WO2013129153A1 - パンタグラフ測定方式及びパンタグラフ測定装置 - Google Patents

パンタグラフ測定方式及びパンタグラフ測定装置 Download PDF

Info

Publication number
WO2013129153A1
WO2013129153A1 PCT/JP2013/053826 JP2013053826W WO2013129153A1 WO 2013129153 A1 WO2013129153 A1 WO 2013129153A1 JP 2013053826 W JP2013053826 W JP 2013053826W WO 2013129153 A1 WO2013129153 A1 WO 2013129153A1
Authority
WO
WIPO (PCT)
Prior art keywords
pantograph
marker
pattern
image
height
Prior art date
Application number
PCT/JP2013/053826
Other languages
English (en)
French (fr)
Inventor
勇介 渡部
庭川 誠
Original Assignee
株式会社 明電舎
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 明電舎 filed Critical 株式会社 明電舎
Priority to KR1020147023958A priority Critical patent/KR101658717B1/ko
Priority to CN201380011644.4A priority patent/CN104145171B/zh
Priority to EP13755190.9A priority patent/EP2821747B1/en
Publication of WO2013129153A1 publication Critical patent/WO2013129153A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60MPOWER SUPPLY LINES, AND DEVICES ALONG RAILS, FOR ELECTRICALLY- PROPELLED VEHICLES
    • B60M1/00Power supply lines for contact with collector on vehicle
    • B60M1/12Trolley lines; Accessories therefor
    • B60M1/28Manufacturing or repairing trolley lines
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2200/00Type of vehicles
    • B60L2200/26Rail vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L5/00Current collectors for power supply lines of electrically-propelled vehicles
    • B60L5/18Current collectors for power supply lines of electrically-propelled vehicles using bow-type collectors in contact with trolley wire
    • B60L5/22Supporting means for the contact bow
    • B60L5/24Pantographs

Definitions

  • the present invention relates to a pantograph measurement method for measuring a pantograph by image processing and a pantograph measurement device using this method.
  • a pantograph is one of the current collectors installed on the roof of an electric railway vehicle.
  • pantograph measurement means there are dedicated measurement vehicles called inspection vehicles, vehicle limit measurement vehicles, and the like, which are operated at regular intervals by sewing between commercial operations. These measuring vehicles are equipped with a number of sensors that measure the inclination of the vehicle body and the deviation of the rails, and one of the sensors is a pantograph measurement sensor (by the Institute of Electrical Engineers of Japan, “Modernization of Maintenance of Train Line Facilities”). Technology ").
  • the pantograph measurement method includes a laser sensor method, a light cutting sensor method, an acceleration sensor method, and an image processing method, and has the following characteristics.
  • a laser sensor is a sensor that mainly uses a scanning method, scans a laser on a pantograph with a mirror or the like, and measures the distance to the pantograph by the positional difference of the reflected wave and the deformation of the irradiated laser shape.
  • the light-cutting sensor is a sensor that projects the fringes onto the measurement object, receives the fringes that are uneven according to the pantograph shape, and measures the distance to the pantograph.
  • An acceleration sensor is a sensor that outputs acceleration by a gyroscope or a piezoelectric element, and is a sensor that is directly attached to a pantograph and measures the acceleration of the pantograph. 4) As an image processing method, there is a method of detecting a pantograph by model matching or pattern matching.
  • the scanning cycle of the laser sensor is relatively slow in order to limit the rotational speed of the motor that rotates the mirror and to prevent resonance of the mirror.
  • the laser sensor can measure the position (low frequency component) of the pantograph, but there is a problem that is not suitable for measuring acceleration (high frequency component).
  • the light cutting sensor cannot measure during the day. This makes it impossible to measure during the daytime when the thermal expansion is severe.
  • the method of measuring the acceleration of a pantograph with an acceleration sensor is the method mainly used at present. However, the following measures are necessary and it is not a simple measurement method.
  • A) It is necessary to fix the sensor directly to the pantograph.
  • A) It is necessary to consider noise resistance for the cable for extracting the sensor output voltage.
  • C) It is necessary to consider insulation for the cable from which the sensor output voltage is extracted.
  • the image processing method has a problem that the calculation processing becomes enormous when the measurement time is long or the number of frame rates per unit time is large. In addition, the pantograph may be temporarily lost due to a sudden change in the background, such as under a tunnel pit or overpass, and data loss may occur.
  • Patent Document 1 attaches a known marker to the pantograph so that the black marker is in the background (empty). Etc.) can be measured by searching for the pattern even in the daytime, and even if the background suddenly changes, such as in tunnel tunnels, the white marker reflects the light from the projector, so the data Continuous measurement is possible without missing.
  • Patent Document 1 attaches a known marker to the pantograph so that the black marker is in the background (empty).
  • Etc. can be measured by searching for the pattern even in the daytime, and even if the background suddenly changes, such as in tunnel tunnels, the white marker reflects the light from the projector, so the data Continuous measurement is possible without missing.
  • FIG. 8 when a specular glossy structure passes over the marker, the image taken from the camera includes the real marker and the specularly reflected marker. Recognition may occur.
  • the pantograph measurement method includes a laser sensor method, a light cutting sensor method, an acceleration sensor method, an image processing method, and a measurement method by image processing using the line sensor disclosed in Patent Document 1, and has the following problems.
  • the scanning period of the laser sensor is relatively slow in order to limit the rotational speed of the motor that rotates the mirror and to prevent resonance of the mirror.
  • the laser sensor can measure the position (low frequency component) of the pantograph, but there is a problem that is not suitable for measuring acceleration (high frequency component).
  • the light cutting sensor cannot measure in the daytime. This makes it impossible to measure during the daytime when the thermal expansion is severe.
  • the method of measuring the acceleration of a pantograph with an acceleration sensor is a method mainly used at present. However, it is necessary to fix the sensor directly to the pantograph, it is necessary to consider noise resistance for the cable that takes out the sensor output voltage, it is necessary to consider insulation for the cable that takes out the sensor output voltage, It is not a simple measurement method.
  • the image processing method has a problem that the calculation processing becomes enormous when the measurement time is long or the number of frame rates per unit time is large.
  • the pantograph may be temporarily lost due to a sudden change in the background, such as under a tunnel pit or overpass, and data loss may occur.
  • Patent Document 1 since the monochrome marker 5 having the same width is attached to the pantograph 4, the structure 6 having specular gloss passes through the marker 5 and is photographed from the camera. Two images of the actual marker 5 and the marker 61 specularly reflected by the structure 6 are reflected in the image, and there is a possibility of erroneous recognition.
  • the pantograph measurement method by image processing according to claim 1 of the present invention that solves the above-described problem is that a video of a marker installed on a pantograph is acquired from a line sensor installed on the roof of the vehicle, and a space-time image is obtained from the acquired video.
  • the marker alternately arranges a first region that hardly reflects light and a second region that easily reflects light. And the second region has at least two or more stripe widths different from each other, Over emissions is characterized in that it corresponds to the striped pattern of the marker.
  • the pantograph measuring device by image processing according to claim 2 of the present invention for solving the above-mentioned problems is obtained by a line sensor installed on a roof of a vehicle for obtaining an image of a marker installed on the pantograph, and obtained by the line sensor.
  • a space-time image is generated from the video, the marker is searched by collating the space-time image with a search pattern according to height, and a location that matches or approximates a certain amount of the search pattern is recorded as a pantograph position and recorded.
  • the pantograph measurement apparatus including an image processing unit that measures height and acceleration from the position of the pantograph, the marker alternately arranges a first region that hardly reflects light and a second region that easily reflects light. And the second region has at least two or more stripe widths different from each other, the search pattern is the stripe pattern Characterized in that it corresponds to the striped pattern of the manufacturers.
  • the marker attached to the pantograph can be imaged, and pattern matching can be performed even in the daytime.
  • Data can be continuously acquired even when the brightness of the background changes suddenly, such as in a tunnel wellhead.
  • FIG. 1A is a schematic view of a pantograph measuring apparatus based on a basic concept
  • FIG. 1B is an enlarged view of a portion H surrounded by a broken line in FIG.
  • It is a flowchart which shows the pantograph measuring method by a fundamental view.
  • It is a graph which shows the example of a space-time image.
  • FIG. 8A is an explanatory view showing a mirror glossy structure and a marker provided on a pantograph according to the prior art
  • FIG. 8B is an enlarged view of a portion B surrounded by a broken line in FIG. It is.
  • FIG. 9 (a) is an explanatory view showing a mirror glossy structure according to the present invention and a marker provided on the pantograph
  • FIG. 9 (b) is an enlarged view of a portion C surrounded by a broken line in FIG. 9 (a). It is.
  • the present embodiment aims to easily measure the height and acceleration of a pantograph by image processing.
  • the line sensor 20 and the lighting fixture 30 are installed on the roof of the vehicle 10, and the marker 50 attached to the hull of the pantograph 40 is illuminated with the lighting fixture 30. Is acquired by the line sensor 20.
  • the line sensor 20 is installed in a direction in which the line sensor imaging surface indicated by an arrow in the drawing cuts the pantograph 40 and the marker 50 vertically in the vertical direction, and the marker 50 no matter what height the pantograph 40 changes. Be sure to be able to image.
  • the marker 50 is based on a first region 51 of a color or material that hardly reflects light (hereinafter referred to as a black marker), and a second region of a color or material that easily reflects light.
  • a black marker a color or material that hardly reflects light
  • white markers a striped pattern in which 52 (hereinafter referred to as white markers) are superimposed.
  • the number of the white markers 52 is two or more, and each has a different width.
  • the number of black markers 51 is three or more and the widths are equal.
  • the lighting fixture 30 a normal one is used.
  • the image acquired by the line sensor 20 is subjected to image processing by the image processing unit 60, and the measured height and acceleration of the pantograph 40 are recorded in the recording device 70 as a result of the image processing.
  • the image processing method in the image processing unit 60 follows the flowchart shown in FIG. 3, and generates space-time images (step S1), pattern matching (step S2), pantograph position interpolation (step S3), and process end determination (step S4) as follows. ) And height / acceleration output (step S5).
  • an image of the marker 50 attached to the pantograph 40 is acquired every unit time (every frame rate) by the line sensor 20, and as shown in FIG. 4, the output of the line sensor 20, that is, the height of the line sensor imaging surface.
  • a space-time image is generated with the direction as the vertical axis and the time as the horizontal axis.
  • a striped pattern composed of a black band with little light reflection and a white band with high light reflection is continuously captured. That is, a striped pattern composed of two white areas and three black areas is imaged.
  • the background of the pantograph such as a train line facility that crosses the pantograph at high speed appears as noise N.
  • the marker 50 photographed by the line sensor 20 is photographed as a small image with the distance from the line sensor 20 increasing as the pantograph 40 is at a higher position. Therefore, when the size of the marker 50 and the direction of the line sensor 20 are taken into consideration, the size of the marker 50 reflected by the position direction on the space-time image is almost determined. Therefore, as shown in FIG. 5, a search pattern corresponding to the pattern and height of the marker is generated. That is, the search pattern has two large and small mountain shapes having high brightness corresponding to the two white markers 52 having different widths, and is lower as the position on the image is higher.
  • the scanning line a is scanned downward from above in the space-time image every unit time to search for a location that matches the search pattern.
  • the space-time image is collated with the search pattern according to the height (pattern matching), and the part that coincides is recorded as the pantograph position.
  • a plurality of pantograph positions are recorded with ranking from the most approximated position for the line a. That is, as shown in FIG. 6, a plurality of first candidates b1 and second candidates b2 are recorded. Also, if there is no approximate location, it is suspended.
  • ⁇ End processing> As described above, the pattern matching (S2) and the pantograph position interpolation (S3) are repeated for all the space-time images, and a portion that matches the search pattern or approximates more than a certain value is recorded in the recording device 70 as a pantograph position.
  • the pantograph position recorded in the recording device 70 is output as the height.
  • ⁇ Acceleration output> At the pantograph position recorded in the recording device 70, the extreme value of the downwardly changing inflection point is obtained, and an extreme value equal to or greater than a predetermined value is output as acceleration.
  • the pantograph height and acceleration are measured by image processing, and since it is a non-contact method, it can be operated at high speed. Also, because the sensor is installed at a position away from existing structures such as points, air sections, anchors, etc., there is no need to consider collisions with existing structures. Sensor images can be captured. In addition, it is not necessary to use special illumination, and there is no difficulty in handling in consideration of the influence on the human body such as using laser light. There is no hassle of performing precise alignment between the light source and the light receiving device.
  • the pattern of the marker 50 attached to the pantograph 40 is known, and the black marker 51 separates the background (such as the sky) and the white marker 52, so that measurement can be performed by searching for the pattern even in the daytime.
  • Patent Document 1 as shown in FIG. 8, since the monochrome marker 5 having the same width is attached to the pantograph 4, the structure 6 having specular gloss passes through the marker 5 and is photographed from the camera. Two images of the actual marker 5 and the marker 61 specularly reflected by the structure 6 are reflected in the image, and there is a possibility of erroneous recognition.
  • the marker 50 including two or more white markers 52 having different stripe widths is installed on the pantograph 40, the marker (reflected) is reflected by the structure 6 having a specular gloss. Since the pattern appears differently upside down in the marker 62), for example, if the search pattern shown in FIG. 5 is used, erroneous recognition does not occur and data can be continuously acquired.
  • the present invention can be widely used industrially as a pantograph measurement method capable of continuously acquiring the position and acceleration of a pantograph and a pantograph measurement device using this method.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Current-Collector Devices For Electrically Propelled Vehicles (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

パンタグラフ(40)に設置されたマーカー(50)の映像を取得し、取得された映像から時空画像を生成する手順(S1)と、時空画像を高さに応じた探索パターンと照合させることでマーカー(50)を探索する手順(S2)とからなる画像処理によるパンタグラフ測定方式において、マーカー(50)は、光を反射しにくい第1領域(51)と光を反射しやすい第2領域(52)とを交互に配置してなる縞模様であり、かつ、第2領域(52)は少なくとも二つ以上で縞幅がそれぞれ異なること、探索パターンは、マーカーの縞模様に対応していることを特徴とする。

Description

パンタグラフ測定方式及びパンタグラフ測定装置
 本発明は、画像処理によりパンタグラフを測定するパンタグラフ測定方式及びこの方式によるパンタグラフ測定装置に関する。
 電気鉄道の設備としてトロリ線があるが、トロリ線はレール面より規定高さの範囲に敷設されなければならない。
 従って、経年変化や車両の動的な因子に影響されず、トロリ線の高さが管理値内に収まっているか管理する必要がある。このときトロリ線の高さはパンタグラフの高さと等価なので、パンタグラフの高さを代用して管理している。パンタグラフとは、電気鉄道車両の屋根上に設置された集電装置の一つである。
 また、運転中パンタグラフが大きな加速度で下方に振動すると、パンタグラフとトロリ線が離線し、このアークでトロリ線が局所摩耗する。従って、パンタグラフの加速度が小さくなるように管理する必要がある。
 パンタグラフの測定手段として、検測車や車両限界測定車等と呼ばれる専用の測定車があり、営業運転の合間を縫って、一定周期毎に運用されている。これら測定車には、車体の傾きやレールの偏位等を測定するセンサが多数取り付けられており、そのセンサの一つとしてパンタグラフの測定センサがある(電気学会著「電車線路設備保全の近代化技術」)。
 パンタグラフ測定方式には、レーザセンサ方式、光切断センサ方式、加速度センサ方式、画像処理方式があり、以下の特徴がある。
1)レーザセンサは、主にスキャン式が使用され、ミラーなどでレーザをパンタグラフに走査し、この反射波の位置差や照射したレーザ形状の変形により、パンタグラフまでの距離を測定するセンサである。
2)光切断センサは、縞を測定対象に投光し、パンタグラフ形状に応じて凹凸になった縞を受光して、パンタグラフまでの距離を測定するセンサである。
3)加速度センサは、ジャイロや圧電素子などによって加速度を出力するセンサで、パンタグラフに直接取り付け、パンタグラフの加速度を測定するセンサである。
4)画像処理方式にはモデルマッチングやパターンマッチングでパンタグラフを検出する方式がある。
 しかし、これら方式にも次のような問題がある。
1.レーザセンサの走査周期は、ミラーを回転させるモータの回転数限界と、ミラーの共振防止のため、相対的に走査周期が遅い。これによりレーザセンサは、パンタグラフの位置(低周波数成分)は測定できるが、加速度(高周波数成分)の測定には向いていない問題がある。
2.光切断センサは昼間測定できない。これにより熱膨張の激しい昼間に測定できない。
3.加速度センサでパンタグラフの加速度を測定する方法は、現在主に用いられている方法である。しかし、以下の対策が必要で、簡易な測定方法ではない。
(ア)パンタグラフにセンサを直接固定する必要がある。
(イ)センサ出力電圧を取り出すケーブルには、対ノイズ性を考慮する必要がある。
(ウ)センサ出力電圧を取り出すケーブルには、絶縁性を考慮する必要がある。
4.画像処理方式は、測定時間が長い場合や単位時間当たりのフレームレート数が多い場合、計算処理が膨大になる問題がある。また、トンネル坑口や陸橋下など背景の急激な変化によりパンタグラフを一時的に見失ってしまいデータ抜けが発生する恐れがある。
 これらに対して「画像処理によるパンタグラフ測定装置(特開2008-04312号)」(特許文献1)では上記課題を解決するために、パンタグラフに既知のマーカーを取り付けることで、黒マーカーが背景(空など)と白マーカーを切り分けるため、昼間でもそのパターンを探索することで測定が可能であり、また、トンネル坑口など突然背景が変化したとしても、白マーカーは投光器の光が反射するため、データが欠落することなく連続的に測定が可能となる。
 しかし、この方式では、図8に示すように、鏡面光沢を持つ構造物がマーカーの上を通過するとき、カメラから撮影された画像には実物のマーカーと鏡面反射したマーカーの2つが写り、誤認識が起こる可能性がある。
特開2008-104312号
パンタグラフ測定方式には、レーザセンサ方式、光切断センサ方式、加速度センサ方式、画像処理方式、特許文献1のラインセンサを用いた画像処理による測定方法があり、次の問題がある。
(1)レーザセンサの走査周期は、ミラーを回転させるモータの回転数限界と、ミラーの共振防止のため、相対的に走査周期が遅い。これによりレーザセンサは、パンタグラフの位置(低周波数成分)は測定できるが、加速度(高周波数成分)の測定には向いていない問題がある。
(2)光切断センサは昼間測定できない。これにより熱膨張の激しい昼間に測定できない。
(3)加速度センサでパンタグラフの加速度を測定する方法は、現在主に用いられている方法である。しかし、パンタグラフにセンサを直接固定する必要がある、センサ出力電圧を取り出すケーブルには、対ノイズ性を考慮する必要がある、センサ出力電圧を取り出すケーブルには、絶縁性を考慮する必要がある、などの対策が必要で、簡易な測定方法ではない。
(4)画像処理方式は、測定時間が長い場合や単位時間当たりのフレームレート数が多い場合、計算処理が膨大になる問題がある。
また、トンネル坑口や陸橋下など背景の急激な変化によりパンタグラフを一時的に見失ってしまいデータ抜けが発生する恐れがある。
 また、特許文献1では、図8に示すように、白黒が等幅のマーカー5をパンタグラフ4に取り付けているため、鏡面光沢を持つ構造物6がマーカー5の上を通過するとき、カメラから撮影された画像には実物のマーカー5と構造物6で鏡面反射したマーカー61の2つが写り、誤認識が起こる可能性がある。
 上記課題を解決する本発明の請求項1に係る画像処理によるパンタグラフ測定方式は、車両の屋根上に設置したラインセンサからパンタグラフに設置されたマーカーの映像を取得し、取得された映像から時空画像を生成する手順と、前記時空画像を高さに応じた探索パターンと照合させることでマーカーを探索する手順と、前記探索パターンと一致又は一定以上近似した箇所をパンタグラフ位置として記録する手順と、記録されたパンタグラフ位置から高さと加速度を測定する手順とからなる画像処理によるパンタグラフ測定方式において、前記マーカーは、光を反射しにくい第1領域と光を反射しやすい第2領域とを交互に配置してなる縞模様であり、かつ、前記第2領域は少なくとも二つ以上で縞幅がそれぞれ異なること、前記探索パターンは、前記マーカーの縞模様に対応していることを特徴とする。
 上記課題を解決する本発明の請求項2に係る画像処理によるパンタグラフ測定装置は、パンタグラフに設置されたマーカーの映像を取得する、車両の屋根上に設置したラインセンサと、前記ラインセンサで取得した映像から時空画像を生成し、前記時空画像を高さに応じた探索パターンと照合させることでマーカーを探索し、前記探索パターンと一致又は一定以上近似した箇所をパンタグラフ位置として記録し、記録されたパンタグラフの位置から高さと加速度を測定する画像処理部とを備えたパンタグラフ測定装置において、前記マーカーは、光を反射しにくい第1領域と光を反射しやすい第2領域とを交互に配置してなる縞模様であり、かつ、前記第2領域は少なくとも二つ以上で縞幅がそれぞれ異ること、前記探索パターンは、前記マーカーの縞模様に対応していることを特徴とする。
(i)非接触の方式であるため高速走行でも運用が可能である。
(ii)装置の構造上、ポイント、エアーセクション、アンカーといった既存構造物から離れた位置にセンサが設置されているため、既存構造物との衝突を考慮する必要が無い。
 (iii)特別な照明を使用する必要が無い。
(iv)レーザ光を使用する方法に比べて人体への影響を考慮する必要が無く、取り扱いが簡単である。
(v)レーザ光を使用する方法に比べて光源と受光装置間で精密な位置あわせを行う煩わしさが無い。
 (vi)パンタグラフに取り付けたマーカーを撮像し、パターンマッチングすることで昼間でも撮像可能である。
(vii)トンネル坑口など、背景の輝度が急に変化する場合においても連続的にデータを取得することができる。
(viii)鏡面光沢を持つ構造物がマーカーの上を通過し鏡面反射が起こっても、誤認識せず連続的にデータを取得することができる。
図1(a)は基本的な考え方によるパンタグラフ測定装置の概略図、図1(b)は、同図(a)中で破線で囲んだ部分Hの拡大図である。 基本的な考え方によるマーカー模様の例を示す説明図である。 基本的な考え方によるパンタグラフ測定方法を示すフローチャートである。 時空画像例を示すグラフである。 探索パターンの生成例を示す説明図である。 パンタグラフの走査を示すグラフである。 パンタグラフの位置の補間を示すグラフである。 図8(a)は従来技術に係る鏡面光沢のある構造物及びパンタグラフに設けられたマーカを示す説明図、図8(b)は同図(a)中で破線で囲んだ部分Bの拡大図である。 図9(a)は本発明に係る鏡面光沢のある構造物及びパンタグラフに設けられたマーカを示す説明図、図9(b)は同図(a)中で破線で囲んだ部分Cの拡大図である。
 以下、本発明について図面に示す実施例を参照して詳細に説明する。
(1)基本的な考え方
 本実施例は、パンタグラフの高さと加速度を、画像処理によって簡便に測定することを目的とする。
 その構成は、例えば、図1に示すように、車両10の屋根上に、ラインセンサ20と照明器具30を設置し、照明器具30で照らしながら、パンタグラフ40の舟体に取り付けたマーカー50の映像をラインセンサ20で取得するものである。
 ここで、ラインセンサ20は、図中矢印で示すラインセンサ撮像面が、パンタグラフ40とマーカー50を上下方向に垂直に切断する方向に設置し、パンタグラフ40がどの高さに変動したとしてもマーカー50を必ず撮像できるようにする。
 マーカー50は、図2に拡大して示すように、光を反射しにくい色や材質の第1領域51(以後、黒マーカーという)をベースに、光を反射しやすい色や材質の第2領域52(以後、白マーカーという)を重ねた縞模様である。ここで、白マーカー52は2本以上とし、それぞれ幅が異なる形状とする。また、黒マーカー51は3本以上とし、幅は等しいものとする。
 照明器具30としては通常のものを使用する。
 さらに、ラインセンサ20により取得された画像は、画像処理部60で画像処理し、画像処理の結果、計測したパンタグラフ40の高さと加速度が記録装置70に記録される。
 画像処理部60における画像処理方式は図3に示すフローチャートに従い、次のように、時空画像生成(ステップS1)、パターンマッチング(ステップS2)、パンタグラフ位置補間(ステップS3)、処理終了判定(ステップS4)、高さ・加速度出力(ステップS5)の順で処理される。
<時空画像生成>
 まず、ラインセンサ20により単位時間毎(フレームレート毎)にパンタグラフ40に取り付けたマーカー50の映像を取得し、図4に示すように、ラインセンサ20の出力、つまり、ラインセンサ撮像面の高さ方向を縦軸とし、時間を横軸とする時空画像を生成する。
 図4に示す時空画像は、マーカー50の形状通り、光の反射が少ない黒色の帯と光の反射が大きい白色の帯とで構成される縞模様が連続して撮像されている。つまり、二つの白領域と三つの黒領域よりなる縞模様が撮像されている。
 また、パンタグラフ付近を高速で横切る電車線設備などパンタグラフの背景がノイズNとして現れている。
<パターンマッチング>
 ラインセンサ20で撮影されるマーカー50は、パンタグラフ40が高い位置となる程、ラインセンサ20との距離が離れ、小さい画像として撮影される。そのため、マーカー50の大きさとラインセンサ20の向きを考慮に入れると、時空画像上の位置方向によって写るマーカー50の大きさがほぼ確定する。
 そこで、図5に示すように、マーカーの模様と高さに応じた探索パターンを生成する。即ち、探索パターンは、幅の異なる2本の白マーカー52に対応して高い輝度を有する大小二つの山型をなすものであり、画像上の位置が高くなるほど、低くしたものである。
 そして、図6に示すように、単位時間毎に時空画像において走査線aを上方から下向きに走査させ探索パターンと一致する箇所を探索する。つまり、時空画像を高さに応じた探索パターンと照合(パターンマッチング)するのであり、一致して箇所をパンタグラフ位置として記録し、また、一致しないときでも、一定以上近似したパターンであれば、走査線aについて最も近似した箇所から順位を付けてパンタグラフ位置として複数記録する。
 つまり、図6に示すように、第1候補b1、第2候補b2のように複数記録する。また、近似した箇所が存在しない場合は保留する。
<パンタグラフ位置補間>
 パターンマッチングにおいて、図7に示すように保留されたパンタグラフ位置(保留部分)c1や連結していないパンタグラフ位置(不連結部分)c2は、前後の点から位置を補完する。
 補間の方法は、単純には保留部分又は不連結部分における間隙を埋めるように直線的に補完する方法があるが、その他の方法により補完してもよい。
<処理終了判定>
 全ての時空画像について、上述したようにパターンマッチング(S2)、パンタグラフ位置補間(S3)の処理を繰り返し、探索パターンと一致又は一定以上近似する箇所をパンタグラフ位置として記録装置70に記録する。
<高さ出力>
 記録装置70に記録されたパンタグラフ位置を、高さとして出力する。
<加速度出力>
 記録装置70に記録されたパンタグラフ位置で、下に凸の変極点の極値を求め、所定の値以上の極値を加速度として出力する。
 本実施例は、画像処理によりパンタグラフ高さと加速度を測定するものであり、非接触の方式であるため高速な運用が可能である。
 また装置の構造上、ポイント、エアーセクション、アンカーといった既存構造物から離れた位置にセンサが設置されているため、既存構造物との衝突を考慮する必要がなく、基本的に全ての区間においてラインセンサ画像の撮像が可能である。
 また、特別な照明を使用する必要がなく、レーザ光を使用するような人体への影響を考慮するような取り扱いへの難しさがない。光源と受光装置間での精密な位置合わせを行う煩わしさがない。
 パンタグラフ40に取り付けたマーカー50の模様は既知であり、黒マーカー51が背景(空など)と白マーカー52を切り分けるため、昼間でもそのパターンを探索することで測定が可能である。
 また、特許文献1では、図8に示すように、白黒が等幅のマーカー5をパンタグラフ4に取り付けているため、鏡面光沢を持つ構造物6がマーカー5の上を通過するとき、カメラから撮影された画像には実物のマーカー5と構造物6で鏡面反射したマーカー61の2つが写り、誤認識が起こる可能性がある。
 本実施例では、図9のように、異なる縞幅の2本以上の白マーカー52を含むマーカー50をパンタグラフ40に設置したので、鏡面光沢を持つ構造物6で鏡面反射したマーカー(映り込んだマーカ)62では模様が上下逆に異なって写るため、例えば、図5に示す探索パターンを使用すれば、誤認識は起こらず、連続的にデータを取得することが可能である。
 本発明は、パンタグラフの位置や加速度を連続的に取得できるパンタグラフ測定方式及びこの方式によるパンタグラフ測定装置として広く産業上利用可能なものである。
10 車両
20 ラインセンサ
30 照明器具
40 パンタグラフ
50 マーカー
51 黒マーカー
52 白マーカー
60 画像処理部
70 記録装置

Claims (2)

  1.  車両の屋根上に設置したラインセンサからパンタグラフに設置されたマーカーの映像を取得し、取得された映像から時空画像を生成する手順と、
     前記時空画像を高さに応じた探索パターンと照合させることでマーカーを探索する手順と、
     前記探索パターンと一致又は一定以上近似した箇所をパンタグラフ位置として記録する手順と、
     記録されたパンタグラフ位置から高さと加速度を測定する手順とからなる画像処理によるパンタグラフ測定方式において、
     前記マーカーは、光を反射しにくい第1領域と光を反射しやすい第2領域とを交互に配置してなる縞模様であり、かつ、前記第2領域は少なくとも二つ以上で縞幅がそれぞれ異なること、
     前記探索パターンは、前記マーカーの縞模様に対応していることを特徴とする画像処理によるパンタグラフ測定方式。
  2.  パンタグラフに設置されたマーカーの映像を取得する、車両の屋根上に設置したラインセンサと、
     前記ラインセンサで取得した映像から時空画像を生成し、前記時空画像を高さに応じた探索パターンと照合させることでマーカーを探索し、前記探索パターンと一致又は一定以上近似した箇所をパンタグラフ位置として記録し、記録されたパンタグラフの位置から高さと加速度を測定する画像処理部とを備えたパンタグラフ測定装置において、
     前記マーカーは、光を反射しにくい第1領域と光を反射しやすい第2領域とを交互に配置してなる縞模様であり、かつ、前記第2領域は少なくとも二つ以上で縞幅がそれぞれ異ること、
     前記探索パターンは、前記マーカーの縞模様に対応していることを特徴とする画像処理によるパンタグラフ測定装置。
PCT/JP2013/053826 2012-02-29 2013-02-18 パンタグラフ測定方式及びパンタグラフ測定装置 WO2013129153A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020147023958A KR101658717B1 (ko) 2012-02-29 2013-02-18 팬터그래프 측정 방식 및 팬터그래프 측정 장치
CN201380011644.4A CN104145171B (zh) 2012-02-29 2013-02-18 受电弓测定方法以及受电弓测定装置
EP13755190.9A EP2821747B1 (en) 2012-02-29 2013-02-18 Pantograph measurement method, and pantograph measurement device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-043496 2012-02-29
JP2012043496A JP5900018B2 (ja) 2012-02-29 2012-02-29 パンタグラフ測定方法及びパンタグラフ測定装置

Publications (1)

Publication Number Publication Date
WO2013129153A1 true WO2013129153A1 (ja) 2013-09-06

Family

ID=49082354

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/053826 WO2013129153A1 (ja) 2012-02-29 2013-02-18 パンタグラフ測定方式及びパンタグラフ測定装置

Country Status (6)

Country Link
EP (1) EP2821747B1 (ja)
JP (1) JP5900018B2 (ja)
KR (1) KR101658717B1 (ja)
CN (1) CN104145171B (ja)
TW (1) TWI510384B (ja)
WO (1) WO2013129153A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200369155A1 (en) * 2017-12-12 2020-11-26 Railway Metrics And Dynamics Sweden Ab Detection of maintenance status for a pantograph and/or a contact wire

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107743577B (zh) * 2015-06-15 2020-06-09 韩国铁道技术研究院 用于检测电动铁道车辆的振动信息的方法和装置
KR101707995B1 (ko) 2015-06-15 2017-02-20 한국철도기술연구원 명도 변화에 영향을 받지 않는 전차선의 동적 편위 검출 방법
ITUA20162698A1 (it) * 2016-04-19 2017-10-19 Mer Mec S P A Sistema ottico per la misura della forza di contatto tra il pantografo e la catenaria
CN108801172B (zh) * 2017-05-05 2020-11-13 成都唐源电气股份有限公司 一种非接触式受电弓动态包络线测量方法及装置
JP7008001B2 (ja) * 2018-08-31 2022-01-25 株式会社明電舎 非接触式パンタグラフ接触力測定装置
CN109318718A (zh) * 2018-09-20 2019-02-12 青岛四方法维莱轨道制动有限公司 一种基于图像处理判断接触升弓高度的受电弓控制方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008004312A (ja) 2006-06-20 2008-01-10 Kuraray Co Ltd イオン伝導性バインダー、膜−電極接合体及び燃料電池
JP2008104312A (ja) 2006-10-20 2008-05-01 Meidensha Corp 画像処理によるパンタグラフ測定装置
JP2009198370A (ja) * 2008-02-22 2009-09-03 Meidensha Corp 画像処理による非接触式位置計測装置
JP2009244023A (ja) * 2008-03-31 2009-10-22 Railway Technical Res Inst ラインセンサを利用した計測装置
JP2010190886A (ja) * 2009-01-22 2010-09-02 Meidensha Corp パンタグラフ高さ測定装置及びそのキャリブレーション方法
EP2404777A1 (en) * 2010-07-07 2012-01-11 ALSTOM Transport SA A device for monitoring condition of a railway supply

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010169506A (ja) * 2009-01-22 2010-08-05 Meidensha Corp 接触力測定装置及び接触力測定方法
JP2010176156A (ja) * 2009-01-27 2010-08-12 Meidensha Corp 画像処理によるパンタグラフ撮影装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008004312A (ja) 2006-06-20 2008-01-10 Kuraray Co Ltd イオン伝導性バインダー、膜−電極接合体及び燃料電池
JP2008104312A (ja) 2006-10-20 2008-05-01 Meidensha Corp 画像処理によるパンタグラフ測定装置
JP2009198370A (ja) * 2008-02-22 2009-09-03 Meidensha Corp 画像処理による非接触式位置計測装置
JP2009244023A (ja) * 2008-03-31 2009-10-22 Railway Technical Res Inst ラインセンサを利用した計測装置
JP2010190886A (ja) * 2009-01-22 2010-09-02 Meidensha Corp パンタグラフ高さ測定装置及びそのキャリブレーション方法
EP2404777A1 (en) * 2010-07-07 2012-01-11 ALSTOM Transport SA A device for monitoring condition of a railway supply

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"Modern Technology of Electric Railroad Equipment Maintenance", INSTITUTE OF ELECTRIC ENGINEERS OF JAPAN

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200369155A1 (en) * 2017-12-12 2020-11-26 Railway Metrics And Dynamics Sweden Ab Detection of maintenance status for a pantograph and/or a contact wire
US11571972B2 (en) * 2017-12-12 2023-02-07 Railway Metrics And Dynamics Sweden Ab Detection of maintenance status for a pantograph and/or a contact wire

Also Published As

Publication number Publication date
EP2821747B1 (en) 2017-10-25
TWI510384B (zh) 2015-12-01
KR20140111712A (ko) 2014-09-19
JP5900018B2 (ja) 2016-04-06
TW201336711A (zh) 2013-09-16
JP2013181755A (ja) 2013-09-12
CN104145171B (zh) 2017-05-31
KR101658717B1 (ko) 2016-09-21
EP2821747A1 (en) 2015-01-07
EP2821747A4 (en) 2015-11-25
CN104145171A (zh) 2014-11-12

Similar Documents

Publication Publication Date Title
JP4923942B2 (ja) 画像処理によるパンタグラフ測定装置
WO2013129153A1 (ja) パンタグラフ測定方式及びパンタグラフ測定装置
JP6206957B2 (ja) トロリ線測定装置及びトロリ線測定方法
JP5245445B2 (ja) 渡り線測定装置
JP5321235B2 (ja) パンタグラフ変位測定装置及びトロリ線硬点検出方法
JP5097596B2 (ja) ラインセンサを利用した計測装置
JP5494286B2 (ja) 架線位置測定装置
TWI579523B (zh) Line measuring device and method thereof
JP4690749B2 (ja) 画像処理によるパンタグラフ動作測定装置
JP5698285B2 (ja) 架線位置計測装置及び方法
WO2020179194A1 (ja) パンタグラフ変位測定装置及びトロリ線硬点検出方法
JP2002279409A (ja) 画像処理によるパンタグラフ測定方式及びこの方式による測定装置
JP6311757B2 (ja) 碍子検出装置及び碍子検出方法
JP5402272B2 (ja) 電気鉄道保守用車両位置測定装置
JP2005028903A (ja) パンタグラフ支障物検出方法及び装置
JP4858316B2 (ja) 画像処理によるトロリ線摩耗測定装置
Hofler et al. Monitoring and inspecting overhead wires and supporting structures
JP2022129480A (ja) パンタグラフ変位測定装置及びトロリ線硬点検出方法
AU2021308550A1 (en) Diagnostic inspection system for inspecting railway components
JP2015099118A (ja) 画像処理によるトロリ線摩耗測定装置及びトロリ線摩耗測定方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13755190

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20147023958

Country of ref document: KR

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2013755190

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2013755190

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE