WO2013129024A1 - 誘導電動機、電動駆動システム及びそれらを備えた電動車両 - Google Patents

誘導電動機、電動駆動システム及びそれらを備えた電動車両 Download PDF

Info

Publication number
WO2013129024A1
WO2013129024A1 PCT/JP2013/052300 JP2013052300W WO2013129024A1 WO 2013129024 A1 WO2013129024 A1 WO 2013129024A1 JP 2013052300 W JP2013052300 W JP 2013052300W WO 2013129024 A1 WO2013129024 A1 WO 2013129024A1
Authority
WO
WIPO (PCT)
Prior art keywords
bar
induction motor
stator
power
torque
Prior art date
Application number
PCT/JP2013/052300
Other languages
English (en)
French (fr)
Inventor
菊地 聡
秀俊 江夏
小田 圭二
泰行 齋藤
学 押田
松延 豊
Original Assignee
日立オートモティブシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立オートモティブシステムズ株式会社 filed Critical 日立オートモティブシステムズ株式会社
Publication of WO2013129024A1 publication Critical patent/WO2013129024A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/0023Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train
    • B60L3/003Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train relating to inverters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/007Physical arrangements or structures of drive train converters specially adapted for the propulsion motors of electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/20Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
    • B60L15/2045Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed for optimising the use of energy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/10Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines
    • B60L50/16Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines with provision for separate direct mechanical propulsion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/60Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries
    • B60L50/61Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries by batteries charged by engine-driven generators, e.g. series hybrid electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/12Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/16Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to battery ageing, e.g. to the number of charging cycles or the state of health [SoH]
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K17/00Asynchronous induction motors; Asynchronous induction generators
    • H02K17/02Asynchronous induction motors
    • H02K17/16Asynchronous induction motors having rotors with internally short-circuited windings, e.g. cage rotors
    • H02K17/18Asynchronous induction motors having rotors with internally short-circuited windings, e.g. cage rotors having double-cage or multiple-cage rotors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K17/00Asynchronous induction motors; Asynchronous induction generators
    • H02K17/02Asynchronous induction motors
    • H02K17/16Asynchronous induction motors having rotors with internally short-circuited windings, e.g. cage rotors
    • H02K17/20Asynchronous induction motors having rotors with internally short-circuited windings, e.g. cage rotors having deep-bar rotors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/40DC to AC converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2220/00Electrical machine types; Structures or applications thereof
    • B60L2220/10Electrical machine types
    • B60L2220/12Induction machines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2220/00Electrical machine types; Structures or applications thereof
    • B60L2220/10Electrical machine types
    • B60L2220/14Synchronous machines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/10Vehicle control parameters
    • B60L2240/36Temperature of vehicle components or parts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/423Torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/44Drive Train control parameters related to combustion engines
    • B60L2240/443Torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2260/00Operating Modes
    • B60L2260/20Drive modes; Transition between modes
    • B60L2260/28Four wheel or all wheel drive
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Definitions

  • the present invention relates to an induction motor, an electric drive system, and an electric vehicle including them.
  • Rotating electric machines for vehicles such as drive motors for hybrid electric vehicles, require acceleration performance such as starting and overtaking, so instantaneous acceleration torque is required for the motor.
  • acceleration performance such as starting and overtaking
  • instantaneous acceleration torque is required for the motor.
  • induction motors used in automobiles it is necessary to energize a large current to generate this instantaneous torque, so the circuit loss that occurs in the inverter switching elements and bus bars is large, and the inverter is used from the viewpoint of heat generation countermeasures. There is a problem that the volume becomes large. Therefore, it is desired to reduce the inverter current when instantaneous torque is generated, that is, to improve the torque characteristics of the motor.
  • Patent Document 1 discloses a technique for increasing the apparent fundamental wave magnetic flux density and improving the torque by distributing the gap magnetic flux density of the motor in a substantially trapezoidal shape.
  • Patent Document 1 in order to make the gap magnetic flux density distribution substantially trapezoidal, the magnetic circuit is forcibly saturated by narrowing the widths of the stator teeth and the rotor teeth.
  • the peak value of the waveform itself is limited by magnetic saturation, it can be increased as a fundamental wave component, and torque can be improved.
  • the current value required for torque generation can be reduced, and inverter loss can also be reduced.
  • the motor's magnetic circuit is always saturated (higher harmonics are superimposed), regardless of whether the vehicle is generating an instantaneous torque or not during normal cruise.
  • motor loss such as iron loss and copper loss due to harmonics increases and fuel consumption of the vehicle increases.
  • an increase in noise caused by harmonics becomes a problem even under driving conditions where it is desired to ensure quietness in the vehicle during cruising.
  • the present invention provides an induction motor for an electric vehicle that instantaneously increases the torque only under the driving conditions that require acceleration torque.
  • the present application includes a plurality of means for solving the above-described problems.
  • a number of slots provided in the rotor core, conductive bars embedded in the slots, and shafts of these bars are provided.
  • a rotor having a squirrel-cage winding composed of a conductive end ring that is short-circuited at both end faces in the direction, and the squirrel-cage conductor mainly includes a first bar interlinked with the fundamental wave magnetic flux, and a third
  • the induction motor is configured to short-circuit the second bar that interlinks the second harmonic component with the end ring.
  • the present invention it is possible to increase the instantaneous torque during acceleration without impairing the characteristics during vehicle cruising, and to suppress the heat generation of the inverter, thereby providing an induction motor with excellent drive system characteristics.
  • the circuit diagram which shows the circuit structure of the inverter apparatus which is one Example of this invention.
  • BRIEF DESCRIPTION OF THE DRAWINGS The cross-section figure of the induction motor which is one Example of this invention. 1 is a structural diagram that is one embodiment of the present invention.
  • the elements on larger scale which show the cross-section of the induction motor which is one Example of this invention.
  • the elements on larger scale which show the rotor structure of the induction motor which is one Example of this invention.
  • Example 1 First, the configuration of a vehicle to which the rotating electrical machine of this embodiment is applied will be described with reference to FIG. In this embodiment, a hybrid electric vehicle having two different power sources will be described as an example.
  • the hybrid electric vehicle of this embodiment is an engine ENG that is an internal combustion engine, a four-wheel drive type that is configured to drive the front wheels FLW and FRW by the rotating electric machine MG1 and the rear wheels RLW and RRW by the rotating electric machine MG2. Is.
  • the front wheels WFLW and FRW are driven by the engine ENG and the rotating electrical machine MG1, and the rear wheels RLW and RRW are respectively driven by the rotating electrical machine MG2, but the front wheels WFLW and FRW are driven by the rotating electrical machine MG1 and the engine ENG.
  • the rear wheels RLW and RRW may be driven by the rotating electrical machine MG2.
  • a transmission T / M is mechanically connected to the front wheel axle FDS of the front wheels FLW and FRW via a differential FDF.
  • a rotating electrical machine MG1 and an engine ENG are mechanically connected to the transmission T / M via a power distribution mechanism PSM.
  • the power distribution mechanism PSM is a mechanism that controls composition and distribution of rotational driving force.
  • the AC side of the inverter device INV is electrically connected to the stator winding of the rotating electrical machine MG1.
  • the inverter device INV is a power conversion device that converts DC power into three-phase AC power, and controls the driving of the rotating electrical machine MG1.
  • a battery BAT is electrically connected to the DC side of the inverter device INV.
  • Rotating electrical machine MG2 is mechanically connected to rear wheel RLW and rear wheel axle RDS of RRW via differential RDF and reduction gear RG.
  • the AC side of the inverter device INV is electrically connected to the stator winding of the rotating electrical machine MG2.
  • the inverter device INV is shared by the rotating electrical machines MG1 and MG2, and includes the power module PMU1 and the drive circuit device DCU1 for the rotating electrical machine MG1, and the power module PMU2 and the drive circuit device DCU2 for the rotating electrical machine MG2. And a motor control unit MCU.
  • the engine ENG is equipped with a starter STR.
  • the starter STR is a starting device for starting the engine ENG.
  • the engine control unit ECU calculates control values for operating each component device (throttle valve, fuel injection valve, etc.) of the engine ENG based on input signals from sensors, other control units, and the like. This control value is output as a control signal to the drive device of each component device of the engine ENG. Thereby, the operation of each component device of the engine ENG is controlled.
  • the operation of the transmission T / M is controlled by the transmission control unit TCU.
  • the transmission control unit TCU calculates a control value for operating the transmission mechanism based on an input signal from a sensor or another control unit. This control value is output as a control signal to the drive mechanism of the transmission mechanism. Thereby, the operation of the transmission mechanism of the transmission T / M is controlled.
  • the battery BAT is a high-voltage lithium ion battery having a battery voltage of 200 V or higher, and its charge / discharge and life are managed by the battery control unit BCU.
  • the battery control unit BCU receives a voltage value, a current value, and the like of the battery BAT in order to manage charging / discharging and life of the battery.
  • a low-voltage battery having a battery voltage of 12v is also mounted as a battery, and is used as a power source for a control system, a radio and a light.
  • the engine control unit ECU, the transmission control unit TCU, the motor control unit MCU, and the battery control unit BCU are electrically connected to each other via the in-vehicle local area network LAN, and are also electrically connected to the general control unit GCU.
  • the general control unit GCU outputs a command signal to each control unit according to the driving state of the vehicle. For example, the general control unit GCU calculates the required torque value of the vehicle according to the accelerator depression amount based on the driver's acceleration request, and uses this required torque value to improve the engine ENG driving efficiency.
  • the distributed engine ENG side output torque value is output as an engine torque command signal to the engine control unit ECU, and the distributed rotary electric machine MG1 side Is output to the motor control unit MCU as a motor torque command signal.
  • the front wheels FLW and FRW are driven by the rotating electrical machine MG1.
  • the front wheels FLW and FRW are driven by the rotating electrical machine MG1 at the start of the hybrid electric vehicle and at low speed traveling.
  • the front wheels FLW and FRW are driven by the rotating electrical machine MG1 and the rotating electrical machine MG2 is driven. May drive the rear wheels RLW and RRW (four-wheel drive traveling may be performed).
  • Direct current power is supplied from the battery BAT to the inverter device INV.
  • the supplied DC power is converted into three-phase AC power by the inverter device INV.
  • the three-phase AC power obtained in this way is supplied to the stator winding of the rotating electrical machine MG1.
  • the rotating electrical machine MG1 is driven to generate a rotational output.
  • This rotational output is input to the transmission T / M via the power distribution mechanism PSM.
  • the input rotation output is shifted by the transmission T / M and input to the differential FDF.
  • the input rotational output is distributed to the left and right by the differential FDF and transmitted to the left and right front wheel axles FDS.
  • the front wheel axle FDS is rotationally driven.
  • the front wheels FLW and FRW are rotationally driven by the rotational driving of the front wheel axle FDS.
  • the front wheels FLW and FRW are driven by the engine ENG.
  • the rotational output of the engine ENG is input to the transmission T / M via the power distribution mechanism PSM.
  • the input rotation output is shifted by the transmission T / M.
  • the changed rotational output is transmitted to the front wheel axle FDS via the differential FDF.
  • the front wheels FLW and FRW are driven to rotate by the WH-F.
  • the rotational output of the engine ENG is distributed to the rotating electrical machine MG1 via the power distribution mechanism PSM, and the rotating electrical machine MG1 is rotationally driven. .
  • rotating electrical machine MG1 operates as a generator.
  • three-phase AC power is generated in the stator winding of the rotating electrical machine MG1.
  • the generated three-phase AC power is converted into predetermined DC power by the inverter device INV.
  • the DC power obtained by this conversion is supplied to the battery BAT. Thereby, the battery BAT is charged.
  • the rear wheels RLW and RRW are driven by the rotating electrical machine MG2.
  • the front wheels FLW and FRW are driven by the engine ENG.
  • the rotating electrical machine MG1 is rotationally driven by the rotational output of the engine ENG to charge the battery BAT, as in the normal running.
  • DC power is supplied from the battery BAT to the inverter INV.
  • the supplied DC power is converted into three-phase AC power by the inverter device INV, and the AC power obtained by this conversion is supplied to the stator winding of the rotating electrical machine MG2.
  • the rotating electrical machine MG2 is driven to generate a rotational output.
  • the generated rotation output is decelerated by the reduction gear RG and input to the differential device RDF.
  • the input rotational output is distributed to the left and right by the differential RDF and transmitted to the left and right rear wheel axles RDS.
  • the rear wheel axle RDS is rotationally driven.
  • the rear wheels RLW and RRW are rotationally driven by the rotational driving of the rear wheel axle RDS.
  • the front wheels FLW and FRW are driven by the engine ENG and the rotating electrical machine MG1.
  • the front wheels FLW and FRW are driven by the engine ENG and the rotating electric machine MG1 to rotate.
  • the rear wheels RLW and RRW may be driven by the electric machine MG2 (four-wheel drive traveling may be performed).
  • the rotational outputs of engine ENG and rotating electrical machine MG1 are input to transmission T / M via power distribution mechanism PSM.
  • the input rotation output is shifted by the transmission T / M.
  • the changed rotational output is transmitted to the front wheel axle FDS via the differential FDF.
  • the front wheels FLW and FRW are rotationally driven.
  • the front wheel axle FDS and the differential FDF is transmitted to the rotary electric machine MG1 through the transmission T / M and the power distribution mechanism PSM, and the rotary electric machine MG1 is rotationally driven.
  • rotating electrical machine MG1 operates as a generator.
  • three-phase AC power is generated in the stator winding of the rotating electrical machine MG1.
  • the generated three-phase AC power is converted into predetermined DC power by the inverter device INV.
  • the DC power obtained by this conversion is supplied to the battery BAT. Thereby, the battery BAT is charged.
  • the rotational force of the rear wheels RLW, RRW is transmitted to the rotating electrical machine MG2 via the rear wheel axle RDS, the differential device RDF, and the speed reducer RG, thereby rotating the rotating electrical machine MG2.
  • rotating electrical machine MG2 operates as a generator.
  • three-phase AC power is generated in the stator winding of the rotating electrical machine MG2.
  • the generated three-phase AC power is converted into predetermined DC power by the inverter device INV.
  • the DC power obtained by this conversion is supplied to the battery BAT. Thereby, the battery BAT is charged.
  • FIG. 2 shows the configuration of the inverter device INV of this embodiment.
  • the inverter device INV includes the power modules PMU1 and PMU2, the drive circuit devices DCU1 and DCU2, and the motor control unit MCU.
  • the power modules PMU1 and PMU2 have the same configuration.
  • the drive circuit units DCU1 and DCU2 have the same configuration.
  • the power modules PMU1 and PMU2 constitute a conversion circuit (also referred to as a main circuit) that converts DC power supplied from the battery BAT into AC power and supplies the AC power to the corresponding rotating electrical machines MG1 and MG2.
  • the conversion circuit can also convert AC power supplied from the corresponding rotating electrical machines MG1 and MG2 into DC power and supply the DC power to the battery BAT.
  • the conversion circuit is a bridge circuit, and a series circuit for three phases is electrically connected in parallel between the positive electrode side and the negative electrode side of the battery BAT.
  • the series circuit is also called an arm and is constituted by two semiconductor elements.
  • the arm is configured such that the power semiconductor element on the upper arm side and the power semiconductor element on the lower arm side are electrically connected in series for each phase.
  • an IGBT insulated gate bipolar transistor which is a switching semiconductor element is used as the power semiconductor element.
  • a semiconductor chip constituting the IGBT includes three electrodes, a collector electrode, an emitter electrode, and a gate electrode.
  • a diode of a different chip from the IGBT is electrically connected between the collector electrode and the emitter electrode of the IGBT.
  • the diode is electrically connected between the emitter electrode and the collector electrode of the IGBT so that the direction from the emitter electrode of the IGBT toward the collector electrode is a forward direction.
  • a MOSFET metal oxide semiconductor field effect transistor
  • the u-phase arm of the power module PMU1 is configured by electrically connecting the emitter electrode of the power semiconductor element Tpu1 and the collector electrode of the power semiconductor element Tnu1 in series.
  • the v-phase arm and the w-phase arm are configured in the same manner as the u-phase arm, and the emitter electrode of the power semiconductor element Tpv1 and the collector electrode of the power semiconductor element Tnv1 are electrically connected in series, so that the power module PMU1 In the v-phase arm, the emitter electrode of the power semiconductor element Tpw1 and the collector electrode of the power semiconductor element Tnw1 are electrically connected in series, whereby the w-phase arm of the power module PMU1 is configured.
  • the arms of the respective phases are configured in the same connection relationship as that of the power module PMU1 described above.
  • the collector electrodes of the power semiconductor elements Tpu1, Tpv1, Tpw1, Tpu2, Tpv2, and Tpw2 are electrically connected to the high potential side (positive electrode side) of the battery BAT.
  • the emitter electrodes of the power semiconductor elements Tnu1, Tnv1, Tnw1, Tnu2, Tnv2, and Tnw2 are electrically connected to the low potential side (negative electrode side) of the battery BAT.
  • the midpoint of the u-phase arm (v-phase arm, w-phase arm) of the power module PMU1 (the connection portion between the emitter electrode of the upper arm side power semiconductor element and the collector electrode of the lower arm side power semiconductor element) of each arm is rotated. It is electrically connected to the u-phase (v-phase, w-phase) stator winding of the electric machine MG1.
  • the midpoint of the u-phase arm (v-phase arm, w-phase arm) of the power module PMU2 (the connection portion between the emitter electrode of the upper arm side power semiconductor element and the collector electrode of the lower arm side power semiconductor element) of each arm rotates. It is electrically connected to the u-phase (v-phase, w-phase) stator winding of the electric machine MG2.
  • a smoothing electrolytic capacitor SEC is electrically connected between the positive electrode side and the negative electrode side of the battery BAT in order to suppress fluctuations in DC voltage caused by the operation of the power semiconductor element.
  • the drive circuit units DCU1 and DCU2 output drive signals for operating the power semiconductor elements of the power modules PMU1 and PMU2 based on the control signal output from the motor control unit MCU, and drive units for operating the power semiconductor elements. It is composed of circuit components such as an insulated power supply, an interface circuit, a drive circuit, a sensor circuit, and a snubber circuit (all not shown).
  • the motor control unit MCU is an arithmetic unit composed of a microcomputer.
  • the motor control unit MCU receives a plurality of input signals and sends control signals for operating the power semiconductor elements of the power modules PMU1 and PMU2 to the drive circuit units DSU1 and DSU2. Output.
  • Torque command values ⁇ * 1, ⁇ * 2, current detection signals iu1 to iw1, iu2 to iw2, and magnetic pole position detection signals ⁇ 1 and ⁇ 2 are input as input signals.
  • the torque command values ⁇ * 1 and ⁇ * 2 are output from the host controller according to the vehicle operation mode.
  • the torque command value ⁇ * 1 corresponds to the rotating electrical machine MG1
  • the torque command value ⁇ * 2 corresponds to the rotating electrical machine MG2.
  • the current detection signals iu1 to Iw1 are detection signals for the input currents of the u phase to the w phase supplied from the conversion circuit of the inverter device INV to the stator winding of the rotating electrical machine MG1, and are currents of current transformers (CT) and the like. It is detected by a sensor.
  • CT current transformers
  • the current detection signals iu2 to Iw2 are detection signals for the u-phase to w-phase input current supplied from the inverter device INV to the stator winding of the rotating electrical machine MG2, and are detected by a current sensor such as a current transformer (CT). It has been done.
  • the magnetic pole position detection signal ⁇ 1 is a detection signal of the rotation magnetic pole position of the rotating electrical machine MG1, and is detected by a magnetic pole position sensor such as a resolver, an encoder, a Hall element, or a Hall IC.
  • the magnetic pole position detection signal ⁇ 2 is a detection signal of the rotation magnetic pole position of the rotating electrical machine MG1, and is detected by a magnetic pole position sensor such as a resolver, an encoder, a Hall element, or a Hall IC.
  • the motor control unit MCU calculates a voltage control value based on the input signal, and uses the voltage control value as a control signal (PWM signal) for operating the power semiconductor elements Tpu1 to Tnw1 and Tpu2 to Tnw2 of the power modules PMU1 and PMU2. (Pulse width modulation signal)) is output to the drive circuit units DCU1 and DCU2.
  • PWM signal a control signal for operating the power semiconductor elements Tpu1 to Tnw1 and Tpu2 to Tnw2 of the power modules PMU1 and PMU2.
  • the PWM signal output from the motor control unit MCU is such that the time-averaged voltage is a sine wave.
  • the instantaneous maximum output voltage is the voltage of the DC line that is the input of the inverter
  • its effective value is 1 / ⁇ 2. Therefore, in the hybrid electric motor vehicle of the present invention, the effective value of the input voltage of the motor is increased in order to increase the output of the motor with a limited inverter device. That is, the PWM signal of the MCU is made to be only ON and OFF in a rectangular wave shape. By doing so, the peak value of the rectangular wave becomes the voltage Vdc of the DC line of the inverter, and the effective value thereof becomes Vdc. This is the method for increasing the effective voltage value.
  • rectangular wave voltage has a problem that the current waveform is disturbed because the inductance is small in the low rotation speed region, and this causes an unnecessary excitation force in the motor and noise. Therefore, rectangular wave voltage control is used only during high-speed rotation, and normal PWM control is performed at low frequencies.
  • FIGS. 3 to 7 are a plan view and a partially enlarged view showing the rotary electric machine MG2 according to one embodiment of the present invention, and the same portions are denoted by the same reference numerals.
  • a case where a three-phase induction motor is used as the rotating electrical machine MG2 will be described as an example.
  • the configuration of the rotary electric machine MG2 will be described, but the rotary electric machine MG1 may have the same configuration, or only the MG1 may be configured as a permanent magnet type three-phase synchronous motor.
  • the rotating electrical machine MG ⁇ b> 2 is rotated by a magnetic action between the stator 110 that generates a rotating magnetic field and the stator 110, and via an inner peripheral side of the stator 110 and a gap 160. And a rotor 130 arranged to be rotatable.
  • the stator 110 includes a stator core 111 including a core back 112 and teeth 113, and a stator slot 121 into which a stator winding 120 that generates a magnetic flux when energized is inserted. And.
  • the stator core 111 is formed by laminating a plurality of plate-shaped molded members formed by punching plate-shaped magnetic members in the axial direction.
  • the axial direction means a direction along the rotation axis of the rotor.
  • stator winding 120 is embedded in the stator slot 121, but the winding pitch of the winding is a short-pitch winding smaller than the magnetic pole pitch (not shown).
  • the stator slot 121 has a stator slot opening 123.
  • the circumferential width Ws of the opening is sufficiently smaller than the circumferential width (wire diameter in the figure) Wc of the stator winding 120. Dimension.
  • the rotor 130 includes a rotor core 137 that constitutes the magnetic path on the rotation side, and a first magnetic non-conductive metal such as aluminum or copper.
  • a bar 131, a second bar 132, and a shaft 135 serving as a rotation axis are provided.
  • the second bar 132 has a smaller cross-sectional area than the first bar 131 and is disposed between the first bars 131. That is, when viewed in the radial direction, the first bar 131 and the second bar 132 are arranged at positions where they do not intersect, in other words, the circumferential end of the first bar 131 and the second bar 132. It is the structure arrange
  • the radial height h2 of the second bar 132 is configured to be 1/3 or less of the radial height h1 of the first bar 131. Further, the second bar 132 is disposed closer to the outside in the radial direction than the first bar 131. That is, the arrangement is such that the radial center of the second bar 132 is located radially outside the radial center of the first bar 131.
  • the first bar 131 and the second bar 132 extend in the axial direction, and an end ring 134 for short-circuiting these bars 131 and 132 at the axial end portion is provided to constitute a squirrel-cage winding. .
  • the in-machine magnetic flux of the motor increases in proportion to the excitation current to increase the excitation current, and the magnetic saturation of the magnetic circuit is promoted.
  • the third harmonic is superimposed on the gap magnetic flux density distribution waveform.
  • the third harmonic is a component having a wavelength three times that of the fundamental wave and rotating at a frequency that is three times the time. If the number of magnetic poles of the motor is 4 and the power supply frequency (fundamental wave frequency) rotates at 50 Hz, the synchronization speed is 1500 r / min. On the other hand, the rotating magnetic field due to the third harmonic has a wavelength three times that of the fundamental wave, and therefore becomes 12 poles for 4 fundamental wave poles.
  • the frequency is three times that in time, the frequency is 150 Hz with respect to the fundamental wave frequency of 50 Hz, and the synchronization speed is 1500 r / min, which matches the rotating magnetic field of the fundamental wave component. That is, the third harmonic component is a component that contributes as an effective torque in the same manner as the rotating magnetic field of the fundamental component.
  • the wavelength of the third harmonic component is shorter than the fundamental wave magnetic flux, if the number of bars is determined based on a general induction motor design method, the third harmonic component is determined.
  • the components cannot sufficiently interlink with the bar, and as a result, it cannot be used as an effective torque.
  • the present invention is provided with a first bar 131 having a large cross-sectional area and a second bar 132 having a small cross-sectional area, as shown in FIGS. 3, 5, and 7. That is, the number of the first bars 131 is determined based on a conventional induction motor design method, and mainly plays a role of capturing the fundamental wave magnetic flux.
  • the second bar 132 is provided between the first bars 131 to play a role of capturing the third harmonic magnetic flux having a short wavelength.
  • the radial height h2 of the second bar 132 is configured to be 1/3 or less than the radial height h1 of the first bar 131.
  • the penetration depth of the third harmonic magnetic flux component in the conductive material is 1/3 of the fundamental wave.
  • the reason why the cross-sectional areas of the respective bars are different is that the first bar 131 mainly interlinks with the fundamental wave, that is, the fundamental wave current always flows under all operating conditions. This is to reduce the bar loss.
  • the second bar 132 only needs to function when instantaneous torque is generated. If a large cross-sectional area is unnecessarily secured, the flow of the fundamental wave magnetic flux interlinking with the first bar 131 is obstructed. This is because it is effective.
  • the stator winding 120 is wound with a short-pitch winding, thereby minimizing the influence of the magnetomotive force harmonic component and the stator slot.
  • the influence of the slot harmonic component is minimized by narrowing the circumferential width Ws of the opening to be equal to or smaller than the wire diameter of the stator winding 120.
  • FIG. 8 shows the results of measuring the torque in the case of the above-described configuration and comparing with the conventional example.
  • the current on the horizontal axis is standardized as the rated current of 1.0
  • the vertical axis is the rated current conduction condition of the conventional example.
  • the torque at is standardized as 1.0.
  • the torque in the present invention is improved in any energized state, and it has been confirmed that the torque improvement is promoted particularly as the overexcitation state becomes remarkable. .
  • the induction motor configuration described in the present embodiment enables the magnetic saturation in the motor machine to be turned on by turning on the overexcitation control when the electric vehicle is in an operating state that requires instantaneous torque.
  • the fundamental wave torque can be improved by the action of the third harmonic component that is promoted and the gap magnetic flux density component is superimposed.
  • turning off overexcitation control will not cause harmonic loss or noise due to the third harmonic, so there will be no increase in fuel consumption. Can also ensure the quietness.
  • FIG. 9 is a partially enlarged view of a rotor cross section showing another embodiment of the present invention.
  • the same parts as those in FIG. 7 are denoted by the same reference numerals.
  • FIG. 10 is a partially enlarged view of a rotor cross section showing another embodiment of the present invention.
  • the same parts as those in FIG. 7 are denoted by the same reference numerals.
  • the configuration of FIG. 10 is different from the configuration of FIGS. 7 and 9 in that the second bar 132 is disposed between the first bars 131 and the third bar 133 is placed on the head of the first bar 131 ( This is a point provided on the outer side in the radial direction.
  • the cross-sectional area of the third bar 133 is the same as the cross-sectional area of the second bar 132.
  • the third bar can be regarded as the second bar, substantially equalizing the circumferential pitch of the second bar 132, and apparently increasing the number of bars interlinking with the third harmonic component. Therefore, a higher torque improvement effect can be obtained.
  • this invention is not limited to the above-mentioned Example, Various modifications are included.
  • the above-described embodiments have been described in detail for easy understanding of the present invention, and are not necessarily limited to those having all the configurations described.
  • a part of the configuration of one embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of one embodiment.
  • each component shows what is considered necessary for explanation, and not all components are shown when compared with actual products.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Induction Machinery (AREA)

Abstract

 高トルクの誘導電動機、電動駆動システム及びそれらを備えた電動車両を提供する。 回転子鉄心137に設けた多数のスロットと、スロット内に埋設した導電性のバーと、これらのバーを軸方向両端面で短絡する導電性のエンドリング134とで構成されたかご形導体を有する回転子130を備え、かご形導体は、主として基本波磁束と鎖交させる第1のバーと、主として第3次高調波成分を鎖交させる第2のバーとを前記エンドリングで短絡するよう誘導電動機を構成する。

Description

誘導電動機、電動駆動システム及びそれらを備えた電動車両
 本発明は、誘導電動機、電動駆動システム及びそれらを備えた電動車両に関する。
 車両用の回転電機、例えばハイブリッド電気自動車の駆動用モータなどでは、発進、追い越し等、加速性能が必要となるため、モータには瞬時的な加速トルクが要求される。自動車用途に用いられる誘導電動機の場合、この瞬時的なトルクを発生させるため大電流を通電する必要があることから、インバータのスイッチング素子やバスバーに発生する回路損失が大となり発熱対策の観点からインバータ体積が大きくなってしまう問題がある。そのため、瞬時トルク発生時のインバータ電流低減、すなわちモータのトルク特性向上が望まれている。
 この対策例として特許文献1では、モータのギャップ磁束密度を略台形に分布させることで、見かけ上の基本波磁束密度を増やしトルク向上を図る技術を開示している。
米国特許7741750号公報
 前記特許文献1では、ギャップ磁束密度分布を略台形にさせるため、固定子ティースや回転子ティースの幅を狭小化させることで磁気回路を強制的に飽和させている。その結果、波形そのもののピーク値は磁気飽和により制限されるが、基本波成分としては増加させることができ、トルク向上を図ることが可能となる。その結果、トルク発生に必要な電流値を削減させることができ、インバータ損失も低減させることができる。
 しかしこの場合、瞬時トルクを発生させる車両の加速時と通常の巡航時とのいずれの運転条件においても、常にモータの磁気回路は飽和している(高調波が重畳している)こととなる。その結果、高調波による鉄損や銅損などのモータ損失が増加してしまい、車両の燃料消費量を増加させてしまう懸念がある。さらに、巡航時の車内の静寂性を確保したい運転条件においても、高調波に起因した騒音の増大が問題となる。
 そこで、本発明は、加速トルクが要求される駆動条件の場合のみ、瞬時的にトルクを増加させる電動車両用の誘導電動機を提供する。
 上記課題を解決するために、例えば特許請求の範囲に記載の構成を採用する。
 本願は上記課題を解決する手段を複数含んでいるが、その一例を挙げるならば、回転子鉄心に設けた多数のスロットと、該スロット内に埋設した導電性のバーと、これらのバーを軸方向両端面で短絡する導電性のエンドリングとで構成されたかご形巻線を有する回転子を備え、前記かご形導体は、主として基本波磁束と鎖交させる第1のバーと、主として第3次高調波成分を鎖交させる第2のバーとを前記エンドリングで短絡するよう誘導電動機を構成する。
 本発明によれば、車両巡航時の特性を損ねることなく、加速時の瞬時トルクを増加させると共に、インバータの発熱を抑えることができ、駆動システムの特性に優れた誘導電動機を提供できる。
 上記した以外の課題、構成及び効果は、以下の実施例の説明により明らかにされる。
本発明の実施例である回転電機が適用されるハイブリッド電気自動車の構成を示すブロック図。 本発明の一実施例であるインバータ装置の回路構成を示す回路図。 本発明の一実施例である誘導電動機の断面構造図。 本発明の一実施例である構造図。 本発明の一実施例である誘導電動機の断面構造を示す部分拡大図。 本発明の一実施例である誘導電動機の固定子スロット構造を示す部分拡大図。 本発明の一実施例である誘導電動機の回転子構造を示す部分拡大図。 本発明適用時のトルクを従来例と比較した測定結果。 本発明の他の実施例である誘導電動機の回転子構造を示す部分拡大図。 本発明の他の実施例である誘導電動機の回転子構造を示す部分拡大図。
 以下、本発明の実施例について、ハイブリッド電気自動車に用いられる駆動用モータを例に説明する。
 〔実施例1〕
 まず、本実施例の回転電機が適用される車両の構成を図1に基づいて説明する。本実施例では、2つの異なる動力源を持つハイブリッド電気自動車を例に挙げて説明する。
 本実施例のハイブリッド電気自動車は、内燃機関であるエンジンENGと、回転電機MG1によって前輪FLW、FRWを、回転電機MG2によって後輪RLW、RRWをそれぞれ駆動するように構成された四輪駆動式のものである。
 本実施例では、エンジンENGと回転電機MG1によって前輪WFLW、FRWを、回転電機MG2によって後輪RLW、RRWをそれぞれ駆動する場合について説明するが、回転電機MG1によって前輪WFLW、FRWを、エンジンENGと回転電機MG2によって後輪RLW、RRWをそれぞれ駆動するようにしてもよい。
 前輪FLW、FRWの前輪車軸FDSには差動装置FDFを介して変速機T/Mが機械的に接続されている。変速機T/Mには動力分配機構PSMを介して回転電機MG1とエンジンENGが機械的に接続されている。動力分配機構PSMは、回転駆動力の合成や分配を司る機構である。回転電機MG1の固定子巻線にはインバータ装置INVの交流側が電気的に接続されている。インバータ装置INVは、直流電力を三相交流電力に変換する電力変換装置であり、回転電機MG1の駆動を制御するものである。インバータ装置INVの直流側にはバッテリBATが電気的に接続されている。
 後輪RLW、RRWの後輪車軸RDSには差動装置RDFと減速機RGを介して回転電機MG2が機械的に接続されている。回転電機MG2の固定子巻線にはインバータ装置INVの交流側が電気的に接続されている。ここで、インバータ装置INVは回転電機MG1、MG2に対して共用のものであって、回転電機MG1用のパワーモジュールPMU1及び駆動回路装置DCU1と、回転電機MG2用のパワーモジュールPMU2及び駆動回路装置DCU2と、モータ制御装置MCUとを備えている。
 エンジンENGにはスタータSTRが取り付けられている。スタータSTRはエンジンENGを始動させるための始動装置である。
 エンジン制御装置ECUは、エンジンENGの各コンポーネント機器(絞り弁、燃料噴射弁など)を動作させるための制御値をセンサや他制御装置などからの入力信号に基づいて演算する。この制御値は制御信号としてエンジンENGの各コンポーネント機器の駆動装置に出力される。これにより、エンジンENGの各コンポーネント機器の動作が制御される。
 変速機T/Mの動作は変速機制御装置TCUによって制御されている。変速機制御装置TCUは、変速機構を動作させるための制御値をセンサや他制御装置などからの入力信号に基づいて演算する。この制御値は制御信号として変速機構の駆動装置に出力される。これにより、変速機T/Mの変速機構の動作が制御される。
 バッテリBATはバッテリ電圧が200v以上の高電圧のリチウムイオンバッテリであり、バッテリ制御装置BCUによって充放電や寿命などが管理されている。バッテリ制御装置BCUには、バッテリの充放電や寿命などを管理するために、バッテリBATの電圧値及び電流値などが入力されている。尚、図示省略したが、バッテリとしては、バッテリ電圧12vの低圧バッテリも搭載されており、制御系の電源、ラジオやライトなどの電源として用いられている。
 エンジン制御装置ECU、変速機制御装置TCU、モータ制御装置MCU及びバッテリ制御装置BCUは車載用ローカルエリアネットワークLANを介して相互に電気的に接続されていると共に、総合制御装置GCUと電気的に接続されている。これにより、各制御装置間では双方向の信号伝送が可能になり、相互の情報伝達、検出値の共有などが可能になる。総合制御装置GCUは、車両の運転状態に応じて各制御装置に指令信号を出力するものである。例えば総合制御装置GCUは、運転者の加速要求に基づいたアクセルの踏み込み量に応じて車両の必要トルク値を算出し、この必要トルク値を、エンジンENGの運転効率が良くなるように、エンジンENG側の出力トルク値と回転電機MG1側の出力トルク値とに分配し、分配されたエンジンENG側の出力トルク値をエンジントルク指令信号としてエンジン制御装置ECUに出力し、分配された回転電機MG1側の出力トルク値をモータトルク指令信号としてモータ制御装置MCUに出力する。
 次に、本実施例のハイブリッド電気自動車の動作について説明する。
 ハイブリッド電気自動車の始動時、低速走行時(エンジンENGの運転効率(燃費)が低下する走行領域)は、回転電機MG1によって前輪FLW、FRWを駆動する。尚、本実施例では、ハイブリッド電気自動車の始動時及び低速走行時、回転電機MG1によって前輪FLW、FRWを駆動する場合について説明するが、回転電機MG1によって前輪FLW、FRWを駆動し、回転電機MG2によって後輪RLW、RRWを駆動するようにしてもよい(四輪駆動走行をしてもよい)。インバータ装置INVにはバッテリBATから直流電力が供給される。供給された直流電力はインバータ装置INVによって三相交流電力に変換される。これによって得られた三相交流電力は回転電機MG1の固定子巻線に供給される。これにより、回転電機MG1は駆動され、回転出力を発生する。この回転出力は動力分配機構PSMを介して変速機T/Mに入力される。入力された回転出力は変速機T/Mによって変速され、差動装置FDFに入力される。入力された回転出力は差動装置FDFによって左右に分配され、左右の前輪車軸FDSにそれぞれ伝達される。これにより、前輪車軸FDSが回転駆動される。そして、前輪車軸FDSの回転駆動によって前輪FLW、FRWが回転駆動される。
 ハイブリッド電気自動車の通常走行時(乾いた路面を走行する場合であって、エンジンENGの運転効率(燃費)が良い走行領域)は、エンジンENGによって前輪FLW、FRWを駆動する。このため、エンジンENGの回転出力は動力分配機構PSMを介して変速機T/Mに入力される。入力された回転出力は変速機T/Mによって変速される。変速された回転出力は差動装置FDFを介して前輪車軸FDSに伝達される。これにより、前輪FLW、FRWをWH-Fが回転駆動される。また、バッテリBATの充電状態を検出し、バッテリBATを充電する必要がある場合は、エンジンENGの回転出力を、動力分配機構PSMを介して回転電機MG1に分配し、回転電機MG1を回転駆動する。これにより、回転電機MG1は発電機として動作する。この動作により、回転電機MG1の固定子巻線に三相交流電力が発生する。この発生した三相交流電力はインバータ装置INVによって所定の直流電力に変換される。この変換によって得られた直流電力はバッテリBATに供給される。これにより、バッテリBATは充電される。
 ハイブリッド電気自動車の四輪駆動走行時(雪道などの低μ路を走行する場合であって、エンジンENGの運転効率(燃費)が良い走行領域)は、回転電機MG2によって後輪RLW、RRWを駆動する。また、上記通常走行と同様に、エンジンENGによって前輪FLW、FRWを駆動する。さらに、回転電機MG1の駆動によってバッテリBATの蓄電量が減少するので、上記通常走行と同様に、エンジンENGの回転出力によって回転電機MG1を回転駆動してバッテリBATを充電する。回転電機MG2によって後輪RLW、RRWを駆動するめに、インバータ装置INVにはバッテリBATから直流電力が供給される。供給された直流電力はインバータ装置INVによって三相交流電力に変換され、この変換によって得られた交流電力が回転電機MG2の固定子巻線に供給される。これにより、回転電機MG2は駆動され、回転出力を発生する。発生した回転出力は、減速機RGによって減速されて差動装置RDFに入力される。入力された回転出力は差動装置RDFによって左右に分配され、左右の後輪車軸RDSにそれぞれ伝達される。これにより、後輪車軸RDSが回転駆動される。そして、後輪車軸RDSの回転駆動によって後輪RLW、RRWが回転駆動される。
 ハイブリッド電気自動車の加速時は、エンジンENGと回転電機MG1によって前輪FLW、FRWを駆動する。尚、本実施例では、ハイブリッド電気自動車の加速時、エンジンENGと回転電機MG1によって前輪FLW、FRWを駆動する場合について説明するが、エンジンENGと回転電機MG1によって前輪FLW、FRWを駆動し、回転電機MG2によって後輪RLW、RRWを駆動するようにしてもよい(四輪駆動走行をしてもよい)。エンジンENGと回転電機MG1の回転出力は動力分配機構PSMを介して変速機T/Mに入力される。入力された回転出力は変速機T/Mによって変速される。変速された回転出力は差動装置FDFを介して前輪車軸FDSに伝達される。これにより、前輪FLW、FRWが回転駆動される。
 ハイブリッド電気自動車の回生時(ブレーキを踏み込み時、アクセルの踏み込みを緩めた時或いはアクセルの踏み込みを止めた時などの減速時)は、前輪FLW、FRWの回転力を前輪車軸FDS、差動装置FDF、変速機T/M、動力分配機構PSMを介して回転電機MG1に伝達し、回転電機MG1を回転駆動する。これにより、回転電機MG1は発電機として動作する。この動作により、回転電機MG1の固定子巻線に三相交流電力が発生する。この発生した三相交流電力はインバータ装置INVによって所定の直流電力に変換される。この変換によって得られた直流電力はバッテリBATに供給される。これにより、バッテリBATは充電される。一方、後輪RLW、RRWの回転力を後輪車軸RDS、差動装置RDF、減速機RGを介して回転電機MG2に伝達し、回転電機MG2を回転駆動する。これにより、回転電機MG2は発電機として動作する。この動作により、回転電機MG2の固定子巻線に三相交流電力が発生する。この発生した三相交流電力はインバータ装置INVによって所定の直流電力に変換される。この変換によって得られた直流電力はバッテリBATに供給される。これにより、バッテリBATは充電される。
 図2に、本実施例のインバータ装置INVの構成を示す。
 インバータ装置INVは、前述したように、パワーモジュールPMU1、PMU2、駆動回路装置DCU1、DCU2及びモータ制御装置MCUから構成されている。パワーモジュールPMU1、PMU2は同一構成のものである。駆動回路装置DCU1、DCU2は同一構成のものである。
 パワーモジュールPMU1、PMU2は、バッテリBATから供給された直流電力を交流電力に変換して、それを対応する回転電機MG1、MG2に供給する変換回路(主回路ともいう)を構成している。また、変換回路は、対応する回転電機MG1、MG2から供給された交流電力を直流電力に変換してバッテリBATに供給することもできる。
 変換回路はブリッジ回路であり、三相分の直列回路がバッテリBATの正極側と負極側との間に電気的に並列に接続されて構成されている。直列回路はアームとも呼ばれ、2つの半導体素子によって構成されている。
 アームは相毎に、上アーム側のパワー半導体素子と下アーム側のパワー半導体素子とが電気的に直列に接続されて構成されている。本実施例では、パワー半導体素子として、スイッチング半導体素子であるIGBT(絶縁ゲート型バイポーラトランジスタ)を用いている。IGBTを構成する半導体チップは、コレクタ電極、エミッタ電極及びゲート電極の3つの電極を備えている。IGBTのコレクタ電極とエミッタ電極との間にはIGBTとは別チップのダイオードが電気的に接続されている。ダイオードは、IGBTのエミッタ電極からコレクタ電極に向かう方向が順方向になるように、IGBTのエミッタ電極とコレクタ電極との間に電気的に接続されている。尚、パワー半導体素子としては、IGBTの代わりにMOSFET(金属酸化物半導体型電界効果トランジスタ)を用いる場合もある。この場合、ダイオードは省略される。
 パワー半導体素子Tpu1のエミッタ電極とパワー半導体素子Tnu1のコレクタ電極が電気的に直列に接続されることにより、パワーモジュールPMU1のu相アームが構成されている。v相アーム、w相アームもu相アームと同様に構成されており、パワー半導体素子Tpv1のエミッタ電極とパワー半導体素子Tnv1のコレクタ電極が電気的に直列に接続されることにより、パワーモジュールPMU1のv相アームが、パワー半導体素子Tpw1のエミッタ電極とパワー半導体素子Tnw1のコレクタ電極が電気的に直列に接続されることにより、パワーモジュールPMU1のw相アームがそれぞれ構成されている。パワーモジュールPMU2についても、上述したパワーモジュールPMU1と同様の接続関係で各相のアームが構成されている。
 パワー半導体素子Tpu1、Tpv1、Tpw1、Tpu2、Tpv2、Tpw2のコレクタ電極はバッテリBATの高電位側(正極側)に電気的に接続されている。パワー半導体素子Tnu1、Tnv1、Tnw1、Tnu2、Tnv2、Tnw2のエミッタ電極はバッテリBATの低電位側(負極側)に電気的に接続されている。
 パワーモジュールPMU1のu相アーム(v相アーム、w相アーム)の中点(各アームの上アーム側パワー半導体素子のエミッタ電極と下アーム側パワー半導体素子のコレクタ電極との接続部分)は、回転電機MG1のu相(v相、w相)の固定子巻線に電気的に接続されている。
 パワーモジュールPMU2のu相アーム(v相アーム、w相アーム)の中点(各アームの上アーム側パワー半導体素子のエミッタ電極と下アーム側パワー半導体素子のコレクタ電極との接続部分)は、回転電機MG2のu相(v相、w相)の固定子巻線に電気的に接続されている。
 バッテリBATの正極側と負極側との間には、パワー半導体素子が動作することによって生じる直流電圧の変動を抑制するために、平滑用の電解コンデンサSECが電気的に接続されている。
 駆動回路装置DCU1、DCU2は、モータ制御装置MCUから出力された制御信号に基づいて、パワーモジュールPMU1、PMU2の各パワー半導体素子を動作させる駆動信号を出力し、各パワー半導体素子を動作させる駆動部を構成するものであり、絶縁電源、インタフェース回路、駆動回路、センサ回路及びスナバ回路(いずれも図示省略)などの回路部品から構成されている。
 モータ制御装置MCUは、マイクロコンピュータから構成された演算装置であり、複数の入力信号を入力し、パワーモジュールPMU1、PMU2の各パワー半導体素子を動作させるための制御信号を駆動回路装置DSU1、DSU2に出力する。入力信号としてはトルク指令値τ*1、τ*2、電流検知信号iu1~iw1、iu2~iw2、磁極位置検知信号θ1、θ2が入力されている。
 トルク指令値τ*1、τ*2は車両の運転モードに応じて上位の制御装置から出力されたものである。トルク指令値τ*1は回転電機MG1に、トルク指令値τ*2は回転電機MG2にそれぞれ対応する。電流検知信号iu1~Iw1は、インバータ装置INVの変換回路から回転電機MG1の固定子巻線に供給されるu相~w相の入力電流の検知信号であり、変流器(CT)などの電流センサによって検知されたものである。電流検知信号iu2~Iw2は、インバータ装置INVから回転電機MG2の固定子巻線に供給されたu相~w相の入力電流の検知信号であり、変流器(CT)などの電流センサによって検知されたものである。磁極位置検知信号θ1は回転電機MG1の回転の磁極位置の検知信号であり、レゾルバ、エンコーダ、ホール素子、ホールICなどの磁極位置センサによって検知されたものである。磁極位置検知信号θ2は回転電機MG1の回転の磁極位置の検知信号であり、レゾルバ、エンコーダ、ホール素子、ホールICなどの磁極位置センサによって検知されたものである。
 モータ制御装置MCUは、入力信号に基づいて電圧制御値を演算し、この電圧制御値を、パワーモジュールPMU1、PMU2のパワー半導体素子Tpu1~Tnw1、Tpu2~Tnw2を動作させるための制御信号(PWM信号(パルス幅変調信号))として駆動回路装置DCU1、DCU2に出力する。
 一般にモータ制御装置MCUが出力するPWM信号は、時間平均した電圧が正弦波になるようにしている。この場合、瞬時の最大出力電圧は、インバータの入力である直流ラインの電圧だから、正弦波の電圧を出力する場合には、その実効値は1/√2になる。そこで、本発明のハイブリッド電気自動車両では、限られたインバータ装置でさらにモータの出力をあげるために、モータの入力電圧の実効値を増やす。つまり、MCUのPWM信号が矩形波状にONとOFFしか無いようにする。こうすれば、矩形波の波高値はインバータの直流ラインの電圧Vdcとなり、その実効値はVdcとなる。これが最も電圧実効値を高くする方法である。
 しかし、矩形波電圧は、低回転数領域ではインダクタンスが小さいために電流波形が乱れる問題があり、これによりモータに不要な加振力が発生し騒音が生じる。したがって、矩形波電圧制御は高速回転時のみ使用し、低周波数では通常のPWM制御を行う。
 次に、本発明に係る回転電機MG2の具体的な構成を図3から図8を用いて説明する。図3から図7は本発明の一実施例に係る回転電機MG2を示す平面図および部分拡大図であり、同一部分には同一符号を付している。本実施例では、回転電機MG2として三相誘導電動機を用いた場合を例に挙げ説明する。ここで、回転電機MG2の構成について説明するが、回転電機MG1も同様の構成としてもよく、また、MG1のみ永久磁石式三相同期電動機として構成してもよい。
 図3、図5に示すように、回転電機MG2は、回転磁界を発生する固定子110と、固定子110との磁気的作用により回転すると共に、固定子110の内周側とギャップ160を介して回転可能に配置された回転子130とを備えている。
 図3、図5、図6に示すように、固定子110は、コアバック112とティース113からなる固定子鉄心111と、通電により磁束を発生させる固定子巻線120を挿入する固定子スロット121とを備えている。
 固定子鉄心111は、板状の磁性部材を打ち抜いて形成した複数の板状の成型部材を軸方向に積層して形成したものである。ここで、軸方向とは回転子の回転軸に沿う方向を意味する。
 図5、図6に示すように、固定子巻線120は固定子スロット121に埋設されるが、巻線の巻回ピッチは磁極ピッチ(図示せず)よりも小さい短節巻としている。また、固定子スロット121には固定子スロット開口部123を有しており、この開口部の周方向幅Wsは、固定子巻線120の周方向幅(図では線径)Wcに対し十分小さい寸法としている。
 図3から図5、図7に示すように、回転子130は、回転側の磁路を構成する回転子鉄心137、アルミや銅などの非磁性かつ導電性の金属で構成された第1のバー131、および第2のバー132、回転軸となるシャフト135を備えている。
 ここで、第2のバー132は、第1のバー131に対し断面積を小さく構成しており、第1のバー131間に配置している。すなわち、径方向に見たとき、第1のバー131と第2のバー132とが交わらない位置に配置されており、換言すると第1のバー131の周方向端部と第2のバー132の周方向端部との間に回転子鉄心137を有するように配置された構成である。
 さらに、第2のバー132の径方向高さh2は、第1のバー131の径方向高さh1の1/3以下となるよう構成している。また、第2のバー132は、第1のバー131より径方向外側寄りに配置されている。すなわち、第2のバー132の径方向中心が、第1のバー131の径方向中心よりも径方向外側に位置するような配置である。
 第1のバー131および第2のバー132は軸方向に伸びており、これらのバー131、132を軸方向端部で短絡するためのエンドリング134を設け、かご形巻線を構成している。
 上述の構成とした場合の効果を以下に述べる。
 誘導電動機駆動システムを搭載した電動車両において、瞬時トルクを有する運転条件の場合には、すべりを制御してトルク電流成分を増やし、モータトルクを増加させるのが一般的である。この一方、過励磁制御が可能な駆動システムであれば、励磁電流を瞬時的に増加させることができ、トルク電流の制御範囲が広がり更なるトルク向上が可能となる。
 過励磁制御を適用した場合、励磁電流を増加させるためモータの機内磁束がこの励磁電流に比例して増加することになり、磁気回路の磁気飽和が促進される。モータの磁気飽和が促進されると、ギャップ磁束密度分布波形に第3次高調波が重畳される。この第3次高調波は、空間的に基本波の三倍の波長を有し、時間的に三倍の周波数で回転する成分である。仮に、モータの磁極数が4極であり、電源周波数(基本波周波数)が50Hzにて回転する場合、その同期速度は1500r/minとなる。一方、第3次高調波による回転磁界は、基本波に対し三倍の波長を有するため、基本波極数4極に対し12極となる。また、時間的には三倍の周波数となるため、基本波周波数50Hzに対し150Hzとなるため、その同期速度は1500r/minとなり、基本波成分の回転磁界と一致する。つまり、第3次高調波成分は基本波成分の回転磁界と同様に有効トルクとして寄与する成分となる。
 この第3次高調波成分は、前述したように基本波磁束に対して波長が短くなるため、一般的な誘導電動機の設計法に基づいてバー本数を決定してしまうと、第3次高調波成分がバーに十分鎖交できず、結果的に有効トルクとして活用することが不可となる。
 本発明は、この問題に鑑み、図3、図5、図7に示すように、断面積が大である第1のバー131と断面積が小である第2のバー132を設けている。すなわち、第1のバー131は従来の誘導電動機の設計法に基づいて本数を決定しており、主として基本波磁束を捕捉する役割を果す。一方、第2のバー132は、第1のバー131間に設けることで、波長の短い第3次高調波磁束を捕捉する役割を担っている。ここで、図7に示したように、第2のバー132の径方向高さh2が第1のバー131の径方向高さh1に対し1/3以下で構成しているが、これは、第3次高調波磁束成分の導電性材料における浸透深さが基本波に対し1/3となるためである。また、各々のバーの断面積が異なる理由は、第1のバー131は主として基本波と鎖交する、つまりあらゆる運転条件において常に基本波電流が流れ続けることから、断面積を大きくとることで、バー損失を低減させるためである。一方、第2のバー132は、瞬時トルク発生時のみ機能すればよいこと、悪戯に断面積を大きく確保すると、第1のバー131と鎖交する基本波磁束の流れを阻害することとなり、逆効果となるためである。
 また、第3次高調波成分の振幅に対し、他の有力高調波成分、特に固定子スロット開口部123を有するために生じるスロット高調波成分や、固定子巻線120の巻装によって生じる起磁力高調波成分の振幅が大きい場合、第2のバー132には、これらスロット高調波や起磁力高調波成分による損失だけが発生してしまい、第3次高調波成分を活用することができなくなる。よって、本実施例では、図5、図6に示したように、固定子巻線120を短節巻で巻装しており、起磁力高調波成分の影響を最少化すると共に、固定子スロット開口部の周方向幅Wsを固定子巻線120の線径以下に狭小化させることで、スロット高調波成分の影響を最小化させている。
 上述した構成とした場合のトルクを測定し、従来例と比較した結果を図8に示す。図において、横軸の電流は、定格電流を1.0とし、過励磁制御時の通電電流1.5倍、2.0倍として基準化し、縦軸のトルクは、従来例の定格電流通電条件でのトルクを1.0として基準化して示している。
 図8に示したように、従来例に対し、本発明でのトルクはいずれの通電状態でも向上しており、特に過励磁状態が顕著になるにつれ、トルク向上が促進されることが確認できた。
 以上をまとめると、本実施例で述べた誘導電動機の構成とすることで、電動車両に瞬時トルクが必要な運転状態の場合には、過励磁制御をONすることで、モータ機内の磁気飽和が促進され、ギャップ磁束密度成分重畳する第3次高調波成分の作用により、基本波トルクを向上させることができる。また、巡航時など瞬時トルクを必要としない運転条件の場合は過励磁制御をOFFすれば、第3次高調波による高調波損失や騒音が発生しないため、燃料消費量を増やすこともなく、車内の静寂性も確保できる。
 〔実施例2〕
 図9に本発明の他の実施例を示す回転子断面の部分拡大図を示す。図7と同様の部分には同じ符号を付している。
 図9の構成において、図7の構成と異なる点は、第2のバー132を、第1のバー131間に2本配置した点にある。このように構成した場合、図7の構成と同様な効果が得られるとともに、第3次高調波成分と鎖交するバー本数が増えるため、より高いトルク向上効果を得ることができる。
 〔実施例3〕
 図10に本発明の他の実施例を示す回転子断面の部分拡大図を示す。図7と同様の部分には同じ符号を付している。
 図10の構成において、図7や図9の構成と異なる点は、第2のバー132を第1のバー131間に配置すると共に、第3のバー133を第1のバー131の頭部(径方向外側)に設けている点である。第3のバー133の断面積は、第2のバー132の断面積と同じである。このように構成した場合、図7、図9と同様な効果が得られる。さらに、第3のバーは第2のバーと見なすことができ、実質的に第2のバー132の周方向ピッチを均一化し、第3次高調波成分と鎖交するバー本数を見かけ上増やすことができるため、より高いトルク向上効果を得ることができる。
 なお、本発明は上記した実施例に限定されるものではなく、様々な変形例が含まれる。例えば、上記した実施例は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施例の構成の一部を他の実施例の構成に置き換えることが可能であり、また、ある実施例の構成に他の実施例の構成を加えることも可能である。また、各実施例の構成の一部について、他の構成の追加・削除・置換をすることが可能である。
 また、各構成部品は説明上必要と考えられるものを示しており、実際の製品と比較した場合、必ずしも全ての構成部品を示しているとは限らない。
110 固定子
111 固定子鉄心
112 コアバック
113 ティース
120 固定子巻線
121 固定子スロット
122 固定子スロット開口部
130 回転子
131 第1のバー
132 第2のバー
133 第3のバー
134 エンドリング
135 シャフト
136 回転子スロット開口部
137 回転子鉄心
160 ギャップ

Claims (9)

  1.  回転子鉄心に設けた多数のスロットと、該スロット内に埋設した導電性のバーと、
     これらのバーを軸方向両端面で短絡する導電性のエンドリングとで構成されたかご形導
    体を有する回転子を備えた誘導電動機において、
     前記かご形導体は、主として基本波磁束と鎖交させる第1のバーと、主として第3次高
    調波成分を鎖交させる第2のバーとを前記エンドリングで短絡して構成した誘導電動機。
  2.  回転子鉄心に設けた多数のスロットと、該スロット内に埋設した導電性のバーと、前記
    導電性のバーを軸方向両端面で短絡する導電性のエンドリングとで構成されたかご形導体
    を有する回転子を備えた誘導電動機において、
     前記導電性のバーは第1のバーと第2のバーとからなり、
     前記第1のバーは前記第2のバーより断面積が大きく、
     前記第1のバーの周方向端部と前記第2のバーの周方向端部との間に前記回転子鉄心を
    有し、
     前記第2のバーの径方向中心は、前記第1のバーの径方向中心より径方向外側に位置し
    ている誘導電動機。
  3.  請求項2に記載の誘導電動機において、
     前記第2のバーの径方向長さは、前記第1のバーの径方向長さに対し1/3以下である
    誘導電動機。
  4.  請求項2に記載の誘導電動機において、
     前記第1のバーの頭部側にスリットを設けた誘導電動機。
  5.  請求項2に記載の誘導電動機において、
     前記第1のバーの頭部側に、前記第1のバーより断面積の小さい第3のバーを設けた誘
    導電動機。
  6.  請求項2に記載の誘導電動機において、
     固定子鉄心と、該固定子鉄心の周方向に等間隔に設けられた固定子スロットと、前記固
    定子スロットに納められた固定子巻線とを有する固定子とを有し、
     前記回転子は前記固定子とギャップを介して回転自在に支持され、
     前記固定子スロットの開口部の周方向幅が、前記固定子巻線の周方向幅よりも小さい誘
    導電動機。
  7.  請求項6に記載の誘導電動機において、
     前記固定子巻線の巻回ピッチが、磁極ピッチよりも小さい誘導電動機。
  8.  電力を供給するバッテリと、
     前記供給された電力により駆動トルクを出力する回転電機と、
     前記駆動トルクを制御する制御装置とを備えた電動駆動システムにおいて、
     前記回転電機は、請求項1乃至7記載の誘導電動機であり、
     前記制御装置は、前記誘導電動機を過励磁で制御する電動駆動システム。
  9.  電力を供給するバッテリと、
     前記供給された電力により車両を駆動する駆動トルクを出力する回転電機と、
     前記駆動トルクを制御する制御装置からなる駆動システムを備えた電動車両において、
     前記駆動システムは、請求項8記載の駆動システムである電動車両。
PCT/JP2013/052300 2012-02-27 2013-02-01 誘導電動機、電動駆動システム及びそれらを備えた電動車両 WO2013129024A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012039522A JP2013176233A (ja) 2012-02-27 2012-02-27 誘導電動機、電動駆動システム及びそれらを備えた電動車両
JP2012-039522 2012-02-27

Publications (1)

Publication Number Publication Date
WO2013129024A1 true WO2013129024A1 (ja) 2013-09-06

Family

ID=49082228

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/052300 WO2013129024A1 (ja) 2012-02-27 2013-02-01 誘導電動機、電動駆動システム及びそれらを備えた電動車両

Country Status (2)

Country Link
JP (1) JP2013176233A (ja)
WO (1) WO2013129024A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3052711A1 (fr) * 2016-06-21 2017-12-22 Renault Sas Groupe motopropulseur de vehicule hybride comportant un moteur a induction
EP3301794A1 (de) * 2016-09-30 2018-04-04 Siemens Aktiengesellschaft Herstellen eines läufers einer rotierenden elektrischen maschine
CN110994830A (zh) * 2019-12-31 2020-04-10 泛仕达机电股份有限公司 一种双笼型转子冲片、双笼型转子及电机

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1650795A (en) * 1924-12-16 1927-11-29 Us Electrical Mfg Company Bimetallic rotor for induction motors
JPH01129738A (ja) * 1987-11-16 1989-05-23 Shinko Electric Co Ltd かご形誘導電動機の回転子
JPH01157559U (ja) * 1988-04-14 1989-10-31
JPH08289405A (ja) * 1995-04-14 1996-11-01 Hitachi Ltd 電気自動車の制御装置
JP2002186296A (ja) * 2001-10-29 2002-06-28 Toshiba Corp 誘導電動機の駆動装置
JP2009100570A (ja) * 2007-10-17 2009-05-07 Railway Technical Res Inst 誘導電動機、回転子、及び回転子の製造方法
JP2010239740A (ja) * 2009-03-31 2010-10-21 Aisin Aw Co Ltd 回転電機用電機子

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1650795A (en) * 1924-12-16 1927-11-29 Us Electrical Mfg Company Bimetallic rotor for induction motors
JPH01129738A (ja) * 1987-11-16 1989-05-23 Shinko Electric Co Ltd かご形誘導電動機の回転子
JPH01157559U (ja) * 1988-04-14 1989-10-31
JPH08289405A (ja) * 1995-04-14 1996-11-01 Hitachi Ltd 電気自動車の制御装置
JP2002186296A (ja) * 2001-10-29 2002-06-28 Toshiba Corp 誘導電動機の駆動装置
JP2009100570A (ja) * 2007-10-17 2009-05-07 Railway Technical Res Inst 誘導電動機、回転子、及び回転子の製造方法
JP2010239740A (ja) * 2009-03-31 2010-10-21 Aisin Aw Co Ltd 回転電機用電機子

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3052711A1 (fr) * 2016-06-21 2017-12-22 Renault Sas Groupe motopropulseur de vehicule hybride comportant un moteur a induction
EP3301794A1 (de) * 2016-09-30 2018-04-04 Siemens Aktiengesellschaft Herstellen eines läufers einer rotierenden elektrischen maschine
WO2018060121A1 (de) * 2016-09-30 2018-04-05 Siemens Aktiengesellschaft Ein läufer und herstellen eines läufers einer rotierenden elektrischen maschine
CN110994830A (zh) * 2019-12-31 2020-04-10 泛仕达机电股份有限公司 一种双笼型转子冲片、双笼型转子及电机

Also Published As

Publication number Publication date
JP2013176233A (ja) 2013-09-05

Similar Documents

Publication Publication Date Title
JP6147661B2 (ja) 回転子、およびこれを備えた永久磁石式回転電機、電動駆動システム、電動車両
JP4740273B2 (ja) 回転電機およびそれを用いたハイブリッド自動車
JP5745379B2 (ja) 回転電機および電動車両
JP4668721B2 (ja) 永久磁石式回転電機
JP5722116B2 (ja) 誘導回転電機
EP2244370B1 (en) Motor drive apparatus, hybrid drive apparatus and method for controlling motor drive apparatus
US8164282B2 (en) Motive power output apparatus and vehicle with the same
JP5177245B2 (ja) 車両およびその制御方法
US9692261B2 (en) Rotating electric machine and electrically driven vehicle
US20200067443A1 (en) Multigroup-multiphase rotating-electric-machine driving apparatus
Brockerhoff et al. Highly integrated drivetrain solution: Integration of motor, inverter and gearing
WO2013129024A1 (ja) 誘導電動機、電動駆動システム及びそれらを備えた電動車両
JP5572508B2 (ja) 回転電機
JP2001169406A (ja) 車両制動装置
JP7206723B2 (ja) 電動発電機の制御装置
JP7206722B2 (ja) 電動発電機の制御装置
JP2022099561A (ja) 車両用制御装置及び電動モータの制御方法
JP2012235591A (ja) 車両
JP2013094001A (ja) 電力回生システム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13755113

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13755113

Country of ref document: EP

Kind code of ref document: A1