JPH10266055A - Resin fiber nonwoven fabric for electrical insulation, its production and laminated board and prepreg - Google Patents

Resin fiber nonwoven fabric for electrical insulation, its production and laminated board and prepreg

Info

Publication number
JPH10266055A
JPH10266055A JP9312521A JP31252197A JPH10266055A JP H10266055 A JPH10266055 A JP H10266055A JP 9312521 A JP9312521 A JP 9312521A JP 31252197 A JP31252197 A JP 31252197A JP H10266055 A JPH10266055 A JP H10266055A
Authority
JP
Japan
Prior art keywords
resin
fiber
nonwoven fabric
electrical insulation
fibers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9312521A
Other languages
Japanese (ja)
Inventor
Koichi Hiraoka
宏一 平岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Shin Kobe Electric Machinery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Kobe Electric Machinery Co Ltd filed Critical Shin Kobe Electric Machinery Co Ltd
Priority to JP9312521A priority Critical patent/JPH10266055A/en
Publication of JPH10266055A publication Critical patent/JPH10266055A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To produce the subject nonwoven fabric resistant to the warpage and twist caused by the heat generated in the surface mounting of a leadless chip part while suppressing the deformation of a substrate in forming by bonding resin fibers resistant to thermal softening with a prescribed amount of a specific resin binder. SOLUTION: This nonwoven fabric is composed of resin fibers essentially free from heat-softening tendency such as poly-p-phenylene 3,4'-diphenyl ether terephthalamide fibers bonded with each other with a resin binder having a glass transition temperature of >=200 deg.C. The amount of applied resin binder is 5-25 wt.%. The electrically insulating resin fiber nonwoven fabric has a bulk density of >=0.55 g/cc and is preferably used as a prepreg.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、電気絶縁用樹脂繊
維不織布およびその製造法に関するものである。また、
この不織布を基材とするプリプレグならびに積層板に関
するものである。前記不織布基材プリプレグならびに積
層板は、抵抗、IC等のチップ部品を表面実装するプリ
ント配線板の絶縁層として適したものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a resin fiber nonwoven fabric for electrical insulation and a method for producing the same. Also,
The present invention relates to a prepreg and a laminate using the nonwoven fabric as a base material. The nonwoven fabric substrate prepreg and the laminate are suitable as an insulating layer of a printed wiring board on which chip components such as resistors and ICs are surface-mounted.

【0002】[0002]

【従来の技術】近年、電子機器の小型軽量化、高密度化
の点より、これに組込んで使用するプリント配線板への
電子部品実装は、表面実装方式が主流となってきた。従
って、電子部品はリードレスチップ部品である。プリン
ト配線板は、金属箔張り積層板の金属箔をエッチングに
より回路加工して製造したものであり、また、積層板
は、熱硬化性樹脂を含浸したシート状繊維基材を加熱加
圧成形したものである。
2. Description of the Related Art In recent years, the surface mounting method has become the mainstream for mounting electronic components on printed wiring boards which are incorporated and used in electronic devices in view of reduction in size and weight and increase in density of electronic devices. Therefore, the electronic component is a leadless chip component. The printed wiring board was manufactured by performing circuit processing on the metal foil of the metal foil-clad laminate by etching, and the laminate was formed by heating and pressing a sheet-like fiber base material impregnated with a thermosetting resin. Things.

【0003】プリント配線板にリードレスチップ部品を
半田付けにより表面実装した場合、長期に亘る使用の間
に、半田接続部に冷熱サイクルに起因するクラックが生
じないようにしなければならない。このような観点か
ら、プリント配線板の絶縁層として用いる積層板には、
その平面方向の熱膨張係数をリードレスチップ部品の熱
膨張係数(2〜7×10-6/℃)に近づけることが求め
られており、負の熱膨張係数を有する芳香族ポリアミド
繊維(ポリp−フェニレンテレフタラミド繊維やポリp
−フェニレンジフェニールエーテルテレフタラミド繊
維)からなる不織布を基材とした積層板ないしは金属箔
張り積層板が検討されている。前記不織布は、芳香族ポ
リアミド短繊維同士をガラス転移温度110℃前後のエ
ポキシ樹脂バインダで結着した構成のものが使用されて
いる。
[0003] When a leadless chip component is surface-mounted on a printed wiring board by soldering, it is necessary to prevent the occurrence of cracks due to cooling and heating cycles in the solder connection portion during long-term use. From such a viewpoint, a laminated board used as an insulating layer of a printed wiring board includes:
It is required that the thermal expansion coefficient in the plane direction be close to the thermal expansion coefficient of the leadless chip component (2 to 7 × 10 −6 / ° C.), and aromatic polyamide fibers (polyp) having a negative thermal expansion coefficient are required. -Phenylene terephthalamide fiber or poly-p
A laminate or a metal foil-clad laminate based on a nonwoven fabric made of phenylene phenyl ether terephthalamide fiber) has been studied. The nonwoven fabric has a structure in which aromatic polyamide short fibers are bound with an epoxy resin binder having a glass transition temperature of about 110 ° C.

【0004】[0004]

【発明が解決しようとする課題】上記芳香族ポリアミド
繊維不織布は、エポキシ樹脂バインダのガラス転移温度
(110℃)を越える温度領域でその弾性率が急激に低
下する。この不織布に熱硬化性樹脂(マトリックス樹
脂)を含浸して加熱加圧成形により積層板を製造する工
程において、マトリックス樹脂が溶融し流動する温度範
囲は80〜140℃である。従って、このような温度範
囲で弾性率が低下した前記芳香族ポリアミド繊維不織布
は、マトリックス樹脂の流動及び成形圧力の影響により
不均一に変形しやすい。この変形が、プリント配線板の
そり・ねじれの原因になる。また、リードレスチップ部
品をプリント配線板に半田付けにより表面実装する工程
は、リフロー装置により行なうため、プリント配線板は
200℃以上の熱を受ける。上記芳香族ポリアミド繊維
不織布を基材とする絶縁層は、全体が均一に伸びたり収
縮せず、繊維の配向性の影響により部分的に伸びたり収
縮する不均一な挙動を示す。これも、プリント配線板の
そり・ねじれの原因になる。
The elastic modulus of the above-mentioned aromatic polyamide fiber nonwoven fabric rapidly decreases in a temperature range exceeding the glass transition temperature (110 ° C.) of the epoxy resin binder. In the process of impregnating the non-woven fabric with a thermosetting resin (matrix resin) to produce a laminate by heating and pressing, the temperature range in which the matrix resin melts and flows is 80 to 140 ° C. Therefore, the aromatic polyamide fiber nonwoven fabric whose elastic modulus has decreased in such a temperature range is likely to be deformed unevenly due to the influence of the flow of the matrix resin and the molding pressure. This deformation causes warpage and torsion of the printed wiring board. Further, since the step of surface mounting the leadless chip component on the printed wiring board by soldering is performed by a reflow device, the printed wiring board receives heat of 200 ° C. or more. The insulating layer made of the aromatic polyamide fiber nonwoven fabric as a base material does not uniformly expand and contract, but exhibits a non-uniform behavior of partially expanding and contracting under the influence of the orientation of the fiber. This also causes the printed wiring board to warp and twist.

【0005】本発明が解決しようとする課題は、芳香族
ポリアミド繊維をはじめとする耐熱性樹脂繊維からなる
不織布を基材とする積層板において、成形時に基材が変
形するのを抑制し、また、リードレスチップ部品を表面
実装するときの熱で起こるそり・ねじれを抑制すること
である。そのような積層板に使用する電気絶縁用の樹脂
繊維不織布を提供することである。
[0005] The problem to be solved by the present invention is to suppress the deformation of the base material during molding in a laminate made of a nonwoven fabric made of a heat-resistant resin fiber such as an aromatic polyamide fiber. Another object of the present invention is to suppress warpage and twisting caused by heat when a leadless chip component is surface-mounted. An object of the present invention is to provide a resin fiber nonwoven fabric for electrical insulation used for such a laminate.

【0006】[0006]

【課題を解決するための手段】上記課題を解決するため
に、本発明に係る電気絶縁用樹脂繊維不織布は、実質的
に熱軟化しない樹脂繊維同士がガラス転移温度200℃
以上(TMA法で測定)の樹脂バインダで結着されて構
成されている。そして、樹脂バインダの付着量が5〜2
5重量%であることを特徴とする。実質的に熱軟化しな
い樹脂繊維は、好ましくはパラ型芳香族ポリアミド繊維
であり、例えば、ポリp−フェニレンテレフタラミド繊
維やポリp−フェニレンジフェニールエーテルテレフタ
ラミド繊維である。そのほか、ヘテロ環含有芳香族高分
子繊維等である。ヘテロ環含有芳香族高分子は、芳香族
ポリアミドのアミノ結合をヘテロ環で置き換えた化学構
造をもち、ポリp−フェニレンベンゾビスチアゾールや
ポリp−フェニレンベンゾビスオキサゾールである。こ
れらの繊維は短繊維の形態で用いる。
In order to solve the above-mentioned problems, a resin fiber non-woven fabric for electrical insulation according to the present invention has a glass transition temperature of 200.degree.
It is configured by binding with the resin binder described above (measured by the TMA method). When the amount of the resin binder attached is 5 to 2
5% by weight. The resin fiber which does not substantially heat soften is preferably a para-type aromatic polyamide fiber, for example, a poly p-phenylene terephthalamide fiber or a poly p-phenylene phenyl ether terephthalamide fiber. Other examples include aromatic polymer fibers containing a hetero ring. The heterocycle-containing aromatic polymer has a chemical structure in which an amino bond of an aromatic polyamide is replaced with a heterocycle, and is poly (p-phenylenebenzobisthiazole) or poly (p-phenylenebenzobisoxazole). These fibers are used in the form of short fibers.

【0007】このように高耐熱樹脂繊維同士が高耐熱樹
脂バインダで結着された不織布は、その弾性率の温度依
存性が小さい。すなわち、この不織布は、積層板成形時
のマトリックス樹脂の溶融温度範囲で弾性率の低下が小
さく、マトリックス樹脂の流動及び圧力の影響を受けに
くい。その結果、そり・ねじれの原因となる不織布の不
均一な変形が低減され、積層板のそり・ねじれが抑制さ
れる。尚、このようにガラス転移温度が200℃以上の
高耐熱樹脂バインダを採用すると、その付着量が5重量
%未満では繊維同士を結着する力が弱く、不織布の強度
が不十分となる。また、このような高耐熱樹脂バインダ
は、その付着量が多くなると積層板の耐湿絶縁性を低下
させるし、積層板の平面方向の熱膨張係数(線膨張係
数)を大きくするので、徒に多くしないよう注意をす
る。25重量%までが適当である。
[0007] The nonwoven fabric in which the high heat-resistant resin fibers are bound together by the high heat-resistant resin binder has a small temperature dependence of the elastic modulus. That is, this nonwoven fabric has a small decrease in the elastic modulus in the range of the melting temperature of the matrix resin at the time of forming the laminate, and is hardly affected by the flow and pressure of the matrix resin. As a result, non-uniform deformation of the nonwoven fabric which causes warpage and twist is reduced, and warpage and twist of the laminated board are suppressed. When a high heat-resistant resin binder having a glass transition temperature of 200 ° C. or higher is used, if the amount of adhesion is less than 5% by weight, the bonding strength between fibers is weak, and the strength of the nonwoven fabric is insufficient. Further, such a high heat-resistant resin binder reduces the moisture-resistant insulation property of the laminate when the amount of adhesion thereof increases, and increases the thermal expansion coefficient (linear expansion coefficient) in the planar direction of the laminate. Be careful not to. Suitably up to 25% by weight.

【0008】上記の樹脂繊維不織布は、繊維同士をガラ
ス転移温度200℃以上の樹脂バインダで結着した後、
さらに、前記ガラス転移温度より高い温度で熱圧縮して
製造するのがよい。前記熱圧縮は、例えば、熱ロール等
により実施するが、これによってガラス転移温度200
℃以上の高耐熱樹脂バインダの硬化を進めて、当該樹脂
バインダのガラス転移温度をさらに高くすることができ
る。樹脂バインダの付着量が多いと、熱圧縮するときに
樹脂バインダが熱ロール等に付着したり不織布が切れる
原因となるので、このような観点からも樹脂バインダの
付着量を25重量%以下にする必要がある。
[0008] The above resin fiber non-woven fabric is obtained by binding the fibers with a resin binder having a glass transition temperature of 200 ° C or higher.
Further, it is preferable to manufacture by thermal compression at a temperature higher than the glass transition temperature. The heat compression is performed by, for example, a hot roll or the like.
The glass transition temperature of the resin binder can be further increased by promoting the curing of the high heat-resistant resin binder having a temperature of not less than ° C. If the amount of the resin binder adhered is large, the resin binder adheres to a hot roll or the like or breaks the nonwoven fabric during thermal compression. Therefore, from such a viewpoint, the amount of the resin binder adhered is set to 25% by weight or less. There is a need.

【0009】[0009]

【発明の実施の形態】本発明に係る電気絶縁用樹脂繊維
不織布は、実質的に熱軟化しない樹脂繊維としてパラ型
芳香族ポリアミド繊維やヘテロ環含有芳香族高分子繊維
(いずれも短繊維)を水中に分散させて金網上に漉き上
げ(抄造)、ガラス転移温度200℃以上の樹脂バイン
ダ溶液をスプレーし加熱乾燥して製造する。加熱乾燥に
より樹脂バインダが硬化し、繊維同士が結着される。基
本的には、この状態で樹脂バインダのガラス転移温度は
200℃以上になっているが、200℃に達していなく
ても、樹脂バインダを選択することにより、以下に述べ
る熱圧縮の製造法で、200℃以上にすることも可能で
ある。上記ガラス転移温度200℃以上の樹脂バインダ
は、エポキシ樹脂、ポリイミド樹脂などからなる。後述
する実施例では、次のようなバインダを使用した。すな
わち、3官能エポキシ樹脂(三井石油化学製「VG31
01」,グリシジル化トリスフェニロールメタン型3官
能)100重量部とトリエチレンテトラミン11.6重
量部にアセトン48重量部を加えてよく混合し、撹拌し
ながら常温で8時間反応させた。その後、10%酢酸水
溶液1004重量部を加えて水溶性のエポキシ樹脂バイ
ンダを調製した。硬化したこの樹脂バインダのガラス転
移温度は、TMA法で測定して200℃であった。
BEST MODE FOR CARRYING OUT THE INVENTION The resin fiber non-woven fabric for electrical insulation according to the present invention comprises a para-type aromatic polyamide fiber or a hetero ring-containing aromatic polymer fiber (all short fibers) as a resin fiber which does not substantially heat-soften. It is dispersed in water, laid on a wire mesh (papermaking), sprayed with a resin binder solution having a glass transition temperature of 200 ° C. or higher, and dried by heating to produce the product. The resin binder is cured by heating and drying, and the fibers are bound together. Basically, in this state, the glass transition temperature of the resin binder is 200 ° C. or higher. However, even if the glass transition temperature has not reached 200 ° C., the resin binder can be selected by the heat compression manufacturing method described below. , 200 ° C. or higher. The resin binder having a glass transition temperature of 200 ° C. or higher is made of an epoxy resin, a polyimide resin, or the like. In the examples described later, the following binder was used. That is, a trifunctional epoxy resin (“VG31 made by Mitsui Petrochemical”
01 ", 100 parts by weight of glycidylated trisphenylol methane type) and 11.6 parts by weight of triethylenetetramine, 48 parts by weight of acetone were added, mixed well, and reacted at room temperature for 8 hours with stirring. Thereafter, 1004 parts by weight of a 10% acetic acid aqueous solution was added to prepare a water-soluble epoxy resin binder. The glass transition temperature of the cured resin binder was 200 ° C. as measured by the TMA method.

【0010】不織布における樹脂バインダの付着量は、
不織布の強度、積層板の耐湿絶縁性などを考慮すると、
好ましくは10〜20重量%である。また、不織布の嵩
密度を0.55g/cc以上にすると、樹脂バインダによ
る繊維同士の結着点が多くなるので好ましい。繊維同士
をガラス転移温度200℃以上の樹脂バインダで結着し
た不織布は、前記ガラス転移温度より高い温度、例え
ば、210〜350℃で熱圧縮することにより上記の嵩
密度にすることができる。ガラス転移温度200℃以上
の樹脂バインダの硬化をさらに進めるためには、熱圧縮
の温度を210℃以上にする必要があり、熱圧縮する前
の樹脂バインダのガラス転移温度に応じてそれより高い
熱圧縮の温度を設定する。一方、熱圧縮の温度が350
℃を越えると、樹脂バインダが圧縮手段(熱ロール等)
に融着して不織布が切れたり、不織布表面が凹凸になっ
て厚みのばらつきが生じるので、適宜調整する。熱圧縮
を熱ロールで行なう場合、熱ロールが不織布に当接する
線圧を150〜250kg/cmにするとよい。しかし、こ
れに限定するものではない。また、熱圧縮を熱ロールを
用いて行なう場合、不織布の移送速度は、不織布が熱ロ
ールから所定の熱量を得られるようにするために、10
m/min以下が望ましい。しかし、これに限定するもの
ではない。
[0010] The amount of resin binder adhering to the nonwoven fabric is
Considering the strength of the nonwoven fabric and the moisture-resistant insulation of the laminate,
Preferably it is 10 to 20% by weight. Further, when the bulk density of the nonwoven fabric is 0.55 g / cc or more, the number of binding points between fibers by the resin binder increases, which is preferable. The bulk density of the nonwoven fabric in which the fibers are bound with a resin binder having a glass transition temperature of 200 ° C. or higher can be adjusted to a temperature higher than the glass transition temperature, for example, 210 to 350 ° C., to achieve the above bulk density. In order to further promote the curing of the resin binder having a glass transition temperature of 200 ° C. or higher, it is necessary to set the temperature of the thermal compression to 210 ° C. or higher. Depending on the glass transition temperature of the resin binder before the thermal compression, a higher heat may be applied. Set the compression temperature. On the other hand, when the temperature of thermal compression is 350
If the temperature exceeds ℃, the resin binder will be compressed
The thickness of the non-woven fabric is uneven because the non-woven fabric breaks due to fusion to the non-woven fabric, or the non-woven fabric surface becomes uneven, so the thickness is adjusted appropriately. When heat compression is performed by a hot roll, the linear pressure at which the hot roll contacts the nonwoven fabric is preferably 150 to 250 kg / cm. However, it is not limited to this. When the thermal compression is performed using a hot roll, the transfer speed of the nonwoven fabric is set at 10 to make the nonwoven fabric obtain a predetermined amount of heat from the hot roll.
m / min or less is desirable. However, it is not limited to this.

【0011】第二繊維として軟化温度220℃以上の熱
可塑性樹脂繊維(短繊維)を混抄して上記不織布を構成
すると、上述したように不織布を熱圧縮するときに、第
二繊維を軟化あるいは溶融させて、実質的に熱軟化しな
い樹脂繊維に絡ませあるいは融着して、さらに不織布の
弾性率の温度依存性を少なくすることができる。第二繊
維は、好ましくはメタ型芳香族ポリアミド繊維であり、
例えば、ポリm−フェニレンイソフタラミド繊維であ
る。そのほか、ポリエチレンテレフタレート繊維やポリ
ブチレンテレフタレートに代表されるポリエステル繊
維、6ナイロンや66ナイロンに代表されるナイロン繊
維等である。
When the nonwoven fabric is formed by mixing thermoplastic resin fibers (short fibers) having a softening temperature of 220 ° C. or higher as the second fibers, the second fibers are softened or melted when the nonwoven fabric is thermally compressed as described above. As a result, the nonwoven fabric is entangled or fused with the resin fiber that does not substantially soften, and the temperature dependence of the elastic modulus of the nonwoven fabric can be further reduced. The second fiber is preferably a meta-type aromatic polyamide fiber,
For example, poly m-phenylene isophthalamide fiber. Other examples include polyester fibers typified by polyethylene terephthalate fiber and polybutylene terephthalate, and nylon fibers typified by 6 nylon and 66 nylon.

【0012】積層板は、熱硬化性樹脂を含浸した上記不
織布の層を加熱加圧成形して製造する。このとき、金属
箔を表面に重ねて一体に成形することができる。熱硬化
性樹脂は、エポキシ樹脂、フェノール樹脂、ユリア樹
脂、ポリイミド、ポリエステル等を適宜用いることがで
きる。金属箔は、銅箔、アルミニウム箔、ニクロム箔等
を適宜用いることができる。上記不織布に熱硬化性樹脂
を含浸乾燥したプリプレグは、上記積層板の製造に供す
るほか、ビルドアップ法等による多層プリント配線板の
絶縁層として使用する。
The laminate is manufactured by heating and pressing a layer of the nonwoven fabric impregnated with a thermosetting resin. At this time, the metal foil can be formed integrally with the metal foil on the surface. As the thermosetting resin, an epoxy resin, a phenol resin, a urea resin, a polyimide, a polyester, or the like can be appropriately used. As the metal foil, a copper foil, an aluminum foil, a nichrome foil, or the like can be appropriately used. The prepreg obtained by impregnating and drying the nonwoven fabric with a thermosetting resin is used not only for the production of the laminate, but also as an insulating layer of a multilayer printed wiring board by a build-up method or the like.

【0013】[0013]

【実施例】【Example】

実施例1〜17、比較例1〜3 抄造したポリp−フェニレン3,4’−ジフェニルエー
テルテレフタラミド短繊維(帝人製「テクノーラ」,実
質的に熱軟化しない樹脂繊維)をガラス転移温度200
℃のエポキシ樹脂バインダで結着し(樹脂バインダ溶液
をスプレーした後の加熱乾燥条件は、220℃で5
分)、単位重量60g/m2の不織布を得た。樹脂バイン
ダの付着量は、表1、表2に示すとおりである。また、
各例の不織布のうち一部の例の不織布は、同表に示す条
件で熱ロールにて熱圧縮しエポキシ樹脂バインダの硬化
をさらに進めた。上記樹脂繊維不織布それぞれに臭素化
ビスフェノールA型エポキシ樹脂ワニスを含浸乾燥し
て、樹脂付着量50重量%の樹脂繊維不織布プリプレグ
を作製した。作製したプリプレグを5プライ重ねて、そ
の両側に18μm厚の銅箔を載置して、加熱加圧成形に
より、0.5mm厚の銅張り積層板を得た。
Examples 1 to 17 and Comparative Examples 1 to 3 Poly-p-phenylene 3,4'-diphenyl ether terephthalamide staple fibers ("Technola" manufactured by Teijin Ltd., resin fibers that are not substantially heat-softened) were prepared and had a glass transition temperature of 200.
(The condition of heating and drying after spraying the resin binder solution is 220 ° C. and 5 ° C.)
Min) to obtain a nonwoven fabric having a unit weight of 60 g / m 2 . The adhesion amounts of the resin binder are as shown in Tables 1 and 2. Also,
Among the nonwoven fabrics of the respective examples, some of the nonwoven fabrics were thermally compressed with a hot roll under the conditions shown in the same table to further advance the curing of the epoxy resin binder. Each of the resin fiber nonwoven fabrics was impregnated with a brominated bisphenol A type epoxy resin varnish and dried to prepare a resin fiber nonwoven fabric prepreg having a resin adhesion amount of 50% by weight. Five ply of the prepared prepregs were stacked, and a copper foil having a thickness of 18 μm was placed on both sides of the prepreg, and a 0.5 mm-thick copper-clad laminate was obtained by heating and pressing.

【0014】従来例 抄造したポリp−フェニレン3,4’−ジフェニルエー
テルテレフタラミド短繊維(帝人製「テクノーラ」,実
質的に熱軟化しない樹脂繊維)をガラス転移温度110
℃のエポキシ樹脂バインダで結着し(樹脂バインダ溶液
をスプレーした後の加熱乾燥条件は、130℃で5
分)、単位重量60g/m2の不織布を得た。樹脂バイン
ダの付着量は、15重量%である。上記樹脂繊維不織布
に臭素化ビスフェノールA型エポキシ樹脂ワニスを含浸
乾燥して、樹脂付着量50重量%の樹脂繊維不織布プリ
プレグを作製した。作製したプリプレグを5プライ重ね
て、その両側に18μm厚の銅箔を載置して、加熱加圧
成形により、0.5mm厚の銅張り積層板を得た。
Conventional Example Paper-made poly p-phenylene 3,4'-diphenylether terephthalamide short fiber ("Technola" manufactured by Teijin Ltd., a resin fiber which does not substantially heat soften) has a glass transition temperature of 110.
(The condition for heating and drying after spraying the resin binder solution is 5 ° C at 130 ° C.)
Min) to obtain a nonwoven fabric having a unit weight of 60 g / m 2 . The adhesion amount of the resin binder is 15% by weight. The resin fiber nonwoven fabric was impregnated with a brominated bisphenol A type epoxy resin varnish and dried to prepare a resin fiber nonwoven fabric prepreg having a resin adhesion amount of 50% by weight. Five ply of the prepared prepregs were stacked, and a copper foil having a thickness of 18 μm was placed on both sides of the prepreg, and a 0.5 mm-thick copper-clad laminate was obtained by heating and pressing.

【0015】実施例18〜34、比較例4〜6 抄造したポリp−フェニレン3,4’−ジフェニルエー
テルテレフタラミド短繊維(帝人製「テクノーラ」,実
質的に熱軟化しない樹脂繊維)とポリm−フェニレンイ
ソフタラミド短繊維(帝人製「コーネックス」,軟化温
度:280℃,第二繊維)の混抄不織布をガラス転移温
度200℃のエポキシ樹脂バインダで結着し(樹脂バイ
ンダ溶液をスプレーした後の加熱乾燥条件は、220℃
で5分)、単位重量60g/m2の不織布を得た(実質的
に熱軟化しない樹脂繊維と第二繊維の配合重量比は8
5:15)。樹脂バインダの付着量は、表3、表4に示
すとおりである。また、各例の不織布のうち一部の例の
不織布は、同表に示す条件で熱ロールにて熱圧縮しエポ
キシ樹脂バインダの硬化をさらに進めた。さらに、この
うちロール温度300℃と350℃に設定して熱圧縮し
た不織布は、第二繊維が軟化あるいは溶融した結果、第
二繊維が実質的に熱軟化しない繊維に絡み付きあるいは
融着した構成となった。第二繊維同士も融着している。
上記樹脂繊維不織布それぞれに臭素化ビスフェノールA
型エポキシ樹脂ワニスを含浸乾燥して、樹脂付着量50
重量%の樹脂繊維不織布プリプレグを作製した。作製し
たプリプレグを5プライ重ねて、その両側に18μm厚
の銅箔を載置して、加熱加圧成形により、0.5mm厚の
銅張り積層板を得た。
Examples 18 to 34, Comparative Examples 4 to 6 Short fibers of polyp-phenylene 3,4'-diphenylether terephthalamide ("Technola" manufactured by Teijin, resin fibers which are not substantially heat-softened) and polym -A nonwoven fabric made of phenylene isophthalamide short fibers ("CONEX" manufactured by Teijin, softening temperature: 280 ° C, second fiber) is bound with an epoxy resin binder having a glass transition temperature of 200 ° C (after spraying the resin binder solution). The heating and drying conditions are 220 ° C
To obtain a nonwoven fabric having a unit weight of 60 g / m 2 (the compounding weight ratio of the resin fiber which does not substantially soften and the second fiber is 8).
5:15). The adhesion amounts of the resin binder are as shown in Tables 3 and 4. Further, among the nonwoven fabrics of the respective examples, some of the nonwoven fabrics were thermally compressed with a hot roll under the conditions shown in the same table to further advance the curing of the epoxy resin binder. Further, among these, the non-woven fabric which is thermally compressed by setting the roll temperature to 300 ° C. and 350 ° C. has a configuration in which the second fiber is softened or melted, so that the second fiber is entangled or fused with the fiber which is not substantially thermally softened. became. The second fibers are also fused together.
Each of the above resin fiber non-woven fabrics has a brominated bisphenol A
Impregnated with epoxy resin varnish and dried.
A resin fiber nonwoven fabric prepreg of weight% was prepared. Five ply of the prepared prepregs were stacked, and a copper foil having a thickness of 18 μm was placed on both sides thereof, and a copper-clad laminate having a thickness of 0.5 mm was obtained by heating and pressing.

【0016】以上の実施例1〜34、比較例1〜6、従
来例で得られた樹脂繊維不織布の特性、すなわち、樹脂
バインダのガラス転移温度(Tg)と不織布の嵩密度、
溶剤湿潤強度を表1、表2、表3、表4に併せて示す。
溶剤湿潤強度は、幅15mm×長さ100mmにカットした
不織布の中央部分をメチルエチルケトンで濡らし、長さ
方向に引張って破断するときの引張り強度を測定したも
のである。
The properties of the resin fiber non-woven fabric obtained in Examples 1 to 34, Comparative Examples 1 to 6, and the conventional example, that is, the glass transition temperature (Tg) of the resin binder and the bulk density of the non-woven fabric,
The solvent wet strength is also shown in Tables 1, 2, 3, and 4.
The solvent wet strength is a value obtained by measuring the tensile strength when a central portion of a nonwoven fabric cut into a width of 15 mm and a length of 100 mm is wetted with methyl ethyl ketone and pulled in the length direction to break.

【0017】[0017]

【表1】 [Table 1]

【0018】[0018]

【表2】 [Table 2]

【0019】[0019]

【表3】 [Table 3]

【0020】[0020]

【表4】 [Table 4]

【0021】実施例1〜34、比較例1〜6、従来例で
得られた樹脂繊維不織布を基材とする銅張り積層板のそ
りの大きさ、線熱膨脹係数、耐湿絶縁特性、板厚精度を
表5、表6、表7、表8に示す。各特性は、次のように
して測定した。 そりの大きさ:試料を平らな面に置き、その四隅の表裏
8点について平らな面からの浮き上がり量を測定し、そ
の最大値をそりとする(n=10)。銅張り積層板の成
形後(表中「成形後」と表示)のそりは、500mm×5
00mmサイズの試料で測定。 そりが3mm未満:○ 3mm以上:× ×の割合が10%以下:△ 銅張り積層板をプリント配線板に加工し部品の表面実装
のための最高温度230℃のリフロー処理後(表中「加
熱後」と表示)のそりは、50mm×70mmサイズの試料
で測定。 そりが2mm未満:○ 2mm以上:× ×の割合が10%以下:△ 耐湿絶縁特性:プレッシャークッカー6時間後の積層板
の絶縁抵抗を測定。 線熱膨張係数:昇温速度10℃/分,荷重2g,30〜
80℃における積層板の不織布タテ方向の線熱膨張係数
を測定。 板厚精度:成形後積層板の中央部5点、端部5点の板厚
を測定。 バラツキが±0.015以下:○ ±0.030以下:△ ±0.03を越える:×
Examples 1 to 34, Comparative Examples 1 to 6, and the warp size, coefficient of linear thermal expansion, moisture resistance, and thickness accuracy of copper-clad laminates based on the resin fiber nonwoven fabric obtained in the conventional examples. Are shown in Table 5, Table 6, Table 7, and Table 8. Each characteristic was measured as follows. Warpage size: A sample is placed on a flat surface, and the amount of lifting from the flat surface is measured at the four corners of the front and back, and the maximum value is defined as the warpage (n = 10). The warpage of the copper-clad laminate after molding (indicated as "after molding" in the table) is 500 mm x 5
Measured with a sample of 00mm size. Warpage is less than 3 mm: ○ 3 mm or more: The ratio of ×× is 10% or less: △ After processing the copper-clad laminate into a printed wiring board and performing a reflow treatment at a maximum temperature of 230 ° C. for surface mounting of components (see “ The back) is measured on a 50 mm x 70 mm sample. Warpage is less than 2 mm: ○ 2 mm or more: The ratio of XX is 10% or less: Δ Moisture resistance insulation property: The insulation resistance of the laminate after 6 hours of pressure cooker was measured. Linear thermal expansion coefficient: heating rate 10 ° C / min, load 2g, 30 ~
The coefficient of linear thermal expansion of the laminate at 80 ° C. in the nonwoven fabric vertical direction was measured. Plate thickness accuracy: Measure the plate thickness at the center 5 points and the end 5 points of the laminated plate after molding. Variation is ± 0.015 or less: ○ ± 0.030 or less: Δ Exceeds ± 0.03: ×

【0022】[0022]

【表5】 [Table 5]

【0023】[0023]

【表6】 [Table 6]

【0024】[0024]

【表7】 [Table 7]

【0025】[0025]

【表8】 [Table 8]

【0026】[0026]

【発明の効果】表5〜8から明らかなように、本発明に
係る樹脂繊維不織布は、これを基材とする積層板のそり
・ねじれを抑制することに寄与する。ガラス転移温度2
00℃以上の樹脂バインダの付着量を10〜20重量%
にした前記不織布は、これを基材とする積層板の耐湿絶
縁特性を高いレベルに維持すると共に積層板の平面方向
の熱膨張係数を大きくしないことに寄与する。さらに、
嵩密度を0.55g/cc以上にした前記不織布は、積層
板の板厚精度を向上させることに寄与する。本発明に係
る樹脂繊維不織布は、これを樹脂バインダのガラス転移
温度以上で熱圧縮すると、当該樹脂バインダのガラス転
移温度がさらに高くなるので、リフロー処理後の積層板
のそり・ねじれを抑制する上で好都合である(実施例1
7と、樹脂バインダ付着量が実施例17と同じである実
施例7、11、15との比較)。第二繊維として軟化温
度220℃以上の熱可塑性繊維を混抄してなり、実質的
に熱軟化しない樹脂繊維に第二繊維が熱融着した構成の
不織布は、繊維同士の結着が一層確実になり、さらなる
積層板のそり・ねじれを抑制することに寄与する。
As is clear from Tables 5 to 8, the resin fiber nonwoven fabric according to the present invention contributes to suppressing the warpage and twisting of a laminate made of the same. Glass transition temperature 2
10-20% by weight
The above-mentioned nonwoven fabric contributes to keeping the moisture-resistant insulation properties of the laminate using the base material at a high level and not increasing the thermal expansion coefficient of the laminate in the planar direction. further,
The nonwoven fabric having a bulk density of 0.55 g / cc or more contributes to improving the thickness accuracy of the laminate. When the resin fiber nonwoven fabric according to the present invention is thermally compressed at a temperature equal to or higher than the glass transition temperature of the resin binder, the glass transition temperature of the resin binder is further increased. (Example 1
7 and Examples 7, 11, and 15 in which the amount of resin binder attached is the same as in Example 17). A nonwoven fabric in which thermoplastic fibers having a softening temperature of 220 ° C. or higher are mixed as the second fibers, and the second fibers are heat-sealed to resin fibers that are not substantially heat-softened, the bonding between the fibers is more reliably achieved. This further contributes to suppressing warpage and twisting of the laminate.

Claims (14)

【特許請求の範囲】[Claims] 【請求項1】実質的に熱軟化しない樹脂繊維同士がガラ
ス転移温度200℃以上の樹脂バインダで結着されてな
り、樹脂バインダの付着量が5〜25重量%であること
を特徴とする電気絶縁用樹脂繊維不織布。
1. An electric machine wherein resin fibers which are not substantially heat-softened are bound with a resin binder having a glass transition temperature of 200 ° C. or higher, and the adhesion amount of the resin binder is 5 to 25% by weight. Resin fiber non-woven fabric for insulation.
【請求項2】実質的に熱軟化しない樹脂繊維が、パラ型
芳香族ポリアミド繊維であることを特徴とする請求項1
記載の電気絶縁用樹脂繊維不織布。
2. A resin fiber which does not substantially heat soften is a para-type aromatic polyamide fiber.
The resin fiber nonwoven fabric for electrical insulation according to the above.
【請求項3】パラ型芳香族ポリアミド繊維が、ポリp−
フェニレン3,4’−ジフェニルエーテルテレフタラミ
ド繊維であることを特徴とする請求項2記載の電気絶縁
用樹脂繊維不織布。
3. The para-type aromatic polyamide fiber is poly-p-
3. The resin insulating nonwoven fabric according to claim 2, wherein the nonwoven fabric is phenylene 3,4'-diphenylether terephthalamide fiber.
【請求項4】第二繊維として軟化温度220℃以上の熱
可塑性樹脂繊維を含有する請求項1〜3のいずれかに記
載の電気絶縁用樹脂繊維不織布。
4. The non-woven resin fiber fabric for electrical insulation according to claim 1, further comprising a thermoplastic resin fiber having a softening temperature of 220 ° C. or higher as the second fiber.
【請求項5】第二繊維が、実質的に熱軟化しない樹脂繊
維に熱融着していることを特徴とする請求項4記載の電
気絶縁用樹脂繊維不織布。
5. The resin-fiber non-woven fabric for electrical insulation according to claim 4, wherein the second fiber is heat-sealed to a resin fiber which does not substantially heat-soften.
【請求項6】第二繊維が、メタ型芳香族ポリアミド繊維
であることを特徴とする請求項4又は5記載の電気絶縁
用樹脂繊維繊維不織布。
6. The non-woven resin fiber fabric for electrical insulation according to claim 4, wherein the second fiber is a meta-type aromatic polyamide fiber.
【請求項7】メタ型芳香族ポリアミド繊維が、ポリm−
フェニレンイソフタラミド繊維であることを特徴とする
請求項6記載の電気絶縁用樹脂繊維不織布。
7. The method according to claim 7, wherein the meta-type aromatic polyamide fiber is poly-m-
The resin insulating nonwoven fabric according to claim 6, wherein the nonwoven fabric is phenylene isophthalamide fiber.
【請求項8】樹脂バインダの付着量が、10〜20重量
%であることを特徴とする請求項1〜7のいずれかに記
載の電気絶縁用樹脂繊維不織布。
8. The resin-fiber non-woven fabric for electrical insulation according to claim 1, wherein the amount of the resin binder attached is 10 to 20% by weight.
【請求項9】嵩密度が、0.55g/cc以上であること
を特徴とする請求項1〜8のいずれかに記載の電気絶縁
用樹脂繊維不織布。
9. The resin-fiber non-woven fabric for electrical insulation according to claim 1, wherein the bulk density is 0.55 g / cc or more.
【請求項10】実質的に熱軟化しない樹脂繊維同士をガ
ラス転移温度200℃以上の樹脂バインダで結着した不
織布(樹脂バインダ付着量5〜25重量%)を、前記ガ
ラス転移温度より高い温度で熱圧縮することを特徴とす
る電気絶縁用樹脂繊維不織布の製造法。
10. A nonwoven fabric (resin binder adhering amount: 5 to 25% by weight) in which resin fibers that are not substantially thermally softened are bonded with a resin binder having a glass transition temperature of 200 ° C. or higher at a temperature higher than the glass transition temperature. A method for producing a resin-fiber nonwoven fabric for electrical insulation, comprising thermally compressing.
【請求項11】第二繊維として軟化温度220℃以上の
熱可塑性樹脂繊維を含有する不織布を熱圧縮することを
特徴とする請求項10記載の電気絶縁用樹脂繊維不織布
の製造法。
11. The method for producing a resin nonwoven fabric for electrical insulation according to claim 10, wherein a nonwoven fabric containing a thermoplastic resin fiber having a softening temperature of 220 ° C. or higher as the second fiber is thermally compressed.
【請求項12】熱圧縮により、実質的に熱軟化しない樹
脂繊維に第二繊維を熱融着させることを特徴とする請求
項11記載の電気絶縁用樹脂繊維不織布の製造法。
12. The method for producing a resin nonwoven fabric for electrical insulation according to claim 11, wherein the second fibers are heat-sealed to the resin fibers that are not substantially thermally softened by thermal compression.
【請求項13】熱硬化性樹脂を含浸したシート状繊維基
材を加熱加圧成形した積層板において、 前記シート状基材が請求項1〜9のいずれかに記載の樹
脂繊維不織布であることを特徴とする積層板。
13. A laminate obtained by heating and pressing a sheet-like fiber base material impregnated with a thermosetting resin, wherein the sheet-like base material is the resin fiber nonwoven fabric according to any one of claims 1 to 9. A laminated plate characterized by the above.
【請求項14】シート状繊維基材に熱硬化性樹脂を含浸
乾燥したプリプレグにおいて、 前記シート状基材が請求項1〜9のいずれかに記載の樹
脂繊維不織布であることを特徴とするプリプレグ。
14. A prepreg obtained by impregnating and drying a thermosetting resin in a sheet fiber base material, wherein the sheet base material is the resin fiber nonwoven fabric according to any one of claims 1 to 9. .
JP9312521A 1996-11-14 1997-11-14 Resin fiber nonwoven fabric for electrical insulation, its production and laminated board and prepreg Pending JPH10266055A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9312521A JPH10266055A (en) 1996-11-14 1997-11-14 Resin fiber nonwoven fabric for electrical insulation, its production and laminated board and prepreg

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP30259596 1996-11-14
JP9-8160 1997-01-21
JP816097 1997-01-21
JP8-302595 1997-01-21
JP9312521A JPH10266055A (en) 1996-11-14 1997-11-14 Resin fiber nonwoven fabric for electrical insulation, its production and laminated board and prepreg

Publications (1)

Publication Number Publication Date
JPH10266055A true JPH10266055A (en) 1998-10-06

Family

ID=27277912

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9312521A Pending JPH10266055A (en) 1996-11-14 1997-11-14 Resin fiber nonwoven fabric for electrical insulation, its production and laminated board and prepreg

Country Status (1)

Country Link
JP (1) JPH10266055A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2853903A1 (en) * 2003-04-16 2004-10-22 Saint Gobain Isover A sizing composition for the manufacture of mineral fiber thermal and/or acoustic insulation products comprises a carboxylic polyacid with 2-500 groups reactive with an amine and a polyamine with 2-200 amine groups
JP2019219605A (en) * 2018-06-22 2019-12-26 セイコーエプソン株式会社 Sheet, sheet treating device and sheet treating method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2853903A1 (en) * 2003-04-16 2004-10-22 Saint Gobain Isover A sizing composition for the manufacture of mineral fiber thermal and/or acoustic insulation products comprises a carboxylic polyacid with 2-500 groups reactive with an amine and a polyamine with 2-200 amine groups
JP2019219605A (en) * 2018-06-22 2019-12-26 セイコーエプソン株式会社 Sheet, sheet treating device and sheet treating method

Similar Documents

Publication Publication Date Title
US20110120754A1 (en) Multilayer wiring board and semiconductor device
EP0434013B1 (en) Epoxy resin-impregnated glass cloth sheet having adhesive layer
KR20110084882A (en) Resin composition, resin sheet, prepreg, laminate board, multilayer printed wiring board, and semiconductor device
JPH10131017A (en) Substrate for laminated board, its production, prepreg and laminated board
JP5157103B2 (en) Prepreg, substrate and semiconductor device
JP4983190B2 (en) Prepreg, circuit board and semiconductor device
US8269332B2 (en) Semiconductor element mounting board
JPH11131385A (en) Substrate for laminated plate, its production, prepreg and laminated board
JP3138215B2 (en) Circuit board base material and prepreg and printed circuit board using the same
JPH10266055A (en) Resin fiber nonwoven fabric for electrical insulation, its production and laminated board and prepreg
JP3211608B2 (en) Manufacturing method of copper-clad laminate
JP3343443B2 (en) Resin composition and prepreg
JPH11100767A (en) Base material for laminate board and its production, and prepreg and laminate board
JPH08283436A (en) Prepreg and copper-clad laminate board
JP5292847B2 (en) Semiconductor device mounting substrate
JPH11117184A (en) Base material for laminate, its production, prepreg and laminated board
JPH10212688A (en) Production of base material for laminated and mixed nonwoven fabric used for the production
JP3714752B2 (en) Manufacturing method of base material for laminated board
JPH07214725A (en) Production of metal foil clad laminated sheet and metal foil used therein
JP3883727B2 (en) Aramid fiber base insulation board and printed wiring board
JP2633286B2 (en) Manufacturing method of electric laminate
JP2003188483A (en) Insulating resin layer for wiring board and wiring board using it
JPH10173303A (en) Printed circuit board
JPS63265628A (en) Sheet obtained by plating copper on metallic base and its manufacture
JP2001295191A (en) Aromatic polyamide fiber paper