WO2013129540A1 - Composite material for molding a fiber-reinforced plastic and fiber-reinforced plastic molded bodies - Google Patents

Composite material for molding a fiber-reinforced plastic and fiber-reinforced plastic molded bodies Download PDF

Info

Publication number
WO2013129540A1
WO2013129540A1 PCT/JP2013/055280 JP2013055280W WO2013129540A1 WO 2013129540 A1 WO2013129540 A1 WO 2013129540A1 JP 2013055280 W JP2013055280 W JP 2013055280W WO 2013129540 A1 WO2013129540 A1 WO 2013129540A1
Authority
WO
WIPO (PCT)
Prior art keywords
fiber
reinforced plastic
composite material
binder
component
Prior art date
Application number
PCT/JP2013/055280
Other languages
French (fr)
Japanese (ja)
Inventor
浩義 上野
鈴木 茂
立花 宏泰
Original Assignee
王子ホールディングス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=49082733&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2013129540(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by 王子ホールディングス株式会社 filed Critical 王子ホールディングス株式会社
Priority to JP2014502347A priority Critical patent/JP5949895B2/en
Publication of WO2013129540A1 publication Critical patent/WO2013129540A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/28Shaping operations therefor
    • B29C70/40Shaping or impregnating by compression not applied
    • B29C70/50Shaping or impregnating by compression not applied for producing articles of indefinite length, e.g. prepregs, sheet moulding compounds [SMC] or cross moulding compounds [XMC]
    • B29C70/504Shaping or impregnating by compression not applied for producing articles of indefinite length, e.g. prepregs, sheet moulding compounds [SMC] or cross moulding compounds [XMC] using rollers or pressure bands
    • B29C70/506Shaping or impregnating by compression not applied for producing articles of indefinite length, e.g. prepregs, sheet moulding compounds [SMC] or cross moulding compounds [XMC] using rollers or pressure bands and impregnating by melting a solid material, e.g. sheet, powder, fibres
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/04Reinforcing macromolecular compounds with loose or coherent fibrous material
    • C08J5/047Reinforcing macromolecular compounds with loose or coherent fibrous material with mixed fibrous material
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/42Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
    • D04H1/4209Inorganic fibres
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/58Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties by applying, incorporating or activating chemical or thermoplastic bonding agents, e.g. adhesives
    • D04H1/64Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties by applying, incorporating or activating chemical or thermoplastic bonding agents, e.g. adhesives the bonding agent being applied in wet state, e.g. chemical agents in dispersions or solutions

Definitions

  • the present invention relates to a fiber reinforced plastic molding composite material, which is a precursor of a fiber reinforced plastic molding using thermoplastic fibers as a matrix resin, and a fiber reinforced plastic molding obtained by heating and pressing the composite material.
  • the matrix resin uses thermoplastic resin fibers called heat engineering and high flame retardancy, so-called super engineering plastics, and the molded product has high flame retardancy and strength and can be molded in a short time.
  • the present invention relates to a fiber reinforced plastic molding composite material and a fiber reinforced plastic molded body obtained by heating and pressing the composite material.
  • fiber reinforced plastic molding composite material that uses polyetherimide resin fibers as a matrix resin, is heat resistant and flame retardant and can be molded in a short time, and heat-press molding it,
  • the present invention relates to a fiber reinforced plastic molded article having high flame retardancy and strength and generating little smoke even when burned.
  • thermosetting resins such as phenol resins
  • thermosetting resin needs to be cured by a polymerization reaction in a heated state, but since the polymerization reaction takes time, there is a problem that the heat molding time becomes long and the productivity is low.
  • thermoplastic resin when used as a matrix resin, the impact resistance of the fiber reinforced resin molded article is excellent, and the storage management of the resin and the fiber reinforced resin composite material in a state before molding processing is easy, and the molding time is short. Therefore, for example, a development study of a fiber reinforced resin molded body made of a fiber reinforced resin composite material using a thermoplastic resin as a matrix resin, such as a polycarbonate resin, a polyester resin, or a polypropylene resin, has been conducted.
  • a thermoplastic resin as a matrix resin such as a polycarbonate resin, a polyester resin, or a polypropylene resin
  • Non-Patent Document 1 when a fiber reinforced plastic molded body is prepared from these resins, the composite material that is a precursor thereof is manufactured by a melting method (hot melt method), a solvent, depending on the type of resin impregnation method for the fiber.
  • a melting method hot melt method
  • a solvent depending on the type of resin impregnation method for the fiber.
  • Methods, dry powder coating methods, powder suspension methods, resin film impregnation methods (film stacking methods), mixed weaving methods (Commingle), and the like have been proposed (Non-Patent Document 1).
  • the melting method is a manufacturing method in which a thermoplastic resin is melted by an extruder, continuous fibers are passed through a melting bath, and the resin is impregnated into the inside of the fiber.
  • the solvent method is a resin (mainly amorphous resin) that is a solvent. This is a production method in which a reinforcing fiber is impregnated using a solution dissolved in (1).
  • the dry powder coating method is a method in which dry powder is adhered to reinforcing fibers and heated in the next step to melt and impregnate the powder.
  • the powder suspension method is a method in which reinforcing fibers are passed through a tank in which resin powder is uniformly dispersed in water or a solvent, the powder is adhered to the reinforcing fibers, and heated in the next step to melt and impregnate the powder.
  • the resin film impregnation method is a manufacturing method in which a resin film and reinforcing fibers are overlapped and the resin is melted and impregnated by a double belt press or an intermittent press method.
  • the mixed weaving method is a technique for producing a composite yarn by combining a reinforcing fiber and a thermoplastic resin fiber.
  • the composite yarn is woven (unidirectional, plain weave, braided, multiaxial woven fabric, etc.) to obtain an intermediate material, which is directly passed through a thermoforming process, and a thermoplastic resin fiber is impregnated into the reinforcing fiber to obtain a product.
  • Patent Document 1 a technique has been proposed in which a short fiber of a thermoplastic resin and a reinforcing fiber are mixed and dispersed in air or water to form a sheet, and the thermoplastic resin short fiber and the reinforcing fiber are combined (Patent Document 1,).
  • Patent Document 2 a technique has been proposed in which a short fiber of a thermoplastic resin and a reinforcing fiber are mixed and dispersed in air or water to form a sheet, and the thermoplastic resin short fiber and the reinforcing fiber are combined.
  • Patent Document 1 a proposal is made to heat and press-mold a web obtained by uniformly mixing carbon fibers as reinforcing fibers and a thermoplastic fibrous matrix resin in air or water and capturing them on a net.
  • Patent Document 2 discloses a technique for heat-pressing a paper-making substrate obtained by dispersing reinforcing fibers and matrix resin fibers in a dispersion medium, mixing them, and then removing the dispersion medium. ing.
  • a fiber reinforced resin molded article using a thermoplastic resin such as polycarbonate resin, polyester resin, or polypropylene resin as a matrix resin as described above has a thermosetting resin as a matrix resin in terms of heat resistance and flame retardancy. There is a disadvantage that it is inferior to the fiber reinforced resin molded product.
  • thermoplastic resins with excellent heat resistance and chemical resistance have been actively developed, and the above-mentioned drawbacks that have been common knowledge about thermoplastic resins have been remarkably improved. It is coming.
  • thermoplastic resins are so-called “super engineering plastics”, which are polyphenylene sulfide (PPS), polyether ether ketone (PEEK), polyamide imide (PAI), polyether imide (PEI).
  • PPS polyphenylene sulfide
  • PEEK polyether ether ketone
  • PAI polyamide imide
  • PEI polyether imide
  • thermoplastic resin called “super engineering plastic” is not only excellent in strength but also has a very high flame retardancy, and has a critical oxygen index of 30 or more in a resin block state.
  • PEI polyetherimide
  • PEI polyetherimide
  • thermosetting prepregs manufactured by the melt method hot melt method
  • solvent method dry powder coating method
  • powder suspension method dry powder coating method
  • resin film impregnation method film stacking method
  • mixed weaving method Single method
  • prepregs using super engineering plastics are characterized by a shorter molding time than thermosetting prepregs.
  • the melting method hot melt method
  • solvent method dry powder coating method
  • powder suspension method resin
  • the prepreg produced by the film impregnation method has poor air permeability. Therefore, if molding is attempted in a short period of time, bubbles existing between the hot plate for pressing and the sheet cannot be completely removed, and the molten resin is contained in the molten resin. Intrusion tends to cause defects such as poor appearance and defects in strength.
  • the woven fabric obtained by the mixed weaving method can give flexibility before forming, but generally has a lower productivity than the method in which short fibers are dispersed in air or water to form a sheet. It has the disadvantage of high cost.
  • Patent Document 1 and Patent Document 2 carbon fibers that are reinforcing fibers and thermoplastic fibrous matrix resin are uniformly mixed in air or water and captured on a net.
  • a proposal has been made to heat-press the obtained web, and Patent Document 2 obtained by dispersing reinforcing fibers and matrix resin fibers in a dispersion medium, mixing them, and then removing the dispersion medium.
  • a technique for heat-pressing a papermaking substrate has been disclosed, such a web or papermaking substrate has a binder as an essential component in order to obtain process strength when moving to a pressing process after mat formation. .
  • a prepreg made of a thermoplastic resin which is a super engineering plastic with high heat resistance and flame retardancy, is exposed to a high temperature of 300 ° C. or higher during heat and pressure molding, and therefore it is thermally decomposed and vaporized in the molded product.
  • Voids (hereinafter referred to as “voids”) are generated due to the binder, and both appearance and strength are likely to decrease. None of the above-mentioned prior art documents disclose a technique relating to a binder that can withstand the heating and pressing process at a high temperature as described above.
  • the binder component that can be generally used in the process of producing a normal web or papermaking substrate has lower flame retardancy than PEI fiber, and does not emit smoke during combustion. Many. Therefore, when a prepreg using such a binder component is subjected to heat and pressure molding, the characteristics of the PEI resin such as heat resistance, flame retardancy, and low heat generation are impaired. Furthermore, at the molding temperature of the PEI resin of 300 ° C. or higher, the binder as described above starts thermal decomposition and emits an odor, which causes a problem that the working environment is deteriorated.
  • Patent Document 3 introduces that a web is made by entwining carbon fibers by a papermaking method, but this method is weak and cannot be industrially produced. Further, Patent Document 4 discloses a method for fixing a fiber or a papermaking substrate between fibers with PEI resin itself.
  • a fiber from which a fiber-reinforced resin molded article having high strength, high heat resistance, and excellent flame retardancy using a thermoplastic resin having high heat resistance and flame retardancy as a matrix resin is obtained.
  • composite materials for reinforced plastic molding sufficient strength can be obtained without generating voids even in a very short heating and pressure molding time, the composite material itself is highly productive, and it is easy to handle in the processing process.
  • An object is to provide an excellent fiber-reinforced plastic molding composite material at low cost.
  • the present invention is also a fiber reinforced plastic molding composite material using PEI fibers as a matrix resin, and can be continuously produced with high production efficiency, has a low odor when processed into a molded body, and is heated and pressed. It is an object of the present invention to provide a composite material for molding fiber-reinforced plastics having features of high heat resistance, flame retardancy, and low smoke generation.
  • thermoplastic resin fibers with a diameter as the matrix resin the heat and pressure molding time is shorter than the conventional fiber reinforced plastic molding composite material using a high heat resistant thermoplastic resin.
  • the fibers are sufficiently melted and sufficient strength can be obtained.
  • the chopped strands (short fibers) of the thermoplastic fibers and reinforcing fibers are formed into a sheet shape.
  • a binder As a method for binding the intersections of the short fibers, it is necessary to provide a binder.
  • the binder type / mixing ratio / distribution in the composite material has specific conditions, the handling property as a fiber-reinforced plastic molding composite material is good, and the fiber after heat-pressure molding It has been found that the reinforced plastic has no voids and has a good appearance and high strength.
  • the flame retardancy and low smoke generation characteristics of PEI are achieved by effectively using a binder that is inferior in flame retardance to PEI resin, generates a lot of smoke, and generates odor at the molding temperature of PEI resin. It can be continuously produced with good manufacturing efficiency without loss, has low odor when processed into a molded product, and has high heat resistance, flame retardancy, and low smoke generation after being heated and pressed. It has been found that a fiber-reinforced plastic molding composite material having characteristics can be obtained.
  • the present invention includes the following.
  • Reinforcing fiber component composed of at least one kind of inorganic fiber selected from glass fiber and carbon fiber, a limiting oxygen index of 25 or more, a fiber diameter of 30 ⁇ m or less, and 4 times or less of the fiber diameter of the reinforcing fiber
  • a fiber-reinforced plastic molding composite material stampable sheet comprising a matrix resin component comprising super engineering plastic fibers.
  • the binder component in the fiber reinforced plastic molding composite material (stampable sheet) is unevenly distributed so that many portions thereof are present on the surface layer portion of the fiber reinforced plastic molding composite material (stampable sheet).
  • the fiber-reinforced plastic molding composite material (stampable sheet) according to (4).
  • binder component according to any one of (4) to (6), wherein the binder component is applied to the nonwoven fabric sheet by a coating method or an impregnation method as a solution or emulsion containing the binder component.
  • Fiber reinforced plastic molding composite material stampable sheet.
  • a method for producing a fiber-reinforced plastic molding composite material (stampable sheet) comprising a step of mixing a matrix resin component made of engineering plastic fibers to form a nonwoven fabric sheet.
  • the process of forming the said nonwoven fabric sheet forms the nonwoven fabric sheet in which many parts of the binder amount contained in all the nonwoven fabric sheets are unevenly distributed in the surface layer part of the front and back of a nonwoven fabric sheet using a binder containing liquid.
  • the step of forming the nonwoven fabric sheet includes a step of heat-treating the nonwoven fabric sheet having a matrix resin component composed of the reinforcing fiber component and the super engineering plastic fiber under conditions in which the super engineering plastic fiber is partially melted.
  • a reinforcing fiber component made of inorganic fiber, a matrix resin fiber component made of polyetherimide fiber, and a non-woven sheet containing at least one binder component, and the fiber components in the surface layer portion of the non-woven sheet are A fiber-reinforced plastic molding composite material (stampable sheet) characterized in that it is bonded mainly at the intersection of the fiber components by the binder component localized in the form of a drainage film.
  • the binder component that is localized in the form of a scraping film at the intersection of the fiber components in the surface layer portion contains at least one selected from methyl methacrylate and ethyl methacrylate as the monomer component (13)
  • the at least one binder component contains a particulate or fibrous thermoplastic resin that is compatible with the polyetherimide fiber component in a heat-melted state, (13) or (13) 14) Fiber-reinforced plastic molding composite material (stampable sheet).
  • the content of the copolymer with respect to the fiber-reinforced plastic molding composite material (stampable sheet) is 0.7 to 4.0% by mass, and the fiber-reinforced composite material for fiber-reinforced plastic molding ( The fiber-reinforced plastic molding composite material (stampable sheet) according to (17), wherein the content is 1.5% by mass to 6% by mass relative to the stampable sheet) and the total content of the binder component is 8% by mass or less ).
  • the fiber component in the intermediate layer between the surface layers is bonded (melt-bonded) by a particulate or fibrous thermoplastic resin that is compatible with the polyetherimide fiber component in a heated and melted state.
  • the composite material (stampable sheet) for fiber-reinforced plastic molding according to any one of (13) to (18).
  • a non-woven fabric having a matrix resin fiber component is applied with a solution-type or emulsion-type binder solution, and then the non-woven fabric is dried while the non-woven fabric is rapidly heated to transfer the main part of the binder solution to the non-woven fabric surface layer portion.
  • a method for producing a fiber-reinforced plastic molding composite material characterized in that the intersections of the fiber components of the surface layer portion of the nonwoven fabric are bonded with a binder localized in the form of a water-scrip film.
  • the fiber-reinforced plastic molding composite material (stampable sheet) according to any one of (13) to (19) is formed by heating and pressing at a temperature of 250 ° C. or higher and 430 ° C. or lower. , Fiber reinforced plastic molding.
  • a stampable sheet is a member before molding of a fiber-reinforced plastic molded body using a thermoplastic resin as a matrix resin.
  • a member before molding fiber-reinforced plastic with a so-called thermosetting resin is usually called a “prepreg”, and a stampable sheet corresponds to this “prepreg”.
  • the “prepreg” includes a member before molding a fiber reinforced plastic with a thermoplastic resin.
  • the composite material for molding a fiber-reinforced plastic of the present invention is molded into a fiber-reinforced plastic body that is free from voids and good in strength and appearance by being heated and pressed.
  • a sheet of a nonwoven fabric-like structure containing a thermoplastic matrix resin fiber component made of flame retardant PEI fiber and a reinforcing fiber component made of inorganic fiber which can be industrially continuously produced. It is possible, composite material for fiber-reinforced plastic molding with excellent handling properties that has sufficient interlayer strength even in the process of processing into molded bodies by lamination, heat press, etc., and excellent flame retardancy and low smoke generation A fiber-reinforced plastic molded article is provided.
  • General reinforcing fibers such as metal fibers, ceramic fibers, glass fibers, and carbon fibers can be widely used as the reinforcing fibers used in the fiber-reinforced plastic molding composite material of the present invention.
  • These inorganic fibers are all preferable in terms of flame retardancy and low smoke generation, and one of them can be used, or a plurality of them can be used in combination.
  • carbon fiber and glass fiber are preferable from the viewpoints of fiber strength and weight, adhesiveness with a thermoplastic resin, and the like.
  • the thickness of the reinforcing fiber is not particularly limited, but is preferably 3 ⁇ m to 18 ⁇ m. If the fiber diameter of the reinforcing fiber is smaller than this, it may be carcinogenic when taken into the human body during the manufacturing process or use, which is not preferable. Further, if the fiber diameter of the reinforcing fiber is larger than this, the uniformity of the mixture with the super engineering plastic fiber is deteriorated, which is not preferable in terms of strength.
  • the fiber length of the reinforcing fiber is preferably about 3 mm to 30 mm. When longer than this, a fiber will not disperse
  • the fiber diameter and fiber length may be single, or those having different fiber diameters and fiber lengths may be blended and used.
  • thermoplastic resin fiber used in the composite material for molding a fiber-reinforced plastic of the present invention is a fiber made from a heat-resistant and flame-retardant thermoplastic resin called a so-called super engineering plastic.
  • thermoplastic resins include polyetheretherketone (PEEK), polyamideimide (PAI), polyphenylene sulfide (PPS), polyetherimide (PEI), polyetherketoneketone (PEKK), etc. It is not limited to this.
  • the super engineering plastic fiber obtained by fiberizing a resin which is a super engineering plastic used for the fiber-reinforced plastic molding composite of the present invention has a critical oxygen index of 25 or more and a glass transition temperature of 140 ° C. or more in the fiber state. Further, even if the glass transition temperature is lower than this, it is preferable that the resin has a deflection temperature under load of 190 ° C. or higher.
  • Such a super engineering plastic fiber has a very high flame retardance with a critical oxygen index of 30 or more in a state of being melted by heating and pressurizing to form a resin block.
  • the thermoplastic resin fiber used in the fiber-reinforced plastic molding composite of the present invention is a PEI fiber obtained by fiberizing a PEI resin.
  • the PEI resin used in this fiber has a critical oxygen index of 40 or more after being melted and processed, and a smoke generation amount of about 30 ds when burned for 20 minutes as measured by the method described in ASTM E-662. It is characterized by low smoke generation.
  • the “limit oxygen index” represents an oxygen concentration necessary to continue combustion, and is a numerical value measured by a method described in JIS K7201. That is, a critical oxygen index of 20 or less is a numerical value indicating that combustion is performed in normal air.
  • the composite material for molding fiber reinforced plastics of the present invention is a mixed weaving method in which super engineering plastic fibers that form a matrix by reinforcing fibers and thermoforming are alternately knitted, or super engineering plastic fibers that form a matrix by reinforcing fibers and thermoforming.
  • a method of forming a web by dispersing chopped strands cut to a length in air and trapping them in a net (dry nonwoven fabric method), or dispersing both the chopped strands in a solvent, and then removing the solvent to remove the web Although it can manufacture by methods, such as the method of forming (wet nonwoven fabric method), it is not limited to these.
  • thermoplastic resin forming the matrix by thermoforming is in fiber form. Therefore, unlike composite materials in which the resin is completely buried between the fibers, such as melting method (hot melt method), solvent method, dry powder coating method, powder suspension method, resin film impregnation method (film stacking method), etc.
  • the sheet itself is flexible and draped, and can be stored and transported in the form of winding, and can be heat-pressed after being placed along a curved mold. It is characterized by superiority.
  • the super engineering plastic fiber used for the fiber-reinforced plastic molding composite material of the present invention is sufficiently fluid under temperature conditions of 300 ° C. to 400 ° C. when the fiber-reinforced plastic molding composite material is heated and pressed. It is required to be. Further, the glass transition temperature of the fiberized super engineering plastic fiber should be 140 ° C. or higher so that the fiber state can be sufficiently maintained under the heating conditions applied in the production stage of the fiber reinforced plastic molding composite material. preferable. Further, even if the glass transition temperature is lower than this, it is preferable that the resin has a deflection temperature under load of 190 ° C. or higher.
  • Fiber reinforced plastic molding composites in which the resin that forms the matrix during heat and pressure molding is super engineering plastic fibers is heated when processed into fiber reinforced plastics rather than fiber reinforced plastic molding composites that use thermosetting resins.
  • the original characteristic is that the pressure molding time is short and the productivity is excellent.
  • the super engineering plastic fiber in order to heat and pressure-mold a fiber reinforced plastic molding composite material in a short time, it is necessary for the super engineering plastic fiber to be used to quickly melt at a high temperature. Thinner fiber diameters are preferred. This is necessary for melting because the number of contact points between fibers increases when the fiber diameter is small, the contact area between the fibers increases, heat conduction becomes better, and the heat capacity of the fibers decreases. This is because the amount of heat is reduced.
  • the fiber diameter is preferably 30 ⁇ m or less, and more preferably 1 to 20 ⁇ m or less.
  • the fiber length of the super engineering plastic fiber is not particularly limited, but is preferably about 3 mm to 30 mm when manufactured by a wet or dry nonwoven fabric method. When longer than this, a fiber will not disperse
  • the fiber diameter and fiber length may be single, or those having different fiber diameters and fiber lengths may be blended and used.
  • the fiber diameters of the reinforcing fiber and the matrix resin fiber are close.
  • the fiber diameter of the super engineering plastic fiber is preferably 4 times or less of the fiber diameter of the reinforcing fiber, more preferably 3 times or less, and most preferably the fiber diameter of the super engineering plastic fiber and the reinforcing fiber. The fiber diameter is almost the same.
  • the matrix resin has a high melt viscosity, it is difficult to uniformly disperse the reinforcing fibers when a large amount of the reinforcing fibers are blended by a method such as injection molding, so that the blending ratio of the reinforcing fibers is limited.
  • the ratio of the reinforcing fiber to the matrix resin fiber can be set relatively freely according to the required strength.
  • the fiber diameter of the super engineering plastic fiber it is preferable to select a fiber having a fiber diameter of 30 ⁇ m or less and 4 times or less of the fiber diameter of the reinforcing fiber. Thereby, shortening of the heating and pressing time and the strength of the fiber reinforced plastic after the heating and pressing can be made compatible.
  • the fiber reinforced plastic molding composite material of the present invention has a fibrous matrix and is highly air permeable, the air content existing between the press plate and the composite material and the volatile gas content generated from the composite material are , It is easy to slip out of the sheet during pressing, and has the characteristics that voids and the like are unlikely to occur even in a short time heating and pressing treatment.
  • the air permeability of the fiber reinforced plastic molding composite material is 200 seconds or less as measured by a method based on the JAPAN TAPPI paper pulp test method. This numerical value indicates that the smaller the number, the easier air can pass through (the better the air permeability).
  • the composite material for molding a fiber-reinforced plastic in the present invention can be manufactured using chopped strands in which matrix resin fibers and reinforcing fibers are cut into a predetermined length to shorten the length.
  • the matrix resin and the reinforced fiber chopped strands are dispersed and mixed in the air, captured in a net and formed into a sheet, a so-called dry nonwoven fabric method, the matrix resin fibers and the reinforced fiber chopped strands in a solvent.
  • the composite material for molding a fiber reinforced plastic can be produced by a so-called wet non-woven method or the like, which is then dispersed into a sheet and then formed into a sheet by removing the solvent.
  • the strength as a sheet that can be handled may be insufficient only by physical entanglement between fibers.
  • the super engineering plastic fibers may be partially melted by heating the sheet, and the fibers may be fused.
  • a binder may be added to bind the fibers.
  • thermosetting resins such as acrylic resin, styrene / acrylic resin, epoxy resin, phenol resin, thermoplastic resin such as urethane resin, polyester resin, polypropylene resin, polyethylene resin, ethylene / vinyl acetate resin, or polyvinyl What is used for general nonwoven fabric manufacture, such as resin which melts hot water like alcohol etc., can be used.
  • the binder content is preferably 10% by mass or less in the fiber-reinforced plastic molding composite.
  • a binder component may start pyrolysis at the heating and pressing temperature of the fiber reinforced plastic molding composite material to generate gas. For this reason, if the binder content is higher than this, a large amount of gas is generated. Therefore, even if the fiber-reinforced plastic molding composite has the above-described air permeability, voids are formed in the fiber-reinforced plastic after heat and pressure molding. In addition, since the binder itself is discolored, the appearance and strength are often inferior.
  • the content of the binder component is preferably 10% by mass or less, more preferably 5% by mass or less, and still more preferably 1% with respect to the fiber reinforced plastic molding composite material. It is below mass%. If the amount of the binder is too small, the strength of the sheet is too weak to be broken during the operation, or fibers on the surface of the fiber-reinforced plastic molding composite material are easily dropped and scattered in the processing step, which is not preferable.
  • the super engineering plastic fiber component used in the fiber-reinforced plastic molding composite material according to the present invention has a flame resistance because it has a critical oxygen index of 25 or more.
  • the limiting oxygen index of the binder component is generally lower than that of the super engineering plastic fiber component used in the fiber-reinforced plastic molding composite material of the present invention, the flame retardance is impaired when the binder content is large.
  • the content of the binder is preferably 10% by mass or less, more preferably 5% by mass or less, and still more preferably 1% by mass or less with respect to the fiber-reinforced plastic molding composite material.
  • the PPS resin has high chemical resistance and high heat resistance.
  • a fiber reinforced plastic having excellent strength can be obtained.
  • PEI resin has excellent adhesion to carbon fiber and glass fiber, and has a critical oxygen index of resin. Since it is very high at 47 in the block state, a fiber reinforced plastic excellent in strength and flame retardancy can be obtained.
  • PEEK polyether ether ketone
  • the binder component used for the fiber-reinforced plastic molding composite material in the present invention is preferably unevenly distributed in the surface layer portion of the fiber-reinforced plastic molding composite material.
  • the inner layer has relatively less binder component.
  • the binder component As a method for making the binder component relatively present in the surface layer of the fiber reinforced plastic molding composite, after forming a web by a wet nonwoven fabric method or a dry nonwoven fabric method, a liquid material in which the binder component is dissolved in a solvent, or a binder
  • a liquid material in which the binder component is dissolved in a solvent, or a binder The manufacturing method of giving the emulsion (emulsion) of a component by dipping or a spray method etc., and heat-drying is mentioned. According to this method, since the moisture inside the web moves to the surface layers on both sides and evaporates during heating and drying, a relatively large amount of the binder component concentrates on the surface layer as the moisture moves.
  • a manufacturing method in which a liquid binder component such as a solution or emulsion of the binder component is used and dried by heating is employed. Can do. In this case, it is preferable that the solvent move more because the uneven distribution of the binder component becomes stronger.
  • the web moisture can be adjusted by adjusting the concentration of the binder solution in the aqueous solution or emulsion, or the moisture suction force by wet suction or dry suction in the wet nonwoven fabric manufacturing process.
  • the preferred web moisture for making the binder component unevenly distributed is 50% or more. However, if there is too much moisture, the drying load increases and the production cost increases. Therefore, it is preferable to appropriately adjust the moisture in consideration of both.
  • the degree of uneven distribution of the binder component can be grasped by dividing the sheet into approximately 3 to 5 parts in the thickness direction (Z-axis direction) and measuring the amount of each binder.
  • the degree of uneven distribution of the binder component is preferably about 1/2 to 1/10 of the amount of binder in the inner layer with respect to the surface layer when divided into approximately three equal parts.
  • the binder component in the fiber-reinforced plastic molding composite material of the present invention is a resin component that is compatible with the resin when the super engineering plastic fiber that becomes the matrix after heat-pressure molding is melted by heat-pressure molding. Particularly preferred.
  • a resin component is used as a binder, after heat and pressure molding, the matrix resin and the binder resin are integrated without any interface, and the strength is good. Further, the glass of the matrix resin caused by the binder resin It has the feature that there is little decrease in the transition temperature.
  • PET or modified PET is used as a preferable binder component in terms of being compatible with the resin when melted by heat and pressure molding. It is preferable.
  • the shape is powder, fibrous, or ordinary PET placed on the core, and the periphery is covered with modified PET having a melting point lower than that of the core.
  • a sheath-structured PET fiber or the like is preferably used.
  • the melting point of the modified PET is preferably 140 ° C. or less, more preferably 120 ° C. or less.
  • the present invention comprises a non-woven sheet comprising a reinforcing fiber component composed of inorganic fibers, a matrix resin fiber component composed of polyetherimide fibers (PEI fibers), and at least one binder component.
  • seat is related with the composite material for fiber-reinforced plastics shaping
  • this embodiment will be particularly described.
  • the fiber-reinforced plastic molding composite material of the above embodiment includes a method of dispersing reinforcing fibers and PEI fibers in the air and capturing them in a net to form a web (dry nonwoven fabric method), and reinforcing fibers and PEI fibers in a solvent. And a method of forming a web after removing the solvent (wet nonwoven fabric method).
  • a liquid binder that is, a binder component solution or an emulsion liquid
  • the liquid binder is concentrated on the fiber intersection by the surface tension of the binder liquid during the drying process after applying the binder to the web by the production process, that is, the coating method or the impregnation method, and then shrinks by drying. Therefore, after drying, as shown in FIG. Due to such a property, it is excellent in strength for bonding fibers even in a very small amount.
  • the binder component is as described above.
  • the moisture in the web containing the binder liquid evaporates from both surface layers of the fiber-reinforced plastic molding composite material. concentrate. Therefore, even if a small amount of the binder is used, the falling and scattering of the surface fibers of the composite material are suppressed, and a composite material for molding a fiber-reinforced plastic that has excellent handling properties in a heat molding process or the like can be obtained.
  • the flame retardancy and low smoke generation can be made excellent. The reason is considered as follows.
  • the method for unevenly distributing the binder component on the surface layer (both surface layers) of the fiber reinforced plastic molding composite is as described above.
  • the molding temperature is as high as 250 ° C. to 400 ° C. because polyetherimide having high heat resistance is used as the matrix resin.
  • a temperature range exceeds the thermal decomposition temperature of an acrylic resin or the like normally used as a binder component. Therefore, it is considered that the binder component is thermally decomposed and volatilized at the time of thermoforming, so that the binder component does not remain in the thermoformed product, and thus the binder component does not hinder the flame retardancy and low smoke generation of the thermoformed product.
  • fiber reinforced plastic molding composites manufactured by the usual binder addition method if the processing is carried out by heating and pressing for a short time, the molding process is completed before the binder components are sufficiently decomposed and volatilized. The remaining binder component inhibits the flame retardancy and low smoke generation of the thermoformed product.
  • the binder component By concentrating the binder component in the vicinity of the surface of the fiber reinforced plastic molding composite, the binder component is effectively heated during hot-press molding by a high-temperature mold or press plate. -It is considered that the binder component that volatilizes and remains in the thermoformed product becomes a very small amount.
  • the binder component used for the fiber-reinforced plastic molding composite material preferably contains a copolymer of methyl methacrylate, ethyl methacrylate, ethyl acrylate, and / or methyl acrylate, and particularly glass fiber or the like as the reinforcing fiber.
  • the binder component preferably contains a copolymer containing at least one selected from methyl methacrylate and ethyl methacrylate as a monomer component.
  • Granular or fibrous binders can also be included in the fiber reinforced plastic molding composite. As a result, the interlayer strength of the fiber-reinforced plastic molding composite material is increased, and the handling property during the heat molding process is further improved.
  • a granular or fibrous binder can be dispersed in the air together with reinforcing fibers and PEI fibers and captured on a net to form a web (dry nonwoven fabric method), or dispersed in a solvent, and then the solvent is removed to remove the web.
  • the binder component When supplied as a liquid binder or when supplied as a granular or fibrous binder, the binder component is preferably a binder component that is compatible with PEI fibers when heated and melted. According to the study by the present inventors, it has been found that when such a component is selected, the flame retardancy and low smoke generation of the PEI resin are hardly impaired after the heat and pressure molding.
  • a polyester resin or a modified polyester resin may be mentioned. These resins can be used as an emulsion liquid or can be contained in the layer of the fiber-reinforced plastic molding composite material in a granular or fibrous form. In any case, the flame retardancy and low smoke generation properties of the PEI resin are not impaired, but a modified polyester resin is particularly preferable because the fusing temperature can be set so as to be suitable for the production process of the fiber-reinforced plastic molding composite.
  • the binder component used is a fiber reinforced plastic in which the total amount of the binder component supplied in the state of a solution or an emulsion and the binder component supplied in a granular or fibrous form, if necessary, It is preferable that it is 0.3 mass% or more and 10 mass% or less with respect to the shaping
  • the ratio of the two can be arbitrarily set so as to be suitable for the manufacturing process.
  • the amount of the binder component is less than 0.3% by mass, the strength during the manufacturing process is insufficient and the handling property is lowered.
  • the above-mentioned binder component does not inhibit the flame retardancy and low smoke generation, but if the amount is too large, the flame retardancy and low smoke generation are likely to be impaired. It is 10% by mass or less, and sufficient process strength and handling properties can be obtained with this addition amount.
  • the liquid binder composed of methyl methacrylate, ethyl ethacrylate, ethyl acrylate, and / or methyl acrylate copolymer is concentrated on both surface layers of the fiber reinforced plastic molding composite, and the fiber components of both surface layers. Because it is localized in the form of a draining film at the intersection of each other, even if the binder component is small, it is suitable for the fiber reinforced plastic molding composite material because there is little loss of fibers on both surface layers even in the use process, and there is little discoloration. Immediately after papermaking, it can be suitably used in a process of cutting, laminating and pressing a flat plate.
  • winding is once manufactured with a paper machine or the like, and is further cut into a predetermined width while being wound with a winder or the like in order to obtain a predetermined width.
  • the problem becomes more serious because the number of times the sheet is rolled is increased.
  • the interlaminar strength can be improved by using a fibrous or granular binder.
  • a fibrous or granular binder can be used for both fiber-reinforced plastic molding composites such as a liquid binder. Since it is not localized in the surface layer, most of the binder remains in the composite material even after the hot pressing. Therefore, the fibrous or granular binder is particularly preferably a binder that is compatible with the PEI resin, and is preferably a polyester resin or a modified polyester resin.
  • the fibrous binder is mixed with PEI fibers and reinforcing fibers and dispersed in water, and when the paper is made by a wet papermaking method, the yield drops by dropping from the eyes of the papermaking wire like a granular binder, It is particularly preferable because it is not unevenly distributed on the wire side.
  • a fibrous modified polyester resin binder is particularly suitable for producing a winding.
  • a binder fiber having a core-sheath structure in which a polyester resin is disposed in the core part and a modified polyester resin is disposed in the sheath part, and the melting point of the sheath part is lower than that of the core part can be suitably used.
  • Polyester resin is preferably polyethylene terephthalate (PET).
  • PET polyethylene terephthalate
  • the modified polyester resin is not particularly limited as long as the melting point is lowered by modifying the polyester resin, but modified polyethylene terephthalate is preferable.
  • modified polyethylene terephthalate copolymerized polyethylene terephthalate (CoPET) is preferable, and examples thereof include urethane-modified copolymerized polyethylene terephthalate.
  • the copolymerized polyethylene terephthalate preferably has a melting point of 140 ° C. or lower, more preferably 120 ° C. or lower.
  • a modified polyester resin as described in JP-B-1-30926 may be used.
  • melty 4000 (a fiber in which all fibers are copolymerized polyethylene terephthalate) manufactured by Unitika is preferably exemplified.
  • core-sheath-structured binder fiber Melty 4080 manufactured by Unitika, N-720 manufactured by Kuraray, or the like can be suitably used.
  • the emulsion binder is 0.7 to 4.0% by mass
  • the binder selected from the polyester resin and the modified polyester resin is 1.5 to 6.0% by mass
  • the total amount of the binder components is When the content is 8% by mass or less, sufficient surface strength and interlayer strength can be obtained even when winding and repeated cutting.
  • the blending amount of the liquid binder containing a copolymer of methyl methacrylate, ethyl ethacrylate, ethyl acrylate, and methyl acrylate as a component is smaller than that of the polyester resin or the modified polyester resin, and the odor is related. From these results, favorable results are obtained. Since the polyester binder is compatible with the matrix resin, it is difficult to generate odor even if the addition amount is relatively large, and since the liquid binder tends to be concentrated and concentrated at the intersection of the fibers, such a result is obtained. Estimated.
  • the fiber-reinforced plastic molding composite material of the present invention is a single sheet or laminated to have a desired thickness and heat-pressed by hot pressing, pre-heated with an infrared heater or the like in advance, )
  • a fiber reinforced plastic excellent in strength and flame retardancy can be obtained by processing using a general method for heating and pressing a fiber reinforced plastic molding composite material such as pressure molding.
  • the basis weight of the fiber-reinforced plastic molding composite material of the present invention is not particularly limited, but it is preferable to reduce the number of laminated layers because it is necessary to thermally decompose and volatilize the binder component on the surface of the fiber-reinforced plastic molding composite material during heat molding. Therefore, a higher basis weight is preferable. From such a viewpoint, the preferred basis weight is 400 g / m 2 or more, more preferably 550 g / m 2 or more. In addition, the upper limit of a fabric weight can be suitably set according to the thickness of the target fiber reinforced plastic molding composite material.
  • the smoke concentration after 20 minutes in the flame test measured by the method according to ASTM-662 is 43DS or less, It is possible to obtain a fiber-reinforced plastic molded article having a very low fuming property of 37 DS or less.
  • Production examples 1 to 4 A PAN-based carbon fiber having a fiber diameter of 7 ⁇ m and a fiber length of 13 mm and a PPS resin fiber having a fiber diameter shown in Table 1 (manufactured by Fiber Innovation Technology, fiber length of 13 mm, critical oxygen index of 41) and a mass ratio of polyacrylonitrile (PAN) ) It measured so that it might become the polyphenylene sulfide (PPS) resin fiber 60 with respect to the system carbon fiber 40, and it injected
  • PPS polyphenylene sulfide
  • Particulate polyvinyl alcohol (Unitika Ltd., trade name “OV-N”) was added to water so as to have a concentration of 10%, and stirred to prepare a binder slurry.
  • the granular PVA slurry was put into a fiber slurry, a wet web was formed by wet papermaking, and heat drying was performed at 180 ° C. to obtain a nonwoven fabric having a basis weight of 250 g / m 2 .
  • This nonwoven fabric was heated and pressurized with a 220 ° C. hot press to obtain a fiber reinforced plastic molding composite material having air permeability shown in Table 1.
  • the air pressure is adjusted as shown in Table 1 by shortening the heating and pressing time and lowering the density as compared with Production Example 1, and in Production Example 4 the heating and pressurization is more than in Production Example 1.
  • the air permeability was adjusted as shown in Table 1 by extending the time and increasing the density.
  • concentration was adjusted suitably so that the compounding rate with respect to the composite material for fiber reinforced plastics shaping
  • Production Example 5 Except for changing the PPS resin fiber to the PPS fiber having the fiber diameter shown in Table 1 (manufactured by KB Selen Co., Ltd., glass transition temperature 92 ° C., fiber length 13 mm, critical oxygen index 41), the same as in Production Example 1 Thus, a composite material for molding fiber reinforced plastic was prepared.
  • Production Examples 6-9 The PAN-based carbon fiber having a fiber diameter of 7 ⁇ m and a fiber length of 13 mm in Production Example 1 was changed to a glass fiber having a fiber diameter of 9 ⁇ m and a fiber length of 18 mm, and the PPS resin fiber (manufactured by Fiber Innovation Technology Co., Ltd.) was produced. , Glass transition temperature 92 ° C., limiting oxygen index 41) to polyetherimide (PEI) resin fibers (Fiber Innovation Technology, glass transition temperature 220 ° C., fiber length 13 mm, limiting oxygen index 47) shown in Table 2. Except having changed, it carried out similarly to manufacture example 1, and obtained the nonwoven fabric whose fabric weight is 250 g / m ⁇ 2 >.
  • PEI polyetherimide
  • the obtained sheet was heated and pressed by a heat press at 220 ° C. to appropriately adjust the air permeability as shown in Table 2, and the fiber-reinforced plastic molding composite materials of Production Examples 6 and 7 were produced.
  • the air permeability was adjusted as shown in Table 2 by shortening the heating and pressing time by 220 ° C. hot pressing and lowering the density as compared with Production Example 6.
  • glass fiber in Production Example 6 was changed to glass fiber having a fiber diameter of 6 ⁇ m and a fiber length of 18 mm, and a fiber-reinforced plastic molding composite material of Production Example 9 was produced in the same manner as Production Example 6.
  • Production Examples 10-15 The PPS resin fiber in Production Example 1 was replaced with a PPS resin fiber having a fiber diameter of 16 ⁇ m (manufactured by Fiber Innovation Technology, glass transition temperature 92 ° C., fiber length 13 mm, critical oxygen index 41), and instead of granular PVA, a wet web was used.
  • the composite material for molding fiber reinforced plastics of Production Examples 10 to 15 was the same as Production Example 1 except that the binder liquid shown in Table 3 was added in the amount shown in Table 3 by spraying after the formation, and was heated and dried. Was made.
  • Production Examples 16-21 Production Examples 10 to 15 except that the PPS resin fibers in Production Examples 10 to 15 are replaced with PEI resin fibers having a fiber diameter of 15 ⁇ m (manufactured by Fiber Innovation Technology, glass transition temperature 220 ° C., fiber length 13 mm, critical oxygen index 41). Fiber reinforced plastic molding composite materials of Production Examples 16 to 21 corresponding to the above were produced.
  • a PVA aqueous solution in which “PVA117” manufactured by Kuraray was dissolved in hot water was used as the PVA aqueous solution.
  • the styrene acrylic emulsion used was “GM-1000” manufactured by DIC, and the urethane emulsion used was “AP-X101” manufactured by DIC.
  • Tables 1 to 4 show the appearance of the obtained fiber reinforced plastic and the bending strength measured by a method based on JIS K7074. Appearance is good with no voids, etc. ⁇ , slightly voids can only be confirmed ⁇ , voids are generated but there is no practical problem, ⁇ , apparently due to voids Was bad and could not be used as a product.
  • the fiber reinforced plastic bodies obtained by heating and pressing the fiber reinforced plastic molding composites of Production Examples 1 and 2, Production Examples 6 to 8, and Production Examples 10 to 21 are as follows. It is manufactured by heat and pressure molding a gas-permeable fiber reinforced plastic molding composite material having a thermoplastic fiber called a super engineering plastic having a specific fiber diameter and a reinforcing fiber made of carbon fiber or glass fiber. As a result, the fiber-reinforced plastic body has high strength and good appearance.
  • the fiber reinforced plastic molded from the fiber reinforced plastic molding composite material of Production Example 4 having an air permeability of 210 and slightly less permeable than those of each of the above production examples is somewhat inferior in appearance.
  • the strength is slightly lower than those of Production Examples 1 and 2.
  • the fiber diameter of the super engineering plastic fiber exceeds 30 ⁇ m, so that the appearance after heating and pressing is that of Production Examples 1 to 4. It is clearly inferior to a fiber reinforced plastic body molded from a fiber reinforced plastic molding composite.
  • the fiber reinforcement is carried out by using the super engineering plastic fiber which has a fiber diameter exceeding 4 times the fiber diameter of a reinforcement fiber Fiber reinforcement in which the mixed state of the reinforcing fiber and matrix fiber in the plastic molding composite material is deteriorated, and the appearance of the laminate after the heat and pressure molding is molded from the fiber reinforced plastic molding composite material of Production Examples 1 to 4 It is clearly inferior to the plastic body.
  • molded from the composite material for fiber reinforced plastic molding of the manufacture example 3 is fiber because the amount of binders in the composite material for fiber reinforced plastic molding is larger than that of the manufacture examples 1 and 2.
  • the content of the binder used is also the fiber reinforced plastic after molding so that the appearance of the reinforced plastic body is slightly inferior to those of Production Examples 1 and 2. It can be seen that this affects the appearance and strength.
  • Example 1 A PAN-based carbon fiber having a fiber diameter of 7 ⁇ m and a fiber length of 13 mm and a PEI resin fiber having a fiber diameter of 15 ⁇ m (fiber length of 13 mm) are set to have a PEI resin fiber 60 with respect to the polyacrylonitrile (PAN) -based carbon fiber 40. Weighed and put into water. The amount of water added was 200 times the total mass of the PAN-based carbon fiber and the PEI resin fiber (that is, the fiber slurry concentration was 0.5%).
  • PAN polyacrylonitrile
  • a wet web is formed from this fiber slurry by a wet papermaking method, and an emulsion liquid binder (methyl methacrylate copolymer, EMN-188E manufactured by Nippon Shokubai Co., Ltd.) having a concentration of 5% is applied by a spray method.
  • an emulsion liquid binder methyl methacrylate copolymer, EMN-188E manufactured by Nippon Shokubai Co., Ltd.
  • the web moisture was appropriately dehydrated by suction, and heated and dried at 180 ° C. to obtain a fiber-reinforced plastic molding composite material having a basis weight of 550 g / m 2 .
  • Example 2 A binder slurry liquid in which a modified polyester granular binder (powder resin G-120, manufactured by Tokyo Ink Co., Ltd.) having a melting point of 110 ° C. was dispersed in water so as to have a solid content mass concentration of 10% was prepared. Except for adding this binder slurry liquid to the fiber slurry prepared in Example 1, a wet web is formed by the wet papermaking method in the same manner as in Example 1, and an emulsion liquid binder is added to heat and dry the fabric. A fiber-reinforced plastic molding composite material having a weight of 550 g / m 2 was obtained. In addition, the addition amount of the binder slurry liquid was adjusted so that the solid content mass addition amount of the modified polyester granular binder was as shown in Table 5.
  • a modified polyester granular binder binder resin G-120, manufactured by Tokyo Ink Co., Ltd.
  • Example 3 a fiber reinforced plastic molding composite was obtained in the same manner as in Example 2 except that the modified polyester granular binder having a melting point of 110 ° C. was changed to a modified polyester fibrous binder (Melty 4000 manufactured by Unitika).
  • Example 4 In Example 1, the emulsion liquid binder was changed to a 2% concentration PVA solution binder (Kuraray PVA117 dissolved in warm water and cooled), and the solid mass addition amount of the binder to the fiber-reinforced plastic molding composite was changed to A fiber-reinforced plastic molding composite material was obtained in the same manner as in Example 1 except that it was as shown in Table 5.
  • Example 5 A fiber-reinforced plastic molding composite was produced in the same manner as in Example 2 except that the modified polyester granular binder in Example 2 was changed to PVA granular binder (OV-N manufactured by Unitika Ltd.).
  • Example 5 a fiber reinforced plastic molding composite was produced in the same manner as in Example 5 except that the emulsion liquid binder was not applied and the addition amount of the granular PVA binder was changed as shown in Table 5.
  • Comparative Example 2 A fiber reinforced plastic molding composite was produced in the same manner as in Comparative Example 1, except that the amount of the granular PVA binder added was changed as shown in Table 5.
  • Comparative Examples 3-4 In Comparative Examples 1 and 2, the reinforcing fiber was changed to a glass fiber having a fiber diameter of 9 ⁇ m and a fiber length of 18 mm, and the ratio of the reinforcing fiber to the polyetherimide fiber was changed as shown in Table 6. Comparative Example 1 A composite material for molding a fiber-reinforced plastic was produced in the same manner as in (2).
  • Examples 11 to 26 The solid content of the methyl methacrylate copolymer (EMC-188E manufactured by Nippon Shokubai Co., Ltd.) is as shown in Table 5, and the solid content of the modified polyester fibrous binder (Melty 4000 manufactured by Unitika) is also shown. A composite material for molding a fiber-reinforced plastic was obtained in the same manner as in Example 3 except that it was as shown in FIG. The solid content of the binder (EMN-188E manufactured by Nippon Shokubai Co., Ltd.), which is a methyl methacrylate copolymer, was adjusted to a predetermined level by appropriately adjusting the spray liquid concentration at the time of adding the binder.
  • Example 27 A fiber reinforced plastic molding composite was prepared in the same manner as in Example 1 except that the solid content of the emulsion liquid binder (methyl methacrylate copolymer, EMN-188E manufactured by Nippon Shokubai Co., Ltd.) was as shown in Table 6. Manufactured. The solid content of the binder (EMN-188E manufactured by Nippon Shokubai Co., Ltd.), which is a methyl methacrylate copolymer, was adjusted to a predetermined level by appropriately adjusting the spray liquid concentration at the time of adding the binder.
  • the solid content of the emulsion liquid binder methyl methacrylate copolymer, EMN-188E manufactured by Nippon Shokubai Co., Ltd.
  • Example 11 was changed except that the reinforcing fiber was changed to a glass fiber having a fiber diameter of 9 ⁇ m and a fiber length of 18 mm, and the ratio of the reinforcing fiber to the polyetherimide fiber was changed as shown in Table 6.
  • fiber reinforced plastic molding composite materials of Examples 23 ⁇ 44 were produced.
  • each fiber reinforced plastic molding composite material having a width of 2.3 m was manufactured, and (1) cut with a two-drum winder so as to have a width of 1100 mm. A winding was obtained.
  • the winding obtained in the previous period (1) was further cut with a two-drum winder so as to have a width of 500 mm to obtain a winding of 300 m. Then, the dropping and scattering of the surface fibers of the fiber reinforced plastic molding composite material during the operations (1) and (2) were evaluated as follows.
  • the composite material for fiber-reinforced plastic molding after the steps (1) and (2) were evaluated as follows.
  • Table 5 and Table 6 show the smoke concentration (according to ASTM E-662, after heating for 20 minutes) and the limiting oxygen index of the obtained fiber reinforced plastic by the flame method.
  • granular polyester represents a modified polyester granular binder (powder resin G-120, manufactured by Tokyo Ink Co., Ltd.), and “fibrous polyester” represents a modified polyester fibrous binder (manufactured by Unitika). 4000).
  • the fiber-reinforced plastic molding composites according to the present invention are less likely to lose surface fibers, have sufficient sheet strength, and have good handling properties in the work process.
  • the fiber reinforced plastic body showed excellent flame retardancy, that is, low smoke concentration and high limit oxygen index.
  • Examples 2, 3, 7 and 8 using granular polyester and fibrous polyester, which are binders compatible with polyetherimide, are particularly difficult to handle, in addition to excellent handling properties. It showed flammability, that is, low smoke concentration and high critical oxygen index.
  • the surface fibers often fall off, the sheet is not easily handled, and the flame retardant plastic body is inferior in flame retardancy.
  • Increasing the amount of binder to improve surface fiber shedding and sheet handling results in further inferior flame retardancy of the fiber reinforced plastic body.
  • the fiber-reinforced plastic molding composite material of the present invention contains a thermoplastic super engineering plastic fiber having high heat resistance and high flame retardancy as a matrix resin component, so that the productivity of the fiber-reinforced plastic molding composite material itself is high. Excellent handling in processing.
  • the composite material for molding fiber reinforced plastics which is a nonwoven fabric structure containing thermoplastic polyetherimide fibers with excellent heat resistance and flame retardancy as matrix resin components and inorganic fibers as reinforcing fiber components, is a surface layer. Since the fiber components of the parts are mainly bonded and fixed with a small amount of binder, the handleability in the processing process is also excellent.
  • the fiber-reinforced plastic molding composite material of the present invention can be molded into a fiber-reinforced resin molded article having high strength, high heat resistance and excellent flame retardancy, a lightweight and high-strength composite material is required. It is useful as sports equipment, leisure equipment, aircraft materials, etc.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Textile Engineering (AREA)
  • Organic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Materials Engineering (AREA)
  • Composite Materials (AREA)
  • Mechanical Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Reinforced Plastic Materials (AREA)
  • Laminated Bodies (AREA)
  • Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)
  • Casting Or Compression Moulding Of Plastics Or The Like (AREA)

Abstract

The purpose of the present invention is to provide a composite material for molding a fiber-reinforced plastic that enables fiber-reinforced plastic molded bodies to be continuously produced in an efficient manner by heat and pressure molding, said fiber-reinforced plastic molded bodies having high heat resistance, flame resistance and low smoke properties. The composite material for molding a fiber-reinforced plastic is characterized by containing: a reinforced fiber component comprising at least one type of inorganic fiber selected from a glass fiber and a carbon fiber; and a matrix resin component comprising thermoplastic super-engineered plastic fibers having a limiting oxygen index of not less than 25, a fiber diameter of not more than 30 μm and not more than four times the fiber diameter of the reinforced fibers. The composite material for molding a fiber-reinforced plastic is further characterized by comprising a nonwoven sheet containing a reinforced fiber component comprising inorganic fibers, a matrix resin fiber component comprising polyetherimide fibers, and at least one type of binder component, said fiber components in the surface layer of the nonwoven sheet being bonded by the binder component, which exists locally in a paddle-like film form mainly at the intersection points of the fiber components.

Description

繊維強化プラスチック成形用複合材及び繊維強化プラスチック成形体Fiber reinforced plastic molding composite and fiber reinforced plastic molding
 本発明は、熱可塑性繊維をマトリックス樹脂とした繊維強化プラスチック成形体の前駆体である繊維強化プラスチック成形用複合材及びそれを加熱加圧成形した繊維強化プラスチック成形体に関する。特に、マトリックス樹脂として耐熱性で難燃性が高い、いわゆるスーパーエンプラと称される熱可塑性樹脂の繊維を使用している、成形物の難燃性・強度が高く、且つ短時間で成形加工が可能な繊維強化プラスチック成形用複合材と、それを加熱加圧成形した繊維強化プラスチック成形体に関する。さらに、マトリックス樹脂としてポリエーテルイミド樹脂の繊維を使用している、耐熱性で難燃性が高く短時間で成形加工が可能な繊維強化プラスチック成形用複合材と、それを加熱加圧成形した、難燃性と強度が高く、燃焼時も発煙が少ない繊維強化プラスチック成形体に関する。 The present invention relates to a fiber reinforced plastic molding composite material, which is a precursor of a fiber reinforced plastic molding using thermoplastic fibers as a matrix resin, and a fiber reinforced plastic molding obtained by heating and pressing the composite material. In particular, the matrix resin uses thermoplastic resin fibers called heat engineering and high flame retardancy, so-called super engineering plastics, and the molded product has high flame retardancy and strength and can be molded in a short time. The present invention relates to a fiber reinforced plastic molding composite material and a fiber reinforced plastic molded body obtained by heating and pressing the composite material. Furthermore, fiber reinforced plastic molding composite material that uses polyetherimide resin fibers as a matrix resin, is heat resistant and flame retardant and can be molded in a short time, and heat-press molding it, The present invention relates to a fiber reinforced plastic molded article having high flame retardancy and strength and generating little smoke even when burned.
 軽量で高強度を有する複合材料として、炭素繊維やガラス繊維等の強化繊維で補強した樹脂成形体は、既にスポーツ、レジャー用品、航空機用材料など様々な分野で用いられている。それらの炭素繊維強化樹脂成形体においてマトリックスとなる樹脂は、主にエポキシ樹脂、又は不飽和ポリエステル樹脂、ときにフェノール樹脂などの熱硬化性樹脂が用いられることが現在も多い。しかし、それら熱硬化性樹脂の場合、繊維強化樹脂成形体の耐衝撃性が劣ることや、樹脂を繊維に含浸させてプリプレグにした場合に冷蔵保管が必要で、しかもポットライフが限られており長期保管ができない、という難点がある。 As a lightweight and high-strength composite material, resin moldings reinforced with carbon fiber, glass fiber or other reinforcing fibers are already used in various fields such as sports, leisure goods, and aircraft materials. As the resin used as a matrix in these carbon fiber reinforced resin molded products, epoxy resins, unsaturated polyester resins, and sometimes thermosetting resins such as phenol resins are often used. However, in the case of these thermosetting resins, the impact resistance of the fiber reinforced resin molding is inferior, and when the resin is impregnated into the fiber to make a prepreg, refrigeration storage is necessary, and the pot life is limited. There is a difficulty that long-term storage is not possible.
 更に、熱硬化性樹脂は加熱状態で重合反応させて硬化させる必要があるが、重合反応に時間を要するため、加熱成形時間が長くなり生産性が低いといった難点もある。 Furthermore, the thermosetting resin needs to be cured by a polymerization reaction in a heated state, but since the polymerization reaction takes time, there is a problem that the heat molding time becomes long and the productivity is low.
 一方、熱可塑性樹脂をマトリックス樹脂とする場合、繊維強化樹脂成形体の耐衝撃性が優れることや、成形加工前の状態の樹脂及び繊維強化樹脂複合材の保存管理が容易で、成形時間が短いといった優れた点があることから、例えばポリカーボネート樹脂やポリエステル樹脂、ポリプロピレン樹脂等、熱可塑性樹脂をマトリックス樹脂とした繊維強化樹脂複合材からなる繊維強化樹脂成形体の開発研究が行われている。 On the other hand, when a thermoplastic resin is used as a matrix resin, the impact resistance of the fiber reinforced resin molded article is excellent, and the storage management of the resin and the fiber reinforced resin composite material in a state before molding processing is easy, and the molding time is short. Therefore, for example, a development study of a fiber reinforced resin molded body made of a fiber reinforced resin composite material using a thermoplastic resin as a matrix resin, such as a polycarbonate resin, a polyester resin, or a polypropylene resin, has been conducted.
 一般的に、これらの樹脂で繊維強化プラスチック成形体を作成する場合、その前駆体である複合材の製造方法としては、繊維への樹脂含浸方法の種類によって、溶融法(ホットメルト法)、溶剤法、ドライパウダーコーティング法、パウダーサスペンション法、樹脂フィルム含浸法(フィルムスタッキング法)、混織法(コミングル)などが提案されている(非特許文献1)。 In general, when a fiber reinforced plastic molded body is prepared from these resins, the composite material that is a precursor thereof is manufactured by a melting method (hot melt method), a solvent, depending on the type of resin impregnation method for the fiber. Methods, dry powder coating methods, powder suspension methods, resin film impregnation methods (film stacking methods), mixed weaving methods (Commingle), and the like have been proposed (Non-Patent Document 1).
 溶融法は、押出機で熱可塑性樹脂を溶融し、溶融バスの中に連続繊維を通し、繊維内部に樹脂を含浸させる製造方法であり、溶剤法は、樹脂(主として非晶性樹脂)を溶媒で溶かした溶液を用いて強化繊維に含浸させる製造方法である。 The melting method is a manufacturing method in which a thermoplastic resin is melted by an extruder, continuous fibers are passed through a melting bath, and the resin is impregnated into the inside of the fiber. The solvent method is a resin (mainly amorphous resin) that is a solvent. This is a production method in which a reinforcing fiber is impregnated using a solution dissolved in (1).
 ドライパウダーコーティング法は、ドライパウダーを強化繊維に付着させ、次の工程で加熱しパウダーを溶融含浸させる方法である。パウダーサスペンション法は、樹脂パウダーを水或いは溶剤に均一分散させた槽の中に強化繊維を通し、パウダーを強化繊維に付着させ、次の工程で加熱しパウダーを溶融含浸させる方法である。 The dry powder coating method is a method in which dry powder is adhered to reinforcing fibers and heated in the next step to melt and impregnate the powder. The powder suspension method is a method in which reinforcing fibers are passed through a tank in which resin powder is uniformly dispersed in water or a solvent, the powder is adhered to the reinforcing fibers, and heated in the next step to melt and impregnate the powder.
 樹脂フィルム含浸法は、樹脂フィルムと強化繊維を重ね合わせ、ダブルベルトプレスや間欠プレス方式で樹脂を溶融含浸させる製造方法である。 The resin film impregnation method is a manufacturing method in which a resin film and reinforcing fibers are overlapped and the resin is melted and impregnated by a double belt press or an intermittent press method.
 混織法(コミングル)は、強化繊維と熱可塑性樹脂繊維とを複合化し、複合糸を作製する技術である。複合糸を織物加工(一方向、平織、組紐、多軸織物等)し、中間材料を得、これを直接加熱成形工程に通し、熱可塑性樹脂繊維を強化繊維に含浸させて製品を得る。 The mixed weaving method (Commingle) is a technique for producing a composite yarn by combining a reinforcing fiber and a thermoplastic resin fiber. The composite yarn is woven (unidirectional, plain weave, braided, multiaxial woven fabric, etc.) to obtain an intermediate material, which is directly passed through a thermoforming process, and a thermoplastic resin fiber is impregnated into the reinforcing fiber to obtain a product.
 一方、熱可塑性樹脂の短繊維と、強化繊維等を空気中、若しくは水中に混合分散させてシート化し、熱可塑性樹脂短繊維と強化繊維を複合化する技術が提案されている(特許文献1、特許文献2)。 On the other hand, a technique has been proposed in which a short fiber of a thermoplastic resin and a reinforcing fiber are mixed and dispersed in air or water to form a sheet, and the thermoplastic resin short fiber and the reinforcing fiber are combined (Patent Document 1,). Patent Document 2).
 特許文献1では、強化繊維である炭素繊維と、熱可塑性繊維状マトリックス樹脂を、空気中若しくは水中で均一に混合し、ネット上に捕捉して得られたウエブを加熱加圧成形する提案がなされており、また、特許文献2には強化繊維とマトリックス樹脂繊維を分散媒体中に分散させ、混合した後に分散媒体を除去することによって得られた抄紙基材を加熱加圧成形する技術が開示されている。 In Patent Document 1, a proposal is made to heat and press-mold a web obtained by uniformly mixing carbon fibers as reinforcing fibers and a thermoplastic fibrous matrix resin in air or water and capturing them on a net. Patent Document 2 discloses a technique for heat-pressing a paper-making substrate obtained by dispersing reinforcing fibers and matrix resin fibers in a dispersion medium, mixing them, and then removing the dispersion medium. ing.
 しかしながら、上記のようなポリカーボネート樹脂やポリエステル樹脂、ポリプロピレン樹脂等の熱可塑性樹脂をマトリックス樹脂とした繊維強化樹脂成形体は、耐熱性や難燃性等の点で、熱硬化性樹脂をマトリックス樹脂とした繊維強化樹脂成形体に比べて劣るという欠点がある。 However, a fiber reinforced resin molded article using a thermoplastic resin such as polycarbonate resin, polyester resin, or polypropylene resin as a matrix resin as described above has a thermosetting resin as a matrix resin in terms of heat resistance and flame retardancy. There is a disadvantage that it is inferior to the fiber reinforced resin molded product.
特公昭62-1969号公報Japanese Patent Publication No.62-1969 特開2011-157638号公報JP 2011-157638 A 特開2007-269308号公報JP 2007-269308 A 特開2006-077342号公報JP 2006-077342 A
 熱可塑性樹脂は、近年、耐熱性、耐薬品性などに優れた熱可塑性樹脂が盛んに開発されるようになり、これまで熱可塑性樹脂について常識とされてきた前記したような欠点が目覚ましく改善されてきている。そのような熱可塑性樹脂は、いわゆる「スーパーエンプラ(スーパーエンジニアリングプラスチック)」と呼ばれる樹脂であり、ポリフェニレンサルファイド(PPS)、ポリエーテルエーテルケトン(PEEK)、ポリアミドイミド(PAI)、ポリエーテルイミド(PEI)等が挙げられる(非特許文献1)。 In recent years, thermoplastic resins with excellent heat resistance and chemical resistance have been actively developed, and the above-mentioned drawbacks that have been common knowledge about thermoplastic resins have been remarkably improved. It is coming. Such thermoplastic resins are so-called “super engineering plastics”, which are polyphenylene sulfide (PPS), polyether ether ketone (PEEK), polyamide imide (PAI), polyether imide (PEI). (Non-Patent Document 1).
 上記「スーパーエンプラ」と称される熱可塑性樹脂は、強度が優れるだけでなく、難燃性が非常に高いことが特徴のひとつであり、限界酸素指数が樹脂ブロックの状態で30以上であるものが多い。特に、ポリエーテルイミド(以下PEIとする)は、限界酸素指数が47と高く、更に燃焼時の発煙が著しく少ないという特徴を有する。このようなスーパーエンプラを使用した複合材の検討は、これまでにも様々に試行されているが、下記のような問題がある。 The above-mentioned thermoplastic resin called “super engineering plastic” is not only excellent in strength but also has a very high flame retardancy, and has a critical oxygen index of 30 or more in a resin block state. There are many. In particular, polyetherimide (hereinafter referred to as PEI) is characterized by a high critical oxygen index of 47 and extremely low smoke generation during combustion. Although various attempts have been made to study composite materials using such super engineering plastics, there are the following problems.
 溶融法(ホットメルト法)、溶剤法、ドライパウダーコーティング法、パウダーサスペンション法、樹脂フィルム含浸法(フィルムスタッキング法)、混織法(コミングル法)で製造したプリプレグは、熱硬化性プリプレグと比較して、硬くてドレープ性がなく、タックも低く、取扱い性が極めて悪いのが現状である(非特許文献1)。 Prepregs manufactured by the melt method (hot melt method), solvent method, dry powder coating method, powder suspension method, resin film impregnation method (film stacking method), and mixed weaving method (Commingle method) are compared with thermosetting prepregs. At present, it is hard, has no drape, has low tack, and is extremely poor in handling (Non-Patent Document 1).
 更に、スーパーエンプラを使用したプリプレグは、熱硬化性プリプレグと比較して成形時間が短いことを特徴とするが、溶融法(ホットメルト法)、溶剤法、ドライパウダーコーティング法、パウダーサスペンション法、樹脂フィルム含浸法(フィルムスタッキング法)で製造したプリプレグは通気性に乏しいため、短時間での成形を試みると、プレス用の熱板とシート間に存在する気泡が抜け切れず、溶融した樹脂中に入り込んで外観不良、強度面での欠陥などの不具合が発生しやすい。 Furthermore, prepregs using super engineering plastics are characterized by a shorter molding time than thermosetting prepregs. However, the melting method (hot melt method), solvent method, dry powder coating method, powder suspension method, resin The prepreg produced by the film impregnation method (film stacking method) has poor air permeability. Therefore, if molding is attempted in a short period of time, bubbles existing between the hot plate for pressing and the sheet cannot be completely removed, and the molten resin is contained in the molten resin. Intrusion tends to cause defects such as poor appearance and defects in strength.
 また、加熱加圧成形後の成形物を所望の厚さとするために、プリプレグを複数枚積層する場合には、プリプレグ間に空気がトラップされやすく、単層の場合よりさらに欠陥を発生しやすくなる。 In addition, when a plurality of prepregs are stacked in order to obtain a desired thickness of the molded product after heat and pressure molding, air is easily trapped between the prepregs, and defects are more likely to occur than in the case of a single layer. .
 また、混織法で得られる織布は成形前のしなやかさを付与することは可能だが、一般的に短繊維を空気中、又は水中に分散させてシート化する方法に比べ、生産性が低くコストが高いという欠点を有する。 In addition, the woven fabric obtained by the mixed weaving method can give flexibility before forming, but generally has a lower productivity than the method in which short fibers are dispersed in air or water to form a sheet. It has the disadvantage of high cost.
 上記のような欠点を回避するため、特許文献1及び特許文献2においては、強化繊維である炭素繊維と熱可塑性繊維状マトリックス樹脂を、空気中若しくは水中で均一に混合し、ネット上に捕捉して得られたウエブを加熱加圧成形する提案がなされており、また特許文献2には強化繊維とマトリックス樹脂繊維を分散媒体中に分散させ、混合した後に分散媒体を除去することによって得られた抄紙基材を加熱加圧成形する技術が開示されているが、このようなウエブ、或いは抄紙基材は、マット形成後にプレス工程まで移動させる際の工程強度を得るため、バインダーが必須成分となる。 In order to avoid the above drawbacks, in Patent Document 1 and Patent Document 2, carbon fibers that are reinforcing fibers and thermoplastic fibrous matrix resin are uniformly mixed in air or water and captured on a net. A proposal has been made to heat-press the obtained web, and Patent Document 2 obtained by dispersing reinforcing fibers and matrix resin fibers in a dispersion medium, mixing them, and then removing the dispersion medium. Although a technique for heat-pressing a papermaking substrate has been disclosed, such a web or papermaking substrate has a binder as an essential component in order to obtain process strength when moving to a pressing process after mat formation. .
 ところが、耐熱性・難燃性の高いスーパーエンプラである熱可塑性樹脂をマトリックス樹脂としたプリプレグは、加熱加圧成形時に300℃以上という高温に曝されるため、成形物中に熱分解・気化したバインダーに起因する空隙(以下「ボイド」という)が発生し、外観・強度共に低下しやすい。前記各先行技術文献のいずれにも、上記のような高温での加熱加圧成形工程に耐え得るバインダーに関する技術は開示されていない。 However, a prepreg made of a thermoplastic resin, which is a super engineering plastic with high heat resistance and flame retardancy, is exposed to a high temperature of 300 ° C. or higher during heat and pressure molding, and therefore it is thermally decomposed and vaporized in the molded product. Voids (hereinafter referred to as “voids”) are generated due to the binder, and both appearance and strength are likely to decrease. None of the above-mentioned prior art documents disclose a technique relating to a binder that can withstand the heating and pressing process at a high temperature as described above.
 特許文献1及び2に開示されているような、通常のウエブ或いは抄紙基材を製造する工程で一般的に使用できるバインダー成分は、PEI繊維に比べて難燃性が低く、燃焼時の発煙が多い。そのためこのようなバインダー成分を用いたプリプレグを加熱加圧成形すると、PEI樹脂の有する耐熱性・難燃性・低発熱性といった特徴が損なわれてしまう。更に、300℃以上というPEI樹脂の成形温度においては前記のようなバインダーは熱分解を開始し、臭気を発するため作業環境が悪化するという問題もある。 As disclosed in Patent Documents 1 and 2, the binder component that can be generally used in the process of producing a normal web or papermaking substrate has lower flame retardancy than PEI fiber, and does not emit smoke during combustion. Many. Therefore, when a prepreg using such a binder component is subjected to heat and pressure molding, the characteristics of the PEI resin such as heat resistance, flame retardancy, and low heat generation are impaired. Furthermore, at the molding temperature of the PEI resin of 300 ° C. or higher, the binder as described above starts thermal decomposition and emits an odor, which causes a problem that the working environment is deteriorated.
 かかる欠点を解消するため、特許文献3には抄紙法により炭素繊維を絡ませウェブしとしたことが紹介されているが、この方法では強度が弱く工業的には生産できない。また、ウエブ若しくは抄紙基材の繊維間をPEI樹脂そのもので固定する方法が特許文献4に開示されている。 In order to eliminate such drawbacks, Patent Document 3 introduces that a web is made by entwining carbon fibers by a papermaking method, but this method is weak and cannot be industrially produced. Further, Patent Document 4 discloses a method for fixing a fiber or a papermaking substrate between fibers with PEI resin itself.
 しかし、このような方法で連続生産する場合、製造工程中に必要なシート強度を得るためには、少なくとも220℃以上、通常の製造効率を維持するためには更に高温で一定の時間加熱する必要がある。一般に上記のウエブ、或いは抄紙基材よりシートを工業的に連続生産する工程はこのような高温の加熱工程を有しておらず、既存設備で製造することが不可能であり、仮にそのような加熱工程を有していたとしてもエネルギー効率が極端に悪化するため、事実上、現在の技術水準においては工業的に連続生産することが困難である。 However, in the case of continuous production by such a method, in order to obtain the required sheet strength during the manufacturing process, it is necessary to heat at a temperature of at least 220 ° C. or higher and at a higher temperature for a certain period of time to maintain normal manufacturing efficiency. There is. In general, the process of industrially continuously producing a sheet from the above-mentioned web or papermaking substrate does not have such a high-temperature heating process, and cannot be manufactured with existing equipment. Even if it has a heating step, the energy efficiency is extremely deteriorated, so that it is practically difficult to industrially continuously produce at the current technical level.
 かかる状況に鑑み、本発明においては、耐熱性と難燃性が高い熱可塑性樹脂をマトリックス樹脂として使用した高強度・高耐熱性、優れた難燃性を有する繊維強化樹脂成形体が得られる繊維強化プラスチック成形用複合材において、ごく短時間の加熱加圧成形時間であってもボイド等が発生せずに十分な強度が得られ、複合材自体の生産性も高く、加工工程におけるハンドリング性に優れた繊維強化プラスチック成形用複合材を、安価に提供することを目的とする。 In view of such circumstances, in the present invention, a fiber from which a fiber-reinforced resin molded article having high strength, high heat resistance, and excellent flame retardancy using a thermoplastic resin having high heat resistance and flame retardancy as a matrix resin is obtained. In composite materials for reinforced plastic molding, sufficient strength can be obtained without generating voids even in a very short heating and pressure molding time, the composite material itself is highly productive, and it is easy to handle in the processing process. An object is to provide an excellent fiber-reinforced plastic molding composite material at low cost.
 本発明はまた、マトリックス樹脂としてPEI繊維を使用した繊維強化プラスチック成形用複合材として、製造効率よく連続生産することが可能であり、成形体への加工時の臭気が少なく、且つ加熱加圧成形した後においては高耐熱性・難燃性・低発煙性であるという特徴を有する繊維強化プラスチック成形用複合材を提供することを目的とする。 The present invention is also a fiber reinforced plastic molding composite material using PEI fibers as a matrix resin, and can be continuously produced with high production efficiency, has a low odor when processed into a molded body, and is heated and pressed. It is an object of the present invention to provide a composite material for molding fiber-reinforced plastics having features of high heat resistance, flame retardancy, and low smoke generation.
 本発明者らは、前記課題を解決すべく鋭意検討を重ねた結果、いわゆるスーパーエンプラと呼ばれる耐熱性と難燃性の高い熱可塑性樹脂を使用した繊維強化プラスチック成形用複合材において、特定の繊維径の熱可塑性樹脂繊維をマトリックス樹脂として使用することで、加熱加圧成形時間を従来の高耐熱性熱可塑性樹脂を使用した繊維強化プラスチック成形用複合材より更に短時間の加熱加圧時間であっても、繊維が十分に溶融し、十分な強度が得られることを見出した。 As a result of intensive studies to solve the above-mentioned problems, the present inventors have developed a specific fiber in a composite material for molding a fiber-reinforced plastic using a heat-resistant and flame-retardant thermoplastic resin called a so-called super engineering plastic. By using thermoplastic resin fibers with a diameter as the matrix resin, the heat and pressure molding time is shorter than the conventional fiber reinforced plastic molding composite material using a high heat resistant thermoplastic resin. However, it has been found that the fibers are sufficiently melted and sufficient strength can be obtained.
 更に、繊維強化プラスチック成形用複合材の通気性を一定値よりも高く(空気が通りやすい)保つことが可能となり、短い加熱加圧成形時間であっても、ボイドが発生せず、外観・強度共に良好な繊維強化樹脂成形体が得られることを見出した。 Furthermore, it is possible to keep the breathability of the fiber reinforced plastic molding composite material higher than a certain value (air easily passes), and no voids are generated even in a short heating and pressing time, and the appearance and strength It was found that a good fiber-reinforced resin molded article can be obtained.
 また、強化繊維と熱可塑性樹脂繊維を均一に混合させ、且つ繊維強化プラスチック成形用複合材の生産性を高めるには、チョップドストランド化(短繊維化)した熱可塑性繊維や強化繊維をシート形状とすることが好ましいが、この場合、短繊維の交点を結着させる方法として、バインダーを付与することが必要である。この場合において、バインダーの種類・配合比・複合材内の分布が特定条件を備えた場合に、繊維強化プラスチック成形用複合材としてのハンドリング性が良好であり、且つ、加熱加圧成形後の繊維強化プラスチックは、ボイド等がなく外観が良好で、強度も高いことを見出した。 In addition, in order to uniformly mix the reinforcing fibers and the thermoplastic resin fibers and increase the productivity of the fiber-reinforced plastic molding composite material, the chopped strands (short fibers) of the thermoplastic fibers and reinforcing fibers are formed into a sheet shape. However, in this case, as a method for binding the intersections of the short fibers, it is necessary to provide a binder. In this case, when the binder type / mixing ratio / distribution in the composite material has specific conditions, the handling property as a fiber-reinforced plastic molding composite material is good, and the fiber after heat-pressure molding It has been found that the reinforced plastic has no voids and has a good appearance and high strength.
 さらに、PEI樹脂よりも難燃性が劣り、発煙が多く、またPEI樹脂の成形温度において臭気を発生するバインダーを効果的に使用することによって、PEIの持つ難燃性・低発煙性という特徴を損なうことなく、製造効率よく連続生産することが可能であり、成形体への加工時の臭気が少なく、且つ加熱加圧成形した後においては高耐熱性・難燃性・低発煙性であるという特徴を有する繊維強化プラスチック成形用複合材が得られることを見出した。 In addition, the flame retardancy and low smoke generation characteristics of PEI are achieved by effectively using a binder that is inferior in flame retardance to PEI resin, generates a lot of smoke, and generates odor at the molding temperature of PEI resin. It can be continuously produced with good manufacturing efficiency without loss, has low odor when processed into a molded product, and has high heat resistance, flame retardancy, and low smoke generation after being heated and pressed. It has been found that a fiber-reinforced plastic molding composite material having characteristics can be obtained.
 すなわち、本発明は以下を包含する。 That is, the present invention includes the following.
(1)ガラス繊維及び炭素繊維から選ばれる少なくとも1種の無機繊維よりなる強化繊維成分と、限界酸素指数が25以上であり、繊維径が30μm以下で且つ前記強化繊維の繊維径の4倍以下であるスーパーエンプラ繊維よりなるマトリックス樹脂成分とを含有することを特徴とする繊維強化プラスチック成形用複合材(スタンパブルシート)。 (1) Reinforcing fiber component composed of at least one kind of inorganic fiber selected from glass fiber and carbon fiber, a limiting oxygen index of 25 or more, a fiber diameter of 30 μm or less, and 4 times or less of the fiber diameter of the reinforcing fiber A fiber-reinforced plastic molding composite material (stampable sheet) comprising a matrix resin component comprising super engineering plastic fibers.
(2)JAPAN TAPPI 紙パルプ試験方法No.5-2に規定される透気度が200秒以下である、(1)記載の繊維強化プラスチック成形用複合材(スタンパブルシート)。 (2) JAPAN TAPPI Paper Pulp Test Method No. The fiber-reinforced plastic molding composite material (stampable sheet) according to (1), wherein the air permeability defined in 5-2 is 200 seconds or less.
(3)前記スーパーエンプラ繊維と前記強化繊維が共にチョップドストランドであり、乾式不織布法又は湿式不織布法によって不織布シートとされていることを特徴とする(1)又は(2)に記載の繊維強化プラスチック成形用複合材(スタンパブルシート)。 (3) The fiber reinforced plastic according to (1) or (2), wherein the super engineering plastic fiber and the reinforcing fiber are both chopped strands and are formed into a nonwoven fabric sheet by a dry nonwoven fabric method or a wet nonwoven fabric method. Composite material for molding (stampable sheet).
(4)前記繊維強化プラスチック成形用複合材(スタンパブルシート)中に10質量%までの量のバインダー成分を含有することを特徴とする(1)~(3)のいずれかに記載の繊維強化プラスチック成形用複合材(スタンパブルシート)。 (4) The fiber reinforcement according to any one of (1) to (3), wherein the fiber reinforced plastic molding composite material (stampable sheet) contains a binder component in an amount of up to 10% by mass. Composite material for plastic molding (stampable sheet).
(5)前記繊維強化プラスチック成形用複合材(スタンパブルシート)中のバインダー成分が、繊維強化プラスチック成形用複合材(スタンパブルシート)の表層部にその多くの部分が存在するように偏在していることを特徴とする(4)に記載の繊維強化プラスチック成形用複合材(スタンパブルシート)。 (5) The binder component in the fiber reinforced plastic molding composite material (stampable sheet) is unevenly distributed so that many portions thereof are present on the surface layer portion of the fiber reinforced plastic molding composite material (stampable sheet). (4) The fiber-reinforced plastic molding composite material (stampable sheet) according to (4).
(6)前記バインダー成分が、前記スーパーエンプラ繊維よりなるマトリックス樹脂成分と相溶性であることを特徴とする(4)又は(5)に記載の繊維強化プラスチック成形用複合材(スタンパブルシート)。 (6) The fiber-reinforced plastic molding composite material (stampable sheet) according to (4) or (5), wherein the binder component is compatible with a matrix resin component made of the super engineering plastic fiber.
(7)前記バインダー成分が、該バインダー成分を含有する溶液或いはエマルジョンとして、塗布法或いは含浸法により不織布シートに付与されていることを特徴とする、(4)~(6)のいずれかに記載の繊維強化プラスチック成形用複合材(スタンパブルシート)。 (7) The binder component according to any one of (4) to (6), wherein the binder component is applied to the nonwoven fabric sheet by a coating method or an impregnation method as a solution or emulsion containing the binder component. Fiber reinforced plastic molding composite material (stampable sheet).
(8)前記(1)~(7)のいずれかに記載されている繊維強化プラスチック成形用複合材(スタンパブルシート)を製造する方法であって、
 ガラス繊維及び炭素繊維から選ばれる少なくとも1種の無機繊維よりなる強化繊維成分と、限界酸素指数が25以上であり、繊維径が30μm以下で且つ前記強化繊維の繊維径の4倍以下であるスーパーエンプラ繊維よりなるマトリックス樹脂成分とを混合して不織布シートを形成する工程を有することを特徴とする繊維強化プラスチック成形用複合材(スタンパブルシート)の製造方法。
(8) A method for producing a fiber-reinforced plastic molding composite material (stampable sheet) described in any of (1) to (7) above,
A reinforcing fiber component made of at least one inorganic fiber selected from glass fiber and carbon fiber, a supercritical oxygen index of 25 or more, a fiber diameter of 30 μm or less, and a fiber diameter of the reinforcing fiber of 4 times or less A method for producing a fiber-reinforced plastic molding composite material (stampable sheet), comprising a step of mixing a matrix resin component made of engineering plastic fibers to form a nonwoven fabric sheet.
(9)前記不織布シートを形成する工程が、乾式不織布法又は湿式不織布法のいずれかの不織布形成工程であることを特徴とする(8)に記載の繊維強化プラスチック成形用複合材(スタンパブルシート)の製造方法。 (9) The fiber reinforced plastic molding composite material (stampable sheet) according to (8), wherein the step of forming the nonwoven fabric sheet is a nonwoven fabric forming step of either a dry nonwoven fabric method or a wet nonwoven fabric method ) Manufacturing method.
(10)前記不織布シートを形成する工程が、バインダー含有液を使用して全不織布シート中に含まれるバインダー量の多くの部分が不織布シートの表裏面の表層部分に偏在している不織布シートを形成する段階を有することを特徴とする(8)又は(9)に記載の繊維強化プラスチック成形用複合材(スタンパブルシート)の製造方法。 (10) The process of forming the said nonwoven fabric sheet forms the nonwoven fabric sheet in which many parts of the binder amount contained in all the nonwoven fabric sheets are unevenly distributed in the surface layer part of the front and back of a nonwoven fabric sheet using a binder containing liquid. The method for producing a fiber-reinforced plastic molding composite material (stampable sheet) according to (8) or (9), comprising the step of:
(11)前記不織布シートを形成する工程が、前記強化繊維成分と前記スーパーエンプラ繊維よりなるマトリックス樹脂成分を有する不織布シートを、該スーパーエンプラ繊維が部分溶融する条件下で加熱処理する段階を有することを特徴とする(8)~(10)のいずれかに記載の繊維強化プラスチック成形用複合材(スタンパブルシート)の製造方法。 (11) The step of forming the nonwoven fabric sheet includes a step of heat-treating the nonwoven fabric sheet having a matrix resin component composed of the reinforcing fiber component and the super engineering plastic fiber under conditions in which the super engineering plastic fiber is partially melted. (8) The method for producing a fiber-reinforced plastic molding composite material (stampable sheet) according to any one of (8) to (10).
(12)前記(1)~(7)のいずれかに記載されている繊維強化プラスチック成形用複合材(スタンパブルシート)を、前記スーパーエンプラ繊維よりなるマトリックス樹脂成分が溶融する条件下で加圧加熱成形することにより形成されている、繊維強化プラスチック成形体。 (12) The fiber reinforced plastic molding composite material (stampable sheet) described in any one of (1) to (7) above is pressed under a condition in which the matrix resin component made of the super engineering plastic fiber melts. A fiber-reinforced plastic molded body formed by heat molding.
(13)無機繊維よりなる強化繊維成分とポリエーテルイミド繊維よりなるマトリックス樹脂繊維成分と、少なくとも1種のバインダー成分を含有する不織布状シートよりなり、該不織布状シートの表層部における繊維成分同士が、主として繊維成分同士の交点に水掻き膜状に局在する前記バインダー成分によって結合されていることを特徴とする、繊維強化プラスチック成形用複合材(スタンパブルシート)。 (13) A reinforcing fiber component made of inorganic fiber, a matrix resin fiber component made of polyetherimide fiber, and a non-woven sheet containing at least one binder component, and the fiber components in the surface layer portion of the non-woven sheet are A fiber-reinforced plastic molding composite material (stampable sheet) characterized in that it is bonded mainly at the intersection of the fiber components by the binder component localized in the form of a drainage film.
(14)前記少なくとも1種のバインダー成分のうちの前記表層部における繊維成分同士の交点に水掻き膜状に局在するバインダー成分が、モノマー成分としてメチルメタクリレート及びエチルメタクリレートから選ばれる少なくとも1種を含有する共重合体を含有することを特徴とする、(13)に記載の繊維強化プラスチック成形用複合材(スタンパブルシート)。 (14) Of the at least one binder component, the binder component that is localized in the form of a scraping film at the intersection of the fiber components in the surface layer portion contains at least one selected from methyl methacrylate and ethyl methacrylate as the monomer component (13) A fiber-reinforced plastic molding composite material (stampable sheet) according to (13).
(15)前記少なくとも1種のバインダー成分として、前記ポリエーテルイミド繊維成分と加熱溶融状態で相溶性である粒子状又は繊維状の熱可塑性樹脂を含有することを特徴とする、(13)又は(14)に記載の繊維強化プラスチック成形用複合材(スタンパブルシート)。 (15) The at least one binder component contains a particulate or fibrous thermoplastic resin that is compatible with the polyetherimide fiber component in a heat-melted state, (13) or (13) 14) Fiber-reinforced plastic molding composite material (stampable sheet).
(16)前記粒子状又は繊維状の熱可塑性樹脂が、ポリエステル樹脂及び変性ポリエステル樹脂から選ばれる少なくとも1種を含有することを特徴とする(15)に記載の繊維強化プラスチック成形用複合材(スタンパブルシート)。 (16) The fiber-reinforced plastic molding composite material (stamper) according to (15), wherein the particulate or fibrous thermoplastic resin contains at least one selected from polyester resins and modified polyester resins Bull seat).
(17)前記バインダー成分の総含有量が0.3質量%以上10質量%以下であることを特徴とする、(13)~(16)のいずれかに記載の繊維強化プラスチック成形用複合材(スタンパブルシート)。 (17) The fiber-reinforced plastic molding composite material according to any one of (13) to (16), wherein the total content of the binder component is 0.3% by mass or more and 10% by mass or less. Stampable seat).
(18)バインダー成分が、モノマー成分としてメチルメタクリレート及びエチルメタクリレートから選ばれる少なくとも1種を含有する共重合体と、繊維状ポリエステル樹脂及び繊維状変性ポリエステル樹脂から選ばれる少なくとも1種の繊維状樹脂とを含有し、前記共重合体の繊維強化プラスチック成形用複合材(スタンパブルシート)に対する含有量が0.7~4.0質量%であり、前記繊維状樹脂の繊維強化プラスチック成形用複合材(スタンパブルシート)に対する含有量が1.5質量%~6質量%であり、バインダー成分の総含有量が8質量%以下である(17)に記載の繊維強化プラスチック成形用複合材(スタンパブルシート)。 (18) a copolymer containing at least one selected from methyl methacrylate and ethyl methacrylate as a monomer component, and at least one fibrous resin selected from a fibrous polyester resin and a fibrous modified polyester resin; The content of the copolymer with respect to the fiber-reinforced plastic molding composite material (stampable sheet) is 0.7 to 4.0% by mass, and the fiber-reinforced composite material for fiber-reinforced plastic molding ( The fiber-reinforced plastic molding composite material (stampable sheet) according to (17), wherein the content is 1.5% by mass to 6% by mass relative to the stampable sheet) and the total content of the binder component is 8% by mass or less ).
(19)表層部間の中間層における前記繊維成分間はポリエーテルイミド繊維成分と加熱溶融状態で相溶性である粒子状又は繊維状の熱可塑性樹脂によって接着(溶融結合)されていることを特徴とする、(13)~(18)のいずれかに記載の繊維強化プラスチック成形用複合材(スタンパブルシート)。 (19) The fiber component in the intermediate layer between the surface layers is bonded (melt-bonded) by a particulate or fibrous thermoplastic resin that is compatible with the polyetherimide fiber component in a heated and melted state. The composite material (stampable sheet) for fiber-reinforced plastic molding according to any one of (13) to (18).
(20)(13)~(19)のいずれかの繊維強化プラスチック成形用複合材(スタンパブルシート)を製造するための方法であって、前記無機繊維よりなる強化繊維成分とポリエーテルイミド繊維よりなるマトリックス樹脂繊維成分とを有する不織布に、溶液型又はエマルジョン型のバインダー液を付与し、その後、不織布を急速に加熱してバインダー液の主要部を不織布表層部に移行させつつ不織布全体を乾燥させることによって、不織布の表層部の繊維成分同士の交点を水掻き膜状に局在するバインダーで結合させることを特徴とする、繊維強化プラスチック成形用複合材(スタンパブルシート)の製造方法。 (20) A method for producing a fiber-reinforced plastic molding composite material (stampable sheet) according to any one of (13) to (19), comprising a reinforcing fiber component comprising the inorganic fiber and a polyetherimide fiber A non-woven fabric having a matrix resin fiber component is applied with a solution-type or emulsion-type binder solution, and then the non-woven fabric is dried while the non-woven fabric is rapidly heated to transfer the main part of the binder solution to the non-woven fabric surface layer portion. A method for producing a fiber-reinforced plastic molding composite material (stampable sheet), characterized in that the intersections of the fiber components of the surface layer portion of the nonwoven fabric are bonded with a binder localized in the form of a water-scrip film.
(21)前記(13)~(19)のいずれかに記載の繊維強化プラスチック成形用複合材(スタンパブルシート)を、250℃以上430℃以下の温度で加熱加圧成形して形成されている、繊維強化プラスチック成形体。 (21) The fiber-reinforced plastic molding composite material (stampable sheet) according to any one of (13) to (19) is formed by heating and pressing at a temperature of 250 ° C. or higher and 430 ° C. or lower. , Fiber reinforced plastic molding.
(22)ASTM E662に準拠した有炎法における20分燃焼後の発煙濃度が、43DS以下である、(21)に記載の繊維強化プラスチック成形体。 (22) The fiber-reinforced plastic molded article according to (21), wherein the smoke concentration after 20 minutes combustion in a flammable method based on ASTM E662 is 43 DS or less.
(23)JIS K-7102-2に準拠して測定した限界酸素指数が40以上である、(21)又は(22)に記載の繊維強化プラスチック成形体。 (23) The fiber-reinforced plastic molded article according to (21) or (22), which has a limiting oxygen index measured in accordance with JIS K-7102-2 of 40 or more.
 スタンパブルシートとは、熱可塑性樹脂をマトリックス樹脂とした繊維強化プラスチック成形体の成形前の部材である。いわゆる熱硬化性樹脂による繊維強化プラスチックの成形前の部材は、通常「プリプレグ」と呼ばれているが、スタンパブルシートは、この「プリプレグ」に相当するものである。本発明において「プリプレグ」には、熱可塑性樹脂による繊維強化プラスチックの成形前の部材も包含されるものとする。 A stampable sheet is a member before molding of a fiber-reinforced plastic molded body using a thermoplastic resin as a matrix resin. A member before molding fiber-reinforced plastic with a so-called thermosetting resin is usually called a “prepreg”, and a stampable sheet corresponds to this “prepreg”. In the present invention, the “prepreg” includes a member before molding a fiber reinforced plastic with a thermoplastic resin.
 本明細書は本願の優先権の基礎である日本国特許出願第2012-44141号、第2012-93479号、第2012-155590及び特願2012-280652号の明細書及び/又は図面に記載される内容を包含する。 This specification is described in the specification and / or drawings of Japanese Patent Applications Nos. 2012-44141, 2012-93479, 2012-155590 and Japanese Patent Application No. 2012-280652 which are the basis of the priority of the present application. Includes content.
 本発明の繊維強化プラスチック成形用複合材は、加熱加圧成形することにより、ボイドの発生がない、強度・外観共に良好である繊維強化プラスチック体に成形される。 The composite material for molding a fiber-reinforced plastic of the present invention is molded into a fiber-reinforced plastic body that is free from voids and good in strength and appearance by being heated and pressed.
 本発明によれば、難燃性のPEI繊維よりなる熱可塑性マトリックス樹脂繊維成分と、無機繊維よりなる強化繊維成分とを含有する不織布状構造のシートであって、工業的に連続生産することが可能であり、積層・熱プレス等によって成形体に加工する工程においても十分な層間強度を有しているハンドリング性に優れた繊維強化プラスチック成形用複合材と、優れた難燃性、低発煙性の繊維強化プラスチック成形体が提供される。 According to the present invention, a sheet of a nonwoven fabric-like structure containing a thermoplastic matrix resin fiber component made of flame retardant PEI fiber and a reinforcing fiber component made of inorganic fiber, which can be industrially continuously produced. It is possible, composite material for fiber-reinforced plastic molding with excellent handling properties that has sufficient interlayer strength even in the process of processing into molded bodies by lamination, heat press, etc., and excellent flame retardancy and low smoke generation A fiber-reinforced plastic molded article is provided.
繊維同士の交点を水掻き膜状のバインダーで結合している状態を示す写真である。It is a photograph which shows the state which couple | bonded the intersection of fibers with the waterbrush-like binder. 繊維同士の交点を水掻き膜状のバインダーで結合している状態を示す模式図である。It is a schematic diagram which shows the state which couple | bonded the intersection of fibers with the waterbrush-like binder.
 以下、本発明について詳細に説明する。 Hereinafter, the present invention will be described in detail.
 本発明の繊維強化プラスチック成形用複合材に使用される強化繊維は、金属繊維、セラミック繊維、ガラス繊維、炭素繊維等、一般的な無機繊維を広く使用することができる。これらの無機繊維は難燃性・低発煙性という点でいずれも好ましく、これらのうち一種を使用することも、複数種を混合して使用することも可能である。一般的には、繊維強度や重量、或いは熱可塑性樹脂との接着性等の観点から、炭素繊維とガラス繊維が好ましい。 General reinforcing fibers such as metal fibers, ceramic fibers, glass fibers, and carbon fibers can be widely used as the reinforcing fibers used in the fiber-reinforced plastic molding composite material of the present invention. These inorganic fibers are all preferable in terms of flame retardancy and low smoke generation, and one of them can be used, or a plurality of them can be used in combination. In general, carbon fiber and glass fiber are preferable from the viewpoints of fiber strength and weight, adhesiveness with a thermoplastic resin, and the like.
 これらの強化繊維をクロス(布)状に編んだシートを使用することも、一方向に並べたものを使用することも、或いは短繊維化して空気中に分散させてからネット等に捕捉してシート化したものを使用することも、溶媒中に分散させた後、分散媒を除去してシート化したものを使用することもできる。 You can use a sheet of these reinforcing fibers knitted in a cloth (cloth), use a sheet laid in one direction, or shorten the fiber and disperse it in the air before capturing it on a net or the like. It is possible to use a sheet, or a sheet obtained by dispersing in a solvent and then removing the dispersion medium.
 強化繊維の太さとしては、特に限定されるものではないが、3μm~18μmが好ましい。強化繊維の繊維径がこれよりも細いと、製造工程或いは使用中に人体に取り込まれた場合に発ガン性を有する場合があるため好ましくない。また、強化繊維の繊維径がこれよりも太いとスーパーエンプラ繊維との混合物の均一性が悪くなり、強度の点で好ましくない。また、強化繊維の繊維長は、好ましくは3mm~30mm程度である。これより長いと、繊維が均一に分散せず、シートの均一性や強化繊維との混合比の均一性が低下する。また、これより短いと、成形体強度が低下する。繊維径及び繊維長は単一であってもよく、また異なる繊維径、繊維長のものをブレンドして使用してもよい。 The thickness of the reinforcing fiber is not particularly limited, but is preferably 3 μm to 18 μm. If the fiber diameter of the reinforcing fiber is smaller than this, it may be carcinogenic when taken into the human body during the manufacturing process or use, which is not preferable. Further, if the fiber diameter of the reinforcing fiber is larger than this, the uniformity of the mixture with the super engineering plastic fiber is deteriorated, which is not preferable in terms of strength. The fiber length of the reinforcing fiber is preferably about 3 mm to 30 mm. When longer than this, a fiber will not disperse | distribute uniformly but the uniformity of a sheet | seat and the uniformity of a mixing ratio with a reinforced fiber will fall. Moreover, when shorter than this, the molded object strength will fall. The fiber diameter and fiber length may be single, or those having different fiber diameters and fiber lengths may be blended and used.
 本発明の繊維強化プラスチック成形用複合材に使用する熱可塑性樹脂繊維は、いわゆるスーパーエンプラと呼ばれる、耐熱性で難燃性の熱可塑性樹脂を繊維化したものである。このような熱可塑性樹脂としては、ポリエーテルエーテルケトン(PEEK)、ポリアミドイミド(PAI)、ポリフェニレンスルフィド(PPS)、ポリエーテルイミド(PEI)、ポリエーテルケトンケトン(PEKK)等が例示されるが、これに限定されるものではない。 The thermoplastic resin fiber used in the composite material for molding a fiber-reinforced plastic of the present invention is a fiber made from a heat-resistant and flame-retardant thermoplastic resin called a so-called super engineering plastic. Examples of such thermoplastic resins include polyetheretherketone (PEEK), polyamideimide (PAI), polyphenylene sulfide (PPS), polyetherimide (PEI), polyetherketoneketone (PEKK), etc. It is not limited to this.
 本発明の繊維強化プラスチック成形用複合材に使用するスーパーエンプラである樹脂を繊維化したスーパーエンプラ繊維は、繊維状態において限界酸素指数が25以上でガラス転移温度が140℃以上であることが好ましい。また、ガラス転移温度がこれ以下であったとしても、樹脂の荷重たわみ温度が190℃以上となる樹脂であることが好ましい。このようなスーパーエンプラ繊維は、加熱・加圧により溶融して樹脂ブロックになった状態において、限界酸素指数が30以上という、非常に高い難燃性を有する。 It is preferable that the super engineering plastic fiber obtained by fiberizing a resin which is a super engineering plastic used for the fiber-reinforced plastic molding composite of the present invention has a critical oxygen index of 25 or more and a glass transition temperature of 140 ° C. or more in the fiber state. Further, even if the glass transition temperature is lower than this, it is preferable that the resin has a deflection temperature under load of 190 ° C. or higher. Such a super engineering plastic fiber has a very high flame retardance with a critical oxygen index of 30 or more in a state of being melted by heating and pressurizing to form a resin block.
 一実施形態において、本発明の繊維強化プラスチック成形用複合材に使用する熱可塑性樹脂繊維は、PEI樹脂を繊維化したPEI繊維である。この繊維に使用されるPEI樹脂は、溶融し成形加工された後、限界酸素指数が40以上、またASTM E-662に記載の方法で測定した20分燃焼時の発煙量が30ds前後と、非常に発煙量が少ないことが特徴である。 In one embodiment, the thermoplastic resin fiber used in the fiber-reinforced plastic molding composite of the present invention is a PEI fiber obtained by fiberizing a PEI resin. The PEI resin used in this fiber has a critical oxygen index of 40 or more after being melted and processed, and a smoke generation amount of about 30 ds when burned for 20 minutes as measured by the method described in ASTM E-662. It is characterized by low smoke generation.
 なお、本発明において、「限界酸素指数」とは、燃焼を続けるのに必要な酸素濃度を表し、JIS K7201に記載された方法で測定した数値をいう。すなわち、限界酸素指数が20以下は、通常の空気中で燃焼することを示す数値である。 In the present invention, the “limit oxygen index” represents an oxygen concentration necessary to continue combustion, and is a numerical value measured by a method described in JIS K7201. That is, a critical oxygen index of 20 or less is a numerical value indicating that combustion is performed in normal air.
 本発明の繊維強化プラスチック成形用複合材は、強化繊維と熱成形によりマトリックスを形成するスーパーエンプラ繊維を交互に編込む混織法や、強化繊維と熱成形によりマトリックスを形成するスーパーエンプラ繊維を一定の長さにカットしたチョップドストランドを空気中に分散させてネットに捕捉してウエブを形成する方法(乾式不織布法)や、前記両チョップドストランドを溶媒中に分散させ、その後溶媒を除去してウエブを形成する方法(湿式不織布法)等の方法で製造できるが、これらに限定されるものではない。 The composite material for molding fiber reinforced plastics of the present invention is a mixed weaving method in which super engineering plastic fibers that form a matrix by reinforcing fibers and thermoforming are alternately knitted, or super engineering plastic fibers that form a matrix by reinforcing fibers and thermoforming. A method of forming a web by dispersing chopped strands cut to a length in air and trapping them in a net (dry nonwoven fabric method), or dispersing both the chopped strands in a solvent, and then removing the solvent to remove the web Although it can manufacture by methods, such as the method of forming (wet nonwoven fabric method), it is not limited to these.
 本発明の繊維強化プラスチック成形用複合材は、熱成形によりマトリックスを形成する熱可塑性樹脂が繊維形態をしていることによりシート中に空隙が存在している。そのため、溶融法(ホットメルト法)、溶剤法、ドライパウダーコーティング法、パウダーサスペンション法、樹脂フィルム含浸法(フィルムスタッキング法)等、繊維間を樹脂が完全に埋めている複合材と異なり、熱成形前はシート自体がしなやかでドレープ性があり、巻き取りの形態で保管・輸送が可能となることや、曲面の型に沿わせて配置した後、加熱加圧成形することができる等、ハンドリング性に優れることが特徴である。 In the fiber-reinforced plastic molding composite material of the present invention, voids are present in the sheet because the thermoplastic resin forming the matrix by thermoforming is in fiber form. Therefore, unlike composite materials in which the resin is completely buried between the fibers, such as melting method (hot melt method), solvent method, dry powder coating method, powder suspension method, resin film impregnation method (film stacking method), etc. Previously, the sheet itself is flexible and draped, and can be stored and transported in the form of winding, and can be heat-pressed after being placed along a curved mold. It is characterized by superiority.
 本発明の繊維強化プラスチック成形用複合材に使用するスーパーエンプラ繊維には、繊維強化プラスチック成形用複合材を加熱加圧成形する際の300℃から400℃というような温度条件下で十分に流動性であることが求められる。また、繊維強化プラスチック成形用複合材の製造段階で加えられる加熱条件下で十分に繊維状態を維持することができるように、繊維化したスーパーエンプラ繊維のガラス転移温度が140℃以上であることが好ましい。また、ガラス転移温度がこれ以下であったとしても、樹脂の荷重たわみ温度が190℃以上となる樹脂であることが好ましい。 The super engineering plastic fiber used for the fiber-reinforced plastic molding composite material of the present invention is sufficiently fluid under temperature conditions of 300 ° C. to 400 ° C. when the fiber-reinforced plastic molding composite material is heated and pressed. It is required to be. Further, the glass transition temperature of the fiberized super engineering plastic fiber should be 140 ° C. or higher so that the fiber state can be sufficiently maintained under the heating conditions applied in the production stage of the fiber reinforced plastic molding composite material. preferable. Further, even if the glass transition temperature is lower than this, it is preferable that the resin has a deflection temperature under load of 190 ° C. or higher.
 加熱加圧成形時にマトリックスを形成する樹脂がスーパーエンプラ繊維である繊維強化プラスチック成形用複合材は、熱硬化性樹脂を使用した繊維強化プラスチック成形用複合材よりも繊維強化プラスチックに加工する際の加熱加圧成形時間が短時間ですみ、生産性に優れることが本来の特徴である。しかし、繊維強化プラスチック成形用複合材を短時間で加熱加圧成形するためには、使用されるスーパーエンプラ繊維が高温下で速やかに溶融することが必要であり、そのためには、スーパーエンプラ繊維の繊維径が細いほうが好ましい。これは、繊維径が細い場合、繊維同士の接触点数が増加するため、繊維同士の接触面積が増加し、熱伝導が良好となること、及び繊維の熱容量が小さくなるため、溶融させるために必要な熱量が少なくなるためである。本発明者らの検討によれば繊維径が30μm以下であることが好ましく、繊維径が1~20μm以下であることが更に好ましい。 Fiber reinforced plastic molding composites in which the resin that forms the matrix during heat and pressure molding is super engineering plastic fibers is heated when processed into fiber reinforced plastics rather than fiber reinforced plastic molding composites that use thermosetting resins. The original characteristic is that the pressure molding time is short and the productivity is excellent. However, in order to heat and pressure-mold a fiber reinforced plastic molding composite material in a short time, it is necessary for the super engineering plastic fiber to be used to quickly melt at a high temperature. Thinner fiber diameters are preferred. This is necessary for melting because the number of contact points between fibers increases when the fiber diameter is small, the contact area between the fibers increases, heat conduction becomes better, and the heat capacity of the fibers decreases. This is because the amount of heat is reduced. According to the study by the present inventors, the fiber diameter is preferably 30 μm or less, and more preferably 1 to 20 μm or less.
 スーパーエンプラ繊維の繊維長は特に限定されないが、湿式、若しくは乾式不織布法で製造する場合、好ましくは3mm~30mm程度である。これより長いと、繊維が均一に分散せず、シートの均一性や強化繊維との混合比の均一性が低下する。また、これより短いと、ウエブの強度が低下し、繊維強化プラスチック成形用複合材の製造工程で破断等が生じやすくなる。繊維径及び繊維長は単一であってもよく、また異なる繊維径、繊維長のものをブレンドして使用してもよい。 The fiber length of the super engineering plastic fiber is not particularly limited, but is preferably about 3 mm to 30 mm when manufactured by a wet or dry nonwoven fabric method. When longer than this, a fiber will not disperse | distribute uniformly but the uniformity of a sheet | seat and the uniformity of a mixing ratio with a reinforced fiber will fall. On the other hand, if the length is shorter than this, the strength of the web decreases, and breakage or the like is likely to occur in the manufacturing process of the fiber-reinforced plastic molding composite. The fiber diameter and fiber length may be single, or those having different fiber diameters and fiber lengths may be blended and used.
 一方、加熱加圧成形後に十分な強度を得るためには、強化繊維とマトリックス樹脂が均一に混合することが必要となる。このためには、強化繊維とマトリックス樹脂繊維の繊維径が近いほうが好ましい。この観点からは、スーパーエンプラ繊維の繊維径は強化繊維の繊維径の4倍以下であることが好ましく、3倍以下であることがより好ましく、最も好ましくはスーパーエンプラ繊維の繊維径と強化繊維の繊維径がほぼ同等であることである。 On the other hand, in order to obtain sufficient strength after heating and pressing, it is necessary to uniformly mix the reinforcing fibers and the matrix resin. For this purpose, it is preferable that the fiber diameters of the reinforcing fiber and the matrix resin fiber are close. From this viewpoint, the fiber diameter of the super engineering plastic fiber is preferably 4 times or less of the fiber diameter of the reinforcing fiber, more preferably 3 times or less, and most preferably the fiber diameter of the super engineering plastic fiber and the reinforcing fiber. The fiber diameter is almost the same.
 一般に、マトリックス樹脂は、溶融粘度が高いため、射出成形等の方法では強化繊維を多量に配合すると、強化繊維を均一に分散させることが難しいため、強化繊維の配合比に限界がある。しかし、本発明の繊維強化プラスチック成形用複合材では、必要とされる強度に応じて比較的自由に強化繊維とマトリックス樹脂繊維との比率を設定することができる。 Generally, since the matrix resin has a high melt viscosity, it is difficult to uniformly disperse the reinforcing fibers when a large amount of the reinforcing fibers are blended by a method such as injection molding, so that the blending ratio of the reinforcing fibers is limited. However, in the fiber-reinforced plastic molding composite material of the present invention, the ratio of the reinforcing fiber to the matrix resin fiber can be set relatively freely according to the required strength.
 スーパーエンプラ繊維の繊維径の好ましい範囲としては、30μm以下で且つ強化繊維の繊維径の4倍以下であるものを選択することが好ましい。これによって、加熱加圧時間の短縮と、加熱加圧成形後の繊維強化プラスチックの強度を両立させることができる。 As a preferable range of the fiber diameter of the super engineering plastic fiber, it is preferable to select a fiber having a fiber diameter of 30 μm or less and 4 times or less of the fiber diameter of the reinforcing fiber. Thereby, shortening of the heating and pressing time and the strength of the fiber reinforced plastic after the heating and pressing can be made compatible.
 ところで、溶融法(ホットメルト法)、溶剤法、ドライパウダーコーティング法、パウダーサスペンション法、樹脂フィルム含浸法(フィルムスタッキング法)等で製造される繊維強化プラスチック成形用複合材は、加熱加圧時間が短いと、複合材と加熱加圧板、或いは繊維強化プラスチック成形用複合材を積層して加熱加圧する場合に複合材と複合材の間に存在する空気、或いは複合材中から発生する揮発ガス分等によりボイドが発生する。特に、本発明に係るスーパーエンプラをマトリックス樹脂とした繊維強化プラスチック成形用複合材は、高温で加熱加圧処理をする必要があるため、このような問題は深刻である。 By the way, the fiber-reinforced plastic molding composite material manufactured by the melting method (hot melt method), solvent method, dry powder coating method, powder suspension method, resin film impregnation method (film stacking method), etc. If it is short, the air present between the composite material and the volatile gas generated from the composite material when the composite material and the heat-pressing plate or the fiber-reinforced plastic molding composite material are laminated and heated and pressed, etc. As a result, voids are generated. In particular, since the fiber reinforced plastic molding composite material using the super engineering plastic according to the present invention as a matrix resin needs to be heated and pressurized at a high temperature, such a problem is serious.
 しかし、本発明の繊維強化プラスチック成形用複合材は、マトリックス樹脂が繊維状で通気性に富んでいるため、プレス板と複合材間に存在する空気分や複合材中から発生する揮発ガス分は、プレス時にシート中から抜け出しやすく、短時間の加熱加圧処理であってもボイド等が発生しにくいという特徴を有する。 However, since the fiber reinforced plastic molding composite material of the present invention has a fibrous matrix and is highly air permeable, the air content existing between the press plate and the composite material and the volatile gas content generated from the composite material are , It is easy to slip out of the sheet during pressing, and has the characteristics that voids and the like are unlikely to occur even in a short time heating and pressing treatment.
 このような特徴を出すためには、繊維強化プラスチック成形用複合材の通気性は、JAPAN TAPPI紙パルプ試験法に準拠した方法で測定される透気度が200秒以下であることが好ましい。この数値は、数字が小さいほど空気が通りやすい(通気性が良い)ことを表す。 In order to obtain such characteristics, it is preferable that the air permeability of the fiber reinforced plastic molding composite material is 200 seconds or less as measured by a method based on the JAPAN TAPPI paper pulp test method. This numerical value indicates that the smaller the number, the easier air can pass through (the better the air permeability).
 但し、上記通気性を満たすための材料として、処理前のシートを嵩高に調整した場合、繊維強化プラスチック成形用複合材の製造後、加熱加圧工程に供するまでの間、嵩高であるために、例えば輸送コストがかかりすぎる、或いは加熱加圧工程での熱プレス機等に挿入する際に不都合がある、といった問題が発生することが懸念されるが、このような問題は、加熱加圧成形前に熱プレス、若しくは熱カレンダーによって軽くプレスし、適宜密度を高めることで解決できる。この方法の場合、空気は多少通りにくくなるので、JAPAN TAPPI紙パルプ試験法に準拠した方法で測定される透気度が200秒以下という状態を維持できる範囲で高密度化する。 However, as a material for satisfying the above air permeability, when the sheet before processing is adjusted to be bulky, since it is bulky until it is subjected to the heating and pressing step after the production of the fiber reinforced plastic molding composite, For example, there is a concern that problems such as excessive transportation costs or inconveniences when inserting into a heat press machine in the heating and pressurizing process may occur. The problem can be solved by lightly pressing with a heat press or a heat calender and increasing the density appropriately. In the case of this method, since air becomes somewhat difficult to pass, the air density measured by the method based on the JAPAN TAPPI paper pulp test method is increased to the extent that the air permeability can be maintained within 200 seconds.
 本発明における繊維強化プラスチック成形用複合材は、マトリックス樹脂繊維及び強化繊維を一定の長さにカットして短繊維化したチョップドストランドを使用して製造することができる。この場合、マトリックス樹脂と強化繊維のチョップドストランドを空気中に分散させて混合し、ネットに捕捉してシート化する、いわゆる乾式不織布法といわれる方法、マトリックス樹脂繊維と強化繊維のチョップドストランドを溶媒中に分散させ、その後溶媒を除去してシート化する、いわゆる湿式不織布法といわれる方法等によって繊維強化プラスチック成形用複合材を製造できる。 The composite material for molding a fiber-reinforced plastic in the present invention can be manufactured using chopped strands in which matrix resin fibers and reinforcing fibers are cut into a predetermined length to shorten the length. In this case, the matrix resin and the reinforced fiber chopped strands are dispersed and mixed in the air, captured in a net and formed into a sheet, a so-called dry nonwoven fabric method, the matrix resin fibers and the reinforced fiber chopped strands in a solvent. The composite material for molding a fiber reinforced plastic can be produced by a so-called wet non-woven method or the like, which is then dispersed into a sheet and then formed into a sheet by removing the solvent.
 このような不織布法で製造する場合、繊維間の物理的な絡み合いだけではハンドリング可能なシートとしての強度が不足する事がある。その際はシートを加熱してスーパーエンプラ繊維を部分的に溶かして繊維間を融着させてもよい。またバインダーを添加して繊維間を結着させてもよい。 When manufacturing by such a nonwoven fabric method, the strength as a sheet that can be handled may be insufficient only by physical entanglement between fibers. In that case, the super engineering plastic fibers may be partially melted by heating the sheet, and the fibers may be fused. A binder may be added to bind the fibers.
 バインダー成分としては、アクリル樹脂、スチレン・アクリル樹脂、エポキシ樹脂、フェノール樹脂といった熱硬化性樹脂や、ウレタン樹脂、ポリエステル樹脂、ポリプロピレン樹脂、ポリエチレン樹脂、エチレン・酢酸ビニル樹脂等の熱可塑性樹脂、或いはポリビニルアルコール等のように熱水溶融する樹脂等、一般的な不織布製造に使用されるものを用いることができる。 As binder components, thermosetting resins such as acrylic resin, styrene / acrylic resin, epoxy resin, phenol resin, thermoplastic resin such as urethane resin, polyester resin, polypropylene resin, polyethylene resin, ethylene / vinyl acetate resin, or polyvinyl What is used for general nonwoven fabric manufacture, such as resin which melts hot water like alcohol etc., can be used.
 バインダーの含有量は繊維強化プラスチック成形用複合材中10質量%以下であることが好ましい。このようなバインダー成分は、繊維強化プラスチック成形用複合材の加熱加圧成形温度において熱分解を開始し、ガスを発生することがある。そのため、バインダーの含有量がこれよりも多いと多量のガスを発生するため、繊維強化プラスチック成形用複合材が上記した通気度であっても、加熱加圧成形後の繊維強化プラスチック中にボイドが発生し、更にバインダー自体も変色するため、外観・強度共に劣るものとなることが多い。 The binder content is preferably 10% by mass or less in the fiber-reinforced plastic molding composite. Such a binder component may start pyrolysis at the heating and pressing temperature of the fiber reinforced plastic molding composite material to generate gas. For this reason, if the binder content is higher than this, a large amount of gas is generated. Therefore, even if the fiber-reinforced plastic molding composite has the above-described air permeability, voids are formed in the fiber-reinforced plastic after heat and pressure molding. In addition, since the binder itself is discolored, the appearance and strength are often inferior.
 上記のようなガス発生によるボイド発生を抑制するため、バインダー成分の含有量は、繊維強化プラスチック成形用複合材に対して10質量%以下が好ましく、より好ましくは5質量%以下、更に好ましくは1質量%以下である。バインダーが少なすぎると、シートの強度が弱すぎて作業中に破れたり、繊維強化プラスチック成形用複合材の表面の繊維が容易に脱落して加工工程に舞い散るため好ましくない。 In order to suppress the generation of voids due to gas generation as described above, the content of the binder component is preferably 10% by mass or less, more preferably 5% by mass or less, and still more preferably 1% with respect to the fiber reinforced plastic molding composite material. It is below mass%. If the amount of the binder is too small, the strength of the sheet is too weak to be broken during the operation, or fibers on the surface of the fiber-reinforced plastic molding composite material are easily dropped and scattered in the processing step, which is not preferable.
 また、本発明における繊維強化プラスチック成形用複合材に使用されるスーパーエンプラ繊維成分は限界酸素指数が25以上であるため難燃性に優れる。しかし、バインダー成分は限界酸素指数が本発明における繊維強化プラスチック成形用複合材に使用されるスーパーエンプラ繊維成分よりも低いのが一般的であるため、バインダー分が多いと難燃性を損ねる。この観点からもバインダーの含有量は、繊維強化プラスチック成形用複合材に対して10質量%以下が好ましく、より好ましくは5質量%以下、更に好ましくは1質量%以下である。 Also, the super engineering plastic fiber component used in the fiber-reinforced plastic molding composite material according to the present invention has a flame resistance because it has a critical oxygen index of 25 or more. However, since the limiting oxygen index of the binder component is generally lower than that of the super engineering plastic fiber component used in the fiber-reinforced plastic molding composite material of the present invention, the flame retardance is impaired when the binder content is large. Also from this viewpoint, the content of the binder is preferably 10% by mass or less, more preferably 5% by mass or less, and still more preferably 1% by mass or less with respect to the fiber-reinforced plastic molding composite material.
 本発明における繊維強化プラスチック成形用複合材に使用するスーパーエンプラ繊維としてポリフェニレンスルフィド(PPS)繊維を用いた場合、PPS樹脂は耐薬品性が高く、耐熱性が高いため、耐薬品性と高温時の強度に優れる繊維強化プラスチックを得ることができる。 When polyphenylene sulfide (PPS) fiber is used as the super engineering plastic fiber used for the fiber-reinforced plastic molding composite in the present invention, the PPS resin has high chemical resistance and high heat resistance. A fiber reinforced plastic having excellent strength can be obtained.
 本発明における繊維強化プラスチック成形用複合材に使用するスーパーエンプラ繊維としてポリエーテルイミド(PEI)繊維を用いた場合、PEI樹脂は炭素繊維やガラス繊維との密着性が優れ、また限界酸素指数が樹脂ブロックの状態で47と非常に高いため、強度と難燃性に優れる繊維強化プラスチックを得ることができる。 When polyetherimide (PEI) fiber is used as the super engineering plastic fiber used for the fiber-reinforced plastic molding composite in the present invention, PEI resin has excellent adhesion to carbon fiber and glass fiber, and has a critical oxygen index of resin. Since it is very high at 47 in the block state, a fiber reinforced plastic excellent in strength and flame retardancy can be obtained.
 本発明における繊維強化プラスチック成形用複合材に使用するスーパーエンプラ繊維としてポリエーテルエーテルケトン(PEEK)繊維を用いた場合、PEEK樹脂は他のスーパーエンプラと比較しても特に耐薬品性と高温時の強度に優れる繊維強化プラスチックを得ることができる。 When polyether ether ketone (PEEK) fiber is used as the super engineering plastic fiber used in the fiber reinforced plastic molding composite material in the present invention, the PEEK resin is particularly resistant to chemicals and high temperature compared to other super engineering plastics. A fiber reinforced plastic having excellent strength can be obtained.
 本発明における繊維強化プラスチック成形用複合材に使用するバインダー成分は、繊維強化プラスチック成形用複合材の表層部に偏在していることが好ましい。この場合、内層は相対的にバインダー成分が少なくなることになる。このような構成を採ることにより、少量のバインダー成分であっても表面繊維の脱落が抑制され、十分な作業時の工程強度を得られる。例えばこの場合、バインダー成分の繊維強化プラスチック成形用複合材における含有量を0.1~1.0質量%とすることが可能となる。 The binder component used for the fiber-reinforced plastic molding composite material in the present invention is preferably unevenly distributed in the surface layer portion of the fiber-reinforced plastic molding composite material. In this case, the inner layer has relatively less binder component. By adopting such a configuration, even if a small amount of the binder component is used, dropping of the surface fibers is suppressed, and sufficient process strength during operation can be obtained. For example, in this case, the content of the binder component in the fiber-reinforced plastic molding composite can be 0.1 to 1.0% by mass.
 繊維強化プラスチック成形用複合材の表層にバインダー成分を相対的に多く存在させる方法としては、湿式不織布法、若しくは乾式不織布法によってウエブを形成した後、バインダー成分を溶媒に溶解した液状物、若しくはバインダー成分の乳化物(エマルジョン)を、ディッピング、若しくはスプレー法等で付与し、加熱乾燥するという製造方法が挙げられる。この方法によれば、加熱乾燥する際に、ウエブ内部の水分が両面の表層に移動し、蒸発するため、この水分の移動に伴ってバインダー成分も表層に相対的に多く集中する。 As a method for making the binder component relatively present in the surface layer of the fiber reinforced plastic molding composite, after forming a web by a wet nonwoven fabric method or a dry nonwoven fabric method, a liquid material in which the binder component is dissolved in a solvent, or a binder The manufacturing method of giving the emulsion (emulsion) of a component by dipping or a spray method etc., and heat-drying is mentioned. According to this method, since the moisture inside the web moves to the surface layers on both sides and evaporates during heating and drying, a relatively large amount of the binder component concentrates on the surface layer as the moisture moves.
 上記のように、繊維強化プラスチック成形用複合材の表層にバインダー成分を偏在させるためには、バインダー成分の溶液、若しくはエマルジョン等、液状のバインダー成分を使用し、加熱乾燥させる製造方法を採用することができる。この場合、溶媒の移動が多いほうがバインダー成分の偏在が強まるため好ましい。 As described above, in order to make the binder component unevenly distributed on the surface layer of the fiber reinforced plastic molding composite material, a manufacturing method in which a liquid binder component such as a solution or emulsion of the binder component is used and dried by heating is employed. Can do. In this case, it is preferable that the solvent move more because the uneven distribution of the binder component becomes stronger.
 このような方法を採用する場合、湿式不織布法でウエットウエブを形成後、バインダーの水溶液、若しくはエマルジョンをウエブにディッピング若しくはスプレー等の方法で付与し、乾燥する方法が好ましい。この場合、ウエブ水分はバインダーの水溶液、若しくはエマルジョンのバインダー液濃度や、湿式不織布製造工程におけるウエットサクション、ドライサクションによる水分の吸引力の調整で行うことが可能である。 When such a method is adopted, it is preferable to form a wet web by a wet nonwoven fabric method, then apply an aqueous binder solution or emulsion to the web by dipping or spraying, and then drying. In this case, the web moisture can be adjusted by adjusting the concentration of the binder solution in the aqueous solution or emulsion, or the moisture suction force by wet suction or dry suction in the wet nonwoven fabric manufacturing process.
 バインダー成分を偏在させるために好ましいウエブ水分としては50%以上であるが、あまりに水分が多いと乾燥負荷が大きくなり、製造コストがかさむため、両者を勘案して適宜水分を調整することが好ましい。 The preferred web moisture for making the binder component unevenly distributed is 50% or more. However, if there is too much moisture, the drying load increases and the production cost increases. Therefore, it is preferable to appropriately adjust the moisture in consideration of both.
 バインダー成分の偏在の程度は、シートを厚さ方向(Z軸方向)に略3分割~5分割し、それぞれのバインダー量を測定することで把握することができる。バインダー成分の偏在の度合いとしては、略3等分した場合、好ましくは表層に対して内層のバインダー量が1/2~1/10であることが好ましい。 The degree of uneven distribution of the binder component can be grasped by dividing the sheet into approximately 3 to 5 parts in the thickness direction (Z-axis direction) and measuring the amount of each binder. The degree of uneven distribution of the binder component is preferably about 1/2 to 1/10 of the amount of binder in the inner layer with respect to the surface layer when divided into approximately three equal parts.
 本発明の繊維強化プラスチック成形用複合材におけるバインダー成分としては、加熱加圧成形後にマトリックスとなるスーパーエンプラ繊維が加熱加圧成形で溶融する際に、その樹脂と相溶する樹脂成分であることが特に好ましい。このような樹脂成分をバインダーとした場合、加熱加圧成形後、マトリックス樹脂とバインダー樹脂の間に界面が存在せず一体化するため強度が良好であり、更にバインダー樹脂に起因するマトリックス樹脂のガラス転移温度の低下が少ないという特徴を持つ。 The binder component in the fiber-reinforced plastic molding composite material of the present invention is a resin component that is compatible with the resin when the super engineering plastic fiber that becomes the matrix after heat-pressure molding is melted by heat-pressure molding. Particularly preferred. When such a resin component is used as a binder, after heat and pressure molding, the matrix resin and the binder resin are integrated without any interface, and the strength is good. Further, the glass of the matrix resin caused by the binder resin It has the feature that there is little decrease in the transition temperature.
 例えば、加熱加圧成形後マトリックスとなる熱可塑性樹脂としてPEI繊維を用いる場合、加熱加圧成形で溶融する際に、その樹脂と相溶するという点で好ましいバインダー成分として、PET若しくは変性PETを用いることが好ましい。 For example, when PEI fibers are used as a thermoplastic resin that becomes a matrix after heat and pressure molding, PET or modified PET is used as a preferable binder component in terms of being compatible with the resin when melted by heat and pressure molding. It is preferable.
 PET若しくは変性PETをバインダーとして使用する場合、形状としてはパウダー、繊維状、或いは通常のPETを芯部に配し、この周囲を芯部よりも融点の低い変性PETで覆った形である、芯鞘構造のPET繊維等が好適に使用される。繊維強化プラスチック成形用複合材の工程強度、及び表面繊維の脱落を少なくするという観点から、変性PETの融点は140℃以下が好ましく、120℃以下がより好ましい。 When PET or modified PET is used as a binder, the shape is powder, fibrous, or ordinary PET placed on the core, and the periphery is covered with modified PET having a melting point lower than that of the core. A sheath-structured PET fiber or the like is preferably used. From the viewpoint of reducing the process strength of the fiber-reinforced plastic molding composite material and reducing the loss of surface fibers, the melting point of the modified PET is preferably 140 ° C. or less, more preferably 120 ° C. or less.
 一実施形態において、本発明は、無機繊維よりなる強化繊維成分とポリエーテルイミド繊維(PEI繊維)よりなるマトリックス樹脂繊維成分と、少なくとも1種のバインダー成分を含有する不織布状シートよりなり、該不織布状シートの表層部における繊維成分同士が、主として繊維成分同士の交点に水掻き膜状に局在する前記バインダー成分によって結合されていることを特徴とする、繊維強化プラスチック成形用複合材に関する。以下、上記この実施形態について、特に説明する。 In one embodiment, the present invention comprises a non-woven sheet comprising a reinforcing fiber component composed of inorganic fibers, a matrix resin fiber component composed of polyetherimide fibers (PEI fibers), and at least one binder component. The fiber component in the surface layer part of a sheet-like sheet | seat is related with the composite material for fiber-reinforced plastics shaping | molding currently couple | bonded by the said binder component localized at the intersection of fiber components in the form of a water scraping film. Hereinafter, this embodiment will be particularly described.
 上記実施形態の繊維強化プラスチック成形用複合材は、強化繊維とPEI繊維を空気中に分散させてネットに捕捉してウエブを形成する方法(乾式不織布法)や、強化繊維とPEI繊維を溶媒中に分散させ、その後溶媒を除去してウエブを形成する方法(湿式不織布法)等の方法で製造することができる。 The fiber-reinforced plastic molding composite material of the above embodiment includes a method of dispersing reinforcing fibers and PEI fibers in the air and capturing them in a net to form a web (dry nonwoven fabric method), and reinforcing fibers and PEI fibers in a solvent. And a method of forming a web after removing the solvent (wet nonwoven fabric method).
 上記実施形態では、繊維強化プラスチック成形用複合材の製造に、液状のバインダー、すなわちバインダー成分の溶液或いはエマルジョン液を使用することを特徴の一つとする。液状のバインダーは、製造工程、すなわちバインダーを塗工法又は含浸法でウエブに付与した後、加熱乾燥中に、バインダー液の表面張力によって繊維交点に集中し、その後乾燥収縮する。そのため、乾燥後は図1に示すとおり繊維同士の交点を水掻き膜状に覆う。このような性質によって、ごく少量でも繊維同士を接着する強度に優れる。バインダー成分については、上述のとおりである。 In the above-described embodiment, one of the features is that a liquid binder, that is, a binder component solution or an emulsion liquid, is used for the production of a fiber-reinforced plastic molding composite material. The liquid binder is concentrated on the fiber intersection by the surface tension of the binder liquid during the drying process after applying the binder to the web by the production process, that is, the coating method or the impregnation method, and then shrinks by drying. Therefore, after drying, as shown in FIG. Due to such a property, it is excellent in strength for bonding fibers even in a very small amount. The binder component is as described above.
 更に、上述のとおり、ウエブを乾燥する際に、バインダー液を含有するウエブ中の水分が繊維強化プラスチック成形用複合材の両表層から蒸発するため、この水蒸気の動きに伴ってバインダーが両表層に集中する。そのため、少量のバインダーであっても複合材の表面繊維の脱落・飛散が抑制され、加熱成形工程等においてハンドリング性に優れる繊維強化プラスチック成形用複合材が得られる。 Furthermore, as described above, when the web is dried, the moisture in the web containing the binder liquid evaporates from both surface layers of the fiber-reinforced plastic molding composite material. concentrate. Therefore, even if a small amount of the binder is used, the falling and scattering of the surface fibers of the composite material are suppressed, and a composite material for molding a fiber-reinforced plastic that has excellent handling properties in a heat molding process or the like can be obtained.
 また、このように繊維強化プラスチック成形用複合材の両表層にバインダーを集中させることによって、難燃性・低発煙性を優れたものとすることができる。その理由は以下の通りと考えられる。 Further, by concentrating the binder on both surface layers of the fiber reinforced plastic molding composite material as described above, the flame retardancy and low smoke generation can be made excellent. The reason is considered as follows.
 繊維強化プラスチック成形用複合材の表層(両表層)にバインダー成分を偏在させる方法については、上述のとおりである。 The method for unevenly distributing the binder component on the surface layer (both surface layers) of the fiber reinforced plastic molding composite is as described above.
 上記実施形態においては、耐熱性の高いポリエーテルイミドをマトリックス樹脂とするため、成形温度が250℃~400℃と非常に高い。このような温度域は、通常バインダー成分として使用されるアクリル樹脂等の熱分解温度を超えている。そのため、加熱成形時にバインダー成分は熱分解し、揮発するため熱成形品にはバインダー成分が残留せず、ひいてはバインダー成分が熱成形品の難燃性・低発煙性を阻害しないことが考えられる。しかしながら、通常のバインダーの添加方法で製造した繊維強化プラスチック成形用複合材では、短い時間の加熱加圧で加工すると、バインダー成分が十分に熱分解・揮発する前に成形加工が終了してしまって、残留するバインダー成分が熱成形品の難燃性・低発煙性を阻害してしまうこととなる。 In the above embodiment, the molding temperature is as high as 250 ° C. to 400 ° C. because polyetherimide having high heat resistance is used as the matrix resin. Such a temperature range exceeds the thermal decomposition temperature of an acrylic resin or the like normally used as a binder component. Therefore, it is considered that the binder component is thermally decomposed and volatilized at the time of thermoforming, so that the binder component does not remain in the thermoformed product, and thus the binder component does not hinder the flame retardancy and low smoke generation of the thermoformed product. However, in fiber reinforced plastic molding composites manufactured by the usual binder addition method, if the processing is carried out by heating and pressing for a short time, the molding process is completed before the binder components are sufficiently decomposed and volatilized. The remaining binder component inhibits the flame retardancy and low smoke generation of the thermoformed product.
 バインダー成分を繊維強化プラスチック成形用複合材の表面付近に集中させることで、高温の金型やプレス板により加熱加圧成形時にバインダー成分が効果的に加熱されるため、バインダー成分が速やかに熱分解・揮発し、熱成形品に残留するバインダー成分がごく僅かな量になるためと考えられる。 By concentrating the binder component in the vicinity of the surface of the fiber reinforced plastic molding composite, the binder component is effectively heated during hot-press molding by a high-temperature mold or press plate. -It is considered that the binder component that volatilizes and remains in the thermoformed product becomes a very small amount.
 上記実施形態において、繊維強化プラスチック成形用複合材に使用するバインダー成分は、メチルメタクリレート、エチルメタクリレート、エチルアクリレート、及び/又はメチルアクリレートの共重合体を含むことが好ましく、特に強化繊維としてガラス繊維等の白色に近いものを使用している繊維強化プラスチック成形用複合材である場合には、着色が少なく外観上好ましい。特に、バインダー成分が、モノマー成分としてメチルメタクリレート及びエチルメタクリレートから選ばれる少なくとも1種を含有する共重合体を含有することが好ましい。 In the above embodiment, the binder component used for the fiber-reinforced plastic molding composite material preferably contains a copolymer of methyl methacrylate, ethyl methacrylate, ethyl acrylate, and / or methyl acrylate, and particularly glass fiber or the like as the reinforcing fiber. In the case of a fiber reinforced plastic molding composite material using a material close to white, there is little coloring and this is preferable in appearance. In particular, the binder component preferably contains a copolymer containing at least one selected from methyl methacrylate and ethyl methacrylate as a monomer component.
 粒状若しくは繊維状のバインダーを繊維強化プラスチック成形用複合材内に含有させることもできる。これによって、繊維強化プラスチック成形用複合材の層間強度が高まり、加熱成形加工時のハンドリング性が更に改善される。 Granular or fibrous binders can also be included in the fiber reinforced plastic molding composite. As a result, the interlayer strength of the fiber-reinforced plastic molding composite material is increased, and the handling property during the heat molding process is further improved.
 粒状若しくは繊維状のバインダーは、強化繊維とPEI繊維と共に空気中に分散させてネットに捕捉してウエブを形成する方法(乾式不織布法)や、溶媒中に分散させ、その後溶媒を除去してウエブを形成する方法(湿式不織布法)等の方法で繊維強化プラスチック成形用複合材に含有させることができる。 A granular or fibrous binder can be dispersed in the air together with reinforcing fibers and PEI fibers and captured on a net to form a web (dry nonwoven fabric method), or dispersed in a solvent, and then the solvent is removed to remove the web. Can be contained in the fiber-reinforced plastic molding composite by a method such as a method of forming (wet nonwoven fabric method).
 液状バインダーとして供給される場合、粒状若しくは繊維状のバインダーとして供給される場合のいずれにおいても、バインダー成分は、加熱溶融した際にPEI繊維と相溶するバインダー成分であることが好ましい。本発明者らの検討によれば、このような成分を選定した場合、加熱加圧成形後にPEI樹脂の難燃性・低発煙性がほとんど損なわれないことが判明している。 When supplied as a liquid binder or when supplied as a granular or fibrous binder, the binder component is preferably a binder component that is compatible with PEI fibers when heated and melted. According to the study by the present inventors, it has been found that when such a component is selected, the flame retardancy and low smoke generation of the PEI resin are hardly impaired after the heat and pressure molding.
 加熱溶融した際にPEI樹脂繊維と相溶する成分としては、ポリエステル樹脂、或いは変性ポリエステル樹脂が挙げられる。これらの樹脂は、エマルジョン液とすることも、粒状若しくは繊維状の形状で繊維強化プラスチック成形用複合材の層内に含有させることもできる。いずれもPEI樹脂の持つ難燃性・低発煙性を損ねることはないが、特に変性ポリエステル樹脂は、繊維強化プラスチック成形用複合材の製造工程に適するように融着温度を設定できるため、好ましい。 As a component compatible with the PEI resin fiber when heated and melted, a polyester resin or a modified polyester resin may be mentioned. These resins can be used as an emulsion liquid or can be contained in the layer of the fiber-reinforced plastic molding composite material in a granular or fibrous form. In any case, the flame retardancy and low smoke generation properties of the PEI resin are not impaired, but a modified polyester resin is particularly preferable because the fusing temperature can be set so as to be suitable for the production process of the fiber-reinforced plastic molding composite.
 上記実施形態において、使用されるバインダー成分は、溶液若しくはエマルジョン液の状態で供給されるバインダー成分と、必要に応じて、粒状若しくは繊維状で供給されるバインダー成分との合計量が、繊維強化プラスチック成形用複合材に対して0.3質量%以上10質量%以下であることが好ましい。両者の比率は、製造工程に適するよう、任意に設定することができる。バインダー成分の量が0.3質量%よりも少ないと、製造工程中の強度が不十分でハンドリング性が低下する。また、上述のバインダー成分は、難燃性・低発煙性を阻害しないものであるが、あまりに量が多すぎると難燃性・低発煙性が損なわれやすくなるため、この観点より好ましい範囲としては10質量%以下であり、また、この添加量で十分な工程強度・ハンドリング性が得られる。 In the above embodiment, the binder component used is a fiber reinforced plastic in which the total amount of the binder component supplied in the state of a solution or an emulsion and the binder component supplied in a granular or fibrous form, if necessary, It is preferable that it is 0.3 mass% or more and 10 mass% or less with respect to the shaping | molding composite material. The ratio of the two can be arbitrarily set so as to be suitable for the manufacturing process. When the amount of the binder component is less than 0.3% by mass, the strength during the manufacturing process is insufficient and the handling property is lowered. In addition, the above-mentioned binder component does not inhibit the flame retardancy and low smoke generation, but if the amount is too large, the flame retardancy and low smoke generation are likely to be impaired. It is 10% by mass or less, and sufficient process strength and handling properties can be obtained with this addition amount.
 上述の通り、メチルメタクリレート、エチルエタクリレート、エチルアクリレート、及び/又はメチルアクリレートの共重合体を成分とする液状バインダーは繊維強化プラスチック成形用複合材の両表層に集中し、両表層の繊維成分同士の交点に水掻き膜状に局在するため、バインダー成分が少量であっても使用工程においても両表層の繊維の脱落が少ない上、変色が少なく好適であり、繊維強化プラスチック成形用複合材の抄造直後に平板にカットして積層し、プレスするような工程に好適に使用できる。 As described above, the liquid binder composed of methyl methacrylate, ethyl ethacrylate, ethyl acrylate, and / or methyl acrylate copolymer is concentrated on both surface layers of the fiber reinforced plastic molding composite, and the fiber components of both surface layers. Because it is localized in the form of a draining film at the intersection of each other, even if the binder component is small, it is suitable for the fiber reinforced plastic molding composite material because there is little loss of fibers on both surface layers even in the use process, and there is little discoloration. Immediately after papermaking, it can be suitably used in a process of cutting, laminating and pressing a flat plate.
 一方、繊維強化プラスチック成形用複合材を製造後、別の場所に輸送してから適切なサイズにカットしてプレス工程を行うような場合においては、シートを巻取りにして輸送したほうが輸送コストや、カットサイズの自由度等の点で好ましい。しかし、巻取りを製造する場合においては、巻きズレ等が発生しないよう所定のテンションをかけながら巻き取るのが通常の方法であり、この場合、巻取り工程でシート同士がこすれたり、揉まれたりするためシートの層間強度が弱いと層間剥離が発生し、使用時に巻き出した後のハンドリング性が極めて悪化する。 On the other hand, after manufacturing the fiber reinforced plastic molding composite material, transporting it to another place and then cutting it to an appropriate size and performing the pressing process, it is more costly to transport it by winding the sheet. It is preferable in terms of the degree of freedom of the cut size. However, in the case of manufacturing winding, it is a normal method to wind the sheet while applying a predetermined tension so as not to cause winding deviation. In this case, the sheets are rubbed or rubbed in the winding process. Therefore, if the interlayer strength of the sheet is weak, delamination occurs, and handling properties after unwinding during use are extremely deteriorated.
 また、一般のシート製造工程においては、いったん抄紙機等で巻取りを製造し、更に所定の幅の巻取りにするためにワインダー等で巻き取りながら所定の幅に裁断することが多く、このような場合においてはシートが揉まれる回数が増えるため、この問題は更に深刻となる。 Further, in general sheet manufacturing processes, winding is once manufactured with a paper machine or the like, and is further cut into a predetermined width while being wound with a winder or the like in order to obtain a predetermined width. In this case, the problem becomes more serious because the number of times the sheet is rolled is increased.
 このような場合、上述の通り、繊維状若しくは粒状のバインダーを使用することによって層間強度を向上させることができるが、このようなバインダーは液状のバインダーのように繊維強化プラスチック成形用複合材の両表層に局在しないため、加熱プレス後も複合材中にそのバインダーのほとんどが残存することとなる。そのため、繊維状若しくは粒状のバインダーは、特にPEI樹脂と相溶するバインダーが好ましく、ポリエステル樹脂又は変性ポリエステル樹脂が好ましい。 In such a case, as described above, the interlaminar strength can be improved by using a fibrous or granular binder. However, such a binder can be used for both fiber-reinforced plastic molding composites such as a liquid binder. Since it is not localized in the surface layer, most of the binder remains in the composite material even after the hot pressing. Therefore, the fibrous or granular binder is particularly preferably a binder that is compatible with the PEI resin, and is preferably a polyester resin or a modified polyester resin.
 また、特に繊維状のバインダーは、PEI繊維や強化繊維と混合して水中に分散し、湿式抄紙法で抄造した場合、粒状バインダーのように抄紙ワイヤーの目から抜けて歩留が低下したり、ワイヤー側に偏在したりすることもないため、特に好ましい。これらを勘案すると、巻取りを製造する場合には、繊維状の変性ポリエステル樹脂バインダーが特に好適である。また、芯部にポリエステル樹脂、鞘部に変性ポリエステル樹脂を配し、鞘部の融点を芯部より低くした芯鞘構造のバインダー繊維も好適に使用することができる。 In particular, the fibrous binder is mixed with PEI fibers and reinforcing fibers and dispersed in water, and when the paper is made by a wet papermaking method, the yield drops by dropping from the eyes of the papermaking wire like a granular binder, It is particularly preferable because it is not unevenly distributed on the wire side. Taking these into consideration, a fibrous modified polyester resin binder is particularly suitable for producing a winding. Also, a binder fiber having a core-sheath structure in which a polyester resin is disposed in the core part and a modified polyester resin is disposed in the sheath part, and the melting point of the sheath part is lower than that of the core part can be suitably used.
 ポリエステル樹脂としては、ポリエチレンテレフタレート(PET)が好ましい。変性ポリエステル樹脂は、ポリエステル樹脂を変性することで融点を低下させたものであれば特に限定されないが、変性ポリエチレンテレフタレートが好ましい。変性ポリエチレンテレフタレートとしては、共重合ポリエチレンテレフタレート(CoPET)が好ましく、例えば、ウレタン変性共重合ポリエチレンテレフタレートが挙げられる。共重合ポリエチレンテレフタレートは、融点が140℃以下のものが好ましく、120℃以下ものがより好ましい。特公平1-30926に記載のような変性ポリエステル樹脂を使用してもよい。変性ポリエステル樹脂の具体例として、特に、ユニチカ製 メルティ4000(繊維全てが共重合ポリエチレンテレフタレートである繊維)が好ましく挙げられる。また、上記芯鞘構造のバインダー繊維としては、ユニチカ製 メルティ4080や、クラレ製 N-720等が好適に使用できる。 Polyester resin is preferably polyethylene terephthalate (PET). The modified polyester resin is not particularly limited as long as the melting point is lowered by modifying the polyester resin, but modified polyethylene terephthalate is preferable. As the modified polyethylene terephthalate, copolymerized polyethylene terephthalate (CoPET) is preferable, and examples thereof include urethane-modified copolymerized polyethylene terephthalate. The copolymerized polyethylene terephthalate preferably has a melting point of 140 ° C. or lower, more preferably 120 ° C. or lower. A modified polyester resin as described in JP-B-1-30926 may be used. As a specific example of the modified polyester resin, in particular, Melty 4000 (a fiber in which all fibers are copolymerized polyethylene terephthalate) manufactured by Unitika is preferably exemplified. As the core-sheath-structured binder fiber, Melty 4080 manufactured by Unitika, N-720 manufactured by Kuraray, or the like can be suitably used.
 繊維強化プラスチック成形用複合材に対し、エマルジョンバインダーを0.7~4.0質量%、ポリエステル樹脂及び変性ポリエステル樹脂から選ばれるバインダーを1.5~6.0質量%、かつバインダー成分の総量が8質量%以下とすることで、巻取りにして、断裁を繰り返した場合においても十分な表面強度及び層間強度を得ることができる。 With respect to the fiber reinforced plastic molding composite material, the emulsion binder is 0.7 to 4.0% by mass, the binder selected from the polyester resin and the modified polyester resin is 1.5 to 6.0% by mass, and the total amount of the binder components is When the content is 8% by mass or less, sufficient surface strength and interlayer strength can be obtained even when winding and repeated cutting.
 バインダー成分の量は多くなると表面強度・層間強度共に強くなるが、逆に加熱成形時の臭気の問題が発生しやすくなり、少なくなると臭気の問題は緩和されるが表面強度・層間強度共に低下する傾向となる。しかし、上記の範囲においては臭気の問題はほとんど発生せず、また上記のような繰り返しの断裁工程を経ても層間剥離などを発生しない繊維強化プラスチック成形用複合材を得ることができる。 When the amount of the binder component increases, both surface strength and interlayer strength increase, but conversely, the problem of odor during thermoforming tends to occur, and when the amount decreases, the problem of odor is reduced, but both surface strength and interlayer strength decrease. It becomes a trend. However, in the above range, there is hardly any odor problem, and a fiber-reinforced plastic molding composite material that does not cause delamination even after the repeated cutting steps as described above can be obtained.
 また、上記の範囲においては、メチルメタクリレート、エチルエタクリレート、エチルアクリレート、メチルアクリレートの共重合体を成分とする液状バインダーの配合量は、ポリエステル樹脂又は変性ポリエステル樹脂よりも少ないほうが、臭気の関係から好ましい結果が得られている。ポリエステル系バインダーはマトリックス樹脂と相溶するため、比較的添加量が多くとも臭気を発生しにくく、また、液状バインダーは繊維交点に集中して偏在しやすいため、かかる結果が得られているものと推定している。 In the above range, the blending amount of the liquid binder containing a copolymer of methyl methacrylate, ethyl ethacrylate, ethyl acrylate, and methyl acrylate as a component is smaller than that of the polyester resin or the modified polyester resin, and the odor is related. From these results, favorable results are obtained. Since the polyester binder is compatible with the matrix resin, it is difficult to generate odor even if the addition amount is relatively large, and since the liquid binder tends to be concentrated and concentrated at the intersection of the fibers, such a result is obtained. Estimated.
 本発明の繊維強化プラスチック成形用複合材は、1枚単独、或いは所望の厚さとなるように積層して熱プレスで加熱加圧成形したり、あらかじめ赤外線ヒーター等で予熱し、金型によって(加熱)加圧成形するなど、一般的な繊維強化プラスチック成形用複合材の加熱加圧成形方法を用いて加工することにより、強度・難燃性に優れた繊維強化プラスチックを得ることができる。 The fiber-reinforced plastic molding composite material of the present invention is a single sheet or laminated to have a desired thickness and heat-pressed by hot pressing, pre-heated with an infrared heater or the like in advance, ) A fiber reinforced plastic excellent in strength and flame retardancy can be obtained by processing using a general method for heating and pressing a fiber reinforced plastic molding composite material such as pressure molding.
 本発明の繊維強化プラスチック成形用複合材の目付けは、特に限定されないが、繊維強化プラスチック成形用複合材の表面のバインダー成分を加熱成形時に熱分解・揮発させる必要性から、積層枚数を減らすほうが好ましいため、目付けは高いほうが好ましい。このような観点から、好ましい目付けとしては400g/m以上、更に好ましくは550g/m以上である。尚、目付けの上限は、目的とする繊維強化プラスチック成形用複合材の厚みに応じて適宜設定することができる。 The basis weight of the fiber-reinforced plastic molding composite material of the present invention is not particularly limited, but it is preferable to reduce the number of laminated layers because it is necessary to thermally decompose and volatilize the binder component on the surface of the fiber-reinforced plastic molding composite material during heat molding. Therefore, a higher basis weight is preferable. From such a viewpoint, the preferred basis weight is 400 g / m 2 or more, more preferably 550 g / m 2 or more. In addition, the upper limit of a fabric weight can be suitably set according to the thickness of the target fiber reinforced plastic molding composite material.
 以上の工程で製造された繊維強化プラスチック成形用複合材を加熱加圧成形することにより、ASTM-662に準拠した方法で測定した有炎試験における20分後の発煙濃度が、43DS以下、更には37DS以下という、非常に低い発煙性の繊維強化プラスチック成形体を得ることができる。 By forming the fiber reinforced plastic molding composite produced in the above process by heat and pressure molding, the smoke concentration after 20 minutes in the flame test measured by the method according to ASTM-662 is 43DS or less, It is possible to obtain a fiber-reinforced plastic molded article having a very low fuming property of 37 DS or less.
 以下、本発明の効果を確認するための製造例に基づいて本発明を説明するが、本発明はこれらによって限定されるものではない。なお、各製造例において部及び%は、特にことわらない限り、質量部及び質量%を表す。 Hereinafter, the present invention will be described based on production examples for confirming the effects of the present invention, but the present invention is not limited thereto. In each production example, “part” and “%” represent “part by mass” and “% by mass” unless otherwise specified.
製造例1~4
 繊維径7μm、繊維長13mmのPAN系炭素繊維と、表1に示した繊維径のPPS樹脂繊維(Fiber Innovation Technology社製、繊維長13mm、限界酸素指数41)を、質量比がポリアクリロニトリル(PAN)系炭素繊維40に対しポリフェニレンスルフィド(PPS)樹脂繊維60となるように計量し、水中に投入した。投入した水の量は、PAN系炭素繊維とPPS樹脂繊維の合計質量に対し200倍となるようにした(すなわち繊維スラリー濃度として0.5%)。
Production examples 1 to 4
A PAN-based carbon fiber having a fiber diameter of 7 μm and a fiber length of 13 mm and a PPS resin fiber having a fiber diameter shown in Table 1 (manufactured by Fiber Innovation Technology, fiber length of 13 mm, critical oxygen index of 41) and a mass ratio of polyacrylonitrile (PAN) ) It measured so that it might become the polyphenylene sulfide (PPS) resin fiber 60 with respect to the system carbon fiber 40, and it injected | thrown-in to water. The amount of water added was set to be 200 times the total mass of the PAN-based carbon fiber and the PPS resin fiber (that is, the fiber slurry concentration was 0.5%).
 このスラリーに分散剤として「エマノーン3199」(花王株式会社、商品名)を繊維(PAN系炭素繊維とPPS繊維の合計)100質量部に対し1質量部となるよう添加して攪拌し、繊維を水中に均一に分散させた繊維スラリーを作製した。 To this slurry, “Emanon 3199” (Kao Corporation, trade name) as a dispersant was added to 1 part by mass with respect to 100 parts by mass of fibers (total of PAN-based carbon fiber and PPS fiber), and the fibers were stirred. A fiber slurry uniformly dispersed in water was prepared.
 粒状ポリビニルアルコール(PVA)(ユニチカ株式会社、商品名「OV-N」)を、濃度が10%となるように水に添加し、攪拌してバインダースラリーを作成した。この粒状PVAのスラリーを繊維スラリーに投入して湿式抄紙法でウエットウエブを形成し、180℃で加熱乾燥することにより目付けが250g/mである不織布を得た。 Particulate polyvinyl alcohol (PVA) (Unitika Ltd., trade name “OV-N”) was added to water so as to have a concentration of 10%, and stirred to prepare a binder slurry. The granular PVA slurry was put into a fiber slurry, a wet web was formed by wet papermaking, and heat drying was performed at 180 ° C. to obtain a nonwoven fabric having a basis weight of 250 g / m 2 .
 この不織布を、220℃の熱プレスにて、加熱加圧処理することで表1に記載の通気度となる繊維強化プラスチック成形用複合材を得た。尚、製造例2においては製造例1よりも加熱加圧時間を短縮し、密度を低くすることによって透気度を表1の通り調整し、製造例4においては製造例1よりも加熱加圧時間を延長し、密度を高くすることによって表1の通り透気度を調整した。 This nonwoven fabric was heated and pressurized with a 220 ° C. hot press to obtain a fiber reinforced plastic molding composite material having air permeability shown in Table 1. In Production Example 2, the air pressure is adjusted as shown in Table 1 by shortening the heating and pressing time and lowering the density as compared with Production Example 1, and in Production Example 4 the heating and pressurization is more than in Production Example 1. The air permeability was adjusted as shown in Table 1 by extending the time and increasing the density.
 なお、粒状PVAの繊維強化プラスチック成形用複合材に対する配合率は、表1に示す通りとなるよう、粒状PVAスラリー濃度の添加量を適宜調整した。 In addition, the addition amount of granular PVA slurry density | concentration was adjusted suitably so that the compounding rate with respect to the composite material for fiber reinforced plastics shaping | molding of granular PVA may become as showing in Table 1.
製造例5
 PPS樹脂繊維を、表1に示した繊維径であるPPS繊維(KBセーレン株式会社製、ガラス転移温度92℃、繊維長13mm、限界酸素指数41)に変更した以外は、製造例1と同様にして繊維強化プラスチック成形用複合材を作製した。
Production Example 5
Except for changing the PPS resin fiber to the PPS fiber having the fiber diameter shown in Table 1 (manufactured by KB Selen Co., Ltd., glass transition temperature 92 ° C., fiber length 13 mm, critical oxygen index 41), the same as in Production Example 1 Thus, a composite material for molding fiber reinforced plastic was prepared.
製造例6~9
 製造例1における繊維径7μm、繊維長13mmであるPAN系炭素繊維を、繊維径が9μmであり、繊維長が18mmのガラス繊維に変更し、製造例1におけるPPS樹脂繊維(Fiber Innovation Technology社製、ガラス転移温度92℃、限界酸素指数41)を、表2に示したポリエーテルイミド(PEI)樹脂繊維(Fiber Innovation Technology社、、ガラス転移温度220℃、繊維長13mm、限界酸素指数47)に変更した以外は製造例1と同様にして、目付けが250g/mである不織布を得た。得られたシートを、220℃の熱プレスによって加熱加圧することで、表2の通り透気度を適宜調整し、製造例6、7の繊維強化プラスチック成形用複合材を作製した。尚、製造例7は、製造例6よりも220℃熱プレスによる加熱加圧時間を短縮し、密度を低くすることによって透気度を表2の通り調整した。
Production Examples 6-9
The PAN-based carbon fiber having a fiber diameter of 7 μm and a fiber length of 13 mm in Production Example 1 was changed to a glass fiber having a fiber diameter of 9 μm and a fiber length of 18 mm, and the PPS resin fiber (manufactured by Fiber Innovation Technology Co., Ltd.) was produced. , Glass transition temperature 92 ° C., limiting oxygen index 41) to polyetherimide (PEI) resin fibers (Fiber Innovation Technology, glass transition temperature 220 ° C., fiber length 13 mm, limiting oxygen index 47) shown in Table 2. Except having changed, it carried out similarly to manufacture example 1, and obtained the nonwoven fabric whose fabric weight is 250 g / m < 2 >. The obtained sheet was heated and pressed by a heat press at 220 ° C. to appropriately adjust the air permeability as shown in Table 2, and the fiber-reinforced plastic molding composite materials of Production Examples 6 and 7 were produced. In addition, in Production Example 7, the air permeability was adjusted as shown in Table 2 by shortening the heating and pressing time by 220 ° C. hot pressing and lowering the density as compared with Production Example 6.
 また、粒状PVA(ユニチカ株式会社、商品名「OV-N」)を、PET/coPET変性芯鞘バインダー繊維(ユニチカ株式会社、商品名「メルティ4080」)に変更した以外は、製造例6と同様にして製造例8の繊維強化プラスチック成形用複合材を作製した。 Also, the same as Production Example 6 except that the granular PVA (Unitika Ltd., trade name “OV-N”) was changed to PET / coPET modified core-sheath binder fiber (Unitika Ltd., trade name “Melty 4080”). Thus, a fiber-reinforced plastic molding composite material of Production Example 8 was produced.
 また、製造例6におけるガラス繊維を繊維径が6μmであり、繊維長が18mmのガラス繊維に変更して、製造例6と同様にして製造例9の繊維強化プラスチック成形用複合材を作製した。 Further, the glass fiber in Production Example 6 was changed to glass fiber having a fiber diameter of 6 μm and a fiber length of 18 mm, and a fiber-reinforced plastic molding composite material of Production Example 9 was produced in the same manner as Production Example 6.
製造例10~15
 製造例1におけるPPS樹脂繊維を、繊維径16μmのPPS樹脂繊維(Fiber Innovation Technology社製、ガラス転移温度92℃、繊維長13mm、限界酸素指数41)に代えるとともに、粒状PVAに代えて、ウエットウエブ形成後に表3のバインダー液をスプレー法によって表3に示されている量で添加し、加熱乾燥させた以外は、製造例1と同様にして製造例10~15の繊維強化プラスチック成形用複合材を作製した。
Production Examples 10-15
The PPS resin fiber in Production Example 1 was replaced with a PPS resin fiber having a fiber diameter of 16 μm (manufactured by Fiber Innovation Technology, glass transition temperature 92 ° C., fiber length 13 mm, critical oxygen index 41), and instead of granular PVA, a wet web was used. The composite material for molding fiber reinforced plastics of Production Examples 10 to 15 was the same as Production Example 1 except that the binder liquid shown in Table 3 was added in the amount shown in Table 3 by spraying after the formation, and was heated and dried. Was made.
製造例16~21
 製造例10~15におけるPPS樹脂繊維を、繊維径15μmのPEI樹脂繊維(Fiber Innovation Technology社製、ガラス転移温度220℃、繊維長13mm、限界酸素指数41)に代える以外は、製造例10~15のそれぞれに対応する製造例16~21の繊維強化プラスチック成形用複合材を作製した。
Production Examples 16-21
Production Examples 10 to 15 except that the PPS resin fibers in Production Examples 10 to 15 are replaced with PEI resin fibers having a fiber diameter of 15 μm (manufactured by Fiber Innovation Technology, glass transition temperature 220 ° C., fiber length 13 mm, critical oxygen index 41). Fiber reinforced plastic molding composite materials of Production Examples 16 to 21 corresponding to the above were produced.
 なお、上記のバインダー液において、PVA水溶液は、クラレ製「PVA117」を熱水に溶解したPVA水溶液を使用した。また、スチレン・アクリルエマルジョンは、DIC製 「GM-1000」を使用し、ウレタンエマルジョンはDIC製「AP-X101」を使用した。 In the binder liquid, a PVA aqueous solution in which “PVA117” manufactured by Kuraray was dissolved in hot water was used as the PVA aqueous solution. The styrene acrylic emulsion used was “GM-1000” manufactured by DIC, and the urethane emulsion used was “AP-X101” manufactured by DIC.
 以上の各製造例の方法で得られた各繊維強化プラスチック成形用複合材を、6枚積層し、310℃に予熱したホットプレスに挿入して60秒加熱加圧した後、230℃に冷却して繊維強化プラスチック体を得た。 Six fiber reinforced plastic molding composite materials obtained by the methods of the above production examples were laminated, inserted into a hot press preheated to 310 ° C., heated and pressurized for 60 seconds, and then cooled to 230 ° C. Thus, a fiber-reinforced plastic body was obtained.
 得られた繊維強化プラスチックの外観、JIS K7074に準拠した方法で測定した曲げ強度を表1~4に示した。なお、外観は、ボイド等がなく良好なものを◎、わずかにボイドが確認できるだけであるものを○、ボイドの発生があるが実用上差し支えのないものを△、ボイドに起因して明らかに外観が悪く、製品として使用できないものを×とした。 Tables 1 to 4 show the appearance of the obtained fiber reinforced plastic and the bending strength measured by a method based on JIS K7074. Appearance is good with no voids, etc. ◎, slightly voids can only be confirmed ○, voids are generated but there is no practical problem, △, apparently due to voids Was bad and could not be used as a product.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 表1~4に示されるように、製造例1、2、製造例6~8、製造例10~21の各繊維強化プラスチック成形用複合材を加熱加圧成形して得られる繊維強化プラスチック体は、特定の繊維径を有するスーパーエンプラと称される熱可塑性樹脂の繊維と炭素繊維やガラス繊維からなる強化繊維とを有する透気性の繊維強化プラスチック成形用複合材を加熱加圧成形して製造されていることにより、高強度で外観も良好である繊維強化プラスチック体となっている。 As shown in Tables 1 to 4, the fiber reinforced plastic bodies obtained by heating and pressing the fiber reinforced plastic molding composites of Production Examples 1 and 2, Production Examples 6 to 8, and Production Examples 10 to 21 are as follows. It is manufactured by heat and pressure molding a gas-permeable fiber reinforced plastic molding composite material having a thermoplastic fiber called a super engineering plastic having a specific fiber diameter and a reinforcing fiber made of carbon fiber or glass fiber. As a result, the fiber-reinforced plastic body has high strength and good appearance.
 また、透気度が210で上記各製造例のものよりやや透気性が劣る製造例4の繊維強化プラスチック成形用複合材から成形されている繊維強化プラスチックは、外観の評価がやや劣るものとなることに加えて、強度も製造例1、2のものに比べてやや低いものとなっている。また、製造例5の繊維強化プラスチック成形用複合材を成形した繊維強化プラスチック体の場合は、スーパーエンプラ繊維の繊維径が30μmを超えるため、加熱加圧成形後の外観が製造例1~4の繊維強化プラスチック成形用複合材から成形されている繊維強化プラスチック体よりも明らかに劣るものとなっている。また、製造例9の繊維強化プラスチック成形用複合材を成形した繊維強化プラスチック体の場合は、強化繊維の繊維径の4倍を超える繊維径を有するスーパーエンプラ繊維を使用していることによって繊維強化プラスチック成形用複合材中の強化繊維とマトリックス繊維の混合状態が悪くなり、加熱加圧成形後の積層板の外観が製造例1~4の繊維強化プラスチック成形用複合材から成形されている繊維強化プラスチック体よりも明らかに劣るものとなっている。 The fiber reinforced plastic molded from the fiber reinforced plastic molding composite material of Production Example 4 having an air permeability of 210 and slightly less permeable than those of each of the above production examples is somewhat inferior in appearance. In addition, the strength is slightly lower than those of Production Examples 1 and 2. Further, in the case of the fiber reinforced plastic body obtained by molding the composite material for fiber reinforced plastic molding of Production Example 5, the fiber diameter of the super engineering plastic fiber exceeds 30 μm, so that the appearance after heating and pressing is that of Production Examples 1 to 4. It is clearly inferior to a fiber reinforced plastic body molded from a fiber reinforced plastic molding composite. Moreover, in the case of the fiber reinforced plastic body which shape | molded the fiber reinforced plastic molding composite material of the manufacture example 9, the fiber reinforcement is carried out by using the super engineering plastic fiber which has a fiber diameter exceeding 4 times the fiber diameter of a reinforcement fiber Fiber reinforcement in which the mixed state of the reinforcing fiber and matrix fiber in the plastic molding composite material is deteriorated, and the appearance of the laminate after the heat and pressure molding is molded from the fiber reinforced plastic molding composite material of Production Examples 1 to 4 It is clearly inferior to the plastic body.
 なお、製造例3の繊維強化プラスチック成形用複合材から成形されているものは、繊維強化プラスチック成形用複合材中のバインダー量が製造例1、2のものよりも多くなっていることによって、繊維強化プラスチック体の外観が製造例1、2のものよりもやや劣るものとなっているように、本発明の繊維強化プラスチック成形用複合材においては、使用バインダーの含有量も成形後の繊維強化プラスチックの外観や強度に影響を与えるものであることが分かる。 In addition, what is shape | molded from the composite material for fiber reinforced plastic molding of the manufacture example 3 is fiber because the amount of binders in the composite material for fiber reinforced plastic molding is larger than that of the manufacture examples 1 and 2. In the composite material for molding fiber reinforced plastic of the present invention, the content of the binder used is also the fiber reinforced plastic after molding so that the appearance of the reinforced plastic body is slightly inferior to those of Production Examples 1 and 2. It can be seen that this affects the appearance and strength.
実施例1
 繊維径7μm、繊維長13mmのPAN系炭素繊維と、繊維径15μmのPEI樹脂繊維(繊維長13mm)を、質量比がポリアクリロニトリル(PAN)系炭素繊維40に対しPEI樹脂繊維60となるように計量し、水中に投入した。投入した水の量は、PAN系炭素繊維とPEI樹脂繊維の合計質量に対し200倍とした(すなわち、繊維スラリー濃度として0.5%)。
Example 1
A PAN-based carbon fiber having a fiber diameter of 7 μm and a fiber length of 13 mm and a PEI resin fiber having a fiber diameter of 15 μm (fiber length of 13 mm) are set to have a PEI resin fiber 60 with respect to the polyacrylonitrile (PAN) -based carbon fiber 40. Weighed and put into water. The amount of water added was 200 times the total mass of the PAN-based carbon fiber and the PEI resin fiber (that is, the fiber slurry concentration was 0.5%).
 このスラリーに分散剤として「エマノーン3199」(花王株式会社、商品名)を繊維(PAN系炭素繊維とPEI繊維の合計)100質量部に対し1質量部となるよう添加して攪拌し、繊維を水中に均一に分散させた繊維スラリーを作製した。 To this slurry, “Emanon 3199” (Kao Corporation, trade name) as a dispersant was added to 1 part by mass with respect to 100 parts by mass of fibers (total of PAN-based carbon fibers and PEI fibers), and the fibers were stirred. A fiber slurry uniformly dispersed in water was prepared.
 この繊維スラリーから湿式抄紙法でウエットウエブを形成し、濃度5%のエマルジョン液バインダー(メチルメタクリレート共重合体、日本触媒製 EMN-188E)をスプレー法によって付与した後、バインダーの固形分添加量が表5に示すとおりとなるように、ウエブ水分をサクションによって適宜脱水し、180℃で加熱乾燥することにより目付けが550g/mである繊維強化プラスチック成形用複合材を得た。 A wet web is formed from this fiber slurry by a wet papermaking method, and an emulsion liquid binder (methyl methacrylate copolymer, EMN-188E manufactured by Nippon Shokubai Co., Ltd.) having a concentration of 5% is applied by a spray method. As shown in Table 5, the web moisture was appropriately dehydrated by suction, and heated and dried at 180 ° C. to obtain a fiber-reinforced plastic molding composite material having a basis weight of 550 g / m 2 .
実施例2
 融点110℃の変性ポリエステル粒状バインダー(パウダーレジン G-120、東京インキ株式会社製)を、固形分質量濃度10%となるよう水中に分散したバインダースラリー液を作成した。このバインダースラリー液を、実施例1で作成した繊維スラリーに添加した以外は、実施例1と同様に湿式抄紙法でウエットウエブを形成し、エマルジョン液バインダーを添加して加熱乾燥することにより目付けが550g/mである繊維強化プラスチック成形用複合材を得た。尚、変性ポリエステル粒状バインダーの固形分質量添加量は、表5に示す通りとなるようにバインダースラリー液の添加量を調整した。
Example 2
A binder slurry liquid in which a modified polyester granular binder (powder resin G-120, manufactured by Tokyo Ink Co., Ltd.) having a melting point of 110 ° C. was dispersed in water so as to have a solid content mass concentration of 10% was prepared. Except for adding this binder slurry liquid to the fiber slurry prepared in Example 1, a wet web is formed by the wet papermaking method in the same manner as in Example 1, and an emulsion liquid binder is added to heat and dry the fabric. A fiber-reinforced plastic molding composite material having a weight of 550 g / m 2 was obtained. In addition, the addition amount of the binder slurry liquid was adjusted so that the solid content mass addition amount of the modified polyester granular binder was as shown in Table 5.
実施例3
 実施例2において、融点110℃の変性ポリエステル粒状バインダーを、変性ポリエステル繊維状バインダー(ユニチカ製 メルティ4000)に変更した以外は、実施例2と同様にして繊維強化プラスチック成形用複合材を得た。
Example 3
In Example 2, a fiber reinforced plastic molding composite was obtained in the same manner as in Example 2 except that the modified polyester granular binder having a melting point of 110 ° C. was changed to a modified polyester fibrous binder (Melty 4000 manufactured by Unitika).
実施例4
 実施例1において、エマルジョン液バインダーを2%濃度のPVA溶液バインダー(クラレ製 PVA117を温水に溶解し、冷却したもの)に変更し、繊維強化プラスチック成形用複合材に対するバインダーの固形分質量添加量を表5に示す通りとした以外は、実施例1と同様にして繊維強化プラスチック成形用複合材を得た。
Example 4
In Example 1, the emulsion liquid binder was changed to a 2% concentration PVA solution binder (Kuraray PVA117 dissolved in warm water and cooled), and the solid mass addition amount of the binder to the fiber-reinforced plastic molding composite was changed to A fiber-reinforced plastic molding composite material was obtained in the same manner as in Example 1 except that it was as shown in Table 5.
実施例5
 実施例2における変性ポリエステル粒状バインダーを、PVA粒状バインダー(ユニチカ株式会社製 OV-N)に変更した以外は、実施例2と同様にして繊維強化プラスチック成形用複合材を製造した。
Example 5
A fiber-reinforced plastic molding composite was produced in the same manner as in Example 2 except that the modified polyester granular binder in Example 2 was changed to PVA granular binder (OV-N manufactured by Unitika Ltd.).
比較例1
 実施例5において、エマルジョン液バインダーの付与を行わず、粒状PVAバインダーの添加量を表5に示すとおり変更した以外は、実施例5と同様にして繊維強化プラスチック成形用複合材を製造した。
Comparative Example 1
In Example 5, a fiber reinforced plastic molding composite was produced in the same manner as in Example 5 except that the emulsion liquid binder was not applied and the addition amount of the granular PVA binder was changed as shown in Table 5.
比較例2
 比較例1において、粒状PVAバインダーの添加量を表5に示すとおり変更した以外は、比較例1と同様にして繊維強化プラスチック成形用複合材を製造した。
Comparative Example 2
A fiber reinforced plastic molding composite was produced in the same manner as in Comparative Example 1, except that the amount of the granular PVA binder added was changed as shown in Table 5.
比較例3~4
 比較例1~2において、強化繊維を繊維径が9μm、繊維長が18mmのガラス繊維に変更し、強化繊維とポリエーテルイミド繊維の比率を表6に示す通りに変更した以外は、比較例1~2と同様にして繊維強化プラスチック成形用複合材を製造した。
Comparative Examples 3-4
In Comparative Examples 1 and 2, the reinforcing fiber was changed to a glass fiber having a fiber diameter of 9 μm and a fiber length of 18 mm, and the ratio of the reinforcing fiber to the polyetherimide fiber was changed as shown in Table 6. Comparative Example 1 A composite material for molding a fiber-reinforced plastic was produced in the same manner as in (2).
実施例11~26
 メチルメタクリレート共重合体であるバインダー(日本触媒製 EMN-188E)の固形分添加量が表5に示す通りとなるようにし、変性ポリエステル繊維状バインダー(ユニチカ製 メルティ4000)の固形分添加量も表6に示す通りとなるようにした以外は実施例3と同様にして繊維強化プラスチック成形用複合材を得た。尚、メチルメタクリレート共重合体であるバインダー(日本触媒製 EMN-188E)の固形分添加量は、該バインダー添加時のスプレー液濃度を適宜調整することにより所定の添加量となるようにした。
Examples 11 to 26
The solid content of the methyl methacrylate copolymer (EMC-188E manufactured by Nippon Shokubai Co., Ltd.) is as shown in Table 5, and the solid content of the modified polyester fibrous binder (Melty 4000 manufactured by Unitika) is also shown. A composite material for molding a fiber-reinforced plastic was obtained in the same manner as in Example 3 except that it was as shown in FIG. The solid content of the binder (EMN-188E manufactured by Nippon Shokubai Co., Ltd.), which is a methyl methacrylate copolymer, was adjusted to a predetermined level by appropriately adjusting the spray liquid concentration at the time of adding the binder.
実施例27
 エマルジョン液バインダー(メチルメタクリレート共重合体、日本触媒製 EMN-188E)の固形分添加量が表6に示す通りとなるようにした以外は実施例1と同様にして繊維強化プラスチック成形用複合材を製造した。尚、メチルメタクリレート共重合体であるバインダー(日本触媒製 EMN-188E)の固形分添加量は、該バインダー添加時のスプレー液濃度を適宜調整することにより所定の添加量となるようにした。
Example 27
A fiber reinforced plastic molding composite was prepared in the same manner as in Example 1 except that the solid content of the emulsion liquid binder (methyl methacrylate copolymer, EMN-188E manufactured by Nippon Shokubai Co., Ltd.) was as shown in Table 6. Manufactured. The solid content of the binder (EMN-188E manufactured by Nippon Shokubai Co., Ltd.), which is a methyl methacrylate copolymer, was adjusted to a predetermined level by appropriately adjusting the spray liquid concentration at the time of adding the binder.
実施例28~44
 実施例11~27において、強化繊維を繊維径が9μm、繊維長が18mmのガラス繊維に変更し、強化繊維とポリエーテルイミド繊維の比率を表6に示す通りに変更した以外は、実施例11~27と同様にして実施例23~44の繊維強化プラスチック成形用複合材を製造した。
Examples 28-44
In Examples 11 to 27, Example 11 was changed except that the reinforcing fiber was changed to a glass fiber having a fiber diameter of 9 μm and a fiber length of 18 mm, and the ratio of the reinforcing fiber to the polyetherimide fiber was changed as shown in Table 6. In the same manner as in ˜27, fiber reinforced plastic molding composite materials of Examples 23˜44 were produced.
 以上の各実施例及び各比較例の方法で得られた各繊維強化プラスチック成形用複合材を、6枚積層し、310℃に予熱したホットプレスに挿入して60秒加熱加圧した後、180℃に冷却して繊維強化プラスチック体を得た。 Six fiber reinforced plastic molding composites obtained by the methods of the above Examples and Comparative Examples were stacked, inserted into a hot press preheated to 310 ° C., heated and pressurized for 60 seconds, and then 180 The fiber-reinforced plastic body was obtained by cooling to ° C.
 この加熱加圧操作の際の繊維強化プラスチック成形用複合材の表面繊維の脱落・飛散及び取り扱いやすさ(ハンドリング性)を、以下のとおり評価した。
 A:非常に良好なもの
 B:良好であり実用上問題なく取り扱えるもの
 C:実用上やや問題を生じるが、製造は可能であるもの
 D:表面繊維の脱落が非常に多く量産では明らかに問題を発生するもの、及びシートが破れやすくハンドリング性に劣るもの
The dropping and scattering of the surface fibers of the composite material for molding fiber-reinforced plastic during the heating and pressing operation and the ease of handling (handling properties) were evaluated as follows.
A: Very good B: Good and can be handled without problems in practical use C: Slightly problematic in practical use, but can be manufactured D: There are very many surface fibers falling off, which is clearly a problem in mass production Occurrence, and the sheet is easily torn and has poor handling
 また、60秒間加熱加圧中に発生した臭気について、以下のとおり評価した。
 A:全く臭気を感じないもの
 B:若干臭気を感じるがほとんど気にならないもの
 C:臭気を感じるが作業をする上では特に問題とならないもの
 D:臭気が強いが短時間の作業であればマスク等が無くとも作業できるもの
 E:臭気が強く作業する上でマスク等を必要とするもの
Moreover, about the odor which generate | occur | produced during 60 second heating and pressurization, it evaluated as follows.
A: No odor at all B: Some odor but little concern C: No odor but no problem when working D: Strong odor but mask for short work Items that can be operated even if there is no etc. E: Items that require a mask to work with strong odor
 以上の各実施例及び比較例の方法で、幅2.3mの各繊維強化プラスチック成形用複合材を製造し、(1)幅1100mmとなるように2ドラム式ワインダーで断裁し、長さ500mの巻取りを得た。(2)前期(1)で得た巻取りを、更に幅500mmとなるように2ドラム式ワインダーで断裁し、300mの巻取りを得た。そして、前記(1)及び(2)の作業中における繊維強化プラスチック成形用複合材の表面繊維の脱落・飛散を、以下のとおり評価した。
 A:繊維の飛散が非常に少なく非常に良好なもの
 B:繊維の飛散が少なく良好であり実用上問題なく取り扱えるもの
 C:繊維の飛散が多く実用上やや問題を生じるが、製造は可能であるもの
 D:表面繊維の脱落が非常に多く量産では明らかに問題を発生するもの
By the method of each of the above examples and comparative examples, each fiber reinforced plastic molding composite material having a width of 2.3 m was manufactured, and (1) cut with a two-drum winder so as to have a width of 1100 mm. A winding was obtained. (2) The winding obtained in the previous period (1) was further cut with a two-drum winder so as to have a width of 500 mm to obtain a winding of 300 m. Then, the dropping and scattering of the surface fibers of the fiber reinforced plastic molding composite material during the operations (1) and (2) were evaluated as follows.
A: Very good with very little scattering of fibers B: Good with little scattering of fibers and can be handled without problems in practice C: Many scattering of fibers causes some practical problems, but production is possible Things D: There is a lot of surface fiber falling off, which obviously causes problems in mass production
 また、上記(1)及び(2)の工程を経た後の繊維強化プラスチック成形用複合材について、以下のとおり評価した。
 A:層間剥離が発生しなかったもの
 B:若干層間強度が弱くなったが実用上差し支えがなくハンドリングできるもの
 C:層間剥離が一部に発生し実用上やや問題を生じるが、取り扱いは可能であるもの
 D:層間剥離が全面に発生し、ハンドリングに問題を生じるもの
Moreover, the composite material for fiber-reinforced plastic molding after the steps (1) and (2) were evaluated as follows.
A: Delamination did not occur B: Interlaminar strength slightly weakened, but practically usable and could be handled C: Delamination occurred in part, causing some problems in practical use, but handling is possible Some D: Delamination occurs on the entire surface, causing problems in handling
 得られた繊維強化プラスチックの有炎法による発煙濃度(ASTM E-662に準拠、20分加熱後)及び限界酸素指数を表5及び表6に示す。 Table 5 and Table 6 show the smoke concentration (according to ASTM E-662, after heating for 20 minutes) and the limiting oxygen index of the obtained fiber reinforced plastic by the flame method.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-I000007
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-I000007
※上記表5及び6において、「粒状ポリエステル」は、変性ポリエステル粒状バインダー(パウダーレジン G-120、東京インキ株式会社製)を表し、「繊維状ポリエステル」は、変性ポリエステル繊維状バインダー(ユニチカ製 メルティ4000)を表す。 * In Tables 5 and 6 above, “granular polyester” represents a modified polyester granular binder (powder resin G-120, manufactured by Tokyo Ink Co., Ltd.), and “fibrous polyester” represents a modified polyester fibrous binder (manufactured by Unitika). 4000).
 表5、表6に示されるよう、本発明における繊維強化プラスチック成形用複合材は、いずれも表面繊維脱落が少なく、シートの強度も十分であって作業工程でのハンドリング性も良好であり、また、繊維強化プラスチック体は、優れた難燃性、すなわち低発煙濃度・高限界酸素指数を示した。更に、ポリエーテルイミドと相溶するバインダーである粒状ポリエステル、繊維状ポリエステルを使用した実施例2、3、7、8は、特にハンドリング性に優れることに加えて、繊維強化プラスチック体が優れた難燃性、すなわち低発煙濃度・高限界酸素指数を示した。 As shown in Tables 5 and 6, the fiber-reinforced plastic molding composites according to the present invention are less likely to lose surface fibers, have sufficient sheet strength, and have good handling properties in the work process. The fiber reinforced plastic body showed excellent flame retardancy, that is, low smoke concentration and high limit oxygen index. Further, Examples 2, 3, 7 and 8 using granular polyester and fibrous polyester, which are binders compatible with polyetherimide, are particularly difficult to handle, in addition to excellent handling properties. It showed flammability, that is, low smoke concentration and high critical oxygen index.
 一方、液状バインダーを使用しない比較例においては、表面繊維の脱落が多く、シートのハンドリング性も悪いうえに、繊維強化プラスチック体の難燃性も劣る。表面繊維の脱落・シートのハンドリング性を改善すべくバインダー量を増加させると、更に繊維強化プラスチック体の難燃性が劣る結果となった。 On the other hand, in the comparative example in which no liquid binder is used, the surface fibers often fall off, the sheet is not easily handled, and the flame retardant plastic body is inferior in flame retardancy. Increasing the amount of binder to improve surface fiber shedding and sheet handling results in further inferior flame retardancy of the fiber reinforced plastic body.
 本発明の繊維強化プラスチック成形用複合材は、耐熱性と難燃性が高い熱可塑性のスーパーエンプラ繊維をマトリックス樹脂成分として含有することにより、繊維強化プラスチック成形用複合材自体の生産性が高く、加工工程におけるハンドリング性に優れている。 The fiber-reinforced plastic molding composite material of the present invention contains a thermoplastic super engineering plastic fiber having high heat resistance and high flame retardancy as a matrix resin component, so that the productivity of the fiber-reinforced plastic molding composite material itself is high. Excellent handling in processing.
 また、優れた耐熱性、難燃性を備えた熱可塑性のポリエーテルイミド繊維をマトリックス樹脂成分とし、無機繊維を強化繊維成分として含有する不織布状構造である繊維強化プラスチック成形用複合材は、表層部の繊維成分間が重点的に少量のバインダーで結合固定されているので加工工程での取扱性にも優れている。 The composite material for molding fiber reinforced plastics, which is a nonwoven fabric structure containing thermoplastic polyetherimide fibers with excellent heat resistance and flame retardancy as matrix resin components and inorganic fibers as reinforcing fiber components, is a surface layer. Since the fiber components of the parts are mainly bonded and fixed with a small amount of binder, the handleability in the processing process is also excellent.
 本発明の繊維強化プラスチック成形用複合材は、高強度・高耐熱性、優れた難燃性を有する繊維強化樹脂成形体に成形することができるので、軽量で高強度の複合材料が求められているスポーツ用品、レジャー用品、航空機用材料等として有用である。 Since the fiber-reinforced plastic molding composite material of the present invention can be molded into a fiber-reinforced resin molded article having high strength, high heat resistance and excellent flame retardancy, a lightweight and high-strength composite material is required. It is useful as sports equipment, leisure equipment, aircraft materials, etc.
 本明細書で引用した全ての刊行物、特許及び特許出願をそのまま参考として本明細書にとり入れるものとする。 All publications, patents and patent applications cited in this specification shall be incorporated into this specification as they are.
1:不織布を構成する繊維
2:水掻き膜状バインダー
1: Fiber constituting non-woven fabric 2: Drip film binder

Claims (26)

  1.  ガラス繊維及び炭素繊維から選ばれる少なくとも1種の無機繊維よりなる強化繊維成分と、限界酸素指数が25以上であり、繊維径が30μm以下で且つ前記強化繊維の繊維径の4倍以下である熱可塑性スーパーエンプラ繊維よりなるマトリックス樹脂成分とを含有することを特徴とする繊維強化プラスチック成形用複合材。 Reinforcing fiber component comprising at least one inorganic fiber selected from glass fiber and carbon fiber, heat having a limiting oxygen index of 25 or more, a fiber diameter of 30 μm or less, and 4 times or less of the fiber diameter of the reinforcing fiber A fiber-reinforced plastic molding composite comprising a matrix resin component made of a plastic super engineering plastic fiber.
  2.  JAPAN TAPPI 紙パルプ試験方法No.5-2に規定される透気度が200秒以下である請求項1に記載の繊維強化プラスチック成形用複合材。 JAPAN TAPPI Paper Pulp Test Method No. The fiber-reinforced plastic molding composite material according to claim 1, wherein the air permeability defined in 5-2 is 200 seconds or less.
  3.  前記スーパーエンプラ繊維と前記強化繊維が共にチョップドストランドであり、乾式不織布法又は湿式不織布法によって不織布シートとされていることを特徴とする請求項1又は2に記載の繊維強化プラスチック成形用複合材。 The composite material for fiber-reinforced plastic molding according to claim 1 or 2, wherein both the super engineering plastic fiber and the reinforcing fiber are chopped strands and are formed into a nonwoven fabric sheet by a dry nonwoven fabric method or a wet nonwoven fabric method.
  4.  前記繊維強化プラスチック成形用複合材中に10質量%までの量のバインダー成分を含有することを特徴とする請求項1~3のいずれか1項に記載の繊維強化プラスチック成形用複合材。 The fiber-reinforced plastic molding composite material according to any one of claims 1 to 3, wherein the fiber-reinforced plastic molding composite material contains a binder component in an amount of up to 10% by mass.
  5.  前記繊維強化プラスチック成形用複合材中のバインダー成分が、繊維強化プラスチック成形用複合材の表層部にその多くの部分が存在するように偏在していることを特徴とする請求項4に記載の繊維強化プラスチック成形用複合材。 5. The fiber according to claim 4, wherein the binder component in the fiber-reinforced plastic molding composite material is unevenly distributed so that many portions thereof are present on a surface layer portion of the fiber-reinforced plastic molding composite material. Composite material for molding reinforced plastics.
  6.  前記バインダー成分が、前記スーパーエンプラ繊維よりなるマトリックス樹脂成分と相溶性を有し、且つ前記複合材を250℃以上430℃以下の温度で加熱加圧成形したときに前記スーパーエンプラ繊維との間に界面が存在せず一体化する樹脂成分であることを特徴とする請求項4又は5に記載の繊維強化プラスチック成形用複合材。 The binder component is compatible with the matrix resin component made of the super engineering plastic fiber, and the composite material is heated and pressed at a temperature of 250 ° C. or higher and 430 ° C. or lower between the super engineering plastic fiber. 6. The composite material for molding a fiber-reinforced plastic according to claim 4 or 5, wherein the composite material is an integrated resin component having no interface.
  7.  前記バインダー成分が、該バインダー成分を含有する溶液或いはエマルジョンとして、塗布法或いは含浸法により不織布シートに付与されていることを特徴とする請求項4~6のいずれか1項に記載の繊維強化プラスチック成形用複合材。 The fiber-reinforced plastic according to any one of claims 4 to 6, wherein the binder component is applied to the nonwoven fabric sheet by a coating method or an impregnation method as a solution or an emulsion containing the binder component. Composite material for molding.
  8.  前記スーパーエンプラ繊維の繊維径が1~20μmである請求項1~7のいずれか1項に記載の繊維強化プラスチック成形用複合材。 The fiber-reinforced plastic molding composite material according to any one of claims 1 to 7, wherein a fiber diameter of the super engineering plastic fiber is 1 to 20 µm.
  9.  前記スーパーエンプラ繊維がポリエーテルイミド(PEI)繊維である請求項1~8のいずれか1項に記載の繊維強化プラスチック成形用複合材。 The fiber-reinforced plastic molding composite material according to any one of claims 1 to 8, wherein the super engineering plastic fiber is a polyetherimide (PEI) fiber.
  10.  前記バインダー成分がポリエチレンテレフタレート(PET)又は変性ポリエチレンテレフタレート(PET)を含む請求項9記載の繊維強化プラスチック成形用複合材。 10. The fiber-reinforced plastic molding composite material according to claim 9, wherein the binder component comprises polyethylene terephthalate (PET) or modified polyethylene terephthalate (PET).
  11.  ガラス繊維及び炭素繊維から選ばれる少なくとも1種の無機繊維よりなる強化繊維成分と、限界酸素指数が25以上であり、繊維径が30μm以下で且つ前記強化繊維の繊維径の4倍以下である熱可塑性スーパーエンプラ繊維よりなるマトリックス樹脂成分とを混合して不織布シートを形成する工程を有することを特徴とする繊維強化プラスチック成形用複合材の製造方法。 Reinforcing fiber component comprising at least one inorganic fiber selected from glass fiber and carbon fiber, heat having a limiting oxygen index of 25 or more, a fiber diameter of 30 μm or less, and 4 times or less of the fiber diameter of the reinforcing fiber A method for producing a fiber-reinforced plastic molding composite, comprising a step of mixing a matrix resin component made of plastic super engineering plastic fibers to form a nonwoven fabric sheet.
  12.  前記不織布シートを形成する工程が、乾式不織布法又は湿式不織布法のいずれかの不織布形成工程であることを特徴とする請求項11に記載の繊維強化プラスチック成形用複合材の製造方法。 The method for producing a fiber-reinforced plastic molding composite material according to claim 11, wherein the step of forming the nonwoven fabric sheet is a nonwoven fabric forming step of either a dry nonwoven fabric method or a wet nonwoven fabric method.
  13.  前記不織布シートを形成する工程が、バインダー含有液を使用して全不織布シート中に含まれるバインダー量の多くの部分が不織布シートの表裏面の表層部分に偏在している不織布シートを形成する段階を有することを特徴とする請求項11又は12に記載の繊維強化プラスチック成形用複合材の製造方法。 The step of forming the nonwoven fabric sheet includes a step of forming a nonwoven fabric sheet in which many parts of the binder amount contained in all the nonwoven fabric sheets are unevenly distributed on the front and back surface portions of the nonwoven fabric sheet using a binder-containing liquid. 13. The method for producing a fiber-reinforced plastic molding composite material according to claim 11 or 12, wherein
  14.  前記不織布シートを形成する工程が、前記強化繊維成分と前記スーパーエンプラ繊維よりなるマトリックス樹脂成分を有する不織布シートを、該スーパーエンプラ繊維が部分溶融する条件下で加熱処理する段階を有することを特徴とする請求項11~13のいずれか1項に記載の繊維強化プラスチック成形用複合材の製造方法。 The step of forming the nonwoven fabric sheet includes a step of heat-treating the nonwoven fabric sheet having a matrix resin component composed of the reinforcing fiber component and the super engineering plastic fiber under conditions in which the super engineering plastic fiber is partially melted. The method for producing a fiber-reinforced plastic molding composite material according to any one of claims 11 to 13.
  15.  前記請求項1~10のいずれか1項に記載されている繊維強化プラスチック成形用複合材を、前記スーパーエンプラ繊維よりなるマトリックス樹脂成分が溶融する条件下で加圧加熱成形することにより形成されている、繊維強化プラスチック成形体。 The fiber reinforced plastic molding composite material according to any one of claims 1 to 10 is formed by pressure and heat molding under a condition in which a matrix resin component made of the super engineering plastic fiber melts. A fiber-reinforced plastic molding.
  16.  無機繊維よりなる強化繊維成分とポリエーテルイミド繊維よりなるマトリックス樹脂繊維成分と、バインダー成分を含有する不織布状シートよりなり、該不織布状シートの表層部における繊維成分同士が、主として繊維成分同士の交点に水掻き膜状に局在する前記バインダー成分によって結合されていることを特徴とする、繊維強化プラスチック成形用複合材。 Reinforced fiber component made of inorganic fiber, matrix resin fiber component made of polyetherimide fiber, and non-woven sheet containing binder component, and the fiber components in the surface layer part of the non-woven sheet are mainly intersections of the fiber components A fiber-reinforced plastic molding composite material, wherein the composite material is bonded to the binder component localized in the form of a water-slipping film.
  17.  前記バインダー成分のうちの前記表層部における繊維成分同士の交点に水掻き膜状に局在するバインダー成分が、モノマー成分としてメチルメタクリレート及びエチルメタクリレートから選ばれる少なくとも1種を含有する共重合体を含有することを特徴とする、請求項16に記載の繊維強化プラスチック成形用複合材。 Among the binder components, the binder component that is localized in the form of a scraping film at the intersection of the fiber components in the surface layer portion contains a copolymer containing at least one selected from methyl methacrylate and ethyl methacrylate as the monomer component. The composite material for fiber-reinforced plastic molding according to claim 16, wherein:
  18.  前記バインダー成分の少なくとも1種が、前記ポリエーテルイミド繊維成分と加熱溶融状態で相溶性である粒子状又は繊維状の熱可塑性樹脂であることを特徴とする、請求項16又は17に記載の繊維強化プラスチック成形用複合材。 The fiber according to claim 16 or 17, wherein at least one of the binder components is a particulate or fibrous thermoplastic resin that is compatible with the polyetherimide fiber component in a heated and melted state. Composite material for molding reinforced plastics.
  19.  前記粒子状又は繊維状の熱可塑性樹脂が、ポリエステル樹脂及び変性ポリエステル樹脂から選ばれる少なくとも1種を含有することを特徴とする請求項18に記載の繊維強化プラスチック成形用複合材。 19. The fiber-reinforced plastic molding composite material according to claim 18, wherein the particulate or fibrous thermoplastic resin contains at least one selected from a polyester resin and a modified polyester resin.
  20.  前記バインダー成分の総含有量が0.3質量%以上10質量%以下であることを特徴とする、請求項16~19のいずれか1項に記載の繊維強化プラスチック成形用複合材。 The composite material for fiber-reinforced plastic molding according to any one of claims 16 to 19, wherein the total content of the binder component is 0.3 mass% or more and 10 mass% or less.
  21.  バインダー成分が、モノマー成分としてメチルメタクリレート及びエチルメタクリレートから選ばれる少なくとも1種を含有する共重合体と、繊維状ポリエステル樹脂及び繊維状変性ポリエステル樹脂から選ばれる少なくとも1種の繊維状樹脂とを含有し、前記共重合体の繊維強化プラスチック成形用複合材に対する含有量が0.7~4.0質量%であり、前記繊維状樹脂の繊維強化プラスチック成形用複合材に対する含有量が1.5質量%~6質量%であり、バインダー成分の総含有量が8質量%以下である請求項20に記載の繊維強化プラスチック成形用複合材。 The binder component contains a copolymer containing at least one selected from methyl methacrylate and ethyl methacrylate as a monomer component, and at least one fibrous resin selected from a fibrous polyester resin and a fibrous modified polyester resin. The content of the copolymer with respect to the fiber-reinforced plastic molding composite is 0.7 to 4.0% by mass, and the content of the fibrous resin with respect to the fiber-reinforced plastic molding composite is 1.5% by mass. The composite material for fiber-reinforced plastic molding according to claim 20, wherein the composite material is -6 mass% and the total content of binder components is 8 mass% or less.
  22.  表層部間の中間層における前記繊維成分間はポリエーテルイミド繊維成分と加熱溶融状態で相溶性である粒子状又は繊維状の熱可塑性樹脂によって接着されていることを特徴とする、請求項16~21のいずれか1項に記載の繊維強化プラスチック成形用複合材。 The fiber component in the intermediate layer between the surface layer portions is bonded to the polyetherimide fiber component by a particulate or fibrous thermoplastic resin that is compatible in the heat-melted state. 21. The fiber-reinforced plastic molding composite material according to any one of 21.
  23.  請求項16~22のいずれか1項の繊維強化プラスチック成形用複合材を製造するための方法であって、前記無機繊維よりなる強化繊維成分とポリエーテルイミド繊維よりなるマトリックス樹脂繊維成分とを有する不織布に、溶液型又はエマルジョン型のバインダー液を付与し、その後、不織布を急速に加熱してバインダー液の主要部を不織布表層部に移行させつつ不織布全体を乾燥させることによって、不織布の表層部の繊維成分同士の交点を水掻き膜状に局在するバインダーで結合させることを特徴とする、繊維強化プラスチック成形用複合材の製造方法。 A method for producing a fiber-reinforced plastic molding composite material according to any one of claims 16 to 22, comprising a reinforcing fiber component comprising the inorganic fibers and a matrix resin fiber component comprising the polyetherimide fibers. By applying a solution-type or emulsion-type binder liquid to the nonwoven fabric, and then drying the entire nonwoven fabric while rapidly heating the nonwoven fabric to transfer the main part of the binder liquid to the nonwoven fabric surface layer portion, A method for producing a composite material for molding a fiber-reinforced plastic, characterized in that the intersections of fiber components are bound together by a binder that is localized in the form of a water web.
  24.  前記請求項16~22のいずれかに記載の繊維強化プラスチック成形用複合材を、250℃以上430℃以下の温度で加熱加圧成形することにより形成されている、繊維強化プラスチック成形体。 23. A fiber-reinforced plastic molded article formed by heat-pressing the composite material for molding a fiber-reinforced plastic according to claim 16 at a temperature of 250 ° C. or higher and 430 ° C. or lower.
  25.  ASTM E662に準拠した有炎法における20分燃焼後の発煙濃度が、43DS以下である、請求項24に記載の繊維強化プラスチック成形体。 The fiber-reinforced plastic molded product according to claim 24, wherein the smoke concentration after 20 minutes of combustion in a flammable method in accordance with ASTM E662 is 43DS or less.
  26.  JIS K-7102-2に準拠して測定した限界酸素指数が40以上である、請求項24又は25に記載の繊維強化プラスチック成形体。 26. The fiber-reinforced plastic molded article according to claim 24 or 25, wherein a limiting oxygen index measured according to JIS K-7102-2 is 40 or more.
PCT/JP2013/055280 2012-02-29 2013-02-28 Composite material for molding a fiber-reinforced plastic and fiber-reinforced plastic molded bodies WO2013129540A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014502347A JP5949895B2 (en) 2012-02-29 2013-02-28 Fiber reinforced plastic molding composite and fiber reinforced plastic molding

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP2012044141 2012-02-29
JP2012-044141 2012-02-29
JP2012093479 2012-04-17
JP2012-093479 2012-04-17
JP2012155590 2012-07-11
JP2012-155590 2012-07-11
JP2012280652 2012-12-25
JP2012-280652 2012-12-25

Publications (1)

Publication Number Publication Date
WO2013129540A1 true WO2013129540A1 (en) 2013-09-06

Family

ID=49082733

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2013/055280 WO2013129540A1 (en) 2012-02-29 2013-02-28 Composite material for molding a fiber-reinforced plastic and fiber-reinforced plastic molded bodies
PCT/JP2013/055281 WO2013129541A1 (en) 2012-02-29 2013-02-28 Sheet for fiber-reinforced plastic molded body, and molded body thereof

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/055281 WO2013129541A1 (en) 2012-02-29 2013-02-28 Sheet for fiber-reinforced plastic molded body, and molded body thereof

Country Status (3)

Country Link
JP (5) JP5949895B2 (en)
TW (2) TW201343407A (en)
WO (2) WO2013129540A1 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014021084A1 (en) * 2012-07-30 2014-02-06 株式会社クラレ Heat-resistant resin composite, method for producing same, and non-woven fabric for heat-resistant resin composite
JP2014062143A (en) * 2012-09-19 2014-04-10 Teijin Ltd Fiber-reinforced plastic
JP2016020421A (en) * 2014-07-14 2016-02-04 王子ホールディングス株式会社 Substrate for fiber reinforced plastic molded body and fiber reinforced plastic molded body
JP2016079401A (en) * 2014-10-17 2016-05-16 王子ホールディングス株式会社 Fiber-reinforced plastic molding and substrate for fiber-reinforced plastic molding
WO2016121136A1 (en) * 2015-01-29 2016-08-04 王子ホールディングス株式会社 Sheet for fiber-reinforced plastic molded body
JP2016150981A (en) * 2015-02-18 2016-08-22 王子ホールディングス株式会社 Base material for fiber-reinforced plastic molding and fiber-reinforced plastic molding
CN106003937A (en) * 2016-05-04 2016-10-12 江苏宝光新型材料科技有限公司 Plate production equipment and method
WO2018117188A1 (en) * 2016-12-22 2018-06-28 東レ株式会社 Structure body
CN109996914A (en) * 2016-11-18 2019-07-09 株式会社可乐丽 Absorb sound heat-insulating material

Families Citing this family (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201343407A (en) * 2012-02-29 2013-11-01 Oji Holdings Corp Sheet for fiber-reinforced plastic molded body, and molded body thereof
CN105324225B (en) * 2013-06-21 2017-03-08 三菱电机株式会社 Fibre reinforced plastics, the elevator manufacture method of rectification campaign cover and fibre reinforced plastics
JP6131779B2 (en) * 2013-08-27 2017-05-24 王子ホールディングス株式会社 Thermoplastic prepreg and method for producing thermoplastic prepreg
JP6163970B2 (en) * 2013-08-27 2017-07-19 王子ホールディングス株式会社 Decorative molded product and method for producing decorative molded product
JP6142737B2 (en) * 2013-08-27 2017-06-07 王子ホールディングス株式会社 Thermoplastic prepreg and method for producing thermoplastic prepreg
JP6369287B2 (en) * 2013-10-28 2018-08-08 王子ホールディングス株式会社 Fiber reinforced plastic sheet
JP6235308B2 (en) * 2013-11-14 2017-11-22 株式会社クラレ Reinforcing fiber substrate for fiber reinforced resin composite and molded body thereof
JP6664869B2 (en) * 2014-05-19 2020-03-13 王子ホールディングス株式会社 Manufacturing method of multilayer molded products
JP6493147B2 (en) * 2014-10-20 2019-04-03 王子ホールディングス株式会社 Nonwoven fabric, method for producing nonwoven fabric, and fiber-reinforced plastic molded body
WO2016143645A1 (en) * 2015-03-06 2016-09-15 国立大学法人 東京大学 Chopped tape fiber-reinforced thermoplastic resin sheet material and method for preparing same
JP6413851B2 (en) * 2015-03-06 2018-10-31 王子ホールディングス株式会社 Substrate for fiber reinforced plastic molding and fiber reinforced plastic molding
JP6413945B2 (en) * 2015-06-16 2018-10-31 王子ホールディングス株式会社 Substrate for fiber-reinforced plastic molded body, method for producing substrate for fiber-reinforced plastic molded body, and fiber-reinforced plastic molded body
JP6788340B2 (en) * 2015-11-27 2020-11-25 株式会社ユウホウ Prepreg sheet
JP6511674B2 (en) * 2016-02-01 2019-05-15 株式会社日本製鋼所 Prepreg manufacturing method
WO2017213477A1 (en) * 2016-06-10 2017-12-14 (주)엘지하우시스 Molded body and method for manufacturing same
US11198273B2 (en) 2016-06-10 2021-12-14 Lg Hausys, Ltd. Sandwich panel and a manufacturing method thereof
CN116791276A (en) * 2016-06-10 2023-09-22 乐金华奥斯株式会社 Molded body and method for producing the same
WO2017213481A1 (en) * 2016-06-10 2017-12-14 (주)엘지하우시스 Molded body and method for manufacturing same
KR102243565B1 (en) 2016-06-10 2021-04-23 (주)엘지하우시스 A molded object and a manufacturing method thereof
US11001035B2 (en) 2016-06-10 2021-05-11 Lg Hausys, Ltd. Sandwich panel and a manufacturing method thereof
JPWO2018021336A1 (en) * 2016-07-28 2018-08-02 住友ベークライト株式会社 COMPOSITE MOLDED ARTICLE, INTERMEDIATE FOR COMPOSITE MOLDED ARTICLE, METHOD FOR PRODUCING COMPOSITE MOLDED ARTICLE, AND INTERIOR MATERIAL FOR TRANSPORTATION EQUIPMENT
JP6906937B2 (en) * 2016-12-12 2021-07-21 株式会社ユウホウ Prepreg sheet
JP2018145222A (en) * 2017-03-01 2018-09-20 住友ベークライト株式会社 Fiber-reinforced composite material and method for producing fiber-reinforced composite material
EP3385069A1 (en) * 2017-04-03 2018-10-10 Quadrant Plastic Composites AG Method of forming a flat composite component and composite component produced in this way
JP6394732B2 (en) * 2017-05-09 2018-09-26 王子ホールディングス株式会社 Thermoplastic prepreg and method for producing thermoplastic prepreg
JP7368929B2 (en) * 2017-08-08 2023-10-25 株式会社日本製鋼所 Manufacturing method of fiber reinforced resin intermediate material
JP6652171B2 (en) * 2018-09-27 2020-02-19 王子ホールディングス株式会社 Substrate for fiber-reinforced plastic molding and fiber-reinforced plastic molding
JP6691988B2 (en) * 2019-03-18 2020-05-13 株式会社日本製鋼所 Prepreg manufacturing method
JP7275962B2 (en) * 2019-07-25 2023-05-18 三菱瓦斯化学株式会社 long flat material
JP2023029174A (en) * 2021-08-20 2023-03-03 イビデン株式会社 Heat transfer suppression sheet, manufacturing method therefor, and assembly battery
JP2023092373A (en) * 2021-12-21 2023-07-03 イビデン株式会社 Heat transfer suppression sheet and battery pack

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03275763A (en) * 1990-03-26 1991-12-06 Dainippon Ink & Chem Inc Composite molding material and preparation thereof
WO2003091015A1 (en) * 2002-04-23 2003-11-06 Toray Industries, Inc. Prepreg, process for producing the same, and molded article
JP2007269308A (en) * 2006-03-07 2007-10-18 Toray Ind Inc Interior trimming material for aircraft
JP2008231290A (en) * 2007-03-22 2008-10-02 Toray Ind Inc Movable body interior material
JP4708330B2 (en) * 2003-04-25 2011-06-22 フレンツェリート−ヴェルケ ゲーエムベーハー ウントゥ コー.カーゲー Non-woven mat, method for producing the non-woven mat, and fiber composite material

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02251651A (en) * 1989-03-20 1990-10-09 Nitto Boseki Co Ltd Fibrous sheet-like material for frp and preparation thereof
JPH02255735A (en) * 1989-03-29 1990-10-16 Asahi Chem Ind Co Ltd Fiber reinforced composite sheet
JP2705202B2 (en) * 1989-03-31 1998-01-28 日東紡績株式会社 Fabric treated with amine compound and method for producing the same
JPH11100767A (en) * 1997-09-29 1999-04-13 Shin Kobe Electric Mach Co Ltd Base material for laminate board and its production, and prepreg and laminate board
JP2001146637A (en) * 1999-11-17 2001-05-29 Unitika Ltd Polyimide fiber for binder and method for producing the same
JP4324649B2 (en) * 2001-11-28 2009-09-02 福井県 Fiber reinforced thermoplastic resin sheet, structural material using the same, and method for producing fiber reinforced thermoplastic resin sheet
JP4613298B2 (en) * 2004-12-01 2011-01-12 東邦テナックス株式会社 Composite sheet and composite material having smooth surface using the same
JP2008307818A (en) * 2007-06-15 2008-12-25 Kurabo Ind Ltd Multiaxial material for fiber-reinforced thermoplastic resin, and molded product
JP2010037358A (en) * 2008-07-31 2010-02-18 Toray Ind Inc Method for manufacturing fiber-reinforced molded substrate
JP5499548B2 (en) * 2009-07-17 2014-05-21 三菱樹脂株式会社 Carbon fiber nonwoven fabric, carbon fiber reinforced resin sheet, and carbon fiber reinforced resin molded body
JP5571943B2 (en) * 2009-12-18 2014-08-13 株式会社クラレ Heat resistant flame retardant paper
JP2011157637A (en) * 2010-01-29 2011-08-18 Toray Ind Inc Papermaking substrate and method for producing fiber-reinforced forming substrate
EP2561127B1 (en) * 2010-04-22 2015-01-21 3M Innovative Properties Company Nonwoven nanofiber webs containing chemically active particulates and methods of making and using same
JP5737870B2 (en) * 2010-06-29 2015-06-17 三菱重工業株式会社 Non-woven materials for fiber reinforced composites
JP6054866B2 (en) * 2010-07-07 2016-12-27 スリーエム イノベイティブ プロパティズ カンパニー Airlaid non-woven electret fiber web with pattern, and method for making and using the same
KR101875239B1 (en) * 2010-07-29 2018-07-05 주식회사 쿠라레 Amorphous heat fusion fiber, fiber structure body, and heat-resistant molded article
KR20130109134A (en) * 2010-09-14 2013-10-07 사빅 이노베이티브 플라스틱스 아이피 비.브이. Reinforced thermoplastic articles, compositions for the manufacture of the articles, methods of manufacture, and articles formed therefrom
TW201343407A (en) * 2012-02-29 2013-11-01 Oji Holdings Corp Sheet for fiber-reinforced plastic molded body, and molded body thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03275763A (en) * 1990-03-26 1991-12-06 Dainippon Ink & Chem Inc Composite molding material and preparation thereof
WO2003091015A1 (en) * 2002-04-23 2003-11-06 Toray Industries, Inc. Prepreg, process for producing the same, and molded article
JP4708330B2 (en) * 2003-04-25 2011-06-22 フレンツェリート−ヴェルケ ゲーエムベーハー ウントゥ コー.カーゲー Non-woven mat, method for producing the non-woven mat, and fiber composite material
JP2007269308A (en) * 2006-03-07 2007-10-18 Toray Ind Inc Interior trimming material for aircraft
JP2008231290A (en) * 2007-03-22 2008-10-02 Toray Ind Inc Movable body interior material

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2014021084A1 (en) * 2012-07-30 2016-07-21 株式会社クラレ Heat resistant resin composite, method for producing the same, and nonwoven fabric for heat resistant resin composite
WO2014021084A1 (en) * 2012-07-30 2014-02-06 株式会社クラレ Heat-resistant resin composite, method for producing same, and non-woven fabric for heat-resistant resin composite
JP2018111914A (en) * 2012-07-30 2018-07-19 株式会社クラレ Heat resistant resin composite
JP2014062143A (en) * 2012-09-19 2014-04-10 Teijin Ltd Fiber-reinforced plastic
JP2016020421A (en) * 2014-07-14 2016-02-04 王子ホールディングス株式会社 Substrate for fiber reinforced plastic molded body and fiber reinforced plastic molded body
JP2019130910A (en) * 2014-10-17 2019-08-08 王子ホールディングス株式会社 Fiber-reinforced plastic molding and substrate for fiber-reinforced plastic molding
JP2016079401A (en) * 2014-10-17 2016-05-16 王子ホールディングス株式会社 Fiber-reinforced plastic molding and substrate for fiber-reinforced plastic molding
WO2016121136A1 (en) * 2015-01-29 2016-08-04 王子ホールディングス株式会社 Sheet for fiber-reinforced plastic molded body
JP2016150981A (en) * 2015-02-18 2016-08-22 王子ホールディングス株式会社 Base material for fiber-reinforced plastic molding and fiber-reinforced plastic molding
CN106003937A (en) * 2016-05-04 2016-10-12 江苏宝光新型材料科技有限公司 Plate production equipment and method
JPWO2018092888A1 (en) * 2016-11-18 2019-10-17 株式会社クラレ Sound absorbing insulation
CN109996914A (en) * 2016-11-18 2019-07-09 株式会社可乐丽 Absorb sound heat-insulating material
EP3540109A4 (en) * 2016-11-18 2019-11-06 Kuraray Co., Ltd. Acoustic and thermal insulation
WO2018117188A1 (en) * 2016-12-22 2018-06-28 東レ株式会社 Structure body
JPWO2018117188A1 (en) * 2016-12-22 2019-10-31 東レ株式会社 Structure
US11312825B2 (en) 2016-12-22 2022-04-26 Toray Industries, Inc. Structure

Also Published As

Publication number Publication date
JP6432615B2 (en) 2018-12-05
JP6020612B2 (en) 2016-11-02
JP5949896B2 (en) 2016-07-13
JP2017125192A (en) 2017-07-20
JP5949895B2 (en) 2016-07-13
JPWO2013129541A1 (en) 2015-07-30
JP2015071794A (en) 2015-04-16
JPWO2013129540A1 (en) 2015-07-30
JP2015110791A (en) 2015-06-18
WO2013129541A1 (en) 2013-09-06
TW201343407A (en) 2013-11-01
JP6090342B2 (en) 2017-03-08
TW201343733A (en) 2013-11-01

Similar Documents

Publication Publication Date Title
JP6432615B2 (en) Fiber reinforced plastic molding composite and fiber reinforced plastic molding
US10889070B2 (en) Composite material including unidirectional continuous fibers and thermoplastic resin
EP1338406B1 (en) Moulding materials and method of forming such materials
JP5774788B2 (en) Heat-resistant paper and method for producing the same, fiber-reinforced heat-resistant resin molding and precursor thereof, and methods for producing the same
JP6087545B2 (en) Fiber reinforced plastic molding substrate
JP6142737B2 (en) Thermoplastic prepreg and method for producing thermoplastic prepreg
JP2016210080A (en) Molding and method for producing the same
JP5932576B2 (en) Fiber reinforced plastic molding substrate
JP6225558B2 (en) Sheet for fiber-reinforced plastic molded body and fiber-reinforced plastic molded body
JP6225556B2 (en) Sheet for fiber-reinforced plastic molded body and fiber-reinforced plastic molded body
JP6131779B2 (en) Thermoplastic prepreg and method for producing thermoplastic prepreg
JP6326739B2 (en) Honeycomb sandwich structure and method for manufacturing honeycomb sandwich structure
JP6311507B2 (en) Substrate for fiber reinforced plastic molding and fiber reinforced plastic molding
JP6213347B2 (en) Fiber reinforced plastic sheet
JP6681041B2 (en) Reinforced fiber composite material
JP2015044316A (en) Honeycomb sandwich structure and method for producing honeycomb sandwich structure
JP6394732B2 (en) Thermoplastic prepreg and method for producing thermoplastic prepreg
JP6528824B2 (en) Sheet for fiber-reinforced plastic molding and fiber-reinforced plastic molding
JP6225557B2 (en) Sheet for fiber-reinforced plastic molded body and fiber-reinforced plastic molded body
JP2005213704A (en) Wet type aramid fiber non-woven fabric for frp
JP2017113956A (en) Method for molding fiber-reinforced thermoplastic resin, and molded article

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13755259

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014502347

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13755259

Country of ref document: EP

Kind code of ref document: A1