WO2013133166A1 - 熱間プレス用鋼板およびプレス成形品、並びにプレス成形品の製造方法 - Google Patents

熱間プレス用鋼板およびプレス成形品、並びにプレス成形品の製造方法 Download PDF

Info

Publication number
WO2013133166A1
WO2013133166A1 PCT/JP2013/055680 JP2013055680W WO2013133166A1 WO 2013133166 A1 WO2013133166 A1 WO 2013133166A1 JP 2013055680 W JP2013055680 W JP 2013055680W WO 2013133166 A1 WO2013133166 A1 WO 2013133166A1
Authority
WO
WIPO (PCT)
Prior art keywords
press
martensite
area
less
steel sheet
Prior art date
Application number
PCT/JP2013/055680
Other languages
English (en)
French (fr)
Inventor
村上 俊夫
純也 内藤
圭介 沖田
池田 周之
Original Assignee
株式会社神戸製鋼所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社神戸製鋼所 filed Critical 株式会社神戸製鋼所
Priority to EP13757984.3A priority Critical patent/EP2824209A4/en
Priority to CN201380012504.9A priority patent/CN104160052B/zh
Priority to KR1020147024781A priority patent/KR101609967B1/ko
Priority to US14/382,158 priority patent/US20150027602A1/en
Publication of WO2013133166A1 publication Critical patent/WO2013133166A1/ja
Priority to US16/027,424 priority patent/US20180312947A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/54Ferrous alloys, e.g. steel alloys containing chromium with nickel with boron
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D22/00Shaping without cutting, by stamping, spinning, or deep-drawing
    • B21D22/20Deep-drawing
    • B21D22/208Deep-drawing by heating the blank or deep-drawing associated with heat treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D37/00Tools as parts of machines covered by this subclass
    • B21D37/16Heating or cooling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/62Quenching devices
    • C21D1/673Quenching devices for die quenching
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/005Modifying the physical properties by deformation combined with, or followed by, heat treatment of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • C21D9/48Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals deep-drawing sheets
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/20Ferrous alloys, e.g. steel alloys containing chromium with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/22Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/24Ferrous alloys, e.g. steel alloys containing chromium with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/26Ferrous alloys, e.g. steel alloys containing chromium with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/28Ferrous alloys, e.g. steel alloys containing chromium with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/32Ferrous alloys, e.g. steel alloys containing chromium with boron
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/34Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/38Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/60Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/001Austenite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/002Bainite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/004Dispersions; Precipitations
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/008Martensite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2221/00Treating localised areas of an article
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2221/00Treating localised areas of an article
    • C21D2221/10Differential treatment of inner with respect to outer regions, e.g. core and periphery, respectively

Definitions

  • the present invention is used when manufacturing a structural part of an automobile, and is a hot-press steel sheet suitable for hot press forming, a press-formed product obtained from such a hot-press steel plate, and a press-formed product.
  • a hot-press steel sheet suitable for hot press forming
  • a press-formed product obtained from such a hot-press steel plate
  • a press-formed product obtained from such a hot-press steel plate
  • a press-formed product obtained from such a hot-press steel plate
  • a press-formed product obtained from such a hot-press steel plate
  • a press-formed product obtained from such a hot-press steel plate
  • a press-formed product obtained from such a hot-press steel plate
  • a press-formed product obtained from such a hot-press steel plate
  • a press-formed product obtained from such a hot-press steel plate
  • a press-formed product obtained from such a hot-press steel plate
  • a press-formed product obtained from such a hot-press steel plate
  • the steel sheet is heated to a predetermined temperature (for example, the temperature at which it becomes an austenite phase) to lower the strength, and then formed with a mold having a temperature lower than that of the steel sheet (for example, room temperature).
  • a hot press molding method is employed in the production of parts that performs quenching heat treatment (quenching) using the temperature difference between the two to ensure the strength after molding.
  • a hot press forming method is called by various names such as a hot forming method, a hot stamping method, a hot stamp method, and a die quench method in addition to the hot press method.
  • FIG. 1 is a schematic explanatory view showing a mold configuration for carrying out hot press molding as described above, in which 1 is a punch, 2 is a die, 3 is a blank holder, 4 is a steel plate (blank), BHF is a crease pressing force, rp is a punch shoulder radius, rd is a die shoulder radius, and CL is a punch / die clearance.
  • the punch 1 and the die 2 have passages 1a and 2a through which a cooling medium (for example, water) can pass, and the cooling medium is allowed to pass through the passages.
  • a cooling medium for example, water
  • the steel plate (blank) 4 is subjected to a two-phase region temperature (A c1 transformation point to A c3 transformation point) or an A c3 transformation. Molding is started in a state of being softened by heating to a single-phase temperature above the point. That is, the steel plate 4 in a high temperature state is sandwiched between the die 2 and the blank holder 3, and the steel plate 4 is pushed into the hole of the die 2 by the punch 1 to correspond to the outer shape of the punch 1 while reducing the outer diameter of the steel plate 4. Mold into shape.
  • a steel sheet for hot pressing that is widely used at present, a steel sheet made of 22MnB5 steel is known.
  • This steel sheet has a tensile strength of 1500 MPa and an elongation of about 6 to 8%, and is applied to an impact resistant member (a member that is not deformed as much as possible and does not break).
  • an impact resistant member a member that is not deformed as much as possible and does not break.
  • Patent Documents 1 to 4 As hot-press steel sheets exhibiting good elongation, techniques such as Patent Documents 1 to 4 have been proposed. In these technologies, the basic strength class of each steel sheet is adjusted by setting the carbon content in the steel sheet to various ranges, and ferrite with high deformability is introduced, and the average of ferrite and martensite Elongation is improved by reducing the particle size. These techniques are effective for improving the elongation, but are still insufficient from the viewpoint of improving the elongation according to the strength of the steel sheet. For example, the tensile strength TS is 1470 MPa or more and the elongation EL is about 10.2% at the maximum, and further improvement is required.
  • the part where deformation should be prevented is high strength (high strength side: impact resistant part side), and the part requiring energy absorption is low strength and high ductility (low strength side: energy absorbing part side).
  • High strength side impact resistant part side
  • low strength side energy absorbing part side
  • Technology has been proposed.
  • the impact resistance of the B-pillar and rear-side member components is considered in consideration of compatibility (function to protect the other party when a small car collides) in a side collision or a rear collision.
  • compatibility function to protect the other party when a small car collides
  • a tensile strength of 1500 MPa is achieved on the high strength side (impact resistant site side), but the maximum tensile strength is 700 MPa and the elongation EL is about 17% on the low strength side (energy absorption site side).
  • the energy absorption site side In order to further improve the energy absorption characteristics, it is required to realize higher strength and higher ductility.
  • the present invention has been made in view of the above circumstances, and its object is to perform hot press molding that can achieve a high level of balance between high strength and elongation when uniform characteristics are required in a molded product.
  • a region corresponding to an impact resistant part and an energy absorbing part is required in a single molded product, a high level of balance between high strength and elongation is achieved according to each region.
  • the steel sheet for hot pressing of the present invention that was able to achieve the above object, C: 0.15 to 0.5% (meaning mass%, hereinafter the same for chemical composition) Si: 0.2-3%, Mn: 0.5 to 3%, P: 0.05% or less (excluding 0%), S: 0.05% or less (excluding 0%), Al: 0.01 to 1%, B: 0.0002 to 0.01%, Ti: 3.4 [N] + 0.01% or more, 3.4 [N] + 0.1% or less [where [N] indicates the content (% by mass) of N], and N: 0.0010 ⁇ 0.01%, Each of which contains iron and inevitable impurities, Among the Ti-containing precipitates contained in the steel sheet, the average equivalent circle diameter of those having an equivalent circle diameter of 30 nm or less is 3 nm or more, and the amount of precipitated Ti in the steel and the total Ti amount are expressed by the following formula (1).
  • the metal structure is characterized in that the total fraction of bainite and martensite is 80 area% or more.
  • the “equivalent circle diameter” means the diameter when converted to a circle of the same area when focusing on the size (area) of the Ti-containing precipitate (eg, TiC) (the “average equivalent circle diameter” is its average Value).
  • the hot-press forming steel sheet of the present invention if necessary, as another element, (a) one or more selected from the group consisting of V, Nb and Zr is 0.1% or less in total ( (B) 0% is not included), (b) one or more selected from the group consisting of Cu, Ni, Cr and Mo is 1% or less in total (not including 0%), (c) from Mg, Ca and REM It is also useful to contain one or more selected from the group consisting of 0.01% or less (not including 0%), etc., depending on the type of element contained, hot press-formed product The characteristics are further improved.
  • the method for producing a press-formed product of the present invention that has achieved the above object is to use the steel sheet for hot pressing according to the present invention as described above, with an A c1 transformation point + 20 ° C. or higher, an A c3 transformation point ⁇ 20 ° C. After heating to the following temperature, press molding is started, and during molding and after completion of molding, while maintaining an average cooling rate of 20 ° C./second or more in the mold, to a temperature lower than 100 ° C. below the bainite transformation start temperature Bs It is characterized by cooling.
  • the metal structure is retained austenite: 3 to 20 area%, annealed martensite and / or annealed bainite: 30 to 87 area%, as-quenched martensite: 10 to 67
  • the amount of carbon in the retained austenite is 0.60% or more, and the balance between high strength and elongation can be achieved as a uniform characteristic at a high level in the molded product.
  • the area ratio of annealed martensite and / or annealed bainite is the total area ratio of both structures when both structures are included, and the area ratio of the structure when either structure is formed. Means.
  • the steel sheet for hot pressing of the present invention as described above was used, and the heating region of the steel plate was divided into two regions, One region is heated to a temperature not lower than A c3 transformation point and not higher than 950 ° C., and the other region is heated to a temperature not lower than A c1 transformation point + 20 ° C. and not higher than A c3 transformation point ⁇ 20 ° C. And after the molding and after completion of molding, the mold is cooled to a temperature not higher than the martensite transformation start temperature Ms while ensuring an average cooling rate of 20 ° C./second or more.
  • the metal structure has a residual austenite: 3 to 20 area%, a martensite: 80 area% or more, and the metal structure has a residual austenite: 3 to 20 area. %, Annealed martensite and / or annealed bainite: 30 to 87 area%, as-quenched martensite: 10 to 67 area%, and the carbon content in the retained austenite is 0.60% or more. According to each region, the balance between high strength and elongation can be achieved at a high level, and there are regions corresponding to impact resistant sites and energy absorbing sites in a single molded product. .
  • the chemical composition is strictly defined, the size of Ti-containing precipitates is controlled, the deposition rate is controlled for Ti that does not form TiN, and the tempered hard phase is controlled for the metal structure. Since the steel plate is used in which the ratio of the hard phase (martensite phase, martensite phase, etc.), the hardened phase (martensite phase), and the retained austenite phase is adjusted, this is hot-pressed under specified conditions. Strength-elongation balance can be made high. Further, when hot pressing is performed in a plurality of regions under different conditions, an impact resistant part and an energy absorbing part can be formed in a single molded product, and a high strength and elongation balance can be achieved at a high level in each part.
  • the inventors of the present invention when heating a steel plate to a predetermined temperature and then producing a press-formed product by hot press forming, show good ductility (elongation) while ensuring high strength after press forming.
  • a hot-press steel sheet that can realize a simple press-formed product, we examined it from various angles.
  • the chemical composition of the steel sheet for hot pressing is strictly defined, the size of the Ti-containing precipitates and the amount of precipitated Ti are controlled, and the metal structure is made appropriate.
  • the present inventors completed the present invention by finding that a press-molded product having a higher retained ductility (residual ductility) can be obtained by securing a predetermined amount of retained austenite after press molding.
  • C is a region corresponding to an impact resistant site and an energy absorbing site in a single molded product in order to achieve a high balance between high strength and elongation when uniform characteristics are required in the molded product. Is an important element for securing retained austenite particularly in the low strength and high ductility regions. Moreover, at the time of heating by hot press molding, C concentrates to austenite, so that residual austenite can be formed after quenching. Furthermore, it contributes to an increase in the amount of martensite and raises the strength. In order to exert these effects, the C content needs to be 0.15% or more.
  • the target metal structure annealed martensite and / or in a low-strength and high-ductility site
  • the preferable lower limit of the C content is 0.17% or more (more preferably 0.20% or more), and the more preferable upper limit is 0.45% or less (more preferably 0.40% or less).
  • Si exhibits the effect of forming retained austenite by suppressing martensite from tempering to form cementite and decomposition of untransformed austenite during cooling of mold quenching.
  • the Si content needs to be 0.2% or more.
  • the Si content is excessive and exceeds 3%, ferrite tends to be formed, making it difficult to make a single phase during heating, and the required fraction of bainite and martensite cannot be ensured in the hot-press steel sheet.
  • the preferable lower limit of the Si content is 0.5% or more (more preferably 1.0% or more), and the preferable upper limit is 2.5% or less (more preferably 2.0% or less).
  • Mn is an element effective in enhancing hardenability and suppressing the formation of structures (ferrite, pearlite, bainite, etc.) other than martensite and retained austenite during cooling of mold hardening. Further, it is an element that stabilizes austenite and contributes to an increase in the amount of retained austenite. In order to exhibit such an effect, it is necessary to contain 0.5% or more of Mn. Considering only the characteristics, it is preferable that the Mn content is large, but the alloy addition cost increases, so the content was made 3% or less. The minimum with preferable Mn content is 0.7% or more (more preferably 1.0% or more), and a preferable upper limit is 2.5% or less (more preferably 2.0% or less).
  • P 0.05% or less (excluding 0%)
  • P is an element inevitably contained in the steel, but it deteriorates ductility, so it is preferable to reduce P as much as possible.
  • extreme reduction leads to an increase in steelmaking cost, and it is difficult to produce 0%, so 0.05% or less (excluding 0%) was set.
  • the upper limit with preferable P content is 0.045% or less (more preferably 0.040% or less).
  • S 0.05% or less (excluding 0%)
  • S is an element inevitably contained in steel, and deteriorates ductility. Therefore, S is preferably reduced as much as possible.
  • extreme reduction leads to an increase in steelmaking cost, and it is difficult to produce 0%, so 0.05% or less (excluding 0%) was set.
  • the upper limit with preferable S content is 0.045% or less (more preferably 0.040% or less).
  • Al 0.01 to 1%
  • Al is useful as a deoxidizing element, and also fixes solid solution N present in steel as AlN, which is useful for improving ductility.
  • the Al content needs to be 0.01% or more.
  • the minimum with preferable Al content is 0.02% or more (more preferably 0.03% or more), and a preferable upper limit is 0.8% or less (more preferably 0.6% or less).
  • B has an action of suppressing ferrite transformation, pearlite transformation, and bainite transformation on the high-strength portion side, so that during the cooling after heating to the two-phase region temperature (A c1 transformation point to A c3 transformation point), It is an element that prevents the formation of pearlite and bainite and contributes to securing retained austenite.
  • B needs to be contained in an amount of 0.0002% or more, but the effect is saturated even if it is contained in excess of 0.01%.
  • a preferable lower limit of the B content is 0.0003% or more (more preferably 0.0005% or more), and a preferable upper limit is 0.008% or less (more preferably 0.005% or less).
  • Ti 3.4 [N] + 0.01% or more, 3.4 [N] + 0.1% or less: [N] is N content (mass%)] Ti fixes N and allows B to be maintained in a solid solution state, thereby exhibiting an effect of improving hardenability. In order to exert such an effect, it is important to contain 0.01% or more than the stoichiometric ratio of Ti and N [3.4 times the N content]. However, when the Ti content becomes excessive and exceeds 3.4 [N] + 0.1%, the Ti-containing precipitate formed is finely dispersed, and the growth of martensite during cooling after heating in the two-phase region.
  • a lath having a small aspect ratio (lass-like martensite) is formed, the discharge of carbon (C) into the residual austenite between the laths is slowed, and the amount of carbon in the residual austenite is reduced.
  • the preferable lower limit of the Ti content is 3.4 [N] + 0.02% or more (more preferably 3.4 [N] + 0.05% or more), and the preferable upper limit is 3.4 [N] + 0.09%. Or less (more preferably 3.4 [N] + 0.08% or less).
  • N 0.001 to 0.01%
  • N is an element inevitably mixed in, and is preferably reduced.
  • 0.001% was set as the lower limit.
  • the upper limit was made 0.01%.
  • the upper limit with more preferable N content is 0.008% or less (more preferably 0.006% or less).
  • the basic chemical composition of the steel sheet for hot pressing according to the present invention is as described above, with the balance being iron and inevitable impurities other than P and S (for example, O, H, etc.). Further, in the steel sheet for hot pressing of the present invention, if necessary, (a) at least one selected from the group consisting of V, Nb and Zr is 0.1% or less in total (not including 0%), (B) 1% or more selected from the group consisting of Cu, Ni, Cr and Mo in total (not including 0%), (c) From the group consisting of Mg, Ca and REM (rare earth elements) It is also useful to contain a total of 0.01% or less (not including 0%) of one or more selected, depending on the type of element contained, the properties of the steel sheet for hot pressing Further improvement.
  • the preferable range when these elements are contained and the reason for limiting the range are as follows.
  • V, Nb, and Zr have the effect of forming fine carbides and making the structure fine by the pinning effect. In order to exhibit such an effect, it is preferable to contain 0.001% or more in total. However, when the content of these elements is excessive, coarse carbides are formed, and the ductility is deteriorated by becoming the starting point of fracture. For these reasons, the total content of these elements is preferably 0.1% or less. The more preferable lower limit of the content of these elements is 0.005% or more (more preferably 0.008% or more) in total, and the more preferable upper limit is 0.08% or less (more preferably 0.06%) in total. The following).
  • Cu, Ni, Cr and Mo in total 1% or less (excluding 0%)
  • Cu, Ni, Cr, and Mo suppress ferrite transformation, pearlite transformation, and bainite transformation, and thus prevent formation of ferrite, pearlite, and bainite during cooling after heating, and effectively act to secure retained austenite.
  • the more preferable lower limit of the content of these elements is 0.05% or more (more preferably 0.06% or more) in total, and the more preferable upper limit is 0.5% or less (more preferably 0.3% or less) in total. ).
  • a total of at least one selected from the group consisting of Mg, Ca and REM is 0.01% or less (excluding 0%)] Since these elements refine the inclusions, they effectively work to improve ductility. In order to exhibit these effects, it is preferable to contain 0.0001% or more in total. Considering only the characteristics, it is preferable that the content is large, but since the effect is saturated, the total content is preferably 0.01% or less. The more preferable lower limit of the content of these elements is 0.0002% or more (more preferably 0.0005% or more) in total, and the more preferable upper limit is 0.005% or less (more preferably 0.003% or less) in total. ).
  • the average equivalent circle diameter of those having an equivalent circle diameter of 30 nm or less is 3 nm or more
  • the amount of precipitated Ti (Mass%)-3.4 [N]> 0.5 ⁇ [total Ti amount (mass%)-3.4 [N]] [Relationship of formula (1)] is satisfied, (C It is also an important requirement that the metal structure contains at least one of bainite and martensite and the total fraction of bainite and martensite is 80 area% or more.
  • the average equivalent circle diameter of the equivalent circle diameter of 30 nm or less is 3 nm or more.
  • the equivalent circle diameter of the target Ti-containing precipitate is defined as 30 nm or less, except for TiN, which is coarsely formed in the melting stage and does not affect the structure change or properties thereafter. This is because it is necessary to control the Ti-containing precipitates.
  • the size of the Ti-containing precipitate (the average equivalent-circle diameter of the Ti-containing precipitate having an equivalent circle diameter of 30 nm or less) is preferably 5 nm or more, and more preferably 10 nm or more.
  • the Ti-containing precipitates that are the subject of the present invention include TiC and TiN as well as precipitates containing Ti such as TiVC, TiNbC, TiVCN, and TiNbCN.
  • the amount of Ti present as precipitates other than TiN is the remaining amount of 0.1% after subtracting the Ti forming TiN out of the total Ti. More than 5 times (that is, more than 0.5 ⁇ [total Ti amount (mass%) ⁇ 3.4 [N]]) [Requirement (B) above].
  • Precipitated Ti amount (mass%)-3.4 [N] is preferably 0.6 ⁇ [total Ti amount (mass%)-3.4 [N]] or more, more preferably 0.7 ⁇ [ The total Ti amount (% by mass) is ⁇ 3.4 [N]] or more.
  • the metal structure is essentially the control necessary to achieve the desired strength-elongation balance in the molded product, but the metal structure cannot be controlled only by the hot press conditions, and the raw steel (hot press) It is necessary to control the structure of the steel sheet) in advance.
  • the total fraction of bainite and martensite in the steel sheet needs to be 80 area% or more. .
  • the total fraction of bainite and martensite is preferably 90 area% or more, more preferably 95 area% or more.
  • the remainder of the metal structure is not particularly limited, and examples thereof include at least one of ferrite, pearlite, and retained austenite.
  • a slab obtained by melting a steel material having the chemical composition as described above is heated at a temperature of 1100 ° C. or higher (preferably 1150 ° C.). 1300 ° C. or lower (preferably 1250 ° C. or lower), the final rolling temperature is 750 ° C. or higher (preferably 780 ° C. or higher) and 850 ° C. or lower (preferably 830 ° C. or lower).
  • cooling slow cooling: intermediate cooling
  • 450 ° C. or lower preferably 350 ° C.
  • a steel sheet for hot pressing having the above-described chemical component composition, metal structure and Ti precipitation state may be used for the production of a hot press as it is, or a reduction ratio of 10 to 80% (preferably 20) after pickling. ( ⁇ 70%) may be cold rolled.
  • the steel sheet for hot pressing or its cold rolled material is heated to a temperature range (1000 ° C. or lower: for example, 870 to 900 ° C.) at which TiC is not completely dissolved, and then 450 ° C. or lower (preferably 400 ° C. or lower) to 20 ° C. After quenching at a cooling rate of at least 10 seconds / second (preferably at least 30 ° C./second), a heat treatment is performed such as holding at 450 ° C.
  • the steel plate for hot pressing according to the present invention may be plated on the surface (base steel plate surface) containing one or more of Al, Zn, Mg, and Si.
  • the austenite is formed between the martensite and bainite lath in the steel sheet, and the martensite and bainite are annealed to form annealed martensite and annealed bainite with excellent ductility. It is necessary to control the range.
  • the heating temperature of the steel sheet is less than the Ac1 transformation point + 20 ° C., a sufficient amount of austenite cannot be obtained during heating, and a predetermined amount of retained austenite cannot be secured in the final structure (structure of the molded product).
  • the amount of transformation to austenite increases too much during heating, and a predetermined amount of annealed martensite or annealed in the final structure (structure of the molded product). Cannot secure bainite.
  • the average cooling rate and the cooling end temperature during and after molding are appropriately controlled. There is a need. From such a viewpoint, the average cooling rate during molding must be 20 ° C./second or more, and the cooling end temperature must be 100 ° C. or lower than the bainite transformation start temperature Bs.
  • the average cooling rate during molding is preferably 30 ° C./second or more (more preferably 40 ° C./second or more).
  • the cooling end temperature By setting the cooling end temperature to the bainite transformation start temperature Bs or less, the formation of ferrite or pearlite is prevented, and austenite existing during heating is transformed into bainite or martensite, thereby securing bainite or martensite. However, a predetermined amount of retained austenite is secured by leaving fine austenite between bainite and martensite lath.
  • the cooling end temperature is higher than the temperature lower by 100 ° C. than the bainite transformation start temperature Bs or the average cooling rate is less than 20 ° C./second, a structure such as ferrite or pearlite is formed, and a predetermined amount of retained austenite is secured. This is not possible, and the elongation (ductility) of the molded product is deteriorated.
  • control of the average cooling rate is basically unnecessary when the temperature is lower than the bainite transformation start temperature Bs by 100 ° C. or less, for example, at an average cooling rate of 1 ° C./second or more and 100 ° C./second or less to room temperature. It may be cooled.
  • Control of the average cooling rate during molding and after molding is completed by controlling (a) the temperature of the molding die (cooling medium shown in FIG. 1) and (b) controlling the thermal conductivity of the die. It can be achieved by such means.
  • the metal structure is retained austenite: 3 to 20 area%, annealed martensite and / or annealed bainite: 30 to 87 area%, as-quenched martensite : 10 to 67 area%, and the carbon content in the retained austenite is 0.60% or more, and a balance between high strength and elongation can be achieved as a uniform characteristic at a high level in the molded product.
  • the reasons for setting the ranges of the requirements (basic structure and carbon content in retained austenite) in such a hot press-formed product are as follows.
  • Residual austenite has the effect of increasing the work hardening rate (transformation-induced plasticity) and improving the ductility of the press-formed product by transforming into martensite during plastic deformation.
  • the retained austenite fraction needs to be 3 area% or more.
  • the higher the retained austenite fraction the better.
  • the retained austenite that can be secured is limited, and the upper limit is about 20 area%.
  • the preferable lower limit of retained austenite is 5 area% or more (more preferably 7 area% or more).
  • the ductility (elongation) of the press-formed product can be enhanced while ensuring a predetermined strength.
  • the fraction of annealed martensite and / or annealed bainite is 30 area% or more. However, if this fraction exceeds 87 area%, the fraction of retained austenite becomes insufficient and ductility (residual ductility) decreases.
  • the preferable lower limit of the fraction of annealed martensite or annealed bainite is 40 area% or more (more preferably 50 area% or more), and the preferable upper limit is less than 80 area% (more preferably less than 70 area%).
  • As-quenched martensite is a structure with poor ductility, and when it is present in a large amount, it degrades the elongation, but in order to achieve high strength of over 100 kg in a structure where the matrix is annealed and martensite has low strength, It is necessary to secure a predetermined amount of martensite as it is quenched. From this viewpoint, the fraction of martensite as quenched is 10 area% or more. However, if the fraction of martensite as it is quenched is too high, the strength becomes too high and the elongation becomes insufficient. Therefore, the fraction needs to be 67 area% or less.
  • the preferable lower limit of the martensite fraction as-quenched is 20 area% or more (more preferably 30 area% or more), and the preferable upper limit is 60 area% or less (more preferably 50 area% or less).
  • ferrite, pearlite, bainite and the like may be included as the remaining structure, but these structures have a lower contribution to strength and ductility than other structures, and it is preferable that they are not basically contained ( It may be 0 area%). However, up to 20 area% is acceptable.
  • the remaining structure is more preferably 10 area% or less, and still more preferably 5 area% or less.
  • the amount of carbon in retained austenite affects the timing at which retained austenite undergoes work-induced transformation to martensite during deformation in tensile tests, etc., and transformation-induced plasticity (TRIP) is caused by processing-induced transformation in the higher strain region as the carbon content increases. Increase the effect.
  • TRIP transformation-induced plasticity
  • carbon is expelled from the formed martensite lath to the surrounding austenite during cooling. At that time, when Ti carbide or carbonitride dispersed in the steel is coarsely dispersed, the growth in the longitudinal direction of the martensite lath proceeds without being hindered, so the aspect ratio is narrow and long. Big martensite lath.
  • the carbon content in the retained austenite in the steel is defined as 0.60% or more.
  • the carbon content in the retained austenite can be concentrated to about 0.70%, but the limit is about 1.0%.
  • the properties such as strength and elongation of the press-formed product can be controlled by appropriately adjusting the press forming conditions (heating temperature and cooling rate) and high ductility. (Residual ductility) press-molded products can be obtained, so it can be applied to parts that have been difficult to apply with conventional press-molded products (for example, energy absorbing members). Useful.
  • the heating temperature and the conditions of each region at the time of molding are appropriately controlled.
  • a press-formed product that exhibits a strength-ductility balance corresponding to each region hereinafter sometimes referred to as a multi-region molded product
  • the heating region of the steel plate is divided into at least two regions, one of which is hereinafter referred to as the first region. Is heated to a temperature not lower than A c3 transformation point and not higher than 950 ° C., and another region (hereinafter referred to as second region) is not lower than A c1 transformation point + 20 ° C. and A c3 transformation point is not higher than ⁇ 20 ° C. Then, press molding is started for both the first and second regions, and during molding and after completion of molding, both the first and second regions have a temperature of 20 ° C./second or more in the mold. What is necessary is just to cool to the temperature below the martensitic transformation start temperature Ms, ensuring an average cooling rate.
  • the heating region of the steel sheet is divided into two regions (high-strength side region and low-strength side region), and the manufacturing conditions are controlled according to each region, so that the strength-ductility balance corresponding to each region is obtained.
  • a press-molded product that can be exhibited is obtained.
  • the second region corresponds to the low-strength side region
  • the manufacturing conditions, structure, and characteristics in this region are basically the same as those of the single-region molded product described above.
  • manufacturing conditions for forming the other first region corresponding to the high-strength side region
  • the heating temperature of the steel sheet is preferably Ac3 transformation point + 50 ° C. or higher and 900 ° C. or lower.
  • the average cooling rate and the cooling end temperature during and after molding are appropriately controlled. There is a need. From this point of view, the average cooling rate during molding needs to be 20 ° C./second or more, and the cooling end temperature needs to be lower than the martensite transformation start temperature (Ms point).
  • the average cooling rate during molding is preferably 30 ° C./second or more (more preferably 40 ° C./second or more).
  • the cooling end temperature is specifically 400 ° C. or lower, preferably 300 ° C. or lower.
  • the metal structure and precipitates are different between the first region and the second region.
  • the metal structures are retained austenite: 3 to 20 area% (the effect of retained austenite is the same as described above), and martensite: 80 area% or more.
  • the same metal structure as that of the single region molded product and the carbon content in the retained austenite satisfy 0.60% or more.
  • the area fraction of martensite needs to be 80 area% or more.
  • the fraction of martensite is preferably 85 area% or more (more preferably 90 area% or more).
  • the structure in the first region may partially include ferrite, pearlite, bainite, and the like.
  • Example 1 Steel materials (steel Nos. 1 to 32) having the chemical composition shown in Table 1 below are melted in vacuum to form experimental slabs, then hot rolled into steel plates, and then cooled and wound up. Simulated treatment was performed (plate thickness: 3.0 mm). In the winding simulation processing method, after cooling to the winding temperature, the sample was placed in a furnace heated to the winding temperature, held for 30 minutes, and then cooled in the furnace. The steel plate manufacturing conditions at this time are shown in Table 2 below. In Table 1, the A c1 transformation point, the A c3 transformation point, the Ms point, and the Bs point are obtained by using the following formulas (2) to (5) (for example, “Leslie Steel Materials Science Maruzen, (1985). Further, the treatments (1) to (3) shown in the remarks column of Table 2 are obtained by performing the following treatments (rolling, cooling, alloying).
  • a c1 transformation point (° C.) 723 + 29.1 ⁇ [Si] ⁇ 10.7 ⁇ [Mn] + 16.9 ⁇ [Cr] ⁇ 16.9 [Ni] (2)
  • a c3 transformation point (°C) 910-203 ⁇ [C ] 1/2 + 44.7 ⁇ [Si] -30 ⁇ [Mn] + 700 ⁇ [P] + 400 ⁇ [Al] + 400 ⁇ [Ti] + 104 ⁇ [V ] -11 ⁇ [Cr] + 31.5 ⁇ [Mo] ⁇ 20 ⁇ [Cu] ⁇ 15.2 ⁇ [Ni] (3)
  • Ms point (° C.) 550 ⁇ 361 ⁇ [C] ⁇ 39 ⁇ [Mn] ⁇ 10 ⁇ [Cu] ⁇ 17 ⁇ [Ni] ⁇ 20 ⁇ [Cr] ⁇ 5 ⁇ [Mo] + 30 ⁇ [Al] ( 4)
  • Bs point (° C.) 830 ⁇ 270 ⁇ [C]
  • Process (1) After finish rolling, after cooling to 650 ° C. at an average cooling rate of 50 ° C./second, cooling is performed at an average cooling rate of 650 ° C. to 5 ° C./second for 10 seconds, and then the average cooling rate to the winding temperature Cooled at 50 ° C./second. Then, in order to match
  • Process (2) After cold rolling the hot-rolled steel sheet, continuous annealing was simulated, heated to 860 ° C., cooled to 400 ° C. at an average cooling rate of 30 ° C./second, and held.
  • Process (3) After cold rolling the hot-rolled steel sheet, after heating to 860 ° C. to simulate a continuous hot-dip galvanizing line, cooling to 400 ° C. at an average cooling rate of 30 ° C./second, and further holding It was cooled after heating at 500 ° C. for 10 seconds.
  • the obtained steel sheet was subjected to analysis of Ti precipitation state and observation of metal structure (fraction of each structure) in the following manner.
  • the result is shown in the following table together with a calculated value [0.5 ⁇ (total Ti amount-3.4 [N])] of 0.5 ⁇ [total Ti amount (mass%) ⁇ 3.4 [N]]. 3 shows.
  • the amount of precipitated Ti (mass%)-3.4 [N] (the amount of Ti present as a precipitate) was subjected to extraction residue analysis using a mesh having a mesh diameter of 0.1 ⁇ m (in the extraction process, Precipitates aggregated and fine precipitates can be measured), and the amount of precipitated Ti (mass%)-3.4 [N] (in Table 3, expressed as precipitated Ti amount-3.4 [N]) was determined. .
  • the Ti-containing precipitate partially contained V or Nb, the content thereof was also measured.
  • Each steel plate (1.6 mm t ⁇ 150 mm ⁇ 200 mm) (with the exception of the above treatments (1) to (3), the thickness is adjusted to 1.6 mm by hot rolling), and a predetermined temperature in a heating furnace Then, press-molding and cooling treatment were performed using a hat-shaped mold (FIG. 1) to obtain a press-molded product.
  • Table 4 shows the press molding conditions (heating temperature, average cooling rate, rapid cooling end temperature during press molding).
  • the tensile strength (TS), elongation (total elongation EL), and observation of metal structure (fraction of each structure) were measured by the following methods.
  • Steel No. Those of 3, 6 to 10, 14, 18, and 22 are comparative examples that do not satisfy any of the requirements defined in the present invention, and any of the characteristics is deteriorated. That is, Steel No. No. 3 uses a steel sheet with a low Si content, and the retained austenite fraction in the molded product is not ensured, and the carbon content in the retained austenite is low, and the elongation is not. ing. Steel No. In No. 6, the heating temperature at the time of molding was high, and only a low elongation EL was obtained, and the strength-elongation balance (TS ⁇ EL) was also deteriorated.
  • TS ⁇ EL strength-elongation balance
  • Steel No. No. 14 uses a steel sheet having a metal structure of ferrite + pearlite 100 area% due to the coiling temperature, and can ensure annealing martensite and / or annealing bainite fraction in the molded product.
  • the strength-elongation balance (TS ⁇ EL) is deteriorated.
  • Steel No. No. 18 uses a steel sheet with an excessive C content, and the strength increases and only a low elongation EL is obtained.
  • Steel No. No. 22 uses a steel sheet with an excessive Ti content, and the strength-elongation balance (TS ⁇ EL) is deteriorated.
  • Example 2 Steel materials (steel Nos. 33 to 37) having the chemical composition shown in Table 7 below were vacuum-melted to form slabs for experiment, then hot-rolled, and then cooled and wound (sheet thickness) : 3.0 mm). The steel plate manufacturing conditions at this time are shown in Table 8 below.
  • the obtained steel sheet was analyzed in the same manner as in Example 1 for the analysis of the precipitation state of the Ti-containing precipitates and the observation of the metal structure (fraction of each structure). The results are shown in Table 9 below.
  • each steel sheet (3.0mm t ⁇ 150mm ⁇ 200mm) was heated to a predetermined temperature in a heating furnace, performing a press-forming and cooling process in a mold of hat-shaped (FIG. 1), and a molded article .
  • the steel plate is put in an infrared furnace, and the portion (steel plate portion corresponding to the first region) to be strengthened is directly irradiated with infrared rays so that it can be heated at a high temperature.
  • the steel plate portion corresponding to the second region was covered with a cover so as to block a part of infrared rays so that it could be heated at a low temperature, thereby giving a heating temperature difference. Therefore, the molded product has regions having different strengths within a single part.
  • Table 10 shows the press molding conditions (heating temperature, average cooling rate, rapid cooling end temperature in each region during press molding).
  • TS tensile strength
  • elongation total elongation EL
  • observation of metal structure fraction of each structure
  • carbon content in retained austenite in each region were the same as in Example 1. Asked.
  • the observation results (fraction of each structure) of the metal structure are shown in Table 11 below.
  • the mechanical properties (tensile strength TS, elongation EL and TS ⁇ EL) of the molded product are shown in Table 12 below.
  • the tensile strength (TS) on the high strength side is 1470 MPa or higher
  • the elongation (EL) satisfies 8% or higher
  • the strength-elongation balance (TS ⁇ EL) is 14000 (MPa ⁇ %) or higher.
  • evaluation criteria on the low strength side are the same as in Example 1).
  • Steel No. Nos. 34 and 36 are comparative examples that do not satisfy any of the requirements defined in the present invention, and any of the characteristics is deteriorated. That is, Steel No. In the case of No. 34, the heating temperature at the time of press molding is low, and the strength on the high strength side is lowered. Steel No. No. 36 uses a steel plate having a small Ti-containing precipitate, and only a low strength is obtained on the high strength side, and the strength-elongation balance (TS ⁇ EL) deteriorates on the low strength side. Yes.
  • TS ⁇ EL strength-elongation balance
  • the present invention is suitable for a steel sheet for hot pressing used when manufacturing a structural part of an automobile.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Shaping Metal By Deep-Drawing, Or The Like (AREA)
  • Heat Treatment Of Sheet Steel (AREA)
  • Heat Treatment Of Articles (AREA)

Abstract

 本発明の熱間プレス用鋼板は、所定の化学成分組成を有し、鋼板中に含まれるTi含有析出物のうち、円相当直径が30nm以下のものの平均円相当直径で3nm以上であると共に、鋼中の析出Ti量と全Ti量とが下記(1)式の関係を満足し、且つ、金属組織が、ベイナイトおよびマルテンサイトの合計分率が80面積%以上である。 析出Ti量(質量%)-3.4[N]>0.5×[全Ti量(質量%)-3.4[N]] …(1) ((1)式中、[N]は鋼中のNの含有量(質量%)を示す)

Description

熱間プレス用鋼板およびプレス成形品、並びにプレス成形品の製造方法
 本発明は、自動車の構造部品を製造する際に用いられ、熱間プレス成形に適した熱間プレス用鋼板、およびこのような熱間プレス用鋼板から得られるプレス成形品、並びにプレス成形品の製造方法に関し、特に予め加熱された鋼板(ブランク)を所定の形状に成形加工する際に、形状付与と同時に熱処理を施して所定の強度を得る熱間プレス成形法に適用する上で有用な熱間プレス用鋼板、およびプレス成形品、並びにそのようなプレス成形品を製造するための有用な方法に関するものである。
 地球環境問題に端を発する自動車の燃費向上対策の一つとして、車体の軽量化が進められており、自動車に使用される鋼板をできるだけ高強度化することが必要となる。その一方で、鋼板を高強度化すると、プレス成形時の形状精度が低下することになる。
 こうしたことから、鋼板を所定の温度(例えば、オーステナイト相となる温度)に加熱して強度を下げた後、鋼板に比べて低温(例えば室温)の金型で成形することによって、形状の付与と同時に、両者の温度差を利用した急冷熱処理(焼入れ)を行って、成形後の強度を確保する熱間プレス成形法が部品製造に採用されている。尚、このような熱間プレス成形法は、ホットプレス法の他、ホットフォーミング法、ホットスタンピング法、ホットスタンプ法、ダイクエンチ法等、様々な名称で呼ばれている。
 図1は、上記のような熱間プレス成形を実施するための金型構成を示す概略説明図であり、図中1はパンチ、2はダイ、3はブランクホルダー、4は鋼板(ブランク)、BHFはしわ押え力、rpはパンチ肩半径、rdはダイ肩半径、CLはパンチ/ダイ間クリアランスを夫々示している。また、これらの部品のうち、パンチ1とダイ2には冷却媒体(例えば水)を通過させることができる通路1a,2aが夫々の内部に形成されており、この通路に冷却媒体を通過させることによってこれらの部材が冷却されるように構成されている。
 こうした金型を用いて熱間プレス成形(例えば、熱間深絞り加工)するに際しては、鋼板(ブランク)4を、(Ac1変態点~Ac3変態点)の二相域温度またはAc3変態点以上の単相域温度に加熱して軟化させた状態で成形を開始する。即ち、高温状態にある鋼板4をダイ2とブランクホルダー3間に挟んだ状態で、パンチ1によってダイ2の穴内に鋼板4を押し込み、鋼板4の外径を縮めつつパンチ1の外形に対応した形状に成形する。また、成形と並行してパンチ1およびダイ2を冷却することによって、鋼板4から金型(パンチ1およびダイ2)への抜熱を行なうと共に、成形下死点(パンチ先端が最深部に位置した時点:図1に示した状態)で更に保持冷却することによって素材の焼入れを実施する。こうした成形法を実施することによって、寸法精度の良い1500MPa級の成形品を得ることができ、しかも冷間で同じ強度クラスの部品を成形する場合に比較して、成形荷重が低減できることからプレス機の容量が小さくて済むことになる。
 現在広く使用されている熱間プレス用鋼板としては、22MnB5鋼を素材とするものが知られている。この鋼板は、引張強度が1500MPaで伸びが6~8%程度であり、耐衝撃部材(衝突時に極力変形させず、破断しない部材)に適用されている。しかしながら、エネルギー吸収部材のように変形を要する部品には、伸び(延性)が低いために適用が困難である。
 良好な伸びを発揮する熱間プレス用鋼板として、例えば特許文献1~4のような技術も提案されている。これらの技術では、鋼板中の炭素含有量を様々な範囲に設定することによって、夫々の鋼板の基本的な強度クラスを調整すると共に、変形能の高いフェライトを導入し、フェライトおよびマルテンサイトの平均粒径を小さくすることによって、伸びの向上を図っている。これらの技術は、伸びの向上には有効であるものの、鋼板の強度に応じた伸び向上の観点からすれば、依然として不十分である。例えば、引張強さTSが1470MPa以上のもので伸びELが最大で10.2%程度であり、更なる改善が求められている。
 一方、これまで検討されているホットスタンプ成形品に比べて、強度クラスが低い成形品、例えば引張強さTSが980MPa級や1180MPa級についても、冷間プレスでは成形精度に問題があり、その改善策として、低強度熱間プレスに対するニーズがある。その際に、成形品におけるエネルギー吸収特性を大幅に改善する必要がある。
 特に近年では、1つの部品内に強度差を付ける技術の開発が進められている。こうした技術として、変形を防止すべき部位は高強度(高強度側:耐衝撃部位側)で、エネルギー吸収が必要な箇所は低強度で且つ高延性(低強度側:エネルギー吸収部位側)とする技術が提案されている。例えば、中型以上の乗用車では、側面衝突時や後方衝突時にコンパチビィティ(小型車が衝突してきたときに相手側も守る機能)を考慮して、Bピラーやリアサイドメンバの部品内に、耐衝撃性部位とエネルギー吸収部位の両機能を持たせる場合がある。こうした部品を作製するには、(a)通常の熱間プレス用鋼板に、同じ温度に加熱・金型焼入れしても低強度となる鋼板を接合する(テーラードウェルドブランク:TWB)方法、(b)金型での冷却速度に差異を付けて鋼板の領域毎に強度差を付ける方法、(c)鋼板の領域毎の加熱温度に差異を付けて強度差を付ける方法、等が提案されている。 
 これらの技術では、高強度側(耐衝撃部位側)で引張強さ:1500MPa級が達成されるが、低強度側(エネルギー吸収部位側)で最大引張強度:700MPa、伸びEL:17%程度であり、エネルギー吸収特性を更に高めるためには、より高強度で高延性を実現することが求められている。
日本国特開2010-65292号公報 日本国特開2010-65293号公報 日本国特開2010-65294号公報 日本国特開2010-65295号公報
 本発明は上記事情に鑑みてなされたものであって、その目的は、成形品内で均一な特性が要求される場合には、高強度と伸びのバランスを高レベルで達成できる熱間プレス成形品を得ることができ、単一成形品内に耐衝撃部位とエネルギー吸収部位に相当する領域が要求される場合には、夫々の領域に応じて、高強度と伸びのバランスを高レベルで達成できるプレス成形品を得る上で有用な熱間プレス用鋼板、および上記特性を発揮するようなプレス成形品、並びにこのような熱間プレス成形品を製造するための有用な方法を提供することにある。
 上記目的を達成することのできた本発明の熱間プレス用鋼板とは、
 C :0.15~0.5%(質量%の意味。以下、化学成分組成について同じ。)、 
 Si:0.2~3%、
 Mn:0.5~3%、
 P :0.05%以下(0%を含まない)、 
 S :0.05%以下(0%を含まない)、 
 Al:0.01~1%、 
 B :0.0002~0.01%、 
 Ti:3.4[N]+0.01%以上、3.4[N]+0.1%以下[但し、[N]はNの含有量(質量%)を示す]、および
 N :0.0010~0.01%、
を夫々含有し、残部が鉄および不可避不純物からなり、
 鋼板中に含まれるTi含有析出物のうち、円相当直径が30nm以下のものの平均円相当直径で3nm以上であると共に、鋼中の析出Ti量と全Ti量が下記(1)式の関係を満足し、且つ、金属組織が、ベイナイトおよびマルテンサイトの合計分率が80面積%以上であることを特徴とする。尚、「円相当直径」とは、Ti含有析出物(例えばTiC)の大きさ(面積)に着目したときに、同一面積の円に換算したときの直径(「平均円相当直径」はその平均値)である。
 析出Ti量(質量%)-3.4[N]>0.5×[全Ti量(質量%)-3.4[N]] …(1)
 ((1)式中、[N]は鋼中のNの含有量(質量%)を示す)
 本発明の熱間プレス成形用鋼板においては、必要に応じて、更に他の元素として、(a)V,NbおよびZrよりなる群から選択される1種以上を合計で0.1%以下(0%を含まない)、(b)Cu,Ni,CrおよびMoよりなる群から選択される1種以上を合計で1%以下(0%を含まない)、(c)Mg,CaおよびREMよりなる群から選択される1種以上を合計で0.01%以下(0%を含まない)、等を含有させることも有用であり、含有される元素の種類に応じて、熱間プレス成形品の特性が更に改善される。
 上記目的を達成することのできた本発明のプレス成形品の製造方法とは、上記のような本発明の熱間プレス用鋼板を用い、Ac1変態点+20℃以上、Ac3変態点-20℃以下の温度に加熱した後、プレス成形を開始し、成形中および成形終了後は金型内で20℃/秒以上の平均冷却速度を確保しつつベイナイト変態開始温度Bsより100℃低い温度以下まで冷却することを特徴とする。
 この製造方法によって得られたプレス成形品では、金属組織が、残留オーステナイト:3~20面積%、焼鈍しマルテンサイトおよび/または焼鈍しベイナイト:30~87面積%、焼入れままマルテンサイト:10~67面積%であり、且つ前記残留オーステナイト中の炭素量が0.60%以上であるものとなり、成形品内で高強度と伸びのバランスを高レベルで均一な特性として達成できるものとなる。尚、焼鈍しマルテンサイトおよび/または焼鈍しベイナイトの面積率は、両方の組織を含む場合には、両組織の合計面積率であり、どちらか一方の組織からなる場合にはその組織の面積率を意味する。
 一方、上記目的を達成することのできた本発明のプレス成形品の他の製造方法とは、上記のような本発明の熱間プレス用鋼板を用い、鋼板の加熱領域を2つの領域に分け、その一方の領域をAc3変態点以上、950℃以下の温度に加熱すると共に、他方の領域をAc1変態点+20℃以上、Ac3変態点-20℃以下の温度に加熱した後、プレス成形を開始し、成形中および成形終了後は金型内で20℃/秒以上の平均冷却速度を確保しつつマルテンサイト変態開始温度Ms以下の温度まで冷却することを特徴とする。
 この製造方法によって得られたプレス成形品では、金属組織が、残留オーステナイト:3~20面積%、マルテンサイト:80面積%以上である第1の領域と、金属組織が残留オーステナイト:3~20面積%、焼鈍しマルテンサイトおよび/または焼鈍しベイナイト:30~87面積%、焼入れままマルテンサイト:10~67面積%であり、且つ前記残留オーステナイト中の炭素量が0.60%以上である第2の領域を有するものとなり、夫々の領域に応じて、高強度と伸びのバランスを高レベルで達成でき、単一成形品内に耐衝撃部位とエネルギー吸収部位に相当する領域が存在するものとなる。
 本発明によれば、化学成分組成を厳密に規定すると共に、Ti含有析出物の大きさを制御し、またTiNを形成しないTiについてはその析出率を制御し、更に金属組織については焼戻し硬質相(マルテンサイト相、ベイナイト相等)と硬質相(焼入れままマルテンサイト相)と残留オーステナイト相の比率を調整した鋼板を用いているため、これを所定の条件で熱間プレスすることで、プレス成形品の強度-伸びバランスを高レベルにできる。また複数の領域で異なる条件で熱間プレスすると、単一成形品内に耐衝撃部位とエネルギー吸収部位を形成でき、夫々の部位で高強度と伸びのバランスを高レベルで達成できる。
熱間プレス成形を実施するための金型構成を示す概略説明図である。
 本発明者らは、鋼板を所定の温度に加熱した後、熱間プレス成形してプレス成形品を製造するに際して、プレス成形後において高強度を確保しつつ良好な延性(伸び)をも示すようなプレス成形品を実現できる熱間プレス用鋼板を実現すべく、様々な角度から検討した。
 その結果、熱間プレス用鋼板の化学成分組成を厳密に規定すると共に、Ti含有析出物の大きさおよび析出Ti量の制御を図り、且つ金属組織を適正なものとすると、該鋼板を所定条件で熱間プレス成形することで、プレス成形後に所定量の残留オーステナイトを確保して、内在する延性(残存延性)をより高くしたプレス成形品が得られることを見出し、本発明を完成した。
 本発明の熱間プレス用鋼板では、化学成分組成を厳密に規定する必要があるが、各化学成分の範囲限定理由は下記の通りである。
[C:0.15~0.5%] 
 Cは、成形品内で均一な特性が要求される場合の高強度と伸びのバランスを高レベルで達成するために、或は単一成形品内に耐衝撃部位とエネルギー吸収部位に相当する領域が要求される場合の、特に低強度・高延性部位において残留オーステナイトを確保する上で重要な元素である。また熱間プレス成形での加熱時に、Cがオーステナイトに濃化することで、焼入れ後に残留オーステナイトを形成させることができる。更に、マルテンサイト量の増加にも寄与し、強度を上昇させる。これらの効果を発揮させるためには、C含有量は0.15%以上とする必要がある。
 しかしながら、C含有量が過剰になって0.5%を超えると、二相域加熱領域が狭くなり、成形品内で均一な特性が要求される場合の高強度と伸びのバランスを高レベルで達成されないか、或は単一成形品内に耐衝撃部位とエネルギー吸収部位に相当する領域が要求される場合の、特に低強度・高延性部位において狙いとする金属組織(焼鈍しマルテンサイトおよび/または焼鈍しベイナイトを所定量確保した組織)に調整することが困難となる。C含有量の好ましい下限は0.17%以上(より好ましくは0.20%以上)であり、より好ましい上限は0.45%以下(更に好ましくは0.40%以下)である。
[Si:0.2~3%]
 Siは、金型焼入れの冷却中にマルテンサイトが焼戻されてセメンタイトが形成されたり、未変態のオーステナイトが分解されることを抑制することで、残留オーステナイトを形成させる効果を発揮する。こうした効果を発揮させるためには、Si含有量は0.2%以上とする必要がある。またSi含有量が過剰になって3%を超えると、フェライトが形成されやすくなり、加熱時に単相化が難しくなり、熱間プレス用鋼板においてベイナイトおよびマルテンサイトの必要分率を確保できなくなる。Si含有量の好ましい下限は0.5%以上(より好ましくは1.0%以上)であり、好ましい上限は2.5%以下(より好ましくは2.0%以下)である。
[Mn:0.5~3%]
 Mnは、焼入れ性を高め、金型焼入れの冷却中のマルテンサイト、残留オーステナイト以外の組織(フェライト、パーライト、ベイナイト等)の形成を抑制するのに有効な元素である。また、オーステナイトを安定化させる元素であり、残留オーステナイト量の増加に寄与する元素である。こうした効果を発揮させるためには、Mnは0.5%以上含有させる必要がある。特性だけを考慮した場合は、Mn含有量は多い方が好ましいが、合金添加のコストが上昇することから、3%以下とした。Mn含有量の好ましい下限は0.7%以上(より好ましくは1.0%以上)であり、好ましい上限は2.5%以下(より好ましくは2.0%以下)である。
[P:0.05%以下(0%を含まない)] 
 Pは、鋼中に不可避的に含まれる元素であるが延性を劣化させるので、Pは極力低減することが好ましい。しかしながら、極端な低減は製鋼コストの増大を招き、0%とすることは製造上困難であるので、0.05%以下(0%を含まない)とした。P含有量の好ましい上限は0.045%以下(より好ましくは0.040%以下)である。
[S:0.05%以下(0%を含まない)] 
 SもPと同様に鋼中に不可避的に含まれる元素であり、延性を劣化させるので、Sは極力低減することが好ましい。しかしながら、極端な低減は製鋼コストの増大を招き、0%とすることは製造上困難であるので、0.05%以下(0%を含まない)とした。S含有量の好ましい上限は0.045%以下(より好ましくは0.040%以下)である。
[Al:0.01~1%]
 Alは、脱酸元素として有用であると共に、鋼中に存在する固溶NをAlNとして固定し、延性の向上に有用である。こうした効果を有効に発揮させるためには、Al含有量は0.01%以上とする必要がある。しかしながら、Al含有量が過剰になって1%を超えると、Alが過剰に生成し、延性を劣化させる。尚、Al含有量の好ましい下限は0.02%以上(より好ましくは0.03%以上)であり、好ましい上限は0.8%以下(より好ましくは0.6%以下)である。 
[B:0.0002~0.01%]
 Bは、高強度部位側でフェライト変態、パーライト変態およびベイナイト変態を抑制する作用を有するため、(Ac1変態点~Ac3変態点)の二相域温度に加熱後の冷却中に、フェライト、パーライト、ベイナイトの形成を防止し、残留オーステナイトの確保に寄与する元素である。こうした効果を発揮させるためには、Bは0.0002%以上含有させる必要があるが、0.01%を超えて過剰に含有させても効果が飽和する。B含有量の好ましい下限は0.0003%以上(より好ましくは0.0005%以上)であり、好ましい上限は0.008%以下(更に好ましくは0.005%以下)である。
[Ti:3.4[N]+0.01%以上、3.4[N]+0.1%以下:[N]はNの含有量(質量%)]
 Tiは、Nを固定し、Bを固溶状態で維持させることで焼入れ性の改善効果を発現させる。こうした効果を発揮させるためには、TiとNの化学量論比[Nの含有量の3.4倍]よりも0.01%以上多く含有させることが重要である。但し、Ti含有量が過剰になって3.4[N]+0.1%よりも多くなると、形成されるTi含有析出物は微細分散し、二相域加熱後の冷却中のマルテンサイトの成長を阻害し、アスペクト比が小さなラス(ラス状マルテンサイト)が形成され、ラス間の残留オーステナイへの炭素(C)の吐き出しが遅くなり、残留オーステナイト中の炭素量が低下する。Ti含有量の好ましい下限は3.4[N]+0.02%以上(より好ましくは3.4[N]+0.05%以上)であり、好ましい上限は3.4[N]+0.09%以下(より好ましくは3.4[N]+0.08%以下)である。 
[N:0.001~0.01%]
 Nは、不可避的に混入する元素であり、低減することが好ましいが、実プロセスの中で低減するには限界があるため、0.001%を下限とした。また、N含有量が過剰になると、歪み時効により延性が劣化したり、BNとして析出し、固溶Bによる焼入れ性改善効果を低下させるため、上限を0.01%とした。N含有量のより好ましい上限は0.008%以下(更に好ましくは0.006%以下)である。
 本発明の熱間プレス用鋼板における基本的な化学成分組成は、上記の通りであり、残部は鉄、およびP,S以外の不可避不純物(例えば、O,H等)である。また本発明の熱間プレス用鋼板には、必要によって更に、(a)V,NbおよびZrよりなる群から選択される1種以上を合計で0.1%以下(0%を含まない)、(b)Cu,Ni,CrおよびMoよりなる群から選択される1種以上を合計で1%以下(0%を含まない)、(c)Mg,CaおよびREM(希土類元素)よりなる群から選択される1種以上を合計で0.01%以下(0%を含まない)、等を含有させることも有用であり、含有される元素の種類に応じて、熱間プレス用鋼板の特性が更に改善される。これらの元素を含有するときの好ましい範囲およびその範囲限定理由は下記の通りである。
[V,NbおよびZrよりなる群から選択される1種以上を合計で0.1%以下(0%を含まない)]
 V,NbおよびZrは、微細な炭化物を形成し、ピン止め効果により組織を微細にする効果がある。こうした効果を発揮させるためには、合計で0.001%以上含有させることが好ましい。しかしながら、これらの元素の含有量が過剰になると、粗大な炭化物が形成され、破壊の起点になることで逆に延性を劣化させる。こうしたことから、これらの元素は合計で0.1%以下とすることが好ましい。これらの元素の含有量のより好ましい下限は合計で0.005%以上(更に好ましくは0.008%以上)であり、より好ましい上限は合計で0.08%以下(更に好ましくは0.06%以下)である。
[Cu,Ni,CrおよびMoよりなる群から選択される1種以上を合計で1%以下(0%を含まない)]
 Cu,Ni,CrおよびMoは、フェライト変態、パーライト変態およびベイナイト変態を抑制するため、加熱後の冷却中に、フェライト、パーライト、ベイナイトの形成を防止し、残留オーステナイトの確保に有効に作用する。こうした効果を発揮させるためには、合計で0.01%以上含有させることが好ましい。特性だけを考慮すると含有量は多いほうが好ましいが、合金添加のコストが上昇することから、合計で1%以下とすることが好ましい。また、オーステナイトの強度を大幅に高める作用を有するため、熱間圧延の負荷が大きくなり、鋼板の製造が困難になるため、製造性の観点からも1%以下とすることが好ましい。これらの元素含有量のより好ましい下限は合計で0.05%以上(更に好ましくは0.06%以上)であり、より好ましい上限は合計で0.5%以下(更に好ましくは0.3%以下)である。
[Mg,CaおよびREMよりなる群から選択される1種以上を合計で0.01%以下(0%を含まない)]
 これらの元素は、介在物を微細化するため、延性向上に有効に作用する。こうした効果を発揮させるためには、合計で0.0001%以上含有させることが好ましい。特性だけを考慮すると含有量は多いほうが好ましいが、効果が飽和することから、合計で0.01%以下とすることが好ましい。これらの元素含有量のより好ましい下限は合計で0.0002%以上(更に好ましくは0.0005%以上)であり、より好ましい上限は合計で0.005%以下(更に好ましくは0.003%以下)である。
 本発明の熱間プレス用鋼板では、(A)鋼板中に含まれるTi含有析出物のうち、円相当直径が30nm以下のものの平均円相当直径が3nm以上であること、(B)析出Ti量(質量%)-3.4[N]>0.5×[全Ti量(質量%)-3.4[N]]の関係[前記(1)式の関係]を満足すること、(C)金属組織が、ベイナイトおよびマルテンサイトの少なくとも一方を含んでおり、且つベイナイトおよびマルテンサイトの合計分率が80面積%以上であることも重要な要件である。
 Nに対して過剰なTiが熱間プレス前の鋼板中において、微細に分散、若しくは大半が固溶状態で存在すると、熱間プレスの加熱時において微細なまま多量に存在することになる。そうすると、加熱後に、金型内での急冷中に起こるマルテンサイト変態において、マルテンサイトラスの長手方向への成長が阻害され、幅方向への成長が促進されてアスペクト比が小さくなる。その結果、マルテンサイトラスから周囲の残留オーステナイトへの炭素吐き出しが遅れ、残留オーステナイト中の炭素量が低減し、残留オーステナイトの安定性が低下するため、伸びの向上効果が十分に得られなくなる。
 こうした観点から、Ti含有析出物を粗大に分散させておく必要があり、そのためには鋼板中に含まれるTi含有析出物のうち、円相当直径が30nm以下のものの平均円相当直径で3nm以上とする必要がある[上記(A)の要件]。尚、ここで対象とするTi含有析出物の円相当直径を30nm以下と規定しているのは、溶製段階で粗大に形成されて、その後、組織変化や特性に影響を及ぼさないTiNを除いたTi含有析出物を制御する必要があるためである。Ti含有析出物の大きさ(円相当直径が30nm以下のTi含有析出物の平均円相当直径)は、好ましくは5nm以上であり、より好ましくは10nm以上である。また、本発明で対象とするTi含有析出物とは、TiCおよびTiNの他、TiVC、TiNbC、TiVCN、TiNbCN等のTiを含有する析出物をも含む趣旨である。
 また、熱間プレス用鋼板においては、TiのうちNを析出固定するのに使用される以外のTiの大半を析出状態で存在させる必要がある。そのためには、TiN以外の析出物として存在するTi量(即ち、析出Ti量(質量%)-3.4[N])は、全TiのうちTiNを形成するTiを差し引いた残りの0.5倍よりも多く(即ち、0.5×[全Ti量
(質量%)-3.4[N]]よりも多く)する必要がある[上記(B)の要件]。析出Ti量(質量%)-3.4[N]は、好ましくは0.6×[全Ti量(質量%)-3.4[N]]以上であり、より好ましくは0.7×[全Ti量(質量%)-3.4[N]]以上である。
 金属組織は、本来、成形品において所望の強度-伸びバランスを達成するのに必要な制御であるが、金属組織を熱間プレス条件だけで制御することはできず、その原料鋼(熱間プレス用鋼板)の組織についても予め制御しておく必要がある。成形鋼板において、微細で延性への寄与が大きい焼鈍しマルテンサイトおよび焼鈍しベイナイトを適正量確保するためには、鋼板中のベイナイトおよびマルテンサイトの合計分率が80面積%以上とする必要がある。ベイナイトおよびマルテンサイトの合計分率が80面積%未満であると、狙いとする焼鈍しマルテンサイトおよび/または焼鈍しベイナイト分率を確保することが難しくなり、また他の組織(例えば、フェライト)量を増加させて強度-延性バランスを低下させることになる。ベイナイトおよびマルテンサイトの合計分率は、好ましくは90面積%以上であり、より好ましくは95面積%以上である。
 尚、本発明の熱間プレス用鋼板で、金属組織の残部は特に限定されないが、例えばフェライト、パーライトまたは残留オーステナイトの少なくともいずれかが挙げられる。
 上記のような本発明の鋼板(熱間プレス用鋼板)を製造するには、上記のような化学成分組成を有する鋼材を溶製した鋳片を、加熱温度:1100℃以上(好ましくは1150℃以上)、1300℃以下(好ましくは1250℃以下)とし、仕上げ圧延温度を750℃以上(好ましくは780℃以上)、850℃以下(好ましくは830℃以下)として熱間圧延を行い、その後700~750℃(好ましくは720~740℃)の間を10秒以上(好ましくは50秒以上)滞在させるようにして冷却(徐冷:中間冷却)した後、450℃以下(好ましくは350℃以下)まで20℃/秒以上(好ましくは30℃/秒以上)で冷却(急冷)し、100℃以上(好ましくは150℃以上)、450℃以下(好ましくは400℃以下)で巻取るようにすれば良い。
 上記方法は、(1)オーステナイト中に熱間圧延により導入された転位が残存する温度域にて圧延を終了し、(2)その直後に徐冷することで転位上にTiC等のTi含有析出物を粗大に形成させ、(3)更に急冷した後巻取ることによって、ベイナイト変態若しくはマルテンサイト変態するように制御するものである。
 上記のような化学成分組成、金属組織およびTi析出状態を有する熱間プレス用鋼板を、そのまま熱間プレスの製造に供しても良いし、酸洗後に圧下率:10~80%(好ましくは20~70%)で冷間圧延を施してもよい。また、熱間プレス用鋼板またはその冷間圧延材を、TiCが全量溶解しない温度範囲(1000℃以下:例えば870~900℃)に加熱後、450℃以下(好ましくは400℃以下)まで20℃/秒以上(好ましくは30℃/秒以上)の冷却速度で急冷した後、450℃以下で10秒以上、1000秒以下の保持、または450℃以下の温度で焼戻しを施すような熱処理を施しても良い。また、本発明の熱間プレス用鋼板には、その表面(素地鋼板表面)に、Al,Zn,Mg,Siのうちの1種以上を含むメッキを施しても良い。
 上記のような熱間プレス用鋼板を用い、Ac1変態点+20℃以上、Ac3変態点-20℃以下の温度に加熱した後、プレス成形を開始し、成形中および成形終了後は金型内で20℃/秒以上の平均冷却速度を確保しつつベイナイト変態開始温度Bsより100℃低い温度以下まで冷却することによって、単一特性を有するプレス成形品(以下、単一領域成形品という場合がある)で、低強度且つ高延性のものとして最適な組織に作り込むことができる。この成形法おける各要件を規定した理由は、下記の通りである。
 鋼板中のマルテンサイトやベイナイトのラス間に、オーステナイトを形成させると共に、マルテンサイトやベイナイトを焼鈍すことによって、延性に優れた焼鈍しマルテンサイトや焼鈍しベイナイトを形成するために、加熱温度は所定の範囲に制御する必要がある。鋼板の加熱温度がAc1変態点+20℃未満であると、加熱時に十分な量のオーステナイトが得られず、最終組織(成形品の組織)で所定量の残留オーステナイトを確保できない。また、鋼板の加熱温度がAc3変態点-20℃を超えると、加熱時にオーステナイトへの変態量が増加し過ぎて、最終組織(成形品の組織)で所定量の焼鈍しマルテンサイトや焼鈍しベイナイトを確保できない。
 上記加熱工程で形成されたオーステナイトを、フェライト若しくはパーライト等の組織の生成を阻止しつつ、所望の組織とするためには、成形中および成形後の平均冷却速度および冷却終了温度を適切に制御する必要がある。こうした観点から、成形中の平均冷却速度は20℃/秒以上とし、冷却終了温度はベイナイト変態開始温度Bsより100℃低い温度以下とする必要がある。成形中の平均冷却速度は、好ましくは30℃/秒以上(より好ましくは40℃/秒以上)である。冷却終了温度をベイナイト変態開始温度Bs以下とすることによって、フェライト若しくはパーライト等の組織の生成を阻止しつつ、加熱時に存在したオーステナイトをベイナイトやマルテンサイトに変態させることによって、ベイナイトやマルテンサイトを確保しつつ、ベイナイトやマルテンサイトのラスの間に微細なオーステナイトを残留させて所定量の残留オーステナイトを確保する。
 上記冷却終了温度がベイナイト変態開始温度Bsより100℃低い温度よりも高くなったり、平均冷却速度が20℃/秒未満では、フェライトやパーライト等の組織が形成されて、所定量の残留オーステナイトが確保できず、成形品における伸び(延性)が劣化する。
 ベイナイト変態開始温度Bsより100℃低い温度以下になった段階で、平均冷却速度の制御は基本的に不要になるが、例えば1℃/秒以上、100℃/秒以下の平均冷却速度で室温まで冷却してもよい。尚、成形中および成形終了後の平均冷却速度の制御は、(a)成形金型の温度を制御する(前記図1に示した冷却媒体)、(b)金型の熱伝導率を制御する等の手段によって達成できる。
 上記のような熱間プレスによって製造されるプレス成形品では、金属組織が、残留オーステナイト:3~20面積%、焼鈍しマルテンサイトおよび/または焼鈍しベイナイト:30~87面積%、焼入れままマルテンサイト:10~67面積%であり、且つ前記残留オーステナイト中の炭素量が0.60%以上であるものとなり、成形品内で高強度と伸びのバランスを高レベルで均一な特性として達成できるものとなる。こうした熱間プレス成形品における各要件(基本組織および残留オーステナイト中の炭素量)の範囲設定理由は次の通りである。
 残留オーステナイトは、塑性変形中にマルテンサイトに変態することで、加工硬化率を上昇させ(変態誘起塑性)、プレス成形品の延性を向上させる効果がある。こうした効果を発揮させるためには、残留オーステナイト分率を3面積%以上とする必要がある。延性に対しては、残留オーステナイト分率が多ければ多いほど良好になる。自動車用鋼板に用いられる組成では、確保できる残留オーステナイトは限られており、20面積%程度が上限となる。残留オーステナイトの好ましい下限は5面積%以上(より好ましくは7面積%以上)である。
 主要組織を、微細で且つ転位密度の低い焼鈍しマルテンサイトおよび/または焼鈍しベイナイトにすることで、所定の強度を確保しつつ、プレス成形品の延性(伸び)を高めることができる。こうした観点から、焼鈍しマルテンサイトおよび/または焼鈍しベイナイトの分率は、30面積%以上とする。しかしながら、この分率が87面積%を超えると、残留オーステナイトの分率が不足し、延性(残存延性)が低下する。焼鈍しマルテンサイトまたは焼鈍しベイナイトの分率の好ましい下限は40面積%以上(より好ましくは50面積%以上)であり、好ましい上限は80面積%未満(より好ましくは70面積%未満)である。
 焼入れままマルテンサイトは、延性に乏しい組織であるため、多量に存在すると伸びを劣化させるが、焼鈍しマルテンサイトのようにマトリックスが強度の低い組織において100キロ超級の高強度を実現するには、焼入れままマルテンサイトを所定量確保する必要がある。こうした観点から、焼入れままマルテンサイトの分率は10面積%以上とする。しかしながら、焼入れままマルテンサイトの分率が多くなり過ぎると、強度が高くなり過ぎて伸びが不足することになるので、その分率は、67面積%以下とする必要がある。焼入れままマルテンサイトの分率の好ましい下限は20面積%以上(より好ましくは30面積%以上)であり、好ましい上限は60面積%以下(より好ましくは50面積%以下)である。
 上記組織の他は、フェライト、パーライト、ベイナイト等を残部組織として含み得るが、これらの組織は強度に対する寄与や、延性に対する寄与が他の組織に比べて低く、基本的に含有しないことが好ましい(0面積%でも良い)。但し、20面積%までなら許容できる。残部組織は、より好ましくは10面積%以下であり、更に好ましくは5面積%以下である。
 残留オーステナイト中の炭素量は、引張試験等の変形時に残留オーステナイトがマルテンサイトに加工誘起変態するタイミングに影響し、炭素量が多いほど高歪域で加工誘起変態することで変態誘起塑性(TRIP)効果を大きくする。本発明のプロセスの場合、冷却中に、形成されたマルテンサイトラスから周囲のオーステナイトに炭素が吐き出される。その際に、鋼中に分散しているTi炭化物若しくは炭窒化物が、粗大に分散していると、マルテンサイトラスの長手方向への成長が阻害されずに進行するため、幅が狭く長いアスペクト比の大きなマルテンサイトラスとなる。その結果、マルテンサイトラスから幅方向に炭素が吐き出されやすくなり、残留オーステナイト中の炭素量が増加し、延性が向上する。こうした観点から、本発明のプレス成形品では、鋼中の残留オーステナイト中の炭素量は0.60%以上と規定した。尚、残留オーステナイト中の炭素量は0.70%程度まで濃化させることはできるが、1.0%程度が限界である。
 本発明の熱間プレス用鋼板を用いれば、プレス成形条件(加熱温度や冷却速度)を適切に調整することによって、プレス成形品の強度や伸び等の特性を制御することができ、しかも高延性(残存延性)のプレス成形品が得られるので、これまでのプレス成形品では適用しにくかった部位(例えば、エネルギー吸収部材)にも適用が可能となり、プレス成形品の適用範囲を拡げる上で極めて有用である。また、上述した単一領域成形品のみならず、プレス成形金型を用いて鋼板をプレス成形してプレス成形品を製造するに際して、加熱温度、および成形時の各領域の条件を適切に制御し、各領域の組織を調整すれば、各領域に応じた強度-延性バランスを発揮するプレス成形品(以下、複数領域成形品という場合がある)が得られる。
 本発明の熱間プレス用鋼板を用い、上記のように複数領域成形品を製造するに当たっては、鋼板の加熱領域を少なくとも2つの領域に分け、そのうち一の領域(以下、第1の領域という)をAc3変態点以上、950℃以下の温度に加熱すると共に、他の一の領域(以下、第2の領域という)をAc1変態点+20℃以上、Ac3変態点-20℃以下の温度に加熱した後、第1および第2の両方の領域に対してプレス成形を開始し、成形中および成形終了後は第1および第2のいずれの領域でも金型内で20℃/秒以上の平均冷却速度を確保しつつマルテンサイト変態開始温度Ms以下の温度まで冷却すればよい。
 上記方法では、鋼板の加熱領域を2つの領域(高強度側領域および低強度側領域)に分け、夫々の領域に応じて製造条件を制御することによって、各領域に応じた強度-延性バランスを発揮するようなプレス成形品が得られる。2つの領域のうち第2の領域が低強度側領域に相当し、この領域における製造条件、組織および特性は基本的に上記した単一領域成形品と同じである。以下では、もう一方の第1領域(高強度側領域に相当)を形成させるための製造条件について説明する。尚、この製造方法を実施するに際しては、単一の鋼板で加熱温度の異なる領域を形成する必要が生じるが、既存の加熱炉(例えば、遠赤外線炉、電気炉+シールド)を用いることによって、温度の境界部分を50mm以下としつつ制御することは可能である。
(第1の領域・高強度側領域の製造条件)
 プレス成形品の組織を適切に調整するためには、加熱温度は所定の範囲に制御する必要がある。この加熱温度を適切に制御することによって、その後の冷却過程で、所定量の残留オーステナイトを確保しつつ、マルテンサイトを主体とする組織に変態させ、最終的な熱間プレス成形品の領域内で所望の組織に作り込むことができる。この領域での鋼板加熱温度がAc3変態点未満であると、加熱時に十分な量のオーステナイトが得られず、最終組織(成形品の組織)で所定量の残留オーステナイトを確保できない。また、鋼板の加熱温度が950℃を超えると、加熱時にオーステナイトの粒径が大きくなり、マルテンサイト変態開始温度(Ms点)およびマルテンサイト変態終了温度(Mf点)が上昇し、焼入れ時に残留オーステナイトを確保できず、良好な成形性が達成されない。鋼板の加熱温度は、好ましくはAc3変態点+50℃以上であり、900℃以下である。
 上記加熱工程で形成されたオーステナイトを、フェライト若しくはパーライト等の組織の生成を阻止しつつ、所望の組織とするためには、成形中および成形後の平均冷却速度および冷却終了温度を適切に制御する必要がある。こうした観点から、成形中の平均冷却速度は20℃/秒以上とし、冷却終了温度はマルテンサイト変態開始温度(Ms点)以下とする必要がある。成形中の平均冷却速度は、好ましくは30℃/秒以上(より好ましくは40℃/秒以上)である。冷却終了温度をマルテンサイト変態開始温度(Ms点)以下とすることによって、フェライト若しくはパーライト等の組織の生成を阻止しつつ、加熱時に存在したオーステナイトをマルテンサイトに変態させることによって、マルテンサイトを確保する。冷却終了温度は、具体的には400℃以下であり、好ましくは300℃以下である。
 こうした方法によって得られたプレス成形品では、第1領域と第2領域とで、金属組織や析出物等が異なっている。第1の領域では、金属組織が、残留オーステナイト:3~20面積%(残留オーステナイトの作用効果は上記と同じ)、マルテンサイト:80面積%以上となっている。第2領域では、上記単一領域成形品と同じ金属組織、残留オーステナイト中の炭素量が0.60%以上を満足する。
 第1の領域の主要組織を、所定量の残留オーステナイトを含む高強度のマルテンサイトにすることで、熱間プレス成形品における特定領域の延性および高強度を確保することができる。こうした観点から、マルテンサイトの面積分率は、80面積%以上とする必要がある。マルテンサイトの分率は、好ましくは85面積%以上(より好ましくは90面積%以上)である。尚、第1領域における組織として、一部にフェライト、パーライト、ベイナイト等含んでいてもよい。
 以下、本発明の効果を実施例によって更に具体的に示すが、下記実施例は本発明を限定するものではなく、前・後記の趣旨に徴して設計変更することはいずれも本発明の技術的範囲に含まれるものである。
[実施例1]
 下記表1に示した化学成分組成を有する鋼材(鋼No.1~32)を真空溶製し、実験用スラブとした後、熱間圧延を行って鋼板とし、その後に冷却して巻取りを模擬した処理を施した(板厚:3.0mm)。巻取り模擬処理方法は、巻取り温度まで冷却後、巻取り温度に加熱した炉に試料を入れ、30分保持した後炉冷した。このときの鋼板製造条件を下記表2に示す。尚、表1中のAc1変態点、Ac3変態点、Ms点およびBs点は、下記の(2)式~(5)式を用いて求めたものである(例えば、「レスリー鉄鋼材料学」丸善,(1985)参照)。また、表2の備考欄に示した処理(1)~(3)は、下記に示す各処理(圧延、冷却、合金化)を行ったものである。
 Ac1変態点(℃)=723+29.1×[Si]-10.7×[Mn]+16.9×[Cr]-16.9[Ni] …(2)
 Ac3変態点(℃)=910-203×[C]1/2+44.7×[Si]-30×[Mn]+700×[P]+400×[Al]+400×[Ti]+104×[V]-11×[Cr]+31.5×[Mo]-20×[Cu]-15.2×[Ni] …(3)
 Ms点(℃)=550-361×[C]-39×[Mn]-10×[Cu]-17×[Ni]-20×[Cr]-5×[Mo]+30×[Al] …(4)
 Bs点(℃)=830-270×[C]-90×[Mn]-37×[Ni]-70×[Cr]-83×[Mo] …(5)
 但し、[C],[Si],[Mn],[P],[Al],[Ti],[V],[Cr],[Mo],[Cu]および[Ni]は、夫々C,Si,Mn,P,Al,Ti,V,Cr,Mo,CuおよびNiの含有量(質量%)を示す。また、上記(2)式~(5)式の各項に示された元素が含まれない場合は、その項がないものとして計算する。
 処理(1):仕上げ圧延後、650℃まで50℃/秒の平均冷却速度で冷却した後、650℃から5℃/秒の平均冷却速度で10秒冷却し、その後巻取り温度まで平均冷却速度50℃/秒で冷却した。その後、処理(2)、(3)と板厚を合わせるために、表裏面を研磨し、1.6mmに減厚した。
 処理(2):熱間圧延鋼板を冷間圧延後、連続焼鈍を模擬し、860℃に加熱した後、30℃/秒の平均冷却速度で400℃まで冷却し、保持した。
 処理(3):熱間圧延鋼板を冷間圧延後、連続溶融亜鉛めっきラインを模擬するため860℃に加熱した後、30℃/秒の平均冷却速度で400℃まで冷却し、保持後、更に500℃×10秒加熱後冷却した。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 得られた鋼板につき、Tiの析出状態の分析、および金属組織の観察(各組織の分率)を下記要領で行った。その結果を、0.5×[全Ti量(質量%)-3.4[N]]の計算値[0.5×(全Ti量-3.4[N])と表示]と共に下記表3に示す。
[鋼板のTiの析出状態の分析]
 抽出レプリカサンプルを作製し、透過型電子顕微鏡(TEM)にてTi含有析出物の透過型電子顕微鏡像(倍率:10万倍)を撮影した。このとき、エネルギー分散型X線分光器(EDX)により析出物の組成分析をすることによって、i含有析出物を特定した。少なくとも100個以上のTi含有析出物の面積を画像解析により測定し、円相当直径が30nm以下のものを抽出し、その平均値を析出物サイズとした。尚、表中には「Ti含有析出物の平均円相当直径」として示す。また、析出Ti量(質量%)-3.4[N](析出物として存在するTi量)は、メッシュ径:0.1μmのメッシュを用いて抽出残渣分析を行い(抽出処理の際に、析出物が凝集して微細な析出物も測定できる)、析出Ti量(質量%)-3.4[N](表3では、析出Ti量-3.4[N]と表示)を求めた。尚、Ti含有析出物がVやNbを一部含有している場合は、これらの含有量についても測定した。
[金属組織の観察(各組織の分率)]
 (1)鋼板中のマルテンサイト、ベイナイトの組織については、鋼板をナイタールで腐食し、SEM(倍率:1000倍または2000倍)観察により、マルテンサイト、ベイナイトを区別し、夫々の分率(面積率)を求めた。 
 (2)鋼板中の残留オーステナイト分率は、鋼板の1/4の厚さまで研削した後、化学研磨してからX線回折法によって測定した(例えば、ISJJ Int.Vol.33.(1933),No.7,P.776)。 
Figure JPOXMLDOC01-appb-T000003
 上記各鋼板(1.6mm×150mm×200mm)について(上記処理(1)~(3)以外のものについては、熱間圧延によって厚さを1.6mmに調整)、加熱炉で所定の温度に加熱した後、ハット形状の金型(前記図1)でプレス成形および冷却処理を実施し、プレス成形品とした。プレス成形条件(プレス成形時の加熱温度、平均冷却速度、急速冷却終了温度)を下記表4に示す。 
Figure JPOXMLDOC01-appb-T000004
 得られた成形品につき、引張強度(TS)、伸び(全伸びEL)、金属組織の観察(各組織の分率)を下記の方法で測定した。 
[引張強度(TS)、および伸び(全伸びEL)の測定] 
 JIS5号試験片を用いて引張試験を行い、引張強度(TS)、伸び(EL)を測定した。このとき、引張試験の歪速度:10mm/秒とした。本発明では、引張強度(TS)が980~1179MPaで伸び(EL)が20%以上を満足し、強度-伸びバランス(TS×EL)が24000(MPa・%)以上のときに合格と評価した。 
[金属組織の観察(各組織の分率)]
 (1)鋼板中の焼鈍しマルテンサイト、ベイナイト、焼鈍しベイナイトの組織については、鋼板をナイタールで腐食し、SEM(倍率:1000倍または2000倍)観察により、焼鈍しマルテンサイト、ベイナイト、焼鈍しベイナイトを区別し、夫々の分率(面積率)を求めた。 
 (2)鋼板中の残留オーステナイト分率は、鋼板の1/4の厚さまで研削した後、化学研磨してからX線回折法によって測定した(例えば、ISJJ Int.Vol.33.(1933),No.7,P.776)。この際、残留オーステナイト中の炭素量についても測定した。 
 (3)焼入れままマルテンサイト分率については、鋼板をレペラ腐食し、白いコントラストを焼入れままマルテンサイトと残留オーステナイトの混合組織として面積率を測定し、そこからX線回折により求めた残留オーステナイト分率を差いて、焼入れままマルテンサイト分率を計算した。 
 金属組織の観察結果(各組織の分率)を、下記表5に示す。また、成形品の機械的特性(引張強度TS、伸びELおよびTS×EL)を下記表6に示す。 
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
 これらの結果から、次のように考察できる。鋼No.1、2、4、5、11~13、15~17、19~21、23~32のものは、本発明で規定する要件を満足する実施例であり、強度-延性バランスの良好な部品が得られていることが分かる。
 これに対し、鋼No.3、6~10、14、18、22のものは、本発明で規定するいずれかの要件を満足しない比較例であり、いずれかの特性が劣化している。即ち、鋼No.3のものは、Si含有量が少ない鋼板を用いたものであり、成形品中の残留オーステナイト分率が確保されず、また残留オーステナイト中の炭素量が低下しており、伸びがでないものとなっている。鋼No.6のものは、成形時の加熱温度が高くなっており、低い伸びELしか得られず、強度-伸びバランス(TS×EL)も劣化している。
 鋼No.7のものは、プレス成形時の平均冷却速度が遅くなっており、パーライトやフェライトが生成して焼入れままマルテンサイト分率が確保できず、強度-伸びバランス(TS×EL)が劣化している。鋼No.8のものは、急速冷却終了温度が高くなっており、パーライトやフェライトが生成して焼入れままマルテンサイト分率が確保できず、低い伸びELしか得られず、強度-伸びバランス(TS×EL)も劣化している。
 鋼No.9、10のものは、鋼材製造時での条件が適正でなく、析出Ti量が不足してり(鋼No.9、10)、Ti含有析出物が小さくなっており(鋼No.10)、こうした鋼板を用いてプレス成形したときには、成形条件が適切であっても、強度-伸びバランス(TS×EL)が劣化している。
 鋼No.14のものは、巻取り温度に起因して、金属組織がフェライト+パーライト100面積%の鋼板を用いたものであり、成形品中の焼鈍しマルテンサイトおよび/または焼鈍しベイナイト分率が確保できず、強度-伸びバランス(TS×EL)が劣化している。鋼No.18のものは、C含有量が過剰な鋼板を用いたものであり、強度が高くなって低い伸びELしか得られていない。鋼No.22のものは、Ti含有量が過剰の鋼板を用いたものであり、強度-伸びバランス(TS×EL)が劣化している。
[実施例2]
 下記表7に示した化学成分組成を有する鋼材(鋼No.33~37)を真空溶製し、実験用スラブとした後、熱間圧延を行い、その後に冷却して巻取った(板厚:3.0mm)。このときの鋼板製造条件を下記表8に示す。
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
 得られた鋼板をにつき、Ti含有析出物の析出状態の分析および金属組織の観察(各組織の分率)を実施例1と同様にして行った。その結果を、下記表9に示す。 
Figure JPOXMLDOC01-appb-T000009
 上記各鋼板(3.0mm×150mm×200mm)について、加熱炉で所定の温度に加熱した後、ハット形状の金型(前記図1)でプレス成形および冷却処理を実施し、成形品とした。このとき、鋼板を赤外線炉に入れ、高強度化したい部分(第1の領域に相当する鋼板部分)は高温加熱できるように、赤外線が直接当たるようにすると共に、低強度化したい部分には(第2の領域に相当する鋼板部分)には低温加熱できるように、赤外線の一部を遮断するように覆いをかぶせることで、加熱温度差を付けた。従って、成形品は単一の部品内に強度の異なる領域を有するものとなっている。プレス成形条件(プレス成形時の各領域の加熱温度、平均冷却速度、急速冷却終了温度)を下記表10に示す。
Figure JPOXMLDOC01-appb-T000010
 得られた成形品につき、各領域における引張強度(TS)、伸び(全伸びEL)、金属組織の観察(各組織の分率)、および残留オーステナイト中の炭素量を実施例1と同様にして求めた。
 金属組織の観察結果(各組織の分率)を、下記表11に示す。また、成形品の機械的特性(引張強度TS、伸びELおよびTS×EL)を下記表12に示す。尚、高強度側での引張強度(TS)は1470MPa以上で伸び(EL)が8%以上を満足し、強度-伸びバランス(TS×EL)が14000(MPa・%)以上のときに合格と評価した(低強度側の評価基準は実施例1と同じ)。
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000012
 この結果から、次のように考察できる。鋼No.33、35、37のものは、本発明で規定する要件を満足する実施例であり、各領域における強度-延性バランスの良好な部品が得られていることが分かる。
 これに対し、鋼No.34、36のものは、本発明で規定するいずれかの要件を満足しない比較例であり、いずれかの特性が劣化している。即ち、鋼No.34のものは、プレス成形時の加熱温度が低くなっており、高強度側での強度が低下している。鋼No.36のものは、Ti含有析出物の大きさが小さい鋼板を用いたものであり、高強度側で低い強度しか得られず、低強度側で強度-伸びバランス(TS×EL)が劣化している。
 本発明を詳細にまた特定の実施態様を参照して説明したが、本発明の精神と範囲を逸脱することなく様々な変更や修正を加えることができることは当業者にとって明らかである。
 本出願は、2012年3月9日出願の日本特許出願(特願2012-053844)に基づくものであり、その内容はここに参照として取り込まれる。
 本発明は、自動車の構造部品を製造する際に用いられる熱間プレス用鋼板に好適である。
1 パンチ
2 ダイ
3 ブランクホルダー
4 鋼板(ブランク)

Claims (6)

  1.  C :0.15~0.5%(質量%の意味。以下、化学成分組成について同じ。)、 
     Si:0.2~3%、 
     Mn:0.5~3%、 
     P :0.05%以下(0%を含まない)、 
     S :0.05%以下(0%を含まない)、 
     Al:0.01~1%、 
     B :0.0002~0.01%、 
     Ti:3.4[N]+0.01%以上、3.4[N]+0.1%以下[但し、[N]はNの含有量(質量%)を示す]、および
     N :0.001~0.01%、
    を夫々含有し、残部が鉄および不可避不純物からなり、 
     鋼板中に含まれるTi含有析出物のうち、円相当直径が30nm以下のものの平均円相当直径で3nm以上であると共に、鋼中の析出Ti量と全Ti量とが下記(1)式の関係を満足し、且つ、金属組織が、ベイナイトおよびマルテンサイトの合計分率が80面積%以上であることを特徴とする熱間プレス用鋼板。
     析出Ti量(質量%)-3.4[N]>0.5×[全Ti量(質量%)-3.4[N]] …(1) 
     ((1)式中、[N]は鋼中のNの含有量(質量%)を示す)
  2.  更に他の元素として、下記(a)~(c)の少なくとも1つを含有するものである請求項1に記載の熱間プレス用鋼板。
    (a)V,NbおよびZrよりなる群から選択される1種以上を合計で0.1%以下(0%を含まない)
    (b)Cu,Ni,CrおよびMoよりなる群から選択される1種以上を合計で1%以下(0%を含まない)
    (c)Mg,CaおよびREMよりなる群から選択される1種以上を合計で0.01%以下(0%を含まない)
  3.  請求項1または2に記載の熱間プレス用鋼板を用い、Ac1変態点+20℃以上、Ac3変態点-20℃以下の温度に加熱した後、プレス成形を開始し、成形中および成形終了後は金型内で20℃/秒以上の平均冷却速度を確保しつつベイナイト変態開始温度Bsより100℃低い温度以下まで冷却することを特徴とするプレス成形品の製造方法。
  4.  請求項3に記載の製造方法によって得られたプレス成形品であって、金属組織が、残留オーステナイト:3~20面積%、焼鈍しマルテンサイトおよび/または焼鈍しベイナイト:30~87面積%、焼入れままマルテンサイト:10~67面積%であり、且つ前記残留オーステナイト中の炭素量が0.60%以上であることを特徴とするプレス成形品。
  5.  請求項1または2に記載の熱間プレス用鋼板を用い、鋼板の加熱領域を2つの領域に分け、その一方の領域をAc3変態点以上、950℃以下の温度に加熱すると共に、他方の領域をAc1変態点+20℃以上、Ac3変態点-20℃以下の温度に加熱した後、プレス成形を開始し、成形中および成形終了後は金型内で20℃/秒以上の平均冷却速度を確保しつつマルテンサイト変態開始温度Ms以下の温度まで冷却することを特徴とするプレス成形品の製造方法。
  6.  請求項5に記載の製造方法によって得られたプレス成形品であって、金属組織が、残留オーステナイト:3~20面積%、マルテンサイト:80面積%以上である第1の領域と、金属組織が、残留オーステナイト:3~20面積%、焼鈍しマルテンサイトおよび/または焼鈍しベイナイト:30~87面積%、焼入れままマルテンサイト:10~67面積%であり、且つ前記残留オーステナイト中の炭素量が0.60%以上である第2の領域を有するものであることを特徴とするプレス成形品。
PCT/JP2013/055680 2012-03-09 2013-03-01 熱間プレス用鋼板およびプレス成形品、並びにプレス成形品の製造方法 WO2013133166A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP13757984.3A EP2824209A4 (en) 2012-03-09 2013-03-01 STEEL PLATE FOR USE IN A HOT PRESSURE, PRESSED ARTICLE AND METHOD FOR PRODUCING THE PRESSED ARTICLE
CN201380012504.9A CN104160052B (zh) 2012-03-09 2013-03-01 热压用钢板和冲压成形品以及冲压成形品的制造方法
KR1020147024781A KR101609967B1 (ko) 2012-03-09 2013-03-01 열간 프레스용 강판 및 프레스 성형품, 및 프레스 성형품의 제조 방법
US14/382,158 US20150027602A1 (en) 2012-03-09 2013-03-01 Steel sheet for hot pressing use, press-formed product, and method for manufacturing press-formed product
US16/027,424 US20180312947A1 (en) 2012-03-09 2018-07-05 Steel sheet for hot pressing use, press-formed product, and method for manufacturing press-formed product

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012053844A JP5756773B2 (ja) 2012-03-09 2012-03-09 熱間プレス用鋼板およびプレス成形品、並びにプレス成形品の製造方法
JP2012-053844 2012-03-09

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US14/382,158 A-371-Of-International US20150027602A1 (en) 2012-03-09 2013-03-01 Steel sheet for hot pressing use, press-formed product, and method for manufacturing press-formed product
US16/027,424 Continuation US20180312947A1 (en) 2012-03-09 2018-07-05 Steel sheet for hot pressing use, press-formed product, and method for manufacturing press-formed product

Publications (1)

Publication Number Publication Date
WO2013133166A1 true WO2013133166A1 (ja) 2013-09-12

Family

ID=49116646

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/055680 WO2013133166A1 (ja) 2012-03-09 2013-03-01 熱間プレス用鋼板およびプレス成形品、並びにプレス成形品の製造方法

Country Status (6)

Country Link
US (2) US20150027602A1 (ja)
EP (1) EP2824209A4 (ja)
JP (1) JP5756773B2 (ja)
KR (1) KR101609967B1 (ja)
CN (1) CN104160052B (ja)
WO (1) WO2013133166A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015041159A1 (ja) * 2013-09-18 2015-03-26 新日鐵住金株式会社 ホットスタンプ成形体及びその製造方法
CN105112629A (zh) * 2015-09-17 2015-12-02 重庆齿轮箱有限责任公司 一种大厚度高强度结构钢的热处理方法
EP3093360A4 (en) * 2014-01-06 2018-03-07 Nippon Steel & Sumitomo Metal Corporation Hot-formed member and process for manufacturing same
WO2018097200A1 (ja) * 2016-11-25 2018-05-31 新日鐵住金株式会社 焼き入れ成形品の製造方法、熱間プレス用鋼材の製造方法、及び熱間プレス用鋼材

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101253838B1 (ko) * 2010-12-27 2013-04-12 주식회사 포스코 이물성 부품의 제조방법
JP5890711B2 (ja) * 2012-03-15 2016-03-22 株式会社神戸製鋼所 熱間プレス成形品およびその製造方法
CA2923583A1 (en) * 2013-09-10 2015-03-19 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Hot-pressing steel plate, press-molded article, and method for manufacturing press-molded article
RU2628184C1 (ru) * 2013-09-10 2017-08-15 Кабусики Кайся Кобе Сейко Се (Кобе Стил,Лтд.) Горячештампованная толстолистовая сталь, формованное штамповкой изделие, и способ изготовления формованного штамповкой изделия
JP5852728B2 (ja) 2013-12-25 2016-02-03 株式会社神戸製鋼所 熱間成形用鋼板および熱間プレス成形鋼部材の製造方法
KR101677351B1 (ko) * 2014-12-26 2016-11-18 주식회사 포스코 재질 편차가 적고, 조관성 및 내식성이 우수한 열간 프레스 성형용 열연강판, 이를 이용한 열간 프레스 성형품 및 이들의 제조방법
RU2017141033A (ru) * 2015-05-21 2019-06-21 Ак Стил Пропертиз, Инк. Высокомарганцовистые особо высокопрочные стали 3-го поколения
KR101767773B1 (ko) 2015-12-23 2017-08-14 주식회사 포스코 연성이 우수한 초고강도 열연강판 및 그 제조방법
EP3473735B1 (en) * 2016-06-20 2024-01-10 Easyforming Steel Technology Co., Ltd. Treatment process for obtaining graded performance and member thereof
BR112019013393A2 (pt) 2017-01-17 2020-03-03 Nippon Steel Corporation Peça estampada a quente e método de fabricação da mesma
KR102239115B1 (ko) 2017-01-17 2021-04-12 닛폰세이테츠 가부시키가이샤 핫 스탬프용 강판
USD905136S1 (en) 2018-03-05 2020-12-15 Bliss Industries, Llc Hammermill hammer
US10610870B2 (en) * 2017-08-21 2020-04-07 Bliss Industries, Llc Hot and cold forming hammer and method of assembly
CN109402335A (zh) * 2019-01-07 2019-03-01 上海钰灏新材料科技有限公司 一种渗钛层模具钢及其制备方法
DE102019215053A1 (de) * 2019-09-30 2021-04-01 Thyssenkrupp Steel Europe Ag Verfahren zur Herstellung eines zumindest teilweise vergüteten Stahlblechbauteils und zumindest teilweise vergütetes Stahlblechbauteil
CN114309069B (zh) * 2022-01-07 2023-12-01 太原科技大学 中锰钢的亚温成形方法及其制备的中锰钢和应用
CN118028702A (zh) * 2022-11-14 2024-05-14 育材堂(苏州)材料科技有限公司 热冲压成形用钢板、热冲压成形构件及钢板制造方法
CN116024502A (zh) * 2022-12-29 2023-04-28 中国重汽集团济南动力有限公司 一种高强度高延伸率的轻量化鞍座壳体及其制备方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07197186A (ja) * 1993-12-30 1995-08-01 Kobe Steel Ltd 耐遅れ破壊特性の優れた980N/mm2以上の強度を有する熱延鋼板及びその製造方法
JP2005097725A (ja) * 2003-09-05 2005-04-14 Nippon Steel Corp 耐水素脆化特性に優れたホットプレス用鋼板、自動車用部材及びその製造方法
JP2006274335A (ja) * 2005-03-29 2006-10-12 Jfe Steel Kk 超高強度熱延鋼板の製造方法
JP2009061473A (ja) * 2007-09-06 2009-03-26 Sumitomo Metal Ind Ltd 高強度部品の製造方法
JP2010065295A (ja) 2008-09-12 2010-03-25 Jfe Steel Corp 延性に優れたホットプレス部材、そのホットプレス部材用鋼板、およびそのホットプレス部材の製造方法
JP2010065293A (ja) 2008-09-12 2010-03-25 Jfe Steel Corp 延性に優れたホットプレス部材、そのホットプレス部材用鋼板、およびそのホットプレス部材の製造方法
JP2010065292A (ja) 2008-09-12 2010-03-25 Jfe Steel Corp 延性に優れたホットプレス部材、そのホットプレス部材用鋼板、およびそのホットプレス部材の製造方法
JP2010065294A (ja) 2008-09-12 2010-03-25 Jfe Steel Corp 延性に優れたホットプレス部材、そのホットプレス部材用鋼板、およびそのホットプレス部材の製造方法
JP2012012701A (ja) * 2010-05-31 2012-01-19 Jfe Steel Corp 伸びフランジ性および耐疲労特性に優れた高強度熱延鋼板およびその製造方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4649868B2 (ja) * 2003-04-21 2011-03-16 Jfeスチール株式会社 高強度熱延鋼板およびその製造方法
JP4635525B2 (ja) * 2003-09-26 2011-02-23 Jfeスチール株式会社 深絞り性に優れた高強度鋼板およびその製造方法
JP2005288528A (ja) * 2004-04-05 2005-10-20 Nippon Steel Corp 成形後高強度となる鋼板の熱間プレス方法
EP2209926B1 (en) * 2007-10-10 2019-08-07 Nucor Corporation Complex metallographic structured steel and method of manufacturing same
JP5365217B2 (ja) * 2008-01-31 2013-12-11 Jfeスチール株式会社 高強度鋼板およびその製造方法
KR101010971B1 (ko) * 2008-03-24 2011-01-26 주식회사 포스코 저온 열처리 특성을 가지는 성형용 강판, 그 제조방법,이를 이용한 부품의 제조방법 및 제조된 부품
JP5385554B2 (ja) * 2008-06-19 2014-01-08 株式会社神戸製鋼所 熱処理用鋼
JP5131844B2 (ja) * 2008-08-12 2013-01-30 新日鐵住金株式会社 熱間プレス用熱延鋼板およびその製造方法ならびに熱間プレス鋼板部材の製造方法
KR101091294B1 (ko) * 2008-12-24 2011-12-07 주식회사 포스코 고강도 고연신 강판 및 열연강판, 냉연강판, 아연도금강판 및 아연도금합금화강판의 제조방법

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07197186A (ja) * 1993-12-30 1995-08-01 Kobe Steel Ltd 耐遅れ破壊特性の優れた980N/mm2以上の強度を有する熱延鋼板及びその製造方法
JP2005097725A (ja) * 2003-09-05 2005-04-14 Nippon Steel Corp 耐水素脆化特性に優れたホットプレス用鋼板、自動車用部材及びその製造方法
JP2006274335A (ja) * 2005-03-29 2006-10-12 Jfe Steel Kk 超高強度熱延鋼板の製造方法
JP2009061473A (ja) * 2007-09-06 2009-03-26 Sumitomo Metal Ind Ltd 高強度部品の製造方法
JP2010065295A (ja) 2008-09-12 2010-03-25 Jfe Steel Corp 延性に優れたホットプレス部材、そのホットプレス部材用鋼板、およびそのホットプレス部材の製造方法
JP2010065293A (ja) 2008-09-12 2010-03-25 Jfe Steel Corp 延性に優れたホットプレス部材、そのホットプレス部材用鋼板、およびそのホットプレス部材の製造方法
JP2010065292A (ja) 2008-09-12 2010-03-25 Jfe Steel Corp 延性に優れたホットプレス部材、そのホットプレス部材用鋼板、およびそのホットプレス部材の製造方法
JP2010065294A (ja) 2008-09-12 2010-03-25 Jfe Steel Corp 延性に優れたホットプレス部材、そのホットプレス部材用鋼板、およびそのホットプレス部材の製造方法
JP2012012701A (ja) * 2010-05-31 2012-01-19 Jfe Steel Corp 伸びフランジ性および耐疲労特性に優れた高強度熱延鋼板およびその製造方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
HEPING LIU ET AL.: "Enhanced mechanical properties of a hot stamped advanced high- strength steel treated by quenching and partitioning process", SCRIPTA MATERIALIA, vol. 64, no. 8, April 2011 (2011-04-01), pages 749 - 752, XP028360180 *
ISJJ INT., vol. 33, no. 7, 1933, pages 776
L.XU ET AL.: "Improved mechanical properties in Ti-bearing martensitic steel by precipitation and grain refinement", JOURNAL OF MATERIAL SCIENCE, vol. 46, no. 19, October 2011 (2011-10-01), pages 6384 - 6389, XP019926653 *
See also references of EP2824209A4 *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015041159A1 (ja) * 2013-09-18 2015-03-26 新日鐵住金株式会社 ホットスタンプ成形体及びその製造方法
JPWO2015041159A1 (ja) * 2013-09-18 2017-03-02 新日鐵住金株式会社 ホットスタンプ成形体及びその製造方法
US10301699B2 (en) 2013-09-18 2019-05-28 Nippon Steel & Sumitomo Metal Corporation Hot-stamped part and method of manufacturing the same
EP3093360A4 (en) * 2014-01-06 2018-03-07 Nippon Steel & Sumitomo Metal Corporation Hot-formed member and process for manufacturing same
CN105112629A (zh) * 2015-09-17 2015-12-02 重庆齿轮箱有限责任公司 一种大厚度高强度结构钢的热处理方法
WO2018097200A1 (ja) * 2016-11-25 2018-05-31 新日鐵住金株式会社 焼き入れ成形品の製造方法、熱間プレス用鋼材の製造方法、及び熱間プレス用鋼材
JP6460296B2 (ja) * 2016-11-25 2019-01-30 新日鐵住金株式会社 焼き入れ成形品の製造方法、熱間プレス用鋼材の製造方法、及び熱間プレス用鋼材
JPWO2018097200A1 (ja) * 2016-11-25 2019-02-28 新日鐵住金株式会社 焼き入れ成形品の製造方法、熱間プレス用鋼材の製造方法、及び熱間プレス用鋼材
US11078550B2 (en) 2016-11-25 2021-08-03 Nippon Steel Corporation Method for manufacturing quenched molding, method for manufacturing hot press steel material, and hot press steel material

Also Published As

Publication number Publication date
CN104160052A (zh) 2014-11-19
EP2824209A4 (en) 2015-11-04
US20180312947A1 (en) 2018-11-01
JP5756773B2 (ja) 2015-07-29
EP2824209A1 (en) 2015-01-14
CN104160052B (zh) 2016-08-31
US20150027602A1 (en) 2015-01-29
JP2013185242A (ja) 2013-09-19
KR101609967B1 (ko) 2016-04-06
KR20140121877A (ko) 2014-10-16

Similar Documents

Publication Publication Date Title
JP5756773B2 (ja) 熱間プレス用鋼板およびプレス成形品、並びにプレス成形品の製造方法
JP5756774B2 (ja) 熱間プレス用鋼板およびプレス成形品、並びにプレス成形品の製造方法
JP6001884B2 (ja) プレス成形品の製造方法およびプレス成形品
US20190241988A1 (en) Hot-pressing steel plate, press-molded article, and method for manufacturing press-molded article
JP6001883B2 (ja) プレス成形品の製造方法およびプレス成形品
KR101827187B1 (ko) 열간 프레스용 강판 및 프레스 성형품, 및 프레스 성형품의 제조 방법
KR101716624B1 (ko) 프레스 성형품의 제조 방법 및 프레스 성형품
JP5894470B2 (ja) 熱間プレス用鋼板およびプレス成形品、並びにプレス成形品の製造方法
JP5894469B2 (ja) 熱間プレス用鋼板およびプレス成形品、並びにプレス成形品の製造方法
JP5802155B2 (ja) プレス成形品の製造方法およびプレス成形品
JP5869924B2 (ja) プレス成形品の製造方法およびプレス成形品

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13757984

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2013757984

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20147024781

Country of ref document: KR

Kind code of ref document: A