JPH11100767A - Base material for laminate board and its production, and prepreg and laminate board - Google Patents

Base material for laminate board and its production, and prepreg and laminate board

Info

Publication number
JPH11100767A
JPH11100767A JP9262982A JP26298297A JPH11100767A JP H11100767 A JPH11100767 A JP H11100767A JP 9262982 A JP9262982 A JP 9262982A JP 26298297 A JP26298297 A JP 26298297A JP H11100767 A JPH11100767 A JP H11100767A
Authority
JP
Japan
Prior art keywords
fibers
thermoplastic resin
fiber
laminate
nonwoven fabric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9262982A
Other languages
Japanese (ja)
Inventor
Masayuki Ushida
雅之 牛田
Kazunori Mitsuhashi
一紀 光橋
Tatsu Sakaguchi
達 坂口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Shin Kobe Electric Machinery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Kobe Electric Machinery Co Ltd filed Critical Shin Kobe Electric Machinery Co Ltd
Priority to JP9262982A priority Critical patent/JPH11100767A/en
Publication of JPH11100767A publication Critical patent/JPH11100767A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0313Organic insulating material
    • H05K1/0353Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement
    • H05K1/0366Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement reinforced, e.g. by fibres, fabrics

Landscapes

  • Nonwoven Fabrics (AREA)
  • Reinforced Plastic Materials (AREA)
  • Laminated Bodies (AREA)

Abstract

PROBLEM TO BE SOLVED: To control the curvature and distortion of a laminate board using a glass fiber nonwoven fabric as a base material. SOLUTION: A glass fiber nonwoven fabric produced by blending glass fibers with thermoplastic resin fibers having a softening point of 220 deg.C, such as meta- aramide fibers, is used as a base material to produce a laminate board. In the glass fiber nonwoven fabric, the fibers are bound to each other with a resin binder, and the thermoplastic fibers are fused with the glass fibers. The content of the thermoplastic resin fibers having a softening point of >=220 deg.C is preferably 5-30 wt.%.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、ガラス繊維と軟化
温度220℃以上の熱可塑性樹脂繊維を主成分とする混
抄不織布からなる積層板用基材とその製造法に関する。
また、前記積層板用基材を用いたプリプレグならびに積
層板に関する。この積層板は、抵抗、IC等のリードレ
スチップ部品を表面実装するプリント配線板の絶縁基板
として適したものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a base material for a laminated board comprising a mixed nonwoven fabric comprising glass fibers and a thermoplastic resin fiber having a softening temperature of 220.degree.
The present invention also relates to a prepreg and a laminate using the laminate substrate. This laminated board is suitable as an insulating substrate of a printed wiring board on which leadless chip components such as resistors and ICs are surface-mounted.

【0002】[0002]

【従来の技術】従来、電子機器に組み込むプリント配線
板の絶縁基板には、シート状基材に熱硬化性樹脂を含浸
乾燥してなるプリプレグの層を加熱加圧成形した積層板
が使用されている。前記積層板の製造に使用されるシー
ト状基材として、ガラス繊維を抄造し繊維同士をエポキ
シ樹脂等のバインダで結着したガラス繊維不織布があ
る。しかしながら、ガラス繊維不織布を基材として積層
板を製造すると、積層板のそり・ねじれが大きくなると
いう問題がある。この問題の解決策として、ガラス繊維
にセルロース繊維を混抄して不織布を構成したり、ガラ
ス繊維同士を結着するバインダ樹脂の耐熱性を高くする
等の技術が提案されている。
2. Description of the Related Art Conventionally, as an insulating substrate of a printed wiring board to be incorporated in an electronic device, a laminated board obtained by heating and pressing a prepreg layer formed by impregnating and drying a thermosetting resin in a sheet-like base material is used. I have. As a sheet-like base material used in the production of the laminate, there is a glass fiber nonwoven fabric in which glass fibers are formed and the fibers are bound with a binder such as an epoxy resin. However, when a laminated board is manufactured using a glass fiber nonwoven fabric as a base material, there is a problem that warpage and twist of the laminated board are increased. As a solution to this problem, there have been proposed techniques such as forming a nonwoven fabric by mixing cellulose fibers with glass fibers, and increasing the heat resistance of a binder resin that binds the glass fibers.

【0003】[0003]

【発明が解決しようとする課題】しかし、上記の解決策
でも、未だ不十分である。従来のガラス繊維不織布を基
材とした積層板は、成形後やプリント配線板への加工後
に、そり・ねじれが発生しやすく、その原因を究明した
ところ、次のことが判明した。基材に含浸した熱硬化性
樹脂は、積層板成形時の熱と圧力により溶融し流動す
る。また、基材に含浸した熱硬化性樹脂の溶融温度(8
0〜140℃)は、ガラス繊維同士を結着している樹脂
バインダのガラス転移温度近くであるか当該温度を越え
るため、樹脂バインダが軟化してガラス繊維同士の結着
が緩む。このとき、結着が緩んだガラス繊維が前記樹脂
の流動により不均一に変形する。このことがそり・ねじ
れの原因となっているのである。さらに、上記従来のガ
ラス繊維不織布を基材とした積層板(金属箔張り積層
板)をプリント配線板に加工して、リードレスチップ部
品を表面実装方式で半田付けするときには、200℃以
上の熱がかかる。このとき、基板は、全体が均一に伸び
たり収縮せず、部分的に伸びたり収縮する不均一な挙動
を示す。これが、プリント配線板のそり・ねじれの原因
であることも判明した。
However, the above solutions are still insufficient. A laminated board using a conventional glass fiber nonwoven fabric as a base material is liable to be warped and twisted after molding or processing into a printed wiring board. The thermosetting resin impregnated in the base material melts and flows due to heat and pressure during the formation of the laminate. Further, the melting temperature of the thermosetting resin impregnated in the base material (8
(0 to 140 ° C.) is close to or exceeds the glass transition temperature of the resin binder binding the glass fibers, so that the resin binder softens and the binding between the glass fibers is loosened. At this time, the loosely bound glass fibers are deformed non-uniformly by the flow of the resin. This causes warpage and twist. Furthermore, when a laminate (metal-foil-clad laminate) based on the above-mentioned conventional glass fiber nonwoven fabric is processed into a printed wiring board, and a leadless chip component is soldered by a surface mounting method, heat of 200 ° C. or more is required. It takes. At this time, the substrate does not expand and contract uniformly as a whole, but exhibits an uneven behavior in which the substrate partially expands and contracts. It has also been found that this is the cause of warpage and torsion of the printed wiring board.

【0004】本発明が解決しようとする課題は、ガラス
繊維不織布を基材とした積層板(金属箔張り積層板を含
む)のそり・ねじれを抑制することである。また、その
ような積層板のための基材(ガラス繊維不織布)を提供
することである。
[0004] The problem to be solved by the present invention is to suppress warping and twisting of a laminate (including a metal foil-clad laminate) based on a glass fiber nonwoven fabric. Another object is to provide a substrate (glass fiber nonwoven fabric) for such a laminate.

【0005】[0005]

【課題を解決するための手段】本発明に係る積層板用基
材は、ガラス繊維とメタ系アラミド繊維などの軟化温度
220℃以上の熱可塑性樹脂繊維を主成分として混抄し
たガラス繊維不織布である。上記課題を解決するため
に、繊維同士が樹脂バインダで結着され、かつ、前記熱
可塑性樹脂繊維同士ないしは前記熱可塑性樹脂繊維がガ
ラス繊維に融着していることを特徴とする。ここで、積
層板用とは、次の(1)〜(2)のような用途をその概
念に含む。 (1)熱硬化性樹脂を含浸し加熱加圧成形して積層板を
製造する用途。 (2)絶縁層を介して内層と表面層にプリント配線を有
する多層プリント配線板において、熱硬化性樹脂を含浸
して前記絶縁層を構成する用途。
The base material for a laminated board according to the present invention is a glass fiber non-woven fabric made mainly of a thermoplastic resin fiber having a softening temperature of 220 ° C. or higher such as glass fiber and meta-aramid fiber. . In order to solve the above-mentioned problems, the fibers are bonded with a resin binder, and the thermoplastic resin fibers or the thermoplastic resin fibers are fused to glass fibers. Here, the term “for laminate” includes the following uses (1) and (2) in its concept. (1) A use in which a laminated board is manufactured by impregnating a thermosetting resin and molding under heat and pressure. (2) In a multilayer printed wiring board having printed wirings on an inner layer and a surface layer via an insulating layer, a use in which a thermosetting resin is impregnated to form the insulating layer.

【0006】本発明に係る積層板用基材は、次のように
して製造することができる。すなわち、ガラス繊維とメ
タ系アラミド繊維などの軟化温度220℃以上の熱可塑
性樹繊維を混合して抄造し、繊維同士を樹脂バインダで
結着した混抄のガラス繊維不織布とする。これを、前記
熱可塑性樹脂繊維が軟化する温度以上で加熱し併せて圧
縮することにより、前記熱可塑性樹脂繊維同士ないしは
前記熱可塑性樹脂繊維をガラス繊維に熱融着する製造法
である。熱融着とは、前記熱可塑性樹脂繊維が加熱によ
り溶融しさらに圧縮により融着した状態と、熱可塑性樹
脂繊維が加熱により軟化しさらに圧縮により変形し絡み
合った状態の少なくとも一つの状態をいう。
[0006] The base material for a laminate according to the present invention can be manufactured as follows. That is, a glass fiber and a thermoplastic resin fiber having a softening temperature of 220 ° C. or more, such as a meta-aramid fiber, are mixed and formed into a paper, and the fiber is bonded to form a mixed glass fiber nonwoven fabric. This is a manufacturing method in which the thermoplastic resin fibers are heated and fused at a temperature equal to or higher than the temperature at which the thermoplastic resin fibers soften, and then the thermoplastic resin fibers are mutually fused or the thermoplastic resin fibers are thermally fused to glass fibers. The term “thermal fusion” refers to at least one of a state in which the thermoplastic resin fibers are melted by heating and further fused by compression, and a state in which the thermoplastic resin fibers are softened by heating, deformed by compression, and entangled.

【0007】本発明に係るプリプレグは、上記積層板用
基材に熱硬化性樹脂を含浸乾燥してなるものであり、積
層板は、当該プリプレグの層を加熱加圧成形してなるも
のである。プリプレグを複数枚重ねて加熱加圧成形する
場合は、少なくとも1枚のプリプレグを本発明に係るプ
リプレグとする。ここで、積層板とは次の(1)〜
(3)のようなものをその概念に含む。 (1)プリプレグ1枚又は複数枚を加熱加圧成形した積
層板。 (2)上記(1)において、加熱加圧成形により金属箔
が表面に一体化されている金属箔張り積層板。 (3)プリプレグを加熱加圧成形してなる絶縁層を介し
て内層と表面層にプリント配線を有する多層プリント配
線板。
[0007] The prepreg according to the present invention is obtained by impregnating and drying the above-mentioned base material for a laminate with a thermosetting resin. The laminate is obtained by subjecting a layer of the prepreg to heat and pressure. . When a plurality of prepregs are stacked and heated and pressed, at least one prepreg is a prepreg according to the present invention. Here, the laminated board is the following (1) to
The concept of (3) is included in the concept. (1) A laminated plate formed by heating and pressing one or more prepregs. (2) The metal-foil-clad laminate according to the above (1), wherein the metal foil is integrated on the surface by heat and pressure molding. (3) A multilayer printed wiring board having printed wiring on an inner layer and a surface layer via an insulating layer formed by heating and pressing a prepreg.

【0008】本発明に係る積層板用基材は、樹脂バイン
ダによるほか、軟化温度220℃以上の熱可塑性樹脂繊
維同士ないしは当該熱可塑性樹脂繊維のガラス繊維への
融着(絡み合い)により、繊維同士が結着されている。
積層板の成形時に、樹脂バインダが軟化してその部分の
繊維同士の結着が緩んでも、前記融着(絡み合い)によ
る繊維同士の結着は緩むことなくそのまま保持される。
その結果、基材に含浸している熱硬化性樹脂が積層板成
形時の熱と圧力により溶融し流動するときにも、基材を
構成する繊維同士の結着は維持され、基材の不均一な変
形が抑制される。同様に、積層板(金属箔張り積層板)
を加工したプリント配線板にリードレスチップ部品を表
面実装方式で半田付けするときにも、基板が不均一に伸
びたり収縮する挙動が抑制される。
[0008] The base material for a laminated board according to the present invention is formed of a thermoplastic resin fiber having a softening temperature of 220 ° C or higher or a fusion of the thermoplastic resin fiber to a glass fiber (entanglement) in addition to the resin binder. Is bound.
Even when the resin binder is softened during the formation of the laminate and the binding between the fibers in the portion is loosened, the binding between the fibers by the fusion (entanglement) is maintained without loosening.
As a result, even when the thermosetting resin impregnated in the base material is melted and flows by the heat and pressure during the formation of the laminated board, the binding of the fibers constituting the base material is maintained, and the base material is not impregnated. Uniform deformation is suppressed. Similarly, laminate (metal foil-clad laminate)
Even when the leadless chip component is soldered to the printed wiring board processed by using the surface mounting method, the behavior of the substrate unevenly expanding and contracting is suppressed.

【0009】[0009]

【発明の実施の形態】軟化温度220℃以上の熱可塑性
樹脂繊維とガラス繊維の混抄不織布であって、繊維同士
が樹脂バインダ(水溶性エポキシ樹脂)で結着され、前
記熱可塑性樹脂繊維同士ないしは前記熱可塑性樹脂繊維
がガラス繊維に熱融着している。または、熱軟化により
変形した前記熱可塑性樹脂繊維同士ないしは熱軟化によ
り変形した前記熱可塑性樹脂繊維がガラス繊維に絡み合
っている。前記熱可塑性樹脂繊維の含有率は、繊維同士
の結着を確実にし、そり・ねじれ抑制の観点からは多い
ほどよく、積層板の耐熱性の観点からは少ないほうがよ
い。前記熱可塑性樹脂繊維の含有率は、好ましくは5〜
30重量%である。また、樹脂バインダの含有率を5〜
15重量%にしておく。樹脂バインダの含有率5重量%
は、それが少ないと繊維同士の結着が弱くなるので、熱
融着工程へ不織布を導入するに際して不織布に十分な強
度を付与する上で考慮することになる含有率である。樹
脂バインダの含有率15重量%は、それが多いと熱ロー
ルによる熱融着工程で繊維が熱ロールに付着したり不織
布が切れたりするので、考慮することになる含有率であ
る。軟化温度220℃以上の熱可塑性樹脂繊維は、メタ
系アラミド繊維(例えば、m−フェニレンイソフタラミ
ド繊維),ポリエチレンテレフタレート繊維やポリブチ
レンテレフタレート繊維に代表されるポリエステル繊
維,6ナイロンや66ナイロンに代表されるナイロン繊
維などであるが、軟化温度220℃以上の熱可塑性樹脂
繊維であれば特に限定しない。軟化温度220℃以上の
熱可塑性樹脂繊維は、未延伸であることが好ましい。未
延伸とは、延伸の程度が少ないものもその概念に含む。
軟化温度220℃以上の熱可塑性樹脂繊維は、未延伸で
あると、熱ロールによる融着ないしは絡み合いをたやす
く行なうことができる。
BEST MODE FOR CARRYING OUT THE INVENTION A nonwoven fabric made of a thermoplastic resin fiber having a softening temperature of 220 ° C. or higher and glass fiber, wherein the fibers are bound with a resin binder (water-soluble epoxy resin), and the thermoplastic resin fibers or The thermoplastic resin fiber is thermally fused to the glass fiber. Alternatively, the thermoplastic resin fibers deformed by thermal softening or the thermoplastic resin fibers deformed by thermal softening are entangled with glass fibers. The content of the thermoplastic resin fiber is preferably as large as possible from the viewpoint of ensuring the binding between the fibers and suppressing warpage and torsion, and is preferably as small as possible from the viewpoint of the heat resistance of the laminate. The content of the thermoplastic resin fiber is preferably 5 to
30% by weight. Further, the content of the resin binder is 5 to
It should be 15% by weight. 5% by weight resin binder content
Is a content that should be taken into consideration when imparting sufficient strength to the nonwoven fabric when introducing the nonwoven fabric to the heat fusing step, since the smaller the content, the weaker the binding between the fibers. The content of the resin binder of 15% by weight is a content to be taken into consideration, since if it is too large, the fibers will adhere to the heat roll or the nonwoven fabric will break in the heat fusion step using the heat roll. Thermoplastic resin fibers having a softening temperature of 220 ° C. or higher include meta-aramid fibers (for example, m-phenylene isophthalamide fibers), polyester fibers represented by polyethylene terephthalate fibers and polybutylene terephthalate fibers, and nylons represented by 6 and 66. The fibers are not particularly limited as long as they are thermoplastic resin fibers having a softening temperature of 220 ° C. or higher. The thermoplastic resin fibers having a softening temperature of 220 ° C. or higher are preferably undrawn. The term “unstretched” also includes those with a small degree of stretching.
If the thermoplastic resin fiber having a softening temperature of 220 ° C. or higher is not drawn, it can be easily fused or entangled by a hot roll.

【0010】積層板は、上記のガラス繊維不織布を基材
として製造する。まず、電気絶縁用積層板に常用されて
いるエポキシ樹脂をはじめとする熱硬化性樹脂をガラス
繊維不織布に含浸乾燥してプリプレグを製造する。そし
て、前記プリレグを1枚又は複数枚重ねて加熱加圧成形
する。通常、表面に金属箔を重ねて加熱加圧成形し、金
属箔張り積層板とする。プリプレグを複数枚重ねて成形
する場合、他の基材に熱硬化性樹脂を含浸乾燥して得た
プリプレグを組み合わせてもよい。他の基材は、例え
ば、ガラス繊維織布や合成樹脂繊維の織布又は不織布を
はじめとする積層板用基材である。
The laminate is manufactured using the above-mentioned glass fiber nonwoven fabric as a base material. First, a prepreg is manufactured by impregnating and drying a glass fiber nonwoven fabric with a thermosetting resin such as an epoxy resin commonly used for an electric insulating laminate. Then, one or a plurality of the pre-legs are stacked and heated and pressed. Usually, a metal foil is superimposed on the surface and molded by heating and pressing to obtain a metal foil-clad laminate. When a plurality of prepregs are stacked and molded, prepregs obtained by impregnating and drying a thermosetting resin in another base material may be combined. The other substrate is, for example, a laminate substrate including a woven or non-woven fabric of glass fiber woven fabric or synthetic resin fiber.

【0011】ガラス繊維とメタ系アラミド繊維からなる
混抄不織布の発明の実施の形態は、以下のとおりであ
る。ガラス繊維は、繊維径9μm程度、繊維長9〜15
mmが望ましい。メタ系アラミド繊維は、融着ないし絡み
合い箇所を多くするには繊維長は長い程よいが、抄造の
ときの繊維の分散性をよくすることを考慮すると、短い
方がよいので、適宜調整する。さらに、メタ系アラミド
繊維は、フィブリル化したものとフィブリル化しないチ
ョップ状のものを使用することができる。前記チョップ
状の繊維を使用した場合はフィブリル化した繊維を使用
した場合に比べて、抄造した不織布の空隙率が大きくな
るので、積層板を製造するに際して不織布への樹脂含浸
性がよい。そのため、チョップ状のメタ系アラミド繊維
の使用は、積層板の耐湿絶縁性向上の点から好ましいも
のである。メタ系アラミド繊維同士の融着ないしはメタ
系アラミド繊維のガラス繊維への融着には、熱融着の方
法を採用する。すなわち、抄造した混抄不織布(繊維同
士を樹脂バインダで結着済み)を熱ロールに通し、メタ
系アラミド繊維が軟化はするが熱ロールへは付着しない
温度で加熱し、併せて圧縮する。これによって、メタ系
アラミド繊維同士ないしはメタ系アラミド繊維をガラス
繊維に熱融着する。また、完全な熱融着には至らなくて
も、前記操作により変形したメタ系アラミド繊維同士な
いしは前記操作により変形したメタ系アラミド繊維をガ
ラス繊維に絡み合せる。熱ロールは、280〜350℃
の温度設定が適しており、150〜250kgf/cmの線
圧力設定が適している。熱ロールの温度280℃はメタ
系アラミド繊維を軟化させ融着させる上で考慮すること
になる温度であり、同350℃は軟化あるいは溶融した
メタ系アラミド繊維が熱ロールに付着して作業性を低下
させないようにする上で考慮することになる温度であ
る。軟化あるいは溶融したメタ系アラミド繊維が熱ロー
ルに付着すると、融着作業中に不織布が切れたり、熱ロ
ールに付着した繊維により不織布表面に凹凸ができ厚み
のばらつきを生じるので注意が必要である。また、前記
圧縮は一対の熱ロール間において、接線で行なわれる。
線圧力とは、ロール幅1cm当りの圧力である。不織布は
熱ロールを通るときに所定の熱量を得る必要があり、そ
の移動速度は10m/分以下が望ましいが、特に限定す
るものではない。
An embodiment of the invention of a mixed nonwoven fabric comprising glass fibers and meta-aramid fibers is as follows. The glass fiber has a fiber diameter of about 9 μm and a fiber length of 9 to 15
mm is desirable. The length of the meta-aramid fiber is preferably longer in order to increase the number of fused or entangled portions. However, in consideration of improving the dispersibility of the fiber during papermaking, the shorter the better, the better. Furthermore, as the meta-aramid fiber, a fibrillated fiber and a non-fibrillated chop fiber can be used. When the chopped fibers are used, the porosity of the formed nonwoven fabric is larger than when the fibrillated fibers are used, so that the nonwoven fabric has good resin impregnating property when manufacturing a laminate. Therefore, the use of chopped meta-aramid fibers is preferred from the viewpoint of improving the moisture-resistant insulation of the laminate. For the fusion of meta-aramid fibers or the fusion of meta-aramid fibers to glass fibers, a thermal fusion method is employed. That is, the formed mixed nonwoven fabric (the fibers are already bound with a resin binder) is passed through a hot roll, and heated at a temperature at which the meta-aramid fiber softens but does not adhere to the hot roll, and is also compressed. Thereby, the meta-aramid fibers or the meta-aramid fibers are thermally fused to the glass fibers. Further, even if the complete heat fusion does not occur, the meta-aramid fibers deformed by the above operation or the meta-aramid fibers deformed by the above operation are entangled with the glass fiber. Heat roll, 280-350 ° C
Is suitable, and a linear pressure setting of 150 to 250 kgf / cm is suitable. The temperature of the hot roll of 280 ° C. is a temperature to be considered when softening and fusing the meta-aramid fiber, and the same 350 ° C. causes the softened or molten meta-aramid fiber to adhere to the hot roll to improve workability. This is the temperature that should be taken into account in preventing the temperature from lowering. When the softened or melted meta-aramid fiber adheres to the heat roll, care must be taken because the nonwoven fabric breaks during the fusing operation, or the fiber adhered to the heat roll causes irregularities on the surface of the nonwoven fabric, resulting in uneven thickness. The compression is performed tangentially between a pair of heat rolls.
The linear pressure is a pressure per roll width of 1 cm. The nonwoven fabric needs to obtain a predetermined amount of heat when passing through the heat roll, and its moving speed is preferably 10 m / min or less, but is not particularly limited.

【0012】[0012]

【実施例】【Example】

実施例1〜7,従来例 ガラス繊維(繊維径:9μm,繊維長:13mm,日本電
気硝子製)とチョップ状メタ系アラミド繊維(繊維径:
3デニール,繊維長:6mm,軟化温度:280℃,帝人
製「コーネックス」,未延伸)を混抄し、樹脂バインダ
として水溶性エポキシ樹脂(ガラス転移温度110℃)
をスプレーして加熱乾燥により単位重量60g/m2のガ
ラス繊維不織布を抄造した。抄造した不織布のガラス繊
維,メタ系アラミド繊維,樹脂バインダの各含有率は表
1に示すとおりである。この不織布を熱ロール(温度3
00℃,線圧力200kgf/cm)間に通して、メタ系ア
ラミド繊維を熱融着した。このように製造した積層板用
基材に臭素化ビスフェノールA型エポキシ樹脂ワニスを
含浸乾燥して、樹脂付着量50wt%のプリプレグを準備
し、これを5プライ重ねて、その両側に18μmの銅箔
を載置して、加熱加圧成形により厚み0.5mmの銅張り
積層板を得た。以上の実施例1〜7,従来例における銅
張り積層板のそり,耐湿絶縁特性,半田耐熱性の測定結
果を表1に示す。各特性の測定方法,測定条件等は次の
とおりである。 そり:試料を平らな面に置き、その四隅の表裏8点につ
いて平らな面からの浮き上がり量を測定し、その最大値
をそりとする。銅張り積層板の成形後のそり(表中「成
形後」と表示)は、サイズ500×500mmで測定した
(○:そりが3mm未満,×:そりが3mm以上,△:×の
割合が10%以下)。銅張り積層板をプリント配線板に
加工し部品の表面実装のための最高温度230℃のリフ
ロー処理後のそり(表中「加熱後」と表示)は、サイズ
50×70mmで測定した(○:そりが2mm未満,×:そ
りが2mm以上,△:×の割合が10%以下)。 耐湿絶縁特性:プレッシャークッカー6時間後の絶縁抵
抗を測定した。 半田耐熱性:常態の試料を300℃の半田浴に浮かべ表
面の異常の有無を確認した(○:異常なし,×:フクレ
発生)。
Examples 1 to 7, Conventional Example Glass fiber (fiber diameter: 9 μm, fiber length: 13 mm, manufactured by Nippon Electric Glass) and chopped meta-aramid fiber (fiber diameter:
3 denier, fiber length: 6 mm, softening temperature: 280 ° C, Teijin's “Cornex”, unstretched), and water-soluble epoxy resin (glass transition temperature 110 ° C) as a resin binder
And dried by heating to form a glass fiber nonwoven fabric having a unit weight of 60 g / m 2 . Table 1 shows the content of each of the glass fiber, meta-aramid fiber, and resin binder in the nonwoven fabric. This nonwoven fabric is heated with a heat roll (temperature 3
At a temperature of 200 ° C. and a linear pressure of 200 kgf / cm), the meta-aramid fiber was heat-sealed. The laminate substrate thus manufactured is impregnated with a brominated bisphenol A type epoxy resin varnish and dried to prepare a prepreg having a resin adhesion amount of 50% by weight. Was placed and a copper-clad laminate having a thickness of 0.5 mm was obtained by heating and pressing. Table 1 shows the measurement results of the warp, the moisture-proof insulation property, and the solder heat resistance of the copper-clad laminates in Examples 1 to 7 and the conventional example. The measuring method and measuring conditions of each characteristic are as follows. Warpage: A sample is placed on a flat surface, and the amount of lifting from the flat surface is measured at eight points on the four sides of the sample, and the maximum value is defined as the warpage. The warpage after molding of the copper-clad laminate (indicated as “after molding” in the table) was measured at a size of 500 × 500 mm (○: warpage was less than 3 mm, ×: warpage was 3 mm or more, Δ: × was 10%). %Less than). The copper-clad laminate was processed into a printed wiring board, and the warpage (represented as “after heating” in the table) after reflow treatment at a maximum temperature of 230 ° C. for surface mounting of components was measured at a size of 50 × 70 mm ((: Warpage is less than 2 mm, ×: Warpage is 2 mm or more, Δ: × ratio is 10% or less. Moisture resistance insulation properties: The insulation resistance after 6 hours of pressure cooker was measured. Solder heat resistance: The normal sample was floated in a 300 ° C. solder bath to check for abnormalities on the surface (表面: no abnormality, ×: blistering).

【0013】[0013]

【表1】 [Table 1]

【0014】[0014]

【発明の効果】上述したように、本発明に係る積層板用
基材は、ガラス繊維不織布でありながら、繊維同士がし
っかりと結着しているので、積層板成形後及びプリント
配線板加工後において、そのそり・ねじれを小さく抑制
することができる。表1から明らかなように、ガラス繊
維不織布中の軟化温度220℃以上の熱可塑性樹脂繊維
含有率を10重量%以上にすると、そり・ねじれ抑制効
果は一層顕著になる。表1から明らかなように、ガラス
繊維不織布中の軟化温度220℃以上の熱可塑性樹脂繊
維含有率を30重量%以下にすると、積層板の耐湿絶縁
性と半田耐熱性も優れたものとなる。25重量%以下に
すると、半田耐熱性は一層顕著になる。
As described above, since the base material for a laminate according to the present invention is a glass fiber nonwoven fabric, the fibers are firmly bound to each other. In this case, the warp and twist can be suppressed to a small value. As is clear from Table 1, when the content of the thermoplastic resin fiber having a softening temperature of 220 ° C. or more in the glass fiber nonwoven fabric is 10% by weight or more, the effect of suppressing warpage and twist becomes more remarkable. As is clear from Table 1, when the content of the thermoplastic resin fiber having a softening temperature of 220 ° C. or higher in the glass fiber nonwoven fabric is set to 30% by weight or less, the laminate has excellent moisture resistance and solder heat resistance. When the content is 25% by weight or less, solder heat resistance becomes more remarkable.

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】ガラス繊維と軟化温度220℃以上の熱可
塑性樹脂繊維を主成分とする混抄不織布であって、繊維
同士が樹脂バインダで結着され、前記熱可塑性樹脂繊維
同士ないしは前記熱可塑性樹脂繊維がガラス繊維に融着
していることを特徴とする積層板用基材。
1. A mixed nonwoven fabric comprising glass fibers and a thermoplastic resin fiber having a softening temperature of 220 ° C. or higher as main components, wherein the fibers are bound by a resin binder, and the thermoplastic resin fibers or the thermoplastic resin are bonded to each other. A substrate for a laminate, wherein the fibers are fused to glass fibers.
【請求項2】軟化温度220℃以上の熱可塑性樹脂繊維
の含有率が5〜30重量%である請求項1記載の積層板
用基材。
2. The laminated board substrate according to claim 1, wherein the content of the thermoplastic resin fiber having a softening temperature of 220 ° C. or higher is 5 to 30% by weight.
【請求項3】軟化温度220℃以上の熱可塑性樹脂繊維
の含有率が10〜25重量%である請求項1記載の積層
板用基材。
3. The laminate substrate according to claim 1, wherein the content of the thermoplastic resin fiber having a softening temperature of 220 ° C. or higher is 10 to 25% by weight.
【請求項4】軟化温度220℃以上の熱可塑性樹脂繊維
が、メタ系アラミド繊維である請求項1〜3のいずれか
に記載の積層板用基材。
4. The substrate for a laminate according to claim 1, wherein the thermoplastic resin fiber having a softening temperature of 220 ° C. or higher is a meta-aramid fiber.
【請求項5】ガラス繊維と軟化温度220℃以上の熱可
塑性樹脂繊維を主成分として抄造し繊維同士を樹脂バイ
ンダで結着した混抄不織布を、前記熱可塑性樹脂繊維が
軟化する温度以上で加熱し併せて圧縮することにより、
前記熱可塑性樹脂繊維同士ないしは前記熱可塑性樹脂繊
維をガラス繊維に熱融着することを特徴とする積層板用
基材の製造法。
5. A nonwoven fabric made of glass fibers and a thermoplastic resin fiber having a softening temperature of 220 ° C. or higher as a main component, and heated at a temperature not lower than the temperature at which the thermoplastic resin fibers soften. By compressing together,
A method for producing a base material for a laminated board, wherein the thermoplastic resin fibers or the thermoplastic resin fibers are thermally fused to glass fibers.
【請求項6】シート状基材に熱硬化性樹脂を含浸乾燥し
たプリプレグであって、シート状基材が請求項1〜4の
いずれかに記載の積層板用基材であることを特徴とする
プリプレグ。
6. A prepreg obtained by impregnating and drying a thermosetting resin on a sheet-like substrate, wherein the sheet-like substrate is the laminate substrate according to any one of claims 1 to 4. Prepreg to do.
【請求項7】シート状基材に熱硬化性樹脂を含浸乾燥し
たプリプレグの層を加熱加圧成形してなり、プリプレグ
が請求項6記載のプリプレグであることを特徴とする積
層板。
7. A laminate, wherein a prepreg obtained by impregnating and drying a thermosetting resin on a sheet-like base material is heated and pressed, and the prepreg is the prepreg according to claim 6.
JP9262982A 1997-09-29 1997-09-29 Base material for laminate board and its production, and prepreg and laminate board Pending JPH11100767A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9262982A JPH11100767A (en) 1997-09-29 1997-09-29 Base material for laminate board and its production, and prepreg and laminate board

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9262982A JPH11100767A (en) 1997-09-29 1997-09-29 Base material for laminate board and its production, and prepreg and laminate board

Publications (1)

Publication Number Publication Date
JPH11100767A true JPH11100767A (en) 1999-04-13

Family

ID=17383262

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9262982A Pending JPH11100767A (en) 1997-09-29 1997-09-29 Base material for laminate board and its production, and prepreg and laminate board

Country Status (1)

Country Link
JP (1) JPH11100767A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011236429A (en) * 2004-03-04 2011-11-24 Nippon Sheet Glass Co Ltd Reinforcing material for proton conductive membrane, and proton conductive membrane using the same and fuel cell
JP2012056619A (en) * 2010-09-13 2012-03-22 Nakagawa Sangyo Kk Conveying material and method for manufacturing the same
JP2012119287A (en) * 2010-12-03 2012-06-21 Nippon Sheet Glass Co Ltd Collector base material for solid fuel cell
JP2015110791A (en) * 2012-02-29 2015-06-18 王子ホールディングス株式会社 Composite material for fiber reinforced plastic molding and fiber reinforced plastic molded article
JP2021116488A (en) * 2020-01-24 2021-08-10 王子ホールディングス株式会社 Nonwoven fabric, molded article, metal-clad layered body

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011236429A (en) * 2004-03-04 2011-11-24 Nippon Sheet Glass Co Ltd Reinforcing material for proton conductive membrane, and proton conductive membrane using the same and fuel cell
JP2012056619A (en) * 2010-09-13 2012-03-22 Nakagawa Sangyo Kk Conveying material and method for manufacturing the same
JP2012119287A (en) * 2010-12-03 2012-06-21 Nippon Sheet Glass Co Ltd Collector base material for solid fuel cell
JP2015110791A (en) * 2012-02-29 2015-06-18 王子ホールディングス株式会社 Composite material for fiber reinforced plastic molding and fiber reinforced plastic molded article
JP2017125192A (en) * 2012-02-29 2017-07-20 王子ホールディングス株式会社 Composite for molding fiber reinforced plastic and fiber reinforced plastic molded body
JP2021116488A (en) * 2020-01-24 2021-08-10 王子ホールディングス株式会社 Nonwoven fabric, molded article, metal-clad layered body

Similar Documents

Publication Publication Date Title
JPH10131017A (en) Substrate for laminated board, its production, prepreg and laminated board
JP3581564B2 (en) Heat resistant fiber paper
JP3401381B2 (en) Aromatic polyamide fiber paper, prepreg and laminate made of the aromatic polyamide fiber paper
JP3631385B2 (en) Laminate substrate and method for producing the same
WO2002012619A1 (en) Heat-resistant fibrous paper
JP3869559B2 (en) Non-woven fabric for electrical insulation, prepreg and laminate
US5584965A (en) Method of producing a laminate of glass fiber non-woven fabric base material
JPH11100767A (en) Base material for laminate board and its production, and prepreg and laminate board
JPH11131385A (en) Substrate for laminated plate, its production, prepreg and laminated board
JP3714752B2 (en) Manufacturing method of base material for laminated board
JPH10212688A (en) Production of base material for laminated and mixed nonwoven fabric used for the production
JPH11117184A (en) Base material for laminate, its production, prepreg and laminated board
JP3961252B2 (en) Non-woven fabric for electrical insulation, prepreg and laminate
US5698479A (en) Glass fiber for non-woven fabric and a method of producing a laminate
JP3484455B2 (en) Aromatic polyamide fiber paper
JP2006057074A (en) Prepreg and laminated sheet, and printed wiring board
JP3475234B2 (en) Aromatic polyamide fiber paper
JPH10266055A (en) Resin fiber nonwoven fabric for electrical insulation, its production and laminated board and prepreg
JPH1119929A (en) Base material for laminated sheet, prepreg, and laminated sheet
JP2003221794A (en) Substrate and prepreg for laminated board and laminated board
JP3588428B2 (en) Laminate base material and prepreg and electric circuit laminate using the same
JPH1126944A (en) Manufacture of multilayer circuit board and pre-preg used for manufacturing the same
JPH0484490A (en) Manufacture of printed wiring board
JP2000334871A (en) Base material for laminated sheet, prepreg and production thereof
JPH08158288A (en) Laminated board and aromatic polyamide fiber paper for base material of laminated board