刚
林阳
辛国强
姚伟智
Original Assignee
鞍钢股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 鞍钢股份有限公司 filed Critical 鞍钢股份有限公司
Priority to JP2014560205A priority Critical patent/JP5876168B2/ja
Priority to KR1020147023781A priority patent/KR101598449B1/ko
Priority to PCT/CN2012/000311 priority patent/WO2013134889A1/zh
Priority to EP12871396.3A priority patent/EP2816125B1/en
Priority to US14/384,981 priority patent/US9708676B2/en
Publication of WO2013134889A1 publication Critical patent/WO2013134889A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C7/00Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
    • C21C7/04Removing impurities by adding a treating agent
    • C21C7/064Dephosphorising; Desulfurising
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C1/00Refining of pig-iron; Cast iron
    • C21C1/02Dephosphorising or desulfurising
    • C21C1/025Agents used for dephosphorising or desulfurising
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/001Continuous casting of metals, i.e. casting in indefinite lengths of specific alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C5/00Manufacture of carbon-steel, e.g. plain mild steel, medium carbon steel or cast steel or stainless steel
    • C21C5/28Manufacture of steel in the converter
    • C21C5/30Regulating or controlling the blowing
    • C21C5/35Blowing from above and through the bath
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C5/00Manufacture of carbon-steel, e.g. plain mild steel, medium carbon steel or cast steel or stainless steel
    • C21C5/28Manufacture of steel in the converter
    • C21C5/36Processes yielding slags of special composition
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C7/00Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
    • C21C7/0037Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00 by injecting powdered material
    • C21C7/0043Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00 by injecting powdered material into the falling stream of molten metal
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C7/00Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
    • C21C7/0087Treatment of slags covering the steel bath, e.g. for separating slag from the molten metal
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C7/00Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
    • C21C7/04Removing impurities by adding a treating agent
    • C21C7/064Dephosphorising; Desulfurising
    • C21C7/0645Agents used for dephosphorising or desulfurising
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C7/00Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
    • C21C7/10Handling in a vacuum
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C2300/00Process aspects
    • C21C2300/08Particular sequence of the process steps
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C7/00Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
    • C21C7/0068Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00 by introducing material into a current of streaming metal
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C7/00Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
    • C21C7/04Removing impurities by adding a treating agent
    • C21C7/072Treatment with gases

Definitions

  • the invention relates to a steelmaking production technology, in particular to a production method of low-cost clean steel, belonging to the technical field of metallurgy.
  • the cleanliness of steel is an important indicator of the overall quality level of steel and is usually evaluated by the amount of harmful elements in the steel and the amount, form and size of non-metallic inclusions.
  • the basic requirements for the development of steel metallurgy technology are: (1) to minimize the removal of harmful elements in steel 8, P, N, H, TO (and sometimes C); (2) precise control (3) Strictly control the quantity, composition, shape, size and distribution of inclusions to harmless and favorable conversion; (4) Non-defective slab.
  • CN1480549 discloses a niobium-containing clean steel and a production method thereof, which belongs to the field of alloy steel, and particularly relates to an alloy steel containing niobium.
  • the production of the niobium-containing clean steel is refined in a refining unit after being melted in a conventional electric furnace, converter or other vacuum melting furnace, and niobium alloying is carried out in the later stage of refining.
  • deoxidizing aluminum or silicon aluminum is added, pre-deoxidation is performed, argon gas is blown after deoxidation, and then bismuth alloy is added to realize the production of bismuth-containing clean steel.
  • the cleanliness of its final product is not high, and the elements of its clean clean steel are by weight, Ba 0.0001 ⁇ 0.04%, S ⁇ O.035%, P ⁇ O.035%, A, B, C> D-type inclusions are generally in the order of 1,0 ⁇ 0.5, which cannot meet the requirements of higher cleanliness.
  • the standard for clean steel is not only a technical issue, but also an economic issue.
  • the equipment and technology possessed by the manufacturer can improve the cleanliness of the steel. Unless the required cleanliness is too high, the target can be achieved, but the production cost must increase, and the user must have the high cleanliness required by him. Pay a corresponding price issue.
  • the invention is proposed to overcome the deficiencies existing in the production of clean steel, and the purpose is to provide a single element S in steel controlled at 5 ⁇ 20ppm, P controlled at 20 ⁇ 60ppm, total oxygen controlled to 3 ⁇ 15ppm, inclusions A high-quality steel with an equivalent diameter of 0.5 to 10 ⁇ m, and a low-cost clean steel production method that effectively reduces the cost.
  • a method for producing low-cost clean steel comprising the following steps:
  • Desulphurization by hot metal pretreatment Desulphurization of molten iron is carried out by powder-spraying desulfurization method, and the desulfurization slag is removed by using a slag-removing machine. After deep desulfurization by molten iron, the molten iron in the molten iron before the converter is guaranteed to be 0.0015% by weight;
  • Rapid slag dephosphorization rapid slag dephosphorization in the tapping process of the converter, the converter end point C is controlled at 0.02 ⁇ 0.10%, and the oxygen activity value ct 0 is controlled at 600 ⁇ 1000ppm, which is passed during the tapping process of the converter. Adding a dephosphorization sphere to the alloy launder and simultaneously performing argon blowing;
  • the desulfurization sphere is prepared from the following raw materials by weight: LF furnace cold recovery white residue 20 ⁇ 55%, CaO 20-50%, CaF 2 5 ⁇ 15%, CaC0 3 5 ⁇ 15%, wherein CaO, CaF 2 , CaC0 3 and LF furnace cold recovery white slag particle size 100 ⁇ ;
  • the dephosphorization sphere is prepared from the following raw materials by weight: LF furnace cold recovery white residue 10 ⁇ 65%, CaO 10-65%, CaF 2 1-15%, CaC0 3 5-30%, wherein CaO , CaF 2 , CaC0 3 and LF furnace cold recovery white slag particle size 100 ⁇ ;
  • the purifying sphere is prepared from the following raw materials by weight percentage: LF furnace cold recovery white residue 10 ⁇ 60%, CaO 15-65%, CaF 2 bu 15%, CaC0 3 5-30%, Ca 1 ⁇ 15 %, wherein CaO, CaF 2 , CaC0 3 and LF furnace cold recovery white slag particle size 1 ⁇ ⁇ .
  • the desulfurization sphere has a desulfurization sphere added in an amount of 2 to 8 kg/t.
  • the dephosphorization sphere has a dephosphorization sphere added in an amount of 3 to 12 kg/t, and the argon intensity is controlled in SONm ⁇ t ir ⁇ lSO Nm ⁇ t h, and the argon blowing time is 0 to 7 min.
  • the purifying sphere is added, and when the purifying sphere is added, the downcomer is on the opposite side of the dropping port.
  • the desulfurization sphere, the dephosphorization sphere and the purification sphere are all made by dry pressing ball, the size of each sphere is between 5 ⁇ 25mm, the compressive strength of the sphere is between 5 ⁇ 35MPa, and the 1600 ⁇ delayed burst reaction The time is between l and 35s.
  • the CaO in the purification sphere may be replaced by a composite powder of MgO or a mixture of CaO and MgO in an arbitrary ratio.
  • the CaCO 3 in the purification sphere may be replaced by a composite powder in which 0 3 or CaC0 3 and MgCO 3 are mixed in an arbitrary ratio, and the particle size of MgCO 3 is 100 ⁇ m.
  • the Ca powder in the purifying sphere may be replaced by a powder of Mg powder or Ca powder mixed with Mg powder in an arbitrary ratio, and the particle size of the Ca powder and the Mg powder is lmm.
  • the activity of the MgO was 200 ml, and the activity of 1 ⁇ 40 was 200 ml.
  • the traditional method of adding steel and metallurgy to the charge is to feed the block material directly or by powder injection.
  • the blowing loss is large, and the steelmaking cost is high.
  • the invention proposes a brand-new material addition mode--reaction-induced micro-heterogeneous phase, that is, the bulk material is put into the molten steel to form a powder material in the molten steel by a burst reaction.
  • the present invention is to design a sphere having the above functions, which decomposes at a high temperature to release fine bubbles and fine droplets.
  • tiny bubbles can be formed in the molten steel.
  • the small bubbles not only make the composition and temperature of the molten steel uniform, but also directly remove the inclusions by trapping and adsorbing the bubbles.
  • a composite powder of CaC0 3 , MgC0 3 or (CaC0 3 +MgC0 3 ) is proposed as an in-situ generating agent for microbubbles.
  • the pyrolysis process of CaC0 3 and MgCO 3 is as follows:
  • the process of the invention is simple, convenient and easy to operate, and is characterized in that it is added in the iron sump of the blast furnace, the iron folding process in the iron folding room, the steel tapping process after the converter furnace, and the RH refining stage respectively.
  • Different massive spheres remove fine inclusions in molten steel from rapid desulfurization, dephosphorization and slag formation, and not only achieve a significant reduction in the P and S content in the steel, but also remain in the refining process.
  • the number and size distribution of fine non-metallic inclusions in the steel are effectively controlled.
  • the high-quality steel in which the single element S in the steel is controlled at 5 to 20 ppm, the P is controlled at 20 to 60 ppm, the total oxygen is controlled to 3 to 15 ppm, and the equivalent diameter of the inclusions is 0.5 to 10 ⁇ m is achieved by the method of the present invention.
  • the raw materials used in this method are cheap, and the cost per ton of steel can be reduced by 5 to 10 yuan.
  • a method for producing low-cost clean steel the steps are as follows:
  • Hot metal pretreatment desulfurization Deep desulfurization by hot metal injection using mixed CaO and Mg powder desulfurizer, and net desulfurization slag using slag slag machine, after desulfurization by molten iron, ensure the weight of steel in the molten iron before the converter is S 0.0015 %.
  • Rapid slag dephosphorization rapid slag dephosphorization in the tapping process of the converter, the converter end point C is controlled at 0.02 ⁇ 0.10%, the oxygen activity value c ( 0 is controlled at 600 ⁇ 1000ppm, in the converter tapping process
  • a dephosphorization sphere is added through the alloy launder, and argon agitation is simultaneously performed; the amount of dephosphorization sphere added is controlled at 3 ⁇ 12 kg/t, and the argon blowing intensity is controlled at SONn ⁇ tl ⁇ lSO Nn ⁇ th, argon blowing
  • the stirring time is 0 to 7 min.
  • Purification of molten steel in RH refining process Purification sphere is added at a vacuum degree of 66.7 ⁇ 500Pa in the later stage of RH refining treatment; when the purifying sphere is added, the downcomer is on the opposite side of the lower feeding port. (6) Continuous casting adopts full-scale protection casting.
  • the preparation of the desulfurization sphere is carried out according to the formula ratio of the LF refining process waste slag, that is, the LF furnace cold recovery white slag 20 kg, CaO 50kg CaF 2 15kg CaC0 3 15kg, wherein CaO, CaF 2 , CaC0 3 and LF furnace cold recovery
  • the particle size of white slag is 100 ⁇ m ; it is made by dry pressing ball.
  • the size of the sphere is between 5 and 25 mm, the compressive strength of the sphere is between 5 and 35 MPa, and the time delay of 1600 °C is 1 to 35 s.
  • the dephosphorization sphere is prepared according to the formula ratio, and the LF refining process waste slag is LF furnace cold recovery white slag 65 kg, CaO 10 kg, CaF 2 1 kg, CaC0 3 5 kg, wherein CaO, CaF 2 , CaC0 3 and LF furnace cold recovery white slag particle size 100 ⁇ ; made by dry pressing ball method, the sphere size is between 5 ⁇ 25mm, the ball compressive strength is between 5 ⁇ 35MPa, and the 1600 °C delayed burst reaction
  • the activity of MgO was 200 ml, and the activity of CaO was 200 ml.
  • the preparation of the desulfurization sphere is carried out according to the formula ratio, and the LF refining process waste slag is LF furnace cold recovery white residue 55 kg, CaO 20 kg > CaF 2 5 kg CaC0 3 5 kg CaO, CaF 2 , CaC0 3 and LF furnace cold
  • the particle size of the recovered white slag is 100 ⁇ m ; it is made by dry pressing ball, the size of the sphere is between 5 and 25 mm, the compressive strength of the sphere is between 5 and 35 MPa, and the time delay of 1600 °C is l ⁇ 35 s.
  • the dephosphorization sphere is prepared according to the formula ratio, and the LF refining process waste slag is LF furnace cold recovery white residue 10 kg, CaO 65 kg CaF 2 15 kg, CaC0 3 30 kg, wherein CaO, CaF 2 , CaC0 3 and LF furnace cold recovery white slag particle size 100 ⁇ ; made by dry pressing ball, the size of the sphere is between 5 ⁇ 25mm, the ball compressive strength is between 5 ⁇ 35M: '?a, and 1600 °C extended The bursting reaction time is between 1 and 35 s.
  • the preparation of the purifying sphere is carried out according to the formula ratio, and the LF refining process waste slag is LF furnace cold recovery white slag 60 kg, Mg015 kg, CaF 2 lkg, MgC0 3 5 kg, Mg 1 kg, wherein CaF 2 , MgC0 3 and
  • the particle size of the white residue of the LF furnace is 100 ⁇ m, and the particle size of the Mg powder is less than 1 mm.
  • Others are the same as Embodiment 1, and will not be described again.
  • the desulfurization sphere is prepared according to the formula ratio, and the LF refining process waste slag is LF furnace cold recovery white slag 35 kg, CaO 35kg > CaF 2 10kg, CaC0 3 10kg CaO, CaF 2 , CaC0 3 and LF furnace
  • the particle size of the cold-recovered white slag is 100 ⁇ m ; it is made by dry pressing ball.
  • the size of the sphere is between 5 and 25 mm, the compressive strength of the sphere is between 5 and 35 MPa, and the delayed reaction time of 1600 °C is between 1 and 35 s. .
  • the dephosphorization sphere is prepared according to the formula ratio, and the LF refining process waste slag is LF furnace cold recovery white residue 38 kg, Ca0 38 kg, CaF 2 10 kg, CaC0 3 12 kg, wherein CaO, CaF 2 , CaC0 3 and LF furnace cold recovery white slag particle size 100 ⁇ ; made by dry pressing ball method, the sphere size is between 5 ⁇ 25mm, the sphere compressive strength is between 5 ⁇ 35MPa, and the 1600°C delayed burst reaction The time is between 1 and 35s.
  • the preparation of the purifying sphere is carried out according to the formula ratio of the LF refining process waste slag, that is, LF furnace cold recovery white slag 35 kg, CaO and MgO mixed in any proportion of the composite powder 40 kg, CaF 2 7 kg, CaC0 3 and MgC0 3 composite powder 15kg, Ca lkg mixed in any proportion, wherein CaO, CaF 2 , CaC0 3 , ⁇ ⁇ (0 3 and 1 ⁇ furnace cold recovery white slag particle size 100 ⁇ , Ca powder particle size is less than lmm. Other examples 1, no longer repeat them.
  • the preparation of the desulfurization sphere is determined according to the formula ratio, and the LF refining process waste slag is LF furnace cold recovery white residue 45 kg, CaO 40 kg > CaF 2 13 kg, CaC0 3 12 kg CaO, CaF 2 , CaC0 3 and LF furnace
  • the particle size of the cold-recovered white slag is 100 ⁇ m ; it is made by dry pressing ball.
  • the size of the sphere is between 5 and 25 mm, the compressive strength of the sphere is between 5 and 35 MPa, and the time delay of 1600 °C is 1 ⁇ . 35s.
  • the dephosphorization sphere is prepared according to the formula ratio, and the LF refining process waste slag is LF furnace cold recovery white residue 41 kg, Ca0 45 kg, CaF 2 5 kg, CaC0 3 20 kg, wherein CaO, CaF 2 , CaC0 3 and LF furnace cold recovery white slag particle size 100 ⁇ ; made by dry pressing ball method, the sphere size is between 5 ⁇ 25mm, the sphere compressive strength is between 5 ⁇ 35MPa, and the 1600°C delayed burst reaction
  • the preparation of the desulfurization spheres is carried out according to the formulation ratio of the LF refining process, the waste slag, that is, the LF furnace, the cold recovery white slag 25 kg, the CaO 30 kg.
  • the particle size of the cold-recovered white slag is 100 ⁇ m ; it is made by dry pressing ball.
  • the size of the sphere is between 5 and 25 mm, the compressive strength of the sphere is between 5 and 35 MPa, and the delayed reaction time of 1600 °C is between 1 and 35 s. .
  • the dephosphorization sphere is prepared according to the formula ratio, and the LF refining process waste slag is LF furnace cold recovery white slag 20 kg, Ca0 55 kg, CaF 2 12 kg CaC0 3 10 kg, wherein CaO, CaF 2 , CaC0 3 and LF furnace cold recovery white slag particle size 100 ⁇ ; made by dry pressing ball method, the sphere size is between 5 ⁇ 25mm, the ball compressive strength is between 5 ⁇ 35MPa, and the 1600°C delay burst reaction time In 1 to 35s.
  • the preparation of the purifying sphere is carried out according to the formula ratio, and the LF refining process waste slag, that is, the LF furnace cold recovery white slag 40 kg, MgO 30 kg, CaF 2 llkg CaC0 3 and MgC0 3 mixed powder in an arbitrary ratio of 25 kg,
  • the powder of the Ca powder and the Mg powder mixed in an arbitrary ratio is 13 kg, wherein the particle size of the CaF 2 , CaCO 3 , MgCO 3 and LF furnace cold recovery white slag is 100 ⁇ m, and the particle size of the Ca powder and the Mg powder is less than 1 mm.
  • Others are the same as Embodiment 1, and will not be described again.
  • the desulfurization sphere is prepared according to the formula ratio, and the LF refining process waste slag is LF furnace cold recovery white slag 30 kg, CaO 45kg CaF 2 6kg, CaC0 3 9kg CaO, CaF 2 , CaC0 3 and LF furnace cold
  • the particle size of the white slag is recovered ; ⁇ ; it is made by dry pressing ball method, the size of the sphere is between 5 ⁇ 25mm, the compressive strength of the sphere is between 5 ⁇ 35MPa, and the time delay of 1600°C is l ⁇ 35s.
  • the dephosphorization sphere is prepared according to the formula ratio, and the LF refining process waste slag is LF furnace cold recovery white residue 50 kg, CaO 25 kg, CaF 2 8 kg, CaC0 3 22 kg, wherein CaO, CaF 2 , CaC0 3 and LF furnace cold recovery white slag particle size 100 ⁇ ; made by dry pressing ball method, the sphere size is between 5 ⁇ 25mm, the sphere compressive strength is between 5 ⁇ 35MPa, and the 1600°C delayed burst reaction Time is 1 ⁇ 35s 0
  • the preparation of the purifying sphere is carried out according to the formula ratio, and the LF refining process waste slag is LF furnace cold recovery white slag 50 kg, CaO20 kg, CaF 2 4 kg, MgC0 3 10 kg, Ca 5 kg, wherein CaO, CaF 2 , MgC0 3 and LF furnace cold recovery white slag particle size 100 ⁇ , Ca powder particle size less than lmm.
  • Others are the same as Embodiment 1, and will not be described again.
  • the preparation of the desulfurization spheres is carried out according to the formulation ratio of the LF refining process waste slag, that is, the LF furnace cold recovery white slag 50 kg, CaO 48kg > CaF 2 7kg, CaC0 3 9kg, among which CaO, CaF 2 , CaC0 3 and LF furnace
  • the particle size of the cold-recovered white slag is 100 ⁇ ; it is made by dry pressing ball.
  • the size of the sphere is between 5 ⁇ 25mm, the compressive strength of the sphere is between 5 ⁇ 35MPa, and the time delay of 1600°C is l ⁇ 35s. .
  • the dephosphorization sphere is prepared according to the formula ratio, and the LF refining process waste lag, that is, the LF furnace cold recovery white slag 45 kg, CaO 25 kg, CaF 2 3 kg, CaC0 3 8 kg, wherein CaO, CaF 2 , CaC0 3 and LF furnace cold recovery white slag particle size 1 ( ⁇ ) ⁇ ; made by dry pressing ball, the size of the sphere is between 5 ⁇ 25mm, the sphere is resistant to pressure.
  • the LF refining process waste lag that is, the LF furnace cold recovery white slag 45 kg, CaO 25 kg, CaF 2 3 kg, CaC0 3 8 kg, wherein CaO, CaF 2 , CaC0 3 and LF furnace cold recovery white slag particle size 1 ( ⁇ ) ⁇ ; made by dry pressing ball, the size of the sphere is between 5 ⁇ 25mm, the sphere is resistant to pressure.
  • the degree is between 5 ⁇ 35MPa, and 1600 °C delayed burst reaction time is 1 ⁇ 35s c
  • the preparation of the purifying sphere is carried out according to the formula ratio, and the LF refining process waste slag is LF furnace cold recovery white slag 45 kg, Ca025 kg, CaF 2 5 kg, MgC0 3 15 kg, Mg 4 kg, wherein CaO, CaF 2 , MgC0 3 and LF furnace cold recovery white slag particle size 100 ⁇ , Mg powder particle size is less than 1mm.
  • Others are the same as Embodiment 1, and will not be described again.
  • the preparation of the desulfurization sphere is carried out according to the formula ratio, and the LF refining process waste slag is LF furnace cold recovery white slag 45 kg, CaO 25kg. CaF 2 12kg, CaC0 3 7kg CaO, CaF 2 , CaC0 3 and LF furnace
  • the particle size of the cold-recovered white slag is 100 ⁇ m ; it is made by dry pressing ball.
  • the size of the sphere is between 5 and 25 mm, the compressive strength of the sphere is between 5 and 35 MPa, and the delayed reaction time of 1600 °C is between 1 and 35 s. .
  • the dephosphorization sphere is prepared according to the formula ratio, and the waste residue of the LF refining process is 28 kg, CaO 35 kg, CaF 2 13 kg, CaC0 3 18 kg, wherein CaO, CaF 2 CaC0 3 and LF furnace cold recovery white slag particle size 100 ⁇ ; made by dry pressing ball, the size of the sphere is between 5 ⁇ 25mm, the ball compressive strength is between 5 ⁇ 35MPa, and the 1600 ⁇ delay burst reaction time is 1 ⁇ 35s 0
  • the preparation of the purifying sphere is carried out according to the formula ratio of the LF refining process waste slag, that is, the LF furnace cold recovery white slag 25 kg, the mixed powder of CaO and MgO in any proportion, 35 kg, CaF 2 13 kg, CaC0 3 7 kg,
  • the powder of the Ca powder and the Mg powder mixed in an arbitrary ratio is 11 kg, wherein the particle size of the CaO, CaF 2 , CaCO 3 and LF furnace cold recovery white slag is 100 ⁇ m, and the particle size of the Ca powder and the Mg powder is less than 1 mm.
  • Others are the same as Embodiment 1, and will not be described again.
  • Hot metal pretreatment desulfurization The deep desulfurization of molten iron is carried out by using a mixed CaO and Mg powder desulfurizing agent, and the desulfurization slag is removed by using a skimmer. After desulfurization by molten iron, it is guaranteed to be 0.0020% by weight of molten iron before entering the converter.
  • the control of total oxygen and the test data for inclusion control show that the method for producing clean steel of the present invention is obviously superior to the comparative method for producing clean steel, both in terms of single control and comprehensive control. Moreover, the present invention achieves a high quality steel level in which the single element S in the steel is controlled at 5 to 20 ppm, the P is controlled at 20 to 60 ppm, the total oxygen is controlled to: ⁇ 15 ppm, and the equivalent diameter of the inclusions is 0.5 to 10 ⁇ m. Table 1
  • Example 1 14 8.34 0.00803 30 20
  • Example 2 10 7.1 0.005 20 20
  • Example 3 8 6.2 0.004 50 10
  • Example 4 5.2 0.003 40 10
  • Example 5 6 6.8 0.0035 50 6
  • Example 6 4 4 0.0015 30 5
  • Example ⁇ 15 15 9.5 0.0091 50 20
  • Example 8 10 8.8 0.0085 40 20 Comparative Example 26 39.7 0.01239 100 50

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Analytical Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Treatment Of Steel In Its Molten State (AREA)
  • Refinement Of Pig-Iron, Manufacture Of Cast Iron, And Steel Manufacture Other Than In Revolving Furnaces (AREA)
  • Carbon Steel Or Casting Steel Manufacturing (AREA)

Abstract

本发明公开了一种低成本洁净钢的生产方法,包括以下步骤:铁水初脱硫;在高炉出铁铁水沟内及折铁间内折铁过程初脱硫,在高炉出铁或折铁过程中向铁水中加入一种铁水脱硫球体;脱磷控硫:在转炉冶炼过程中脱磷控硫,保证出钢过程中P≤0.014%,S≤0.004%;快速成渣脱磷:转炉终点C控制在0.02〜0.10%,在转炉出钢过程中通过合金流槽加入一种脱磷球体,并同时进行吹氩搅拌;RH精炼过程钢水纯净化:在RH精炼处理后期真空度在66.7〜500Pa时加入净化球体;连铸采用全程保护浇注。本发明有效提高钢材质量,降低冶炼成本,本发明与传统工艺相比,所用原料廉价,吨钢成本可以降低5〜10元。

Description

一种低成本洁净钢的生产方法 技术领域
本发明涉及一种炼钢生产技术, 尤其涉及一种低成本洁净钢的生产方法, 属于冶金技术领域。
背景技术
钢的洁净度是反映钢的总体质量水平的重要标志, 通常由钢中有害元素含 量以及非金属夹杂物的数量、 形态和尺寸来评价。 获得"清洁和纯净"的钢, 通 常是降低和控制钢中的卩、 S、 N、 H、 T.O、 C及 Al、 Ti等残余元素, 这些元素 的单一或综合作用, 影响着钢的多项性能。 为了改善钢的内在质量和性能, 钢 铁冶金技术发展的基本要求是: (1)最大限度地去除钢中有害元素8、 P、 N、 H、 T.O(有时还包括 C); (2)精确控制钢中元素含量; (3)严格控制夹杂物的数量、 成 分、 形态、 尺寸和分布, 向无害、 有利转化; (4)无缺陷铸坯。 在洁净钢冶金技 术的开发应用的同时, 也对炼钢用铁合金及辅助材料提出了更高要求。 比如, 为了满足管线钢不断提高的韧性要求, 特别是酸性气体输送管道抗 HIC性能的 提高,对钢中 S含量有不断降低的要求。对汽车板 (轿车外壳)则要求 C、 N、 T.O 都小于 20ppm, 轮胎子午线夹杂物直径要求小于 10 μπι。 为了提高抗接触疲劳 性能, 滚珠轴承钢中 Τ.0降低到 lOppm以下, 甚至更低。 提高钢的洁净度的冶 金技术飞速发展, 生产上已使钢中 T.O+N+P+S+H达到了 80ppm甚至更低。 于 2004年 3月 10日公开的, 公幵号为 CN1480549专利公开了一种含钡洁净钢及 其生产方法, 该属于合金钢领域, 特别涉及含钡的合金钢。 该含钡洁净钢的生 产是在常规的电炉、转炉或其它真空熔炼炉中熔化后, 在精炼装置中进行精炼, 在精炼后期进行钡合金化。 在加入钡合金元素之前, 加入脱氧剂铝或硅铝, 进 行预脱氧, 脱氧后进行吹氩气 , 然后加入钡合金, 实现含钡洁净钢的生产。 但 其最终产品的洁净度不高,其公幵的洁净钢的元素按重量百分比为, Ba 0.0001〜 0.04%, S^O.035%, P^O.035%, A、 B、 C> D类夹杂物一般在 1,0〜0.5级, 不能满足更高洁净度的的要求。
另外, 洁净钢的标准不仅是个技术问题, 首先是个经济问题。 对于生产者 来说, 以其拥有的装备和技术提高钢的洁净度, 除非所要求的洁净度过高, 一 般是能达到目标的, 但生产成本必然增加, 用户就得为他所要求的高洁净度付 出相应的代价问题。
发明内容
本发明是为了克服现有洁净钢生产中存在的不足提出的, 目的就是提供一 种钢中单元素 S控制在 5〜20ppm,P控制在 20〜60ppm,总氧控制到 3〜15ppm, 夹杂物的当量直径为 0.5〜10μπι的高质量钢材, 且有效降低成本的一种低成本 洁净钢的生产方法。
本发明解决上述技术问题的技术方案是: 一种低成本洁净钢的生产方法: 包括以下步骤:
( 1 )铁水初脱硫: 在高炉出铁铁水沟内及折铁间内折铁过程初脱硫, 以高 炉出铁或折铁过程中向铁水中加入一种铁水脱硫球体, 保证初脱硫后铁水中以 重量百分比计 S 0.01%;
(2)铁水预处理脱硫: 使用喷粉脱硫方式进行铁水深脱硫, 并采用扒渣机 扒净脱硫渣, 经铁水深脱硫后保证入转炉前铁水中以重量百分比计 S 0.0015%;
(3 )脱磯控硫:在转炉冶炼过程中脱磷控硫,保证出钢过程中 P 0.014%, 0.004%;
(4) 快速成渣脱磷: 在转炉出钢过程快速成渣脱磷, 转炉终点 C 控制在 0.02〜0.10%, 氧的活度值 ct0控制在 600〜1000ppm, 在转炉出钢过程中通过合 金流槽加入一种脱磷球体, 并同时进行吹氩搅拌;
( 5 ) RH精炼过程钢水纯净化: 在 RH精炼处理后期真空度在 66.7〜500Pa 时加入净化球体;
(6) 连铸采用全程保护浇注;
所述的脱硫球体由下述原料按重量百分比制备而成: LF炉冷回收白渣 20〜 55%, CaO 20-50%, CaF2 5〜15%, CaC03 5〜15%, 其中 CaO、 CaF2、 CaC03及 LF炉冷回收白渣的粒度 100μπι;
所述的脱磷球体由下述原料按重量百分比制备而成: LF炉冷回收白渣 10〜 65%, CaO 10-65%, CaF2 1-15%, CaC03 5-30%, 其中 CaO、 CaF2、 CaC03及 LF 炉冷回收白渣的粒度 100μιη;
所述的净化球体由下述原料按重量百分比制备而成: LF炉冷回收白渣 10〜 60% , CaO 15-65%, CaF2卜 15%, CaC03 5-30%, Ca 1〜15 %,其中 CaO、 CaF2、 CaC03及 LF炉冷回收白渣的粒度 1 ΟΟμιη。
步骤 (1 ) 所述的脱硫球体, 其脱硫球体的加入量为 2〜8kg/t。
步骤 (4) 所述的脱磷球体, 其脱磷球体加入量控制在 3〜12 kg/t, 吹氩强 度控制在 SONm^t ir^ lSO Nm^t h , 吹氩搅拌时间为 0〜7min。
步骤(5 )所述的加入净化球体,该净化球体加入时下降管处于下料口异侧。 所述的脱硫球体、 脱磷球体和净化球体均采用干压制球方式制成, 各种球 体的大小在 5〜25mm之间,球体抗压强度在 5〜35MPa之间,且 1600Ό延时爆 裂反应时间在 l〜35s。
所述的净化球体中的 CaO可由 MgO或 CaO与 MgO以任意比例混合的复 合粉剂替代。
所述的净化球体中的 CaC03 可由 ^¾( 03或 CaC03与 MgC03以任意比例 混合的复合粉剂替代, 且 MgC03的粒度 100μιη。
所述的净化球体中的 Ca粉可由 Mg粉或 Ca粉与 Mg粉以任意比例混合的 粉剂替代, 且 Ca粉和 Mg粉的粒度个于 lmm。
所述的 MgO的活度 200ml、 ¼0的活度 200ml。 传统的钢铁冶金加入炉料的方式都是以块体材料直接加入或粉体喷吹方式 喂入。 采用块体材料加入熔化时间长, 能耗大, 并且极易出现成份不均现象。 而采用粉剂喷吹的方式, 在物料的加入过程中, 吹损大, 炼钢成本高。 本发明 提出一种全新的物料加入方式——反应诱发微小异相, 即向钢液中投入块体材 料通过爆裂反应在钢液中形成粉体材料。
本发明就是设计一种具有上述功能的球体, 该球体在高温下会分解释放出 微小气泡和细小渣滴。 通过在钢液中引入细小的碳酸钠颗粒, 可以在钢液中生 成微小的气泡, 小气泡不但能够使钢液成份和温度均匀, 而且通过气泡的捕捉、 吸附作用, 直接去除夹杂物。 为此发明提出采用 CaC03、 MgC03 或 (CaC03+MgC03)的复合粉剂作为微小气泡的原位生成剂, CaC03、 MgC03的在 高温分解过程如下:
825-C
CaC03 → C02 t +CaO (1)
825-C A
MgCO, → C02† +MgO (2) 研究表明当碳酸盐粉料足够细小时, 产生气泡的尺寸与粉料的大小相当。 因 此采用这种方法可以在钢水中引入 细气泡(气泡的尺寸在 100〜300μιη之间)。 气泡的尺寸越细小, 夹杂物的去除效率越高。 另外, 碳酸盐分解反应的另一产 物碱土氧化物能够在钢液中迅速熔化形成渣滴具有渣洗的作用。 由于碳酸盐的 分解反应温度较低, 热稳定性差。 因此必须通过合理的设计消除这种不利因素。 本研究提出采用 CaO、 MgO、 (CaO+MgO)复合粉剂或 LF炉冷回收白渣料作为 碳酸盐粉剂的载体, 通过二者的复合并制成一定尺寸大小球体以提高碳酸盐在 钢液中的热稳定性。
本发明的优点和有益效果: 本发明的工艺简单、 方便易于操作, 特点在于 在高炉出铁铁水沟内、 折铁间内折铁过程中、 转炉炉后出钢过程中以及 RH精 炼后期分别加入不同的块状球体, 从 实现快速脱硫、 脱磷、 成渣去除钢液中 的细小夹杂物, 而且不仅达到显著降低钢中 P、 S含量, 同时对精炼过程残存在 钢中的细小非金属夹杂物的数量及尺寸分布进行有效的控制。 应用本发明的工 艺方法实现了钢中单元素 S控制在 5〜20ppm, P控制在 20〜60ppm, 总氧控制 到 3〜15ppm, 夹杂物的当量直径为 0.5〜10μιη的高质量钢。 与传统工艺相比, 该方法所用原料廉价, 吨钢成本可以降低 5〜10元。
具体实施方式
下面结合具体实施例对本发明进行进一步详细说明, 但本发明的保护范围 不受具体的实施例所限制, 以权利要求书为准。 另外, 以不违背本发明技术方 案的前提下, 对本发明所作的本领域普通技术人员容易实现的任何改动或改变 都将落入本发明的权利要求范围之内。
一种低成本洁净钢的生产方法, 步骤如下:
( 1 )铁水初脱硫: 在高炉出铁铁水沟内及折铁间内折铁过程初脱硫, 以高 炉出铁或折铁过程中向铁水中加入一种铁水脱硫球体, 其脱硫球体的加入量为 2〜8kg/t, 保证初脱硫后铁水中以重量百分比计 S 0.01%。
(2) 铁水预处理脱硫: 使用混合 CaO和 Mg粉脱硫剂进行铁水喷吹深脱 硫, 并采用扒渣机扒净脱硫渣, 经铁水深脱硫后保证入转炉前铁水中以重量百 分比计 S 0.0015%。
(3 )脱磷控硫:在转炉冶炼过禾呈中脱磷控硫,保证出钢过程中 P 0.014%, S 0.004%。
, (4) 快速成渣脱磷: 在转炉出钢过程快速成渣脱磷, 转炉终点 C 控制在 0.02〜0.10%, 氧的活度值 c(0控制在 600〜1000ppm, 在转炉出钢过程中通过合 金流槽加入一种脱磷球体,并同时进行吹氩搅拌;其脱磷球体加入量控制在 3〜 12 kg/t,吹氩强度控制在 SONn^t l ^lSO Nn^t h ,吹氩搅拌时间为 0〜7min。
(5 ) RH精炼过程钢水纯净化: 在 RH精炼处理后期真空度在 66.7〜500Pa 时加入净化球体; 该净化球体加入时下降管处于下料口异侧。 (6) 连铸采用全程保护浇注。
所述的脱硫球体的配制, 按配方配比取 LF精炼过程废弃用渣即 LF炉冷回 收白渣 20 kg、 CaO 50kg CaF2 15kg CaC03 15kg其中 CaO、 CaF2、 CaC03及 LF炉冷回收白渣的粒度 100μιη; 采用干压制球方式制成, 球体的大小在 5〜 25mm之间,球体抗压强度在 5〜35MPa之间,且 1600°C延时爆裂反应时间在 1〜 35s。
所述的脱磷球体的配制, 按配方配比取 LF精炼过程废弃用渣即 LF炉冷回 收白渣 65 kg、 CaO 10 kg、 CaF2 1 kg、 CaC03 5 kg, 其中 CaO、 CaF2、 CaC03 及 LF炉冷回收白渣的粒度 100μηι;采用干压制球方式制成,球体的大小在 5〜 25mm之间,球体抗压强度在 5〜35MPa之间,且 1600°C延时爆裂反应时间在 1〜 所述的净化球体的配制, 按配方配比取 LF精炼过程废弃用渣即 LF炉冷回 收白渣 10 kg、 Ca065 kg、 CaF215 kg、 CaC03 30 kg、 Ca 15 kg, 其中 CaO、 CaF2、 &( 03及1^炉冷回收白渣的粒度 100μιη, Ca粉的粒度小于 lmm。
所述的 MgO的活度 200ml、 CaO的活度 200ml。
实施例 1
所述的脱硫球体的配制, 按配方配比取 LF精炼过程废弃用渣即 LF炉冷回 收白渣 55 kg、 CaO 20kg > CaF2 5kg CaC03 5kg其中 CaO、 CaF2、 CaC03及 LF 炉冷回收白渣的粒度 100μιη;采用干压制球方式制成,球体的大小在 5〜25mm 之间,球体抗压强度在 5〜35MPa之间,且 1600°C延时爆裂反应时间在 l〜35s。
所述的脱磷球体的配制, 按配方配比取 LF精炼过程废弃用渣即 LF炉冷回 收白渣 10 kg、 CaO 65 kg CaF2 15 kg、 CaC03 30 kg, 其中 CaO、 CaF2、 CaC03 及 LF炉冷回收白渣的粒度 100μι ;采用干压制球方式制成,球体的大小在 5〜 25mm之间,球体抗压强度在 5〜35M:'?a之间,且 1600°C延时爆裂反应时间在 1〜 35s。 所述的净化球体的配制, 按配方配比取 LF精炼过程废弃用渣即 LF炉冷回 收白渣 60 kg、 Mg015 kg、 CaF2 lkg、 MgC03 5kg、 Mg 1kg, 其中 CaF2、 MgC03 及 LF炉冷回收白渣的粒度 100μπι, Mg粉的粒度小于 1mm。其它同实施例 1 , 不再赘述。
实施例 3
所述的脱硫球体的配制, 按配方配比取 LF精炼过程废弃用渣即 LF炉冷回 收白渣 35 kg、 CaO 35kg > CaF2 10kg、 CaC03 10kg其中 CaO、 CaF2、 CaC03及 LF炉冷回收白渣的粒度 100μπι; 采用干压制球方式制成, 球体的大小在 5〜 25mm之间,球体抗压强度在 5〜35MPa之间,且 1600°C延时爆裂反应时间在 1〜 35s。
所述的脱磷球体的配制, 按配方配比取 LF精炼过程废弃用渣即 LF炉冷回 收白渣 38 kg、 Ca0 38 kg、 CaF2 10 kg、 CaC03 12 kg, 其中 CaO、 CaF2、 CaC03 及 LF炉冷回收白渣的粒度 100μιη;采用干压制球方式制成,球体的大小在 5〜 25mm之间,球体抗压强度在 5〜35MPa之间,且 1600°C延时爆裂反应时间在 1〜 35s。
所述的净化球体的配制, 按配方配比取 LF精炼过程废弃用渣即 LF炉冷回 收白渣 35 kg、 CaO与 MgO以任意比例混合的复合粉剂 40 kg、 CaF27kg、 CaC03 与 MgC03以任意比例混合的复合粉剂 15kg、 Ca lkg,其中 CaO、 CaF2、 CaC03 、 ^§( 03及1^炉冷回收白渣的粒度 100μηι, Ca粉的粒度小于 lmm。 其它同实 施例 1, 不再赘述。
实施例 4
所述的脱硫球体的配制, 按配方配比取 LF精炼过程废弃用渣即 LF炉冷回 收白渣 45 kg、 CaO 40kg > CaF2 13kg、 CaC03 12kg其中 CaO、 CaF2、 CaC03及 LF炉冷回收白渣的粒度 100μιη; 采用干压制球方式制成, 球体的大小在 5〜 25mm之间,球体抗压强度在 5〜35MPa之间,且 1600°C延时爆裂反应时间在 1〜 35s。
所述的脱磷球体的配制, 按配方配比取 LF精炼过程废弃用渣即 LF炉冷回 收白渣 41 kg、 Ca0 45 kg、 CaF2 5 kg、 CaC03 20 kg, 其中 CaO、 CaF2、 CaC03 及 LF炉冷回收白渣的粒度 100μιη;采用干压制球方式制成,球体的大小在 5〜 25mm之间,球体抗压强度在 5〜35MPa之间,且 1600°C延时爆裂反应时间在 1〜 所述的净化球体的配制, 按配方配比取 LF精炼过程废弃用渣即 LF炉冷回 收白渣 20 kg、 CaO与 MgO以任意比例混合的复合粉剂 55 kg、 CaF23kg、 CaC03 20kg、 Ca 12kg, 其中 CaO、 CaF2、 CaC03及 LF炉冷回收白渣的粒度 100μπι, Ca粉的粒度小于 lmm。 其它同实施例 1, 不再赘述。
实施例 5
所述的脱硫球体的配制, 按配方配比取 LF精炼过程废弃用渣即 LF炉冷回 收白渣 25 kg、 CaO 30kg. CaF2 8kg、 CaC03 14kg其中 CaO、 CaF2、 CaC03及 LF炉冷回收白渣的粒度 100μιη; 采用干压制球方式制成, 球体的大小在 5〜 25mm之间,球体抗压强度在 5〜35MPa之间,且 1600°C延时爆裂反应时间在 1〜 35s。
所述的脱磷球体的配制, 按配方配比取 LF精炼过程废弃用渣即 LF炉冷回 收白渣 20 kg、 Ca0 55 kg、 CaF2 12 kg CaC03 10 kg, 其中 CaO、 CaF2、 CaC03 及 LF炉冷回收白渣的粒度 100μηι;采用干压制球方式制成,球体的大小在 5〜 25mm之间,球体抗压强度在 5〜35MPa之间,且 1600°C延时爆裂反应时间在 1〜 35s。
所述的净化球体的配制, 按配方配比取 LF精炼过程废弃用渣即 LF炉冷回 收白渣 40 kg、 MgO 30 kg、 CaF2 llkg CaC03与 MgC03以任意比例混合的复合 粉剂 25kg、 Ca粉与 Mg粉以任意比例混合的粉剂 13kg, 其中 CaF2、 CaC03、 MgC03及 LF炉冷回收白渣的粒度 100μιη, Ca粉和 Mg粉的粒度小于 lmm。 其它同实施例 1, 不再赘述。
实施例 6
所述的脱硫球体的配制, 按配方配比取 LF精炼过程废弃用渣即 LF炉冷回 收白渣 30 kg、 CaO 45kg CaF2 6kg、 CaC03 9kg其中 CaO、 CaF2、 CaC03及 LF 炉冷回收白渣的粒度 ΙΟΟμιη;采用干压制球方式制成,球体的大小在 5〜25mm 之间,球体抗压强度在 5〜35MPa之间,且 1600°C延时爆裂反应时间在 l〜35s。
所述的脱磷球体的配制, 按配方配比取 LF精炼过程废弃用渣即 LF炉冷回 收白渣 50 kg、 CaO 25 kg, CaF2 8 kg、 CaC03 22 kg, 其中 CaO、 CaF2、 CaC03 及 LF炉冷回收白渣的粒度 100μιη;采用干压制球方式制成,球体的大小在 5〜 25mm之间,球体抗压强度在 5〜35MPa之间,且 1600°C延时爆裂反应时间在 1〜 35s0
所述的净化球体的配制, 按配方配比取 LF精炼过程废弃用渣即 LF炉冷回 收白渣 50 kg、 CaO20 kg、 CaF24kg、 MgC03 10kg、 Ca 5kg, 其中 CaO、 CaF2、 MgC03及 LF炉冷回收白渣的粒度 100μιη, Ca粉的粒度小于 lmm。 其它同实 施例 1, 不再赘述。
实施例 7
所述的脱硫球体的配制, 按配方配比取 LF精炼过程废弃用渣即 LF炉冷回 收白渣 50 kg、 CaO 48kg > CaF2 7kg、 CaC03 9kg其中 CaO、 CaF2、 CaC03及 LF 炉冷回收白渣的粒度 100μπι;采用干压制球方式制成,球体的大小在 5〜25mm 之间,球体抗压强度在 5〜35MPa之间,且 1600°C延时爆裂反应时间在 l〜35s。
所述的脱磷球体的配制, 按配方配比取 LF精炼过程废弃用渣即 LF炉冷回 收白渣 45 kg、 CaO 25 kg, CaF2 3 kg、 CaC03 8 kg, 其中 CaO、 CaF2、 CaC03 及 LF炉冷回收白渣的粒度 1(Κ)μιη;采用干压制球方式制成,球体的大小在 5〜 25mm之间,球体抗压强.度在 5〜35MPa之间,且 1600 °C延时爆裂反应时间在 1〜 35s c 所述的净化球体的配制, 按配方配比取 LF精炼过程废弃用渣即 LF炉冷回 收白渣 45 kg、 Ca025 kg、 CaF25kg、 MgC03 15kg、 Mg 4kg, 其中 CaO、 CaF2、 MgC03及 LF炉冷回收白渣的粒度 100μπι, Mg粉的粒度小于 lmm。 其它同 实施例 1, 不再赘述。 所述的脱硫球体的配制, 按配方配比取 LF精炼过程废弃用渣即 LF炉冷回 收白渣 45 kg、 CaO 25kg. CaF2 12kg、 CaC03 7kg其中 CaO、 CaF2、 CaC03及 LF炉冷回收白渣的粒度 100μιη; 采用干压制球方式制成, 球体的大小在 5〜 25mm之间,球体抗压强度在 5〜35MPa之间,且 1600°C延时爆裂反应时间在 1〜 35s。
所述的脱磷球体的配制,按配方配比取上述 LF精炼过程废弃用渣即炉冷回 收白渣 28 kg、 CaO 35 kg, CaF2 13 kg、 CaC03 18 kg, 其中 CaO、 CaF2 CaC03 及 LF炉冷回收白渣的粒度 100μπι;采用干压制球方式制成,球体的大小在 5〜 25mm之间,球体抗压强度在 5〜35MPa之间,且 1600Ό延时爆裂反应时间在 1〜 35s0
所述的净化球体的配制, 按配方配比取 LF精炼过程废弃用渣即 LF炉冷回 收白渣 25 kg、 CaO与 MgO 以任意比例混合的复合粉剂 35 kg、 CaF213kg、 CaC037kg、Ca粉与 Mg粉以任意比例混合的粉剂 11kg,其中 CaO、 CaF2、 CaC03 及 LF炉冷回收白渣的粒度 100μηι, Ca粉和 Mg粉的粒度小于 lmm。 其它同 实施例 1, 不再赘述。
对比例
现有技术中洁净钢生产方法的工艺流程, 具体按照以下步骤来实现:
( 1 ) 铁水预处理脱硫。 使用混合 CaO和 Mg粉脱硫剂进行铁水喷吹深脱 硫, 并采用扒渣机扒净脱硫渣。 经铁水脱硫后保证入转炉前以重量百分比计铁 水中 S 0.0020% (2 ) 转炉冶炼过程中脱磷控硫, 保证出钢过程中 P 0.014%, S^O.004%;
( 3 ) RH精炼过程钢水纯净化。
(4) 连铸采用全程保护浇注。 沿铸坯内弧 1/4处取样在 500倍显微镜下分析夹杂物形貌和粒度, 并采用 定量金相分析夹杂物面积含量(分析面积为 lO X lOmm) , 采用氮氧仪分析全氧 含量, 采用化学分析的方法测定总氧、 夹杂物、 P及 S含量分析结果如表 1 下表 1 中本发明各实施例和对比例生产洁净钢工艺方法中, 钢中单元素 S 和 P的控制、 总氧的控制以及对夹杂物控制的测试数据说明, 无论在单一方面 控制上, 还是在综合方面控制上, 本发明生产洁净钢工艺方法都明显地优于对 比例生产洁净钢工艺方法。 而且本发明达到了钢中单元素 S控制在 5〜20ppm, P控制在 20〜60ppm, 总氧控制到:^〜 15ppm, 夹杂物的当量直径为 0.5〜10μιη 的高质量钢材水平。 表 1
总^ 1 最大夹杂物尺 夹杂物面积平均含量 Ρ S 实施例
(ppm) 寸 ( μιη) (%) (ppm) (ppm) 实施例 1 14 8.34 0.00803 30 20 实施例 2 10 7.1 0.005 20 20 实施例 3 8 6.2 0.004 50 10 实施例 4 6 5.2 0.003 40 10 实施例 5 6 6.8 0.0035 50 6 实施例 6 4 4 0.0015 30 5 实施例 Ί 15 9.5 0.0091 50 20 实施例 8 10 8.8 0.0085 40 20 对比例 26 39.7 0.01239 100 50

Claims

权 利 要 求
1、 一种低成本洁净钢的生产方法: 其特征在于包括以下步骤:
( 1 ) 铁水初脱硫: 在高炉出铁铁水沟内及折铁间内折铁过程初脱硫, 以 高炉出铁或折铁过程中向铁水中加入一种铁水脱硫球体, 保证初脱硫后铁水中 以重量百分比计 S 0.01%;
( 2 ) 铁水预处理脱硫: 使用喷粉脱硫方式进行铁水深脱硫, 并采用扒渣 机扒净脱硫渣, 经铁水深脱硫后保证入转炉前铁水中以重量百分比计 S 0.0015%;
( 3 )脱磷控硫:在转炉冶炼过程中脱磷控硫,保证出钢过程中 P 0.014%, 0.004%;
( 4) 快速成渣脱磷: 在转炉出钢过程快速成渣脱磷, 转炉终点 C控制在 0.02〜0.10%,氧的活度值 cto控制在 600〜1000ppm,在转炉出钢过程中通过合 金流槽加入一种脱磷球体, 并同时进行吹氩搅拌;
( 5 ) RH精炼过程钢水纯净化:在 RH精炼处理后期真空度在 66.7〜500Pa 时加入净化球体;
( 6 ) 连铸采用全程保护浇注;
所述的脱硫球体由下述原料按重量百分比制备而成: LF 炉冷回收白渣 20〜55%, CaO 20-50%, CaF2 5-15%, CaC03 5-15%,其中 CaO、 CaF2、 CaC03 及 LF炉冷回收白渣的粒度 100μιη;
所述的脱磷球体由下述原料按重量百分比制备而成: LF 炉冷回收白渣 10〜65%, CaO 10-65%, CaF2 1-15%, CaC03 5-30%, 其中 CaO、 CaF2、 CaC03 及 LF炉冷回收白渣的粒度 100μιη;
所述的净化球体由下述原料按重量百分比制备而成: LF 炉冷回收白渣 10〜60%, CaO 15-65%, CaF2l~15%, C;aC03 5-30%, Ca 1〜15 %,其中 CaO、 CaF2, CaC03及 LF炉冷回收白渣的粒度 100μιη。
2、 根据权利要求 1所述的一种低成本洁净钢的生产方法, 其特征在于步 骤 (1 ) 所述的脱硫球体, 其脱硫球体的加入量为 2〜8kg/t。
3、 根据权利要求 1 所述的一种低成本洁净钢的生产方法, 其特征在于步 骤(4)所述的脱磷球体, 其脱磷球体加入量控制在 3〜12 kg/t, 吹氩强度控制 在 SONm^t h lSO Nm^t h , 吹氩搅拌时间为 0〜7min。
4、 根据权利要求 1所述的一种低成本洁净钢的生产方法, 其特征在于步 骤 (5 )所述的加入净化球体, 该净化球体加入时下降管处于下料口异侧。
5、 根据权利要求 1 所述的一种低成本洁净钢的生产方法, 其特征在于所 述的脱硫球体、 脱磷球体和净化球体均采用干压制球方式制成, 各种球体的大 小在 5〜25mm之间, 球体抗压强度在 5〜35MPa之间, 且 1600 °C延时爆裂反 应时间在 l〜35s。
6、 根据权利要求 1或 4所述的一种低成本洁净钢的生产方法, 其特征在 于所述的净化球体中的 CaO可由 MgO或 CaO与 MgO以任意比例混合的复合 粉剂替代。
7、 根据权利要求 1或 4所述的一种低成本洁净钢的生产方法, 其特征在 于所述的净化球体中的 CaC03 可由 MgC03或 CaC03与 MgC03以任意比例混 合的复合粉剂替代, 且 MgC03的粒度 100μιη。
8、 根据权利要求 1或 4所述的一种低成本洁净钢的生产方法, 其特征在 于所述的净化球体中的 Ca粉可由 Mg粉或 Ca粉与 Mg粉以任意比例混合的粉 剂替代, 且 Ca粉和 Mg粉的粒度小于 lmm。
9、 根据权利要求 1所述的一种低成本洁净钢的生产方法, 其特征在于所 述的 MgO的活度 200ml、 CaO的活度 200ml。
PCT/CN2012/000311 2012-03-13 2012-03-13 一种低成本洁净钢的生产方法 WO2013134889A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2014560205A JP5876168B2 (ja) 2012-03-13 2012-03-13 低コストの清浄鋼の製造方法
KR1020147023781A KR101598449B1 (ko) 2012-03-13 2012-03-13 저원가 청정강의 생산방법
PCT/CN2012/000311 WO2013134889A1 (zh) 2012-03-13 2012-03-13 一种低成本洁净钢的生产方法
EP12871396.3A EP2816125B1 (en) 2012-03-13 2012-03-13 Process for producing low-cost clean steel
US14/384,981 US9708676B2 (en) 2012-03-13 2012-03-13 Method for preparing low-cost clean steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2012/000311 WO2013134889A1 (zh) 2012-03-13 2012-03-13 一种低成本洁净钢的生产方法

Publications (1)

Publication Number Publication Date
WO2013134889A1 true WO2013134889A1 (zh) 2013-09-19

Family

ID=49160200

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/000311 WO2013134889A1 (zh) 2012-03-13 2012-03-13 一种低成本洁净钢的生产方法

Country Status (5)

Country Link
US (1) US9708676B2 (zh)
EP (1) EP2816125B1 (zh)
JP (1) JP5876168B2 (zh)
KR (1) KR101598449B1 (zh)
WO (1) WO2013134889A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113201619A (zh) * 2021-05-18 2021-08-03 宝武集团鄂城钢铁有限公司 一种提高转炉脱硫效率的冶炼方法
CN113403450A (zh) * 2021-06-22 2021-09-17 建龙北满特殊钢有限责任公司 一种高质量含硫中碳合金钢及其制备方法
CN118600149A (zh) * 2024-08-09 2024-09-06 山西建龙实业有限公司 一种小断面含铝矩坯渣洗直上工艺生产方法

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3042965A1 (en) * 2015-01-09 2016-07-13 S.A. Lhoist Recherche Et Developpement Process for dephosphorization of molten metal during a refining process
CN112195309A (zh) * 2020-08-26 2021-01-08 鞍钢集团工程技术有限公司 一种具有深脱磷功能的lf炉冶炼工艺
CN112779458B (zh) * 2020-12-28 2022-03-11 日照钢铁控股集团有限公司 一种管线钢的夹杂物控制方法
CN113512618A (zh) * 2021-04-02 2021-10-19 首钢京唐钢铁联合有限责任公司 一种有效控制夹杂物的精炼双联方法
CN113718081A (zh) * 2021-08-04 2021-11-30 邯郸钢铁集团有限责任公司 一种提高含硫齿轮钢连拉炉数的方法
CN114367657B (zh) * 2021-12-08 2023-07-14 鞍钢股份有限公司 一种基于铁水罐称重的鱼雷罐折铁速度控制方法
CN116005063A (zh) * 2023-01-07 2023-04-25 首钢京唐钢铁联合有限责任公司 一种钢水的冶炼方法
CN118638981A (zh) * 2024-08-07 2024-09-13 山西建龙实业有限公司 一种渣洗直上铝镇静钢中铝含量的控制方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1480549A (zh) 2003-08-08 2004-03-10 钢铁研究总院 一种含钡洁净钢及其生产方法
KR20040052583A (ko) * 2004-04-07 2004-06-23 (주)라임테크 탈산 탈황용 특수 생석회 조성물 및 브리켓 제조방법
CN101323893A (zh) * 2008-07-30 2008-12-17 鞍钢股份有限公司 一种去除钢液中细小夹杂物的工艺方法
CN101956040A (zh) * 2010-10-14 2011-01-26 攀钢集团钢铁钒钛股份有限公司 洁净钢生产方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT382639B (de) * 1985-04-26 1987-03-25 Voest Alpine Ag Verfahren zur herstellung von stahl aus eisenschwamm sowie anlage zur durchfuehrung des verfahrens
US5397379A (en) * 1993-09-22 1995-03-14 Oglebay Norton Company Process and additive for the ladle refining of steel
CN1298868C (zh) * 1999-06-16 2007-02-07 新日本制铁株式会社 钢水的精炼方法及精炼装置
KR100504295B1 (ko) * 2000-06-14 2005-07-27 제이에프이 엔지니어링 가부시키가이샤 용선용 탈황제의 제조 방법 및 장치
JP4818567B2 (ja) * 2000-09-14 2011-11-16 Jfeスチール株式会社 精錬剤および精錬方法
JP2003105423A (ja) * 2001-09-28 2003-04-09 Sumitomo Metal Ind Ltd 溶銑の脱りんおよび脱硫処理方法
KR20030042148A (ko) * 2001-11-21 2003-05-28 박주호 원격 재해관측시스템
KR100711410B1 (ko) * 2004-12-09 2007-04-30 가부시키가이샤 고베 세이코쇼 연성이 높은 박강판 및 그 제조방법
JP5573424B2 (ja) * 2010-06-30 2014-08-20 Jfeスチール株式会社 溶鋼の脱硫処理方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1480549A (zh) 2003-08-08 2004-03-10 钢铁研究总院 一种含钡洁净钢及其生产方法
KR20040052583A (ko) * 2004-04-07 2004-06-23 (주)라임테크 탈산 탈황용 특수 생석회 조성물 및 브리켓 제조방법
CN101323893A (zh) * 2008-07-30 2008-12-17 鞍钢股份有限公司 一种去除钢液中细小夹杂物的工艺方法
CN101956040A (zh) * 2010-10-14 2011-01-26 攀钢集团钢铁钒钛股份有限公司 洁净钢生产方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
See also references of EP2816125A4
TANG, FUPING ET AL.: "Technical Investigation on the Fine Inclusion Removal Due to the Dispersed In-Situ Phase Induced by the Composite Ball Explosion Reaction", IRON & STEEL, vol. 45, no. 8, August 2010 (2010-08-01), pages 28 - 32, XP008173631 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113201619A (zh) * 2021-05-18 2021-08-03 宝武集团鄂城钢铁有限公司 一种提高转炉脱硫效率的冶炼方法
CN113403450A (zh) * 2021-06-22 2021-09-17 建龙北满特殊钢有限责任公司 一种高质量含硫中碳合金钢及其制备方法
CN113403450B (zh) * 2021-06-22 2022-04-22 建龙北满特殊钢有限责任公司 一种高质量含硫中碳合金钢及其制备方法
CN118600149A (zh) * 2024-08-09 2024-09-06 山西建龙实业有限公司 一种小断面含铝矩坯渣洗直上工艺生产方法

Also Published As

Publication number Publication date
JP5876168B2 (ja) 2016-03-02
EP2816125B1 (en) 2015-11-25
EP2816125A1 (en) 2014-12-24
KR20140121452A (ko) 2014-10-15
EP2816125A4 (en) 2015-03-04
JP2015510971A (ja) 2015-04-13
US20150027656A1 (en) 2015-01-29
KR101598449B1 (ko) 2016-02-29
US9708676B2 (en) 2017-07-18

Similar Documents

Publication Publication Date Title
WO2013134889A1 (zh) 一种低成本洁净钢的生产方法
CN102586543B (zh) 一种高氧化钙含量的钢包渣还原剂及其制备方法
CN101139644A (zh) 一种转炉炼钢渣洗用高碱度精炼渣
CN109554605B (zh) 一种ld-rh工艺生产超低碳钢的氧化物夹杂控制方法
CN101935740B (zh) Lf精炼炉用白渣精炼剂及其制备方法
CN106676233A (zh) 预熔型复合脱磷剂及其制备方法和冶炼超低磷钢的方法
WO2009152643A1 (zh) 用于炉外精炼脱磷、脱硫、去除细小杂物的添加剂及其制法和应用
WO2017119392A1 (ja) 溶鉄の脱りん剤、精錬剤および脱りん方法
CN102827990A (zh) 一种转炉用无氟化渣剂及其制备方法
TWI568856B (zh) 熔鐵的脫磷處理方法
CN101812568B (zh) 炼钢脱氧的铝钙复合材料
JP5343506B2 (ja) 溶銑の脱燐方法
CN113122680B (zh) 钢渣改质剂及其制备和使用方法
CN100543153C (zh) 用于炉外精炼脱硫、去除细小夹杂物的复合球体及其制法
CN102146500A (zh) 炼钢用助熔剂及其制备和使用方法
CN101545027A (zh) 一种低碳速熔的钢包精炼渣
TWI664294B (zh) 鐵水的脫磷方法
CN106119462A (zh) 一种Al基钢包顶渣改质剂及提高其利用率的方法
CN110157860A (zh) 一种硅铁提纯脱铝用精炼渣及配制方法
CN100432241C (zh) 用于冶炼冷轧及热轧低碳铝镇静钢的辅助脱氧剂
CN108715972A (zh) 一种低磷硅铁产品及其冶炼方法
JP5341849B2 (ja) リサイクルスラグの製造方法
CN103031409A (zh) 一种利用精炼炉除尘灰炼钢脱氧的新工艺
CN107236844B (zh) 一种洁净钢的冶炼方法及生产工艺
CN105369004A (zh) 石灰石用于炼钢脱氧的方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12871396

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20147023781

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2014560205

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14384981

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2012871396

Country of ref document: EP