JP7368929B2 - Manufacturing method of fiber reinforced resin intermediate material - Google Patents

Manufacturing method of fiber reinforced resin intermediate material Download PDF

Info

Publication number
JP7368929B2
JP7368929B2 JP2017152955A JP2017152955A JP7368929B2 JP 7368929 B2 JP7368929 B2 JP 7368929B2 JP 2017152955 A JP2017152955 A JP 2017152955A JP 2017152955 A JP2017152955 A JP 2017152955A JP 7368929 B2 JP7368929 B2 JP 7368929B2
Authority
JP
Japan
Prior art keywords
resin powder
base material
resin
fiber base
fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017152955A
Other languages
Japanese (ja)
Other versions
JP2019031612A (en
Inventor
秋夫 大野
拓也 岩本
宏 伊東
晃 田代
拓也 二山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Steel Works Ltd
Shinmaywa Industries Ltd
Original Assignee
Japan Steel Works Ltd
Shinmaywa Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Steel Works Ltd, Shinmaywa Industries Ltd filed Critical Japan Steel Works Ltd
Priority to JP2017152955A priority Critical patent/JP7368929B2/en
Publication of JP2019031612A publication Critical patent/JP2019031612A/en
Application granted granted Critical
Publication of JP7368929B2 publication Critical patent/JP7368929B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Reinforced Plastic Materials (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Description

本発明は、揮発成分を含む樹脂粉体を強化繊維基材に付着させると共に、樹脂中の揮発成分除去工程を経た後に、その樹脂粉体を強化繊維基材に融着させてなる繊維強化樹脂中間材を製造する製造方法に関する。 The present invention is a fiber-reinforced resin obtained by attaching a resin powder containing volatile components to a reinforcing fiber base material, and then fusing the resin powder to the reinforcing fiber base material after passing through a step of removing the volatile components in the resin. The present invention relates to a manufacturing method for manufacturing an intermediate material.

炭素繊維、ガラス繊維、天然繊維などの強化繊維からなる強化繊維基材に樹脂を含浸させて複合化した繊維強化樹脂が種々の分野・用途に広く利用されており、航空機部品や自動車部品などの機械強度部品にもその適用が進められている。このような機械強度部品においては、所望の強度・特性を発揮させるために、樹脂の強化繊維基材内への含浸が所定の繊維体積含有率で行われ、その部品中に強化繊維と樹脂とが接触していない欠損部位やボイドなどの欠陥の少ないものが求められる。かかるボイドなど欠陥の少ない繊維強化樹脂成形品の成形方法として、強化繊維基材に樹脂粉体を溶着・含浸させる各種方法が提案されている。 Fiber-reinforced resins, which are composites made by impregnating resin into reinforcing fiber base materials made of reinforcing fibers such as carbon fibers, glass fibers, and natural fibers, are widely used in various fields and applications, and are used in aircraft parts, automobile parts, etc. Its application is also progressing to mechanically strong parts. In such mechanically strong parts, in order to exhibit the desired strength and characteristics, resin is impregnated into the reinforcing fiber base material at a predetermined fiber volume content, and the reinforcing fibers and resin are combined in the part. A product with fewer defects such as missing parts and voids where the two do not touch is required. Various methods for welding and impregnating resin powder onto reinforcing fiber base materials have been proposed as methods for molding fiber-reinforced resin molded products with fewer defects such as voids.

例えば、特許文献1に、開繊された強化繊維で形成される強化繊維基材の外面部に樹脂を付着させ、その樹脂の融点以上に加熱して前記樹脂を前記強化繊維基材に含浸させた繊維強化樹脂中間材であって、前記強化繊維基材は、外面に開口した空隙を有し、前記樹脂が半含浸状態にある繊維強化樹脂中間材が提案されている。この繊維強化樹脂中間材において、半含浸状態の強化繊維基材からなる繊維強化樹脂中間材は、強化繊維基材に樹脂粉体を静電付着させ、これを加熱し含浸させて作製するのがよいとされる。また、加熱操作において強化繊維基材に付着している樹脂粉体は、強化繊維基材の表面で溶融するが、ミクロ的な付着状況に応じた分布を保つので、強化繊維基材の表面全体を被うようなフィルム状の溶融層は形成されないとされる。このため、繊維強化樹脂中間材は、賦形性と同時に含浸性に富むので、これを積層し、加熱及び加圧することにより、複雑な形状であっても所望の繊維体積含有率を有し、含浸が充分に行われボイドなどの欠陥の少ない繊維強化樹脂成形品を成形することができる。 For example, in Patent Document 1, a resin is attached to the outer surface of a reinforcing fiber base material formed of spread reinforcing fibers, and the reinforcing fiber base material is impregnated with the resin by heating to a temperature higher than the melting point of the resin. A fiber-reinforced resin intermediate material has been proposed in which the reinforcing fiber base material has voids open to the outer surface and is semi-impregnated with the resin. In this fiber-reinforced resin intermediate material, the fiber-reinforced resin intermediate material made of a reinforcing fiber base material in a semi-impregnated state is produced by electrostatically depositing resin powder on the reinforcing fiber base material and heating it to impregnate it. It is considered good. In addition, during the heating operation, the resin powder adhering to the reinforcing fiber base material melts on the surface of the reinforcing fiber base material, but it maintains a distribution according to the microscopic adhesion status, so the entire surface of the reinforcing fiber base material is melted. It is said that no film-like molten layer covering the surface is formed. For this reason, fiber-reinforced resin intermediate materials have both shapeability and impregnability, so by laminating them, heating and pressurizing them, they can have a desired fiber volume content even if they have a complex shape. It is possible to form fiber-reinforced resin molded articles with sufficient impregnation and fewer defects such as voids.

特許文献2に、連続モノフィラメントよりなる強化繊維束をガス流動槽内で開繊させる工程と、開繊した強化繊維を樹脂粉体が充填された容器内を緊張状態にて通過させることにより、その強化繊維に樹脂粉体を付着させる工程と、樹脂粉体が付着した強化繊維を加熱装置に導いてシート化する工程からなる繊維複合シートの製造方法が提案されている。この繊維複合シートの製造方法においては、開繊工程にて開繊した強化繊維を、樹脂粉体が充填された容器内を緊張状態にて通過させるので、その強化繊維に樹脂粉体を幅方向に均一な厚さに付着させることができる。そして、この樹脂粉体が付着した強化繊維を加熱装置に導いてシート化するので、幅方向に肉厚が均一で、外観及び強度に優れた繊維複合シートを得ることができる。この加熱装置としては加熱ロール、熱風、遠赤外線等の凡用加熱手段が使用でき、加熱温度は樹脂粉体の種類、加熱時間、繊維複合シートの用途等により適宜選択することができるとされる。 Patent Document 2 describes a process of opening a reinforcing fiber bundle made of continuous monofilaments in a gas fluidization tank, and passing the opened reinforcing fibers under tension through a container filled with resin powder. A method for producing a fiber composite sheet has been proposed, which includes a step of attaching resin powder to reinforcing fibers, and a step of guiding the reinforcing fibers to which the resin powder has been attached to a heating device to form a sheet. In this method of manufacturing a fiber composite sheet, the reinforcing fibers opened in the opening process are passed under tension through a container filled with resin powder, so that the reinforcing fibers are coated with resin powder in the width direction. can be applied to a uniform thickness. Then, the reinforcing fibers to which the resin powder has adhered are guided to a heating device and formed into a sheet, so that a fiber composite sheet with uniform thickness in the width direction and excellent appearance and strength can be obtained. As this heating device, general heating means such as heating rolls, hot air, and far infrared rays can be used, and the heating temperature can be selected as appropriate depending on the type of resin powder, heating time, purpose of the fiber composite sheet, etc. .

特許文献3に、繊維材よりなるシート状基材を50~300℃に加熱する工程、次いで、該シート状基材の片面側に樹脂粉体を付着させる工程、樹脂粉体が付着した面の反対面の温度を粉体が存在する面より高く加温する工程、しかる後樹脂粉体が付着したシート状基材の樹脂量調整するため、樹脂粉体を存在せしめる工程、さらにこのシート状基材を加熱する工程を有するプリプレグの製造方法が提案されている。このプリプレグの製造方法によれば、シート状基材へ粉体樹脂の含浸を均一にかつ良好に行うことができるので、基材中の気泡が極めて少ないプリプレグ及びボイドのない積層板を得ることができるとされる。 Patent Document 3 describes a step of heating a sheet-like base material made of fibrous material to 50 to 300°C, then a step of attaching resin powder to one side of the sheet-like base material, and a step of attaching the resin powder to one side of the sheet-like base material. A step of heating the opposite side to a higher temperature than the surface on which the powder is present, then a step of making the resin powder exist in order to adjust the amount of resin in the sheet-like base material to which the resin powder has adhered, and then a step of making the sheet-like base material present with the resin powder. A prepreg manufacturing method has been proposed that includes a step of heating the material. According to this prepreg manufacturing method, it is possible to impregnate the sheet-like base material with the powder resin uniformly and well, so it is possible to obtain a prepreg with extremely few air bubbles in the base material and a void-free laminate. It is said that it can be done.

特開2016-78360号公報Japanese Patent Application Publication No. 2016-78360 特開平06-287318号公報Japanese Patent Application Publication No. 06-287318 特開平11-240967号公報Japanese Patent Application Publication No. 11-240967

特許文献1に記載されるように、ボイドなど欠陥の少ない繊維強化樹脂成形品を成形するには賦形性と同時に含浸性に富む繊維強化樹脂中間材を成形することが重要である。また、特許文献2に記載の繊維複合シートの成形、または、特許文献3に記載のプリプレグの成形において記載されるように、開繊した強化繊維又は繊維材よりなるシート状基材に樹脂粉体を均一に付着させることが重要である。しかしながら、樹脂粉体を均一に付着させた繊維強化樹脂中間材やシート状基材から繊維強化樹脂成形品を成形したとき、機械的強度や均質性に問題のある繊維強化樹脂成形品が成形される場合があり、その対策が求められている。 As described in Patent Document 1, in order to mold a fiber-reinforced resin molded product with few defects such as voids, it is important to mold a fiber-reinforced resin intermediate material that is rich in shapeability and impregnability. In addition, as described in the molding of a fiber composite sheet described in Patent Document 2 or the prepreg molding described in Patent Document 3, resin powder is applied to a sheet-like base material made of spread reinforcing fibers or fibrous materials. It is important to apply it evenly. However, when a fiber-reinforced resin molded product is molded from a fiber-reinforced resin intermediate material or sheet-like base material to which resin powder is evenly adhered, the fiber-reinforced resin molded product has problems with mechanical strength and homogeneity. In some cases, countermeasures are required.

本発明は、このような従来の問題点に鑑み、ボイドなどの欠陥が生じ難く、機械的強度に優れて均一な特性を有する繊維強化樹脂成形品を製造することができる繊維強化樹脂中間材の製造方法を提供することを目的とする。 In view of these conventional problems, the present invention provides a fiber-reinforced resin intermediate material that can produce fiber-reinforced resin molded products that are resistant to defects such as voids, have excellent mechanical strength, and have uniform properties. The purpose is to provide a manufacturing method.

本発明者等は、繊維強化樹脂成形品の製造に供される樹脂粉体には、その製造方法又は製造工程によっては、原料由来の揮発成分が重量比率で0.1%以上含まれるものがあり、その揮発成分が繊維強化樹脂成形品の成形工程でガス化して成形品内部のボイドとして残留してしまうことにより、繊維強化樹脂成形品の強度及び均質性に悪影響を及ぼすという知見を得て本発明を完成させた。 The present inventors have discovered that, depending on the manufacturing method or manufacturing process, the resin powder used for manufacturing fiber-reinforced resin molded products may contain 0.1% or more by weight of volatile components derived from raw materials. The present invention was developed based on the knowledge that the volatile components gasify during the molding process of fiber-reinforced resin molded products and remain as voids inside the molded product, which adversely affects the strength and homogeneity of the fiber-reinforced resin molded products. completed.

本発明に係る繊維強化樹指中間材の製造方法は、揮発成分を含む樹脂粉体を強化繊維で形成される強化繊維基材に付着し、これを加熱して前記樹脂粉体を前記強化繊維基材に融着させてなる繊維強化樹指中間材を製造する方法であって、先ず、前記樹脂粉体が付着した強化繊維基材を、前記樹脂粉体が重量減少を示す所定の温度で、前記樹脂粉体の飽和重量減少率に到達するまで加熱し、次に、前記樹脂粉体が付着した強化繊維基材を、前記樹脂粉体の融点以上の所定の温度で、その樹脂粉体を前記強化繊維基材に融着させてなる繊維強化樹指中間材の製造方法。ここで、繊維強化樹指中間材は加熱・加圧されて繊維強化樹脂成形品に賦形されるものであって、飽和重量減少率とは、樹脂粉体が付着した強化繊維基材を、前記繊維強化樹脂成形品に賦形する際に選択される温度範囲のうちで最も高い温度以下の一定温度で加熱しつつその加熱時間に対する重量減少率を測定し、その重量減少率がほぼ一定になる減少率を示すとき、その重量減少率をいう。 The method for producing a fiber-reinforced resin intermediate material according to the present invention includes attaching a resin powder containing a volatile component to a reinforcing fiber base material formed of reinforcing fibers, and heating the resin powder to transfer the resin powder to the reinforcing fibers. A method for producing a fiber-reinforced resin intermediate material which is fused to a base material, the method comprising: first heating a reinforcing fiber base material to which the resin powder has been adhered at a predetermined temperature at which the resin powder exhibits weight loss; , heating the resin powder until it reaches a saturated weight reduction rate, and then heating the reinforcing fiber base material to which the resin powder is attached at a predetermined temperature higher than the melting point of the resin powder. A method for producing a fiber-reinforced resin intermediate material, which comprises fusing the above-mentioned reinforcing fiber base material to the above-mentioned reinforcing fiber base material. Here, the fiber-reinforced resin intermediate material is heated and pressurized to form a fiber-reinforced resin molded product, and the saturated weight reduction rate refers to While heating at a constant temperature below the highest temperature in the temperature range selected when shaping the fiber-reinforced resin molded product, the weight loss rate with respect to the heating time is measured, and the weight loss rate is almost constant. When a weight loss rate is expressed as follows, it refers to the weight loss rate.

また、本発明に係る繊維強化樹指中間材の製造方法は、揮発成分を含む樹脂粉体を強化繊維で形成される強化繊維基材に付着し、これを加熱して前記樹脂粉体を前記強化繊維基材に融着させてなる繊維強化樹指中間材を製造する方法であって、先ず、前記樹脂粉体の飽和重量減少率を求め、その飽和重量減少率を示す加熱温度及び時間を基に前記樹脂粉体中に含まれる揮発成分を揮発させ、次に、前記樹脂粉体が付着した強化繊維基材を、前記樹脂粉体の融点以上の所定の温度に加熱して、その樹脂粉体を前記強化繊維基材に融着させてなる繊維強化樹指中間材の製造方法。ここで、繊維強化樹指中間材は加熱・加圧されて繊維強化樹脂成形品に賦形されるものであって、飽和重量減少率とは、樹脂粉体が付着した強化繊維基材を、前記繊維強化樹脂成形品に賦形する際に選択される温度範囲のうちで最も高い温度以下の一定温度で加熱しつつその加熱時間に対する重量減少率を測定し、その重量減少率がほぼ一定になる減少率を示すとき、その重量減少率をいう。 Further, in the method for producing a fiber-reinforced resin intermediate material according to the present invention, resin powder containing a volatile component is attached to a reinforcing fiber base material formed of reinforcing fibers, and the resin powder is heated to A method for producing a fiber-reinforced resin intermediate material which is fused to a reinforcing fiber base material, in which the saturated weight reduction rate of the resin powder is first determined, and the heating temperature and time that indicate the saturated weight reduction rate are determined. The volatile components contained in the resin powder are evaporated first, and then the reinforcing fiber base material to which the resin powder is attached is heated to a predetermined temperature higher than the melting point of the resin powder to remove the resin. A method for producing a fiber-reinforced resin intermediate material by fusing powder to the reinforcing fiber base material. Here, the fiber-reinforced resin intermediate material is heated and pressurized to form a fiber-reinforced resin molded product, and the saturated weight reduction rate refers to While heating at a constant temperature below the highest temperature in the temperature range selected when shaping the fiber-reinforced resin molded product, the weight loss rate with respect to the heating time is measured, and the weight loss rate is almost constant. When a weight loss rate is expressed as follows, it refers to the weight loss rate.

上記発明において、揮発成分の揮発処理を行った後の含有揮発成分は、重量比率で1,000ppm以下であるのがよい。 In the above invention, it is preferable that the content of the volatile components after the volatile component evaporation treatment is 1,000 ppm or less in terms of weight ratio.

本発明は、繊維強化樹脂中間材の製造において、先ず揮発成分を含む樹脂粉体が付着した強化繊維基材の揮発成分を除去する工程を行った後に、樹脂粉体を強化繊維基材に融着させて繊維強化樹脂中間材を製造する。このため、かかる繊維強化樹脂中間材を用いて繊維強化樹脂成形品を製造する場合に、樹脂粉体に含まれる揮発成分に起因するボイドの発生などの悪影響を排除することができ、強度及び均質性に優れた繊維強化樹脂成形品を製造することができる。 In the production of fiber-reinforced resin intermediate materials, the present invention first performs a step of removing volatile components from a reinforcing fiber base material to which resin powder containing volatile components has adhered, and then fuses the resin powder to the reinforcing fiber base material. A fiber-reinforced resin intermediate material is produced. Therefore, when manufacturing fiber-reinforced resin molded products using such a fiber-reinforced resin intermediate material, it is possible to eliminate adverse effects such as the generation of voids caused by volatile components contained in the resin powder, and improve strength and homogeneity. It is possible to produce fiber-reinforced resin molded products with excellent properties.

PPS樹脂の飽和重量減少率曲線の例を示すグラフである。It is a graph showing an example of a saturated weight loss rate curve of PPS resin.

以下、本発明を実施するための形態について説明する。本発明は、揮発成分を含む樹脂粉体を強化繊維で形成される強化繊維基材に付着し、これを加熱して前記樹脂粉体を前記強化繊維基材に融着させてなる繊維強化樹指中間材を製造する方法に係る発明である。そして、先ず前記樹脂粉体に含まれる揮発成分の除去を行う揮発成分除去工程を行った後に、前記強化繊維基材を前記樹脂粉体の融点以上の所定の温度でその樹脂粉体を前記強化繊維基材に融着させて繊維強化樹脂中間材を製造する発明である。すなわち、本発明は、揮発成分除去工程を行うことに特徴を有する発明である。なお、付着した樹脂粉体の揮発成分を除去する工程と、当該樹脂粉体を強化繊維基材に融着させる工程とは、必ずしも別工程である必要はない。選択する温度によっては揮発成分の除去と強化繊維基材に融着させることとを一工程で行なってもよい。 EMBODIMENT OF THE INVENTION Hereinafter, the form for implementing this invention is demonstrated. The present invention provides a fiber-reinforced resin made by attaching a resin powder containing a volatile component to a reinforcing fiber base material formed of reinforcing fibers, and heating the resin powder to fuse the resin powder to the reinforcing fiber base material. This invention relates to a method of manufacturing a finger intermediate material. After first performing a volatile component removal step of removing volatile components contained in the resin powder, the reinforcing fiber base material is heated to a predetermined temperature higher than the melting point of the resin powder to strengthen the resin powder. This invention involves manufacturing a fiber-reinforced resin intermediate material by fusing it to a fiber base material. That is, the present invention is characterized by performing a volatile component removal step. Note that the step of removing volatile components of the adhered resin powder and the step of fusing the resin powder to the reinforcing fiber base material do not necessarily need to be separate steps. Depending on the temperature selected, removal of volatile components and fusing to the reinforcing fiber base material may be performed in one step.

本発明において揮発成分除去工程とは、強化繊維基材に付着させる樹脂粉体の飽和重量減少率を求め、その飽和重量減少率に基づいて強化繊維基材に付着させた樹脂粉体中に含まれる揮発成分を除去する工程をいう。すなわち、先ず使用する樹脂粉体の飽和重量減少率を求めることが必要である。飽和重量減少率とは、樹脂粉体が付着した強化繊維基材を、繊維強化樹脂成形品に賦形する際に選択される温度範囲のうちで最も高い温度以下の一定温度で加熱しつつその加熱時間に対する重量減少率を測定し、その重量減少率がほぼ一定になる減少率を示すとき、その重量減少率をいう。なお、繊維強化樹脂成形品とは、
繊維強化樹指中間材が加熱・加圧されて賦形されてなるものをいう。また、飽和重量減少率を求める樹脂粉体は、その樹脂に適した乾燥方法により予め乾燥を行ったものが使用される。繊維強化樹脂成形品に賦形する温度とは、本発明により製造される繊維強化樹指中間材は、その製造後に加熱・加圧されて所定の繊維強化樹脂成形品に賦形されるものであり、その賦形時の温度をいう。
In the present invention, the volatile component removal step refers to determining the saturated weight reduction rate of the resin powder attached to the reinforcing fiber base material, and based on the saturated weight reduction rate, the content of the volatile components in the resin powder attached to the reinforcing fiber base material. This is the process of removing volatile components. That is, it is first necessary to determine the saturated weight loss rate of the resin powder to be used. The saturated weight loss rate refers to the rate at which a reinforcing fiber base material to which resin powder is attached is heated at a constant temperature below the highest temperature in the temperature range selected when forming a fiber-reinforced resin molded product. When the weight loss rate with respect to heating time is measured and the weight loss rate is approximately constant, it is referred to as the weight loss rate. Furthermore, fiber-reinforced resin molded products are
A product made by heating and pressurizing a fiber-reinforced resin intermediate material to shape it. Furthermore, the resin powder for which the saturated weight loss rate is to be determined is one that has been previously dried using a drying method suitable for the resin. The temperature at which a fiber-reinforced resin molded product is formed is the temperature at which the fiber-reinforced resin intermediate material produced according to the present invention is heated and pressurized after production to be shaped into a predetermined fiber-reinforced resin molded product. Yes, and refers to the temperature at the time of shaping.

図1は、強化繊維基材に付着させる樹脂粉体を所定温度で加熱し、加熱時間に対する重量減少率を求めたグラフを示す。樹脂粉体は平均粒径40μmのPPS樹脂(融点280℃)からなる。図1において、横軸が加熱時間、縦軸が重量減少率である。図1によると、280~300℃の温度において重量減少率曲線が横軸にほぼ並行になり、加熱時間に拘わらず重量減少率がほぼ一定になる飽和状態になることを示している。一方、加熱温度が350℃及び400℃の場合は重量減少率が直線状に増加しており、400℃の重量減少率曲線の勾配は350℃の勾配より大きくなっている。重量減少率が直線状の増加を示す場合は、樹脂粉体の樹脂成分自体が分解・揮発していると解される。

FIG. 1 shows a graph in which the resin powder to be adhered to the reinforcing fiber base material was heated at a predetermined temperature and the weight loss rate was determined with respect to the heating time. The resin powder consists of PP S resin (melting point 280°C) with an average particle size of 40 μm. In FIG. 1, the horizontal axis represents heating time and the vertical axis represents weight loss rate. According to FIG. 1, at a temperature of 280 to 300°C, the weight loss rate curve becomes almost parallel to the horizontal axis, indicating that a saturated state is reached where the weight loss rate is almost constant regardless of the heating time. On the other hand, when the heating temperature was 350°C and 400°C, the weight loss rate increased linearly, and the slope of the weight loss rate curve at 400°C was greater than the slope at 350°C. When the weight loss rate shows a linear increase, it is understood that the resin component of the resin powder itself is decomposed and volatilized.

図1において、加熱温度300℃の重量減少率曲線(a曲線)と280℃の重量減少率曲線(b曲線)を比較すると、a曲線の傾きは、b曲線の傾きより大きく、約350secで飽和状態になり、飽和重量減少率が約0.16%になっている。一方、b曲線は、約500secで飽和状態になり、飽和重量減少率が約0.18%になっている。重量減少率が飽和して飽和重量減少率を示す温度範囲においては、加熱温度が高い方が速く飽和状態に達している。これらの加熱状態においては、ジクロロベンゼン、γ-ブチロラクトン、キシレンなどが検出されており、樹脂粉体の原料由来の揮発成分が揮発したものと解される。上記成分の沸点は、ジクロロベンゼンが174℃、γ-ブチロラクトンが204℃、キシレンが139℃である。
In Figure 1, when comparing the weight loss rate curve at a heating temperature of 300 °C (curve a) and the weight loss rate curve at a heating temperature of 280 °C (curve b), the slope of curve a is greater than the slope of curve b, and it reaches saturation at about 350 seconds. state, and the saturated weight reduction rate is approximately 0.16%. On the other hand, the b curve reaches a saturated state in about 500 seconds, and the saturated weight loss rate is about 0.18%. In the temperature range where the weight loss rate is saturated and shows the saturated weight loss rate, the higher the heating temperature, the faster the saturated state is reached. Under these heating conditions, dichlorobenzene, γ-butyrolactone, xylene, etc. were detected, and it is understood that volatile components derived from the raw materials of the resin powder were volatilized. The boiling points of the above components are 174°C for dichlorobenzene, 204°C for γ-butyrolactone, and 139°C for xylene.

PPS樹脂からなる繊維強化樹脂中間材を使用して所定の繊維強化樹脂成形品を賦形する場合は、一般に賦形温度300~340℃で賦形される。従って、PPS樹脂からなる樹脂粉体が付着した強化繊維基材の場合において、本発明は、先ず280~300℃の温度、350~500secの揮発成分除去工程を行った後に、前記強化繊維基材を前記樹脂粉体の融点以上の所定の温度でその樹脂粉体を前記強化繊維基材に融着させて繊維強化樹脂中間材を製造する。そして、そのように製造された繊維強化樹脂中間材は、これを300~340℃で所定の繊維強化樹脂成形品に賦形するのが好ましい。かかる繊維強化樹脂中間材によれば、繊維強化樹脂成形品の賦形中に発生する含有揮発成分に基づくガスに起因するボイドの発生、強度又は均質性の劣化を排除することができる。 When a predetermined fiber-reinforced resin molded product is formed using a fiber-reinforced resin intermediate material made of PPS resin, it is generally formed at a forming temperature of 300 to 340°C. Therefore, in the case of a reinforcing fiber base material to which resin powder made of PPS resin is attached, the present invention first performs a volatile component removal step at a temperature of 280 to 300°C for 350 to 500 seconds, and then The resin powder is fused to the reinforcing fiber base material at a predetermined temperature equal to or higher than the melting point of the resin powder to produce a fiber-reinforced resin intermediate material. The fiber-reinforced resin intermediate material thus produced is preferably shaped into a predetermined fiber-reinforced resin molded product at 300 to 340°C. According to such a fiber-reinforced resin intermediate material, it is possible to eliminate the generation of voids and the deterioration of strength or homogeneity due to gases generated from volatile components contained during shaping of a fiber-reinforced resin molded product.

繊維強化樹脂中間材の生産性を考慮すると、揮発成分除去工程の時間は短い方が好ましい。かかる観点から上記a曲線とb曲線を比較すると、a曲線に基づいて揮発成分除去工程を行うのが好ましい。しかしながら、揮発成分除去工程を、例えば350℃(c直線)で行うこともできる。この場合は、飽和重量減少率が0.17%であることを目安に、適正な処理時間を選択して揮発成分除去工程を行う。すなわち、使用するマトリックス樹脂によって重量減少率曲線の形態が異なることを考慮すると、繊維強化樹脂成形品に賦形する際に選択される温度範囲のうちで最も高い温度以下の温度範囲で飽和重量減少率を求め、これに基づいて粉体樹脂に由来する揮発成分を除去する揮発成分除去工程を行うことができる。この揮発成分除去工程は、粉体樹脂が強化繊維基材に付着した状態(微視的に樹脂粉体間に隙間がある状態)で行うので、効率的に粉体樹脂に由来する揮発成分を除去することができる。揮発成分除去工程により揮発成分の揮発処理を行った後の含有揮発成分は、重量比率で1,000ppm以下であるのがよい。 Considering the productivity of the fiber-reinforced resin intermediate material, it is preferable that the time for the volatile component removal step be short. Comparing the above curves a and b from this point of view, it is preferable to perform the volatile component removal step based on curve a. However, the volatile component removal step can also be carried out at, for example, 350° C. (c line). In this case, the volatile component removal step is performed by selecting an appropriate treatment time based on the saturated weight reduction rate of 0.17%. In other words, considering that the shape of the weight loss rate curve differs depending on the matrix resin used, the saturated weight loss will occur in a temperature range below the highest temperature selected when shaping a fiber-reinforced resin molded product. Based on this, a volatile component removal step can be performed to remove volatile components originating from the powder resin. This volatile component removal process is performed with the powder resin attached to the reinforcing fiber base material (with microscopic gaps between the resin powders), so the volatile components originating from the powder resin are efficiently removed. Can be removed. The content of volatile components after the volatile components are evaporated in the volatile component removal step is preferably 1,000 ppm or less in terms of weight ratio.

本発明において、樹脂粉体の強化繊維基材への付着は、静電付着方法を使用するのがよい。樹脂粉体は、平均粒子径が1~500μmのものを使用することができる。樹脂粉体の静電付着は、樹脂粉体が強化繊維基材の外面に付着するように、樹脂粉体を帯電させた状態で強化繊維基材に吹きつけて行う。この静電付着は溶媒などを用いないドライな状態で行われるのが望ましいが、溶媒が含まれていても前記平均粒子径の範囲内に樹脂が微粉化されていれば使用できる。かかる樹脂粉体は、マクロ的に観察すれば強化繊維基材の表面に均一の厚さ、均一の分布で付着している。そして、ミクロ的に観察すれば、束になった多数の強化繊維から形成される強化繊維基材の表面は、樹脂粉体が一層又は複層に付着した部分があり、あるいは樹脂粉体が付着していない部分がある。このため、強化繊維の内部に存在する空隙が強化繊維基材の外面に開口した状態になっており、強化繊維は外面に開口した空隙を有する。かかる状態の樹脂粉体が付着した強化繊維基材を樹脂粉体の融点以上に加熱し、樹脂粉体をその強化繊維基材に融着させてなる繊維強化樹脂中間材は、これを積層して賦形してもその内部に残留する空気やガスを充分に排出することができ、賦形性及び取扱性に優れ、ボイドなどの欠陥が生じ難い繊維強化樹脂成形体を成形することができる。なお、かかる状態は、強化繊維基材を形成する強化繊維の外径とその強化繊維基材の嵩密度に基づいて、強化繊維基材の繊維体積含有率が所定の値になるように、所定の平均粒径の樹脂粉体を、強化繊維基材に静電付着させることによって生じさせることができる。また、強化繊維基材の外面とは、強化繊維基材の開放された表面をいう。 In the present invention, it is preferable to use an electrostatic adhesion method for adhering the resin powder to the reinforcing fiber base material. Resin powder having an average particle diameter of 1 to 500 μm can be used. Electrostatic adhesion of the resin powder is performed by spraying the resin powder in a charged state onto the reinforcing fiber base material so that the resin powder adheres to the outer surface of the reinforcing fiber base material. This electrostatic adhesion is preferably carried out in a dry state without using a solvent, but even if a solvent is included, it can be used as long as the resin is pulverized within the above average particle diameter range. When observed macroscopically, such resin powder adheres to the surface of the reinforcing fiber base material with a uniform thickness and uniform distribution. When observed microscopically, the surface of the reinforcing fiber base material formed from a large number of bundled reinforcing fibers has parts to which resin powder has adhered in one layer or multiple layers, or to which resin powder has adhered. There are parts that I haven't done. Therefore, the voids existing inside the reinforcing fibers are open to the outer surface of the reinforcing fiber base material, and the reinforcing fibers have voids that are open to the outer surface. A fiber-reinforced resin intermediate material is obtained by heating a reinforcing fiber base material to which the resin powder has adhered in such a state to a temperature higher than the melting point of the resin powder and fusing the resin powder to the reinforcing fiber base material. It is possible to sufficiently exhaust the air and gas remaining inside the molded product even when molded using the resin, and it is possible to mold a fiber-reinforced resin molded product that has excellent shapeability and handling properties, and is less likely to have defects such as voids. . In addition, this state is based on the outer diameter of the reinforcing fibers forming the reinforcing fiber base material and the bulk density of the reinforcing fiber base material, so that the fiber volume content of the reinforcing fiber base material becomes a predetermined value. can be produced by electrostatically depositing a resin powder having an average particle size of . Moreover, the outer surface of the reinforcing fiber base material refers to the open surface of the reinforcing fiber base material.

本発明において対象とする樹脂粉体は、その原料由来および/または樹脂の製造方法又は製造工程に由来する揮発成分を含むものである。その樹脂は熱可塑性樹脂に限定されない。例えば、硬化反応を生じた部分が10%以下のときに熱可塑性樹脂様の挙動を示す熱硬化性樹脂も本願発明の対象にすることができる。熱可塑性樹脂は、ポリカーボネート(PC)、ポリスルホン(PSU)、ポリエーテルスルホン(PES)、ポリアミドイミド(PAI)、ポリエーテルイミド(PEI)、ポリアミド系樹脂(PA6、PA11、PA66)、ポリブチレンテレフタレート(PBT)、ポリエチレンテレフタレート(PET)、ポリフェニレンスルフィド(PPS)、ポリエーテルエーテルケトン(PEEK)、ポリエーテルケトンケトン(PEKK)等を使用することができる。熱硬化性樹脂は、フェノール樹脂、ポリイミド樹脂等を使用することができる。 The resin powder targeted in the present invention contains volatile components derived from its raw materials and/or from the resin manufacturing method or manufacturing process. The resin is not limited to thermoplastic resins. For example, a thermosetting resin that exhibits thermoplastic resin-like behavior when the portion that undergoes a curing reaction is 10% or less can also be targeted by the present invention. Thermoplastic resins include polycarbonate (PC), polysulfone (PSU), polyethersulfone (PES), polyamideimide (PAI), polyetherimide (PEI), polyamide resins (PA6, PA11, PA66), polybutylene terephthalate ( PBT), polyethylene terephthalate (PET), polyphenylene sulfide (PPS), polyetheretherketone (PEEK), polyetherketoneketone (PEKK), etc. can be used. As the thermosetting resin, phenol resin, polyimide resin, etc. can be used.

強化繊維基材を形成する強化繊維は、炭素繊維が好ましく、ガラス繊維、天然繊維、アラミド繊維、ボロン繊維、ポリエチレン繊維、強化ポリプロピレン繊維を使用することができる。強化繊維基材は、強化繊維を用いた繊条状若しくは織物状の強化繊維からなるもの、または、二次元若しくは三次元的にランダムに配向した不連続状の強化繊維からなるものを使用することができる。例えば、繊条状の強化繊維基材としてUDシートを使用することができる。繊維強化樹脂中間材は、単層のものであってもよく、積層したものであってもよい。 The reinforcing fibers forming the reinforcing fiber base material are preferably carbon fibers, and glass fibers, natural fibers, aramid fibers, boron fibers, polyethylene fibers, and reinforced polypropylene fibers can be used. The reinforcing fiber base material may be made of filamentous or woven reinforcing fibers using reinforcing fibers, or discontinuous reinforcing fibers randomly oriented in two or three dimensions. I can do it. For example, a UD sheet can be used as the fibrous reinforcing fiber base material. The fiber-reinforced resin intermediate material may be a single layer or a laminated material.

<実施例1>
重合した直後のペレット化していないPPS樹脂を粉砕し、平均粒径が約40μmの微粉末状に加工した。この樹脂粉体を平織したPAN系炭素繊維基材(目付198g/m2)にVf(体積繊維含有率)が50%になるように付着させた。樹脂粉体が付着した炭素繊維基材を300℃に加熱したオーブン内に入れ、350sec保持した後に取り出した。これにより、付着させた樹脂粉体の揮発成分の除去と共に、当該樹脂粉体を強化繊維基材に融着させ、繊維強化樹脂中間基材を得た。この繊維強化樹脂中間基材を16枚積層し、加熱温度320℃、加圧力3MPaで加熱・加圧して板状の繊維強化樹脂成形品を製造した。ASTM D790に準拠し、曲げ強度を測定したところ、883MPaであった。試験片の断面を観察したところ、ボイドなどの欠損はなかった。断面観察は光学顕微鏡で行った。
<Example 1>
Immediately after polymerization, the unpelletized PPS resin was pulverized and processed into a fine powder with an average particle size of approximately 40 μm. This resin powder was attached to a plain-woven PAN-based carbon fiber base material (fabric weight 198 g/m 2 ) so that Vf (volume fiber content) was 50%. The carbon fiber base material to which the resin powder was attached was placed in an oven heated to 300°C, held for 350 seconds, and then taken out. As a result, the volatile components of the attached resin powder were removed and the resin powder was fused to the reinforcing fiber base material to obtain a fiber reinforced resin intermediate base material. Sixteen sheets of this fiber-reinforced resin intermediate base material were laminated and heated and pressurized at a heating temperature of 320° C. and a pressure of 3 MPa to produce a plate-shaped fiber-reinforced resin molded product. The bending strength was measured in accordance with ASTM D790 and was found to be 883 MPa. When the cross section of the test piece was observed, there were no defects such as voids. Cross-sectional observation was performed using an optical microscope.

<比較例1>
重合した直後のペレット化していないPPS樹脂を粉砕し、平均粒径が約40μmの微粉末状に加工した。この樹脂粉体を平織したPAN系炭素繊維基材(目付198g/m2)にVf(体積繊維含有率)が50%になるように付着させた。樹脂粉体が付着した炭素繊維基材を300℃に加熱したオーブン内に入れ、30sec保持した後に取り出した。これにより、図1から予測される重量変化率はわずかで樹脂粉体の揮発成分の除去は不十分だが、当該樹脂粉体を強化繊維基材に融着させた繊維強化樹脂中間基材を得た。この繊維強化樹脂中間基材を16枚積層し、加熱温度320℃、加圧力3MPaで加熱・加圧して板状の繊維強化樹脂成形品を製造した。ASTM D790に準拠し、曲げ強度を測定したところ、743MPaであった。試験片の断面を観察したところ、内部には直径が数十μm程度のボイドが複数観察された。
<Comparative example 1>
Immediately after polymerization, the unpelletized PPS resin was pulverized and processed into a fine powder with an average particle size of approximately 40 μm. This resin powder was attached to a plain-woven PAN-based carbon fiber base material (fabric weight 198 g/m 2 ) so that Vf (volume fiber content) was 50%. The carbon fiber base material to which the resin powder was attached was placed in an oven heated to 300°C, held for 30 seconds, and then taken out. As a result, a fiber-reinforced resin intermediate base material in which the resin powder was fused to a reinforcing fiber base material was obtained, although the weight change rate predicted from Figure 1 was small and removal of volatile components from the resin powder was insufficient. Ta. Sixteen sheets of this fiber-reinforced resin intermediate base material were laminated and heated and pressurized at a heating temperature of 320° C. and a pressure of 3 MPa to produce a plate-shaped fiber-reinforced resin molded product. The bending strength was measured in accordance with ASTM D790 and was found to be 743 MPa. When the cross section of the test piece was observed, multiple voids with diameters of several tens of μm were observed inside.

Claims (3)

揮発成分を含む樹脂粉体を強化繊維で形成される強化繊維基材に付着し、これを加熱して前記樹脂粉体を前記強化繊維基材に融着させてなる繊維強化樹指中間材を製造する方法であって、
先ず、前記樹脂粉体が付着した強化繊維基材を、前記樹脂粉体が重量減少を示す所定の温度で、前記樹脂粉体の飽和重量減少率に到達するまで加熱し、
次に、前記樹脂粉体が付着した強化繊維基材を、前記樹脂粉体の融点以上の所定の温度をもって前記飽和重量減少率に到達するまでの時間以内の加熱で、その樹脂粉体を前記強化繊維基材に融着させてなる繊維強化樹指中間材の製造方法。
ここで、繊維強化樹指中間材は加熱・加圧されて繊維強化樹脂成形品に賦形されるものであって、飽和重量減少率とは、樹脂粉体が付着した強化繊維基材を、前記繊維強化樹脂成形品に賦形する際に選択される温度範囲のうちで最も高い温度以下の一定温度で加熱しつつその加熱時間に対する重量減少率を測定し、その重量減少率がほぼ一定になる減少率を示すとき、その重量減少率をいう。揮発成分とは、樹脂粉体を飽和重量減少率に到達するまで加熱する際に揮発する成分をいう。
A fiber-reinforced resin intermediate material is obtained by attaching a resin powder containing a volatile component to a reinforcing fiber base material formed of reinforcing fibers, and heating the resin powder to fuse the resin powder to the reinforcing fiber base material. A method of manufacturing,
First, a reinforcing fiber base material to which the resin powder is attached is heated at a predetermined temperature at which the resin powder shows weight loss until a saturated weight loss rate of the resin powder is reached,
Next, the reinforcing fiber base material to which the resin powder is attached is heated at a predetermined temperature higher than the melting point of the resin powder within a time period until the saturated weight reduction rate is reached. A method for producing a fiber-reinforced resin intermediate material which is fused to a reinforcing fiber base material.
Here, the fiber-reinforced resin intermediate material is heated and pressurized to form a fiber-reinforced resin molded product, and the saturated weight reduction rate refers to While heating at a constant temperature below the highest temperature in the temperature range selected when shaping the fiber-reinforced resin molded product, the weight loss rate with respect to the heating time is measured, and the weight loss rate is almost constant. When a weight loss rate is expressed as follows, it refers to the weight loss rate. The volatile component refers to a component that volatilizes when the resin powder is heated until it reaches a saturated weight reduction rate.
揮発成分を含む樹脂粉体を強化繊維で形成される強化繊維基材に付着し、これを加熱して前記樹脂粉体を前記強化繊維基材に融着させてなる繊維強化樹指中間材を製造する方法であって、
先ず、前記樹脂粉体の飽和重量減少率を求め、その飽和重量減少率を示す加熱温度及び時間を基に前記樹脂粉体中に含まれる揮発成分を揮発させ、
次に、前記樹脂粉体が付着した強化繊維基材を、前記樹脂粉体の融点以上の所定の温度をもって前記樹脂粉体の飽和重量減少率に到達するまでの時間以内の加熱で、その樹脂粉体を前記強化繊維基材に融着させてなる繊維強化樹指中間材の製造方法。
A fiber-reinforced resin intermediate material is obtained by attaching a resin powder containing a volatile component to a reinforcing fiber base material formed of reinforcing fibers, and heating the resin powder to fuse the resin powder to the reinforcing fiber base material. A method of manufacturing,
First, the saturated weight reduction rate of the resin powder is determined, and the volatile components contained in the resin powder are volatilized based on the heating temperature and time that indicate the saturated weight reduction rate.
Next, the reinforcing fiber base material to which the resin powder is attached is heated to a predetermined temperature higher than the melting point of the resin powder within the time required to reach the saturation weight reduction rate of the resin powder. A method for producing a fiber-reinforced resin intermediate material by fusing powder to the reinforcing fiber base material.
揮発成分の揮発処理を行った後の樹脂の含有揮発成分量は、重量比率で1,000ppm以下であることを特徴とする請求項1又は2に記載の製造方法。 3. The manufacturing method according to claim 1, wherein the amount of volatile components contained in the resin after the volatile component volatilization treatment is 1,000 ppm or less in terms of weight ratio.
JP2017152955A 2017-08-08 2017-08-08 Manufacturing method of fiber reinforced resin intermediate material Active JP7368929B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017152955A JP7368929B2 (en) 2017-08-08 2017-08-08 Manufacturing method of fiber reinforced resin intermediate material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017152955A JP7368929B2 (en) 2017-08-08 2017-08-08 Manufacturing method of fiber reinforced resin intermediate material

Publications (2)

Publication Number Publication Date
JP2019031612A JP2019031612A (en) 2019-02-28
JP7368929B2 true JP7368929B2 (en) 2023-10-25

Family

ID=65523047

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017152955A Active JP7368929B2 (en) 2017-08-08 2017-08-08 Manufacturing method of fiber reinforced resin intermediate material

Country Status (1)

Country Link
JP (1) JP7368929B2 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5507676B2 (en) 2010-05-14 2014-05-28 株式会社新和製作所 Makeup brush

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05507676A (en) * 1991-04-16 1993-11-04 オウェンス コーニング ファイバーグラス コーポレイション Size composition for impregnating filament strands
JPH08323748A (en) * 1995-05-29 1996-12-10 Toho Rayon Co Ltd Molding material and manufacture thereof
JP5494375B2 (en) * 2010-09-10 2014-05-14 東レ株式会社 Manufacturing method of composite reinforcing fiber bundle and molding material using the same
JP5614187B2 (en) * 2010-09-10 2014-10-29 東レ株式会社 Manufacturing method of composite reinforcing fiber bundle and molding material using the same
JP2013173810A (en) * 2012-02-23 2013-09-05 Toray Ind Inc Resin composition, molding material and method for producing the same
JP2013173811A (en) * 2012-02-23 2013-09-05 Toray Ind Inc Resin composition, molding material and method for producing the same
TW201343407A (en) * 2012-02-29 2013-11-01 Oji Holdings Corp Sheet for fiber-reinforced plastic molded body, and molded body thereof
JP5999721B2 (en) * 2014-10-17 2016-09-28 株式会社日本製鋼所 Fiber reinforced resin intermediate and method for producing the same

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5507676B2 (en) 2010-05-14 2014-05-28 株式会社新和製作所 Makeup brush

Also Published As

Publication number Publication date
JP2019031612A (en) 2019-02-28

Similar Documents

Publication Publication Date Title
KR102265768B1 (en) Method for making fiber material pre-impregnated with thermoplastic polymer in a fluidized bed
KR102585419B1 (en) Method for producing fibrous materials pre-impregnated with thermoplastic polymers in powder form
JP5999721B2 (en) Fiber reinforced resin intermediate and method for producing the same
JP6149123B2 (en) Process for producing continuous carbon fiber reinforced thermoplastic prepreg
CN106163756A (en) The method that pre-preg has the fibrous material of thermoplastic polymer is produced in fluid bed
US20160347009A1 (en) Method of manufacturing a fibrous material preimpregnated with thermoplastic polymer using an aqueous dispersion of polymer
CN106163755B (en) Method for preparing a fibrous material pre-impregnated with a thermoplastic polymer by means of a supercritical gas
JP6521895B2 (en) Fiber-reinforced resin intermediate material and method for producing the same
KR20190095291A (en) Process for preparing fibrous material preimpregnated with thermoplastic polymer in dry powder form
KR20190095293A (en) Method for producing fibrous material preimpregnated with thermoplastic polymer by spraying
JP2012506476A5 (en)
JP7368929B2 (en) Manufacturing method of fiber reinforced resin intermediate material
Tufail Processing investigation and optimization for hybrid thermoplastic composites
WO2016128505A1 (en) Consolidation cycle
JP6368748B2 (en) Molding method for molding fiber reinforced resin
RU2816084C1 (en) Carbon fibre-reinforced plastic based on polyphenylene sulphide binder and method for production thereof (versions)
Nassir et al. Manufacturing Process of S-Glass Fiber Reinforced PEKK Prepregs
KR20170069749A (en) Methods of manufacturing thermoplastic composite and thermoplastic composite using the same

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20190801

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20190801

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191021

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20191021

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200710

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210827

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211025

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20220308

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220607

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20220607

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20220614

C21 Notice of transfer of a case for reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C21

Effective date: 20220615

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20220805

C211 Notice of termination of reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C211

Effective date: 20220809

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231013

R150 Certificate of patent or registration of utility model

Ref document number: 7368929

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150