WO2013127112A1 - 一种空调压缩机出口能量的回收和利用方法 - Google Patents

一种空调压缩机出口能量的回收和利用方法 Download PDF

Info

Publication number
WO2013127112A1
WO2013127112A1 PCT/CN2012/073168 CN2012073168W WO2013127112A1 WO 2013127112 A1 WO2013127112 A1 WO 2013127112A1 CN 2012073168 W CN2012073168 W CN 2012073168W WO 2013127112 A1 WO2013127112 A1 WO 2013127112A1
Authority
WO
WIPO (PCT)
Prior art keywords
outlet
compressor
inlet
energy
condenser
Prior art date
Application number
PCT/CN2012/073168
Other languages
English (en)
French (fr)
Inventor
张育仁
Original Assignee
Zhang Yuren
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhang Yuren filed Critical Zhang Yuren
Publication of WO2013127112A1 publication Critical patent/WO2013127112A1/zh
Priority to US14/470,961 priority Critical patent/US20150020534A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • F25B1/06Compression machines, plants or systems with non-reversible cycle with compressor of jet type, e.g. using liquid under pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • F25B1/10Compression machines, plants or systems with non-reversible cycle with multi-stage compression
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2341/00Details of ejectors not being used as compression device; Details of flow restrictors or expansion valves
    • F25B2341/001Ejectors not being used as compression device
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2341/00Details of ejectors not being used as compression device; Details of flow restrictors or expansion valves
    • F25B2341/001Ejectors not being used as compression device
    • F25B2341/0015Ejectors not being used as compression device using two or more ejectors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B5/00Compression machines, plants or systems, with several evaporator circuits, e.g. for varying refrigerating capacity
    • F25B5/02Compression machines, plants or systems, with several evaporator circuits, e.g. for varying refrigerating capacity arranged in parallel

Definitions

  • the invention belongs to the field of refrigeration and HVAC, and relates to a technical method for energy recovery and reuse of an air conditioning compression cycle system, in particular to an energy recovery and utilization method of an air conditioner compressor. Background technique
  • the air conditioning system is mainly composed of a throttle valve, an evaporator, a condenser and a compressor.
  • the compressor is respectively connected with a condenser, a throttle valve and an evaporator to form an air conditioning system.
  • the main energy consuming component of the air conditioner is a compressor.
  • the air conditioner compressor consumes electric energy, which converts the electric energy into pressure energy, so that the medium fluid changes from a liquid state to a gas state in the evaporator, and absorbs heat.
  • the medium fluid passes through the compressor and is compressed, it leaves the compressor.
  • the high-pressure and high-temperature energy is cooled by the condenser, causing the medium to change from a gaseous state to a liquid state, releasing heat.
  • the object of the present invention is to solve the above problems and to provide a method for recovering and utilizing the outlet energy of an air-conditioner compressor, which can effectively recover the energy without consuming any additional energy source by using the method of the invention.
  • the energy that can be recovered from this part is fully utilized.
  • the energy consumption of the air conditioner compressor is greatly reduced or the compressor is greatly improved in cooling (heating) without increasing the amount of electricity.
  • an injector also called a jet
  • the installation step includes: connecting the injector inlet to the compressor outlet to make compression
  • the high temperature and high pressure medium fluid at the outlet of the machine becomes the working fluid of the injector, and the outlet of the injector is connected to the inlet of the condenser of the air conditioning system, and the drainage inlet of the injector is connected to the evaporator of the air conditioning system.
  • the working fluid is mixed with the incoming fluid from the evaporator via the ejector After entering the condenser, the temperature of the mixed fluid is lower, the required cooling load is smaller, and the mixed fluid is cooled by the condenser and then returned to the evaporator through the throttle valve to form a reciprocating cycle.
  • the pressure at the outlet of the compressor can be converted into velocity energy, so that the fluid is sucked into the work by the injector, and the action is the same as that of the compressor, and the medium in the evaporator is extracted, so that the evaporator generates a negative pressure, the medium fluid. Change from liquid to gas and absorb heat. Therefore, the compressor can greatly improve the capacity with load without increasing the power consumption, or greatly reduce the power consumption of the compressor under the condition of constant load.
  • a further improvement of the invention is that the outlets of the compressor are connected in parallel with a plurality of injectors.
  • a further improvement of the invention is that the outlet of the compressor is connected in series with a plurality of injectors.
  • the outlet of the compressor simultaneously serially and in parallel a plurality of injectors constitutes a hybrid connected injector assembly.
  • a further improvement of the invention is that the injector drainage inlet is connected to one or more evaporators.
  • the outlet of the ejector is provided with a four-way valve which is in communication with the condenser and the evaporator, respectively.
  • the beneficial effects of the invention are: the air conditioning efficiency can be increased by more than 30% without consuming any energy, or the cooling or heating can be greatly improved under the same power consumption.
  • FIG. 1 is a schematic view showing the structure of the present invention in the first embodiment.
  • Figure 2 is a schematic view of the structure of the injector.
  • Figure 3 is a schematic view showing the structure of the present invention in the second embodiment.
  • FIG. 1 is an ejector structure diagram including the ejector section ⁇ , the mixing section ⁇ , and the diffusion plenum section ⁇ , left side of the figure It is the inlet b of the injector, which serves as the inlet end of the working fluid; the right side is the outlet c of the injector, which serves as the outlet end of the mixed fluid; the lower side is the inlet inlet n of the injector, which serves as the inlet end for the introduction of the fluid)
  • the inlet b is connected such that the high pressure high temperature medium fluid of the compressor outlet a becomes the working fluid of the injector, entering the injector from the inlet b; connecting the outlet c of the injector 2 with the inlet d of the condenser 3 of the air conditioning system , the working fluid and the ejector fluid are mixed and diffused, and then enter the condenser 3 from the inlet d of the condenser
  • the medium fluid exits the outlet g of the gas water separator into the inlet h of the throttle valve of the air conditioning system, and the throttled medium fluid enters the evaporator 6 of the air conditioning system from the outlet i of the throttle valve 5, as shown in FIG. , the fluid from the evaporation
  • the inlet j of the vessel 6 enters the evaporator 6, and after vaporization and absorption in the evaporator, it flows out from the two outlets k and the outlet 1 of the evaporator, and simultaneously enters the compressor inlet m and the inlet inlet n of the injector, respectively, and reciprocates.
  • Figure 1 shows a system consisting of a compressor, an ejector, a condenser, a gas water separator, a throttle valve, and an evaporator.
  • the workflow of the system is: high temperature and high pressure medium fluid from the compressor outlet as a work.
  • the fluid is mixed with the incoming fluid from the evaporator through the ejector and then enters the condenser.
  • the mixed fluid has a lower temperature and a smaller cooling load.
  • the mixed fluid is cooled by the condenser and returned to the evaporator through the throttle valve. Reciprocating cycle. In this process, the pressure at the outlet of the compressor can be converted into velocity energy, so that the fluid is sucked into the work by the injector, and the action is the same as that of the compressor.
  • the body is pumped out, causing the evaporator to generate a negative pressure, and the medium fluid changes from a liquid state to a gaseous state to absorb heat. Therefore, the compressor can greatly improve the capacity with load without increasing the power consumption, or greatly reduce the power consumption of the compressor under the condition of constant load.
  • the outlet a of the compressor 1 is connected to the inlet b of the ejector 2 (Fig. 2 is the ejector structure) so that the high pressure high temperature fluid of the compressor outlet a becomes the working fluid of the ejector.
  • the throttled medium fluid enters the inlet j of the evaporator 6 of the air conditioning system from the outlet i of the throttle valve 5, and the other passes through the outlet i of the throttle valve 5' 'Entering the inlet j' of the evaporator 6', as shown in Fig. 3, after the vaporization heat absorption in the evaporator, the medium fluid flows out from the outlet k of the evaporator 6 and the outlet k' of the evaporator 6', respectively, and enters the pressure separately.
  • the invention may also be provided with a four-way valve at the outlet of the injector, the four-way valve being in communication with the condenser and the evaporator, respectively (not shown), such that the outlet of the injector is connected to the evaporator (in the case of heating, The function has become a condenser) to replace the function of the condenser and evaporator to achieve heating.
  • the invention greatly improves the capacity of the compressor without increasing the power consumption, or greatly reduces the power consumption of the compressor under the condition of constant load.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Jet Pumps And Other Pumps (AREA)
  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Abstract

一种空调压缩机(1)出口能量的回收和利用方法,该方法采取在压缩机和空调系统的冷凝器(3)之间安装喷射器(2),喷射器的入口(b)和压缩机的出口(a)相连,喷射器的出口(c)与冷凝器的入口(d)相连,喷射器的引流入口(n)与空调系统的蒸发器(6)相连接。这样,可以在不消耗任何能源的前提下使空调效率提高30%以上,或在同样电耗的情况下,大大提高制冷或制热量。

Description

一种空调压缩机出口能量的回收和利用方法
技术领域
本发明属于制冷与暖通空调领域,涉及空调压縮循环系统的能量回收再利用的技术方 法, 尤其是空调压縮机出口能量的回收和利用方法。 背景技术
空调系统主要由节流阀、 蒸发器、 冷凝器和压縮机构成, 压縮机分别与冷凝器、 节流 阀、 蒸发器串联构成空调系统, 众所周知, 空调的主要耗能部件是压縮机, 空调压縮机消 耗的是电能,它把电能转化为压力能,使得媒流体在蒸发器中由液态变为气态,吸收热量, 媒流体经过压縮机压縮后离开压縮机的时候具有高压和高温的能量,经冷凝器冷却,使得 媒流体从气态变为液态,放出热量。人们采取了各种手段和发明了各种装置来回收冷凝器 排出的热量, 但收效不大, 因为在利用这部分热的时候同时还要消耗能量, 比如循环水泵 耗电, 风机电机耗电等等。利用率不高, 甚至消耗大于利用, 至今人们没有找到更好的办 法。 发明内容
本发明的目的就是为了解决上述问题,提供一种空调压縮机出口能量的回收和利用方 法,使用本发明方法就可以实现在不消耗任何附加能源的情况下既有效地回收了这部分能 量而且能使这部分回收的能量被充分利用。使空调压縮机的耗能大大降低或使得压縮机在 不增加电量的前提下大大提高制冷 (制热) 能力。
为了实现上述目的, 本发明采用如下技术方案:
一种空调压縮机出口能量的回收和利用方法, 在压縮机出口处安装一个喷射器(又称 射流器), 安装步骤包括: 将喷射器的入口连接压縮机的出口, 使得压縮机出口的高温高 压媒流体成为喷射器的工作流体,再将喷射器的出口连接空调系统的冷凝器的入口,喷射 器的引流入口连接空调系统的蒸发器。工作流体经喷射器与来自蒸发器的引入流体混合后 进入冷凝器, 混合后的流体温度更低, 所需冷却负荷更小, 混合流体经冷凝器冷却后再经 节流阀回到蒸发器, 形成往复循环。这个过程中压縮机出口的压力能被转换成速度能, 使 引流体被喷射器吸入做功,其作用和压縮机一样把蒸发器中的媒流体抽出,使得蒸发器产 生负压, 媒流体从液态变为气态, 吸收热量。从而使得压縮机在不增加电耗的前提下大大 提高了带负载的能力, 或在负载不变的情况下大大降低压縮机的电耗。
作为本发明的进一步改进在于, 所述压縮机的出口并联多个喷射器。
作为本发明的进一步改进在于, 所述压縮机的出口串联多个喷射器。
作为本发明的进一步改进在于, 所述压縮机的出口同时串并联多个喷射器, 组成混合 连接式喷射器组件。
作为本发明的进一步改进在于, 所述喷射器引流入口连接一个或一个以上蒸发器。 作为本发明的进一步改进在于, 所述喷射器的出口设置四通阀, 该四通阀分别与冷凝 器和蒸发器相连通。
本发明的有益效果是: 在不消耗任何能源的前提下可使空调效率提高 30%以上, 或在 同样电耗的情况下, 大大提高制冷或制热量。 附图说明
图 1为实施例一中本发明的结构示意图。
图 2为喷射器结构示意图。
图 3为实施例二中本发明的结构示意图。
图中: 1-压縮机
2-喷射器
3-冷凝器
4-气水分离器
5-节流阀
5 ' -节流阀
6-蒸发器
6 ' -蒸发器 具体实施方式
为了使本发明实现的技术手段、 创作特征、 达成目的与功效易于明白了解, 下面结合 具体图示, 进一步阐述本发明。
容易理解, 根据本发明的技术方案, 在不变更发明实质精神下, 本领域的一般技术人 员可以提出可相互替换的多种结构方式以及实施方式。因此, 以下具体实施方式以及附图 仅是对本发明的技术方案的示例性说明,而不应当视为本发明的全部或者视为对本发明技 术方案的限定或限制。
需要说明的是, 下面描述中使用的词语 "上"和 "下"等方位指的是附图中的上、 下 方向, 词语 "内"和 "外"分别指的是朝向或远离图面或图中特定部件几何中心方向。
实施例一
如图 1所示, 将图中压縮机 1的出口 a与喷射器 2 (图 2为喷射器结构图, 其包括引 射段 α、 混合段 β 以及扩散增压段 Υ, 图示左侧为喷射器的入口 b, 其作为工作流体的 入口端; 右侧为喷射器的出口 c, 其作为混合流体的出口端; 下侧为喷射器的引流入口 n, 其作为引入流体的入口端)的入口 b相连接,使得压縮机出口 a的高压高温媒流体成为喷 射器的工作流体,从入口 b进入喷射器;将喷射器 2的出口 c与空调系统的冷凝器 3的入 口 d相连接, 使得工作流体和引射流体混合扩散增压后从冷凝器的入口 d进入冷凝器 3 ; 将冷凝器 3的出口 e与空调系统的气水分离器 4的入口 f相连接,经过滤后的媒流体从气 水分离器的出口 g出来进入空调系统的节流阀的入口 h,经节流后的媒流体从节流阀 5的 出口 i进入空调系统的蒸发器 6,如图 1所示,媒流体从蒸发器 6的入口 j进入蒸发器 6, 在蒸发器中汽化吸热后从蒸发器两出口 k、 出口 1流出, 同时分别进入压縮机入口 m和喷 射器的引流入口 n, 依此往复循环。
图 1中示出由压縮机、喷射器、冷凝器、气水分离器、节流阀以及蒸发器组成的系统, 该系统的工作流程为:来自压縮机出口的高温高压媒流体作为工作流体经喷射器与来自蒸 发器的引入流体混合后进入冷凝器, 混合后的流体温度更低, 所需冷却负荷更小, 混合流 体经冷凝器冷却后再经节流阀回到蒸发器,形成往复循环。这个过程中压縮机出口的压力 能被转换成速度能,使引流体被喷射器吸入做功,其作用和压縮机一样把蒸发器中的媒流 体抽出, 使得蒸发器产生负压, 媒流体从液态变为气态, 吸收热量。 从而使得压縮机在不 增加电耗的前提下大大提高了带负载的能力,或在负载不变的情况下大大降低压縮机的电 耗。
实施例二
参见图 3, 将图中 1压縮机的出口 a与喷射器 2 (图 2为喷射器结构图) 的入口 b相 连接, 使得压縮机出口 a 的高压高温媒流体成为喷射器的工作流体, 从喷射器的入口 b 进入喷射器;将喷射器 2的出口 c与空调系统的冷凝器 3的入口 d相连接,使得工作流体 和引射流体混合扩散增压后从冷凝器入口 d进入冷凝器 3 ;将冷凝器 3的出口 e与空调系 统的气水分离器 4的入口 f相连接,经过滤后的媒流体从气水分离器的出口 g出来分别进 入空调系统的节流阀 5的入口 h和节流阀 5 ' 的入口 h ' , 经节流后的媒流体从节流阀 5 的出口 i进入空调系统的蒸发器 6的入口 j,另一路经节流阀 5 ' 的出口 i ' 进入蒸发器 6 ' 的入口 j ' , 如图 3所示, 在蒸发器中汽化吸热后媒流体分别从蒸发器 6的出口 k和蒸发 器 6 ' 的出口 k ' 流出, 同时分别进入压縮机 1的入口 m和喷射器 2的引流入口 n, 依此 往复循环。
本发明还可配备四通阀于喷射器的出口处, 该四通阀分别与冷凝器和蒸发器相连通 (图中未示) , 使得喷射器的出口联通蒸发器(制热情况下, 其功能已变成冷凝器)将冷 凝器和蒸发器的功能替换, 实现制热。
本发明使得压縮机在不增加电耗的前提下大大提高了带负载的能力,或在负载不变的 情况下大大降低压縮机的电耗。
为了简明, 本说明书省略了对公知技术的描述。

Claims

权 利 要 求 书
1、 一种空调压縮机出口能量的回收和利用方法, 其特征在于, 于压縮机和空调系统的冷 凝器之间安装有喷射器,喷射器的入口和压縮机的出口相连接,喷射器的出口与冷凝器的 入口相连接, 喷射器的引流入口与空调系统的蒸发器相连接。
2、 根据权利要求 1所述的一种空调压縮机出口能量的回收和利用方法, 其特征在于, 所 述压縮机的出口并联多个喷射器。
3、 根据权利要求 1所述的一种空调压縮机出口能量的回收和利用方法, 其特征在于, 所 述压縮机的出口串联多个喷射器。
4、 根据权利要求 1所述的一种空调压縮机出口能量的回收和利用方法, 其特征在于, 所 述压縮机的出口同时串并联多个喷射器, 组成混合连接式喷射器组件。
5、 根据权利要求 1所述的一种空调压縮机出口能量的回收和利用方法, 其特征在于, 所 述喷射器引流入口连接一个或一个以上蒸发器。
6、 根据权利要求 1所述的一种空调压縮机出口能量的回收和利用方法, 其特征在于, 所 述喷射器的出口设置四通阀, 该四通阀分别与冷凝器和蒸发器相连通。
PCT/CN2012/073168 2012-02-28 2012-03-28 一种空调压缩机出口能量的回收和利用方法 WO2013127112A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/470,961 US20150020534A1 (en) 2012-02-28 2014-08-28 Method for recycling energy from compressor outlet, and air conditioner

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201210048140.7 2012-02-28
CN2012100481407A CN102997383A (zh) 2012-02-28 2012-02-28 一种空调压缩机出口能量的回收和利用方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/470,961 Continuation-In-Part US20150020534A1 (en) 2012-02-28 2014-08-28 Method for recycling energy from compressor outlet, and air conditioner

Publications (1)

Publication Number Publication Date
WO2013127112A1 true WO2013127112A1 (zh) 2013-09-06

Family

ID=47926286

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/073168 WO2013127112A1 (zh) 2012-02-28 2012-03-28 一种空调压缩机出口能量的回收和利用方法

Country Status (3)

Country Link
US (1) US20150020534A1 (zh)
CN (1) CN102997383A (zh)
WO (1) WO2013127112A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101839781B1 (ko) * 2015-06-18 2018-03-20 주식회사 엘지화학 열 회수 장치
JP6678310B2 (ja) * 2015-09-07 2020-04-08 パナソニックIpマネジメント株式会社 エジェクタ及びヒートポンプ装置
CN105928201A (zh) * 2016-05-20 2016-09-07 桂林航天工业学院 一种空气源高温热泵
US10767910B2 (en) * 2018-12-12 2020-09-08 William J. Diaz Refrigeration cycle ejector power generator
IT202200014506A1 (it) * 2022-07-08 2024-01-08 Giuseppe Verde Macchina termica a ciclo inverso a compressione di liquido a doppio stadio

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1818509A (zh) * 2006-03-09 2006-08-16 西安交通大学 一种蒸气喷射式制冷循环系统
CN101169291A (zh) * 2007-11-30 2008-04-30 清华大学 主回路上设有喷射器的容量可调涡旋压缩机制冷系统
KR20100091657A (ko) * 2009-02-11 2010-08-19 한라공조주식회사 차량용 에어컨의 냉동사이클
CN201569098U (zh) * 2009-10-22 2010-09-01 青岛阿里郎地暖设备有限公司 利用温水或热气系统的空调
CN201615649U (zh) * 2009-10-27 2010-10-27 中国石油化工股份有限公司 一种蒸气喷射制冷油气回收装置
CA2671914A1 (en) * 2009-07-13 2011-01-13 Zine Aidoun A jet pump system for heat and cold management, apparatus, arrangement and methods of use
CN202442453U (zh) * 2012-02-28 2012-09-19 张育仁 一种空调压缩机出口能量的回收和利用装置

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL147249B (nl) * 1964-12-19 1975-09-15 Philips Nv Inrichting voor het verwekken van koude en/of voor het vloeibaar maken van gassen.
US3300995A (en) * 1965-07-26 1967-01-31 Carrier Corp Reverse cycle refrigeration system
JPS50113952U (zh) * 1974-02-25 1975-09-17
DE2754783C2 (de) * 1977-12-08 1983-05-05 Emil 8026 Ebenhausen Spreter Von Kreudenstein Einrichtung zum Erzeugen von Kälte durch Ausnutzung von Wärme niedriger Temperatur, insbesondere Abwärme
DE2834075A1 (de) * 1978-08-03 1980-02-28 Audi Nsu Auto Union Ag Kompressions-waermepumpe
US4345440A (en) * 1981-02-02 1982-08-24 Allen Reed R Refrigeration apparatus and method
FR2575812B1 (fr) * 1985-01-09 1987-02-06 Inst Francais Du Petrole Procede de production de froid et/ou de chaleur mettant en oeuvre un melange non-azeotropique de fluides dans un cycle a ejecteur
EP1589301B1 (en) * 2000-03-15 2017-06-14 Denso Corporation Ejector cycle system with critical refrigerant pressure
DE60112184T2 (de) * 2000-06-01 2006-06-01 Denso Corp., Kariya Ejektorzyklus
CN1328245A (zh) * 2000-06-14 2001-12-26 边瑞宏 一种高效节能的制冷方法及其装置
CN2589901Y (zh) * 2002-12-20 2003-12-03 华东船舶工业学院 直燃式蒸喷制冷机组
US7559212B2 (en) * 2005-11-08 2009-07-14 Mark Bergander Refrigerant pressurization system with a two-phase condensing ejector
CN2916521Y (zh) * 2006-06-23 2007-06-27 中南大学 一种喷射式制冷机
US10527329B2 (en) * 2008-04-18 2020-01-07 Denso Corporation Ejector-type refrigeration cycle device
JP2010096436A (ja) * 2008-10-17 2010-04-30 Hibiya Eng Ltd エジェクタ式冷凍システム
CN101387457A (zh) * 2008-10-27 2009-03-18 中原工学院 多喷射器并联型太阳能喷射制冷装置
CN102187165B (zh) * 2009-05-14 2014-01-29 汉拿伟世通空调有限公司 多蒸发系统

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1818509A (zh) * 2006-03-09 2006-08-16 西安交通大学 一种蒸气喷射式制冷循环系统
CN101169291A (zh) * 2007-11-30 2008-04-30 清华大学 主回路上设有喷射器的容量可调涡旋压缩机制冷系统
KR20100091657A (ko) * 2009-02-11 2010-08-19 한라공조주식회사 차량용 에어컨의 냉동사이클
CA2671914A1 (en) * 2009-07-13 2011-01-13 Zine Aidoun A jet pump system for heat and cold management, apparatus, arrangement and methods of use
CN201569098U (zh) * 2009-10-22 2010-09-01 青岛阿里郎地暖设备有限公司 利用温水或热气系统的空调
CN201615649U (zh) * 2009-10-27 2010-10-27 中国石油化工股份有限公司 一种蒸气喷射制冷油气回收装置
CN202442453U (zh) * 2012-02-28 2012-09-19 张育仁 一种空调压缩机出口能量的回收和利用装置

Also Published As

Publication number Publication date
US20150020534A1 (en) 2015-01-22
CN102997383A (zh) 2013-03-27

Similar Documents

Publication Publication Date Title
CN102269466A (zh) 一种新风机组
WO2013127112A1 (zh) 一种空调压缩机出口能量的回收和利用方法
CN101078582A (zh) 高效能江、河、湖、海水源热泵空调
CN105805981A (zh) 双工况压缩-引射热泵空调系统
CN105202793A (zh) 一种带涡流管的co2双级压缩制冷系统
CN103673381B (zh) 一种新型的全年热回收风冷热泵机组
CN103512274A (zh) 带生活热水的超低能耗住宅用多功能空气调节装置
CN204703227U (zh) 集水装置
CN109721122A (zh) 一种小型太阳能吸收式制冷产水装置及制冷产水方法
CN101532742A (zh) 并联式差温蒸发冷(热)水机组
CN219810071U (zh) 换热系统
CN106052174B (zh) 一种火电站尾水回收装置及利用方法
CN105841398A (zh) 引射增流型热泵空调系统及其操作方法
CN204438594U (zh) 一种三联供热泵系统
CN204665763U (zh) 空气、水、冷媒三相高效换热冷凝器
CN204329215U (zh) 板管-填料复合式蒸发冷却器与机械制冷一体化空调机组
CN106918169A (zh) 流体处理装置和制冷系统
CN204693883U (zh) 一种涡轮负压节能空调
CN203385150U (zh) 适用于寒冷地区的直流变频多联式空调机组
CN208186577U (zh) 一种室内机及风管式空调机
CN201764637U (zh) 直流变频空调
CN207455807U (zh) 一种新一代省电环保空调
CN205783943U (zh) 空调系统
CN201074927Y (zh) 高效能江、河、湖、海水源热泵空调
CN106801667B (zh) 空压机节能装置及其使用方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12870300

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 16.02.2015)

122 Ep: pct application non-entry in european phase

Ref document number: 12870300

Country of ref document: EP

Kind code of ref document: A1