WO2013132612A1 - 活性汚泥処理方法および該方法を用いる既存排水処理設備の改修方法 - Google Patents

活性汚泥処理方法および該方法を用いる既存排水処理設備の改修方法 Download PDF

Info

Publication number
WO2013132612A1
WO2013132612A1 PCT/JP2012/055812 JP2012055812W WO2013132612A1 WO 2013132612 A1 WO2013132612 A1 WO 2013132612A1 JP 2012055812 W JP2012055812 W JP 2012055812W WO 2013132612 A1 WO2013132612 A1 WO 2013132612A1
Authority
WO
WIPO (PCT)
Prior art keywords
tank
sludge
raw water
treatment
aeration
Prior art date
Application number
PCT/JP2012/055812
Other languages
English (en)
French (fr)
Inventor
藤野 清治
Original Assignee
日本アルシー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本アルシー株式会社 filed Critical 日本アルシー株式会社
Priority to JP2014503361A priority Critical patent/JP5968420B2/ja
Priority to US14/383,077 priority patent/US9446972B2/en
Priority to PCT/JP2012/055812 priority patent/WO2013132612A1/ja
Priority to MYPI2014702502A priority patent/MY172979A/en
Publication of WO2013132612A1 publication Critical patent/WO2013132612A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/30Aerobic and anaerobic processes
    • C02F3/301Aerobic and anaerobic treatment in the same reactor
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/02Aerobic processes
    • C02F3/12Activated sludge processes
    • C02F3/1205Particular type of activated sludge processes
    • C02F3/121Multistep treatment
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/006Regulation methods for biological treatment
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/02Aerobic processes
    • C02F3/12Activated sludge processes
    • C02F3/1205Particular type of activated sludge processes
    • C02F3/1221Particular type of activated sludge processes comprising treatment of the recirculated sludge
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/02Aerobic processes
    • C02F3/12Activated sludge processes
    • C02F3/1278Provisions for mixing or aeration of the mixed liquor
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/02Aerobic processes
    • C02F3/12Activated sludge processes
    • C02F3/1278Provisions for mixing or aeration of the mixed liquor
    • C02F3/1284Mixing devices
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/30Aerobic and anaerobic processes
    • C02F3/302Nitrification and denitrification treatment
    • C02F3/303Nitrification and denitrification treatment characterised by the nitrification
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/32Hydrocarbons, e.g. oil
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/32Nature of the water, waste water, sewage or sludge to be treated from the food or foodstuff industry, e.g. brewery waste waters
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2203/00Apparatus and plants for the biological treatment of water, waste water or sewage
    • C02F2203/006Apparatus and plants for the biological treatment of water, waste water or sewage details of construction, e.g. specially adapted seals, modules, connections
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/001Upstream control, i.e. monitoring for predictive control
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/04Oxidation reduction potential [ORP]
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/06Controlling or monitoring parameters in water treatment pH
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/10Solids, e.g. total solids [TS], total suspended solids [TSS] or volatile solids [VS]
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/22O2
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/38Gas flow rate
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/40Liquid flow rate
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/42Liquid level
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2303/00Specific treatment goals
    • C02F2303/06Sludge reduction, e.g. by lysis
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2303/00Specific treatment goals
    • C02F2303/14Maintenance of water treatment installations
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Definitions

  • the present invention relates to an activated sludge treatment method and a method for repairing an existing wastewater treatment facility using the activated sludge treatment method.
  • the activated sludge treatment method is an extremely excellent wastewater treatment method, it is widely used for wastewater treatment, and various treatment methods have been proposed depending on the type of raw water.
  • various microorganisms are used from soil bacteria to large protozoa using a food chain.
  • An example of an existing activated sludge treatment method is shown in FIG.
  • the wastewater is introduced into the raw water adjustment tank, pretreated as necessary, and the one that has been dispersed in the raw water from the rough to the fine in the pressurized flotation tank is removed.
  • separation and flocculation with a flocculant is performed as a primary treatment.
  • an inorganic flocculant such as aluminum sulfate called a sulfate band or polyaluminum chloride called a pack
  • an organic flocculant such as a polyacrylamide polymer
  • the flocculant is generated in a large amount as sludge.
  • the pollutant contained in the raw water is attached to and removed from the inorganic flocculant and becomes floating scum and is generated as sludge. These sludges are collected in a sludge storage tank.
  • the soluble organic component suitable for microbial treatment is sent to the aeration tank as treated raw water and aerated with activated sludge.
  • the treated raw water is separated from the activated sludge and discharged, and the concentrated activated sludge is collected in the sludge storage tank. Some of them are recycled in the aeration tank as return sludge.
  • the sludge collected in the sludge storage tank is sent to a dehydrator to become a dehydrated cake, which is landfilled, fungus fertilizer or incinerated.
  • Such an activated sludge treatment method has a problem to be solved as described below.
  • (1) In the case of raw water containing a large amount of hardly decomposable substances such as proteins, modified proteins, cellulose, starch and fats and oils, a large amount of dehydrated cake that generates malodor is generated as excess sludge.
  • a method was proposed in which the aeration tank was enlarged and aerated for a long time to digest (lagoon method, oxidation ditch).
  • this method has problems such as a lack of a site and a huge construction cost because a large amount of aeration tank is required when the amount of drainage is large and the load is large.
  • the high-speed aeration activated sludge treatment method is a wastewater treatment method with a small installation area and high efficiency, but because it is a complete mixing type where activated sludge and raw water always coexist, bulking due to filamentous bacteria is likely to occur. There's a problem.
  • sewerage treatment facilities are classified as intermediate treatment facilities, and have disappeared in recent years as facilities that cannot perform sufficient treatment.
  • the present invention has been made to address the above problems, and in the wastewater treatment method using the activated sludge treatment method, the activated sludge treatment method that substantially eliminates the generation of excess sludge and the existing sludge treatment method using the activated sludge treatment method.
  • the purpose is to provide a method for repairing wastewater treatment facilities.
  • the activated sludge treatment method of the present invention comprises a raw water aeration adjustment tank, a pressurized flotation concentration separation tank, a diluted activated sludge aeration tank, a microbial reaction tank, and a sedimentation tank, and drainage is performed by a circulation system in which sludge circulates between the tanks.
  • An activated sludge treatment method for treating Supplying the sludge 2 generated from the settling tank to the raw water aeration control tank to which raw water before treatment is supplied;
  • the raw water mixed with the sludge 2 is aerated in the raw water aeration adjusting tank so that the oxidation-reduction potential (hereinafter referred to as ORP) becomes a positive value, and then the adjusted raw water is separated by concentration under pressure.
  • ORP oxidation-reduction potential
  • Supplying step 2 to the tank; Supplying the sludge 1 generated by the treatment in the pressurized flotation concentration separation tank to the microorganism reaction tank; Supplying the treated raw water 1 separated from the pressurized flotation concentration separation tank to the diluted activated sludge aeration tank; Supplying the sludge 3 generated by processing in the microbial reaction tank and the discharged water to the diluted activated sludge aeration tank; and And a step 6 of supplying the treated raw water 2 separated from the diluted activated sludge aeration tank to the settling tank.
  • the sludge 2 supplied to the raw water aeration adjusting tank is characterized in that the sludge concentration in the raw water aeration adjusting tank is supplied in the range of 500 to 8000 mg / L as activated sludge suspended solids (hereinafter referred to as MLSS).
  • MLSS activated sludge suspended solids
  • the microorganism reaction tank used in the activated sludge treatment method of the present invention is provided in an outer tank, a cylindrical inner tank disposed inside the outer tank and having openings on the upper and lower sides, and an upper part of the cylindrical inner tank.
  • a circulation rate control device for controlling the circulation rate of the water to be treated, a cylindrical control plate provided on the upper outer periphery of the cylindrical inner tank for settling sludge, and the outer and inner sides of the cylindrical inner tank And a raw water supply port provided in the circulation path of the water to be treated circulating in the outer tank and the inner tank and a treated water discharge port provided in the upper part of the outer tank.
  • the cylindrical inner tank constituting the microbial reaction tank is divided into a cylindrical upper part and a cylindrical lower part by a partition wall having a communication hole in the center part, and the cylindrical upper part has a truncated cone shape with an upper surface and a bottom surface opened at the top part.
  • an aerobic microorganism treatment tank provided with a plurality of air blowing holes around the communication hole in the upper part of the cylinder and at the periphery of the partition wall, and the lower part of the cylinder is an anaerobic microorganism treatment tank having an opening on the bottom surface.
  • a stirring device is provided for stirring the inside of the microorganism treatment tank and the inside of the anaerobic microorganism treatment tank.
  • the microbial reaction tank has at least one measurement value selected from the pH of the water to be treated, the redox potential (hereinafter referred to as ORP), and the amount of dissolved oxygen (hereinafter referred to as DO) measured by the water quality measuring apparatus.
  • Means for detecting and opening and closing of the liquid level control valve, vertical movement of the liquid level control plate, and air blown from the air blowing port provided in the circulation rate control device according to the detected measurement value Means for controlling the in-tank circulation rate of the water to be treated to 3 to 20 by controlling at least one quantity selected from the quantity.
  • the to-be-processed water circulation rate in a reaction tank means the quantity defined by following Formula.
  • Rate of treated water circulation amount of treated water discharged from the upper part of the inner tank (m 3 / day) / raw water supply (m 3 / day)
  • the microorganism reaction tank is a tank in which the raw water supplied from the raw water supply port passes through the activated sludge settled together with the activated sludge inside the cylindrical inner tank, the outer peripheral surface of the cylindrical inner tank, and the lower part of the outer tank. It is characterized in that anaerobic microbial treatment and aerobic microbial treatment are continuously performed by circulating inside.
  • the raw water supply port is a plurality of discharge ports or slits provided in an annular raw water supply unit disposed below the opening of the anaerobic microorganism treatment tank.
  • the lower cylindrical portion has a volume that is 1/10 to 1 times the volume of the upper cylindrical portion.
  • the repair method of the existing wastewater treatment facility of the present invention is a repair method for reducing the sludge generated in the wastewater treatment facility from the sludge generated in the existing wastewater treatment facility,
  • the refurbishing method includes a step of newly installing the microbial reaction tank in an existing or refurbished pressurized flotation concentration separation tank and a diluted activated sludge aeration tank, and the activated sludge of the present invention through the newly installed microbial reaction tank. And a circulation step of circulating the sludge by a treatment method.
  • the method of the present invention circulates sludge generated in a pressurized flotation concentration separation tank, activated sludge aeration tank and microbial reaction tank, which are used as wastewater treatment equipment, between each other by the method of claim 1 and By supplying a part of the sludge generated in the sludge aeration tank to the raw water aeration adjustment tank of the wastewater to be activated sludge treated, an activated sludge treatment method that does not substantially discharge excess sludge is obtained.
  • the existing wastewater treatment facility to be refurbished can perform wastewater treatment that does not substantially discharge excess sludge.
  • Step 1 is a step of supplying the sludge 2 generated by the settling tank to the raw water aeration control tank of the wastewater to be treated with activated sludge.
  • the raw water aeration tank can be obtained by adding air blowing equipment to the existing raw water tank when renovating the existing wastewater treatment equipment. A large solid content in the wastewater to be treated is removed with a screen or the like and stored in the raw water aeration control tank as the raw water to be treated.
  • the sludge 2 generated in the sedimentation tank is supplied to this raw water aeration control tank and mixed with the raw water, which is likely to cause abnormal treatment of activated sludge such as refractory substances in raw water and harmful substances that destroy activated sludge.
  • the sludge 2 supplied to the raw water aeration adjustment tank is supplied in a range where the sludge concentration in the raw water aeration adjustment tank is 500 to 8000 mg / L as MLSS. Preferably, it is supplied in a range of 1000 to 5000 mg / L.
  • the MLSS is less than 500 mg / L, the sludge 2 cannot adsorb the pollutant that adversely affects the activated sludge, so that the activated sludge treatment becomes unstable.
  • MLSS exceeds 8000 mg / L, the sludge 2 will adsorb most of pollutants, and the biochemical oxygen demand (henceforth BOD) contained in process raw
  • Step 2 is a step of supplying the raw water to the pressurized flotation concentration separation tank after adjusting the aeration of the raw water mixed with the sludge 2 in the raw water aeration adjustment tank so that the ORP of the raw water becomes a positive value. .
  • activated sludge treatment can be performed in which hydrogen sulfide, ammonia, mercaptan, etc., which cause bad odor, are oxidized and odor is hardly emitted.
  • the aeration process in the raw water aeration control tank is performed by an aeration process in which the residence time of the raw water is 3 hours or longer, preferably 5 hours or longer.
  • Aeration treatment is performed in the presence of sludge 2, and raw water containing sludge is supplied to a pressurized flotation concentration separation tank.
  • Step 3 is a step of supplying sludge 1 generated by processing in the pressurized flotation concentration separation tank to the microorganism reaction tank.
  • the sludge 1 is not dry sludge but sludge water containing water.
  • the raw water supplied to the pressurized flotation concentration separation tank is subjected to aeration treatment in the raw water aeration adjustment tank, and the pH is naturally adjusted by the pH buffering action of microorganisms.
  • the chemicals and equipment necessary for neutralization are unnecessary. Therefore, not only can the site be used effectively, but also it can be processed without chemical injection, so the cost of chemicals can be saved.
  • the sludge 2 adsorbs these in advance and is removed as pressurized sludge 1 outside the system. Since the activated sludge in the diluted activated sludge aeration tank is not adversely affected, stable activated sludge treatment can be performed even when the disinfectant is mixed into the waste water.
  • Step 5 is a step of supplying the sludge 3 generated by processing in the microorganism reaction tank to the diluted activated sludge aeration tank.
  • anaerobic treatment refers to treatment in a state where DO is less than 0.05 mg / L
  • aerobic treatment refers to DO of 0.05 mg / L or more, preferably 0.1 mg / L or more, more preferably The treatment in a state of 0.2 mg / L or more.
  • the anaerobic treatment is an operation in which ORP is less than ⁇ 80 mV, and in the aerobic treatment, ORP is ⁇ 80 mV or more, preferably in a positive state.
  • the sludge 1 In the microbial reaction tank, the sludge 1 is subjected to anaerobic / aerobic digestion, and most of the pollutants adsorbed by the sludge 1 are decomposed into gases such as carbon dioxide, water, nitrogen gas, and methane gas. Moreover, since the sludge 1 is used for the growth of microorganisms, and most of it becomes digested sludge that has been transformed into cells, the amount of sludge is significantly reduced. Even if a very small amount of sludge is generated, the sludge has good agglomeration and dewatering properties, and the water content of the dewatered cake is reduced, so that the amount of dewatered cake generated is significantly reduced.
  • the obtained dehydrated cake is a dehydrated cake of sludge 3 obtained in the state of fully mature cells, the moisture content is low, the generation of malodor can be suppressed, and the dehydrated cake can be disposed of in landfill at a low sludge treatment cost.
  • the microbial reaction tank can be composed of two tanks: a thick sludge anaerobic microbial reaction tank and an aerobic microbial reaction tank having a larger internal volume than the anaerobic microbial reaction tank.
  • the anaerobic microorganism reaction tank should just be a tank which can process activated sludge on anaerobic conditions.
  • the aerobic microorganism reaction tank is an activated sludge reaction tank substantially the same as the activated sludge aeration tank. Note that a gas containing oxygen may be supplied as necessary.
  • the amount of sludge 3 generated in the aerobic microorganism reaction tank is supplied to the diluted activated sludge aeration tank.
  • the amount of dry sludge solids contained in the sludge 3 is approximately the same as the dry solid content of the reaction sludge contained in the diluted activated sludge aeration tank.
  • the amount obtained by converting the concentration is supplied so that the amount of sludge in the diluted activated sludge aeration tank is kept constant. For example, when the reaction sludge having a concentration of 6000 mg / L contained in the diluted activated sludge aeration tank is supplied at 1 m 3 / hour, the sludge 3 having a concentration of 22000 mg / L may be supplied at 0.27 m 3 / hour. . However, when the amount of water entering the lean activated sludge aeration tank decreases, the amount of sludge 3 supplied is set to 20 to 200% of the normal amount.
  • FIG. 2 is a cross-sectional view of the microbial reaction tank.
  • the microbial reaction tank 1 includes an outer tank 2, a cylindrical inner tank 3 disposed in the outer tank 2, a circulation rate control device 4 provided on the upper part of the cylindrical inner tank 3, and a cylindrical shape
  • the cylindrical control board 5 provided in the outer peripheral side of the inner tank 3, the to-be-processed water quality measuring apparatus 6, and the sludge extraction port 13 are comprised.
  • the outer tub 2 has a true cylindrical appearance including a cylindrical side surface 2b and an upper surface portion 2c on a base 2a serving as a bottom surface.
  • a rotating shaft 7 for attaching a stirring blade or the like is provided at the center of the cylinder.
  • the rotary shaft 7 is rotatably fixed by a frame 2d provided at the center of the circle of the base 2a and a bearing 2e provided at the center of the circle of the upper surface portion 2c.
  • the rotating shaft 7 is rotated by the driving device 2f.
  • the upper surface portion 2c fixes the rotating shaft 7 rotatably, and holds the cylindrical inner tank 3 with a support or the like.
  • a raw water supply port 10 is provided at the bottom of the outer tub 2.
  • a vibration device provided on the inner wall or the outer wall of the lower part of the outer tank where sludge settles
  • a vibration plate provided near the inner wall, and an upper part of the outer tank.
  • An apparatus having a vibration generator for transmitting vibration to the diaphragm, (3) a scraper provided on the inner wall of the lower part of the outer tank where the sludge settles, and (4) generating a stirring flow of sludge along the inner wall of the lower part of the outer tank.
  • the stirring flow generator is a pump that draws sludge settled in the lower part of the outer tank while moving to the inclined surface or lower surface of the inner wall and discharges it into the anaerobic microorganism treatment tank, or a predetermined interval on the inclined surface or lower surface of the inner wall Fixed in Include a pump for discharging by suction the sludge settled at the bottom outer tank anaerobic microbial treatment vessel.
  • the cylindrical inner tub 3 is disposed in the outer tub provided with the settling and fixing prevention device 12.
  • the cylindrical inner tank 3 having a substantially circular cross section is divided into a cylindrical upper part 3c and a cylindrical lower part 3d by a partition wall 3a.
  • a communication hole 3b is provided in the central portion of the partition wall 3a to connect the cylindrical upper part 3c and the cylindrical lower part 3d.
  • the aerobic microorganism treatment reaction can be sufficiently performed in the cylindrical upper portion 3c, and the anaerobic microorganism treatment reaction can be sufficiently performed in the cylindrical lower portion 3d.
  • the communication hole 3b has a diameter that allows the activated sludge treated with anaerobic microorganisms to move from the cylindrical lower part 3d to the cylindrical upper part 3c, which is an aerobic microorganism treatment tank. The diameter of the communication hole 3b is adjusted by the volume of the microorganism reaction tank, the nature and amount of raw water to be treated, and the like.
  • the cylindrical upper portion 3c has a truncated cone-shaped top portion whose upper surface and bottom surface are open. That is, it is a shape in which the tip of the cylindrical portion is reduced in diameter by a predetermined angle in the height direction.
  • the inclination angle of the cross section in the height direction passing through the center of the truncated cone is 40 to 60 degrees, preferably 45 degrees.
  • the amount of water to be treated is varied within the range of 3 to 20 without using a circulation pump, depending on the amount of air blown from the air blowing ports 8 and 8a and the control amount of the circulation rate control device described later.
  • Can do Thereby, the aerobic microorganism treatment by an appropriate nitrification condition and the anaerobic microorganism treatment by an appropriate denitrification condition can be easily set. Furthermore, because the sludge solid-liquid separation is made very efficient by the forced sedimentation principle on the outer peripheral surface of the aerobic microorganism treatment tank having the above-mentioned inclination angle, the aerobic / anaerobic microorganism treatment reaction is efficiently carried out in the same vertical tank. Can be done. In the aerobic tank, an alkali supply port or an acid supply port (not shown) can be provided.
  • the cylindrical lower part 3d is an anaerobic microorganism treatment tank having a volume that is 1/10 to 1 times the volume of the upper part of the cylinder. Within this volume range, for example, an aerobic microbial treatment reaction and an anaerobic microbial treatment reaction of raw water containing a high-concentration nitrogen-containing pollutant can be efficiently performed.
  • a denitrifying nutrient supply port (not shown) can be provided in the anaerobic microorganism treatment tank.
  • the volume of the anaerobic microorganism treatment tank is made larger than that of the aerobic microorganism treatment tank.
  • the cylindrical inner tank 3 is provided with a stirring device for sufficiently carrying out the treatment reaction between the water to be treated and the activated sludge in the aerobic microorganism treatment tank as the cylinder upper part 3c and in the anaerobic microorganism treatment tank as the cylinder lower part 3d.
  • the stirring device is preferably stirring blades 7 a and 7 b fixed to a rotating shaft 7 attached to the center of the cylindrical inner tank 3.
  • the stirring blade 7a is preferably provided in the cylindrical upper part 3c, and a turbine blade capable of sufficiently performing the aerobic microorganism treatment reaction is preferable.
  • a partition wall 3 a provided in the cylindrical inner tub 3 is supported by a support column 9 that is fixed and erected on a base 2 a that is a bottom surface of the outer tub 2.
  • the cylindrical inner tank 3 is held in the outer tank by a support by the support column 9 and a support tool bridged to the upper part of the outer tank 2.
  • a circulation rate control device 4 for controlling the circulation rate in the reaction tank of the water to be treated is provided on the upper part of the cylindrical inner tank 3. Specifically, the control of the circulation rate of the water to be treated in the reaction tank by the circulation rate control device 4 is performed by opening and closing the liquid level control valve or vertically moving the liquid level control plate. When the liquid level control valve is fully opened or at the lowest level of the liquid level control plate, the water level of the water to be treated becomes the lowest. The water level is indicated by A. Control of the circulation rate in the reaction tank can also be controlled by the amount of air blown from the air blowing port 8 and / or 8a. Increasing the amount of air blown increases the circulation rate. It is also possible to combine the opening and closing of the liquid level control valve and the air amount control.
  • the air blowing port 8a is provided with an air blowing portion 8b having an annular shape in plan view, which is in communication with an external blower or the like around the stirring blade 7a in an aerobic portion which is the upper surface of the partition wall 3a.
  • the part 8b is provided with a hole or a slit. This not only simply increases the amount of air, but also exhibits a baffle effect of the stirring blade 7a, and exhibits a synergistic effect that allows efficient stirring.
  • the circulation rate of the water to be treated can be changed without using a pump.
  • the water to be treated is treated from the aerobic microorganism treatment tank 3c to the anaerobic microorganism treatment tank 3d through the cylindrical control plate 5 disposed outside the tank, and further from the anaerobic microorganism treatment tank 3d.
  • denitrification, dephosphorization, etc. are performed. Therefore, optimal denitrification, dephosphorization, etc. can be performed by controlling the circulation rate of the water to be treated based on a predetermined control program according to the detected value.
  • a cylindrical control plate 5 is disposed on the upper outer periphery of the cylindrical inner tank 3.
  • the cylindrical control plate 5 is a cylinder whose upper and lower surfaces are open, and the lower surface 5 a of the cylindrical control plate 5 is disposed close to the inclined surface of the cylindrical inner tank 3.
  • a sludge sedimentation portion is formed in the inclined surface portion disposed close to the slurry, and sludge is concentrated and treated water is separated. Moreover, the rapid forced sedimentation of sludge is attained by arrange
  • the distance between the lower surface 5a and the inclined surface of the cylindrical inner tub 3 is preferably adjustable.
  • the shape of the cylindrical control plate 5 can be a right cylindrical shape in which the opening surfaces of the upper surface and the lower surface have the same area, or an inverted truncated cone shape in which the opening area of the upper surface is larger than the opening area of the lower surface.
  • a water quality measuring device 6 to be treated is provided inside and outside the cylindrical inner tank 2.
  • This to-be-processed water quality measuring apparatus 6 is an apparatus which measures pH, ORP, and DO of to-be-processed water.
  • the circulation rate of water to be treated in the microorganism reaction tank is 3 to 20, preferably 5 to 20. If the circulation rate of the treated water is less than 3, the aerobic microbial treatment reaction is more likely to occur, and if it exceeds 20, the balance between the aerobic microbial treatment reaction and the anaerobic microbial treatment reaction is lost, and the denitrification and desorption of raw water Unable to perform phosphorus. That is, by setting the treated water circulation rate within this range, the ORP of the treated water measured by the treated water quality measuring device is ⁇ 10 mV or less, preferably ⁇ 50 mV or less, and the aerobic microorganism treatment in the anaerobic microorganism treatment reaction tank.
  • the reaction vessel In the reaction vessel, it can be maintained at +10 mV or more, preferably +100 mV or more. As a result, the aerobic microorganism treatment reaction and the anaerobic microorganism treatment reaction are sufficiently performed, and denitrification and dephosphorization are continuously performed. Under such conditions, the pH in the aerobic microorganism treatment reaction tank is in the range of 4.5 to 8.5, preferably 5.5 to 7.5.
  • the sludge circulation flow is formed by using the upflow by aeration air used for microbial treatment without using a circulation pump to make the circulation flow of activated sludge. Furthermore, it is the processing method which can implement aeration of an aerobic microorganism processing tank efficiently.
  • the raw water may be added anywhere in the circulation flow path, but is preferably an aerobic microorganism treatment tank. More preferably, an anaerobic microorganism treatment tank is suitable.
  • the treated water has at least a BOD of 800 mg / L and a total nitrogen amount (hereinafter referred to as TN) of 40 mg / L or more, the treated water
  • the BOD is usually extremely low, 20 mg / L or less, and generally the water quality of the discharged water can be operated at a BOD of 10 mg / L or less.
  • the contact between the sludge and the raw water becomes insufficient, and Adsorption may be insufficient.
  • raw water can be added to the sludge sedimentation part in the circulation flow path, for example, as a primary treatment facility such as sewage discharge with a BOD of 300 mg / L or less or 600 mg / L or less. There is a case.
  • FIG. 3 is a diagram showing a circulation path of water to be treated and activated sludge in the microorganism reaction tank 1.
  • the hatched portion is a portion where the concentration of activated sludge is high, and the arrows indicate the circulation direction of the treated water and activated sludge.
  • the microorganism reaction tank 1 contains activated sludge in an amount of 5,000 to 12,000 mg / L in terms of solid content, and the treated raw water 1 first comes into contact with the activated sludge in an anaerobic state within the cylindrical lower part 3d to denitrify it. Reaction takes place.
  • the treated raw water 1 supplied from the raw water supply port 10 and the circulated activated sludge are circulated in the lower part 3d of the cylinder by the rotation of the stirring blades or the air jet from the air diffuser to cause an anaerobic microorganism treatment reaction.
  • the raw water and the activated sludge move through the communication hole 3b to the cylindrical upper portion 3c into which air is blown, and in contact with the activated sludge in the cylindrical upper portion 3c in an aerobic state, the rotation of the stirring blade or the air blowing port
  • the nitrification reaction which is an aerobic microorganism treatment reaction, proceeds in the cylindrical upper part 3c.
  • the pH of the treated water decreases.
  • the pH value, ORP, and DO of the liquid to be treated are measured by the treated water quality measuring device 6, and the circulation amount of the raw water or the water to be treated is determined based on these values.
  • the waste water treatment method of the present invention may use one microbial reaction tank or a plurality of tanks.
  • the discharged water from the first tank is introduced into the raw water supply port of the second tank.
  • the ratio of the volume of the nitrification reaction part and the volume of the denitrification reaction part in the second tank can be changed more effectively by changing the ratio in the first tank.
  • Waste water treatment can be performed. Specifically, denitrification and dephosphorization can be performed by making the volume ratio smaller than that of the first tank.
  • Step 6 is a step of supplying the treated raw water 2 separated from the diluted activated sludge aeration tank to the settling tank.
  • the sludge contained in the treated raw water 2 is precipitated in the settling tank, and the supernatant liquid is discharged as discharged water.
  • Sludge generated in the sedimentation tank was continuously added to the raw water aeration control tank using a metering pump.
  • the addition amount was supplied in the range where the sludge concentration in the raw water aeration control tank was 1500 to 2000 mg / L as MLSS.
  • the amount of aeration was adjusted, and ORP was adjusted until it became + 50mV.
  • the treated raw water that has been subjected to aeration adjustment so that the ORP has a positive value is supplied to a non-chemical casting pressurized flotation concentration separation tank KF800 (manufactured by Nippon Alcy Co., Ltd.).
  • This pressurized flotation concentration separation tank mixes and circulates 100 parts by weight of 5 kg / cm 2 of pressurized water without chemical injection with respect to 100 parts by weight of the treated raw water.
  • the sludge separated in the pressurized flotation concentration separation tank was sent to the microorganism reaction tank for processing.
  • the pH in the anaerobic tank is 7.1
  • the ORP is -350 mV
  • the DO is 0,
  • the pH in the aerobic tank is 6.1
  • the ORP is +210 mV
  • the DO is 0.8 mg / L. there were.
  • Excess sludge generated in the microbial reaction tank was supplied to a diluted activated sludge aeration tank.
  • the total amount of water discharged from the microbial reaction tank was supplied to the diluted activated sludge aeration tank.
  • the treated raw water treated in the diluted activated sludge aeration tank was discharged through the sedimentation tank. Moreover, the sludge settled in the settling tank was circulated again to the raw water aeration control tank. Through this sludge circulation process, the amount of sludge can be reduced.
  • the water quality of the discharged water was 8 mg / L for BOD, 10 mg / L for COD, 0 mg / L for TN, 0 mg / L for n-Hex, and 1 mg / L for SS. Further, the generation of dehydrated cake was 0 to 20 tons / month.
  • the wastewater treatment by the above method improves the self-digestion efficiency of the bacterial cells because the anaerobic and aerobic operation can be performed while suppressing the generation of harmful gases in the microbial reaction tank. Further, through the circulation of sludge, the bacterial cells capable of selectively decomposing the sludge substance in the raw water are acclimatized and the hardly degradable pollutant substance can be easily treated. As a result, effects such as (1) the amount of dehydrated cake discharged can be significantly reduced, and (2) the odor in the vicinity of the pressurized flotation concentration separation tank is eliminated.
  • Example 2 Wastewater discharged from the pastry factory was processed.
  • the waste water before treatment is 6000 mg / L for BOD, 3500 mg / L for COD, 120 mg / L for TN, 3000 mg / L for n-Hex, 3500 mg / L for ss, and the amount of treated water is 120 m 3 / day. is there.
  • an inorganic flocculant such as polyaluminum chloride was added to the pressurized flotation tank to cause coagulation precipitation, and then a conventional waste water treatment was performed by the method shown in FIG. For this reason, dehydrated cake (water content 85% by weight) was generated at 150 tons / month.
  • a microbial reaction having a 100 m 3 anaerobic treatment tank and a 250 m 3 aerobic treatment tank shown in FIG. 2 in a part of the removed site.
  • a tank was constructed.
  • the treatment raw water circulation rate in the microbial reactor was circulated in the range of 5-8.
  • the aeration apparatus was attached to the conventional raw
  • the conventional aeration tank was reused as a dilute activated sludge aeration tank, and the settling tank was reused as a settling tank, and the sludge circulation path shown in FIG. 1 was attached to each.
  • the volume of the raw water aeration tank in this factory is 100 m 3
  • the volume of the pressurized flotation concentration separation tank is 10 m 3
  • the volume of the diluted activated sludge aeration tank is 120 m 3
  • the volume of the sedimentation tank is 30 m 3. It is.
  • Sludge generated in the sedimentation tank was continuously added to the raw water aeration control tank using a metering pump.
  • the added amount was supplied in a range where the sludge concentration in the raw water aeration adjusting tank was 3500 to 5000 mg / L as MLSS.
  • the amount of aeration was adjusted to adjust the ORP to +100 mV.
  • the treated raw water that has been subjected to aeration adjustment so that the ORP has a positive value is supplied to a non-chemical casting pressurized flotation concentration separation tank KF800 (manufactured by Nippon Alcy Co., Ltd.).
  • KF800 non-chemical casting pressurized flotation concentration separation tank
  • 220 parts by weight of 4.5 kg / cm 2 of pressurized water is mixed and circulated without chemical injection with respect to 100 parts by weight of the treated raw water.
  • the sludge separated in the pressurized flotation concentration separation tank was sent to the microorganism reaction tank for processing.
  • the pH in the anaerobic tank is 7.4
  • the ORP is ⁇ 400 mV
  • the DO is 0
  • the pH in the aerobic tank is 7.8
  • the ORP is +210 mV
  • the DO is 1.8 mg / L. there were.
  • Excess sludge and discharge water generated in the microbial reactor were supplied to the diluted activated sludge aeration tank.
  • the treated raw water obtained in the pressurized flotation concentration separation tank was sent to a diluted activated sludge aeration tank in the same manner as in Example 1 for treatment, and the treated water was discharged through a precipitation tank. Moreover, the sludge settled in the settling tank was circulated again to the raw water aeration control tank.
  • the water quality of the discharged water was 18 mg / L for BOD, 30 mg / L for COD, 1 mg / L for TN, 1 mg / L for n-Hex, and 30 mg / L for SS. Further, the generation of dehydrated cake was 0 ton / month.
  • the wastewater treatment at the confectionery factory also showed effects such as (1) a significant reduction in the amount of dehydrated cake discharged and (2) the elimination of odors near the pressurized flotation concentration separation tank.
  • the method of the present invention does not substantially discharge excess sludge, it is an environmentally friendly wastewater treatment method with little environmental destruction, and since no equipment for dewatering cake treatment is required, a number of existing wastewater treatments will be required in the future. It can be used as a repair method for equipment. . Particularly in factories in urban areas, a large amount of bad odor is generated from the raw water adjustment tank, the pretreatment facility, and the dehydration facility, and therefore, a deodorization facility is usually required. However, when this treatment method is introduced, no bad odor is generated from the raw water adjustment tank for wastewater treatment to the treatment process from final treatment. For this reason, the present processing method is a processing method suitable for countermeasures against malodors in which the generation of malodor associated with the processing is suppressed, for example, a deodorizing facility may be unnecessary.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Water Supply & Treatment (AREA)
  • Microbiology (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)
  • Activated Sludge Processes (AREA)
  • Physical Water Treatments (AREA)

Abstract

 余剰汚泥の発生を殆んどゼロにする活性汚泥処理方法およびこの処理方法を用いる既存排水処理設備の改修方法を提供することを目的とする。活性汚泥処理される排水の原水曝気調整槽に、沈殿槽により発生する汚泥2を供給する工程1と、汚泥2が混合された原水を酸化還元電位が正の値になるように曝気調整して加圧浮上濃縮分離槽に供給する工程2と、加圧浮上濃縮分離槽にて処理することにより発生する汚泥1を微生物反応槽に供給する工程3と、加圧浮上濃縮分離槽から分離された処理原水1を希薄活性汚泥曝気槽に供給して処理する工程4と、微生物反応槽にて処理することにより発生する汚泥3および放出水を希薄活性汚泥曝気槽に供給する工程5と、希薄活性汚泥曝気槽から分離された処理原水2を沈殿槽に供給する工程6とを有する。

Description

活性汚泥処理方法および該方法を用いる既存排水処理設備の改修方法
 本発明は、活性汚泥処理方法およびこの活性汚泥処理方法を用いる既存排水処理設備の改修方法に関する。
 活性汚泥処理方法は極めて優れた排水処理方法であるため、広く排水処理に用いられ、原水の種類に応じていろいろな処理方式が提案されている。
 従来の活性汚泥処理法においては、食物連鎖を利用して土壌細菌から大型の原生動物に至るまで種々の微生物が利用されている。
 既存の活性汚泥処理方法の一例を図4に示す。
 排水は原水調整槽に導入され、必要に応じて前処理されて、加圧浮上槽で荒いものから微細なものまで原水中に分散していたものが除去される。油分の多い排液の場合、一次処理として凝集剤による分離・凝集が行なわれている。たとえば、硫酸バンドと称される硫酸アルミニウムやパックと称されるポリ塩化アルミニウムなどの無機系凝集剤、あるいはポリアクリルアミド系高分子などの有機系凝集剤を排液に添加してエマルジョン状態を破壊して油成分と水成分とに分離している。しかしこの場合は、この凝集剤が汚泥として多量に発生する。また、加圧浮上槽での処理の際に、原水中に含まれる汚濁物質が無機凝集剤に付着除去され、浮上スカムとなり汚泥として発生する。これら汚泥が汚泥貯留槽に集められる。
 微生物処理に適した可溶性有機分を処理原水として曝気槽に送り、活性汚泥で曝気処理したのち、処理原水を活性汚泥から分離して放流し、濃縮分離した活性汚泥は汚泥貯留槽に集められると共に、その一部が返送汚泥として曝気槽で再循環使用される。
 汚泥貯留槽に集められた汚泥は脱水装置に送られて脱水ケーキとなり埋め立てや菌体肥料や焼却処分されている。
 このような活性汚泥処理法には以下に述べるような解決しなければならない問題がある。
(1)蛋白質・変成蛋白質やセルロース・澱粉や油脂分などの難分解性物質が多い原水の場合、悪臭を発生する脱水ケーキが余剰汚泥として多量に発生する。余剰汚泥を少なくするために、曝気槽を大きくして長時間曝気して消化させる方法が提案された(ラグーン方式・オキシデーションデッチ)。しかしこの方法は排水量が多くなったり負荷が大きい場合は膨大な曝気槽が必要になるため、敷地がなかったり建設費が膨大になるなどの問題がある。一度バルキングや処理異常が発生すると、その回復に多大な費用と日数がかかり、工場の安定操業に問題がある。
(2)微生物処理を行なうに当たり、流入原水中のpHを中性にする必要がある。しかし、中性にするための薬品を添加すると薬品代がかかるのみならず設備の腐食を促進したりする問題がある。また、流入原水の水素イオン濃度(以下、pHという)を調整すると放流処理水のpHが大幅に変化する問題がある。
(3)活性汚泥法は活性汚泥を殺菌するような有害物質が流入すると、活性汚泥が損傷を受け、原水の浄化機能を失ったり糸状細菌性バルキングを引き起こしたりしやすい。しかし、少量の殺菌剤や活性汚泥に悪影響を与える物質を全く排水に流さないわけには行かずこれらの有害物質の除去が問題である。
(4)多量の有機汚濁物質を処理している活性汚泥処理場では以下の問題がある。夜間や休日に極端に流入水が減少する。また、連休が多くなった場合、一定量の汚濁物質を与えられず良好な活性汚泥菌が過曝気で減少する。さらに、過負荷で汚泥が解体する。その結果、活性汚泥菌の安定な増殖が確保できないため、バルキングや汚泥の浮上の発生で、活性汚泥処理能力が低下しやすくなる。特に、流入処理原水の汚濁物質成分の変動が大きい場合や連休明けに急激に負荷が掛かる場合等はバルキングが発生しやすくなる。これを予防するために、大きな原水調整槽を造って、原水を多量に保存して、原水の均質化を図ったり、曝気槽への供給量を一定かつ連続的に供給したりすることがなされているが、敷地面積の制約と建設費用の問題がある。
(5)高速エアレーション活性汚泥処理法は設置面積が少なくて高い効率を持つ廃水処理方法であるが、活性汚泥と原水が常に同居している完全混合型であるので糸状細菌によるバルキングが発生しやすい問題がある。また、一般的には下水道の処理施設としては中級処理施設に分類されており、充分な処理ができない施設として近年はその姿を消している。
 上記問題を解決するために、本出願人は微生物反応槽および排水処理方法(特許文献1)を開発し、多くの分野で排水処理の実績を上げている。
 また、余剰汚泥の削減法の1つとして、余剰汚泥にオゾン処理を施した後、曝気槽へ返送する方法が開示されている(非特許文献1)。その他、高温菌で処理したり、機械的に破砕したり、化学的に処理したりした後に、曝気槽に返送する方法が知られている。
 しかしながら、排水処理の多様化が進み、環境負荷に対する規制が厳しくなるにつれて、上記各方法による排水処理においても余剰汚泥を少なくすることが困難になる場合がある。
 また、従来方法の既存排水処理設備では、排水処理設備の敷地面積が大きく、かつ活性汚泥処理が十分でないため、余剰汚泥が多量に発生するという問題がある。
安井英斉、化学工学 第66巻第6号、329-331頁、2002年
特許第4142138号
 本発明は上記課題に対処するためになされたもので、活性汚泥処理法を用いる排水処理方法において、余剰汚泥の発生を殆んどゼロにする活性汚泥処理方法およびこの活性汚泥処理方法を用いる既存排水処理設備の改修方法の提供を目的にする。
 本発明の活性汚泥処理方法は、原水曝気調整槽、加圧浮上濃縮分離槽、希薄活性汚泥曝気槽、微生物反応槽、および沈殿槽を備え、汚泥が各槽間を循環する循環システムにより排水を処理する活性汚泥処理方法であって、
 処理前の原水が供給される上記原水曝気調整槽に、上記沈殿槽より発生する汚泥2を供給する工程1と、
 上記汚泥2が混合された原水を上記原水曝気調整槽にて、酸化還元電位(以下ORPという)が正の値になるように曝気調整した後、この調整された原水を上記加圧浮上濃縮分離槽に供給する工程2と、
 上記加圧浮上濃縮分離槽にて処理することにより発生する汚泥1を上記微生物反応槽に供給する工程3と、
 上記加圧浮上濃縮分離槽から分離された処理原水1を上記希薄活性汚泥曝気槽に供給する工程4と、
 上記微生物反応槽にて処理することにより発生する汚泥3および放出水を上記希薄活性汚泥曝気槽に供給する工程5と、
 上記希薄活性汚泥曝気槽から分離された処理原水2を上記沈殿槽に供給する工程6と、を有することを特徴とする。
 上記原水曝気調整槽に供給される汚泥2は、原水曝気調整槽内の汚泥濃度が活性汚泥浮遊物質(以下、MLSSという)として、500~8000mg/Lとなる範囲で供給されることを特徴とする。
 また、本発明の活性汚泥処理方法に用いられる微生物反応槽は、外槽と、この外槽の内部に配置されて上下に開口部を有する円筒状内槽と、この円筒状内槽上部に設けられて被処理水の槽内循環率を制御する循環率制御装置と、円筒状内槽の上部外周に設けられて汚泥を沈降させるための円筒状制御板と、円筒状内槽の外側および内側に設けられた被処理水質測定装置と、外槽および内槽内を循環する被処理水の循環経路に設けられた原水供給口および外槽の上部に設けられた処理水放出口とを具備している。
 微生物反応槽を構成する円筒状内槽は、中心部に連通孔を有する隔壁で円筒上部と円筒下部とに分割され、円筒上部は、上面および底面が開口した円錐台形状を頂部に有し、かつ該円筒上部内の連通孔周囲および隔壁周縁部に複数の空気吹込口が設けられた好気微生物処理槽であり、上記円筒下部は底面に開口部を有する嫌気微生物処理槽であり、好気微生物処理槽内および嫌気微生物処理槽内をそれぞれ撹拌する撹拌装置が設けられている。
 微生物反応槽は、上記被処理水質測定装置により測定される被処理水のpH、酸化還元電位(以下、ORPという)および溶存酸素量(以下、DOという)から選ばれた少なくとも1つの測定値を検出する手段と、上記検出された測定値に応じて上記循環率制御装置に設けられた、液面調節バルブの開閉、液面調節制御板の上下動、および上記空気吹込口から吹込まれる空気量から選ばれる少なくとも1つの量を制御することにより、上記被処理水の槽内循環率を3~20に制御する手段とを備えている。ここで、反応槽内の被処理水循環率とは、次式で定義される量をいう。
 
 被処理水循環率=内槽上部から排出される被処理水量(m3/日)/原水供給量(m3/日)
 
 微生物反応槽は、上記原水供給口より供給される原水が活性汚泥と共に上記円筒状内槽の内部と、上記円筒状内槽の外周面と、上記外槽下部に沈降した活性汚泥内を経て槽内を循環することで嫌気微生物処理および好気微生物処理が連続してなされることを特徴とする。
 特に、原水供給口は、嫌気微生物処理槽の開口部の下部に配置された円環状原水供給部に設けられた複数の吐出口またはスリットであることを特徴とする。また、円筒下部は円筒上部の容積より1/10~1倍の容積を有することを特徴とする。
 本発明の既存排水処理設備の改修方法は、排水処理設備で発生する汚泥を、既存排水処理設備で発生する汚泥より低減する改修方法であって、
 該改修方法は、既存または改修する、加圧浮上濃縮分離槽および希薄活性汚泥曝気槽に、上記微生物反応槽を新設する工程と、この新設される微生物反応槽を介して上記本発明の活性汚泥処理方法により汚泥を循環させる循環工程とを設けることを特徴とする。
 本発明方法は、排水処理設備として用いられている、加圧浮上濃縮分離槽、活性汚泥曝気槽および微生物反応槽でそれぞれ発生する汚泥を請求項1記載の方法により相互間で循環させるとともに、活性汚泥曝気槽により発生する汚泥の一部を活性汚泥処理される排水の原水曝気調整槽に供給することにより、実質的に余剰汚泥量を排出しない活性汚泥処理方法が得られる。
 また、請求項3記載の微生物反応槽を新設することで、改修される既存排水処理設備は、実質的に余剰汚泥量を排出しない排水処理が可能となる。
活性汚泥処理方法のブロック図である。 微生物反応槽の断面図である。 微生物反応槽における被処理水および活性汚泥の循環経路を示す図である。 既存の活性汚泥処理方法のブロック図である。
 本発明の活性汚泥処理方法のブロック図を図1に示す。
 加圧浮上濃縮分離槽、希薄活性汚泥曝気槽、微生物反応槽および沈殿槽でそれぞれ発生する汚泥1、汚泥2および汚泥3は、それぞれ工程1~工程5に示す経路で循環する。循環する過程で汚泥が消化され、実質的に余剰汚泥量が排出されない。以下、各工程を順に説明する。
工程1:
 工程1は、活性汚泥処理される排水の原水曝気調整槽に、沈殿槽により発生する汚泥2を供給する工程である。
 原水曝気調整槽は、既存排水処理設備を改修する場合は、既存の原水槽に空気吹き込み設備を追加することで得られる。
 処理される排水中の大きな固形分はスクリーン等で除去し、処理される原水として原水曝気調整槽に蓄えられる。この原水曝気調整槽に沈殿槽で発生する汚泥2を供給して、原水と攪拌混合して、原水中の難分解性物質や活性汚泥を破壊する有害物質など、活性汚泥の処理異常を与えやすい汚濁物質を汚泥2に接触吸着させる。この汚泥2は希薄活性汚泥曝気槽で処理されて沈殿槽を経た汚泥であるので、処理されるべき排水に適した活性汚泥菌になっている。このため、汚泥2を原水に供給することにより、希薄活性汚泥曝気槽において、活性汚泥の損傷を防止し、活性汚泥の活性を高い状態に保つので、希薄活性汚泥の膨化や発泡スカムによる処理異状現象の発生が減り、処理を安定化することができる。
 原水曝気調整槽に供給される汚泥2は、原水曝気調整槽内の汚泥濃度がMLSSとして、500~8000mg/Lとなる範囲で供給される。好ましくは1000~5000mg/Lとなる範囲で供給される。MLSSが500mg/L未満であると、活性汚泥に悪影響を与える汚濁物質を汚泥2が吸着できないために、活性汚泥処理が不安定となる。また、MLSSが8000mg/Lをこえると、汚泥2が汚濁物質の殆どを吸着してしまい処理原水に含まれる生物化学的酸素要求量(以下、BODという)が減ってしまう。
 工程2:
 工程2は、汚泥2が混合された原水を原水曝気調整槽にて、原水のORPが正の値になるように曝気調整した後、該原水を加圧浮上濃縮分離槽に供給する工程である。正の値になるように曝気調整することで、悪臭の原因となる硫化水素、アンモニア、メルカプタンなどが酸化されて臭気が殆ど出ない活性汚泥処理ができる。
 原水曝気調整槽での曝気処理は、原水の滞留時間が3時間以上、好ましくは5時間以上の曝気処理でなされる。汚泥2共存下にて曝気処理されて、汚泥を含む原水は加圧浮上濃縮分離槽に供給される。
 工程3:
 工程3は、加圧浮上濃縮分離槽にて処理することにより発生する汚泥1を微生物反応槽に供給する工程である。ここで汚泥1は乾燥汚泥でなく、水を含んだ汚泥水である。
 加圧浮上濃縮分離槽に供給される原水は、原水曝気調整槽での曝気処理を経ることで、微生物の持っているpH緩衝作用により、自然にpHの調整が行なわれるので、酸・アルカリを中和するに必要な薬剤や設備が不用となる。そのため、敷地が有効に使用できるのみならず、無薬注で処理できるので薬品代の節約になる。
 また、原水中に活性汚泥に吸着して活性汚泥を破壊する殺菌剤等の有害物質があっても、汚泥2が予めこれらを吸着し、系外に汚泥1として加圧浮上で除去されるので希薄活性汚泥曝気槽の活性汚泥に悪影響が及ばないため、殺菌剤が排水に混入するところでも安定な活性汚泥処理ができる。
 工程4:
 工程4は、加圧浮上濃縮分離槽から分離された処理原水1を希薄活性汚泥曝気槽に供給して処理する工程である。
 希薄活性汚泥曝気槽は、既設の活性汚泥処理方法に用いられている好気性活性汚泥処理槽をそのまま利用することができる。
 希薄活性汚泥曝気槽には処理原水1が供給されるとともに、工程5で示される微生物反応槽で発生する汚泥3が供給される。この汚泥3は希薄活性汚泥曝気槽内で1日から7日間酸素含有気体で曝気して消化させて消化汚泥となる。
 工程5:
 工程5は、微生物反応槽にて処理することにより発生する汚泥3を上記希薄活性汚泥曝気槽に供給する工程である。
 本発明において、嫌気処理とはDOが0.05mg/L未満の状態での処理をいい、好気処理とはDOが0.05mg/L以上、好ましくは0.1mg/L以上、より好ましくは0.2mg/L以上の状態での処理をいう。さらに嫌気処理においてはORPが-80mV未満、好気処理においてはORPが-80mV以上、好ましくは正の状態で処理する操作をいう。
 微生物反応槽は、汚泥1を嫌気・好気消化して、汚泥1が吸着した汚濁物質の殆どを分解して炭酸ガスや水や窒素ガスやメタンガスなどの気体にする。また、汚泥1が微生物の増殖に使用されて、殆どが菌体に変化した消化汚泥となるため、著しく汚泥量が減少する。仮に極少量の汚泥が発生したとしても、その汚泥は凝集脱水性が良好となり、脱水ケーキの含水率が低下することにより脱水ケーキの発生量が著しく少なくなる。
 得られる脱水ケーキが完熟菌体状態で得られる汚泥3の脱水ケーキであるため、含水率も低く、悪臭の発生を抑制でき、汚泥処理費が安価な埋め立て処分ができる脱水ケーキとなる。
 微生物反応槽は、濃厚汚泥の嫌気微生物反応槽と、例えばこの嫌気微生物反応槽より内容積が大きい好気微生物反応槽との2槽より構成することができる。
 ここで、嫌気微生物反応槽は、嫌気条件で活性汚泥を処理できる槽であればよい。また、好気微生物反応槽は上記活性汚泥曝気槽と略同一の活性汚泥反応槽である。なお、必要に応じて酸素を含むガスを供給してもよい。
 好気微生物反応槽で生成する汚泥3を希薄活性汚泥曝気槽へ供給する量は、汚泥3に含まれる乾燥汚泥固形分が希薄活性汚泥曝気槽に含まれる反応汚泥の乾燥固形分量とほぼ同量になるように濃度換算して求めた量を供給し、希薄活性汚泥曝気槽の汚泥量を一定に保つ。一例をあげれば、希薄活性汚泥曝気槽に含まれる濃度6000mg/Lの反応汚泥を1m3/時で供給した場合は、濃度22000mg/Lの汚泥3を0.27m3/時で供給すればよい。しかしながら、希薄活性汚泥曝気槽に入る水量が少なくなった場合は、汚泥3の供給量を通常の20~200%にして供給する。
 微生物反応槽を図2に示す。図2は微生物反応槽の断面図である。
 微生物反応槽1は、外槽2と、この外槽2の内部に配置されている円筒状内槽3と、この円筒状内槽3の上部に設けられた循環率制御装置4と、円筒状内槽3の外周側に設けられた円筒状制御板5と、被処理水質測定装置6と、汚泥抜き出し口13とから構成されている。
 外槽2は、底面となる基盤2aに円筒形側面2bおよび上面部2cからなる真円筒状の外観を有している。円筒の中心には撹拌翼等を取り付けるための回転軸7が設けられている。この回転軸7は、基盤2aの円中心に設けられた架台2dおよび上面部2cの円中心に設けられた軸受2eにより回転自在に固定されている。また、回転軸7は駆動装置2fにより回転される。上面部2cは回転軸7を回転自在に固定すると共に、円筒状内槽3を支持具等で保持している。
 また、外槽2の底部には原水供給口10が設けられている。原水供給口10は、円筒状内槽3の下部開口部3fの下方に配置された、円環状原水供給部10aに設けられた複数の吐出口10bまたはスリットで構成される。原水供給口10をこのように配置することにより、嫌気汚泥の撹拌が十分になされる。なお、この原水供給口10は被処理水の循環経路であれば、円筒状内槽3の下部以外にも設けることができる。
 また、外槽2の上部には浄化された処理水放出口11が設けられ、外槽内面には、沈降した汚泥の沈降固定化を防止するための沈降固定化防止装置12が設けられている。
 沈降固定化防止装置としては、(1)汚泥が沈降する外槽下部の内壁または外壁に設けられる振動装置、(2)内壁の近くに設けられる振動板と、外槽の上部に設けられて上記振動板に振動を伝達する振動発生器とを有する装置、(3)汚泥が沈降する外槽下部の内壁に設けられるスクレーパー、(4)外槽下部の内壁に沿って汚泥の撹拌流を発生させる撹拌流発生装置であり、特に内壁の傾斜面を移動しながら流体を吹き付ける移動式流体吹きつけノズルであるか、または内壁の傾斜面に所定の間隔で固定された流体吹きつけノズル、(5)撹拌流発生装置が内壁の傾斜面または下面に移動しながら外槽下部に沈降した汚泥を吸引して嫌気微生物処理槽内に吐出するポンプであるか、または内壁の傾斜面または下面に所定の間隔で固定され、外槽下部に沈降した汚泥を吸引して嫌気微生物処理槽内に吐出するポンプ等を挙げることができる。
 上記沈降固定化防止装置12が設けられた外槽内に円筒状内槽3が配置される。
 横断面が略真円状の円筒状内槽3は、隔壁3aで円筒上部3cと円筒下部3dとに分割されている。隔壁3aの中心部には円筒上部3cと円筒下部3dとを連通する連通孔3bが設けられている。
 この隔壁3aの存在により、微生物反応槽の容積が大きくなった場合でも、円筒上部3cと円筒下部3dとが十分に分離されており、それぞれの槽内で活性汚泥処理を行なうことができる。円筒上部3c内にて好気微生物処理反応を、円筒下部3d内にて嫌気微生物処理反応を、それぞれ十分に行なわせることができる。隔壁3aの面積が大きくなった場合、支持部材3g等で補強する。
 連通孔3bは、嫌気微生物処理された活性汚泥が円筒下部3dから好気微生物処理槽である円筒上部3cに移動できる大きさの直径を有する。この連通孔3bの径は微生物反応槽の容積、処理される原水の性質、量などによって調整される。
 円筒上部3cは、上面および底面が開口した円錐台形状の頂部を有する。すなわち、円筒部の先端が高さ方向に所定の角度で縮径する形状である。円錐台形の中心を通る高さ方向断面の傾斜角は40度から60度、好ましくは45度である。傾斜角をこの範囲にすることにより、好気槽上部から排出する被処理水に含まれる汚泥が円錐台形外面を流れ落ちることで凝集しやすくなり汚泥の急速強制沈降が可能となる。また、汚泥が凝集することにより、汚泥と浄化された処理水との分離が容易になる。
 円筒上部3cは、内部に空気吹込口8および8aが設けられた好気微生物処理槽である。空気吹込口8は、中心軸7の周囲であって、連通孔3b周囲に設けられ、隔壁3a上に図示を省略した支持柱等により固定することができる。この空気吹込口8の空気噴出口は好ましくは下向きに配置されていることが、好気槽内の被処理水および汚泥の撹拌に寄与できるため好ましい。
 空気吹込口8aは、円筒上部3c内の隔壁周縁部に平面視円環状に空気吹込部8bを配置して、この空気吹込部8bに複数個設けられた空気孔8cか、あるいは空気吹込部8bの上面または側面に形成されたスリットとすることができる。
 空気吹込口8および8aより吹込まれる空気量と、後述する循環率制御装置の制御量とにより、循環ポンプを用いることなく、被処理水の循環量を3~20の範囲内に変動させることができる。それにより適切な硝化条件による好気微生物処理および適切な脱窒条件による嫌気微生物処理が容易に設定できる。さらに、上記傾斜角を有する好気微生物処理槽外周面での強制沈降原理により汚泥の固液分離が極めて効率よくなされるので、好気・嫌気微生物処理反応を縦型の同一槽内で効率よく行なうことができる。
 なお、好気槽内には、図示を省略したアルカリ供給口または酸の供給口を設けることができる。
 円筒下部3dは、円筒上部の容積より1/10~1倍の容積を有する嫌気微生物処理槽である。この容積範囲内であると、例えば高濃度窒素含有汚濁物質を含有する原水の好気微生物処理反応および嫌気微生物処理反応を効率よく行なうことができる。なお、嫌気微生物処理槽内には、図示を省略した脱窒菌栄養物供給口を設けることができる。
 また、原水中に水素供与体が少なく、硝酸塩の窒素をメタノールや酢酸等の水素供与体を供給して脱窒する場合には、嫌気微生物処理槽の容積を好気性微生物処理槽よりも大きくすることが好ましい。
 円筒下部3dの形状は、円筒上部3cの開口部3eよりも面積が大きい開口部3fを有する逆円錐台形を円筒下部に有する形状である。すなわち、円筒部の先端が下部方向に所定の角度で縮径する形状である。開口部3fの面積を大きくすることにより嫌気微生物処理槽内での汚泥の撹拌を容易にできる。
 円筒下部3dの形状を上記逆円錐台形とする場合には、外槽2の下部内面2gは上記所定の角度と同じ角度とすることが汚泥の沈降固定化を防止できるため好ましい。
 円筒状内槽3は、円筒上部3cである好気微生物処理槽内および円筒下部3dである嫌気微生物処理槽内において、被処理水と活性汚泥との処理反応を十分に行なうための撹拌装置が設けられている。
 撹拌装置としては、円筒状内槽3の中心に取り付けられた回転軸7に固定された撹拌翼7a、7bであることが好ましい。撹拌翼7aは円筒上部3c内に設けられ、好気微生物処理反応を十分に行なわせることができるタービン翼が好ましい。タービン翼以外にも、空気の吹き込み量により、曝気性能が著しく低下しない回転数が比較的少なくて、空気と水を混合できる形状のであれば、使用できる。
 撹拌翼7bは円筒下部3d内に設けられ、嫌気微生物処理反応を十分に行なわせることができるプロペラ翼である。
 円筒状内槽3内に設けられた隔壁3aは、外槽2の底面となる基盤2aに固定されて立設する支持柱9により支えられる。
 円筒状内槽3はこの支持柱9による支えと、外槽2の上部に橋渡しされた支持具とにより、外槽内に保持されている。
 円筒状内槽3の上部に被処理水の反応槽内循環率を制御する循環率制御装置4が設けられている。循環率制御装置4による被処理水の反応槽内循環率の制御は、具体的には液面調節バルブの開閉、あるいは液面調節板の上下動等によりなされる。液面調節バルブの全開時、または液面調節板の最下位時に、被処理水の水位レベルが最も低くなる。水位レベルをAで示す。
 反応槽内循環率の制御は、空気吹込口8および/または8aより吹込まれる空気量によっても制御することができる。吹込まれる空気量を多くすると循環率が増加する。液面調節バルブの開閉等および空気量調節を組み合わせることもできる。
 嫌気微生物処理槽ならびに好気性微生物処理槽の大型化に伴って、汚泥の循環流量を維持することが曝気空気だけでは足らなくなったり、また、過剰な空気の吹込みによる弊害が発生したりすることがある。このような場合に備えて、図2の8aに示してある空気吹込口が必要になる。この曝気効率のよくない空気吹込口8aにより、空気吹き込み量とORPの調整が、格段に調整しやすくなる長所がある。空気吹込口8aは、例えば、隔壁3aの上面である好気部分に攪拌翼7aを中心として、外部の送風機等と連通している平面視円環状の空気吹込部8bを設置し、この空気吹込部8bに穴またはスリットが設けられている。これは、単純に空気量を増やすだけでなく、攪拌翼7aのバッフル効果も発揮され、効率的な攪拌がなされる相乗効果を発揮する。
 液面調節バルブの開閉等および/または空気吹込量を調節することにより、被処理水の循環率をポンプを用いることなく変動させることができる。被処理水は、後述するように、好気微生物処理槽3cからこの槽の外側に配置された円筒状制御板5を経て嫌気微生物処理槽3dへ、さらに嫌気微生物処理槽3dから好気微生物処理槽3cへと循環することにより、脱窒、脱リン等が行なわれる。したがって、被処理水の循環率を検出値に応じて所定の制御プログラムに基づき制御することにより、最適な脱窒、脱リン等を行なうことができる。
 円筒状内槽3の上部外周に円筒状制御板5が配置されている。円筒状制御板5は上面および下面が開口している筒であり、円筒状制御板5の下面5aは円筒状内槽3の傾斜面に対して接近して配置されている。この接近して配置されている傾斜面部分において汚泥沈殿部が形成され、汚泥濃縮がなされると共に処理水が分離される。また、下面5aを接近して配置することにより汚泥の急速強制沈降が可能になる。円筒状内槽3の傾斜面に対して下面5aの距離の大小は調節できることが好ましい。また、円筒状制御板5の形状は、上面および下面の開口面が同一面積の直円筒状、または上面の開口面積が下面の開口面積よりも大きい逆円錐台形状とすることができる。
 微生物反応槽内には、被処理水質測定装置6が、円筒状内槽2の内外に設けられている。この被処理水質測定装置6は、被処理水のpH、ORP、DOを測定する装置である。
 微生物反応槽内での被処理水循環率は3~20、好ましくは5~20である。被処理水循環率が3未満であると、好気微生物処理反応がより起こりやすくなり、また、20をこえると好気微生物処理反応と嫌気微生物処理反応とのバランスが崩れ、原水の脱窒、脱リンを行なうことができなくなる。すなわち、被処理水循環率をこの範囲とすることにより、被処理水質測定装置により測定される被処理水のORPを、嫌気微生物処理反応槽において-10mV以下、好ましくは-50mV以下、好気微生物処理反応槽において+10mV以上、好ましくは+100mV以上に維持することができる。その結果、好気微生物処理反応および嫌気微生物処理反応が十分に行なわれ、脱窒、脱リンが連続的になされる。なお、このような条件下において好気微生物処理反応槽でのpHは4.5~8.5、好ましくは5.5~7.5の範囲となる。
 微生物反応槽1を用いる排水処理方法は、従来の排水処理方法に比較して、以下の優れた特徴を有する。
 従来の排水処理方法は、原水と返送汚泥とが一定の割合で混合されて曝気槽内に流入し、その時接触した返送汚泥と次の工程である沈殿槽内で汚泥と被処理水とが分離されるまで、原水が押し出され流れる方法である。
 微生物反応槽1を用いる排水処理方法は、上下に循環する活性汚泥の循環流を形成させ、その循環流の中に原水を添加する方法である。活性汚泥の循環流を作るのに、循環ポンプを使用することなく、微生物処理に使用する曝気空気による上昇流を利用して、汚泥の循環流を形成させるので省エネルギーな排水処理方法である。さらに、好気微生物処理槽の曝気を効率よく実施できる処理方法である。
 原水の添加位置は、循環流の経路内であればどこでもよいが、好ましくは好気微生物処理槽である。更に好ましくは、嫌気微生物処理槽が適している。本発明の排水処理方法における循環流を用いた処理の場合は、少なくともBODが800mg/L、全窒素量(以下、T-Nという)が40mg/L以上の原水であっても、処理水のBODは通常極めて低く20mg/L以下、一般的には放流水の水質として、BODが10mg/L以下での運転ができる。
 なお、好気微生物処理槽である円筒状内槽の外周面に形成された、循環流経路内の汚泥沈殿部に原水を添加すると、汚泥と原水との接触が不十分になり、汚濁物質の吸着が不十分になる場合がある。その場合、処理水に一部未処理の原水中の汚濁物質が混入して、処理水の悪化をもたらす場合がある。しかしながら、水質規制値がゆるい場合において、例えばBODが300mg/L以下とか、600mg/L以下とかの下水道放流などの一次処理設備としての用途では、循環流経路内の汚泥沈殿部に原水を添加できる場合がある。
 以下、微生物反応槽1内における被処理水および活性汚泥の循環について図3により説明する。図3は微生物反応槽1における被処理水および活性汚泥の循環経路を示す図である。図3において、斜線部分は活性汚泥の濃度が高い部分であり、矢印は被処理水および活性汚泥の循環方向を表す。
 微生物反応槽1には活性汚泥が固形分換算で5,000~12,000mg/L入れられており、処理原水1は、まず円筒下部3d内にて嫌気状態で活性汚泥に接触し、脱窒反応が行なわれる。原水供給口10より供給される処理原水1および循環している活性汚泥は、撹拌翼の回転または散気管よりの空気噴出により、円筒下部3d内を循環して嫌気微生物処理反応がなされる。
 次いで空気が吹込まれている円筒上部3cに連通孔3bを通過して原水および活性汚泥が移動し、好気状態で円筒上部3c内の活性汚泥に接触しながら、撹拌翼の回転または空気吹込口よりの空気噴出により、円筒上部3c内を循環して好気微生物処理反応である硝化反応が進行する。硝化反応が進行するにつれ被処理水のpH等が低下する。被処理液のpH値、ORP、DOが処理水質測定装置6で測定され、これらの値に基づき原水または被処理水の循環量が定められる。具体的には、ORPを、硝化反応がなされる好気反応処理槽において+10mV以上、脱窒反応がなされる嫌気反応処理槽において-10mV以下に維持できるように空気吹き込み量などを調整して被処理水を循環する。循環量は、循環ポンプなどを使用することなく、空気量および/または循環率制御装置を制御することにより容易に行なうことができる。このため本発明の排水処理方法は省エネルギー型の排水処理方法である。また、本発明の微生物反応槽を含む設備は、微生物反応の各ユニットをそれぞれ調整できるので、これらの制御を予めプログラム化し、無人で自動運転することが容易であり、省力化プラントとしての特徴を有している。
 循環率制御装置4により循環率が制御されて、円筒上部3cの上部から排出する被処理水および活性汚泥の一部は、45度の傾斜角度を有する円錐台形外周面を流れ落ちる。この流出した被処理水および活性汚泥は、円錐台形外周面の傾斜面に対して接近して配置されている円筒状制御板5と上記傾斜面で形成される汚泥濃縮部5bを通過することにより、活性汚泥の急速強制沈降が可能となる。また浄化された処理水と活性汚泥との分離が容易となり、分離された処理水が処理水放出口11より放流される。
 急速強制沈降した活性汚泥は外槽内面と内槽外周面との間に活性汚泥が濃縮されて堆積する。この堆積した活性汚泥は、被処理水と混合しながら嫌気微生物処理反応部へ移動して微生物反応槽内を循環する。
 本発明の排水処理方法は、活性汚泥が濃縮されつつ嫌気・好気槽内を3~20の循環率で循環することにより、原水の負荷変動を容易に吸収できる。また、循環率をこの範囲に維持するので、活性汚泥が馴養されて排水処理に最適な活性汚泥となる。なお、このような条件下において好気処理槽でのpHは4.5~8.5、好ましくは5.5~7.5の範囲となる。
 微生物反応槽において、原水のBOD負荷が小さいにもかかわらず、窒素分濃度が高い場合は、プロトン供与体などの有機物質からなる脱窒菌栄養物、たとえばメタノールを嫌気反応処理部に添加して処理することが好ましく、この場合、処理水のpHが上昇しやすいので、塩酸などの鉱酸を添加することが好ましい。
 本発明の排水処理方法は、微生物反応槽を1槽用いてもよいが、また複数槽用いることもできる。この場合、第1槽からの放流水を第2槽の原水供給口に導入する。また、たとえば2つの微生物反応槽を直列で連結する場合は、第2槽における硝化反応部の容積と脱窒反応部の容積との比率を第1槽における比率と変えることにより、より効果的に排水処理を行なうことができる。具体的には、容積比を第1槽のそれより小さくすることにより、脱窒・脱リンを行なうことができる。
 微生物反応槽を排水処理工程に配置することで、(1)有害ガスの発生を抑制して嫌気好気運転ができるので、活性汚泥菌体の自己消化能力が向上する、(2)選択培養槽として原水中の汚濁物質を選択的に分解できる菌体が馴養されて難分解性の物質が容易に処理できる。
 工程6:
 工程6は、希薄活性汚泥曝気槽から分離された処理原水2を沈殿槽に供給する工程である。処理原水2に含まれている汚泥が沈殿槽で沈殿すると共に、上澄み液が放流水として放流される。
 本発明の既存排水処理設備の改修方法は、上記微生物反応槽を既存の排水処理設備に追加新設する方法である。微生物反応槽を追加新設して、この微生物反応槽を介して汚泥を循環させることで、特に食品製造工場に設置されている既存排水処理設備で発生する汚泥の量を殆ど0とすることができる。そのため、既存の排水処理設備で重要な部分を占めていた汚泥貯留槽や脱水装置が不要になり、排水処理設備の設置面積を小さくできる。
実施例1
 食品製造工場から排出される排水を図1に示す方法で処理した。
 処理前の排水は、BODが800mg/L、化学的酸素要求量(以下、CODという)が300mg/L、T-Nが50mg/L、ノルマルヘキサン抽出油分濃度(以下、n-Hexという)が50mg/L、浮遊物質濃度(以下、SSという)が200mg/Lであり、処理水量は1500m3/日である。なお、この排水は、従来、図4に示す方法で排水処理されており、脱水ケーキが150トン/月発生していた。
 原水曝気調整槽の容積は1500m3であり、加圧浮上濃縮分離槽の容積は250m3であり、希薄活性汚泥曝気槽の容積は1500m3であり、沈殿槽の容積は800m3である。
 微生物反応槽は、容積80m3の嫌気処理槽と、容積250m3の好気処理槽とを有している。微生物反応槽内の処理原水循環率は3~6の範囲で循環させた。
 原水曝気調整槽内に沈殿槽で発生した汚泥を定量ポンプで連続添加した。添加量は原水曝気調整槽内の汚泥濃度がMLSSとして、1500~2000mg/Lとなる範囲で供給した。また、曝気量を調節してORPを+50mVになるまで調整した。
 原水曝気調整槽にて、ORPが正の値になるように曝気調整された処理原水は無薬注型の加圧浮上濃縮分離槽KF800(日本アルシー(株)製)に供給される。この加圧浮上濃縮分離槽は、処理原水100重量部に対して無薬注で5Kg/cm2の加圧水を100重量部混合循環している。
 加圧浮上濃縮分離槽で分離された汚泥を微生物反応槽へ送り処理した。微生物反応槽内において、嫌気処理槽でのpHは7.1、ORPは-350mV、DOは0、好気処理槽でのpHは6.1、ORPは+210mV、DOは0.8mg/Lであった。
 微生物反応槽で発生する余剰汚泥は希薄活性汚泥曝気槽に供給した。また、微生物反応槽よりの放出水は全量希薄活性汚泥曝気槽に供給した。
 加圧浮上濃縮分離槽で得られた処理原水は希薄活性汚泥曝気槽に送られて処理された。希薄活性汚泥曝気槽には、微生物反応槽で発生する余剰汚泥が供給された。希薄活性汚泥曝気槽で余剰汚泥が処理原水に適した活性汚泥に馴養される。
 希薄活性汚泥曝気槽で処理された処理原水は沈殿槽を経て放流された。また、沈殿槽で沈降する汚泥は再度原水曝気調整槽に循環された。この汚泥の循環工程を経て、汚泥量の減少が図られる。
 放流水の水質は、BODが8mg/L、CODが10mg/L、T-Nが0mg/L、n-Hexが0mg/L、SSが1mg/Lであった。
 また、脱水ケーキの発生は、0~20トン/月であった。
 上記方法による排水処理は、微生物反応槽において、有害ガスの発生を抑制して嫌気好気運転ができるので菌体の自己消化能率が向上する。また、汚泥の循環を通じて、原水中の汚泥物質を選択的に分解できる菌体が馴養されて難分解性汚濁物質が容易に処理できる。その結果、(1)脱水ケーキの排出量を大幅に減少できる、(2)加圧浮上濃縮分離槽付近での悪臭気がなくなる等の効果がみられた。
 実施例2
 洋菓子製造工場から排出される排水を処理した。
 処理前の排水は、BODが6000mg/L、CODが3500mg/L、T-Nが120mg/L、n-Hexが3000mg/L、ssが3500mg/Lであり、処理水量は120m3/日である。この工場では、加圧浮上槽にポリ塩化アルミニウムなどの無機系凝集剤を添加して凝集沈殿させた後、図4に示す方法で従来排水処理をしていた。このため、脱水ケーキ(含水率85重量%)が150トン/月発生していた。
 図4に示す汚泥貯槽および脱水装置を撤去して、その撤去した敷地の一部に、図2に示す、容積100m3の嫌気処理槽と、容積250m3の好気処理槽とを有する微生物反応槽を建設した。微生物反応槽内の処理原水循環率は5~8の範囲で循環させた。
 また、図4に示す従来の原水調整槽に曝気装置を取り付け、原水曝気調整槽に改造した。従来の曝気槽は希薄活性汚泥曝気槽として、沈殿槽は沈殿槽として再利用し、それぞれに、図1に示す汚泥の循環経路を取り付けた。
 この工場における、原水曝気調整槽の容積は100m3であり、加圧浮上濃縮分離槽の容積は10m3であり、希薄活性汚泥曝気槽の容積は120m3であり、沈殿槽の容積は30m3である。
 原水曝気調整槽内に沈殿槽で発生した汚泥を定量ポンプで連続添加した。添加量は原水曝気調整槽内の汚泥濃度がMLSSとして、3500~5000mg/Lとなる範囲で供給した。また、曝気量を調節してORPを+100mVになるまで調整した。
 原水曝気調整槽にて、ORPが正の値になるように曝気調整された処理原水は無薬注型の加圧浮上濃縮分離槽KF800(日本アルシー(株)製)に供給される。この加圧浮上濃縮分離槽は、処理原水100重量部に対して無薬注で4.5Kg/cm2の加圧水を220重量部混合循環している。
 加圧浮上濃縮分離槽で分離された汚泥を微生物反応槽へ送り処理した。微生物反応槽内において、嫌気処理槽でのpHは7.4、ORPは-400mV、DOは0、好気処理槽でのpHは7.8、ORPは+210mV、DOは1.8mg/Lであった。
 微生物反応槽で発生する余剰汚泥および放出水は希薄活性汚泥曝気槽に供給した。
 加圧浮上濃縮分離槽で得られた処理原水は実施例1と同様に希薄活性汚泥曝気槽に送られて処理され、処理水は沈殿槽を経て放流された。また、沈殿槽で沈降する汚泥は再度原水曝気調整槽に循環された。
 放流水の水質は、BODが18mg/L、CODが30mg/L、T-Nが1mg/L、n-Hexが1mg/L、SSが30mg/Lであった。
 また、脱水ケーキの発生は、0トン/月であった。
 洋菓子製造工場での排水処理においても、(1)脱水ケーキの排出量を大幅に減少できる、(2)加圧浮上濃縮分離槽付近での悪臭気がなくなる等の効果がみられた。
 本発明方法は、実質的に余剰汚泥量を排出しないので、環境破壊が少なくかつ地球に優しい排水処理方法であるので、また、脱水ケーキ処理に関する設備を必要としないので、今後多数の既存排水処理設備の改修方法として利用できる。。特に、市街地内の工場では、原水調整槽や前処理設備ならびに脱水処理設備から多量の悪臭が発生するために、通常は脱臭設備が必要となる。しかし、本処理方法を導入すると、廃水処理の原水調整槽から最終処理に至る処理工程まで悪臭が発生しない。そのために、本処理方法は、脱臭設備が不要となる場合があるなど、処理に伴う悪臭の発生が抑制される悪臭対策に適した処理方法である。
 1  微生物反応槽
 2  外槽
 3  円筒状内槽
 4  循環率制御装置
 5  円筒状制御板
 6  被処理水質測定装置
 7  回転軸
 8  空気吹込口
 9  支持柱
10  原水供給口
11  処理水放出口
12  沈降固定化防止装置
13  汚泥抜き出し口

Claims (4)

  1.  原水曝気調整槽、加圧浮上濃縮分離槽、希薄活性汚泥曝気槽、微生物反応槽、および沈殿槽を備え、汚泥が各槽間を循環する循環システムにより排水を処理する活性汚泥処理方法であって、
     処理前の原水が供給される前記原水曝気調整槽に、前記沈殿槽より発生する汚泥2を供給する工程1と、
     前記汚泥2が混合された原水を前記原水曝気調整槽にて、酸化還元電位が正の値になるように曝気調整した後、この調整された原水を前記加圧浮上濃縮分離槽に供給する工程2と、
     前記加圧浮上濃縮分離槽にて処理することにより発生する汚泥1を前記微生物反応槽に供給する工程3と、
     前記加圧浮上濃縮分離槽から分離された処理原水1を前記希薄活性汚泥曝気槽に供給する工程4と、
     前記微生物反応槽にて処理することにより発生する汚泥3および放出水を前記希薄活性汚泥曝気槽に供給する工程5と、
     前記希薄活性汚泥曝気槽から分離された処理原水2を前記沈殿槽に供給する工程6とを有することを特徴とする活性汚泥処理方法。
  2.  前記原水曝気調整槽に供給される汚泥2は、前記原水曝気調整槽内の汚泥濃度が活性汚泥浮遊物質として、500~8000mg/Lとなる範囲で供給されることを特徴とする請求項1記載の活性汚泥処理方法。
  3.  前記微生物反応槽は、外槽と、この外槽の内部に配置されて上下に開口部を有する円筒状内槽と、この円筒状内槽上部に設けられて被処理水の槽内循環率を制御する循環率制御装置と、前記円筒状内槽の上部外周に設けられて汚泥を沈降させるための円筒状制御板と、前記円筒状内槽の外側および内側に設けられた被処理水質測定装置と、前記外槽および内槽内を循環する被処理水の循環経路に設けられた原水供給口および前記外槽の上部に設けられた処理水放出口とを具備してなり、
     前記円筒状内槽は、中心部に連通孔を有する隔壁で円筒上部と円筒下部とに分割され、前記円筒上部は、上面および底面が開口した円錐台形状の頂部を有し、かつ該円筒上部内の前記連通孔周囲および前記隔壁周縁部に複数の空気吹込口が設けられた好気微生物処理槽であり、前記円筒下部は底面に開口部を有する嫌気微生物処理槽であり、
     前記好気微生物処理槽内および前記嫌気微生物処理槽内をそれぞれ撹拌する撹拌装置が設けられ、
     前記被処理水質測定装置により測定される被処理水の水素イオン濃度、酸化還元電位および溶存酸素量から選ばれた少なくとも1つの測定値を検出する手段と、前記検出された測定値に応じて前記循環率制御装置に設けられた、液面調節バルブの開閉、液面調節制御板の上下動、および前記空気吹込口から吹込まれる空気量から選ばれる少なくとも1つの量を制御することにより、前記被処理水の槽内循環率を3~20に制御する手段とを備え、
     前記原水供給口より供給される原水が活性汚泥と共に前記円筒状内槽の内部と、前記円筒状内槽の外周面と、前記外槽下部に沈降した活性汚泥内とを経て槽内を循環することで嫌気微生物処理および好気微生物処理が連続してなされることを特徴とする請求項1記載の活性汚泥処理方法。
  4.  排水処理設備で発生する汚泥の量を、既存排水処理設備で発生する汚泥の量より低減する既存排水処理設備の改修方法であって、
     該改修方法は、既存または改修する、加圧浮上濃縮分離槽および希薄活性汚泥曝気槽と共に、請求項3記載の微生物反応槽を新設する工程と、
     前記新設される微生物反応槽を介して請求項1記載の方法により汚泥を循環させる循環工程とを設けることを特徴とする既存排水処理設備の改修方法。
PCT/JP2012/055812 2012-03-07 2012-03-07 活性汚泥処理方法および該方法を用いる既存排水処理設備の改修方法 WO2013132612A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2014503361A JP5968420B2 (ja) 2012-03-07 2012-03-07 活性汚泥処理方法および該方法を用いる既存排水処理設備の改修方法
US14/383,077 US9446972B2 (en) 2012-03-07 2012-03-07 Activated sludge treatment method, and method for upgrading existing waste water treatment equipment using said method
PCT/JP2012/055812 WO2013132612A1 (ja) 2012-03-07 2012-03-07 活性汚泥処理方法および該方法を用いる既存排水処理設備の改修方法
MYPI2014702502A MY172979A (en) 2012-03-07 2012-03-07 Activated sludge treatment method, and method for upgrading existing waste water treatment equipment using said method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/055812 WO2013132612A1 (ja) 2012-03-07 2012-03-07 活性汚泥処理方法および該方法を用いる既存排水処理設備の改修方法

Publications (1)

Publication Number Publication Date
WO2013132612A1 true WO2013132612A1 (ja) 2013-09-12

Family

ID=49116128

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/055812 WO2013132612A1 (ja) 2012-03-07 2012-03-07 活性汚泥処理方法および該方法を用いる既存排水処理設備の改修方法

Country Status (3)

Country Link
US (1) US9446972B2 (ja)
JP (1) JP5968420B2 (ja)
WO (1) WO2013132612A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015131271A (ja) * 2014-01-14 2015-07-23 水ing株式会社 油脂含有排水の処理方法および処理装置
WO2016148086A1 (ja) * 2015-03-17 2016-09-22 水ing株式会社 水処理方法及び水処理装置
WO2018033997A1 (ja) * 2016-08-19 2018-02-22 日本アルシー株式会社 活性汚泥処理方法および該方法を用いる既存排水処理設備の改修方法
JP2019042609A (ja) * 2017-08-29 2019-03-22 水ing株式会社 排水処理装置の改修方法
CN117664643A (zh) * 2023-12-04 2024-03-08 同方水务集团有限公司 一种活性污泥取样装置

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110217881B (zh) * 2019-05-09 2021-12-28 刘邦楠 生化池活性污泥的消化减量方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6137299U (ja) * 1984-08-08 1986-03-07 荏原インフイルコ株式会社 生物処理装置
JPH0716589A (ja) * 1991-08-31 1995-01-20 Nippon Arushii Kk 活性汚泥処理法
JPH11128987A (ja) * 1997-11-03 1999-05-18 Nippon Arushii Kk 微生物反応槽および排水処理方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04305297A (ja) * 1991-04-03 1992-10-28 Meidensha Corp 活性汚泥処理制御装置
JP2693099B2 (ja) * 1993-01-20 1997-12-17 新日本製鐵株式会社 生物学的処理方法および微生物の馴養方法
US5514278A (en) * 1993-04-12 1996-05-07 Khudenko; Boris M. Counterflow microbiological processes
US5989428A (en) * 1996-06-21 1999-11-23 Goronszy; Mervyn Charles Controlling wastewater treatment by monitoring oxygen utilization rates
JP3972406B2 (ja) * 1997-05-22 2007-09-05 松下電器産業株式会社 厨芥処理装置
US6692642B2 (en) * 2002-04-30 2004-02-17 International Waste Management Systems Organic slurry treatment process
US7993522B2 (en) * 2006-01-25 2011-08-09 Siemens Industry, Inc. Conditioning system for activated sludge wastewater treatment processes
WO2014085750A1 (en) * 2012-11-28 2014-06-05 Early Daniel M Rapid deployable packaged wastewater treatment system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6137299U (ja) * 1984-08-08 1986-03-07 荏原インフイルコ株式会社 生物処理装置
JPH0716589A (ja) * 1991-08-31 1995-01-20 Nippon Arushii Kk 活性汚泥処理法
JPH11128987A (ja) * 1997-11-03 1999-05-18 Nippon Arushii Kk 微生物反応槽および排水処理方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015131271A (ja) * 2014-01-14 2015-07-23 水ing株式会社 油脂含有排水の処理方法および処理装置
WO2016148086A1 (ja) * 2015-03-17 2016-09-22 水ing株式会社 水処理方法及び水処理装置
WO2018033997A1 (ja) * 2016-08-19 2018-02-22 日本アルシー株式会社 活性汚泥処理方法および該方法を用いる既存排水処理設備の改修方法
JP2019042609A (ja) * 2017-08-29 2019-03-22 水ing株式会社 排水処理装置の改修方法
CN117664643A (zh) * 2023-12-04 2024-03-08 同方水务集团有限公司 一种活性污泥取样装置

Also Published As

Publication number Publication date
US9446972B2 (en) 2016-09-20
JP5968420B2 (ja) 2016-08-10
JPWO2013132612A1 (ja) 2015-07-30
US20150027947A1 (en) 2015-01-29

Similar Documents

Publication Publication Date Title
JP5968419B2 (ja) 活性汚泥処理方法および該方法を用いる既存排水処理設備の改修方法
KR101665636B1 (ko) 폐수 전처리방법 및 그 전처리방법을 이용한 오염수처리방법
JP5968420B2 (ja) 活性汚泥処理方法および該方法を用いる既存排水処理設備の改修方法
JP6071997B2 (ja) 微生物反応槽および排水処理方法
JP3729332B2 (ja) アップフロー嫌気反応器を含む廃水処理装置、及び、それを利用した廃水処理方法
JP6071998B2 (ja) 微生物反応槽
JP3137690B2 (ja) 活性汚泥処理法
KR101471053B1 (ko) 고속 유기물 산화조를 갖는 가축분뇨 처리장치
US20160289109A1 (en) Enhanced treatment shaft
WO2018096583A1 (ja) 微生物反応槽および排水処理方法
WO2018033997A1 (ja) 活性汚泥処理方法および該方法を用いる既存排水処理設備の改修方法
CN210215108U (zh) 一种煤化工高浓度废水处理系统
CN105859056B (zh) 一种橡胶废水的处理工艺
CN111762961A (zh) 一种餐厨废水处理方法
KR100913989B1 (ko) 바이오가스를 이용한 가스 교반형 혐기성 소화장치
JP2024049232A (ja) 固液分離装置および活性汚泥処理方法
CN205313314U (zh) 焦化废水处理系统
CN212222726U (zh) 一种垃圾渗滤液处理系统
KR102607197B1 (ko) 상향류 복합 생물 반응조를 이용한 고농도의 매립장 침출수, 축산폐수, 분뇨,음폐수,산업폐수및저농도의 하폐수처리시스템
CN208776529U (zh) 一种处理污泥消化液的旁侧生物处理装置
WO2021131485A1 (ja) 微生物反応槽
JP6909147B2 (ja) 有機性廃水処理設備、有機性廃水処理方法及び有機性廃水処理設備の改築方法
WO2020027036A1 (ja) 微生物反応槽および排水処理方法
Snow I. BIOSOLIDS DIGESTION
CN113104955A (zh) 上流式厌氧消化-sbr污水处理装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12870534

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14383077

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2014503361

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: IDP00201406009

Country of ref document: ID

122 Ep: pct application non-entry in european phase

Ref document number: 12870534

Country of ref document: EP

Kind code of ref document: A1