WO2013131928A1 - Enhanced surface plasmon resonance method - Google Patents
Enhanced surface plasmon resonance method Download PDFInfo
- Publication number
- WO2013131928A1 WO2013131928A1 PCT/EP2013/054446 EP2013054446W WO2013131928A1 WO 2013131928 A1 WO2013131928 A1 WO 2013131928A1 EP 2013054446 W EP2013054446 W EP 2013054446W WO 2013131928 A1 WO2013131928 A1 WO 2013131928A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- signal
- change
- conductive layer
- peak
- intensity
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Ceased
Links
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/48—Biological material, e.g. blood, urine; Haemocytometers
- G01N33/50—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
- G01N33/53—Immunoassay; Biospecific binding assay; Materials therefor
- G01N33/543—Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals
- G01N33/54366—Apparatus specially adapted for solid-phase testing
- G01N33/54373—Apparatus specially adapted for solid-phase testing involving physiochemical end-point determination, e.g. wave-guides, FETS, gratings
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/17—Systems in which incident light is modified in accordance with the properties of the material investigated
- G01N21/55—Specular reflectivity
- G01N21/552—Attenuated total reflection
- G01N21/553—Attenuated total reflection and using surface plasmons
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/17—Systems in which incident light is modified in accordance with the properties of the material investigated
- G01N21/41—Refractivity; Phase-affecting properties, e.g. optical path length
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/48—Biological material, e.g. blood, urine; Haemocytometers
- G01N33/50—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
- G01N33/53—Immunoassay; Biospecific binding assay; Materials therefor
- G01N33/543—Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals
- G01N33/54313—Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals the carrier being characterised by its particulate form
- G01N33/54346—Nanoparticles
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/48—Biological material, e.g. blood, urine; Haemocytometers
- G01N33/50—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
- G01N33/53—Immunoassay; Biospecific binding assay; Materials therefor
- G01N33/543—Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals
- G01N33/551—Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals the carrier being inorganic
- G01N33/553—Metal or metal coated
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2201/00—Features of devices classified in G01N21/00
- G01N2201/06—Illumination; Optics
- G01N2201/061—Sources
- G01N2201/06113—Coherent sources; lasers
- G01N2201/0612—Laser diodes
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2201/00—Features of devices classified in G01N21/00
- G01N2201/06—Illumination; Optics
- G01N2201/061—Sources
- G01N2201/06146—Multisources for homogeneisation, as well sequential as simultaneous operation
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2201/00—Features of devices classified in G01N21/00
- G01N2201/06—Illumination; Optics
- G01N2201/062—LED's
- G01N2201/0621—Supply
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2201/00—Features of devices classified in G01N21/00
- G01N2201/06—Illumination; Optics
- G01N2201/063—Illuminating optical parts
- G01N2201/0635—Structured illumination, e.g. with grating
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2201/00—Features of devices classified in G01N21/00
- G01N2201/12—Circuits of general importance; Signal processing
- G01N2201/127—Calibration; base line adjustment; drift compensation
- G01N2201/12723—Self check capacity; automatic, periodic step of checking
Definitions
- the first signal was recorded before a sample is brought into contact with the layer and the second signal was recorded after the sample is brought into contact with the layer.
- the method allows a user to detect small changes of refractive index at the conductive layer due to a liquid sample.
- probes are immobilised on the layer and the sample includes targets, such that the change in refractive index is due to targets binding to probes on the layer (and remaining there after a separate wash). This is particularly advantageous as the method can be used to detect small amounts of target present in a blood sample, blood plasma sample or other liquids.
- the analytical device (1 ) may be used to probe or quantify events or elements in a liquid sample placed or flowing into at least one detection zone (30), and measurements maybe performed as a function of time. Preferably the device (1 ) determines a sensorgram, thereby providing the temporal variation of at least one parameter which affects Surface Plasmon Resonance.
- the optical module (60) contains two diode lasers (62) and (63) in some embodiments.
- the diode lasers emit at 785nm and 808nm, and are aligned perpendicularly.
- a beam splitter consisting of a glass plate of 0.1 mm of thickness and 15nm of reflective metal layer, with the thickness adjusted in order to have -50% of light transmission at ⁇ 800nm of wavelength is provided.
- An acrylic cylinder (65) preferably focuses the light beam (100) into the grating surface (40) of the detection zone (30).
- the first order reflective diffraction passes into a polarizer (90) and is incident into the optical detector, preferably a CMOS camera (80).
- the motor (50) may be a standard BLDC motor, which can be controlled with rotational speeds between 5Hz and 150Hz. Both the motor (50) and the optical module (60) can be attached to a base (70) and the whole system is preferably temperature controlled by external components.
- the SPR dips need to be within a predefined angular position [e.g. 54.5° +/- 0.1 ° for the first SPR dip and 55.5° +/- 0.1 ° for the second SPR dip] for the initial SPR measurements prior to passing a sample and the mutual spacing between the two SPR dips need to be within another predefined angular range [e.g. 1 .0° +/- 0.1 °]. In this case measurements are rejected if they do not comply with the acceptance criteria.
- the intensity level of the initial peak Ai between the two SPR deeps need to be a pre-defined fraction of the maximum measured light intensity, for example 70% +/- 1 % of the maximum measured light intensity. Measurements are rejected if they do not comply with all the applicable acceptance criteria, in some embodiments.
- Additional relevant acceptance criteria may include, but are not limited to, the relative difference of light intensity of the two SPR dips; the relative angular spacing between the initial peak Ai and the two SPR dips m1 i and m2i; the relative difference of shift of each of the two SPR dips, etc.
- the detection surface has a grating surface of a sinusoidal shape, trapezoidal shape or triangular shape, instead of a sine-trapezoidal shape.
- a grating surface of a sinusoidal shape, trapezoidal shape or triangular shape, instead of a sine-trapezoidal shape.
- Each specific shape of the grating surface will result in a different and characteristic shape of each SPR dip, in particular expected SPR dip width and symmetry. Accordingly, where quality or feedback control as described above is employed, the parameters of acceptance criteria are adjusted for each particular grating implementation.
- detection systems have a detection surface with a flat conductive surface and use a prism configuration to achieve the momentum coupling required for SPR to occur.
- the SPR dips have a known pre-defined shape.
- microfluidic is referred to herein to mean devices having a fluidic element such as a reservoir or a channel with at least one dimension below I mm.
- a Surface Plasmon Resonance (SPR) sensing method comprising the steps of: providing a SPR sensor comprising a SPR supporting sensor surface;
Landscapes
- Health & Medical Sciences (AREA)
- Immunology (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Physics & Mathematics (AREA)
- Pathology (AREA)
- Analytical Chemistry (AREA)
- Hematology (AREA)
- Biomedical Technology (AREA)
- Molecular Biology (AREA)
- Urology & Nephrology (AREA)
- Biotechnology (AREA)
- Cell Biology (AREA)
- Microbiology (AREA)
- Food Science & Technology (AREA)
- Medicinal Chemistry (AREA)
- Nanotechnology (AREA)
- Inorganic Chemistry (AREA)
- Investigating Or Analysing Materials By Optical Means (AREA)
Priority Applications (4)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| EP13707633.7A EP2823287B1 (en) | 2012-03-05 | 2013-03-05 | Enhanced surface plasmon resonance method |
| JP2014560342A JP6100803B2 (ja) | 2012-03-05 | 2013-03-05 | 改良された表面プラズモン共鳴方法 |
| US14/382,334 US9632022B2 (en) | 2012-03-05 | 2013-03-05 | Enhanced Surface Plasmon Resonance method |
| US15/486,039 US10228368B2 (en) | 2012-03-05 | 2017-04-12 | Enhanced surface plasmon resonance method |
Applications Claiming Priority (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| PT106192 | 2012-03-05 | ||
| PT10619212 | 2012-03-05 |
Related Child Applications (2)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US14/382,334 A-371-Of-International US9632022B2 (en) | 2012-03-05 | 2013-03-05 | Enhanced Surface Plasmon Resonance method |
| US15/486,039 Division US10228368B2 (en) | 2012-03-05 | 2017-04-12 | Enhanced surface plasmon resonance method |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| WO2013131928A1 true WO2013131928A1 (en) | 2013-09-12 |
Family
ID=47827207
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| PCT/EP2013/054446 Ceased WO2013131928A1 (en) | 2012-03-05 | 2013-03-05 | Enhanced surface plasmon resonance method |
Country Status (4)
| Country | Link |
|---|---|
| US (2) | US9632022B2 (enExample) |
| EP (1) | EP2823287B1 (enExample) |
| JP (1) | JP6100803B2 (enExample) |
| WO (1) | WO2013131928A1 (enExample) |
Families Citing this family (6)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP6100803B2 (ja) * | 2012-03-05 | 2017-03-22 | バイオサーフィット、 ソシエダッド アノニマ | 改良された表面プラズモン共鳴方法 |
| CN108449968B (zh) | 2015-06-12 | 2021-08-17 | 莱克瑞科学有限责任公司 | 手持野外便携式表面等离子体共振装置及其在化学和生物试剂的检测中的应用 |
| US10682050B2 (en) | 2015-09-24 | 2020-06-16 | Lacrisciences, Llc | Optical sensors, systems and methods of using same |
| JP6938492B2 (ja) * | 2015-11-10 | 2021-09-22 | ラクリサイエンス・エルエルシー | サンプル浸透圧を決定するためのシステムおよび方法 |
| KR101969313B1 (ko) * | 2017-12-15 | 2019-04-16 | 포항공과대학교 산학협력단 | 플라즈몬 격자를 포함하는 편광 감응형 완전 흡수체 및 그 제조방법 |
| KR20230089407A (ko) * | 2021-12-13 | 2023-06-20 | 현대자동차주식회사 | 거리 감지 장치 및 그 방법 |
Citations (7)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| DE19817472A1 (de) * | 1998-04-20 | 1999-10-28 | Biotul Bio Instr Gmbh | Vorrichtung und Verfahren zur Detektion der Verschiebung einer Oberflächenplasmonenresonanz |
| EP1684063A1 (en) * | 2005-01-19 | 2006-07-26 | Samsung Electronics Co.,Ltd. | Portable biochip scanner using surface plasmon resonance |
| US20080037022A1 (en) * | 2004-02-13 | 2008-02-14 | Takeo Nishikawa | Surface Plasmon Resonance Sensor |
| US20080212102A1 (en) * | 2006-07-25 | 2008-09-04 | Nuzzo Ralph G | Multispectral plasmonic crystal sensors |
| EP1967844A1 (en) * | 2007-03-05 | 2008-09-10 | Omron Corporation | Surface plasmon resonance sensor and sensor chip |
| US20090231590A1 (en) * | 2005-09-30 | 2009-09-17 | Fujifilm Corporation | Sensing system |
| US20100271632A1 (en) * | 2007-12-20 | 2010-10-28 | Knut Johansen | Spr apparatus and method |
Family Cites Families (11)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| ATE466275T1 (de) * | 2000-03-14 | 2010-05-15 | Spring Systems Ab | Spr-vorrichtung mit verbesserter abbildung |
| JP2003185572A (ja) * | 2001-12-21 | 2003-07-03 | Mitsubishi Heavy Ind Ltd | 表面プラズモン共鳴センサ装置 |
| JP2003227792A (ja) * | 2002-02-01 | 2003-08-15 | Fuji Photo Film Co Ltd | 全反射減衰を利用したセンサー |
| JP2007101241A (ja) * | 2005-09-30 | 2007-04-19 | Fujifilm Corp | センシング装置 |
| US7951583B2 (en) | 2006-03-10 | 2011-05-31 | Plc Diagnostics, Inc. | Optical scanning system |
| JP2008089389A (ja) * | 2006-09-29 | 2008-04-17 | Fujifilm Corp | 測定装置及び測定方法 |
| JP4974870B2 (ja) * | 2006-12-27 | 2012-07-11 | キヤノン株式会社 | 光学素子、センサ装置及びセンシング方法 |
| GB0910569D0 (en) | 2009-06-18 | 2009-07-29 | Cambridge Entpr Ltd | Fluid sensing, sensor apparatus, systems and methods |
| EP2264438A1 (en) * | 2009-06-19 | 2010-12-22 | The European Union, represented by the European Commission | A surface plasmon resonance sensing method and sensing system |
| US20120133943A1 (en) * | 2010-11-29 | 2012-05-31 | Norman Henry Fontaine | Systems And Methods For Multi-Wavelength SPR Biosensing With Reduced Chromatic Aberration |
| JP6100803B2 (ja) * | 2012-03-05 | 2017-03-22 | バイオサーフィット、 ソシエダッド アノニマ | 改良された表面プラズモン共鳴方法 |
-
2013
- 2013-03-05 JP JP2014560342A patent/JP6100803B2/ja not_active Expired - Fee Related
- 2013-03-05 US US14/382,334 patent/US9632022B2/en not_active Expired - Fee Related
- 2013-03-05 EP EP13707633.7A patent/EP2823287B1/en not_active Not-in-force
- 2013-03-05 WO PCT/EP2013/054446 patent/WO2013131928A1/en not_active Ceased
-
2017
- 2017-04-12 US US15/486,039 patent/US10228368B2/en active Active
Patent Citations (7)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| DE19817472A1 (de) * | 1998-04-20 | 1999-10-28 | Biotul Bio Instr Gmbh | Vorrichtung und Verfahren zur Detektion der Verschiebung einer Oberflächenplasmonenresonanz |
| US20080037022A1 (en) * | 2004-02-13 | 2008-02-14 | Takeo Nishikawa | Surface Plasmon Resonance Sensor |
| EP1684063A1 (en) * | 2005-01-19 | 2006-07-26 | Samsung Electronics Co.,Ltd. | Portable biochip scanner using surface plasmon resonance |
| US20090231590A1 (en) * | 2005-09-30 | 2009-09-17 | Fujifilm Corporation | Sensing system |
| US20080212102A1 (en) * | 2006-07-25 | 2008-09-04 | Nuzzo Ralph G | Multispectral plasmonic crystal sensors |
| EP1967844A1 (en) * | 2007-03-05 | 2008-09-10 | Omron Corporation | Surface plasmon resonance sensor and sensor chip |
| US20100271632A1 (en) * | 2007-12-20 | 2010-10-28 | Knut Johansen | Spr apparatus and method |
Also Published As
| Publication number | Publication date |
|---|---|
| US20170219571A1 (en) | 2017-08-03 |
| JP2015509597A (ja) | 2015-03-30 |
| US10228368B2 (en) | 2019-03-12 |
| EP2823287A1 (en) | 2015-01-14 |
| JP6100803B2 (ja) | 2017-03-22 |
| US20150109614A1 (en) | 2015-04-23 |
| EP2823287B1 (en) | 2017-08-23 |
| US9632022B2 (en) | 2017-04-25 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US10228368B2 (en) | Enhanced surface plasmon resonance method | |
| US8705039B2 (en) | Surface plasmon resonance sensor using vertical illuminating focused-beam ellipsometer | |
| US9383311B2 (en) | Non-scanning SPR system | |
| US8705033B2 (en) | Multi-channel surface plasmon resonance sensor using beam profile ellipsometry | |
| US6885454B2 (en) | Measuring apparatus | |
| US8958999B1 (en) | Differential detection for surface plasmon resonance sensor and method | |
| WO2008142689A1 (en) | Optical resonance analysis using a multi-angle source of illumination | |
| JP5241274B2 (ja) | 被検出物質の検出方法 | |
| US20090251707A1 (en) | Method and Apparatus for Phase Sensitive Surface Plasmon Resonance | |
| JP2015509597A5 (enExample) | ||
| KR20100106082A (ko) | 표면 플라즈몬 공명을 이용한 광 센서 | |
| JP2006047000A (ja) | 試料分析用測定装置および測定方法 | |
| US8228502B2 (en) | Measurement device equipped with device for deciding measurement start point | |
| JP3761080B2 (ja) | 全反射減衰を利用した測定方法および測定装置 | |
| JP2005265693A (ja) | 測定装置 | |
| JP4170350B2 (ja) | 全反射減衰を利用したセンサー | |
| JPWO2016098653A1 (ja) | 検出方法および検出装置 | |
| JP2003065946A (ja) | 全反射減衰を利用したセンサー | |
| JP2003227792A (ja) | 全反射減衰を利用したセンサー | |
| KR20120058291A (ko) | 표면 플라즈몬 현상에 의한 광간섭 변화 특성을 이용한 바이오 센싱 장치 | |
| JP2007147311A (ja) | 試料測定方法及び試料測定装置 | |
| HK1150294B (en) | Method and apparatus for phase sensitive surface plasmon resonance | |
| JP2003185571A (ja) | 全反射減衰を利用したセンサー | |
| WO2016024992A1 (en) | Ir array sensor incorporating per-pixel lock-in amplifier capability |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| 121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 13707633 Country of ref document: EP Kind code of ref document: A1 |
|
| WWE | Wipo information: entry into national phase |
Ref document number: 14382334 Country of ref document: US |
|
| ENP | Entry into the national phase |
Ref document number: 2014560342 Country of ref document: JP Kind code of ref document: A |
|
| NENP | Non-entry into the national phase |
Ref country code: DE |
|
| REEP | Request for entry into the european phase |
Ref document number: 2013707633 Country of ref document: EP |
|
| WWE | Wipo information: entry into national phase |
Ref document number: 2013707633 Country of ref document: EP |