WO2013132819A1 - ハニカム構造フィルムの製造方法 - Google Patents

ハニカム構造フィルムの製造方法 Download PDF

Info

Publication number
WO2013132819A1
WO2013132819A1 PCT/JP2013/001308 JP2013001308W WO2013132819A1 WO 2013132819 A1 WO2013132819 A1 WO 2013132819A1 JP 2013001308 W JP2013001308 W JP 2013001308W WO 2013132819 A1 WO2013132819 A1 WO 2013132819A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
layer
holes
manufacturing
polymer
Prior art date
Application number
PCT/JP2013/001308
Other languages
English (en)
French (fr)
Inventor
日色 宏之
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2012048799A external-priority patent/JP2013184990A/ja
Priority claimed from JP2012048800A external-priority patent/JP2013184991A/ja
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Publication of WO2013132819A1 publication Critical patent/WO2013132819A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D99/00Subject matter not provided for in other groups of this subclass
    • B29D99/0089Producing honeycomb structures

Definitions

  • the present invention relates to a method for manufacturing a honeycomb structure film.
  • honeycomb structure film with finely formed pores has been studied for its manufacturing method. It is being advanced.
  • Honeycomb structure films are also being used in the medical field, such as for use in medical materials such as anti-adhesion materials that prevent adhesion between tissues during surgery and as a cell culture substrate. Expectation.
  • a condensation method As a typical method for producing a honeycomb structure film, there is a condensation method.
  • a liquid film surface of a hydrophobic organic solvent solution (honeycomb solution) of a polymer is exposed to a humidified atmosphere, and water droplets condensed on the surface are self-organized.
  • the liquid components in the liquid film and the formed water droplets are evaporated. This is a method of forming a porous film (honeycomb structure film).
  • an array of micron-order porous bodies can be manufactured at a low cost by an easy process using a water droplet aggregate formed in a self-organized manner as a template. Since the integrated body is used, it has the following problems.
  • Patent Document 4 there is a method in which a surfactant is included in the solution to be cast in order to increase the arrangement regularity of the water droplet aggregate by increasing the water droplet formation density and the size of the water droplets on the exposed surface of the liquid film. It is disclosed. However, the method of Patent Document 4 has a limit in the formation density of water droplets, so that the production of a honeycomb structure film having a good arrangement regularity is limited to those having a certain range of pore diameters.
  • Patent Document 5 by using a liquid film with a honeycomb solution obtained by dissolving a polymer compound in a mixture of a hydrophobic solvent and a hydrophilic solvent, the water droplet formation density is increased and the arrangement regularity is increased. A method has been proposed.
  • the method of Patent Document 5 can generate water droplets faster and grow faster than the method of Patent Document 4, so that the upper limit of water droplet formation density can be increased.
  • a hydrophilic solvent is used for this purpose. Therefore, the size and shape of the obtained water droplets are likely to be non-uniform and the arrangement is likely to be disturbed. For this reason, even in the method of Patent Document 5, it is difficult to obtain a honeycomb structure film having a highly accurate arrangement regularity.
  • the present invention has been made in view of the above circumstances, and an object of the present invention is to produce a honeycomb structure film having a wide range of pore diameters that can be formed and having high-order arrangement regularity.
  • the method for manufacturing a honeycomb structured film of the present invention provides a substrate having at least a surface that is a light absorption heating element and having a plurality of recesses or through holes capable of storing water, An aqueous layer forming step of forming an aqueous layer in the plurality of recesses or through-holes; A polymer solution layer in which a polymer solution in which at least an amphiphilic polymer is dissolved in a hydrophobic organic solvent is brought into contact with the surface of the substrate where the plurality of recesses or through-holes are opened to form a layer of the polymer solution on the surface Forming process; A light spot irradiating means irradiates a predetermined two-dimensional array position on the front surface or the back surface, and heats the light absorption heating element of the irradiated portion to locally boil in the plurality of recesses or through holes.
  • At least the substrate contact surface in the polymer solution layer on the two-dimensional array position by generating bubbles by cavitation and discharging water stored in the plurality of recesses or through holes from the recesses or through holes.
  • the substrate is a concavo-convex substrate provided with a plurality of convex portions having a hydrophobic tip portion and a plurality of concave portions capable of storing water on one surface.
  • the water layer forming step the water layer is formed by storing water in the plurality of recesses so that tips of the plurality of protrusions of the uneven substrate are exposed.
  • bubbles are generated by local boiling or cavitation in the concave portion, and water stored in the concave portion is discharged from the concave portion.
  • the substrate is a plate-like through-hole array in which a large number of the through-holes are formed
  • the water layer forming step water or supersaturated water vapor is brought into contact with the surface, and the water layer is formed by filling water or supersaturated water vapor into the plurality of through holes
  • the polymer solution layer forming step the polymer solution is brought into contact with the back surface
  • a light spot is irradiated from the water layer side to a predetermined two-dimensional array position on the surface, and at least the surface of the through hole irradiated with the light spot is heated to enter the through hole.
  • Bubbles are generated by local boiling or cavitation, and water or supersaturated water vapor in the through-hole is discharged into the polymer solution layer to form water droplets in the vicinity of the contact surface of the polymer solution layer with the through-hole array. It is characterized by that.
  • the through-hole is preferably a substantially parallel straight hole.
  • having hydrophobicity means having affinity for a hydrophobic organic solvent.
  • the honeycomb structure means a structure in which holes having a substantially constant shape and a substantially constant size are arranged continuously and approximately regularly.
  • This regular array is two-dimensional in the case of a single layer, and is composed of a plurality of layers. In some cases, there is regularity in three dimensions.
  • the regularity is mainly arranged in a two-dimensional manner so that a plurality of (for example, six) holes surround one hole, and in a three-dimensional manner, like a face-centered cubic or hexagonal crystal structure. However, this is not limited as long as it has regularity.
  • the plurality of concave portions or the plurality of through holes adjacent to each other can be irradiated with one light spot.
  • At least the surfaces of the concavo-convex substrate and the through hole are amorphous carbon.
  • substrate is hydrophilic, and the aspect by which the surface treatment which provides this surface with hydrophilicity is given is preferable.
  • the light spot irradiating means preferably includes scanning means capable of two-dimensionally scanning the surface of the concavo-convex substrate or the through-hole array with the light spot.
  • the light spot irradiating means there may be mentioned an aspect comprising a two-dimensional laser light spot array forming means for forming an interference fringe having a light peak intensity at the two-dimensional array position.
  • the light spot irradiating means an aspect including a two-dimensional pinhole array mask that forms transmitted light having a light peak intensity at the two-dimensional array position may be mentioned.
  • a honeycomb structure film of the present invention unlike the dew condensation method using a water droplet aggregate formed in a self-integrating manner as a template, water droplets obtained from water droplets that can be formed at a desired two-dimensional regular array position are used as templates. Therefore, it is possible to eliminate inconsistency in the arrangement regularity of the template made of water droplets.
  • the size of the water droplet is determined almost uniquely by the intensity and size of the light spot to be irradiated, the heat generation efficiency of the light-absorbing heat generating element, and so on, so that there is little variation and the adjustment range is wide. Therefore, according to the present invention, it is possible to manufacture a honeycomb structure film having a wide range of pore diameters that can be formed and having a highly accurate arrangement regularity.
  • the supersaturated water vapor supply means and its temperature control means which are essential in the conventional dew condensation method, are unnecessary, and the control factor is reduced. Therefore, by adopting such an embodiment, it is possible to manufacture a honeycomb structure film having a desired arrangement regularity with higher accuracy.
  • Sectional schematic diagram which shows the aspect at the time of completion
  • Sectional schematic diagram which shows the aspect of the water droplet formation process of the manufacturing method of the honeycomb structure film of 1st Embodiment which concerns on this invention.
  • Sectional schematic diagram which shows the aspect at the time of completion
  • Sectional schematic diagram which shows the aspect of the evaporation process of the manufacturing method of the honeycomb structure film of 1st Embodiment which concerns on this invention.
  • FIG. 1B is a diagram showing a mode in which a diffraction grating (daman grating) is used as a laser spot array forming unit.
  • FIG. 1B is a diagram showing a mode in which a phase grating is used as a laser spot array forming unit.
  • FIG. 1B is a diagram showing a mode using a pinhole array as a laser spot array forming means.
  • Sectional schematic diagram which shows the aspect at the time of completion
  • Sectional schematic diagram which shows the aspect of the water droplet formation process of the manufacturing method of the honeycomb structure film of 2nd Embodiment which concerns on this invention.
  • Sectional schematic diagram which shows the aspect at the time of completion
  • Sectional schematic diagram which shows the aspect of the evaporation process of the manufacturing method of the honeycomb structure film of 2nd Embodiment which concerns on this invention.
  • Sectional schematic diagram which shows the aspect at the time of completion
  • Sectional schematic diagram which shows the aspect at the time of completion
  • the cross-sectional schematic diagram which shows the aspect at the time of completion
  • Sectional schematic diagram which shows the aspect which removed the anodic oxide of the manufacturing method of the through-hole array used with the manufacturing method of the honeycomb structure film of 2nd Embodiment.
  • the cross-sectional schematic diagram which shows the aspect at the time of completion
  • Sectional schematic diagram which shows the aspect at the time of the acrylic resin removal process completion
  • Sectional schematic diagram which shows the aspect at the time of the completion
  • the perspective view which shows the aspect at the time of completion
  • FIG. 1A to 1D are schematic cross-sectional views showing a flow of a method for manufacturing a honeycomb structured film according to the first embodiment
  • FIG. 1E is a cross-sectional view in the thickness direction of the honeycomb structured film manufactured by the first manufacturing method.
  • FIG. 2 is a top view of the honeycomb structure film of FIG. 1E. In the drawings, the scale of each part is appropriately changed and shown for easy visual recognition.
  • the honeycomb structure film 1 includes a plurality of holes 12 and a polymer layer 11 having the plurality of holes 12 formed on one surface.
  • the plurality of holes 12 are opened in a substantially circular shape on the surface 11 s of the polymer layer 11 (the surface 1 s of the honeycomb structure film 1), and are arranged regularly and densely in a honeycomb shape. .
  • the plurality of holes 12 may be non-through holes as shown in FIG. 1E or may be through holes depending on applications.
  • the depth of the hole 12, the diameter of the opening, the maximum diameter, and the like can be adjusted by controlling the growth process of the water droplets. For example, in the manufacturing method described later, when the growth of water droplets contributing to the formation of the holes 12 is stopped at an early stage, the holes 12 having a small diameter can be manufactured.
  • the diameter and pitch of the plurality of holes 12 are not particularly limited, but are preferably 0.1 to several tens of microns.
  • the mode in which the polymer layer 11 is an independent layer is shown.
  • one or more supports or other polymer layers may be provided in the lower layer of the polymer layer 11.
  • the polymer layer 11 includes at least an amphiphilic polymer. Although it does not restrict
  • an amphiphilic polymer having a main chain skeleton of polyacrylamide, a dodecyl group as a hydrophobic side chain, and a carboxyl group as a hydrophilic side chain, a polyethylene glycol / polypropylene glycol block copolymer, and the like can be mentioned.
  • the hydrophobic side chain is a non-polar linear group such as an alkylene group or a phenylene group, and has a hydrophilic group such as a polar group or an ionic dissociation group to the end, excluding a linking group such as an ester group or an amide group. A structure that does not branch is preferable.
  • the hydrophobic side chain for example, when an alkylene group is used, it is preferably composed of 5 or more methylene units.
  • the hydrophilic side chain has a structure having a polar part, an ionic dissociation group, or a hydrophilic part such as an oxyethylene group at the terminal via a linking part such as an alkylene group.
  • the ratio of the hydrophobic side chain to the hydrophilic side chain differs depending on the size, nonpolarity, polarity strength, hydrophobicity of the hydrophobic organic solvent, etc.
  • the hydrophobic group: hydrophilic group) is preferably 0.1: 9.9 to 4.5: 5.5.
  • a copolymer a block copolymer in which a hydrophobic side chain and a hydrophilic side chain form a block as long as it does not affect the solubility in a hydrophobic solvent, rather than an alternating polymer of hydrophilic side chains of hydrophobic side chains. It is preferable that
  • the number average molecular weight (Mn) of the amphiphilic polymer is preferably 1,000 to 10,000,000, and more preferably 5,000 to 1,000,000.
  • Specific amphiphilic polymers include vinyl polymer (eg, polyethylene, polypropylene, polystyrene, polyacrylate, polymethacrylate, polyacrylamide, polymethacrylamide, polyvinyl chloride, polyvinylidene chloride, polyvinylidene fluoride, poly Hexafluoropropene, polyvinyl ether, polyvinyl carbazole, polyvinyl acetate, polytetrafluoroethylene, etc.), polyester (eg, polyethylene terephthalate, polyethylene naphthalate, polyethylene succinate, polybutylene succinate, polylactic acid, etc.), polylactone (eg, poly Caprolactone, etc.), cellulose acetate, polyamide or polyimide (eg, nylon or polyamic acid), polyurethane, polyurea Polybutadiene, polycarbonate, polysulfone, polyether sulfone, polysiloxane derivatives.
  • vinyl polymer eg, polyethylene,
  • the amphiphilic polymer may be one type of polymer, but may be a plurality of types of polymers.
  • the size of the water droplets and the position where the water droplets are formed can be controlled with higher accuracy by devising the combination, so that the honeycomb structure film 1 with high alignment accuracy can be obtained.
  • the polymer layer 11 may appropriately include a hydrophobic polymer other than the amphiphilic polymer.
  • the hydrophobic polymer include vinyl polymer (for example, polyethylene, polypropylene, polystyrene, polyacrylate, polymethacrylate, polyacrylamide, polymethacrylamide, polyvinyl chloride, polyvinylidene chloride, polyvinylidene fluoride, polyhexafluoropropene, Polyvinyl ether, polyvinyl carbazole, polyvinyl acetate, polyvinyl carbazole, polytetrafluoroethylene, etc.), polyester (eg, polyethylene terephthalate, polyethylene naphthalate, polyethylene succinate, polybutylene succinate, polylactic acid, etc.), polylactone (eg, polycaprolactone, etc.) Etc.), polyamide or polyimide (for example, nylon or polyamic acid), polyurethane, polyurea, Li butadiene, polycarbonate, poly
  • these may be homopolymers as necessary, or may take the form of copolymers or polymer blends. In addition, you may use these polymers as a mixture of 2 or more types of polymers as needed. For use in optical applications, for example, cellulose acylate and cyclic polyolefin are preferred. Below, the manufacturing method of the honeycomb structure film 1 is demonstrated.
  • the method for manufacturing a honeycomb structure film of the first embodiment includes a plurality of convex portions having a tip 30t having hydrophobicity and a plurality of concave portions 30p capable of storing water.
  • a polymer solution in which at least an amphiphilic polymer is dissolved in a hydrophobic organic solvent is applied on the uneven substrate 30 on which the aqueous layer 20 is formed, and the polymer solution layer 10 is applied to the aqueous layer 20 and the exposed tip 30t.
  • a polymer solution layer forming step for forming (FIG.
  • the light spot irradiation means 40 irradiates a predetermined two-dimensional array position on the surface of the concavo-convex substrate 30 with a light spot L, heats the concavo-convex substrate 30 of the irradiated portion, and generates bubbles by local boiling or cavitation in the concave portion 30p.
  • Water droplets that are generated and that are stored in the recesses 30p are discharged from the recesses 30p to form water droplets 20b containing the water in the water layer 20 at least in the vicinity of the concavo-convex substrate contact surface in the polymer solution layer 10 on the two-dimensional array position. Forming step (FIGS.
  • the evaporation step of sequentially evaporating the water droplet 20b and the hydrophobic organic solvent to form a polymer layer 11 containing at least an amphiphilic polymer and a plurality of holes 12 formed on one surface 11s of the polymer layer 11 ,
  • the water layer 20 is formed so that the tip portions 30t of the plurality of convex portions of the concavo-convex substrate 30 are exposed.
  • the present inventor has reached the present invention.
  • the manufacturing method of the present invention since the water droplet aggregate obtained from the water droplets that can be formed at a desired two-dimensional regular array position is used as a template, it is possible to reduce mismatch in the array regularity of the aggregate. .
  • the size of the water droplet is almost uniquely determined by the intensity and size of the light spot to be irradiated, the heat generation efficiency of the light absorption heating element, etc., so there is little variation and the adjustment range is wide. Therefore, according to the present invention, it is possible to produce a honeycomb structure film having a wide range of pore diameters that can be formed and having a highly accurate arrangement regularity.
  • FIG. 1A is a schematic view showing a state in which the formation of the water layer 20 and the formation of the polymer solution layer 10 are performed on the uneven substrate 30.
  • the concavo-convex substrate 30 includes a plurality of convex portions having a hydrophobic tip 30t and a plurality of concave portions 30p capable of storing water on one surface, and the surface 30w of the concave portion 30p serves as a light absorption heating element. Yes. If it has such a structure, the concavo-convex structure of the concavo-convex substrate 30 is not particularly limited, but considering the ease of forming the water layer 20, it is preferably a nanopillar structure or a moth-eye structure.
  • the shape of the convex part is preferably as large as possible in the aspect ratio (depth from the tip 30t to the concave part 30p / pitch of the convex part) so that the concave part 30p can easily store water.
  • the concavo-convex substrate 30 shown in FIG. 1A is a sectional view in the thickness direction of an example of a convex shape that the present inventors consider preferable.
  • the pitch of the convex portions of the concavo-convex substrate 30 is preferably a size that allows a plurality of concave portions 30p of the concavo-convex substrate 30 to be included in the light spot diameter of the light irradiated in the subsequent water droplet forming step. It is more preferable that it is 1 or less.
  • the surface 30w of the concave portion 30p is composed of a light absorption heating element.
  • the light absorbing heating element is not particularly limited, and is a semiconductor material having a band gap smaller than the energy of the light spot (such as Si if the light spot is visible light), amorphous carbon, diamond-like carbon, graphite, carbon. Examples thereof include carbon materials such as fibers, carbon nanotubes, and carbon nanohorns, metals, and chrome plating. Amorphous carbon is preferable from the viewpoint of excellent heat generation efficiency.
  • hydrophobic material such as amorphous carbon
  • hydrophilic treatment for making the surface 30w of the concave portion 30p hydrophilic.
  • hydrophilic treatment of amorphous carbon include, for example, JP-A-2004-45144, JP-A-2008-13787, JP-A-2003-112910, JP-A-7-315820, JP-A-2000-243410, It can be carried out by a known technique described in JP-A-2003-142116.
  • the tip 30t of the convex portion has affinity (hydrophobicity) with respect to the hydrophobic organic solvent so that a polymer solution layer can be formed on the upper layer. Accordingly, when the hydrophilic treatment of the surface 30w of the concave portion 30p is performed, the hydrophilic portion is removed except for the tip portion 30t of the convex portion, or the tip portion 30t is made hydrophobic after the entire surface of the concavo-convex structure 30 is hydrophilized. You may perform the process (hydrophobization process) which provides the affinity with a hydrophilic organic solvent.
  • the method of hydrophobizing treatment is not particularly limited, and the tip 30t may be hydrophobized by a known hydrophobizing method.
  • a method of forming a film by a vapor phase method such as a CVD method or a PVD method is preferable.
  • an amorphous carbon film may be more locally formed on the tip 30t. It is more preferable because it is possible.
  • the concavo-convex structure 30 is a nanopillar structure, if the nanopillar structure has a sufficiently large aspect ratio and is densely forested, amorphous carbon is less likely to adhere to the side surface of the nanopillar, and carbon can be closely adhered to the vicinity of the tip 30t. .
  • This hydrophobic treatment needs to be performed on the tip 30t even when the light-absorbing heating element is hydrophilic.
  • water layer forming step water is stored in the plurality of recesses 30 p of the prepared uneven substrate 30 to form the water layer 20 in the uneven substrate 30.
  • the method for forming the water layer 20 is not particularly limited, and the water layer 20 can be formed by dropping or coating water from the top of the concavo-convex substrate 30.
  • the water layer 20 may be formed so that the tip portion 30t of the convex portion is exposed, but is preferably formed so that as much water as possible is filled in the concave portion 30p.
  • Polymer solution layer forming process a polymer solution (honeycomb solution) in which at least an amphiphilic polymer is dissolved in a hydrophobic organic solvent is applied on the uneven substrate 30 on which the water layer 20 is formed, and the water layer 20 and the tip portion A polymer solution layer 10 is formed on 30t (FIG. 1A).
  • the polymer solution layer 10 may be formed by coating, but is preferably formed by a casting method.
  • the casting method is not particularly limited and may be appropriately selected. Examples thereof include a slide method, an extrusion method, a bar method, and a gravure method.
  • hydrophobic organic solvent examples include halogen-based organic solvents such as chloroform and methylene chloride; aromatic hydrocarbons such as benzene, toluene and xylene; esters such as ethyl acetate and butyl acetate; water-insoluble such as methyl isobutyl ketone Ketones; ethers such as diethyl ether; carbon disulfide; and the like. These may be used singly or as a mixed solvent in which these solvents are combined.
  • halogen-based organic solvents such as chloroform and methylene chloride
  • aromatic hydrocarbons such as benzene, toluene and xylene
  • esters such as ethyl acetate and butyl acetate
  • water-insoluble such as methyl isobutyl ketone Ketones
  • ethers such as diethyl ether
  • carbon disulfide and the like.
  • the amphiphilic polymer has already been described.
  • the amphiphilic polymer preferably acts to prevent the fusion of water droplets by suppressing the phenomenon of surface tension between the water droplets formed in the polymer solution and the hydrophobic organic solvent in the subsequent water droplet formation step.
  • the honeycomb structure is transported and collected by the flow of the non-volatile hydrophobic organic solvent by the volatilization of the hydrophobic organic solvent and the filling from the surroundings in the subsequent evaporation step, and further closely packed by the capillary force, Finally, when the water evaporates, the pores are formed in a honeycomb shape. Therefore, by including an amphiphilic polymer in the polymer solution, it is possible to suppress variation in pore size and arrangement regularity due to aggregation of water droplets in the polymer solution.
  • the polymer concentration in the polymer solution is preferably 0.01 to 30% by mass, and more preferably 0.01 to 10% by mass. When the polymer concentration exceeds 30% by mass, it may be difficult to obtain a sufficient honeycomb structure.
  • the light spot L is irradiated to a predetermined two-dimensional array position on the surface of the concavo-convex substrate 30 by the light spot irradiating means 40 to the polymer solution layer 10 formed on the concavo-convex substrate 30, A polymer solution on a two-dimensional array position in which the concave / convex substrate 30 is heated to generate bubbles by local boiling or cavitation in the concave portion 30p, and water stored in the concave portion 30p is discharged from the concave portion 30p and irradiated with a light spot.
  • a water droplet 20b containing water in the water layer 20 is formed in the layer 10 (FIG. 1B).
  • the concave / convex substrate 30 (predetermined two-dimensional array position) of the irradiated portion of the light spot L absorbs the light spot L and generates heat.
  • the water stored in the recess 30p is heated by the generated heat.
  • This heating causes local boiling or cavitation in the recess 30p, and bubbles are generated in the recess 30p.
  • the water that can no longer exist in the concave portion 30p due to the generation of the bubbles is discharged from the concave portion 30p to form water droplets 20b in the polymer solution layer 10 on the irradiation range of the light spot L. That is, the generation of the bubbles becomes a discharge force for discharging water from the recess 30p into the polymer solution layer 10.
  • the light spot L needs to have sufficient energy to form the water droplet 20b in a short time, and the water in the water layer 20 within the range irradiated with the light spot is heated and bubbled by boiling or cavitation. It is preferable to have an energy capable of generating.
  • FIG. 3 shows the measurement result of the cavitation bubble generation threshold power when 1064 nm CW laser light is condensed on the surface of amorphous carbon in water.
  • a laser power of about 30 mW or more is sufficient to generate a cavitation bubble.
  • the light spot irradiating means 40 includes a light source 41 capable of irradiating light having a wavelength that can be absorbed by the light-absorbing heating element constituting the concavo-convex substrate 30, and light emitted from the light source 41 for a predetermined 2 It may include scanning means such as an optical system 42 and a movable stage 43 that guide the light to the dimension array position as a light spot.
  • a light spot can be irradiated onto a predetermined two-dimensional array position on the surface of the concavo-convex substrate 30 by a two-dimensional scanning means combining the scanning optical system and the moving stage.
  • FIG. 1B does not show details of the optical system 42. Specific examples of the optical system 42 include the modes shown in FIGS. These will be described later.
  • irradiation method of the light spot L include a method in which a one-dimensional or two-dimensional laser spot array is formed by a laser spot array forming unit, and the laser spot array is scanned by a scanning unit.
  • the laser spot array is irradiated with pulse lighting, and the irradiation position is turned off when moving.
  • the laser spot array forming means 40 may be in any form as long as it can form a laser spot array having a peak intensity at a desired one-dimensional or two-dimensional array position.
  • an optical element capable of forming the beam L in a one-dimensional or two-dimensional direction corresponding to a desired one-dimensional or two-dimensional array position is provided at a predetermined position in the laser light path.
  • Examples of the optical element capable of forming the multi-laser beam L include a daman grating and a phase grating having an optical action equivalent to this.
  • Figure 4 is substantially a parallel beam L 0 by the collimator lens 401 a laser beam emitted from the semiconductor laser light source 41 to form a laser spot L substantially parallel beam L 0 is condensed by the condenser lens 404 in the honeycomb surface of the solution
  • a laser spot array L is formed on the honeycomb solution surface by inserting and arranging a daman grating (diffraction grating) 402 and a scanning optical system 403 such as a polygon in a substantially parallel beam optical path.
  • Daman grating 402 acts substantially parallel beam L 0, and divides the transmitted beam one-dimensionally or more beams L1 of approximately equal intensity corresponding 1-dimensional or 2-dimensional direction in a two-dimensional array position.
  • the plurality of beams L1 divided into substantially equal intensities are collected by a condenser lens 404 to form a laser spot array L having a peak intensity at a desired one-dimensional or two-dimensional arrangement position on the honeycomb solution surface.
  • a desired two-dimensional array position can be irradiated by a stage 43 and a scanning optical system 403 such as a polygon.
  • the daman grating 402 may be replaced with another optical element having an equivalent optical action, and the optical element having an equivalent optical action can also be configured using a beam splitter such as a prism or a parallel plate.
  • Figure 5 shows the optical action of the Dammann grating 402 with respect to the incident laser beam L 0.
  • the light L 0 incident on the daman grating 402 is divided into light having an angle ⁇ ⁇ according to the characteristics of the daman grating 402 and emitted.
  • Figure 6 is substantially a parallel beam L 0 by the collimator lens 401 a laser beam emitted from the semiconductor laser light source, substantially parallel beam L 0 is a parallel beam L1 after being enlarged by the magnifying optical system 405 to a desired beam diameter
  • This is made incident on the phase grating 406 optimized so that only the ⁇ 1st-order diffracted beam has intensity, and an interference fringe L if is formed in a region where the ⁇ 1st-order diffracted beams emitted from the phase grating 406 overlap.
  • a one-dimensional phase grating 406 is used.
  • a two-dimensional phase grating 406 is used.
  • FIG. 7 shows the schematic optical action of the phase grating 406.
  • the light source L is not particularly limited as long as the light spot L has energy capable of forming the water droplet 20b (energy that can cause boiling or cavitation), and various lasers, light emitting diodes (LEDs), and the like are used. Further, the light spot irradiation means 40 may be provided with an amplifier for amplifying light energy.
  • a mode including a two-dimensional pinhole array mask 407 that forms transmitted light having a light peak intensity at a predetermined two-dimensional array position can be cited.
  • Figure 8 is substantially a parallel beam L 0 by the collimator lens 401 a laser beam emitted from the semiconductor laser light source 41, a pinhole array mask 407 arranged in a substantially optical path of the parallel beam L 0, the peak in a two-dimensional array positions intensity
  • the pinhole array transmitted light L1 having an image is formed by the imaging lens 404 to form a laser spot array L on the honeycomb liquid surface.
  • a desired two-dimensional array position can be irradiated by the stage 43 and a scanning optical system 403 such as a polygon.
  • the irradiation range of the light spot L is preferably capable of irradiating a plurality of adjacent concave portions 30p in the concave-convex structure 30, and the size of the holes 12 formed in the honeycomb structure film 1 and the concave portions What is necessary is just to adjust according to the magnitude
  • the evaporation step may be performed either under heating or under non-heating, but the hydrophobic organic solvent, which is more likely to volatilize than water, has progressed to some extent, and even after the start of evaporation of the water droplet 20b, the water droplet in the polymer layer 11 It is necessary to carry out under the condition that the shape of the 20b forming position is maintained.
  • the temperature condition is not limited and can be carried out under such conditions, but from the viewpoint of the quality of the honeycomb structure film 1 obtained after evaporation and the efficient evaporation step,
  • the evaporation of the water droplet 20b is preferably carried out under heating at a surface temperature of the polymer solution of about 10 ° C to 40 ° C.
  • FIGS. 9A to 9D are schematic cross-sectional views showing the flow of the method for manufacturing a honeycomb structured film according to the second embodiment of the present invention.
  • FIG. 9E is a cross-sectional view in the thickness direction of the honeycomb structure film manufactured by the second manufacturing method, which is the same as that manufactured by the first manufacturing method (similar to FIG. 1E).
  • honeycomb structure film 1 obtained in the second manufacturing method is the same as that of the first embodiment, the description of the constituent elements is omitted.
  • At least the surface 32w is a light absorption heating element, and a plate-like through having a large number of through holes 32 into which water can be introduced is formed.
  • a hole array 30 ′ is prepared, and water or supersaturated water vapor is brought into contact with one surface 30 ′ s where the through holes 32 of the through hole array 30 ′ are opened, and water or supersaturated water vapor is filled in the many through holes 32.
  • the light spot irradiating means 40 irradiates a predetermined two-dimensional array position on the surface 30's with the light spot L from the water layer 20 side, and heats at least the surface 32w of the through hole 32 irradiated with the light spot L to penetrate.
  • Bubbles are generated in the holes 32 by local boiling or cavitation, and water or supersaturated water vapor in the through holes 32 is discharged into the polymer solution layer 10 so that the vicinity of the contact surface of the polymer solution layer 10 with the through-hole array 30 ′
  • a water droplet forming step for forming water droplets 20b on the substrate (FIGS. 9B and 9C);
  • An evaporation step (FIG. 9D) of evaporating the water droplets 20b and the hydrophobic organic solvent to form a polymer layer 11 containing at least an amphiphilic polymer and a plurality of holes 12 formed on one surface 11s of the polymer layer 11; are sequentially provided.
  • FIG. 9A a through-hole array 30 ′ is prepared, and a water layer forming step of forming the water layer 20 in one surface 30 ′s and the through-hole 32 of the through-hole array 30 ′, and the opposite surface 30′t 2 is a schematic view of a state where a polymer solution layer forming step for forming a polymer solution layer 10 is performed.
  • FIG. 9A a through-hole array 30 ′ is prepared, and a water layer forming step of forming the water layer 20 in one surface 30 ′s and the through-hole 32 of the through-hole array 30 ′, and the opposite surface 30′t 2 is a schematic view of a state where a polymer solution layer forming step for forming a polymer solution layer 10 is performed.
  • the pitch of the through-holes 32 is preferably large enough to allow a plurality of through-holes 32 to enter the light spot diameter of light irradiated in the subsequent water droplet forming step, and is not more than one-fifth of the light spot diameter. It is more preferable.
  • the diameter of the through hole 32 is as large as possible and the in-plane aperture ratio is high.
  • the shape of the through hole 32 is not particularly limited, but is preferably a substantially parallel straight hole. In the case of such a shape, the aspect ratio of the through hole 32 is preferably large, and is preferably 10 or more.
  • the through-hole array 30 ′ is not particularly limited as long as at least the surface 32w is a light-absorbing heating element and has a through-hole 32 into which water can be introduced, but in order to obtain good heat generation efficiency. It is preferable that not only the surface 32w of the through-hole 32 but also the light absorption heating element in a wider range can form water droplets efficiently.
  • the surface 30't which is the surface on which the polymer solution layer 10 is formed, of the through-hole array 30 'has an affinity for the hydrophobic organic solvent.
  • the surface 30 ′ s which is the surface on which the water layer 20 is formed, preferably has hydrophilicity, but may not be as long as the water layer 20 can be formed in the through hole 32.
  • the light absorption heating element is the same as that in the first embodiment.
  • the surface 32w of the through hole 32 is preferably hydrophilic.
  • the aspect formed by the surface treatment which provides hydrophilicity is preferable. It is preferable to perform a treatment (hydrophilization treatment) for making the surface 32w of the through hole 32 hydrophilic.
  • a treatment hydrophilization treatment
  • the surface 30 ′s on the water layer forming side is similarly subjected to a hydrophilic treatment.
  • the method for imparting affinity to the hydrophobic organic solvent may be the same method as in the first embodiment.
  • the method for producing the through-hole array is not particularly limited, but it is preferable to produce a nanohole array produced by anodizing a metal substrate such as aluminum as a mold.
  • the anodized nanohole array is preferable because it has a large number of micropores arranged in a substantially regular manner and can be easily manufactured.
  • an aluminum plate is anodized from one surface to produce a nanohole array 31A having an anodized alumina layer 31AO layer on a non-anodized aluminum layer 31AA (FIG. 10A).
  • a nanohole array with the desired nanohole diameter, nanohole depth, and nanohole pitch is prepared by adjusting the anodic oxidation conditions such as anodic oxidation solution, voltage, and current, and etching conditions for expanding the hole diameter. can do.
  • anodic oxidation conditions such as anodic oxidation solution, voltage, and current, and etching conditions for expanding the hole diameter. can do.
  • a nanohole array having a nanohole diameter of about 70 nanometers, a distance between adjacent nanoholes of about 200 nanometers, and a nanohole depth of about 30 microns is suitable in the present invention.
  • a resin monomer that is well soluble in an organic solvent such as methyl methacrylate is poured into the produced aluminum anodized nanohole array 31A together with a polymerization initiator, and this is polymerized in a nitrogen atmosphere to form an aluminum anodized nanohole array 31A.
  • the resin nanopillar array 31T is solidified and molded (FIG. 10B).
  • the non-anodized aluminum layer 31AA and the anodized alumina layer 31AO layer are dissolved with a diluted sodium hydroxide solution or the like to obtain a resin nanopillar array 31T using the aluminum anodized nanohole array 31A as a template (FIG. 10C).
  • a monomer of a solvent-resistant thermosetting resin such as a phenol resin
  • a phenol resin such as a resol phenol resin monomer having a viscosity of about 200 cp
  • a phenol resin nanothrough-hole array 31R on the resin nanopillar array 31T by polymerizing and solidifying and molding a phenol resin at a temperature below the glass transition temperature of the resin nanopillar array
  • the resin nanopillar array 31T is heated to such an extent that the resin nanopillar array is melted, or the resin nanopillar array 31T is melted or dissolved in an organic solvent such as acetone.
  • an organic solvent such as acetone
  • the phenol resin nano-through-hole array 31R is gradually heated and fired to about 1300 ° C. in a firing furnace or the like, so that only the phenol resin carbon remains and becomes amorphous carbon. '(31) is obtained (FIG. 10F, FIG. 10G). Since the phenol resin shrinks in the firing step, it is preferable to design the anodizing conditions and the like in consideration of the shrinkage.
  • the plurality of through holes 32 of the prepared through hole array 30 ′ are filled with water to form the water layer 20 at least in the through holes 32.
  • the water layer 20 is also formed on the surface 30 ′s of the through-hole array 30 ′.
  • the method for forming the water layer 20 is not particularly limited, and the water layer 20 may be formed by dropping or coating water from the top of the through-hole array 30 ', or by applying supersaturated water vapor to the surface 30's. Good. Even when supersaturated water vapor is used, most of the through holes 32 are filled with the water layer 20.
  • the water layer 20 may contain supersaturated water vapor.
  • the supersaturated water vapor supply means and its temperature control means which are essential in the conventional dew condensation method, are unnecessary, and the control factor is reduced. Therefore, by adopting such an embodiment, it is possible to manufacture a honeycomb structure film having a desired arrangement regularity with higher accuracy.
  • Polymer solution layer forming process a polymer solution (honeycomb solution) in which at least an amphiphilic polymer is dissolved in a hydrophobic organic solvent is applied to the other surface 30′t of the through-hole array 30 ′ where the water layer 20 is formed.
  • the polymer solution layer 10 is formed by coating (FIG. 9A).
  • the water layer 20 is covered with a protective plate 50 or a protective container made of glass so that the water layer 20 can be maintained even if the top and bottom are reversed. It is placed on an xy stage (movable stage) 43 with one surface 30′t exposed on the surface. Further, the through hole array 30 ′ is held at a certain interval on a glass plate holding plate 50 placed on the xy stage 43, and water is guided between the holding plate 50 and the through hole array 30 ′. May be satisfied.
  • the polymer solution layer 10 is formed on the surface 30 ′ t and the water layer 20 by coating.
  • the formation of the polymer solution layer 10 is the same as in the first embodiment.
  • the light spot irradiating means 40 irradiates a predetermined two-dimensional array position of the surface 30's with the light spot L from the water layer 20 side, and heats at least the surface 32w of the through-hole 32 irradiated with the light spot L. Then, bubbles are generated by local boiling or cavitation in the through-hole 32 and water or supersaturated water vapor in the through-hole 32 is discharged into the polymer solution layer 10 to form a through-hole array 30 ′ of the polymer solution layer 10. Water droplets 20b are formed in the vicinity of the contact surface (FIG. 9B).
  • the surface 32w (predetermined two-dimensional array position) of the through-hole 32 of the irradiated portion of the light spot L absorbs the light L. Heat is generated, and the water stored in the through hole 32 is heated by the generated heat.
  • This heating causes local boiling or cavitation in the through hole 32, and bubbles are generated in the through hole 32.
  • water that cannot be present in the through-hole 32 due to the generation of the bubbles is discharged from the through-hole 32 into the polymer solution layer 10 on the irradiation range, and in the polymer solution layer 10 on the irradiation range of the light spot L.
  • Water droplets 20b are formed on the surface. That is, the generation of the bubbles serves as a discharge force for discharging water from the through holes 32 into the polymer solution layer 10.
  • the light spot L needs to have sufficient energy to form the water droplet 20b in a short time, and heats the water in the water layer 20 within the range irradiated with the light spot.
  • the light spot irradiating means 40 includes a light source 41 that can irradiate light having a wavelength that can be absorbed by the light-absorbing heating element constituting the through-hole array 30 ′, and light emitted from the light source 41 on the surface of the through-hole array 30 ′.
  • the optical system 42 that guides the light spot to a predetermined two-dimensional array position, and scanning means such as the movable stage 43 may be included.
  • a light spot can be irradiated onto a predetermined two-dimensional array position on the surface 30's of the through-hole array 30 'by a two-dimensional scanning unit combining the scanning optical system and the moving stage.
  • the light spot irradiation means 40 is the same in both embodiments except that the irradiation target is the concavo-convex substrate 30 in the first embodiment, but the through hole array 30 ′ in the second embodiment. Therefore, the detailed description of the light source 41 and the irradiation method is the same as in the first embodiment.
  • the irradiation range of the light spot L is preferably one that can irradiate a plurality of adjacent through holes 32 in the through hole array 30 ′, and the size of the holes 12 formed in the honeycomb structure film 1 and the adjacent through holes What is necessary is just to adjust according to the magnitude
  • a water droplet obtained by the water droplet 20b that can be formed at a desired two-dimensional regular array position is used as a template.
  • the size of the water droplets is determined almost uniquely depending on the intensity and size of the light spot L to be irradiated, the size of the holes of the through-hole array 30 'in the second embodiment, the heat generation efficiency of the light-absorbing heating element, and so on. There are few and the adjustment range is wide. Therefore, according to the present invention, it is possible to manufacture the honeycomb structure film 1 having a wide range of pore diameters that can be formed and having a highly accurate arrangement regularity.
  • the supersaturated water vapor supply means and its temperature control means which are essential in the conventional dew condensation method, are unnecessary, and the control factor is reduced. Therefore, by adopting such an embodiment, it is possible to manufacture a honeycomb structure film having a desired arrangement regularity with higher accuracy.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)

Abstract

少なくとも表面が光吸収発熱体であり、且つ、水を貯留可能な複数の凹部(30p)または貫通孔(32)内に水層(20)を形成する水層形成工程と、基板(30)の複数の凹部または貫通孔が開口した表面に、疎水性有機溶媒に少なくとも両親媒性ポリマーを溶解させたポリマー溶液を接触させて前記表面に該ポリマー溶液の層(10)を形成するポリマー溶液層形成工程と、基板の表面又は裏面の所定の2次元配列位置に光スポット(L)を照射して、該照射部分の光吸収発熱体を発熱させてポリマー溶液層内の少なくとも基板接触面近傍に水滴(20b)を形成する水滴形成工程と、水滴及び疎水性有機溶媒を蒸発させて、少なくとも両親媒性ポリマーを含むポリマー層(11)と該ポリマー層の一表面に形成されてなる複数の孔(12)とを形成する蒸発工程とを順次有する。

Description

ハニカム構造フィルムの製造方法
 本発明は、ハニカム構造フィルムの製造方法に関するものである。
 光学分野や電子分野における集積度の向上や情報量の高密度化、画像情報の高精細化といった要求に応えるべく、微細な孔が密に形成されたハニカム構造フィルムはその製造方法についての検討が進められている。また、ハニカム構造フィルムは、外科手術時の組織と組織との癒着を防止する癒着防止材といった医用材料への利用や細胞培養基材として再生医療分野での利用がすすめられるなど、医療分野からも期待が寄せられる。
 ハニカム構造のフィルムをつくる代表的な方法としては、結露法がある。結露法は、特許文献1~5に記載されているように、ポリマーの疎水性有機溶媒溶液(ハニカム溶液)の液膜表面を加湿雰囲気下に曝し、該表面に結露した水滴により自己組織的に形成される水滴集積体がハニカム溶液中にアレイ状に配列されて形成される現象を利用し、その水滴集合体を鋳型として、液膜中の液体成分と形成した水滴を蒸発させることで、ハニカム状の多孔質フィルム(ハニカム構造フィルム)を形成する方法である。
 結露法では、自己組織的に形成される水滴集合体を鋳型とすることで、ミクロンオーダーの配列多孔体を容易なプロセスにて低コストで製造可能であるが、自己組織的に形成された水滴集積体を用いるため、以下の問題点を有している。
 水滴の自己組織的な結露及び集積化は溶液面内のランダムな位置で発生して成長するため、多数の水滴集積体間の境界領域では集積体の配列規則性の不整合が生じる。この不整合は水滴の集積力等によって一定程度は除去されるが集積力にもばらつきがあるため完全には除去されない。また、溶液面での水滴発生の開始時間、成長の速度に揺らぎがあるため、水滴の大きさの制御が難しく、その結果、鋳型である水滴集積体の大きさ及び配列規則性に揺らぎが生じ易い。従って、所望の孔サイズ及び良好な配列規則性を溶液表面全体において形成することが難しい。
 特許文献4では、液膜の露出面における水滴形成密度及び水滴の大きさを大きくすることにより水滴集合体の配列規則性を高めるために、流延する溶液中に界面活性剤を含ませる方法が開示されている。しかしながら、特許文献4の方法では水滴の形成密度にも限界があるため、配列規則性の良好なハニカム構造フィルムの製造は一定範囲の孔径のものに限られてしまう。
 特許文献5では、疎水性の溶剤と親水性の溶剤との混合物に高分子化合物を溶解して得られたハニカム溶液により液膜を用いることにより、水滴形成密度を大きくして配列規則性を高める方法が提案されている。
特開2001-157574号公報 特開2005-232238号公報 国際公開WO2006/080362号パンフレット 特開2007-175962号公報 特開2008-179749号公報
 特許文献5の方法は、特許文献4の方法に比べて、水滴をより早く発生させ、より速く成長させることが可能なため、水滴形成密度の上限を高められるが、そのためには親水性の溶剤を多くする必要があるため得られる水滴の大きさも形状も不均一となり易く、配列が乱れやすい。このため、特許文献5の方法においても、高精度の配列規則性を有するハニカム構造フィルムを得ることが難しい。
 本発明は、上記事情を鑑みてなされたものであり、形成可能な孔径範囲が広く、高精度の配列規則性を有するハニカム構造フィルムを製造することを目的とするものである。
 本発明のハニカム構造フィルムの製造方法は、少なくとも表面が光吸収発熱体であり、且つ、水を貯留可能な複数の凹部または貫通孔を有する基板を用意し、
 前記複数の凹部または貫通孔内に水層を形成する水層形成工程と、
 前記基板の前記複数の凹部または貫通孔が開口した表面に、疎水性有機溶媒に少なくとも両親媒性ポリマーを溶解させたポリマー溶液を接触させて前記表面に該ポリマー溶液の層を形成するポリマー溶液層形成工程と、
 光スポット照射手段により前記表面又は裏面の所定の2次元配列位置に光スポットを照射して、該照射部分の前記光吸収発熱体を発熱させて前記複数の凹部または貫通孔内に局所的な沸騰又はキャビテーションによる気泡を発生させると共に該複数の凹部または貫通孔に貯留された水を、該凹部または貫通孔から吐出させて前記2次元配列位置上の前記ポリマー溶液層内の少なくとも前記、基板接触面近傍に前記水層内の水を含む水滴を形成する水滴形成工程と、
 前記水滴及び前記疎水性有機溶媒を蒸発させて、少なくとも前記両親媒性ポリマーを含むポリマー層と該ポリマー層の一表面に形成されてなる複数の孔とを形成する蒸発工程とを順次有することを特徴とするものである。
 本発明のハニカム構造フィルムの第1の製造方法は、前記基板が、先端部が疎水性を有する複数の凸部と、水を貯留可能な複数の凹部とを一表面に備えた凹凸基板であり、
 前記水層形成工程において前記凹凸基板の複数の凸部の先端部が露出するように前記複数の凹部に水を貯留させて前記水層を形成し、
 前記水滴形成工程において、前記凹部に局所的な沸騰又はキャビテーションによる気泡を発生させると共に該凹部に貯留された水を該凹部から吐出させることを特徴としている。
 本発明のハニカム構造フィルムの第2の製造方法は、前記基板が、前記貫通孔が多数形成された板状のスルーホールアレイであり、
 前記水層形成工程において、前記表面に水又は過飽和水蒸気を接触させて、前記多数の貫通孔内に水または過飽和水蒸気を充填することにより前記水層を形成し、
 前記ポリマー溶液層形成工程において、前記裏面に前記ポリマー溶液を接触させ、
 前記水滴形成工程において、前記表面の所定の2次元配列位置に前記水層側から光スポットを照射して、該光スポットが照射された前記貫通孔の少なくとも表面を発熱させて該貫通孔内に局所的な沸騰又はキャビテーションによって気泡を発生させると共に前記貫通孔内の水又は過飽和水蒸気を前記ポリマー溶液層内に吐出させて該ポリマー溶液層の前記スルーホールアレイとの接触面近傍に水滴を形成することを特徴としている。ここで貫通孔は、略平行なストレート孔であることが好ましい。
 本明細書において、「疎水性を有する」とは、疎水性有機溶媒に対して親和性を有することを意味する。
 また、ハニカム構造とは、略一定形状、略一定サイズの孔が連続かつ略規則的に配列している構造を意味し、この規則配列は単層の場合は二次元的であり、複数層である場合は三次元的にも規則性を有する。規則性は、主に、二次元的には、1つの孔の周囲を複数(例えば6つ)の孔が取り囲むように配置され、三次元的には結晶構造の面心立方や六方晶のような構造をとって最密充填される態様であるが、規則性を有していればこの限りではない。
 上記第1及び第2の製造方法では、前記水滴形成工程において、1つの前記光スポットで隣接する複数の前記凹部又は複数の前記貫通孔を照射可能であることが好ましい。
 前記凹凸基板及び貫通孔の少なくとも表面は、アモルファスカーボンであることが好ましい。また、前記凹凸基板の前記水が貯留される凹部及び貫通孔の表面は、親水性であることが好ましく、該表面は親水性を付与する表面処理が施されてなる態様が好ましい。
 前記光スポット照射手段は、光スポットを凹凸基板又はスルーホールアレイの表面を2次元走査可能な走査手段を備えていることが好ましい。
 また、前記光スポット照射手段の好ましい態様としては、前記2次元配列位置に光ピーク強度を有する干渉縞を形成する2次元レーザ光スポットアレイ形成手段を備えてなる態様が挙げられる。
 また、前記光スポット照射手段のその他の好ましい態様としては、前記2次元配列位置に光ピーク強度を有する透過光を形成する2次元ピンホールアレイマスクを備えてなる態様が挙げられる。
 本発明のハニカム構造フィルムの製造方法では、自己集積的に形成される水滴集合体を鋳型として用いる結露法と異なり、所望の2次元規則配列位置に形成することできる水滴により得られる水滴を鋳型として用いるため、水滴からなる鋳型の配列規則性の不整合を無くすことができる。水滴の大きさは、照射する光スポットの強度及びサイズ、光吸収発熱体の発熱効率等によってほぼ一義的に決定されるためばらつきが少ない上、その調整範囲も広い。従って、本発明によれば、形成可能な孔径範囲が広く、高精度の配列規則性を有するハニカム構造フィルムを製造することができる。
 また、水層の形成において水を用いる態様では、従来の結露法において必須である過飽和水蒸気供給手段及びその温度制御手段が不要となるため制御因子が低減される。従って、かかる態様とすることにより、一層高精度で所望の配列規則性を有するハニカム構造フィルムを製造することができる。
本発明に係る第1実施形態のハニカム構造フィルムの製造方法の水層形成工程およびポリマー層形成行程終了時の態様を示す断面模式図 本発明に係る第1実施形態のハニカム構造フィルムの製造方法の水滴形成工程の態様を示す断面模式図 本発明に係る第1実施形態のハニカム構造フィルムの製造方法の水滴形成工程終了時の態様を示す断面模式図 本発明に係る第1実施形態のハニカム構造フィルムの製造方法の蒸発工程の態様を示す断面模式図 本発明に係る第1実施形態のハニカム構造フィルムの製造方法の蒸発工程終了時の態様を示す断面模式図 本発明のハニカム構造フィルムの製造方法により得られるハニカム構造フィルムの上面模式図 レーザ光を水中のアモルファスカーボン表面に集光した時のキャビテーションバブル生成閾値パワー測定結果 図1Bにおいて、レーザスポットアレイ形成手段として回折格子(ダマングレーティング)を用いた態様を示す図 ダマングレーティングの作用を示す模式図 図1Bにおいて、レーザスポットアレイ形成手段として位相格子を用いた態様を示す図 位相格子の作用を示す模式図 図1Bにおいて、レーザスポットアレイ形成手段としてピンホールアレイを用いた態様を示す図 本発明に係る第2実施形態のハニカム構造フィルムの製造方法の水層形成工程およびポリマー層形成行程終了時の態様を示す断面模式図 本発明に係る第2実施形態のハニカム構造フィルムの製造方法の水滴形成工程の態様を示す断面模式図 本発明に係る第2実施形態のハニカム構造フィルムの製造方法の水滴形成工程終了時の態様を示す断面模式図 本発明に係る第2実施形態のハニカム構造フィルムの製造方法の蒸発工程の態様を示す断面模式図 本発明に係る第2実施形態のハニカム構造フィルムの製造方法の蒸発工程終了時の態様を示す断面模式図 第2実施形態のハニカム構造フィルムの製造方法で用いるスルーホールアレイの製造方法の陽極酸化工程終了時の態様を示す断面模式図 第2実施形態のハニカム構造フィルムの製造方法で用いるスルーホールアレイの製造方法のアクリル樹脂充填工程終了時の態様を示す断面模式図 第2実施形態のハニカム構造フィルムの製造方法で用いるスルーホールアレイの製造方法の陽極酸化物を除去した態様を示す断面模式図 第2実施形態のハニカム構造フィルムの製造方法で用いるスルーホールアレイの製造方法の熱硬化性樹脂充填工程終了時の態様を示す断面模式図 第2実施形態のハニカム構造フィルムの製造方法で用いるスルーホールアレイの製造方法のアクリル樹脂除去工程終了時の態様を示す断面模式図 第2実施形態のハニカム構造フィルムの製造方法で用いるスルーホールアレイの製造方法の焼成工程終了時の態様を示す断面模式図 第2実施形態のハニカム構造フィルムの製造方法で用いるスルーホールアレイの製造方法の焼成工程終了時の態様を示す斜視図
「ハニカム構造フィルムの第1の製造方法(第1実施形態)」
 図面を参照して本発明のハニカム構造フィルムの第1の製造方法(第1実施形態)及び該製造方法によって得られるハニカム構造フィルムについて説明する。図1A~図1Dは、第1実施形態のハニカム構造フィルムの製造方法のフローを示す概略断面図であり、図1Eは第1の製造方法によって製造されるハニカム構造フィルムの厚み方向断面図である。また、図2は、図1Eのハニカム構造フィルムの上面図である。図面において、視認しやすくするために各部の縮尺は適宜変更して示してある。
 ハニカム構造フィルム1は、図1Eに示されるように、複数の孔12と、該複数の孔12が一表面に形成されたポリマー層11とにより構成されている。複数の孔12は、図2に示されるように、ポリマー層11の表面11s(ハニカム構造フィルム1の表面1s)において略円形状に開口してハニカム状に略規則的に密に配列されている。
 複数の孔12は、図1Eに示されるように非貫通孔であってもよいし、用途によっては貫通孔としてもよい。孔12は、後に詳しく説明するように、水滴の成長過程を制御することによりその深さ、開口部の径、最大径等を調整することができる。例えば、後記する製造方法において、孔12の形成に寄与する水滴の成長を早期に止めると浅く、径の小さい孔12を製造することができる。
 複数の孔12の径及びピッチは特に制限されないが、0.1ミクロン~数十ミクロンであることが好ましい。
本実施形態のハニカム構造フィルムでは、ポリマー層11が独立した層である態様について示してあるが、ポリマー層11の下層に支持体や他のポリマー層を1層以上備えていてもよい。
 ポリマー層11は、少なくとも両親媒性ポリマーを含む。両親媒性ポリマーとしては、特に制限されないが、目的に応じて適宜選択することができる。例えば、ポリアクリルアミドを主鎖骨格とし、疎水性側鎖としてドデシル基、親水性側鎖としてカルボキシル基を併せ持つ両親媒性ポリマー、ポリエチレングリコール/ポリプロピレングリコールブロックコポリマー、などが挙げられる。
 疎水性側鎖は、アルキレン基、フェニレン基等の非極性直鎖状基であり、エステル基、アミド基等の連結基を除いて、末端まで極性基やイオン性解離基などの親水性基を分岐しない構造であることが好ましい。該疎水性側鎖としては、例えば、アルキレン基を用いる場合には5つ以上のメチレンユニットからなることが好ましい。
 親水性側鎖は、アルキレン基等の連結部分を介して末端に極性基やイオン性解離基、又はオキシエチレン基などの親水性部分を有する構造であることが好ましい。
 疎水性側鎖と親水性側鎖との比率は、その大きさや非極性、極性の強さ、疎水性有機溶媒の疎水性の強さなどに応じて異なり一概には規定できないが、ユニット比(疎水基:親水基)は0.1:9.9~4.5:5.5が好ましい。また、コポリマーの場合、疎水性側鎖の親水性側鎖の交互重合体よりも、疎水性溶媒への溶解性に影響しない範囲で疎水性側鎖と親水性側鎖がブロックを形成するブロックコポリマーであることが好ましい。
 両親媒性ポリマーの数平均分子量(Mn)は、1,000~10,000,000が好ましく、5,000~1,000,000がより好ましい。
 具体的な両親媒性のポリマーとしては、ビニル重合ポリマ-(例えば、ポリエチレン、ポリプロピレン、ポリスチレン、ポリアクリレート、ポリメタクリレート、ポリアクリルアミド、ポリメタクリルアミド、ポリ塩化ビニル、ポリ塩化ビニリデン、ポリフッ化ビニリデン、ポリヘキサフルオロプロペン、ポリビニルエーテル、ポリビニルカルバゾール、ポリ酢酸ビニル、ポリテトラフルオロエチレン等)、ポリエステル(例えば、ポリエチレンテレフタレート、ポリエチレンナフタレート、ポリエチレンサクシネート、ポリブチレンサクシネート、ポリ乳酸等)、ポリラクトン(例えばポリカプロラクトンなど)、セルロースアセテート、ポリアミド又はポリイミド(例えば、ナイロンやポリアミド酸など)、ポリウレタン、ポリウレア、ポリブタジエン、ポリカーボネート、ポリアロマティックス、ポリスルホン、ポリエーテルスルホン、ポリシロキサン誘導体等が挙げられる。
 両親媒性のポリマーは、1種類のポリマーとしてよいが、複数種のポリマーとしてもよい。複数種のポリマーとする場合には、組み合わせを工夫することより水滴の大きさと水滴を形成する位置をより精度よく制御することができるので、配列精度の高いハニカム構造フィルム1とすることができる。
 また、ポリマー層11には、両親媒性ポリマー以外の疎水性ポリマーを適宜含んでいてもよい。疎水性ポリマーとしては、例えば、ビニル重合ポリマー(例えば、ポリエチレン、ポリプロピレン、ポリスチレン、ポリアクリレート、ポリメタクリレート、ポリアクリルアミド、ポリメタクリルアミド、ポリ塩化ビニル、ポリ塩化ビニリデン、ポリフッ化ビニリデン、ポリヘキサフルオロプロペン、ポリビニルエーテル、ポリビニルカルバゾール、ポリ酢酸ビニル、ポリビニルカルバゾール、ポリテトラフルオロエチレンなど)、ポリエステル(例えば、ポリエチレンテレフタレート、ポリエチレンナフタレート、ポリエチレンサクシネート、ポリブチレンサクシネート、ポリ乳酸など)、ポリラクトン(例えばポリカプロラクトンなど)、ポリアミド又はポリイミド(例えば、ナイロンやポリアミド酸など)、ポリウレタン、ポリウレア、ポリブタジエン、ポリカーボネート、ポリアロマティックス、ポリスルホン、ポリエーテルスルホン、ポリシロキサン誘導体、セルロースアシレート(トリアセチルセルロース、セルロースアセテートプロピオネート、セルロースアセテートブチレート)などが挙げられる。これらは、溶解性、光学的物性、電気的物性、膜強度、弾性等の観点から、必要に応じてホモポリマーとしてもよいし、コポリマーやポリマーブレンドの形態をとってもよい。なお、これらのポリマーは必要に応じて2種以上のポリマーの混合物として用いてもよい。光学用途に使う場合には、例えば、セルロースアシレート、環状ポリオレフィンなどが好ましい。
以下に、ハニカム構造フィルム1の製造方法について説明する。
 図1A~図1Eに示されるように、第1実施形態のハニカム構造フィルムの製造方法は、先端部30tが疎水性を有する複数の凸部と、水を貯留可能な複数の凹部30pとを一表面に備えた凹凸基板30であって、凹部30pが水を貯留可能であり、少なくとも凹部30pの表面30wが光吸収発熱体である凹凸基板30を用意し、
凹凸基板30の複数の凹部30pに水を貯留させて、凹凸基板30内に水層20を形成する水層形成工程と、
水層20が形成された凹凸基板30上に、疎水性有機溶媒に少なくとも両親媒性ポリマーを溶解させたポリマー溶液を塗布して水層20及び露出した先端部30t上に前記ポリマー溶液の層10を形成するポリマー溶液層形成工程と(図1A)、
光スポット照射手段40により凹凸基板30の表面の所定の2次元配列位置に光スポットLを照射して、該照射部分の凹凸基板30を発熱させて凹部30pに局所的な沸騰又はキャビテーションによる気泡を発生させると共に凹部30pに貯留された水を凹部30pから吐出させて2次元配列位置上のポリマー溶液層10内の少なくとも凹凸基板接触面近傍に水層20内の水を含む水滴20bを形成する水滴形成工程と(図1B,図1C)、
水滴20b及び疎水性有機溶媒を蒸発させて、少なくとも両親媒性ポリマーを含むポリマー層11とポリマー層11の一表面11sに形成されてなる複数の孔12とを形成する蒸発工程とを順次有し、
水層形成工程において、凹凸基板30の複数の凸部の先端部30tが露出するように水層20を形成することを特徴としている。
 本発明者は、自己集積的に形成される水滴集合体を鋳型として用いる結露法において問題となる水滴集合体の配列不整合の問題を解決する手法について鋭意検討を行った結果本発明に至った。本発明の製造方法によれば、所望の2次元規則配列位置に形成することができる水滴により得られる水滴集積体を鋳型として用いるため、集積体の配列規則性の不整合を低減させることができる。
 水滴の大きさは、照射する光スポットの強度及びサイズ、光吸収発熱体の発熱効率等によってほぼ一義的決定されるためばらつきが少ない上、その調整範囲も広い。また、従って、本発明によれば、形成可能な孔径範囲が広く、高精度の配列規則性を有するハニカム構造フィルムを製造することができる。
 <凹凸基板~ポリマー溶液層形成工程>
図1Aは、凹凸基板30上に水層20の形成及びポリマー溶液層10の形成まで実施した状態の模式図である。
 まず、凹凸基板30を用意する。凹凸基板30は、先端部30tが疎水性を有する複数の凸部と、水を貯留可能な複数の凹部30pとを一表面に備えており、凹部30pの表面30wは光吸収発熱体となっている。かかる構造を有していれば、凹凸基板30の凹凸構造は特に制限されないが、水層20の形成しやすさを考慮すると、ナノピラー構造又はモスアイ構造であることが好ましい。
 凸部の形状は、できるだけアスペクト比(先端部30tから凹部30pまでの深さ/凸部のピッチ)の大きい形状である方が、凹部30pに水を貯留させやすく、10以上であることが好ましい。図1Aに示される凹凸基板30は、本発明者が好ましいと考えている凸部形状の一例の厚み方向断面図を示したものである。
 凹凸基板30の凸部のピッチは、後工程の水滴形成工程において照射する光の光スポット径内に、凹凸基板30の凹部30pが複数入り得る大きさであることが好ましく、光スポット径の5分の1以下であることがより好ましい。
 凹凸構造30において、少なくとも凹部30pの表面30wは光吸収発熱体で構成されている。凹凸構造30は、表面30wだけでなく、より広範囲が光吸収発熱体である方が、効率良く水滴を形成することができ好ましい。
 光吸収発熱体としては特に制限されず、上記光スポットのエネルギーに比してバンドギャップが小さい半導体材料(光スポットが可視光であればSi等)や、アモルファスカーボン、ダイヤモンドライクカーボン、グラファイト、カーボンファイバー、カーボンナノチューブ、カーボンナノホーン等のカーボン素材、金属、クロメッキ等が挙げられ、発熱効率にすぐれる点からアモルファスカーボンが好ましい。
 アモルファスカーボン等、疎水性の材料を光吸収発熱体として用いる場合は、凹凸構造の形状によっては、凹部30pの表面30wを親水性にする処理(親水化処理)を施しておく必要がある。アモルファスカーボンの親水化処理は、例えば、特開2004-45144号公報,特開2008-137887号公報,特開2003-112910号公報,特開平7-315820号公報,特開2000-243410号公報,特開2003-142116号公報等に記載の公知技術により実施することができる。
 凹凸構造30において、凸部の先端部30tは、上層にポリマー溶液層を形成可能とするために疎水性有機溶媒に対する親和性(疎水性)を有している。従って、上記凹部30pの表面30wの親水化処理を行う場合は、凸部の先端部30tを除いて親水化処理を行うか、凹凸構造30全体の表面を親水化処理した後に先端部30tを疎水性有機溶媒に対する親和性を付与する処理(疎水化処理)してもよい。
 疎水化処理の方法としては特に制限されず、公知の疎水化処理方法により先端部30tを疎水化すればよい。アモルファスカーボンの場合、例えば、CVD法、PVD法等の気相法により成膜する方法が好ましく、PVD法による成膜では、先端部30tに、より局所的にアモルファスカーボン膜を成膜することができるためより好ましい。凹凸構造30がナノピラー構造の場合、アスペクト比が充分に大きく、密に林立するナノピラー構造であれば、ナノピラー側面にアモルファスカーボンが付着しにくく、先端部30t近傍に密にカーボンを付着させることができる。この疎水化処理は、光吸収発熱体が親水性である場合にも先端部30tに施しておく必要がある。
 <<水層形成工程>>
水層形成工程では、用意した凹凸基板30の複数の凹部30pに水を貯留させて、凹凸基板30内に水層20を形成する。水層20の形成方法としては特に制限されず、凹凸基板30の上部から水を滴下又は塗布等により形成することができる。
 水層20は、凸部の先端部30tが露出するように形成されていればよいが、できるだけ凹部30pに多くの水が充填されるように形成されていることが好ましい。
 <<ポリマー溶液層形成工程>>
ポリマー溶液層形成工程では、水層20が形成された凹凸基板30上に、疎水性有機溶媒に少なくとも両親媒性ポリマーを溶解させたポリマー溶液(ハニカム溶液)を塗布して水層20及び先端部30t上にポリマー溶液層10を形成する(図1A)。
 ポリマー溶液層10は、塗布により形成されればよいが、キャスト法により形成されることが好ましい。キャスト法としては、特に制限はなく適宜選択することができ、例えば、スライド法、エクストリュージョン法、バー法、グラビア法、などが挙げられる。
 疎水性有機溶媒としては、例えば、クロロホルム、塩化メチレン等のハロゲン系有機溶剤;ベンゼン、トルエン、キシレン等の芳香族炭化水素;酢酸エチル、酢酸ブチル等のエステル類;メチルイソブチルケトン等の非水溶性ケトン類;ジエチルエーテル等のエーテル類;二硫化炭素、などが挙げられる。これらは、1種単独で用いても、又はこれらの溶媒を組み合わせた混合溶媒として使用しても構わない。
 両親媒性ポリマーについては既に述べたとおりである。両親媒性ポリマーは、後工程の水滴形成工程において、ポリマー溶液中に形成された水滴と疎水性有機溶媒の間の表面張力の現象を抑制して水滴の融合を防止するのに好適に作用する。ハニカム構造は、後工程の蒸発工程において、疎水性有機溶剤の揮発と周囲からの補填による未揮発の疎水性有機溶剤の流れにより、水滴が移送・集積され、更に毛管力により最密充填され、最後に水が蒸発することにより空孔がハニカム状に並ぶことにより形成される。従って、ポリマー溶液中に両親媒性ポリマーを含むことにより、ポリマー溶液中で水滴の凝集に起因して空孔の大きさ及び配列規則性にばらつきを生じることを抑制することができる。
 ポリマー溶液中のポリマー濃度としては、0.01~30質量%が好ましく、0.01~10質量%がより好ましい。前記ポリマー濃度が30質量%を超えると、十分なハニカム構造体が得られにくくなることがある。
 <水滴形成工程>
 次に、凹凸基板30上にポリマー溶液層10まで形成されたものに、光スポット照射手段40により凹凸基板30の表面の所定の2次元配列位置に光スポットLを照射して、該照射部分の凹凸基板30を発熱させて凹部30pに局所的な沸騰又はキャビテーションによる気泡を発生させると共に凹部30pに貯留された水を凹部30pから吐出させて光スポットが照射された2次元配列位置上のポリマー溶液層10内に水層20内の水を含む水滴20bを形成する(図1B)。
 光スポットLが凹凸基板30の所定の2次元配列位置に照射されると、光スポットLの照射部分の凹凸基板30(所定の2次元配列位置)は、光スポットLを吸収して発熱し、その発生した熱によって凹部30pに貯留された水が加熱される。
 この加熱により凹部30p内において局所的な沸騰又はキャビテーションを生じ、凹部30p内に気泡が発生する。それと同時に、この気泡の発生によって、凹部30pに存在できなくなった水が凹部30pから吐出されて、光スポットLの照射範囲上のポリマー溶液層10内に水滴20bを形成する。すなわち、この気泡の発生が凹部30pから水をポリマー溶液層10内に吐出させる吐出力となる。
 従って、光スポットLは、短時間に水滴20bを形成するに十分なエネルギーを有する必要があり、光スポットが照射された範囲内の水層20内の水を加熱して、沸騰やキャビテーションによりバブルを生成することが出来るエネルギーを有していることが好ましい。
 図3は、1064nmのCWレーザ光を水中のアモルファスカーボン表面に集光した時のキャビテーションバブル生成閾値パワーを測定した結果である。例えば集光スポット径が10μmの時、キャビテーションバブルを生成するためには、30mW程度以上のレーザパワーがあればよい。
 光スポット照射手段40としては、凹凸基板30を構成する光吸収発熱体が吸収しうる波長の光を照射可能な光源41及び、光源41から発せられた光を凹凸基板30の表面の所定の2次元配列位置に光スポットとして導く光学系42及び可動ステージ43等の走査手段等を含んでよい。かかる走査光学系と移動ステージを組み合わせてなる2次元走査手段により、凹凸基板30の表面の所定の2次元配列位置上に光スポットを照射させることができる。
 また、光源41として指向性の弱い光源を用いる場合や、光スポット径を絞って小さくする場合等、光源41から発せられる光を集光させる必要がある場合は集光光学系を別途備えてもよい。図1Bには、光学系42の詳細は記載していない。光学系42の具体例については図4~図8に示される態様が上げられる。これらについての説明は後記する。
 光スポットLの照射方法としては、他に、レーザスポットアレイ形成手段により1次元又は2次元のレーザスポットアレイを形成して、レーザスポットアレイを走査手段により走査させる方法が挙げられる。レーザスポットアレイの照射はパルス点灯照射とし、照射位置を移動時には消灯させておく。
 レーザスポットアレイ形成手段40は、所望の1次元又は2次元配列位置にピーク強度を有するレーザスポットアレイを形成可能であれば如何なる態様でも構わないが、好適な態様としては、ほぼ等強度のマルチレーザビームLを所望の1次元又は2次元配列位置に対応する1次元又は2次元方向に形成可能な光学素子をレーザ光路中の所定位置に備えてなる態様が挙げられる。
 マルチレーザビームLを形成可能な光学素子としては、ダマングレーティング及びこれと同等の光学作用を有する位相格子が挙げられる。
 図4は、半導体レーザ光源41より出射したレーザビームをコリメートレンズ401で略平行ビームLとし、略平行ビームLを集光レンズ404で集光してハニカム溶液面にレーザスポットLを形成する態様において、略平行ビーム光路中にダマングレーティング(回折格子)402及びポリゴン等の走査光学系403を挿入配置してハニカム溶液面にレーザスポットアレイLを形成する態様を示している。本態様において、ダマングレーティング402は略平行ビームLに作用して、その透過ビームを1次元又は2次元配列位置に対応する1次元又は2次元方向のほぼ等強度の複数ビームL1に分割する。ほぼ等強度に分割された複数ビームL1は、集光レンズ404により集光されて、ハニカム溶液面に、所望の1次元又は2次元配列位置にピーク強度を有するレーザスポットアレイLを形成する。図4に示される態様では、ステージ43と、ポリゴン等の走査光学系403によって所望の2次元配列位置に照射可能となっている。
 ダマングレーティング402は、同等の光学作用を有する他の光学素子で置き換えてもよく、同等の光学作用を有する光学素子は、プリズム、平行平板等のビームスプリッタを用いても構成することが出来る。
 図5は、入射レーザビームLに対するダマングレーティング402の光学作用を示している。ダマングレーティング402に入射した光Lは、ダマングレーティング402の特性に応じた角度±θを有する光に分けられて出射される。図6は、半導体レーザ光源より出射したレーザビームをコリメートレンズ401で略平行ビームLとし、略平行ビームLを所望のビーム径となるように拡大光学系405で拡大した後に平行光L1とし、これを±1次の回折ビームのみが強度を持つように最適化された位相格子406に入射させ、位相格子406を出射した±1次の回折ビームが重なり合う領域で干渉縞Lifを形成することで所望の1次元又は2次元のレーザスポットアレイLを形成する態様を示している。1次元のレーザスポットアレイLを形成する場合は1次元の位相格子406を用い、2次元のレーザスポットアレイを形成する場合は2次元の位相格子406を用いる。図7は、位相格子406の概略の光学作用を示している。
 光スポットLを、水滴20bを形成可能なエネルギー(沸騰又はキャビテーションを生じうるエネルギー)を有するものとすることができれば、光源41としては特に制限されず、各種レーザや発光ダイオード(LED)等を用いることができ、更に光スポット照射手段40には、光エネルギーを増幅させる増幅器を備えていてもよい。
 また、光スポット照射手段40の好適な態様として、所定の2次元配列位置に光ピーク強度を有する透過光を形成する2次元ピンホールアレイマスク407を備えてなる態様が挙げられる。
 図8は、半導体レーザ光源41より出射したレーザビームをコリメートレンズ401で略平行ビームLとし、略平行ビームLの光路中にピンホールアレイマスク407を配置し、2次元配列位置にピーク強度を有するピンホールアレイ透過光L1を、結像レンズ404により結像してハニカム液面にレーザスポットアレイLを形成する態様を示している。図8においても、図4の態様と同様に、ステージ43と、ポリゴン等の走査光学系403によって所望の2次元配列位置に照射可能となっている。
 既に述べたように、光スポットLの照射範囲は、凹凸構造30において隣接する複数の凹部30pを照射可能なものであることが好ましく、ハニカム構造フィルム1に形成する孔12の大きさ及び、凹部30pの大きさに応じて調整すればよい。
 <蒸発工程>
水滴20bが略一様にポリマー溶液層10内に形成された後(図1C)、水滴20b及び疎水性有機溶媒を蒸発させて(図1D)、両親媒性ポリマーを含むポリマー層11とポリマー層11の一表面11sに形成されてなる複数の孔12とを形成する蒸発工程を実施して、ハニカム構造フィルム1を得る(図1E)。
 蒸発工程は、加熱下又は非加熱下いずれで実施されてもよいが、水に比して揮発しやすい疎水性有機溶媒の揮発がある程度進んで、水滴20bの蒸発開始後にもポリマー層11における水滴20b形成位置の形状が維持される条件で実施される必要がある。上記した疎水性有機溶媒であれば、温度条件は制限されず、かかる条件での実施が可能となるが、蒸発後に得られるハニカム構造フィルム1の品質及び効率的な蒸発工程の実施の観点から、水滴20bの蒸発が、ポリマー溶液の表面温度10℃~40℃程度の温度で加熱下により実施されることが好ましい。
「ハニカム構造フィルムの第2の製造方法(第2実施形態)」
 図面を参照して第2実施形態のハニカム構造フィルムの製造方法及び該製造方法によって得られるハニカム構造フィルムについて説明する。図9A~図9Dは、本発明に係る第2実施形態のハニカム構造フィルムの製造方法のフローを示す概略断面図である。図9Eは第2の製造方法によって製造されるハニカム構造フィルムの厚み方向断面図であり、第1の製造方法によって製造されるものと同様である(図1Eと同様)。
 第2の製造方法において得られるハニカム構造フィルム1は第1実施形態と同様であるので、その構成要素については説明を省略する。
 第2の製造方法は、図9A~図9Eに示されるように、少なくとも表面32wが光吸収発熱体であり、且つ、内部に水を導入可能な貫通孔32が多数形成された板状のスルーホールアレイ30’を用意し、スルーホールアレイ30’の貫通孔32が開口された一表面30’sに水又は過飽和水蒸気を接触させて、多数の貫通孔32内に水または過飽和水蒸気を充填して少なくとも多数の貫通孔32内に水層20を形成する水層形成工程と、
前記スルーホールアレイの前記一表面の反対側の表面に、疎水性有機溶媒に少なくとも両親媒性ポリマーを溶解させたポリマー溶液を接触させるポリマー溶液層形成工程と(図9A)、
光スポット照射手段40により表面30’sの所定の2次元配列位置に水層20側から光スポットLを照射して、光スポットLが照射された貫通孔32の少なくとも表面32wを発熱させて貫通孔32内に局所的な沸騰又はキャビテーションによって気泡を発生させると共に貫通孔32内の水又は過飽和水蒸気をポリマー溶液層10内に吐出させてポリマー溶液層10のスルーホールアレイ30’との接触面近傍に水滴20bを形成する水滴形成工程と(図9B,図9C)、
水滴20b及び疎水性有機溶媒を蒸発させて、少なくとも両親媒性ポリマーを含むポリマー層11とポリマー層11の一表面11sに形成されてなる複数の孔12とを形成する蒸発工程(図9D)とを順次有することを特徴とするものである。
 <スルーホールアレイの作製~ポリマー溶液層形成工程>
図9Aは、スルーホールアレイ30’を用意し、スルーホールアレイ30’の一表面30’s及び貫通孔32内に水層20を形成する水層形成工程と、反対側の表面30’tにポリマー溶液層10を形成するポリマー溶液層形成工程まで実施した状態の模式図である。
 貫通孔32のピッチは、後工程の水滴形成工程において照射する光の光スポット径内に、貫通孔32が複数入り得る大きさであることが好ましく、光スポット径の5分の1以下であることがより好ましい。水滴形成工程において、高効率に水滴を形成可能であることから、貫通孔32の径はできるだけ大きく、面内開口率が高く形成されていることが好ましい。
 貫通孔32の形状は特に制限されないが、略平行なストレート孔であることが好ましい。かかる形状の場合、貫通孔32のアスペクト比は大きい方が好ましく、10以上であることが好ましい。
 スルーホールアレイ30’としては、少なくとも表面32wが光吸収発熱体であり、且つ、内部に水を導入可能な貫通孔32を有していれば特に制限されないが、良好な発熱効率を得るためには、貫通孔32の表面32wだけでなく、より広範囲が光吸収発熱体である方が、効率良く水滴を形成することができ好ましい。
 また、スルーホールアレイ30’のポリマー溶液層10形成面である表面30’tは疎水性有機溶媒に対する親和性を有している。水層20形成面である表面30’sは親水性を有していることが好ましいが、貫通孔32に水層20を形成できればそうでなくてもよい。
 光吸収発熱体については第1実施形態と同様であり、アモルファスカーボン等、疎水性の材料を光吸収発熱体として用いる場合は、貫通孔32の表面32wは、親水性であることが好ましく、表面32wは親水性を付与する表面処理が施されてなる態様が好ましい。貫通孔32の表面32wを親水性にする処理(親水化処理)を施しておくことが好ましい。更に、水層形成側の表面30’sも同様に親水化処理を施しておくことが好ましい。
 また、ポリマー溶液層形成面である表面30’tは上記したように疎水性有機溶媒に対する親和性を有している必要があるので、必要に応じて疎水性有機溶媒に対する親和性を付与する処理を施しておくとよい。
 疎水性有機溶媒に対する親和性を付与する処理の方法は第1実施形態と同様の方法が挙げられる。
 前記スルーホールアレイの製造方法は特に制限されないが、アルミニウム等の金属基板の陽極酸化により作製されたナノホールアレイを鋳型として製造することが好ましい。陽極酸化ナノホールアレイは、略規則的に配列した多数の微細孔を有しており、且つ、容易に製造することができるため好ましい。
 以下に、図10A~図10Gを参照して、陽極酸化ナノホールアレイを鋳型としてアモルファスカーボン製スルーホールアレイを製造する方法について説明する。
 まず始めに、アルミニウム板を一表面から陽極酸化して、非陽極酸化アルミニウム層31AA上に陽極酸化アルミナ層31AO層を備えたナノホールアレイ31Aを作製する(図10A)。陽極酸化では、陽極酸化液や電圧、電流等の陽極酸化条件、ホール径を拡大するためのエッチング条件等を調整することにより、所望のナノホール径、ナノホール深さ、ナノホールピッチを有するナノホールアレイを作製することができる。例えば、後記実施例に記載のように、ナノホール径が略70ナノメートル、隣接するナノホール間の間隔が略200ナノメートル、ナノホール深さが略30ミクロンのナノホールアレイは本発明において好適である。
 作製したアルミニウム陽極酸化ナノホールアレイ31Aにメタクリル酸メチル等の有機溶媒に良好に可溶な樹脂のモノマーを重合開始剤と共に流し込み、これを窒素雰囲気化にて重合して、アルミニウム陽極酸化ナノホールアレイ31A上に樹脂製ナノピラーアレイ31Tを固化成型する(図10B)。
 次いで、希水酸化ナトリウム溶液等により非陽極酸化アルミニウム層31AA及び陽極酸化アルミナ層31AO層を溶解して、アルミニウム陽極酸化ナノホールアレイ31Aを鋳型とする樹脂製ナノピラーアレイ31Tを得る(図10C)。
 次いで、樹脂製ナノピラーアレイ31T上に粘度200cp程度のレゾール系フェノール樹脂モノマー等の耐溶剤性熱硬化性樹脂(以下、フェノール樹脂として記載)のモノマーを、ナノピラーアレイの先端が埋没しない程度に流し込み、窒素雰囲気化、樹脂製ナノピラーアレイのガラス転移温度以下の温度にてフェノール樹脂を重合して固化成型して樹脂製ナノピラーアレイ31T上にフェノール樹脂製ナノスルーホールアレイ31Rを形成した後(図10D)、樹脂製ナノピラーアレイが溶融する程度に過熱するか、アセトン等の有機溶媒にて樹脂製ナノピラーアレイ31Tを溶融又は溶解し、多数の貫通孔32が形成されたフェノール樹脂製ナノスルーホールアレイ31Rを得る(図10E)。
 最後に、フェノール樹脂製ナノスルーホールアレイ31Rを、焼成炉等で1300℃程度まで徐々に加熱焼成することで、フェノール樹脂のカーボンのみが残存してアモルファスカーボンとなり、アモルファスカーボン製ナノスルーホールアレイ30’(31)を得る(図10F,図10G)。焼成工程においてフェノール樹脂は収縮することから、収縮を考慮した上で陽極酸化条件等を設計することが好ましい。
 <<水層形成工程>>
水層形成工程では、用意したスルーホールアレイ30’の複数の貫通孔32に水を充填させて、少なくとも貫通孔32内に水層20を形成する。図9Aに示される態様では、水層20は、スルーホールアレイ30’の表面30’s上にも形成されている。
 水層20の形成方法としては特に制限されず、スルーホールアレイ30’の上部から水を滴下又は塗布等により形成してもよいし、過飽和水蒸気を表面30’sにあてることにより形成してもよい。過飽和水蒸気を用いても貫通孔32内においてはほとんどが水層20となって充填される。水層20には過飽和水蒸気が含まれていてもよい。
 水層20の形成において水を用いる態様では、従来の結露法において必須である過飽和水蒸気供給手段及びその温度制御手段が不要となるため制御因子が低減される。従って、かかる態様とすることにより、一層高精度で所望の配列規則性を有するハニカム構造フィルムを製造することができる。
 <<ポリマー溶液層形成工程>>
ポリマー溶液層形成工程では、水層20が形成されたスルーホールアレイ30’のもう一方の表面30’tに、疎水性有機溶媒に少なくとも両親媒性ポリマーを溶解させたポリマー溶液(ハニカム溶液)を塗布してポリマー溶液層10を形成する(図9A)。
 まず、水層20を形成後、天地逆転しても水層20を維持できるようにガラス板製の保護板50又は保護容器にて覆った後、天地逆転させて、スルーホールアレイ30’のもう一方の表面30’tを表面に露出させた状態で、xyステージ(可動ステージ)43上に裁置する。また、xyステージ43上に裁置したガラス板製の保持板50の上に一定の間隔を置いてスルーホールアレイ30’を保持し、保持板50とスルーホールアレイ30’の間に水を導き満たしてもよい。
 次いで、表面30’t及び水層20上にポリマー溶液層10を塗布により形成する。ポリマー溶液層10の形成については第1実施形態と同様である。
<水滴形成工程>
次に、光スポット照射手段40により表面30’sの所定の2次元配列位置に水層20側から光スポットLを照射して、光スポットLが照射された貫通孔32の少なくとも表面32wを発熱させて貫通孔32内に局所的な沸騰又はキャビテーションによって気泡を発生させると共に貫通孔32内の水又は過飽和水蒸気をポリマー溶液層10内に吐出させてポリマー溶液層10のスルーホールアレイ30’との接触面近傍に水滴20bを形成する(図9B)。
 光スポットLがスルーホールアレイ30’の所定の2次元配列位置に照射されると、光スポットLの照射部分の貫通孔32の少なくとも表面32w(所定の2次元配列位置)は、光Lを吸収して発熱し、その発生した熱によって貫通孔32に貯留された水が加熱される。
 この加熱により貫通孔32内において局所的な沸騰又はキャビテーションを生じ、貫通孔32内に気泡が発生する。それと同時に、この気泡の発生によって、貫通孔32に存在できなくなった水が貫通孔32から照射範囲上のポリマー溶液層10内に吐出されて、光スポットLの照射範囲上のポリマー溶液層10内に水滴20bを形成する。すなわち、この気泡の発生が貫通孔32から水をポリマー溶液層10内に吐出させる吐出力となる。
 従って、光スポットLは、第1実施形態と同様、短時間に水滴20bを形成するに十分なエネルギーを有する必要があり、光スポットが照射された範囲内の水層20内の水を加熱して、沸騰やキャビテーションによりバブルを生成することが出来るエネルギーを有していることが好ましい。
 光スポット照射手段40としては、スルーホールアレイ30’を構成する光吸収発熱体が吸収しうる波長の光を照射可能な光源41及び、光源41から発せられた光をスルーホールアレイ30’の表面の所定の2次元配列位置に光スポットとして導く光学系42及び可動ステージ43等の走査手段等を含んでよい。かかる走査光学系と移動ステージを組み合わせてなる2次元走査手段により、スルーホールアレイ30’の表面30’sの所定の2次元配列位置上に光スポットを照射させることができる。
 光スポット照射手段40については、照射対象が、第1実施形態では凹凸基板30であったのに対し、第2実施形態ではスルーホールアレイ30’である点を除いては両実施形態ともに同様であるので、光源41や照射方法についての詳細な説明は第1実施形態と同様である。光スポットLの照射範囲は、スルーホールアレイ30’において複数の隣接する貫通孔32を照射可能なものであることが好ましく、ハニカム構造フィルム1に形成する孔12の大きさ及び、隣接する貫通孔32間のピッチの大きさに応じて調整すればよい。
 <蒸発工程>
 水滴20bが略一様にポリマー溶液層10内に形成された後(図9C)、水滴20b及び疎水性有機溶媒を蒸発させて(図9D)、両親媒性ポリマーを含むポリマー層11とポリマー層11の一表面11sに形成されてなる複数の孔12とを形成する蒸発工程を実施して、ハニカム構造フィルム1を得る(図9E)。蒸発工程については第1実施形態と同様である。
 以上述べたように、本発明では、自己集積的に形成される水滴集合体を鋳型として用いる結露法と異なり、所望の2次元規則配列位置に形成することできる水滴20bにより得られる水滴を鋳型として用いるため、水滴からなる鋳型の不整合を無くすことができる。水滴の大きさは、照射する光スポットLの強度及びサイズ、第2実施形態ではスルーホールアレイ30’の孔のサイズ、光吸収発熱体の発熱効率等によってほぼ一義的に決定されるためばらつきが少ない上、その調整範囲も広い。また、従って、本発明によれば、形成可能な孔径範囲が広く、高精度の配列規則性を有するハニカム構造フィルム1を製造することができる。
 また、水層の形成において水を用いる態様では、従来の結露法において必須である過飽和水蒸気供給手段及びその温度制御手段が不要となるため制御因子が低減される。従って、かかる態様とすることにより、一層高精度で所望の配列規則性を有するハニカム構造フィルムを製造することができる。
 

Claims (12)

  1.  少なくとも表面が光吸収発熱体であり、且つ、水を貯留可能な複数の凹部または貫通孔を有する基板を用意し、
     前記複数の凹部または貫通孔内に水層を形成する水層形成工程と、
     前記基板の前記複数の凹部または貫通孔が開口した表面に、疎水性有機溶媒に少なくとも両親媒性ポリマーを溶解させたポリマー溶液を接触させて前記表面に該ポリマー溶液の層を形成するポリマー溶液層形成工程と、
     光スポット照射手段により前記表面又は裏面の所定の2次元配列位置に光スポットを照射して、該照射部分の前記光吸収発熱体を発熱させて前記複数の凹部または貫通孔内に局所的な沸騰又はキャビテーションによる気泡を発生させると共に該複数の凹部または貫通孔に貯留された水を、該凹部または貫通孔から吐出させて前記2次元配列位置上の前記ポリマー溶液層内の少なくとも前記基板接触面近傍に前記水層内の水を含む水滴を形成する水滴形成工程と、
     前記水滴及び前記疎水性有機溶媒を蒸発させて、少なくとも前記両親媒性ポリマーを含むポリマー層と該ポリマー層の一表面に形成されてなる複数の孔とを形成する蒸発工程とを順次有することを特徴とするハニカム構造フィルムの製造方法。
  2.  前記基板が、先端部が疎水性を有する複数の凸部と、水を貯留可能な複数の凹部とを一表面に備えた凹凸基板であり、
     前記水層形成工程において前記凹凸基板の複数の凸部の先端部が露出するように前記複数の凹部に水を貯留させて前記水層を形成し、
     前記水滴形成工程において、前記凹部に局所的な沸騰又はキャビテーションによる気泡を発生させると共に該凹部に貯留された水を該凹部から吐出させることを特徴とする請求項1に記載のハニカム構造フィルムの製造方法。
  3.  前記基板が、前記貫通孔が多数形成された板状のスルーホールアレイであり、
     前記水層形成工程において、前記表面に水又は過飽和水蒸気を接触させて、前記多数の貫通孔内に水または過飽和水蒸気を充填することにより前記水層を形成し、
     前記ポリマー溶液層形成工程において、前記裏面に前記ポリマー溶液を接触させ、
     前記水滴形成工程において、前記表面の所定の2次元配列位置に前記水層側から光スポットを照射して、該光スポットが照射された前記貫通孔の少なくとも表面を発熱させて該貫通孔内に局所的な沸騰又はキャビテーションによって気泡を発生させると共に前記貫通孔内の水又は過飽和水蒸気を前記ポリマー溶液層内に吐出させて該ポリマー溶液層の前記スルーホールアレイとの接触面近傍に水滴を形成することを特徴とする請求項1に記載のハニカム構造フィルムの製造方法。
  4.  前記多数の貫通孔が、略平行なストレート孔であることを特徴とする請求項3に記載のハニカム構造フィルムの製造方法。
  5.  前記スルーホールアレイが、金属基板の陽極酸化により作製されたナノホールアレイを鋳型として製造されたものであることを特徴とする請求項3又は4に記載のハニカム構造フィルムの製造方法。
  6.  前記水滴形成工程において、1つの前記光スポットで隣接する前記複数の凹部または貫通孔を照射可能であることを特徴とする請求項1~5のいずれかに記載のハニカム構造フィルムの製造方法。
  7.  前記凹部又は貫通孔の少なくとも表面がアモルファスカーボンであることを特徴とする請求項1~6のいずれかに記載のハニカム構造フィルムの製造方法。
  8.  前記複数の凹部又は貫通孔の表面が、親水性であることを特徴とする請求項1~7のいずれかに記載のハニカム構造フィルムの製造方法。
  9.  前記複数の凹部または貫通孔の表面に、親水性を付与する表面処理が施されてなることを特徴とする請求項8に記載のハニカム構造フィルムの製造方法。
  10.  前記光スポット照射手段は、光スポットを、前記基板の表面を2次元走査可能な走査手段を備えたことを特徴とする請求項1~9のいずれかに記載のハニカム構造フィルムの製造方法。 
  11.  前記光スポット照射手段は、前記2次元配列位置に光ピーク強度を有する干渉縞を形成する2次元レーザ光スポットアレイ形成手段を備えてなることを特徴とする請求項1~10のいずれかに記載のハニカム構造フィルムの製造方法。
  12.  前記光スポット照射手段は、前記2次元配列位置に光ピーク強度を有する透過光を形成する2次元ピンホールアレイマスクを備えてなることを特徴とする請求項1~11のいずれかに記載のハニカム構造フィルムの製造方法。
PCT/JP2013/001308 2012-03-06 2013-03-04 ハニカム構造フィルムの製造方法 WO2013132819A1 (ja)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2012048799A JP2013184990A (ja) 2012-03-06 2012-03-06 ハニカム構造フィルムの製造方法
JP2012048800A JP2013184991A (ja) 2012-03-06 2012-03-06 ハニカム構造フィルムの製造方法
JP2012-048800 2012-03-06
JP2012-048799 2012-03-06

Publications (1)

Publication Number Publication Date
WO2013132819A1 true WO2013132819A1 (ja) 2013-09-12

Family

ID=49116315

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/001308 WO2013132819A1 (ja) 2012-03-06 2013-03-04 ハニカム構造フィルムの製造方法

Country Status (1)

Country Link
WO (1) WO2013132819A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10408499B2 (en) * 2015-10-26 2019-09-10 Kyocera Corporation Thermophoto conversion element
JPWO2019135362A1 (ja) * 2018-01-05 2020-12-24 国立大学法人弘前大学 透明材料加工方法、透明材料加工装置及び透明材料

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007098930A (ja) * 2005-09-09 2007-04-19 Ricoh Co Ltd ハニカム構造体又は微細複合部品の製造方法
JP2007264343A (ja) * 2006-03-29 2007-10-11 Oji Paper Co Ltd 光拡散体、光拡散体の製造方法、面発光装置、表示装置及び照明装置
JP2007269923A (ja) * 2006-03-30 2007-10-18 Fujifilm Corp ハニカム状多孔質フィルム及びハニカム複合膜
JP2008183759A (ja) * 2007-01-29 2008-08-14 Ricoh Co Ltd 中空構造体形成用基板及びこの中空構造体形成用基板の製造方法及びこの中空構造体形成用基板を用いた中空構造体の製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007098930A (ja) * 2005-09-09 2007-04-19 Ricoh Co Ltd ハニカム構造体又は微細複合部品の製造方法
JP2007264343A (ja) * 2006-03-29 2007-10-11 Oji Paper Co Ltd 光拡散体、光拡散体の製造方法、面発光装置、表示装置及び照明装置
JP2007269923A (ja) * 2006-03-30 2007-10-18 Fujifilm Corp ハニカム状多孔質フィルム及びハニカム複合膜
JP2008183759A (ja) * 2007-01-29 2008-08-14 Ricoh Co Ltd 中空構造体形成用基板及びこの中空構造体形成用基板の製造方法及びこの中空構造体形成用基板を用いた中空構造体の製造方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10408499B2 (en) * 2015-10-26 2019-09-10 Kyocera Corporation Thermophoto conversion element
JPWO2019135362A1 (ja) * 2018-01-05 2020-12-24 国立大学法人弘前大学 透明材料加工方法、透明材料加工装置及び透明材料
US11471981B2 (en) 2018-01-05 2022-10-18 Hirosaki University Transparent material processing method, transparent material processing device, and transparent material
JP7197176B2 (ja) 2018-01-05 2022-12-27 国立大学法人弘前大学 透明材料加工方法

Similar Documents

Publication Publication Date Title
US11667062B2 (en) Nanostructures from laser-ablated nanohole templates
Skliutas et al. Polymerization mechanisms initiated by spatio-temporally confined light
Tawfick et al. Engineering of micro‐and nanostructured surfaces with anisotropic geometries and properties
ES2543028T3 (es) Dispositivo y procedimiento para producir estructuras tridimensionales
Wu et al. Laser fabrication of bioinspired gradient surfaces for wettability applications
WO2018036930A1 (de) Vorrichtung und verfahren zur lasergestützten bearbeitung von körpern oder oberflächen
Naessens et al. Flexible fabrication of microlenses in polymer layers with excimer laser ablation
CN107407868A (zh) 一种用于毛细纳米印刷的装置和使用该装置进行毛细纳米印刷的方法及其应用
Zhang et al. Femtosecond laser nanofabrication of hydrogel biomaterial
CN111819492B (zh) Xuv和x射线衍射光学元件的制造方法
WO2013132819A1 (ja) ハニカム構造フィルムの製造方法
Alam et al. Additive opto-thermomechanical nanoprinting and nanorepairing under ambient conditions
US7402445B2 (en) Method of forming micro-structures and nano-structures
Rebollar et al. Laser interactions with organic/polymer materials
Baudach et al. Femtosecond laser processing of soft materials
Stankevičius et al. Fabrication of scaffolds and micro-lenses array in a negative photopolymer SZ2080 by multi-photon polymerization and four-femtosecond-beam interference
JP2013184990A (ja) ハニカム構造フィルムの製造方法
Yang et al. Optimization mechanism and applications of ultrafast laser machining towards highly designable 3D micro/nano structuring
JP2013184991A (ja) ハニカム構造フィルムの製造方法
Hu et al. Recent advances in meniscus-on-demand three-dimensional micro-and nano-printing for electronics and photonics
EP3094760B1 (en) Laser direct synthesis and deposit of nanocomposite materials or nanostructures
Verma et al. Taming of self-organization in highly confined soft matter to sub-100 nm scales: nanolens-arrays by spinodal instability of thin polymer films for high-resolution optical imaging
JP2010076044A (ja) 有機高分子ナノワイヤーとその製造方法
Gottmann et al. High speed and high precision fs-laser writing using a scanner with large numerical aperture
Sokuler et al. Tailored polymer microlenses on treated glass surfaces

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13757625

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13757625

Country of ref document: EP

Kind code of ref document: A1