WO2013125563A1 - Polycarbonate resin composition containing dispersed composite-tungsten-oxide microparticles and radiated-heat-blocking molded body and radiated-heat-blocking laminate using said composition - Google Patents

Polycarbonate resin composition containing dispersed composite-tungsten-oxide microparticles and radiated-heat-blocking molded body and radiated-heat-blocking laminate using said composition Download PDF

Info

Publication number
WO2013125563A1
WO2013125563A1 PCT/JP2013/054135 JP2013054135W WO2013125563A1 WO 2013125563 A1 WO2013125563 A1 WO 2013125563A1 JP 2013054135 W JP2013054135 W JP 2013054135W WO 2013125563 A1 WO2013125563 A1 WO 2013125563A1
Authority
WO
WIPO (PCT)
Prior art keywords
polycarbonate resin
tungsten oxide
heat ray
ray shielding
composite tungsten
Prior art date
Application number
PCT/JP2013/054135
Other languages
French (fr)
Japanese (ja)
Inventor
三信 見良津
藤田 賢一
Original Assignee
住友金属鉱山株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友金属鉱山株式会社 filed Critical 住友金属鉱山株式会社
Priority to EP13752375.9A priority Critical patent/EP2818519B1/en
Priority to ES13752375.9T priority patent/ES2674677T3/en
Priority to CN201380010598.6A priority patent/CN104487511B/en
Priority to KR1020147026129A priority patent/KR101967018B1/en
Priority to IN7007DEN2014 priority patent/IN2014DN07007A/en
Priority to US14/380,538 priority patent/US9612366B2/en
Publication of WO2013125563A1 publication Critical patent/WO2013125563A1/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • B32B27/20Layered products comprising a layer of synthetic resin characterised by the use of special additives using fillers, pigments, thixotroping agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/36Layered products comprising a layer of synthetic resin comprising polyesters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/36Layered products comprising a layer of synthetic resin comprising polyesters
    • B32B27/365Layered products comprising a layer of synthetic resin comprising polyesters comprising polycarbonates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/20Compounding polymers with additives, e.g. colouring
    • C08J3/22Compounding polymers with additives, e.g. colouring using masterbatch techniques
    • C08J3/226Compounding polymers with additives, e.g. colouring using masterbatch techniques using a polymer as a carrier
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/10Metal compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/24Acids; Salts thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/09Carboxylic acids; Metal salts thereof; Anhydrides thereof
    • C08K5/098Metal salts of carboxylic acids
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/208Filters for use with infrared or ultraviolet radiation, e.g. for separating visible light from infrared and/or ultraviolet radiation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2264/00Composition or properties of particles which form a particulate layer or are present as additives
    • B32B2264/10Inorganic particles
    • B32B2264/102Oxide or hydroxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2264/00Composition or properties of particles which form a particulate layer or are present as additives
    • B32B2264/10Inorganic particles
    • B32B2264/104Oxysalt, e.g. carbonate, sulfate, phosphate or nitrate particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/30Properties of the layers or laminate having particular thermal properties
    • B32B2307/304Insulating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2369/00Polycarbonates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2469/00Characterised by the use of polycarbonates; Derivatives of polycarbonates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2258Oxides; Hydroxides of metals of tungsten
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31507Of polycarbonate

Definitions

  • the present invention relates to a composite tungsten oxide fine particle-dispersed polycarbonate resin composition, a heat ray shielding molded article using the same, and a heat ray shielding laminate, and more particularly, a roofing material or wall material of a building, an automobile, etc.
  • the present invention relates to a composite tungsten oxide fine particle-dispersed polycarbonate resin composition, which is widely applied to window materials and the like, with improved loss of heat ray shielding function, a heat ray shielding molded article using the same, and a heat ray shielding laminate.
  • Sunlight that enters through so-called opening parts such as windows and doors provided in roof materials, wall materials, automobiles, railway cars, aircraft, ships, etc. of various buildings includes ultraviolet rays and infrared rays in addition to visible rays. ing.
  • infrared rays contained in the sunlight near infrared rays having a wavelength of 800 to 2500 nm are called heat rays, and cause the temperature to rise by entering the room through the opening.
  • heat rays are shielded while sufficiently absorbing visible light to maintain brightness.
  • a heat ray shielding plate in which a heat ray reflective film formed by vapor-depositing a metal or metal oxide on a transparent resin film is bonded to a transparent molded body such as glass, an acrylic plate, or a polycarbonate plate has been proposed (for example, Patent Document 1). 2 and 3).
  • this heat ray reflective film itself is very expensive.
  • the manufacture of a heat ray shielding plate in which the heat ray reflective film is adhered to a transparent molded body requires complicated steps such as an adhesion step. For this reason, the said heat ray shielding board will become further expensive.
  • the heat ray shielding plate has a drawback in that the transparent molded body and the film are peeled off due to a change with time because the adhesiveness between the transparent molded body and the heat ray reflective film is not good.
  • heat ray shielding in which an organic near-infrared absorber typified by a phthalocyanine compound or an anthraquinone compound is incorporated into a thermoplastic transparent resin such as a polyethylene terephthalate resin, a polycarbonate resin, an acrylic resin, a polyethylene resin, or a polystyrene resin. Plates and films have been proposed (see, for example, Patent Documents 4 and 5). However, in order to give sufficient heat ray shielding capability to the heat ray shielding plate and film, a large amount of near infrared absorber must be blended.
  • the present applicants applied a coating solution for heat ray shielding containing hexaboride fine particles in various binders as a heat ray shielding component, and applied the coating solution to various molded bodies, followed by curing.
  • a masterbatch obtained by melt kneading and dispersing hexaboride fine particles in a heat ray shielding film and a thermoplastic resin is proposed (see, for example, Patent Documents 8, 9, and 10).
  • the present applicant expresses the fine particles having solar radiation shielding function as a fine particle having solar radiation shielding function by the general formula WyOz (W is tungsten, O is oxygen, 2.0 ⁇ z / y ⁇ 3.0). Tungsten oxide fine particles and / or general formula MxWyOz (W is tungsten, O is oxygen, 0.001 ⁇ x / y ⁇ 1, 2.0 ⁇ z / y ⁇ 3.0)
  • W is tungsten, O is oxygen, 0.001 ⁇ x / y ⁇ 1, 2.0 ⁇ z / y ⁇ 3.0
  • the present applicant has proposed a master batch obtained by melt-kneading and dispersing fine particles of composite tungsten oxide in a thermoplastic resin (for example, see Patent Document 12).
  • JP-A 61-277437 JP 10-146919 A Japanese Patent Laid-Open No. 2001-179887 JP-A-6-256541 JP-A-6-264050 JP-A-2-173060 JP-A-5-78544 JP 2000-96034 A JP 2000-169765 A JP 2004-59875 A International Publication No. WO2005 / 87680A1 Pumplet JP 2008-24902 A
  • the molded body described above is basically used outdoors because of its characteristics, and high weather resistance is often required.
  • some optical members film, resin sheet, etc.
  • heat generated when receiving sunlight when used outdoors for a long period of time The problem that the heat ray shielding function deteriorates due to the influence of water, oxygen in the air, and oxygen was found.
  • a polycarbonate resin composition is often desired as a transparent substrate for a heat ray shielding molded body or a heat ray shielding laminate.
  • the problem to be solved by the present invention is to provide a composite tungsten oxide fine particle-dispersed polycarbonate resin composition improved in loss of the heat ray shielding function when used outdoors for a long period of time.
  • An object of the present invention is to provide a heat ray shielding molded body and a heat ray shielding laminate.
  • the present inventors have intensively studied for the purpose of solving the above problems. As a result, the inventors have found that the above problem can be solved by adding a predetermined amount of a metal salt containing a specific metal to the composite tungsten oxide fine particle-dispersed polycarbonate resin composition, and the present invention has been completed.
  • the first invention for solving the above problems is General formula MxWyOz (where M is H, He, alkali metal, alkaline earth metal, rare earth element, Mg, Zr, Cr, Mn, Fe, Ru, Co, Rh, Ir, Ni, Pd, Pt, Cu, Ag, Au, Zn, Cd, Al, Ga, In, Tl, Si, Ge, Sn, Pb, Sb, B, F, P, S, Se, Br, Te, Ti, Nb, V, Mo, Ta, One or more elements selected from Re, Be, Hf, Os, Bi, and I, W is tungsten, O is oxygen, 0.001 ⁇ x / y ⁇ 1, 2.2 ⁇ z / y ⁇ 3 .0), a resin composition comprising fine particles of a composite tungsten oxide represented by a metal salt, a polycarbonate salt resin, A composite tungsten oxide fine particle-dispersed polycarbonate resin composition, wherein the metal salt is a salt of one or
  • the second invention is The metal salt is at least one selected from carboxylates, carbonyl complexes, carbonates, phosphates, perchlorates, hypochlorites, chlorites, chlorates, and hydrochlorides.
  • the composite tungsten oxide fine particle-dispersed polycarbonate resin composition according to the first invention characterized by being a salt of
  • the third invention is The composite tungsten oxide according to the first or second invention, wherein the addition amount of the metal salt is 0.1 to 50 parts by weight with respect to 100 parts by weight of the fine particles of the composite tungsten oxide. It is a fine particle-dispersed polycarbonate resin composition.
  • the fourth invention is:
  • the composite tungsten oxide fine particle-dispersed polycarbonate resin composition according to any one of the first to third inventions is diluted, melt-kneaded with a polycarbonate resin or a different kind of thermoplastic resin compatible with the polycarbonate resin, It is a heat ray shielding molded body characterized by being molded into a shape.
  • the fifth invention is:
  • the heat ray shielding molded article according to the fourth invention is a heat ray shielding laminate characterized by being laminated on another transparent molded article.
  • the composite tungsten oxide fine particle-dispersed polycarbonate resin composition according to the present invention is diluted and melt-kneaded with a polycarbonate resin or a different type of thermoplastic resin compatible with the polycarbonate resin to form a molded body, thereby forming an optical component of the polycarbonate resin.
  • Composite tungsten oxide fine particle-dispersed polycarbonate resin composition improved in loss of heat ray shielding function when used outdoors for a long time while guaranteeing mechanical properties and mechanical properties, and heat ray shielding molded article using the same
  • a heat ray shielding laminate could be obtained.
  • Composite tungsten oxide fine particles (For convenience, the symbol “(A)” may be added in the present invention.)
  • the composite tungsten oxide fine particles (A) used in the present invention are components that exhibit a heat ray shielding effect, and have a general formula MxWyOz (where M element is H, He, alkali metal, alkaline earth metal, rare earth element, Mg) , Zr, Cr, Mn, Fe, Ru, Co, Rh, Ir, Ni, Pd, Pt, Cu, Ag, Au, Zn, Cd, Al, Ga, In, Tl, Si, Ge, Sn, Pb, Sb , B, F, P, S, Se, Br, Te, Ti, Nb, V, Mo, Ta, Re, Be, Hf, Os, Bi, I, one or more elements, W is Tungsten and O are fine particles of composite tungsten oxide represented by oxygen, 0.001 ⁇ x / y ⁇ 1.1, 2.2 ⁇ z / y ⁇ 3.
  • the composite tungsten oxide fine particles (A) represented by the general formula MxWyOz have a hexagonal, tetragonal, and cubic crystal structure, they are excellent in durability. It preferably includes one or more crystal structures selected from:
  • M elements include Cs, Rb, K, Tl, In, Ba, Li, Ca, Sr, Fe, and Sn. Examples thereof include fine particles of composite tungsten oxide containing one or more elements selected from these elements.
  • the addition amount x of M element to be added is preferably 0.001 or more and 1.1 or less in x / y, and more preferably around 0.33. This is because the value of x / y calculated theoretically from the hexagonal crystal structure is 0.33, and preferable optical characteristics can be obtained with the addition amount before and after this.
  • the abundance Z of oxygen is preferably 2.2 or more and 3.0 or less in z / y. Typical examples include Cs 0.33 WO 3 , Rb 0.33 WO 3 , K 0.33 WO 3 , Ba 0.33 WO 3, etc., but useful if x, y and z are within the above ranges. Near infrared absorption characteristics can be obtained.
  • the dispersed particle diameter of the composite tungsten oxide fine particles is 200 nm or less, preferably 100 nm or less. The reason is that if the dispersed particle diameter of the dispersed particles is small, light scattering in the visible light region having a wavelength of 400 nm to 780 nm due to geometric scattering or Mie scattering is reduced. As a result of the light scattering being reduced, it can be avoided that the heat ray shielding film becomes like frosted glass and clear transparency cannot be obtained. That is, when the dispersed particle diameter of the dispersed particles is 200 nm or less, the geometric scattering or Mie scattering is reduced and a Rayleigh scattering region is obtained.
  • the scattered light is reduced in inverse proportion to the sixth power of the particle diameter, so that the scattering is reduced and the transparency is improved as the dispersed particle diameter is reduced. Furthermore, when the dispersed particle size is 100 nm or less, the scattered light is preferably extremely small. From the viewpoint of avoiding light scattering, it is preferable that the dispersed particle size is small. If the dispersed particle size is 1 nm or more, industrial production is easy.
  • the composite tungsten oxide fine particles (A) according to the present invention are obtained by heat-treating a tungsten compound starting material in an inert gas atmosphere or a reducing gas atmosphere. be able to.
  • Tungsten compound starting materials include tungsten trioxide powder, tungsten dioxide powder, or tungsten oxide hydrate, tungsten hexachloride powder, ammonium tungstate powder, or tungsten hexachloride dissolved in alcohol Tungsten oxide hydrate powder obtained by drying, or tungsten oxide hydrate powder obtained by dissolving tungsten hexachloride in alcohol and then adding water to precipitate and drying it. Or it is preferable that it is any 1 or more types selected from the tungsten compound powder obtained by drying ammonium tungstate aqueous solution and metal tungsten powder.
  • the element M H, He, alkali metal, alkaline earth metal, rare earth element, Mg, Zr, Cr, Mn, Fe, Ru, Co, Rh, Ir, Ni, Pd, Pt is added to the tungsten compound starting material.
  • Cu, Ag, Au, Zn, Cd, Al, Ga, In, Tl, Si, Ge, Sn, Pb, Sb, B, F, P, S, Se, Br, Te, Ti, Nb, V, Mo , Ta, Re, Be, Hf, Os, Bi, and I) are added in the form of a single element or a compound, and used as a starting material for the composite tungsten compound.
  • the tungsten compound starting material containing the element M is soluble in a solvent such as water or an organic solvent.
  • a solvent such as water or an organic solvent. Examples thereof include tungstate, chloride, nitrate, sulfate, oxalate, oxide, carbonate, hydroxide and the like containing the element M.
  • any solution may be used.
  • a temperature of 650 ° C. or higher is preferable.
  • the starting material heat-treated at 650 ° C. or higher has a sufficient near-infrared absorbing power and is efficient as heat ray shielding fine particles.
  • an inert gas such as Ar or N 2 can be used.
  • the starting material is heat-treated at a temperature of 100 ° C. or more and 650 ° C. or less in a reducing gas atmosphere, and then at a temperature of 650 ° C. or more and 1200 ° C. or less in an inert gas atmosphere. It is preferable to heat-treat.
  • the reducing gas at this time is not particularly limited, but H 2 is preferable.
  • H 2 is used as the reducing gas
  • the composition of the reducing gas atmosphere e.g., Ar
  • the composition of the reducing gas atmosphere e.g., Ar
  • the composition of the reducing gas atmosphere e.g., Ar
  • the composition of the reducing gas atmosphere e.g., Ar
  • the composition of the reducing gas atmosphere e.g., Ar
  • the composition of the reducing gas atmosphere e.g., Ar
  • the composition of the reducing gas atmosphere e.g., Ar
  • the composition of the reducing gas atmosphere e.g., Ar
  • the raw material powder reduced by heat treatment in a reducing gas atmosphere containing H 2 contains a magnetic phase and exhibits good heat ray shielding properties. Even in this state, it can be used as heat ray shielding fine particles.
  • the weather resistance of the reduced raw material powder can be improved by stabilizing hydrogen contained in the tungsten oxide of the reduced raw material powder. Therefore, as described above, the reduced raw material powder is heat-treated in an inert atmosphere at a temperature of 650 ° C. or higher and 1200 ° C. or lower to obtain composite tungsten oxide fine particles (A) that are stable heat ray shielding fine particles. Can do.
  • the inert atmosphere during the heat treatment is not particularly limited, but N 2 and Ar are preferable from an industrial viewpoint.
  • the obtained composite tungsten oxide fine particles (A) are surface-treated with at least one selected from a silane compound, a titanium compound, a zirconia compound, and an aluminum compound, and the surface of the fine particles is 1 of Si, Ti, Zr, Al. Covering with an oxide containing more than one type is preferable because the weather resistance is further improved.
  • the powder color of the composite tungsten oxide fine particles (A) is recommended by the International Commission on Illumination (CIE).
  • CIE International Commission on Illumination
  • L * is 25 to 80
  • a * is -10 to 10
  • b * is -15 to 15.
  • High heat-resistant dispersant (For convenience, the symbol “(B)” may be added in the present invention.)
  • a dispersant generally used for coating is used for the purpose of uniformly dispersing various oxide fine particles in an organic solvent.
  • these dispersants are not designed on the assumption that they are used at a high temperature of 200 ° C. or higher.
  • the functional group in the dispersant is decomposed by heat, and the dispersibility decreases. At the same time, problems such as yellow to brown discoloration occurred.
  • a high heat-resistant dispersant (B) having a thermal decomposition temperature measured by TG-DTA of 230 ° C. or higher, preferably 250 ° C. or higher is used.
  • the high heat resistant dispersant (B) there is a dispersant having an acrylic main chain as a main chain and a hydroxyl group or an epoxy group as a functional group.
  • a dispersant having this structure is preferable because of its high heat resistance.
  • the heat ray shielding fine particles are sufficiently dispersed, so that the visible light transmittance is ensured and good optical characteristics can be obtained, and the heat ray shielding is performed.
  • the molded body is not colored yellow.
  • the kneaded product is made of only polycarbonate. It was confirmed that it had exactly the same appearance as when kneaded, was colorless and transparent and was not colored at all.
  • the high heat resistant dispersant (B) used in the present invention has an acrylic main chain
  • a dispersant having a hydroxyl group or an epoxy group as a functional group is preferable. This is because these functional groups are adsorbed on the surface of the tungsten oxide fine particles to prevent the aggregation of the tungsten oxide fine particles and have an effect of uniformly dispersing the tungsten oxide fine particles in the heat ray shielding molded body.
  • preferred examples include a dispersant having an epoxy group as a functional group and an acrylic main chain, and a dispersant having a hydroxyl group as a functional group and an acrylic main chain.
  • the polycarbonate resin has a high melt-kneading temperature
  • the effect of using the high heat-resistant dispersant (B) having an acrylic main chain and a hydroxyl group or an epoxy group having a thermal decomposition temperature of 250 ° C. or higher is remarkably exhibited. .
  • the weight ratio between the high heat resistant dispersant (B) and the composite tungsten oxide fine particles (A) is 10 ⁇ [weight of the high heat resistant dispersant / (weight of the composite tungsten oxide fine particles)] ⁇ 0.5.
  • a range is preferable. If the weight ratio is 0.5 or more, the composite tungsten oxide fine particles (A) can be sufficiently dispersed, so that the fine particles do not aggregate and sufficient optical characteristics can be obtained in the heat ray shielding molded article. Because. Moreover, if the said weight ratio is 10 or less, the mechanical characteristics (bending strength, surface hardness) of heat ray shielding molded object itself will not be impaired.
  • Metal salt (For convenience in the present invention, the symbol “(C)” may be added.) By adding the metal salt (C) to the composite tungsten oxide fine particles (A), polycarbonate resin, and high heat-resistant dispersant (B) and kneading them, the reduction in infrared shielding properties over time is reduced. Thus, the composite tungsten oxide fine particle-dispersed polycarbonate resin composition according to the present invention can be obtained.
  • the metal salt (C) contained in the composite tungsten oxide fine particle-dispersed polycarbonate resin composition according to the present discovery acts on the composite tungsten oxide fine particle-dispersed polycarbonate resin composition to reduce the deterioration of the infrared shielding property over time. As a reason, the present inventors infer as follows.
  • the metal salt is present in the vicinity or / and on the surface of the infrared shielding material fine particles composed of the composite tungsten oxide fine particles (A). Sufficiently captures moisture that has entered from the air, etc., and also sufficiently captures radicals generated by ultraviolet rays and the like, and suppresses the generation of harmful radicals in a chain. It is inferred that the decrease is reduced.
  • the action of the metal salt there are many unclear points about the action of the metal salt, and there is a possibility that actions other than those described above are working, so the action is not limited to the above actions.
  • the metal salt (C) applied to the present invention is a salt composed of a metal selected from Mg, Ni, Zn, In, and Sn and an inorganic acid or an organic acid, and one or more of these are used. It is preferable. Specifically, it is a salt of the above metal, which is a carboxylate, carbonyl complex, carbonate, phosphate, perchlorate, hypochlorite, chlorite, chlorate or hydrochloride. It is preferable to select from the above.
  • carboxylic acid constituting the carboxylate examples include formic acid, acetic acid, propionic acid, butyric acid, valeric acid, caproic acid, octylic acid, naphthenic acid, enanthic acid, caprylic acid, pelargonic acid, capric acid, lauric acid.
  • Acid myristic acid, pentadecanoic acid, palmitic acid, margaric acid, stearic acid, oleic acid, linoleic acid, linolenic acid, arachidonic acid, docosahexaenoic acid, eicosapentaenoic acid, oxalic acid, malonic acid, succinic acid, benzoic acid, phthalic acid,
  • examples include isophthalic acid, terephthalic acid, salicylic acid, gallic acid, mellitic acid, cinnamic acid, pyruvic acid, lactic acid, malic acid, citric acid, maleic acid, aconitic acid, glutaric acid, adipic acid, and amino acids.
  • Examples of the ⁇ -diketone constituting the carbonyl complex salt include acetylacetone, benzoylacetone, benzoyltrifluoroacetone, hexafluoroacetylacetone, 2-thenoyltrifluoroacetone and the like.
  • the content of the metal salt (C) in the composite tungsten oxide fine particle-dispersed polycarbonate resin composition is 0.1 parts by weight with respect to 100 parts by weight of the infrared shielding material fine particles composed of the composite tungsten oxide fine particles (A).
  • the amount is preferably 50 parts by weight or less. If the content is 0.1 parts by weight or more, moisture that has entered from the air or the like can be sufficiently captured, and radicals generated by ultraviolet rays or the like can also be sufficiently captured. Generation
  • linkage can be suppressed and the effect of reducing the time-dependent fall of an infrared shielding characteristic can fully be acquired.
  • the content of the metal salt (C) in the composite tungsten oxide fine particle-dispersed polycarbonate resin composition is 0.1 to 50 parts by weight with respect to 100 parts by weight of the composite tungsten oxide fine particles (A). Preferably there is.
  • Polycarbonate resin molding material (D) (For convenience in the present invention, the symbol “(D)” may be added.)
  • the polycarbonate resin molding material (D) used in the present invention is not particularly limited as long as it is a polycarbonate resin used in this field.
  • a particularly preferred polycarbonate resin in the present invention is polycarbonate.
  • the polycarbonate one or more divalent phenolic compounds represented by 2,2-bis (4-hydroxyphenyl) propane and 2,2-bis (3,5-dibromo-4-hydroxyphenyl) propane, It is synthesized using a carbonate precursor typified by phosgene or diphenyl carbonate.
  • the synthesis method can be a known method such as interfacial polymerization, melt polymerization, or solid phase polymerization.
  • examples of the divalent phenol compound include bis (4-hydroxyphenyl) methane, 1,1-bis (4-hydroxyphenyl) ethane, 2,2-bis (4-hydroxyphenyl) propane, , 2bis (4-hydroxyphenyl) butane, 2,2-bis (4-hydroxyphenyl) octane, bis (4-hydroxyphenyl) phenylmethane, 2,2-bis (4-hydroxy-3-methylphenyl) propane 2,2-bis (4-hydroxy-3,5-dimethylphenyl) propane, 1,1-bis (4-hydroxy-t-butylphenyl) propane, 2,2-bis (4-hydroxy-3-bromophenyl) ) Bis (hydroxyaryl) al such as propane, 2,2-bis (4-hydroxy-3,5-dibromophenyl) propane Bis (hydroxyaryl) cycloalkanes such as 1,1-bis (4-hydroxyphenyl) cyclopentane and 1,1- (4-hydroxyphenyl) cyclohexane; 4,4′-d
  • Substituted resorcins such as 4,6-tetrafluororesorcin, 2,3,4,6-tetrabromoresorcin; catechol; hydroquinone, and 3-methylhydroquinone, 3-ethylhydroquinone, 3-propylhydroquinone, 3-butylhydroquinone, 3 -T-butylhydroquinone, 3-phenylhydroquinone, 3-cumylhydroquinone, 2,3,5,6-tetramethylhydroquinone, 2,3,5,6-tetra-t-butylhydroquinone, 2,3,
  • carbonate precursors represented by phosgene or diphenyl carbonate to be reacted with these divalent phenol compounds, for example, ditolyl carbonate, bis (chlorophenyl) carbonate, m-cresyl carbonate, dinaphthyl carbonate. , Bis (diphenyl) carbonate, diethyl carbonate, dimethyl carbonate, dibutyl carbonate, dicyclohexyl carbonate and the like, but are not limited thereto.
  • diphenyl carbonate is used.
  • These carbonate precursors may also be used alone or in combination of two or more.
  • dicarboxylic acid or dicarboxylic acid ester When manufacturing a polycarbonate, you may contain dicarboxylic acid or dicarboxylic acid ester as an acid component.
  • dicarboxylic acids and dicarboxylic acid esters include aromatic dicarboxylic acids such as terephthalic acid, isophthalic acid, diphenyl terephthalate, diphenyl isophthalate; succinic acid, glutaric acid, adipic acid, pimelic acid, suberic acid, azelaic acid, sebacic acid Aliphatic dicarboxylic acids such as acid, decanedioic acid, dodecanedioic acid, diphenyl sebacate, diphenyl decanedioate, diphenyl dodecanedioate; cyclopropanedicarboxylic acid, 1,2-cyclobutanedicarboxylic acid, 1,3-cyclobutanedicarboxylic acid 1,2′-cyclopen
  • dicarboxylic acids or dicarboxylic acid esters may be used alone or in combination of two or more.
  • the dicarboxylic acid or dicarboxylic acid ester is contained in the carbonate precursor in an amount of preferably 50 mol% or less, more preferably 30 mol% or less.
  • a polyfunctional compound having 3 or more functional groups in one molecule can be used.
  • compounds having a phenolic hydroxyl group or carboxyl are preferred, and compounds containing three phenolic hydroxyl groups are particularly preferred.
  • a dispersion liquid in which the composite tungsten oxide fine particles (A) are dispersed in an arbitrary solvent is prepared using a method such as a bead mill, a ball mill, a sand mill, or an ultrasonic dispersion.
  • the dispersion, the high heat resistant dispersant (B), the metal salt (C), the granular material or pellet of the polycarbonate resin molding material (D), and other additives as necessary. , Ribbon blenders, tumblers, nauter mixers, Henschel mixers, super mixers, planetary mixers, etc.
  • the high heat-resistant dispersant (B) is added to the dispersion of the composite tungsten oxide fine particles (A), the solvent is removed by a known method, and the obtained powder and polycarbonate resin particles A mixture in which the composite tungsten oxide fine particles (A) are uniformly dispersed in the polycarbonate resin molding material (D) by uniformly melting and mixing the body or pellets and the metal salt (C) and other additives as required.
  • the method of obtaining is also mentioned.
  • the powder of the composite tungsten oxide fine particles (A) not subjected to the dispersion treatment, the high heat resistant dispersant (B), and the metal salt (C) are directly added to the polycarbonate resin molding material (D).
  • a method of uniformly melting and mixing can also be used.
  • the composite tungsten oxide fine particles (A) and other additives such as the high heat resistant dispersant (B) and the metal salt (C) are added.
  • the composite tungsten oxide fine particles (A) and other additives such as the high heat resistant dispersant (B), the metal salt (C)
  • the polycarbonate resin molding material (D) is in a solid state, such as pellets, composite tungsten oxide fine particles (A) and other additives, a high heat resistant dispersant (B), a metal salt
  • Examples thereof include a method of melting and kneading with an extruder after mixing C).
  • the dispersion method is not limited to these methods as long as the composite tungsten oxide fine particles (A) and the like are uniformly dispersed in the polycarbonate resin molding material (D).
  • Heat ray shielding molded body The heat ray shielding molded body according to the present invention is obtained by diluting and melting the resin composition containing the composite tungsten oxide fine particle dispersed polycarbonate resin composition with the polycarbonate resin molding material (D) or a different kind of thermoplastic resin. A molded body that is kneaded and then molded into a predetermined shape.
  • injection molding methods such as injection molding, extrusion molding, compression molding, or rotational molding can be used.
  • injection molding and extrusion molding are preferable because they can be efficiently molded into a desired shape.
  • a method for obtaining a plate-shaped (sheet-shaped) or film-shaped heat ray shielding molded article by extrusion molding a method is adopted in which a molten acrylic resin extruded using an extruder such as a T-die is taken out while being cooled by a cooling roll. .
  • the molding temperature varies depending on the composition of the polycarbonate resin molding material to be used, but is heated to a temperature 50 to 150 ° C. higher than the melting point or glass transition temperature of the resin so that sufficient fluidity can be obtained.
  • the temperature is 200 ° C. or higher, preferably 240 ° C. to 330 ° C. If the molding temperature is 200 ° C. or higher, the viscosity specific to the polymer can be lowered, and therefore, the surface-coated composite tungsten oxide fine particles can be uniformly dispersed in the polycarbonate resin, which is preferable.
  • the molding temperature is 350 ° C. or lower, deterioration due to decomposition of the polycarbonate resin can be avoided.
  • the heat ray shielding laminate according to the present invention is a laminate in which the above-described heat ray shielding molded article is laminated on a transparent molded article.
  • This heat ray shielding laminate can be used for window materials, arcades, ceiling domes, carports, and the like used for openings of building roof materials, wall materials, automobiles, trains, airplanes and the like.
  • the heat ray shielding molded body according to the present invention is laminated on other transparent molded bodies such as inorganic glass, resin glass, and resin film by an arbitrary method, and the heat ray shielding laminated body is transparent to the integrated visible light. As a structural material.
  • a heat ray shielding molded body previously formed into a film shape is laminated and integrated with inorganic glass by a heat laminating method to obtain a heat ray shielding laminated body transparent to visible light having a heat ray shielding function and a scattering prevention function. be able to.
  • heat ray shielding that is transparent to visible light by heat lamination method, coextrusion method, press molding method, injection molding method, etc. It is also possible to obtain a laminate.
  • the heat ray-shielding laminate transparent to visible light can be used as a more useful structural material by complementing each other's drawbacks while effectively exhibiting the advantages of each molded body.
  • the composite tungsten oxide fine particle dispersion according to Example 1 has a high heat resistance dispersant having an acrylic main chain as a main chain, an epoxy group as a functional group, a thermal decomposition temperature of 255 ° C., and a molecular weight of about 20000. And a weight ratio of the high heat-resistant dispersant and the composite tungsten oxide fine particles [high heat-resistant dispersant / composite tungsten oxide fine particles] was adjusted to be 4. Then, toluene was removed using the vacuum dryer and the composite tungsten oxide fine particle dispersion powder which concerns on Example 1 was obtained.
  • the optical properties (visible light transmittance T (%), solar radiation transmittance ST (%), haze H (%)) of the heat ray shielding molded article according to Example 1 obtained were evaluated. The evaluation results are shown in Table 1. Subsequently, after holding the heat ray shielding molded article according to Example 1 in an 85 ° C. ⁇ 90% RH bath for 7 days, optical properties (visible light transmittance T (%), solar light transmittance ST (%), haze H (%)). The evaluation results are shown in Table 1.
  • Examples 2 to 7 As shown in Table 1, the same operation as in Example 1 except that 100 parts by weight of polycarbonate resin pellets, 0.15 part by weight of A powder, and 0.0015 part by weight of Mg octylate as a metal salt were uniformly mixed. The heat ray shielding molded object which concerns on Example 2 was obtained. Similarly, the same operation as in Example 1 was performed except that 100 parts by weight of polycarbonate resin pellets, 0.15 parts by weight of A powder, and 0.075 parts by weight of magnesium stearate as a metal salt were uniformly mixed. The heat ray shielding molded object which concerns on Example 3 was obtained.
  • Example 2 the same operation as in Example 1 was performed except that 100 parts by weight of polycarbonate resin pellets, 0.15 part by weight of A powder, and 0.03 part by weight of Ni octylate as a metal salt were uniformly mixed. The heat ray shielding molded object which concerns on Example 4 was obtained. Similarly, except that 100 parts by weight of polycarbonate resin pellets, 0.15 parts by weight of A powder, and 0.03 part by weight of Zn octylate as a metal salt were uniformly mixed, the same operation as in Example 1 was performed, The heat ray shielding molded object which concerns on Example 5 was obtained.
  • Example 7 the same operation as in Example 1 was performed except that 100 parts by weight of polycarbonate resin pellets, 0.15 part by weight of A powder, and 0.03 part by weight of octylate In as a metal salt were uniformly mixed. The heat ray shielding molded object which concerns on Example 6 was obtained. Similarly, except that 100 parts by weight of polycarbonate resin pellets, 0.15 parts by weight of A powder, and 0.03 parts by weight of octylic acid Sn as a metal salt were uniformly mixed, the same operation as in Example 1 was performed, The heat ray shielding molded object which concerns on Example 7 was obtained.
  • the optical properties (visible light transmittance T (%), solar radiation transmittance ST (%), haze H (%)) of the heat ray shielding molded articles according to Examples 2 to 7 obtained were evaluated. The evaluation results are shown in Table 1. Subsequently, after holding the heat ray shielding molded bodies according to Examples 2 to 7 in an 85 ° C. ⁇ 90% RH bath for 7 days, optical characteristics (visible light transmittance T (%), solar light transmittance ST (%), Haze H (%)) was evaluated. The evaluation results are shown in Table 1.
  • Example 3 Except that 100 parts by weight of polycarbonate resin pellets, 0.15 part by weight of A powder, and 0.03 part by weight of Mn octylate as a metal salt were uniformly mixed, the same operation as in Example 1 was performed, The heat ray shielding molded object which concerns on the comparative example 3 was obtained.
  • the optical properties (visible light transmittance T (%), solar radiation transmittance ST (%), haze H (%)) of the heat ray shielding molded articles according to Comparative Examples 1 to 3 obtained were evaluated. The evaluation results are shown in Table 1. Subsequently, after holding the heat ray shielding molded bodies according to Comparative Examples 1 to 3 in an 85 ° C. ⁇ 90% RH bath for 7 days, optical characteristics (visible light transmittance T (%), solar light transmittance ST (%), Haze H (%)) was evaluated. The evaluation results are shown in Table 1.
  • Example 4 the metal salt to be added is Ni octylate, in Example 5, the metal salt to be added is Zn octylate, in Example 6, the metal salt to be added is In octylate, and in Example 7 is added
  • the metal salt to be used is octylic acid Sn.
  • Examples 4 to 7 using the metal salt as can be seen from Table 1, compared with the heat ray shielding molded body according to Comparative Example 1 according to the prior art, the stability over time of the infrared shielding characteristics is excellent. You can see that it works.
  • Comparative Example 2 is a comparative example in which the metal salt to be added is Al octylate, and in Comparative Example 3, the metal salt to be added is Mn octylate.
  • Comparative Example 2 in which the metal element was changed to Al
  • Comparative Example 3 in which the metal element was changed to Mn, the deterioration of the near-infrared shielding characteristics in the accelerated test by heating and humidification of holding at 85 ° C. ⁇ 90% RH for 7 days was compared. The effect to be suppressed as compared with Example 1 was not confirmed.
  • the heat ray shielding molded body and the heat ray shielding laminate obtained by using the composite tungsten oxide fine particle dispersed polycarbonate resin composition of the present invention to which a metal salt is added have unprecedented stability over time, various buildings and vehicles Industrial applicability that can be applied to other window materials.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Toxicology (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Laminated Bodies (AREA)

Abstract

Provided is a polycarbonate resin composition in which composite-tungsten-oxide microparticles are dispersed. Said resin composition, which contains composite-tungsten-oxide microparticles represented by the general formula MxWyOz, a metal salt, and a polycarbonate resin, is characterized in that said metal salt consists of salts of one or more metals selected from among magnesium, nickel, zinc, indium, and tin.

Description

複合タングステン酸化物微粒子分散ポリカーボネート樹脂組成物およびそれを用いた熱線遮蔽成形体並びに熱線遮蔽積層体Composite tungsten oxide fine particle dispersed polycarbonate resin composition, heat ray shielding molded article and heat ray shielding laminate using the same
 本発明は、複合タングステン酸化物微粒子分散ポリカーボネート樹脂組成物、および、それを用いた熱線遮蔽成形体、並びに、熱線遮蔽積層体に関し、より詳しくは、建築物の屋根材や壁材、自動車などの窓材等に広く適用される、熱線遮蔽機能の損失が改善された複合タングステン酸化物微粒子分散ポリカーボネート樹脂組成物、および、それを用いた熱線遮蔽成形体、並びに、熱線遮蔽積層体に関する。 The present invention relates to a composite tungsten oxide fine particle-dispersed polycarbonate resin composition, a heat ray shielding molded article using the same, and a heat ray shielding laminate, and more particularly, a roofing material or wall material of a building, an automobile, etc. The present invention relates to a composite tungsten oxide fine particle-dispersed polycarbonate resin composition, which is widely applied to window materials and the like, with improved loss of heat ray shielding function, a heat ray shielding molded article using the same, and a heat ray shielding laminate.
 各種建築物の屋根材、壁材、自動車、鉄道車両、航空機、船舶などに設けられた窓、ドア等のいわゆる開口部分から入射する太陽光線には、可視光線の他に紫外線や赤外線が含まれている。この太陽光線に含まれている赤外線のうち、波長800~2500nmの近赤外線は熱線と呼ばれ、前記開口部分から室内に進入することにより温度を上昇させる原因になる。これを解消するために、近年、各種建築物や車両の窓材、アーケード、天井ドーム、カーポート等の製造、建設分野では、可視光線を十分に取り入れながら熱線を遮蔽し、明るさを維持しつつ室内の温度上昇を抑制する熱線遮蔽機能を有する成形体の需要が急増している。一方、当該熱線遮蔽機能を有する成形体の需要に呼応して、熱線遮蔽機能を有する成形体に関する提案が多数なされている。 Sunlight that enters through so-called opening parts such as windows and doors provided in roof materials, wall materials, automobiles, railway cars, aircraft, ships, etc. of various buildings includes ultraviolet rays and infrared rays in addition to visible rays. ing. Of the infrared rays contained in the sunlight, near infrared rays having a wavelength of 800 to 2500 nm are called heat rays, and cause the temperature to rise by entering the room through the opening. In order to solve this problem, in recent years, in the manufacturing and construction fields of various building and vehicle window materials, arcades, ceiling domes, carports, etc., heat rays are shielded while sufficiently absorbing visible light to maintain brightness. On the other hand, there is a rapid increase in demand for molded articles having a heat ray shielding function that suppresses temperature rise in the room. On the other hand, in response to the demand for the molded body having the heat ray shielding function, many proposals regarding the molded body having the heat ray shielding function have been made.
 例えば、透明樹脂フィルムに金属、金属酸化物を蒸着してなる熱線反射フィルムを、ガラス、アクリル板、ポリカーボネート板等の透明成形体に接着した熱線遮蔽板が提案されている(例えば、特許文献1、2、および3参照)。しかし、この熱線反射フィルムは、それ自体が非常に高価である。さらに、当該熱線反射フィルムを透明成形体に接着した熱線遮蔽板の製造には、接着工程等の煩雑な工程を要する。この為、当該熱線遮蔽板は、さらに高コストとなってしまう。その上、当該熱線遮蔽板は、透明成形体と熱線反射フィルムとの接着性が良くないので、経時変化により透明成形体とフィルムとの剥離が生じるといった欠点を有している。 For example, a heat ray shielding plate in which a heat ray reflective film formed by vapor-depositing a metal or metal oxide on a transparent resin film is bonded to a transparent molded body such as glass, an acrylic plate, or a polycarbonate plate has been proposed (for example, Patent Document 1). 2 and 3). However, this heat ray reflective film itself is very expensive. Furthermore, the manufacture of a heat ray shielding plate in which the heat ray reflective film is adhered to a transparent molded body requires complicated steps such as an adhesion step. For this reason, the said heat ray shielding board will become further expensive. In addition, the heat ray shielding plate has a drawback in that the transparent molded body and the film are peeled off due to a change with time because the adhesiveness between the transparent molded body and the heat ray reflective film is not good.
 一方、透明成形体表面に、金属または金属酸化物を直接蒸着してなる熱線遮蔽板も数多く提案されている。しかし、当該熱線遮蔽板の製造に際しては、高真空で精度の高い雰囲気制御を要する装置が必要となるため、量産性が悪く汎用性に乏しいという問題を有している。 On the other hand, many heat ray shielding plates have been proposed in which a metal or metal oxide is directly deposited on the surface of a transparent molded body. However, when manufacturing the heat ray shielding plate, an apparatus that requires high-vacuum and high-precision atmosphere control is required, which has a problem that mass productivity is poor and versatility is poor.
 この他、例えば、ポリエチレンテレフタレート樹脂、ポリカーボネート樹脂、アクリル樹脂、ポリエチレン樹脂、ポリスチレン樹脂等の熱可塑性透明樹脂に、フタロシアニン系化合物、アントラキノン系化合物に代表される有機近赤外線吸収剤を練り込んだ熱線遮蔽板およびフィルムが提案されている(例えば、特許文献4、5参照)。しかし、当該熱線遮蔽板およびフィルムへ十分な熱線遮蔽能力を付与するためには、多量の近赤外線吸収剤を配合しなければならない。ところが当該熱線遮蔽板およびフィルムへ多量の近赤外線吸収剤を配合すると、今度は、可視光線透過機能が低下してしまうという課題を有している。また、近赤外線吸収剤として有機化合物を使用しているため、直射日光に常時曝される建築物や車両の窓材等への適用では耐侯性に難があり、必ずしも好適であるとはいえなかった。 In addition, for example, heat ray shielding in which an organic near-infrared absorber typified by a phthalocyanine compound or an anthraquinone compound is incorporated into a thermoplastic transparent resin such as a polyethylene terephthalate resin, a polycarbonate resin, an acrylic resin, a polyethylene resin, or a polystyrene resin. Plates and films have been proposed (see, for example, Patent Documents 4 and 5). However, in order to give sufficient heat ray shielding capability to the heat ray shielding plate and film, a large amount of near infrared absorber must be blended. However, when a large amount of near-infrared absorbing agent is added to the heat ray shielding plate and the film, there is a problem that the visible light transmission function is deteriorated. Moreover, since an organic compound is used as a near-infrared absorber, it is difficult to apply weather resistance to buildings and vehicle window materials that are constantly exposed to direct sunlight, and is not necessarily suitable. It was.
 さらに、例えば、アクリル樹脂、ポリカーボネート樹脂等の透明樹脂に、熱線反射機能を有する酸化チタン、または、酸化チタンで被覆されたマイカ等の、無機粒子を練り込んだ熱線遮蔽板も提案されている(例えば、特許文献6、7参照)。しかし、当該熱線遮蔽板においても、熱線遮蔽機能を確保するためには、熱線反射機能を有する粒子を多量に添加する必要がある。この結果、熱線反射機能を有する粒子の添加量の増大に伴って、可視光線透過能が低下してしまうという課題を有している。だからといって熱線反射機能を有する粒子の添加量を少なくすると、可視光線透過機能は高まるものの、今度は熱線遮蔽機能が低下してしまう。結局の所、熱線遮蔽機能と可視光線透過機能とを同時に満足させることが困難であるという問題があった。また、熱線反射機能を有する粒子を多量に添加すると、成形体を構成する透明樹脂の物性、特に耐衝撃強度や靭性が低下するという強度面からの問題も有している。 Furthermore, for example, a heat ray shielding plate in which inorganic particles such as titanium oxide having a heat ray reflecting function or mica coated with titanium oxide are kneaded into a transparent resin such as an acrylic resin or a polycarbonate resin has been proposed ( For example, see Patent Documents 6 and 7). However, also in the heat ray shielding plate, in order to ensure the heat ray shielding function, it is necessary to add a large amount of particles having a heat ray reflection function. As a result, there is a problem that the visible light transmission ability decreases with an increase in the amount of particles having a heat ray reflecting function. However, if the amount of particles having a heat ray reflecting function is reduced, the visible light transmitting function is enhanced, but this time the heat ray shielding function is lowered. After all, there was a problem that it was difficult to satisfy both the heat ray shielding function and the visible light transmission function at the same time. In addition, when a large amount of particles having a heat ray reflecting function is added, there is a problem from the strength aspect that physical properties, in particular, impact strength and toughness, of the transparent resin constituting the molded body are lowered.
 このような技術的背景の下、本出願人らは、熱線遮蔽成分として6ホウ化物微粒子を各種バインダーに含有させた熱線遮蔽用塗布液、当該塗布液を各種成形体に塗布後、硬化して得られる熱線遮蔽膜、および熱可塑性樹脂中に6ホウ化物微粒子を溶融混錬し分散することで得られるマスターバッチを提案している(例えば、特許文献8、9、および10参照)。 Under such a technical background, the present applicants applied a coating solution for heat ray shielding containing hexaboride fine particles in various binders as a heat ray shielding component, and applied the coating solution to various molded bodies, followed by curing. A masterbatch obtained by melt kneading and dispersing hexaboride fine particles in a heat ray shielding film and a thermoplastic resin is proposed (see, for example, Patent Documents 8, 9, and 10).
 さらに本出願人は、日射遮蔽特性向上のため、日射遮蔽機能を有する微粒子として一般式WyOz(但し、Wはタングステン、Oは酸素、2.0<z/y<3.0)で表記されるタングステン酸化物の微粒子、および/または、一般式MxWyOz(但し、Wはタングステン、Oは酸素、0.001≦x/y≦1、2.0<z/y≦3.0)で表記される複合タングステン酸化物の微粒子を適用することにより、高い日射遮蔽特性を有し、ヘイズ値が小さく、生産コストの安価な日射遮蔽用合わせ構造体を製造できることを開示している(例えば、特許文献11参照)。 Furthermore, the present applicant expresses the fine particles having solar radiation shielding function as a fine particle having solar radiation shielding function by the general formula WyOz (W is tungsten, O is oxygen, 2.0 <z / y <3.0). Tungsten oxide fine particles and / or general formula MxWyOz (W is tungsten, O is oxygen, 0.001 ≦ x / y ≦ 1, 2.0 <z / y ≦ 3.0) By applying fine particles of composite tungsten oxide, it is disclosed that a solar radiation shielding laminated structure having high solar shielding characteristics, a low haze value, and low production costs can be manufactured (for example, Patent Document 11). reference).
 また本出願人は、熱可塑性樹脂中に複合タングステン酸化物の微粒子を溶融混錬し分散することで得られるマスターバッチを提案している(例えば、特許文献12参照)。 Further, the present applicant has proposed a master batch obtained by melt-kneading and dispersing fine particles of composite tungsten oxide in a thermoplastic resin (for example, see Patent Document 12).
特開昭61-277437号公報JP-A 61-277437 特開平10-146919号公報JP 10-146919 A 特開2001-179887号公報Japanese Patent Laid-Open No. 2001-179887 特開平6-256541号公報JP-A-6-256541 特開平6-264050号公報JP-A-6-264050 特開平2-173060号公報JP-A-2-173060 特開平5-78544号公報JP-A-5-78544 特開2000-96034号公報JP 2000-96034 A 特開2000-169765号公報JP 2000-169765 A 特開2004-59875号公報JP 2004-59875 A 国際公開第WO2005/87680A1パンプレットInternational Publication No. WO2005 / 87680A1 Pumplet 特開2008-24902号公報JP 2008-24902 A
 上述した成形体は、その特質から基本的には屋外で使用され、高い耐候性が要求される場合が多い。ところが、本発明者らの検討によると、前記複合タングステン酸化物微粒子を含む一部の光学部材(フィルム、樹脂シート等)において、屋外で長期間使用すると、太陽光を受けた際に発生する熱や空気中の水、酸素の影響で、熱線遮蔽機能が低下するという課題が見出された。
 一方、光学的特性および機械的特性の観点から、熱線遮蔽成形体や熱線遮蔽積層体用の透明基材としてポリカーボネート樹脂組成物が望まれる場合が多い。
The molded body described above is basically used outdoors because of its characteristics, and high weather resistance is often required. However, according to the study by the present inventors, in some optical members (film, resin sheet, etc.) containing the composite tungsten oxide fine particles, heat generated when receiving sunlight when used outdoors for a long period of time. The problem that the heat ray shielding function deteriorates due to the influence of water, oxygen in the air, and oxygen was found.
On the other hand, from the viewpoint of optical properties and mechanical properties, a polycarbonate resin composition is often desired as a transparent substrate for a heat ray shielding molded body or a heat ray shielding laminate.
 本発明が解決しようとする課題は、上述の課題を解決するため、屋外で長期間使用した際の熱線遮蔽機能の損失が改善された、複合タングステン酸化物微粒子分散ポリカーボネート樹脂組成物およびそれを用いた熱線遮蔽成形体並びに熱線遮蔽積層体を提供することにある。 In order to solve the above problems, the problem to be solved by the present invention is to provide a composite tungsten oxide fine particle-dispersed polycarbonate resin composition improved in loss of the heat ray shielding function when used outdoors for a long period of time. An object of the present invention is to provide a heat ray shielding molded body and a heat ray shielding laminate.
 本発明者らは、上記課題解決を目的とし鋭意検討を行った。その結果、複合タングステン酸化物微粒子分散ポリカーボネート樹脂組成物へ、特定の金属を含む金属塩を所定量添加することにより、上記課題を解決できることを知見し本発明を完成した。 The present inventors have intensively studied for the purpose of solving the above problems. As a result, the inventors have found that the above problem can be solved by adding a predetermined amount of a metal salt containing a specific metal to the composite tungsten oxide fine particle-dispersed polycarbonate resin composition, and the present invention has been completed.
 すなわち、上記課題を解決する第1の発明は、
 一般式MxWyOz(但し、Mは、H、He、アルカリ金属、アルカリ土類金属、希土類元素、Mg、Zr、Cr、Mn、Fe、Ru、Co、Rh、Ir、Ni、Pd、Pt、Cu、Ag、Au、Zn、Cd、Al、Ga、In、Tl、Si、Ge、Sn、Pb、Sb、B、F、P、S、Se、Br、Te、Ti、Nb、V、Mo、Ta、Re、Be、Hf、Os、Bi、Iの内から選択される1種以上の元素、Wはタングステン、Oは酸素、0.001≦x/y≦1、2.2≦z/y≦3.0)で表される複合タングステン酸化物の微粒子と、金属塩と、ポリカーボネート樹脂とを含む樹脂組成物であって、
 当該金属塩が、Mg、Ni、Zn、In、Snの内から選択される1種類以上の金属元素の塩であることを特徴とする複合タングステン酸化物微粒子分散ポリカーボネート樹脂組成物である。
That is, the first invention for solving the above problems is
General formula MxWyOz (where M is H, He, alkali metal, alkaline earth metal, rare earth element, Mg, Zr, Cr, Mn, Fe, Ru, Co, Rh, Ir, Ni, Pd, Pt, Cu, Ag, Au, Zn, Cd, Al, Ga, In, Tl, Si, Ge, Sn, Pb, Sb, B, F, P, S, Se, Br, Te, Ti, Nb, V, Mo, Ta, One or more elements selected from Re, Be, Hf, Os, Bi, and I, W is tungsten, O is oxygen, 0.001 ≦ x / y ≦ 1, 2.2 ≦ z / y ≦ 3 .0), a resin composition comprising fine particles of a composite tungsten oxide represented by a metal salt, a polycarbonate salt resin,
A composite tungsten oxide fine particle-dispersed polycarbonate resin composition, wherein the metal salt is a salt of one or more metal elements selected from Mg, Ni, Zn, In, and Sn.
 第2の発明は、
 前記金属塩が、カルボン酸塩、カルボニル錯塩、炭酸塩、リン酸塩、過塩素酸塩、次亜塩素酸塩、亜塩素酸塩、塩素酸塩、塩酸塩の内から選択される1種類以上の塩であることを特徴とする第1の発明に記載の複合タングステン酸化物微粒子分散ポリカーボネート樹脂組成物である。
The second invention is
The metal salt is at least one selected from carboxylates, carbonyl complexes, carbonates, phosphates, perchlorates, hypochlorites, chlorites, chlorates, and hydrochlorides. The composite tungsten oxide fine particle-dispersed polycarbonate resin composition according to the first invention, characterized by being a salt of
 第3の発明は、
 前記金属塩の添加量が、前記複合タングステン酸化物の微粒子100重量部に対して、0.1~50重量部であることを特徴とする第1または第2の発明に記載の複合タングステン酸化物微粒子分散ポリカーボネート樹脂組成物である。
The third invention is
The composite tungsten oxide according to the first or second invention, wherein the addition amount of the metal salt is 0.1 to 50 parts by weight with respect to 100 parts by weight of the fine particles of the composite tungsten oxide. It is a fine particle-dispersed polycarbonate resin composition.
 第4の発明は、
 第1~第3の発明のいずれかに記載の複合タングステン酸化物微粒子分散ポリカーボネート樹脂組成物が、ポリカーボネート樹脂またはポリカーボネート樹脂と相溶性を有する異種の熱可塑性樹脂により希釈・溶融混練され、かつ所定の形状に成形されたものであることを特徴とする熱線遮蔽成形体である。
The fourth invention is:
The composite tungsten oxide fine particle-dispersed polycarbonate resin composition according to any one of the first to third inventions is diluted, melt-kneaded with a polycarbonate resin or a different kind of thermoplastic resin compatible with the polycarbonate resin, It is a heat ray shielding molded body characterized by being molded into a shape.
 第5の発明は、
 第4の発明に記載の熱線遮蔽成形体が、他の透明成形体上に積層されていることを特徴とする熱線遮蔽積層体である。
The fifth invention is:
The heat ray shielding molded article according to the fourth invention is a heat ray shielding laminate characterized by being laminated on another transparent molded article.
 本発明に係る複合タングステン酸化物微粒子分散ポリカーボネート樹脂組成物を、ポリカーボネート樹脂またはポリカーボネート樹脂と相溶性を有する異種の熱可塑性樹脂により希釈・溶融混練し、成形体を形成させることで、ポリカーボネート樹脂の光学的特性と機械的特性を担保しながら、屋外で長期間使用した際の熱線遮蔽機能の損失が改善された、複合タングステン酸化物微粒子分散ポリカーボネート樹脂組成物、および、それを用いた熱線遮蔽成形体、並びに、熱線遮蔽積層体を得ることが出来た。 The composite tungsten oxide fine particle-dispersed polycarbonate resin composition according to the present invention is diluted and melt-kneaded with a polycarbonate resin or a different type of thermoplastic resin compatible with the polycarbonate resin to form a molded body, thereby forming an optical component of the polycarbonate resin. Composite tungsten oxide fine particle-dispersed polycarbonate resin composition improved in loss of heat ray shielding function when used outdoors for a long time while guaranteeing mechanical properties and mechanical properties, and heat ray shielding molded article using the same In addition, a heat ray shielding laminate could be obtained.
 以下、本発明に係る複合タングステン酸化物微粒子分散ポリカーボネート樹脂組成物、および、それを用いた熱線遮蔽成形体、並びに、熱線遮蔽積層体について詳細に説明する。 Hereinafter, the composite tungsten oxide fine particle-dispersed polycarbonate resin composition according to the present invention, a heat ray shielding molded body using the same, and a heat ray shielding laminate will be described in detail.
1.複合タングステン酸化物微粒子(本発明において便宜の為、「(A)」という符号を付記する場合がある。)
 本発明に用いる複合タングステン酸化物微粒子(A)は、熱線遮蔽効果を発現する成分であり、一般式MxWyOz(但し、M元素は、H、He、アルカリ金属、アルカリ土類金属、希土類元素、Mg、Zr、Cr、Mn、Fe、Ru、Co、Rh、Ir、Ni、Pd、Pt、Cu、Ag、Au、Zn、Cd、Al、Ga、In、Tl、Si、Ge、Sn、Pb、Sb、B、F、P、S、Se、Br、Te、Ti、Nb、V、Mo、Ta、Re、Be、Hf、Os、Bi、Iのうちから選択される1種類以上の元素、Wはタングステン、Oは酸素、0.001≦x/y≦1.1、2.2≦z/y≦3.0)で示される複合タングステン酸化物の微粒子である。
1. Composite tungsten oxide fine particles (For convenience, the symbol “(A)” may be added in the present invention.)
The composite tungsten oxide fine particles (A) used in the present invention are components that exhibit a heat ray shielding effect, and have a general formula MxWyOz (where M element is H, He, alkali metal, alkaline earth metal, rare earth element, Mg) , Zr, Cr, Mn, Fe, Ru, Co, Rh, Ir, Ni, Pd, Pt, Cu, Ag, Au, Zn, Cd, Al, Ga, In, Tl, Si, Ge, Sn, Pb, Sb , B, F, P, S, Se, Br, Te, Ti, Nb, V, Mo, Ta, Re, Be, Hf, Os, Bi, I, one or more elements, W is Tungsten and O are fine particles of composite tungsten oxide represented by oxygen, 0.001 ≦ x / y ≦ 1.1, 2.2 ≦ z / y ≦ 3.0).
 前記一般式MxWyOzで表記される複合タングステン酸化物の微粒子(A)は、六方晶、正方晶、立方晶の結晶構造を有する場合に耐久性に優れることから、当該六方晶、正方晶、立方晶から選ばれる1つ以上の結晶構造を含むことが好ましい。例えば、六方晶の結晶構造を持つ複合タングステン酸化物の微粒子(A)の場合であれば、好ましいM元素として、Cs、Rb、K、Tl、In、Ba、Li、Ca、Sr、Fe、Snの各元素から選択される1種類以上の元素を含む複合タングステン酸化物の微粒子が挙げられる。 Since the composite tungsten oxide fine particles (A) represented by the general formula MxWyOz have a hexagonal, tetragonal, and cubic crystal structure, they are excellent in durability. It preferably includes one or more crystal structures selected from: For example, in the case of composite tungsten oxide fine particles (A) having a hexagonal crystal structure, preferable M elements include Cs, Rb, K, Tl, In, Ba, Li, Ca, Sr, Fe, and Sn. Examples thereof include fine particles of composite tungsten oxide containing one or more elements selected from these elements.
 このとき、添加されるM元素の添加量xは、x/yにおいて0.001以上1.1以下が好ましく、更に好ましくは0.33付近が好ましい。これは六方晶の結晶構造から理論的に算出されるx/yの値が0.33であり、この前後の添加量で好ましい光学特性が得られるからである。一方、酸素の存在量Zは、z/yで2.2以上3.0以下が好ましい。典型的な例としてはCs0.33WO3、Rb0.33WO3、K0.33WO3、Ba0.33WO3などを挙げることができるが、x,y,zが上記の範囲に収まるものであれば、有用な近赤外線吸収特性を得ることができる。 At this time, the addition amount x of M element to be added is preferably 0.001 or more and 1.1 or less in x / y, and more preferably around 0.33. This is because the value of x / y calculated theoretically from the hexagonal crystal structure is 0.33, and preferable optical characteristics can be obtained with the addition amount before and after this. On the other hand, the abundance Z of oxygen is preferably 2.2 or more and 3.0 or less in z / y. Typical examples include Cs 0.33 WO 3 , Rb 0.33 WO 3 , K 0.33 WO 3 , Ba 0.33 WO 3, etc., but useful if x, y and z are within the above ranges. Near infrared absorption characteristics can be obtained.
 粒子による光の散乱を、低減することを重視するのであれば、複合タングステン酸化物微粒子の分散粒子径は200nm以下、好ましくは100nm以下がよい。その理由は、分散粒子の分散粒子径が小さければ、幾何学散乱もしくはミー散乱による、波長400nm~780nmの可視光線領域における光の散乱が低減されるからである。当該光の散乱が低減される結果、熱線遮蔽膜が曇りガラスのようになって鮮明な透明性が得られなくなるのを回避できる。即ち、分散粒子の分散粒子径が200nm以下になると、上記幾何学散乱もしくはミー散乱が低減し、レイリー散乱領域になるからである。当該レイリー散乱領域では、散乱光は粒子径の6乗に反比例して低減するため、分散粒子径の減少に伴い散乱が低減し、透明性が向上するからである。さらに、分散粒子径が100nm以下になると、散乱光は非常に少なくなり好ましい。光の散乱を回避する観点からは、分散粒子径が小さい方が好ましく、分散粒子径が1nm以上であれば工業的な製造は容易である。 If it is important to reduce the light scattering by the particles, the dispersed particle diameter of the composite tungsten oxide fine particles is 200 nm or less, preferably 100 nm or less. The reason is that if the dispersed particle diameter of the dispersed particles is small, light scattering in the visible light region having a wavelength of 400 nm to 780 nm due to geometric scattering or Mie scattering is reduced. As a result of the light scattering being reduced, it can be avoided that the heat ray shielding film becomes like frosted glass and clear transparency cannot be obtained. That is, when the dispersed particle diameter of the dispersed particles is 200 nm or less, the geometric scattering or Mie scattering is reduced and a Rayleigh scattering region is obtained. This is because in the Rayleigh scattering region, the scattered light is reduced in inverse proportion to the sixth power of the particle diameter, so that the scattering is reduced and the transparency is improved as the dispersed particle diameter is reduced. Furthermore, when the dispersed particle size is 100 nm or less, the scattered light is preferably extremely small. From the viewpoint of avoiding light scattering, it is preferable that the dispersed particle size is small. If the dispersed particle size is 1 nm or more, industrial production is easy.
2.本発明に係る複合タングステン酸化物微粒子(A)の製造方法
 本発明に係る複合タングステン酸化物微粒子(A)は、タングステン化合物出発原料を、不活性ガス雰囲気または還元性ガス雰囲気中で熱処理して得ることができる。
2. Production method of composite tungsten oxide fine particles (A) according to the present invention The composite tungsten oxide fine particles (A) according to the present invention are obtained by heat-treating a tungsten compound starting material in an inert gas atmosphere or a reducing gas atmosphere. be able to.
 タングステン化合物出発原料には、三酸化タングステン粉末、二酸化タングステン粉末、または酸化タングステンの水和物、または、六塩化タングステン粉末、またはタングステン酸アンモニウム粉末、または、六塩化タングステンをアルコール中に溶解させた後乾燥して得られるタングステン酸化物の水和物粉末、または、六塩化タングステンをアルコール中に溶解させたのち水を添加して沈殿させこれを乾燥して得られるタングステン酸化物の水和物粉末、またはタングステン酸アンモニウム水溶液を乾燥して得られるタングステン化合物粉末、金属タングステン粉末、から選択されたいずれか1種類以上であることが好ましい。 Tungsten compound starting materials include tungsten trioxide powder, tungsten dioxide powder, or tungsten oxide hydrate, tungsten hexachloride powder, ammonium tungstate powder, or tungsten hexachloride dissolved in alcohol Tungsten oxide hydrate powder obtained by drying, or tungsten oxide hydrate powder obtained by dissolving tungsten hexachloride in alcohol and then adding water to precipitate and drying it. Or it is preferable that it is any 1 or more types selected from the tungsten compound powder obtained by drying ammonium tungstate aqueous solution and metal tungsten powder.
 さらに、当該タングステン化合物出発原料へ、元素M(H、He、アルカリ金属、アルカリ土類金属、希土類元素、Mg、Zr、Cr、Mn、Fe、Ru、Co、Rh、Ir、Ni、Pd、Pt、Cu、Ag、Au、Zn、Cd、Al、Ga、In、Tl、Si、Ge、Sn、Pb、Sb、B、F、P、S、Se、Br、Te、Ti、Nb、V、Mo、Ta、Re、Be、Hf、Os、Bi、Iのうちから選択される1種類以上の元素)を元素単体または化合物の形態で添加して、複合タングステン化合物の出発原料とする。 Furthermore, the element M (H, He, alkali metal, alkaline earth metal, rare earth element, Mg, Zr, Cr, Mn, Fe, Ru, Co, Rh, Ir, Ni, Pd, Pt is added to the tungsten compound starting material. Cu, Ag, Au, Zn, Cd, Al, Ga, In, Tl, Si, Ge, Sn, Pb, Sb, B, F, P, S, Se, Br, Te, Ti, Nb, V, Mo , Ta, Re, Be, Hf, Os, Bi, and I) are added in the form of a single element or a compound, and used as a starting material for the composite tungsten compound.
 ここで、各成分が分子レベルで均一混合した出発原料を製造する為には、各原料を溶液の形で混合することが好ましい。従って、元素Mを含むタングステン化合物出発原料が、水や有機溶媒等の溶媒に溶解可能なものであることが好ましい。例えば、元素Mを含有するタングステン酸塩、塩化物塩、硝酸塩、硫酸塩、シュウ酸塩、酸化物、炭酸塩、水酸化物等が挙げられる。尤も、これらに限定されず、溶液状になるものであればよい。 Here, in order to produce a starting material in which each component is uniformly mixed at the molecular level, it is preferable to mix each material in the form of a solution. Therefore, it is preferable that the tungsten compound starting material containing the element M is soluble in a solvent such as water or an organic solvent. Examples thereof include tungstate, chloride, nitrate, sulfate, oxalate, oxide, carbonate, hydroxide and the like containing the element M. However, it is not limited thereto, and any solution may be used.
 不活性ガス雰囲気中における熱処理条件としては、温度650℃以上が好ましい。650℃以上で熱処理された出発原料は、十分な近赤外線吸収力を有し熱線遮蔽微粒子として効率が良い。不活性ガスとしては、Ar、N2等の不活性ガスを用いることができる。 As heat treatment conditions in an inert gas atmosphere, a temperature of 650 ° C. or higher is preferable. The starting material heat-treated at 650 ° C. or higher has a sufficient near-infrared absorbing power and is efficient as heat ray shielding fine particles. As the inert gas, an inert gas such as Ar or N 2 can be used.
 一方、還元性ガス雰囲気中の熱処理条件としては、まず出発原料を還元性ガス雰囲気中にて温度100℃以上650℃以下で熱処理し、次いで不活性ガス雰囲気中で温度650℃以上1200℃以下で熱処理することが好ましい。このときの還元性ガスは特に限定されないが、H2が好ましい。そして、還元性ガスとしてH2を用いる場合、還元性ガス雰囲気の組成は、例えば、Ar、N2等の不活性ガスにH2を体積比で0.1%以上混合したものが好ましく、0.2%以上とすることがさらに好ましい。H2が体積比で0.1%以上である還元性ガス雰囲気は、効率よく還元を進めることができる。 On the other hand, as heat treatment conditions in a reducing gas atmosphere, first, the starting material is heat-treated at a temperature of 100 ° C. or more and 650 ° C. or less in a reducing gas atmosphere, and then at a temperature of 650 ° C. or more and 1200 ° C. or less in an inert gas atmosphere. It is preferable to heat-treat. The reducing gas at this time is not particularly limited, but H 2 is preferable. When H 2 is used as the reducing gas, the composition of the reducing gas atmosphere, e.g., Ar, is preferably a mixture of 0.1% or more by volume of H 2 in an inert gas such as N 2, 0 More preferably, the content is 2% or more. In a reducing gas atmosphere in which H 2 is 0.1% or more by volume, the reduction can proceed efficiently.
 H2を含む還元性ガス雰囲気中で熱処理されて還元された原料粉末は、マグネリ相を含み良好な熱線遮蔽特性を示し、この状態であっても熱線遮蔽微粒子として使用可能である。しかし、当該還元された原料粉末の酸化タングステン中に含まれる水素を安定化することで、当該還元された原料粉末の耐候性を向上させることが出来る。そこで、上述の如く、当該還元された原料粉末を、不活性雰囲気中、温度650℃以上1200℃以下で熱処理することで、安定な熱線遮蔽微粒子である複合タングステン酸化物微粒子(A)を得ることができる。当該熱処理時の不活性雰囲気は特に限定されないが、工業的観点からN2、Arが好ましい。 The raw material powder reduced by heat treatment in a reducing gas atmosphere containing H 2 contains a magnetic phase and exhibits good heat ray shielding properties. Even in this state, it can be used as heat ray shielding fine particles. However, the weather resistance of the reduced raw material powder can be improved by stabilizing hydrogen contained in the tungsten oxide of the reduced raw material powder. Therefore, as described above, the reduced raw material powder is heat-treated in an inert atmosphere at a temperature of 650 ° C. or higher and 1200 ° C. or lower to obtain composite tungsten oxide fine particles (A) that are stable heat ray shielding fine particles. Can do. The inert atmosphere during the heat treatment is not particularly limited, but N 2 and Ar are preferable from an industrial viewpoint.
 得られた複合タングステン酸化物微粒子(A)を、シラン化合物、チタン化合物、ジルコニア化合物、アルミニウム化合物から選択される少なくとも1種類以上によって表面処理し、微粒子の表面をSi、Ti、Zr、Alの1種類以上を含有する酸化物で被覆すると、耐候性がさらに向上することから好ましい構成である。 The obtained composite tungsten oxide fine particles (A) are surface-treated with at least one selected from a silane compound, a titanium compound, a zirconia compound, and an aluminum compound, and the surface of the fine particles is 1 of Si, Ti, Zr, Al. Covering with an oxide containing more than one type is preferable because the weather resistance is further improved.
 また、製造される熱線遮蔽成形体が、所望の光学的特性を発揮する為には、複合タングステン酸化物微粒子(A)の粉体色が、国際照明委員会(CIE)が推奨しているL*a*b*表色系(JIS  Z  8729)における粉体色において、L*が25~80、a*が-10~10、b*が-15~15である条件を満たすことが望ましい。 In addition, in order for the manufactured heat ray shielding molded article to exhibit desired optical properties, the powder color of the composite tungsten oxide fine particles (A) is recommended by the International Commission on Illumination (CIE). In the powder color in the * a * b * color system (JIS Z 8729), it is desirable to satisfy the condition that L * is 25 to 80, a * is -10 to 10, and b * is -15 to 15.
3.高耐熱性分散剤(本発明において便宜の為、「(B)」という符号を付記する場合がある。)
 従来、塗料用として一般的に使用されている分散剤は、様々な酸化物微粒子を有機溶剤中に均一に分散する目的で使用されている。しかし本発明者らの検討によれば、これらの分散剤は200℃以上の高温で使用されることを想定されて設計されていない。具体的には、本実施形態において、熱線遮蔽微粒子と熱可塑性樹脂とを溶融混練する際に従来の分散剤を使用すると、当該分散剤中の官能基が熱により分解され、分散能が低下すると伴に黄~茶色に変色する等の不具合を起こしていたのである。
3. High heat-resistant dispersant (For convenience, the symbol “(B)” may be added in the present invention.)
Conventionally, a dispersant generally used for coating is used for the purpose of uniformly dispersing various oxide fine particles in an organic solvent. However, according to the study by the present inventors, these dispersants are not designed on the assumption that they are used at a high temperature of 200 ° C. or higher. Specifically, in the present embodiment, when a conventional dispersant is used when melt-kneading the heat ray shielding fine particles and the thermoplastic resin, the functional group in the dispersant is decomposed by heat, and the dispersibility decreases. At the same time, problems such as yellow to brown discoloration occurred.
 これに対し、本発明においては、高耐熱性分散剤(B)として、TG-DTAで測定される熱分解温度が230℃以上、好ましくは250℃以上あるものを用いる。当該高耐熱性分散剤(B)の具体的な構造例としては、主鎖としてアクリル主鎖、官能基として水酸基またはエポキシ基とを有する分散剤がある。当該構造を有する分散剤は、耐熱性が高く好ましい。
 分散剤の熱分解温度が230℃以上であれば、成形時に当該分散剤が熱分解することなく分散能を維持すると伴に、当該分散剤自体が、黄~茶色に変色することもない。この結果、製造される熱線遮蔽成形体において、熱線遮蔽微粒子が十分に分散される結果、可視光透過率が良好に確保されて、良好な光学特性を得ることができると伴に、当該熱線遮蔽成形体が黄色に着色することもない。
On the other hand, in the present invention, a high heat-resistant dispersant (B) having a thermal decomposition temperature measured by TG-DTA of 230 ° C. or higher, preferably 250 ° C. or higher is used. As a specific structural example of the high heat resistant dispersant (B), there is a dispersant having an acrylic main chain as a main chain and a hydroxyl group or an epoxy group as a functional group. A dispersant having this structure is preferable because of its high heat resistance.
When the thermal decomposition temperature of the dispersant is 230 ° C. or higher, the dispersant does not thermally decompose during molding and maintains the dispersibility, and the dispersant itself does not change from yellow to brown. As a result, in the manufactured heat ray shielding molded article, the heat ray shielding fine particles are sufficiently dispersed, so that the visible light transmittance is ensured and good optical characteristics can be obtained, and the heat ray shielding is performed. The molded body is not colored yellow.
 具体的には、ポリカーボネートの一般的な混練設定温度(290℃)を用い、上述した熱分解温度230℃以上の分散剤とポリカーボネート樹脂とを混練する試験を行った場合、混練物はポリカーボネートのみを混練した場合とまったく同じ外観を呈し、無色透明で全く着色しないことが確認された。 Specifically, when a test for kneading the above-described dispersant having a thermal decomposition temperature of 230 ° C. or higher and a polycarbonate resin is performed using a general kneading setting temperature (290 ° C.) of polycarbonate, the kneaded product is made of only polycarbonate. It was confirmed that it had exactly the same appearance as when kneaded, was colorless and transparent and was not colored at all.
 上述したように、本発明に用いられる高耐熱性分散剤(B)はアクリル主鎖を有するが、さらに、水酸基またはエポキシ基を官能基として有する分散剤が好ましい。これらの官能基は、タングステン酸化物微粒子の表面に吸着して、これらのタングステン酸化物微粒子の凝集を防ぎ、熱線遮蔽成形体中で当該タングステン酸化物微粒子を均一に分散させる効果を持つからである。
 具体的には、エポキシ基を官能基として有しアクリル主鎖を有する分散剤、水酸基を官能基として有しアクリル主鎖を有する分散剤が、好ましい例として挙げられる。
 ポリカーボネート樹脂は溶融混練温度が高いので、熱分解温度が250℃以上であるアクリル主鎖と水酸基またはエポキシ基とを有する高耐熱性分散剤(B)を使用することの効果が顕著に発揮される。
As described above, although the high heat resistant dispersant (B) used in the present invention has an acrylic main chain, a dispersant having a hydroxyl group or an epoxy group as a functional group is preferable. This is because these functional groups are adsorbed on the surface of the tungsten oxide fine particles to prevent the aggregation of the tungsten oxide fine particles and have an effect of uniformly dispersing the tungsten oxide fine particles in the heat ray shielding molded body. .
Specifically, preferred examples include a dispersant having an epoxy group as a functional group and an acrylic main chain, and a dispersant having a hydroxyl group as a functional group and an acrylic main chain.
Since the polycarbonate resin has a high melt-kneading temperature, the effect of using the high heat-resistant dispersant (B) having an acrylic main chain and a hydroxyl group or an epoxy group having a thermal decomposition temperature of 250 ° C. or higher is remarkably exhibited. .
 高耐熱性分散剤(B)と、複合タングステン酸化物微粒子(A)との重量比は、10≧[高耐熱性分散剤の重量/(複合タングステン酸化物微粒子の重量)]≧0.5の範囲であることが好ましい。当該重量比が0.5以上あれば、複合タングステン酸化物微粒子(A)を十分に分散することが出来るので、微粒子同士の凝集が発生せず、熱線遮蔽成形体において十分な光学特性が得られるからである。また、当該重量比が10以下あれば、熱線遮蔽成形体自体の機械特性(曲げ強度、表面硬度)が損なわれることがない。 The weight ratio between the high heat resistant dispersant (B) and the composite tungsten oxide fine particles (A) is 10 ≧ [weight of the high heat resistant dispersant / (weight of the composite tungsten oxide fine particles)] ≧ 0.5. A range is preferable. If the weight ratio is 0.5 or more, the composite tungsten oxide fine particles (A) can be sufficiently dispersed, so that the fine particles do not aggregate and sufficient optical characteristics can be obtained in the heat ray shielding molded article. Because. Moreover, if the said weight ratio is 10 or less, the mechanical characteristics (bending strength, surface hardness) of heat ray shielding molded object itself will not be impaired.
4.金属塩(本発明において便宜の為、「(C)」という符号を付記する場合がある。)
 上述した複合タングステン酸化物の微粒子(A)とポリカーボネート樹脂と高耐熱性分散剤(B)とへ、金属塩(C)を添加して混練することで、赤外線遮蔽特性の経時的な低下が低減された、本発明に係る複合タングステン酸化物微粒子分散ポリカーボネート樹脂組成物を得ることが出来る。
 本発見に係る複合タングステン酸化物微粒子分散ポリカーボネート樹脂組成物に含まれる金属塩(C)が、複合タングステン酸化物微粒子分散ポリカーボネート樹脂組成物に作用してその赤外線遮蔽特性の経時的な低下を低減させる理由として、本発明者等は、以下のように推察している。
4). Metal salt (For convenience in the present invention, the symbol “(C)” may be added.)
By adding the metal salt (C) to the composite tungsten oxide fine particles (A), polycarbonate resin, and high heat-resistant dispersant (B) and kneading them, the reduction in infrared shielding properties over time is reduced. Thus, the composite tungsten oxide fine particle-dispersed polycarbonate resin composition according to the present invention can be obtained.
The metal salt (C) contained in the composite tungsten oxide fine particle-dispersed polycarbonate resin composition according to the present discovery acts on the composite tungsten oxide fine particle-dispersed polycarbonate resin composition to reduce the deterioration of the infrared shielding property over time. As a reason, the present inventors infer as follows.
 すなわち、複合タングステン酸化物微粒子分散ポリカーボネート樹脂組成物において金属塩は、複合タングステン酸化物微粒子(A)により構成される赤外線遮蔽材料微粒子の近傍または/および表面に存在し、この金属塩の作用により、空気中等から浸入してきた水分を十分に捕捉し、また、紫外線等によって発生したラジカルも十分に捕捉して、有害ラジカルが連鎖的に発生するのを抑制する結果、上記赤外線遮蔽特性の経時的な低下を低減させていると推察される。但し、金属塩の作用については未解明な点も多く、上記以外の作用が働いている可能性もあるため、上記作用に限定されるわけではない。 That is, in the composite tungsten oxide fine particle-dispersed polycarbonate resin composition, the metal salt is present in the vicinity or / and on the surface of the infrared shielding material fine particles composed of the composite tungsten oxide fine particles (A). Sufficiently captures moisture that has entered from the air, etc., and also sufficiently captures radicals generated by ultraviolet rays and the like, and suppresses the generation of harmful radicals in a chain. It is inferred that the decrease is reduced. However, there are many unclear points about the action of the metal salt, and there is a possibility that actions other than those described above are working, so the action is not limited to the above actions.
 本発明に適用される金属塩(C)は、Mg、Ni、Zn、In、Snの内から選択される金属と、無機酸または有機酸とからなる塩であって、これらを1種以上用いることが好ましい。
 具体的には、上記金属の塩であって、カルボン酸塩、カルボニル錯塩、炭酸塩、リン酸塩、過塩素酸塩、次亜塩素酸塩、亜塩素酸塩、塩素酸塩、塩酸塩の内から選択されることが好ましい。
 そして、上記カルボン酸塩を構成するカルボン酸としては、例えば、ギ酸、酢酸、プロピオン酸、酪酸、吉草酸、カプロン酸、オクチル酸、ナフテン酸、エナント酸、カプリル酸、ペラルゴン酸、カプリン酸、ラウリン酸、ミリスチン酸、ペンタデカン酸、パルミチン酸、マルガリン酸、ステアリン酸、オレイン酸、リノール酸、リノレン酸、アラキドン酸、ドコサヘキサエン酸、エイコサペンタ酸、シュウ酸、マロン酸、コハク酸、安息香酸、フタル酸、イソフタル酸、テレフタル酸、サリチル酸、没食子酸、メリト酸、ケイ皮酸、ピルビン酸、乳酸、リンゴ酸、クエン酸、マレイン酸、アコニット酸、グルタル酸、アジピン酸、アミノ酸等が挙げられる。また、上記カルボニル錯塩を構成するβ-ジケトンとしては、アセチルアセトン、ベンゾイルアセトン、ベンゾイルトリフルオロアセトン、ヘキサフルオロアセチルアセトン、2-テノイルトリフルオロアセトン等が例示される。
The metal salt (C) applied to the present invention is a salt composed of a metal selected from Mg, Ni, Zn, In, and Sn and an inorganic acid or an organic acid, and one or more of these are used. It is preferable.
Specifically, it is a salt of the above metal, which is a carboxylate, carbonyl complex, carbonate, phosphate, perchlorate, hypochlorite, chlorite, chlorate or hydrochloride. It is preferable to select from the above.
Examples of the carboxylic acid constituting the carboxylate include formic acid, acetic acid, propionic acid, butyric acid, valeric acid, caproic acid, octylic acid, naphthenic acid, enanthic acid, caprylic acid, pelargonic acid, capric acid, lauric acid. Acid, myristic acid, pentadecanoic acid, palmitic acid, margaric acid, stearic acid, oleic acid, linoleic acid, linolenic acid, arachidonic acid, docosahexaenoic acid, eicosapentaenoic acid, oxalic acid, malonic acid, succinic acid, benzoic acid, phthalic acid, Examples include isophthalic acid, terephthalic acid, salicylic acid, gallic acid, mellitic acid, cinnamic acid, pyruvic acid, lactic acid, malic acid, citric acid, maleic acid, aconitic acid, glutaric acid, adipic acid, and amino acids. Examples of the β-diketone constituting the carbonyl complex salt include acetylacetone, benzoylacetone, benzoyltrifluoroacetone, hexafluoroacetylacetone, 2-thenoyltrifluoroacetone and the like.
 また、複合タングステン酸化物微粒子分散ポリカーボネート樹脂組成物における金属塩(C)の含有量は、複合タングステン酸化物微粒子(A)により構成される赤外線遮蔽材料微粒子100重量部に対して0.1重量部以上50重量部以下であることが好ましい。
 上記含有量が0.1重量部以上あれば、空気中等から浸入してきた水分を十分に捕捉することが出来、また、紫外線等によって発生したラジカルも十分に捕捉することが出来るので、有害ラジカルが連鎖的に発生するのを抑制出来、赤外線遮蔽特性の経時的な低下を低減させる効果を十分に得ることが出来る。他方、上記含有量が50重量部以下であれば、複合タングステン酸化物微粒子分散ポリカーボネート樹脂組成物を用いて得られる熱線遮蔽成形体中における複合タングステン酸化物微粒子(A)の分散性を担保することが出来、ヘイズの悪化が起こらない。
 従って、複合タングステン酸化物微粒子分散ポリカーボネート樹脂組成物における上記金属塩(C)の含有量は、上記複合タングステン酸化物微粒子(A)100重量部に対して0.1重量部以上50重量部以下であることが好ましい。
The content of the metal salt (C) in the composite tungsten oxide fine particle-dispersed polycarbonate resin composition is 0.1 parts by weight with respect to 100 parts by weight of the infrared shielding material fine particles composed of the composite tungsten oxide fine particles (A). The amount is preferably 50 parts by weight or less.
If the content is 0.1 parts by weight or more, moisture that has entered from the air or the like can be sufficiently captured, and radicals generated by ultraviolet rays or the like can also be sufficiently captured. Generation | occurrence | production in a chain | linkage can be suppressed and the effect of reducing the time-dependent fall of an infrared shielding characteristic can fully be acquired. On the other hand, if the content is 50 parts by weight or less, the dispersibility of the composite tungsten oxide fine particles (A) in the heat ray shielding molded body obtained using the composite tungsten oxide fine particle-dispersed polycarbonate resin composition is ensured. And haze deterioration does not occur.
Accordingly, the content of the metal salt (C) in the composite tungsten oxide fine particle-dispersed polycarbonate resin composition is 0.1 to 50 parts by weight with respect to 100 parts by weight of the composite tungsten oxide fine particles (A). Preferably there is.
5.ポリカーボネート樹脂成形材料(D)(本発明において便宜の為、「(D)」という符号を付記する場合がある。)
 本発明に用いるポリカーボネート樹脂成形材料(D)としては、この分野で使用されているポリカーボネート樹脂であれば特に制限されない。
 本発明において特に好ましいポリカーボネート樹脂は、ポリカーボネートである。ポリカーボネートとしては、2,2-ビス(4-ヒドロキシフェニル)プロパン、2,2-ビス(3,5-ジブロモ-4-ヒドロキシフェニル)プロパンに代表される二価のフェノール系化合物の一種以上と、ホスゲンまたはジフェニルカーボネート等で代表されるカーボネート前駆体を用いて合成される。合成方法は、界面重合、溶融重合または固相重合等の公知の方法によることができる。
5. Polycarbonate resin molding material (D) (For convenience in the present invention, the symbol “(D)” may be added.)
The polycarbonate resin molding material (D) used in the present invention is not particularly limited as long as it is a polycarbonate resin used in this field.
A particularly preferred polycarbonate resin in the present invention is polycarbonate. As the polycarbonate, one or more divalent phenolic compounds represented by 2,2-bis (4-hydroxyphenyl) propane and 2,2-bis (3,5-dibromo-4-hydroxyphenyl) propane, It is synthesized using a carbonate precursor typified by phosgene or diphenyl carbonate. The synthesis method can be a known method such as interfacial polymerization, melt polymerization, or solid phase polymerization.
 ここで、二価のフェノール系化合物としては、例えば、ビス(4-ヒドロキシフェニル)メタン、1,1-ビス(4-ヒドロキシフェニル)エタン、2,2-ビス(4-ヒドロキシフェニル)プロパン、2,2ビス(4-ヒドロキシフェニル)ブタン、2,2-ビス(4-ヒドロキシフェニル)オクタン、ビス(4-ヒドロキシフェニル)フェニルメタン、2,2-ビス(4-ヒドロキシ-3-メチルフェニル)プロパン、2,2ビス(4-ヒドロキシ-3,5-ジメチルフェニル)プロパン、1,1-ビス(4-ヒドロキシ-t-ブチルフェニル)プロパン、2,2-ビス(4-ヒドロキシ-3-ブロモフェニル)プロパン、2,2-ビス(4-ヒドロキシ-3,5-ジブロモフェニル)プロパンなどのビス(ヒドロキシアリール)アルカン類;1,1-ビス(4-ヒドロキシフェニル)シクロペンタン、1,1-(4-ヒドロキシフェニル)シクロヘキサン等のビス(ヒドロキシアリール)シクロアルカン類;4,4'-ジヒドロキシジフェニルエーテル、ビス(4-ヒドロキシ-3-メチルフェニル)エーテルなどのジヒドロキシアリールエーテル類;4,4'-ジヒドロキシジフェニルスルフィド、ビス(4-ヒドロキシ-3-メチルフェニル)スルフィドなどのジヒドロキシジアリールスルフィド類;4,4'-ジヒドロキシジフェニルスルホキシド、ビス(4-ヒドロキシ-3-メチルフェニル)スルホキシドなどのジヒドロキシジアリールスルホキシド類;4,4'-ジヒドロキシジフェニルスルホン、ビス(4-ヒドロキシ-3-メチルフェニル)スルホンなどのジヒドロキシジアリールスルホン類;4,4-ビフェノール等を挙げることができる。この他に、例えばレゾルシン、および3-メチルレゾルシン、3-エチルレゾルシン、3-プロピルレゾルシン、3-ブチルレゾルシン、3-t-ブチルレゾルシン、3-フェニルレゾルシン、3-クミルレゾルシン、2,3,4,6-テトラフルオロレゾルシン、2,3,4,6-テトラブロムレゾルシン等の置換レゾルシン;カテコール;ハイドロキノン、および3-メチルハイドロキノン、3-エチルハイドロキノン、3-プロピルハイドロキノン、3-ブチルハイドロキノン、3-t-ブチルハイドロキノン、3-フェニルハイドロキノン、3-クミルハイドロキノン、2,3,5,6-テトラメチルハイドロキノン、2,3,5,6-テトラ-t-ブチルハイドロキノン、2,3,5,6-テトラフルオロハイドロキノン、2,3,5,6-テトラブロムハイドロキノンなどの置換ハイドロキノン等、および2,2,2',2'-テトラヒドロ-3,3,3',3'-テトラメチル-1,1'-スピロビス(1H-インデン)-7,7'ジオール等を用いることもできる。これらの二価のフェノール系化合物は、単独で用いてもよく、また、二種以上を組み合わせて用いても良い。 Here, examples of the divalent phenol compound include bis (4-hydroxyphenyl) methane, 1,1-bis (4-hydroxyphenyl) ethane, 2,2-bis (4-hydroxyphenyl) propane, , 2bis (4-hydroxyphenyl) butane, 2,2-bis (4-hydroxyphenyl) octane, bis (4-hydroxyphenyl) phenylmethane, 2,2-bis (4-hydroxy-3-methylphenyl) propane 2,2-bis (4-hydroxy-3,5-dimethylphenyl) propane, 1,1-bis (4-hydroxy-t-butylphenyl) propane, 2,2-bis (4-hydroxy-3-bromophenyl) ) Bis (hydroxyaryl) al such as propane, 2,2-bis (4-hydroxy-3,5-dibromophenyl) propane Bis (hydroxyaryl) cycloalkanes such as 1,1-bis (4-hydroxyphenyl) cyclopentane and 1,1- (4-hydroxyphenyl) cyclohexane; 4,4′-dihydroxydiphenyl ether, bis (4 Dihydroxyaryl ethers such as -hydroxy-3-methylphenyl) ether; dihydroxydiaryl sulfides such as 4,4'-dihydroxydiphenyl sulfide and bis (4-hydroxy-3-methylphenyl) sulfide; 4,4'-dihydroxy Dihydroxy diaryl sulfoxides such as diphenyl sulfoxide and bis (4-hydroxy-3-methylphenyl) sulfoxide; dihydr such as 4,4′-dihydroxydiphenyl sulfone and bis (4-hydroxy-3-methylphenyl) sulfone Loki Siji aryl sulfones; 4,4-biphenol and the like. In addition, for example, resorcin, and 3-methyl resorcin, 3-ethyl resorcin, 3-propyl resorcin, 3-butyl resorcin, 3-t-butyl resorcin, 3-phenyl resorcin, 3-cumyl resorcin, 2, 3, Substituted resorcins such as 4,6-tetrafluororesorcin, 2,3,4,6-tetrabromoresorcin; catechol; hydroquinone, and 3-methylhydroquinone, 3-ethylhydroquinone, 3-propylhydroquinone, 3-butylhydroquinone, 3 -T-butylhydroquinone, 3-phenylhydroquinone, 3-cumylhydroquinone, 2,3,5,6-tetramethylhydroquinone, 2,3,5,6-tetra-t-butylhydroquinone, 2,3,5 6-tetrafluorohydroquinone, 2, 3 Substituted hydroquinones such as 5,6-tetrabromohydroquinone and the like, and 2,2,2 ′, 2′-tetrahydro-3,3,3 ′, 3′-tetramethyl-1,1′-spirobis (1H-indene) -7,7'diol etc. can also be used. These divalent phenolic compounds may be used alone or in combination of two or more.
 これらの二価のフェノール系化合物と反応させるホスゲンまたはジフェニルカーボネート等で代表されるカーボネート前駆体も特に制限はなく、例えば、ジトリールカーボネート、ビス(クロロフェニル)カーボネート、m-クレジルカーボネート、ジナフチルカーボネート、ビス(ジフェニル)カーボネート、ジエチルカーボネート、ジメチルカーボネート、ジブチルカーボネート、ジシクロヘキシルカーボネートなどが挙げられるが、これらに限定されるものではない。好ましくは、ジフェニルカーボネートを使用する。これらカーボネート前駆体もまた、単独で用いてもよく、また、二種以上を組み合わせて用いても良い。 There are also no particular restrictions on the carbonate precursors represented by phosgene or diphenyl carbonate to be reacted with these divalent phenol compounds, for example, ditolyl carbonate, bis (chlorophenyl) carbonate, m-cresyl carbonate, dinaphthyl carbonate. , Bis (diphenyl) carbonate, diethyl carbonate, dimethyl carbonate, dibutyl carbonate, dicyclohexyl carbonate and the like, but are not limited thereto. Preferably, diphenyl carbonate is used. These carbonate precursors may also be used alone or in combination of two or more.
 ポリカーボネートを製造する際に、酸成分として、ジカルボン酸またはジカルボン酸エステルを含有していても良い。ジカルボン酸およびジカルボン酸エステルの例としては、テレフタル酸、イソフタル酸、テレフタル酸ジフェニル、イソフタル酸ジフェニルなどの芳香族ジカルボン酸類;コハク酸、グルタル酸、アジピン酸、ピメリン酸、スベリン酸、アゼッライン酸、セバシン酸、デカン二酸、ドデカン二酸、セバシン酸ジフェニル、デカン二酸ジフェニル、ドデカン二酸ジフェニルなどの脂肪族ジカルボン酸類;シクロプロパンジカルボン酸、1,2-シクロブタンジカルボン酸、1,3-シクロブタンジカルボン酸、1,2'-シクロペンタンジカルボン酸、1,3-シクロペンタンカルボン酸、1,2-シクロヘキサンジカルボン酸、1,3-シクロヘキサンジカルボン酸、1,4-シクロヘキサンジカルボン酸、シクロプロパンジカルボン酸ジフェニル、1,2-シクロブタンジカルボン酸ジフェニル、1,3-シクロブタンジカルボン酸ジフェニル、1,2-シクロペンタンジカルボン酸ジフェニル、1,3-シクロペンタンジカルボン酸ジフェニル、1,2-シクロヘキサンジカルボン酸ジフェニル、1,4-シクロヘキサンジカルボン酸ジフェニルなどの脂環族ジカルボン酸類を挙げることができる。これらジカルボン酸またはジカルボン酸エステルは、単独で用いてもよく、また、二種以上組み合わせても良い。ジカルボン酸またはジカルボン酸エステルは、上記カーボネート前駆体に、好ましくは50モル%以下、さらに好ましくは30モル%以下の量で含有される。
 ポリカーボネートを製造する際に、1分子中に3個以上の官能基を有する多官能性化合物を使用できる。これら多官能性化合物としては、フェノール性水酸基またはカルボキシルを有する化合物が好ましく、特にフェノール性水酸基を3個含有する化合物が好ましい。
When manufacturing a polycarbonate, you may contain dicarboxylic acid or dicarboxylic acid ester as an acid component. Examples of dicarboxylic acids and dicarboxylic acid esters include aromatic dicarboxylic acids such as terephthalic acid, isophthalic acid, diphenyl terephthalate, diphenyl isophthalate; succinic acid, glutaric acid, adipic acid, pimelic acid, suberic acid, azelaic acid, sebacic acid Aliphatic dicarboxylic acids such as acid, decanedioic acid, dodecanedioic acid, diphenyl sebacate, diphenyl decanedioate, diphenyl dodecanedioate; cyclopropanedicarboxylic acid, 1,2-cyclobutanedicarboxylic acid, 1,3-cyclobutanedicarboxylic acid 1,2′-cyclopentanedicarboxylic acid, 1,3-cyclopentanecarboxylic acid, 1,2-cyclohexanedicarboxylic acid, 1,3-cyclohexanedicarboxylic acid, 1,4-cyclohexanedicarboxylic acid, cyclopropanedicarboxylic acid diphe 1,2-cyclobutanedicarboxylic acid diphenyl, 1,3-cyclobutanedicarboxylic acid diphenyl, 1,2-cyclopentanedicarboxylic acid diphenyl, 1,3-cyclopentanedicarboxylic acid diphenyl, 1,2-cyclohexanedicarboxylic acid diphenyl, 1 And alicyclic dicarboxylic acids such as diphenyl 4-cyclohexanedicarboxylate. These dicarboxylic acids or dicarboxylic acid esters may be used alone or in combination of two or more. The dicarboxylic acid or dicarboxylic acid ester is contained in the carbonate precursor in an amount of preferably 50 mol% or less, more preferably 30 mol% or less.
In producing a polycarbonate, a polyfunctional compound having 3 or more functional groups in one molecule can be used. As these polyfunctional compounds, compounds having a phenolic hydroxyl group or carboxyl are preferred, and compounds containing three phenolic hydroxyl groups are particularly preferred.
6.複合タングステン酸化物微粒子のポリカーボネート樹脂への分散方法
 複合タングステン酸化物微粒子(A)、高耐熱性分散剤(B)、金属塩(C)をポリカーボネート樹脂成形材料(D)へ分散して、複合タングステン酸化物微粒子分散ポリカーボネート樹脂組成物を得る。
 当該複合タングステン酸化物微粒子(A)、高耐熱性分散剤(B)、金属塩(C)のポリカーボネート樹脂への分散方法は、複合タングステン酸化物微粒子(A)等の微粒子が、均一にポリカーボネート樹脂成形材料(D)へ分散できる方法であれば任意に選択できる。
6). Dispersion method of composite tungsten oxide fine particles in polycarbonate resin Composite tungsten oxide fine particles (A), high heat-resistant dispersant (B), and metal salt (C) are dispersed in polycarbonate resin molding material (D), and composite tungsten oxide is dispersed. An oxide fine particle-dispersed polycarbonate resin composition is obtained.
The composite tungsten oxide fine particles (A), the high heat resistant dispersant (B), and the metal salt (C) are dispersed in the polycarbonate resin so that the fine particles such as the composite tungsten oxide fine particles (A) are uniformly dispersed in the polycarbonate resin. Any method can be selected as long as it can be dispersed in the molding material (D).
 具体例としては、まず、ビーズミル、ボールミル、サンドミル、超音波分散などの方法を用い、複合タングステン酸化物微粒子(A)を任意の溶剤に分散した分散液を調製する。次に、当該分散液と、高耐熱性分散剤(B)と、金属塩(C)と、ポリカーボネート樹脂成形材料(D)の粉粒体またはペレットと、必要に応じて他の添加剤とを、リボンブレンダー、タンブラー、ナウターミキサー、ヘンシェルミキサー、スーパーミキサー、プラネタリーミキサー等の混合機、および、バンバリーミキサー、ニーダー、ロール、ニーダールーダー、一軸押出機、二軸押出機等の混練機を使用して、当該分散液から溶剤を除去しながら均一に溶融混合して、ポリカーボネート樹脂成形材料(D)に複合タングステン酸化物微粒子(A)を均一に分散した混合物を調製することができる。混錬時の温度は、ポリカーボネート樹脂が分解しない温度に維持する。 As a specific example, first, a dispersion liquid in which the composite tungsten oxide fine particles (A) are dispersed in an arbitrary solvent is prepared using a method such as a bead mill, a ball mill, a sand mill, or an ultrasonic dispersion. Next, the dispersion, the high heat resistant dispersant (B), the metal salt (C), the granular material or pellet of the polycarbonate resin molding material (D), and other additives as necessary. , Ribbon blenders, tumblers, nauter mixers, Henschel mixers, super mixers, planetary mixers, etc. Then, it is possible to prepare a mixture in which the composite tungsten oxide fine particles (A) are uniformly dispersed in the polycarbonate resin molding material (D) by uniformly melting and mixing while removing the solvent from the dispersion. The kneading temperature is maintained at a temperature at which the polycarbonate resin does not decompose.
 また、他の方法として、複合タングステン酸化物微粒子(A)の分散液へ高耐熱性分散剤(B)を添加し、溶剤を公知の方法で除去し、得られた粉末とポリカーボネート樹脂の粉粒体またはペレット、および、金属塩(C)、必要に応じて他の添加剤を均一に溶融混合して、ポリカーボネート樹脂成形材料(D)に複合タングステン酸化物微粒子(A)を均一に分散した混合物を得る方法も挙げられる。 As another method, the high heat-resistant dispersant (B) is added to the dispersion of the composite tungsten oxide fine particles (A), the solvent is removed by a known method, and the obtained powder and polycarbonate resin particles A mixture in which the composite tungsten oxide fine particles (A) are uniformly dispersed in the polycarbonate resin molding material (D) by uniformly melting and mixing the body or pellets and the metal salt (C) and other additives as required. The method of obtaining is also mentioned.
 そのほか、分散処理をしていない複合タングステン酸化物微粒子(A)の粉末と、高耐熱性分散剤(B)と、金属塩(C)とを、ポリカーボネート樹脂成形材料(D)に直接添加し、均一に溶融混合する方法を用いることもできる。さらに、ポリカーボネート樹脂成形材料(D)の重合反応の途中または重合反応終了時に、複合タングステン酸化物微粒子(A)やその他の添加剤である高耐熱性分散剤(B)、金属塩(C)を混合する方法、混練途中等、ポリカーボネート樹脂成形材料(D)が溶融した状態で、複合タングステン酸化物微粒子(A)やその他の添加剤である高耐熱性分散剤(B)、金属塩(C)を混合する方法、ペレット等、ポリカーボネート樹脂成形材料(D)が固体状態にあるものに、複合タングステン酸化物微粒子(A)やその他の添加剤である高耐熱性分散剤(B)、金属塩(C)を混合後、押出機等で溶融・混練する方法等が挙げられる。
 分散方法は、ポリカーボネート樹脂成形材料(D)中に、複合タングステン酸化物微粒子(A)等が均一に分散されていればよく、これらの方法に限定されない。
In addition, the powder of the composite tungsten oxide fine particles (A) not subjected to the dispersion treatment, the high heat resistant dispersant (B), and the metal salt (C) are directly added to the polycarbonate resin molding material (D). A method of uniformly melting and mixing can also be used. Further, during the polymerization reaction of the polycarbonate resin molding material (D) or at the end of the polymerization reaction, the composite tungsten oxide fine particles (A) and other additives such as the high heat resistant dispersant (B) and the metal salt (C) are added. In a state where the polycarbonate resin molding material (D) is melted, such as during mixing or during kneading, the composite tungsten oxide fine particles (A) and other additives such as the high heat resistant dispersant (B), the metal salt (C) In which the polycarbonate resin molding material (D) is in a solid state, such as pellets, composite tungsten oxide fine particles (A) and other additives, a high heat resistant dispersant (B), a metal salt ( Examples thereof include a method of melting and kneading with an extruder after mixing C).
The dispersion method is not limited to these methods as long as the composite tungsten oxide fine particles (A) and the like are uniformly dispersed in the polycarbonate resin molding material (D).
7.熱線遮蔽成形体
 本発明に係る熱線遮蔽成形体は、上記複合タングステン酸化物微粒子分散ポリカーボネート樹脂組成物を含む樹脂組成物が、ポリカーボネート樹脂成形材料(D)、または異種の熱可塑性樹脂により希釈・溶融混練され、その後、所定の形状に成形されてなる成形体である。
7). Heat ray shielding molded body The heat ray shielding molded body according to the present invention is obtained by diluting and melting the resin composition containing the composite tungsten oxide fine particle dispersed polycarbonate resin composition with the polycarbonate resin molding material (D) or a different kind of thermoplastic resin. A molded body that is kneaded and then molded into a predetermined shape.
 その成形方法としては、射出成形、押出成形、圧縮成形、または、回転成形等の方法を用いることができる。特に、射出成形、押出成形によれば効率的に所望の形状に成形できるので好ましい。押出成形により板状(シート状)、フィルム状の熱線遮蔽成形体を得る方法としては、Tダイなどの押出機を用いて押し出した溶融アクリル樹脂を冷却ロールで冷却しながら引き取る方法が採用される。 As the molding method, methods such as injection molding, extrusion molding, compression molding, or rotational molding can be used. In particular, injection molding and extrusion molding are preferable because they can be efficiently molded into a desired shape. As a method for obtaining a plate-shaped (sheet-shaped) or film-shaped heat ray shielding molded article by extrusion molding, a method is adopted in which a molten acrylic resin extruded using an extruder such as a T-die is taken out while being cooled by a cooling roll. .
 成形温度は、使用するポリカーボネート樹脂成形材料の組成等によって異なるが、十分な流動性が得られるように樹脂の融点或いはガラス転移温度より50~150℃高い温度に加温する。例えば、200℃以上、好ましくは240℃~330℃とする。成形温度が200℃以上あれば高分子特有の粘度を低下させることができるので、表面被覆複合タングステン酸化物微粒子をポリカーボネート樹脂中に均一に分散させることができ好ましい。成形温度が350℃以下であれば、ポリカーボネート樹脂の分解による劣化を回避できる。 The molding temperature varies depending on the composition of the polycarbonate resin molding material to be used, but is heated to a temperature 50 to 150 ° C. higher than the melting point or glass transition temperature of the resin so that sufficient fluidity can be obtained. For example, the temperature is 200 ° C. or higher, preferably 240 ° C. to 330 ° C. If the molding temperature is 200 ° C. or higher, the viscosity specific to the polymer can be lowered, and therefore, the surface-coated composite tungsten oxide fine particles can be uniformly dispersed in the polycarbonate resin, which is preferable. When the molding temperature is 350 ° C. or lower, deterioration due to decomposition of the polycarbonate resin can be avoided.
8.熱線遮蔽積層体
 本発明に係る熱線遮蔽積層体は、上述した熱線遮蔽成形体が、透明成形体に積層されてなる積層体である。この熱線遮蔽積層体は、それ自体で建築物の屋根材、壁材、自動車、電車、航空機などの開口部に使用される窓材、アーケード、天井ドーム、カーポート等に使用することができる。
 また、本発明に係る熱線遮蔽成形体を、無機ガラス、樹脂ガラス、樹脂フィルムなどの他の透明成形体に任意の方法で積層し、一体化された可視光線に対して透明な熱線遮蔽積層体として、構造材に使用することもできる。例えば、予めフィルム状に成形した熱線遮蔽成形体を、無機ガラスに熱ラミネート法により積層一体化することで、熱線遮蔽機能、飛散防止機能を有する可視光線に対して透明な熱線遮蔽積層体を得ることができる。
 また、熱ラミネート法、共押出法、プレス成形法、射出成形法等により、熱線遮蔽成形体の成形と同時に他の透明成形体に積層一体化することで、可視光線に対して透明な熱線遮蔽積層体を得ることも可能である。上記可視光線に対して透明な熱線遮蔽積層体は、相互の成形体の持つ利点を有効に発揮させつつ、相互の欠点を補完することで、より有用な構造材として使用することができる。
8). Heat ray shielding laminate The heat ray shielding laminate according to the present invention is a laminate in which the above-described heat ray shielding molded article is laminated on a transparent molded article. This heat ray shielding laminate can be used for window materials, arcades, ceiling domes, carports, and the like used for openings of building roof materials, wall materials, automobiles, trains, airplanes and the like.
Moreover, the heat ray shielding molded body according to the present invention is laminated on other transparent molded bodies such as inorganic glass, resin glass, and resin film by an arbitrary method, and the heat ray shielding laminated body is transparent to the integrated visible light. As a structural material. For example, a heat ray shielding molded body previously formed into a film shape is laminated and integrated with inorganic glass by a heat laminating method to obtain a heat ray shielding laminated body transparent to visible light having a heat ray shielding function and a scattering prevention function. be able to.
In addition, heat ray shielding that is transparent to visible light by heat lamination method, coextrusion method, press molding method, injection molding method, etc. It is also possible to obtain a laminate. The heat ray-shielding laminate transparent to visible light can be used as a more useful structural material by complementing each other's drawbacks while effectively exhibiting the advantages of each molded body.
 以下、本発明について実施例を参照しながら詳細に説明するが、本発明は以下の実施例により何ら制限されることはない。
[原料]
(1)複合タングステン酸化物微粒子:Cs0.33WO3微粒子分散物
(2)ポリカーボネート樹脂成形材料:ポリカーボネート樹脂ペレット(Sabic社製、商品名レキサンML9103R-112)
[評価方法]
 また、本実施例において得られた熱線遮蔽成形体の光学特性評価に関し、可視光透過率VLT(単位:%)、日射透過率ST(単位:%)は、分光光度計U-4100(日立製作所製)を使用して測定した。また、ヘイズ(H)(単位:%)は、ヘイズメーター(村上色彩研究所製)を使用し、JIS K 7136に準拠して測定した。
EXAMPLES Hereinafter, although this invention is demonstrated in detail, referring an Example, this invention is not restrict | limited at all by the following example.
[material]
(1) Composite tungsten oxide fine particles: Cs 0.33 WO 3 fine particle dispersion (2) Polycarbonate resin molding material: Polycarbonate resin pellets (trade name Lexan ML9103R-112, manufactured by Sabic)
[Evaluation methods]
Further, regarding the optical property evaluation of the heat ray shielding molded product obtained in this example, the visible light transmittance VLT (unit:%) and the solar radiation transmittance ST (unit:%) were measured using a spectrophotometer U-4100 (Hitachi, Ltd.). ). The haze (H) (unit:%) was measured according to JIS K 7136 using a haze meter (Murakami Color Research Laboratory).
[調製・評価]
(実施例1)
 H2WO450gとCsOH17.0g(Cs/W=0.3相当)とを秤量し、メノウ乳鉢で十分混合した。得られた混合粉末を、N2ガスをキャリアとした5%H2ガスを供給する雰囲気下で加熱して、600℃の温度で1時間の還元処理を行った。その後、N2ガスを供給する雰囲気下で800℃の温度で30分間加熱して焼成し、微粒子(組成式はCs0.33WO3、粉体色はL*が35.2745、a*が1.4918、b*が-5.3118)を得た。
 得られた微粒子を5重量%と、主鎖としてアクリル主鎖を有し、官能基としてエポキシ基を有し熱分解温度255℃で、分子量が約20000の高耐熱性分散剤を5重量%と、トルエンを90重量%とを秤量し、0.3mmφZrO2ビ-ズを入れたペイントシェーカーに装填し、6時間粉砕・分散処理することによって、実施例1に係る複合タングステン酸化物微粒子分散液を調製した。
 ここで、実施例1に係る複合タングステン酸化物微粒子分散液内におけるタングステン酸化物微粒子の分散粒子径を測定したところ75nmであった。
[Preparation / Evaluation]
(Example 1)
H 2 WO 4 50 g and CsOH 17.0 g (equivalent to Cs / W = 0.3) were weighed and sufficiently mixed in an agate mortar. The obtained mixed powder was heated in an atmosphere supplying 5% H 2 gas using N 2 gas as a carrier, and subjected to reduction treatment at a temperature of 600 ° C. for 1 hour. Then, calcined by heating for 30 minutes at a temperature of 800 ° C. under an atmosphere supplying N 2 gas, fine particles (composition formula Cs 0.33 WO 3, the powder color L * is 35.2745, a * 1. 4918, b * was −5.3118).
5% by weight of the obtained fine particles, 5% by weight of a high heat-resistant dispersant having an acrylic main chain as a main chain, an epoxy group as a functional group, a thermal decomposition temperature of 255 ° C., and a molecular weight of about 20000 Then, 90 wt% of toluene was weighed, loaded into a paint shaker containing 0.3 mmφZrO 2 beads, and pulverized / dispersed for 6 hours. Prepared.
Here, when the dispersed particle diameter of the tungsten oxide fine particles in the composite tungsten oxide fine particle dispersion according to Example 1 was measured, it was 75 nm.
 さらに、実施例1に係る複合タングステン酸化物微粒子分散液へ、主鎖としてアクリル主鎖を有し、官能基としてエポキシ基を有し熱分解温度255℃、分子量が約20000の高耐熱性分散剤を添加し、この高耐熱性分散剤と複合タングステン酸化物微粒子との重量比[高耐熱性分散剤/複合タングステン酸化物微粒子]の値が4となるように調製した。その後、真空乾燥機を用いてトルエンを除去し、実施例1に係る複合タングステン酸化物微粒子分散粉を得た。 Furthermore, the composite tungsten oxide fine particle dispersion according to Example 1 has a high heat resistance dispersant having an acrylic main chain as a main chain, an epoxy group as a functional group, a thermal decomposition temperature of 255 ° C., and a molecular weight of about 20000. And a weight ratio of the high heat-resistant dispersant and the composite tungsten oxide fine particles [high heat-resistant dispersant / composite tungsten oxide fine particles] was adjusted to be 4. Then, toluene was removed using the vacuum dryer and the composite tungsten oxide fine particle dispersion powder which concerns on Example 1 was obtained.
 表1に示すように、ポリカーボネート樹脂ペレット100重量部と、実施例1に係る複合タングステン酸化物微粒子分散粉0.15重量部と、金属塩としてオクチル酸Mg0.03重量部とを均一に混合した後、二軸押出機(東洋精機製作所製)を用い290℃で溶融混練し、押し出された直径3mmのストランドをカットし、ペレット化した。
 次に、当該ペレットとポリカーボネート樹脂ペレットとを、複合タングステン酸化物微粒子の含有量が0.05重量%となるように、均一に混合した。当該混合物を、射出成形機を使用して10cm×5cm、厚さ2.0mmのシート状として、実施例1に係る熱線遮蔽成形体を得た。
As shown in Table 1, 100 parts by weight of polycarbonate resin pellets, 0.15 parts by weight of the composite tungsten oxide fine particle dispersion powder according to Example 1, and 0.03 parts by weight of Mg octylate as a metal salt were uniformly mixed. Then, it melt-kneaded at 290 degreeC using the twin-screw extruder (made by Toyo Seiki Seisakusho), and the strand with a diameter of 3 mm extruded was cut and pelletized.
Next, the pellet and the polycarbonate resin pellet were uniformly mixed so that the content of the composite tungsten oxide fine particles was 0.05% by weight. The said heat-shielding molded object which concerns on Example 1 was obtained by making the said mixture into a sheet form of 10 cm x 5 cm and thickness 2.0mm using an injection molding machine.
 得られた実施例1に係る熱線遮蔽成形体の光学特性(可視光透過率T(%)、日射透過率ST(%)、ヘイズH(%))を評価した。評価結果を表1に示す。
 続けて、実施例1に係る熱線遮蔽成形体を85℃×90%RH浴中に7日間保持した後、光学特性(可視光透過率T(%)、日射透過率ST(%)、ヘイズH(%))を評価した。評価結果を表1に示す。
The optical properties (visible light transmittance T (%), solar radiation transmittance ST (%), haze H (%)) of the heat ray shielding molded article according to Example 1 obtained were evaluated. The evaluation results are shown in Table 1.
Subsequently, after holding the heat ray shielding molded article according to Example 1 in an 85 ° C. × 90% RH bath for 7 days, optical properties (visible light transmittance T (%), solar light transmittance ST (%), haze H (%)). The evaluation results are shown in Table 1.
(実施例2~7)
 表1に示すように、ポリカーボネート樹脂ペレット100重量部と、A粉0.15重量部と、金属塩としてオクチル酸Mg0.0015重量部とを均一に混合した以外は、実施例1と同様の操作をおこなって、実施例2に係る熱線遮蔽成形体を得た。
 同様に、ポリカーボネート樹脂ペレット100重量部と、A粉0.15重量部と、金属塩としてステアリン酸Mg0.075重量部とを均一に混合した以外は、実施例1と同様の操作をおこなって、実施例3に係る熱線遮蔽成形体を得た。
 同様に、ポリカーボネート樹脂ペレット100重量部と、A粉0.15重量部と、金属塩としてオクチル酸Ni0.03重量部とを均一に混合した以外は、実施例1と同様の操作をおこなって、実施例4に係る熱線遮蔽成形体を得た。
 同様に、ポリカーボネート樹脂ペレット100重量部と、A粉0.15重量部と、金属塩としてオクチル酸Zn0.03重量部とを均一に混合した以外は、実施例1と同様の操作をおこなって、実施例5に係る熱線遮蔽成形体を得た。
 同様に、ポリカーボネート樹脂ペレット100重量部と、A粉0.15重量部と、金属塩としてオクチル酸In0.03重量部とを均一に混合した以外は、実施例1と同様の操作をおこなって、実施例6に係る熱線遮蔽成形体を得た。
 同様に、ポリカーボネート樹脂ペレット100重量部と、A粉0.15重量部と、金属塩としてオクチル酸Sn0.03重量部とを均一に混合した以外は、実施例1と同様の操作をおこなって、実施例7に係る熱線遮蔽成形体を得た。
(Examples 2 to 7)
As shown in Table 1, the same operation as in Example 1 except that 100 parts by weight of polycarbonate resin pellets, 0.15 part by weight of A powder, and 0.0015 part by weight of Mg octylate as a metal salt were uniformly mixed. The heat ray shielding molded object which concerns on Example 2 was obtained.
Similarly, the same operation as in Example 1 was performed except that 100 parts by weight of polycarbonate resin pellets, 0.15 parts by weight of A powder, and 0.075 parts by weight of magnesium stearate as a metal salt were uniformly mixed. The heat ray shielding molded object which concerns on Example 3 was obtained.
Similarly, the same operation as in Example 1 was performed except that 100 parts by weight of polycarbonate resin pellets, 0.15 part by weight of A powder, and 0.03 part by weight of Ni octylate as a metal salt were uniformly mixed. The heat ray shielding molded object which concerns on Example 4 was obtained.
Similarly, except that 100 parts by weight of polycarbonate resin pellets, 0.15 parts by weight of A powder, and 0.03 part by weight of Zn octylate as a metal salt were uniformly mixed, the same operation as in Example 1 was performed, The heat ray shielding molded object which concerns on Example 5 was obtained.
Similarly, the same operation as in Example 1 was performed except that 100 parts by weight of polycarbonate resin pellets, 0.15 part by weight of A powder, and 0.03 part by weight of octylate In as a metal salt were uniformly mixed. The heat ray shielding molded object which concerns on Example 6 was obtained.
Similarly, except that 100 parts by weight of polycarbonate resin pellets, 0.15 parts by weight of A powder, and 0.03 parts by weight of octylic acid Sn as a metal salt were uniformly mixed, the same operation as in Example 1 was performed, The heat ray shielding molded object which concerns on Example 7 was obtained.
 得られた実施例2~7に係る熱線遮蔽成形体の光学特性(可視光透過率T(%)、日射透過率ST(%)、ヘイズH(%))を評価した。評価結果を表1に示す。
 続けて、実施例2~7に係る熱線遮蔽成形体を85℃×90%RH浴中に7日間保持した後、光学特性(可視光透過率T(%)、日射透過率ST(%)、ヘイズH(%))を評価した。評価結果を表1に示す。
The optical properties (visible light transmittance T (%), solar radiation transmittance ST (%), haze H (%)) of the heat ray shielding molded articles according to Examples 2 to 7 obtained were evaluated. The evaluation results are shown in Table 1.
Subsequently, after holding the heat ray shielding molded bodies according to Examples 2 to 7 in an 85 ° C. × 90% RH bath for 7 days, optical characteristics (visible light transmittance T (%), solar light transmittance ST (%), Haze H (%)) was evaluated. The evaluation results are shown in Table 1.
(比較例1~3)
 表1に示すように、ポリカーボネート樹脂ペレット100重量部と、A粉0.15重量部とを均一に混合し、金属塩を添加しない以外は、実施例1と同様の操作をおこなって、比較例1に係る熱線遮蔽成形体を得た。
 また、ポリカーボネート樹脂ペレット100重量部と、A粉0.15重量部と、金属塩としてオクチル酸Al0.03重量部とを均一に混合した以外は、実施例1と同様の操作をおこなって、比較例2に係る熱線遮蔽成形体を得た。
 同様に、ポリカーボネート樹脂ペレット100重量部と、A粉0.15重量部と、金属塩としてオクチル酸Mn0.03重量部とを均一に混合した以外は、実施例1と同様の操作をおこなって、比較例3に係る熱線遮蔽成形体を得た。
(Comparative Examples 1 to 3)
As shown in Table 1, 100 parts by weight of polycarbonate resin pellets and 0.15 parts by weight of A powder were uniformly mixed, and the same operation as in Example 1 was performed except that no metal salt was added. 1 was obtained.
Further, except that 100 parts by weight of polycarbonate resin pellets, 0.15 part by weight of A powder, and 0.03 part by weight of Al octylate as a metal salt were uniformly mixed, the same operation as in Example 1 was performed, and the comparison was made. A heat ray shielding molded article according to Example 2 was obtained.
Similarly, except that 100 parts by weight of polycarbonate resin pellets, 0.15 part by weight of A powder, and 0.03 part by weight of Mn octylate as a metal salt were uniformly mixed, the same operation as in Example 1 was performed, The heat ray shielding molded object which concerns on the comparative example 3 was obtained.
 得られた比較例1~3に係る熱線遮蔽成形体の光学特性(可視光透過率T(%)、日射透過率ST(%)、ヘイズH(%))を評価した。評価結果を表1に示す。
 続けて、比較例1~3に係る熱線遮蔽成形体を85℃×90%RH浴中に7日間保持した後、光学特性(可視光透過率T(%)、日射透過率ST(%)、ヘイズH(%))を評価した。評価結果を表1に示す。
The optical properties (visible light transmittance T (%), solar radiation transmittance ST (%), haze H (%)) of the heat ray shielding molded articles according to Comparative Examples 1 to 3 obtained were evaluated. The evaluation results are shown in Table 1.
Subsequently, after holding the heat ray shielding molded bodies according to Comparative Examples 1 to 3 in an 85 ° C. × 90% RH bath for 7 days, optical characteristics (visible light transmittance T (%), solar light transmittance ST (%), Haze H (%)) was evaluated. The evaluation results are shown in Table 1.
[まとめ]
(1)実施例1~3においては、金属塩としてMg塩を添加している。この為、金属塩が添加されていない比較例1と較べて、85℃×90%RH7日間保持という加熱・加湿による加速試験での近赤外線遮蔽特性の劣化が抑制されていることが、表1から確認される。すなわち、実施例1~3に係る熱線遮蔽成形体は、従来技術に係る比較例1に係る熱線遮蔽成形体に較べて、優れた赤外線遮蔽特性の経時安定性を発揮することが分かる。
(2)実施例4は添加する金属塩をオクチル酸Niとし、実施例5は添加する金属塩をオクチル酸Znとし、実施例6は添加する金属塩をオクチル酸Inとし、実施例7は添加する金属塩をオクチル酸Snとした実施例である。当該金属塩を用いた実施例4~7においても、表1から確認されるように、従来技術に係る比較例1に係る熱線遮蔽成形体に較べて、優れた赤外線遮蔽特性の経時安定性を発揮することが分かる。
(3)比較例2は添加する金属塩をオクチル酸Alとし、比較例3では添加する金属塩をオクチル酸Mnとした比較例である。金属元素がAlへ変更された比較例2や、Mnへ変更された比較例3においては、85℃×90%RH7日間保持という加熱・加湿による加速試験での近赤外線遮蔽特性の劣化が、比較例1に較べて抑制される効果は確認されなかった。
[Summary]
(1) In Examples 1 to 3, Mg salt is added as a metal salt. Therefore, compared to Comparative Example 1 in which no metal salt is added, it is shown in Table 1 that the deterioration of the near-infrared shielding property in the accelerated test by heating and humidification of holding at 85 ° C. × 90% RH for 7 days is suppressed. It is confirmed from. That is, it can be seen that the heat ray shielding molded bodies according to Examples 1 to 3 exhibit superior infrared shielding properties over time as compared with the heat ray shielding molded body according to Comparative Example 1 according to the prior art.
(2) In Example 4, the metal salt to be added is Ni octylate, in Example 5, the metal salt to be added is Zn octylate, in Example 6, the metal salt to be added is In octylate, and in Example 7 is added This is an example in which the metal salt to be used is octylic acid Sn. Also in Examples 4 to 7 using the metal salt, as can be seen from Table 1, compared with the heat ray shielding molded body according to Comparative Example 1 according to the prior art, the stability over time of the infrared shielding characteristics is excellent. You can see that it works.
(3) Comparative Example 2 is a comparative example in which the metal salt to be added is Al octylate, and in Comparative Example 3, the metal salt to be added is Mn octylate. In Comparative Example 2 in which the metal element was changed to Al and Comparative Example 3 in which the metal element was changed to Mn, the deterioration of the near-infrared shielding characteristics in the accelerated test by heating and humidification of holding at 85 ° C. × 90% RH for 7 days was compared. The effect to be suppressed as compared with Example 1 was not confirmed.
 金属塩が添加された本発明の複合タングステン酸化物微粒子分散ポリカーボネート樹脂組成物を用いて得られる熱線遮蔽成形体並びに熱線遮蔽積層体は、従来にない経時安定性を有するため、各種建築物や車両の窓材等に適用出来るという、産業上の利用可能性を有している。 Since the heat ray shielding molded body and the heat ray shielding laminate obtained by using the composite tungsten oxide fine particle dispersed polycarbonate resin composition of the present invention to which a metal salt is added have unprecedented stability over time, various buildings and vehicles Industrial applicability that can be applied to other window materials.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001

Claims (5)

  1.  一般式MxWyOz(但し、Mは、H、He、アルカリ金属、アルカリ土類金属、希土類元素、Mg、Zr、Cr、Mn、Fe、Ru、Co、Rh、Ir、Ni、Pd、Pt、Cu、Ag、Au、Zn、Cd、Al、Ga、In、Tl、Si、Ge、Sn、Pb、Sb、B、F、P、S、Se、Br、Te、Ti、Nb、V、Mo、Ta、Re、Be、Hf、Os、Bi、Iの内から選択される1種以上の元素、Wはタングステン、Oは酸素、0.001≦x/y≦1、2.2≦z/y≦3.0)で表される複合タングステン酸化物の微粒子と、金属塩と、ポリカーボネート樹脂とを含む樹脂組成物であって、
     当該金属塩が、Mg、Ni、Zn、In、Snの内から選択される1種類以上の金属元素の塩であることを特徴とする複合タングステン酸化物微粒子分散ポリカーボネート樹脂組成物。
    General formula MxWyOz (where M is H, He, alkali metal, alkaline earth metal, rare earth element, Mg, Zr, Cr, Mn, Fe, Ru, Co, Rh, Ir, Ni, Pd, Pt, Cu, Ag, Au, Zn, Cd, Al, Ga, In, Tl, Si, Ge, Sn, Pb, Sb, B, F, P, S, Se, Br, Te, Ti, Nb, V, Mo, Ta, One or more elements selected from Re, Be, Hf, Os, Bi, and I, W is tungsten, O is oxygen, 0.001 ≦ x / y ≦ 1, 2.2 ≦ z / y ≦ 3 .0), a resin composition comprising fine particles of a composite tungsten oxide represented by a metal salt, a polycarbonate salt resin,
    A composite tungsten oxide fine particle-dispersed polycarbonate resin composition, wherein the metal salt is a salt of one or more metal elements selected from Mg, Ni, Zn, In, and Sn.
  2.  前記金属塩が、カルボン酸塩、カルボニル錯塩、炭酸塩、リン酸塩、過塩素酸塩、次亜塩素酸塩、亜塩素酸塩、塩素酸塩、塩酸塩の内から選択される1種類以上の塩であることを特徴とする請求項1に記載の複合タングステン酸化物微粒子分散ポリカーボネート樹脂組成物。 The metal salt is at least one selected from carboxylates, carbonyl complexes, carbonates, phosphates, perchlorates, hypochlorites, chlorites, chlorates, and hydrochlorides. The composite tungsten oxide fine particle-dispersed polycarbonate resin composition according to claim 1, wherein
  3.  前記金属塩の添加量が、前記複合タングステン酸化物の微粒子100重量部に対して、0.1~50重量部であることを特徴とする請求項1または2に記載の複合タングステン酸化物微粒子分散ポリカーボネート樹脂組成物。 3. The composite tungsten oxide fine particle dispersion according to claim 1, wherein the addition amount of the metal salt is 0.1 to 50 parts by weight with respect to 100 parts by weight of the composite tungsten oxide fine particles. Polycarbonate resin composition.
  4.  請求項1~3のいずれかに記載の複合タングステン酸化物微粒子分散ポリカーボネート樹脂組成物が、ポリカーボネート樹脂またはポリカーボネート樹脂と相溶性を有する異種の熱可塑性樹脂により希釈・溶融混練され、かつ所定の形状に成形されたものであることを特徴とする熱線遮蔽成形体。 The composite tungsten oxide fine particle-dispersed polycarbonate resin composition according to any one of claims 1 to 3 is diluted, melt-kneaded with a polycarbonate resin or a different thermoplastic resin compatible with the polycarbonate resin, and has a predetermined shape. A heat ray shielding molded article, characterized by being molded.
  5.  請求項4に記載の熱線遮蔽成形体が、他の透明成形体上に積層されていることを特徴とする熱線遮蔽積層体。 5. A heat ray shielding laminate, wherein the heat ray shielding molded product according to claim 4 is laminated on another transparent molded product.
PCT/JP2013/054135 2012-02-22 2013-02-20 Polycarbonate resin composition containing dispersed composite-tungsten-oxide microparticles and radiated-heat-blocking molded body and radiated-heat-blocking laminate using said composition WO2013125563A1 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
EP13752375.9A EP2818519B1 (en) 2012-02-22 2013-02-20 Polycarbonate resin composition containing dispersed composite-tungsten-oxide microparticles and radiated-heat-blocking molded body and radiated-heat-blocking laminate using said composition
ES13752375.9T ES2674677T3 (en) 2012-02-22 2013-02-20 Composition of polycarbonate resin containing dispersed microparticles of composite tungsten oxide and molded body of radiated heat blocking and laminated heat blocking laminate utilizing said composition
CN201380010598.6A CN104487511B (en) 2012-02-22 2013-02-20 It is dispersed with the poly carbonate resin composition of composite tungsten oxide fine particle and hot radiation shielding formed body and hot radiation shielding laminated body using it
KR1020147026129A KR101967018B1 (en) 2012-02-22 2013-02-20 Polycarbonate resin composition containing dispersed composite-tungsten-oxide microparticles and radiated-heat-blocking molded body and radiated-heat-blocking laminate using said composition
IN7007DEN2014 IN2014DN07007A (en) 2012-02-22 2013-02-20
US14/380,538 US9612366B2 (en) 2012-02-22 2013-02-20 Composite tungsten oxide particle dispersion polycarbonate resin composition and heat-ray shielding sintered compact and heat-ray shielding laminate using the composition

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-035856 2012-02-22
JP2012035856A JP5942466B2 (en) 2012-02-22 2012-02-22 Composite tungsten oxide fine particle dispersed polycarbonate resin composition, heat ray shielding molded article and heat ray shielding laminate using the same

Publications (1)

Publication Number Publication Date
WO2013125563A1 true WO2013125563A1 (en) 2013-08-29

Family

ID=49005745

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/054135 WO2013125563A1 (en) 2012-02-22 2013-02-20 Polycarbonate resin composition containing dispersed composite-tungsten-oxide microparticles and radiated-heat-blocking molded body and radiated-heat-blocking laminate using said composition

Country Status (9)

Country Link
US (1) US9612366B2 (en)
EP (1) EP2818519B1 (en)
JP (1) JP5942466B2 (en)
KR (1) KR101967018B1 (en)
CN (1) CN104487511B (en)
ES (1) ES2674677T3 (en)
IN (1) IN2014DN07007A (en)
TW (1) TWI589641B (en)
WO (1) WO2013125563A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019054476A1 (en) * 2017-09-14 2019-03-21 住友金属鉱山株式会社 Near infrared ray-absorbing fiber, fiber product using same, and method for producing fiber and fiber product

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6136819B2 (en) * 2013-09-27 2017-05-31 住友金属鉱山株式会社 Laminated structure for heat ray shielding
TWI640479B (en) * 2014-02-07 2018-11-11 加美嘉華光電材料股份有限公司 Mathod for manufacturing composite-tungsten-oxide nanoparticles
TWI680946B (en) * 2014-02-07 2020-01-01 加美嘉華光電材料股份有限公司 Infrared shielding body and infrared absorption material thereof
US9145492B1 (en) * 2014-04-01 2015-09-29 King Fahd University Of Petroleum And Minerals Method to produce ultra-high molecular weight polyethylene
JP2017211399A (en) * 2014-10-09 2017-11-30 コニカミノルタ株式会社 Infrared-shielding coating and infrared-shielding film
CN112389060B (en) 2015-08-18 2023-04-18 威斯康星校友研究基金会 ClO 2 Release of gas from medical device packaging film
JP2017066485A (en) * 2015-09-30 2017-04-06 日東電工株式会社 Sheet and composite sheet
JP6704322B2 (en) 2015-09-30 2020-06-03 日東電工株式会社 Sheets and composite sheets
TWI699335B (en) * 2015-12-18 2020-07-21 日商住友金屬礦山股份有限公司 Composite tungsten oxide ultrafine particles and dispersion liquid thereof
KR102620283B1 (en) * 2015-12-18 2024-01-02 스미토모 긴조쿠 고잔 가부시키가이샤 Near-infrared shielding ultrafine particle dispersion, solar radiation shielding interlayer, infrared shielding laminated structure, and method for producing near-infrared shielding ultrafine particle dispersion
WO2018155501A1 (en) * 2017-02-23 2018-08-30 住友化学株式会社 Lamp cover
WO2018235820A1 (en) * 2017-06-19 2018-12-27 住友金属鉱山株式会社 Counterfeit-preventing ink composition, counterfeit-preventing ink, printed article for counterfeit prevention, and method for producing counterfeit-preventing ink composition
AU2018289676B2 (en) * 2017-06-19 2024-05-30 Sumitomo Metal Mining Co., Ltd. Agricultural and horticultural soil-covering film, and method for manufacturing same
US20210124169A1 (en) * 2017-08-09 2021-04-29 Teijin Limited Head-up display device and light-transmissive member used therefor
WO2019171998A1 (en) * 2018-03-05 2019-09-12 住友化学株式会社 Coloring curable resin composition, color filter and display device
TWI727675B (en) * 2020-02-26 2021-05-11 南亞塑膠工業股份有限公司 Infrared shielding film and method for manufacturing the same
JP7415890B2 (en) * 2020-06-05 2024-01-17 住友金属鉱山株式会社 Dark powder dispersion, dark powder dispersion and base material with colored layer
KR20220154232A (en) * 2020-06-05 2022-11-21 스미토모 긴조쿠 고잔 가부시키가이샤 A substrate having a dark color powder dispersion, a dark color powder dispersion and a colored layer
JP2022100880A (en) * 2020-12-24 2022-07-06 住友金属鉱山株式会社 Haet ray-shielding resin sheet material
CN115746568B (en) * 2022-11-18 2023-07-28 北京工业大学 High-temperature-resistant silicone rubber material and preparation method thereof

Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61277437A (en) 1985-06-04 1986-12-08 豊田合成株式会社 Heat-ray reflecting resin glass
JPH02173060A (en) 1988-12-26 1990-07-04 Teijin Chem Ltd Heat ray screening plate
JPH0578544A (en) 1991-09-18 1993-03-30 Kuraray Co Ltd Heat-reflecting plate
JPH06256541A (en) 1993-03-05 1994-09-13 Mitsui Toatsu Chem Inc Near infrared ray-absorbing film and heat ray-shielding sheet using the same
JPH06264050A (en) 1993-01-13 1994-09-20 Nippon Shokubai Co Ltd Heat-intercepting material
JPH10146919A (en) 1996-11-15 1998-06-02 Teijin Ltd Glass laminate for green house
JPH10298417A (en) * 1997-02-28 1998-11-10 Asahi Chem Ind Co Ltd Flame-retardant polycarbonate resin composition
JPH10298373A (en) * 1997-04-23 1998-11-10 Asahi Chem Ind Co Ltd High impact-strength polycarbonate resin composition
JP2000096034A (en) 1998-09-22 2000-04-04 Sumitomo Metal Mining Co Ltd Sun radiation screening material, coating solution for sun radiation screening membrane and sun radiation screening membrane
JP2000169765A (en) 1998-12-10 2000-06-20 Sumitomo Metal Mining Co Ltd Coating solution for sunlight-shielding film and sunlight- shielding film obtained therefrom
JP2001179887A (en) 1999-12-27 2001-07-03 Teijin Ltd Heat ray reflecting film for window
JP2004059875A (en) 2002-07-31 2004-02-26 Sumitomo Metal Mining Co Ltd Masterbatch containing heat ray shielding ingredient, heat ray shielding transparent resin molding applied with the masterbatch and laminate thereof
WO2005087680A1 (en) 2004-03-16 2005-09-22 Sumitomo Metal Mining Co., Ltd. Sun screening laminated structure
JP2008024902A (en) 2006-07-25 2008-02-07 Sumitomo Metal Mining Co Ltd Highly heat-resistant masterbatch, heat ray-shielding transparent resin molding, and heat ray-shielding transparent laminate
JP2010519270A (en) * 2007-02-21 2010-06-03 ビーエーエスエフ ソシエタス・ヨーロピア Symmetric azo compounds in flame retardant compositions
JP2011012276A (en) * 2004-03-15 2011-01-20 Honeywell Internatl Inc Cellulose-reinforced resin composition
JP2012025828A (en) * 2010-07-22 2012-02-09 Shin-Etsu Chemical Co Ltd Releasing film

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3477978A (en) * 1967-01-04 1969-11-11 Gen Electric Heat moldable polycarbonate composition
US3742085A (en) * 1970-04-15 1973-06-26 Gen Electric Thermally stable polycarbonate composition
US3647747A (en) * 1970-04-15 1972-03-07 Gen Electric High temperature molding flame retardant polycarbonate composition
AU452933B2 (en) * 1970-12-28 1974-09-19 Bayer Aktiengesellschaft Thermoplastic moulding composition and mouldings of polycarbonate having improved ease of mould release when injection moulding
US4154718A (en) * 1976-09-02 1979-05-15 Kyowa Chemical Industry Co. Ltd. Fire-retardant thermoplastic resin composition
JP3643586B2 (en) 1994-04-15 2005-04-27 株式会社東芝 Magnetic resonance imaging system
WO2003000779A1 (en) * 2001-06-21 2003-01-03 Teijin Limited Near infrared ray shielding film
JP4478428B2 (en) * 2003-10-07 2010-06-09 出光興産株式会社 Polycarbonate resin composition and optical component
EP1676890B1 (en) * 2003-10-20 2019-06-26 Sumitomo Metal Mining Co., Ltd. Infrared shielding material microparticle dispersion, infrared shield, process for producing infrared shielding material microparticle, and infrared shielding material microparticle
CN101023498B (en) * 2004-08-31 2012-02-29 住友金属矿山株式会社 Conductive particle, visible light transmissive particle dispersed conductor, method for producing same, transparent conductive thin film, method for producing same, transparent conductive article using same, infrared shield article
EP1950239B1 (en) * 2005-10-28 2017-01-04 Sumitomo Osaka Cement Co., Ltd. Transparent inorganic-oxide dispersion, resin composition containing inorganic oxide particles, composition for encapsulating luminescent element, luminescent element, hard coat, optical functional film, optical part, and process for producing resin composition containing inorganic oxide particles
EP1979414A1 (en) * 2006-01-25 2008-10-15 Basf Se Low individual colour thermoplastic molding composition
JP4853710B2 (en) * 2006-11-22 2012-01-11 住友金属鉱山株式会社 Laser-absorbing light-absorbing resin composition, light-absorbing resin molded body, and method for producing light-absorbing resin molded body
JP2008156386A (en) * 2006-12-20 2008-07-10 Sumitomo Metal Mining Co Ltd Polycarbonate resin composition and resultant pellet and polycarbonate resin molded product
JP5245284B2 (en) * 2007-04-26 2013-07-24 住友金属鉱山株式会社 Heat ray shielding polyester film and heat ray shielding polyester film laminate
JP5245283B2 (en) * 2007-04-26 2013-07-24 住友金属鉱山株式会社 Heat ray shielding vinyl chloride film composition, method for producing the same, and heat ray shielding vinyl chloride film
US20100220388A1 (en) * 2007-06-08 2010-09-02 Bridgestone Corporation Near-infrared shielding material, laminate including the same, and optical filter for display including the same
US8216683B2 (en) * 2007-08-03 2012-07-10 Solutia Inc. Interlayers comprising stabilized tungsten oxide agents
WO2009020207A1 (en) * 2007-08-09 2009-02-12 Dai Nippon Printing Co., Ltd. Near infrared absorbing composition and near infrared absorbing filter
WO2009054051A1 (en) * 2007-10-23 2009-04-30 Sumitomo Metal Mining Co., Ltd. Solar-radiation-shielding material for vehicle window and window for vehicle
US8268460B2 (en) * 2007-10-25 2012-09-18 Sumitomo Metal Mining Co., Ltd. High heat resistant masterbatch, heat ray shielding transparent molded resin, and heat-ray shielding transparent lamination body
CN101848811B (en) * 2007-11-05 2013-03-06 巴斯夫欧洲公司 Tungsten oxides used to increase the heat-input amount of near infrared radiation
EP2360220B1 (en) * 2008-11-13 2015-03-18 Sumitomo Metal Mining Co., Ltd. Infrared blocking particle, method for producing the same, infrared blocking particle dispersion using the same, and infrared blocking base
JP2011063740A (en) * 2009-09-18 2011-03-31 Sumitomo Metal Mining Co Ltd Heat ray shielding resin sheet material, heat ray shielding resin sheet material laminate and building structure using these
JP5257626B2 (en) * 2010-07-14 2013-08-07 住友金属鉱山株式会社 High heat resistant masterbatch, heat ray shielding transparent resin molding, and heat ray shielding transparent laminate
JP2014500359A (en) * 2010-11-24 2014-01-09 ビーエーエスエフ ソシエタス・ヨーロピア Thermoplastic molding composition containing microencapsulated latent heat storage material

Patent Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61277437A (en) 1985-06-04 1986-12-08 豊田合成株式会社 Heat-ray reflecting resin glass
JPH02173060A (en) 1988-12-26 1990-07-04 Teijin Chem Ltd Heat ray screening plate
JPH0578544A (en) 1991-09-18 1993-03-30 Kuraray Co Ltd Heat-reflecting plate
JPH06264050A (en) 1993-01-13 1994-09-20 Nippon Shokubai Co Ltd Heat-intercepting material
JPH06256541A (en) 1993-03-05 1994-09-13 Mitsui Toatsu Chem Inc Near infrared ray-absorbing film and heat ray-shielding sheet using the same
JPH10146919A (en) 1996-11-15 1998-06-02 Teijin Ltd Glass laminate for green house
JPH10298417A (en) * 1997-02-28 1998-11-10 Asahi Chem Ind Co Ltd Flame-retardant polycarbonate resin composition
JPH10298373A (en) * 1997-04-23 1998-11-10 Asahi Chem Ind Co Ltd High impact-strength polycarbonate resin composition
JP2000096034A (en) 1998-09-22 2000-04-04 Sumitomo Metal Mining Co Ltd Sun radiation screening material, coating solution for sun radiation screening membrane and sun radiation screening membrane
JP2000169765A (en) 1998-12-10 2000-06-20 Sumitomo Metal Mining Co Ltd Coating solution for sunlight-shielding film and sunlight- shielding film obtained therefrom
JP2001179887A (en) 1999-12-27 2001-07-03 Teijin Ltd Heat ray reflecting film for window
JP2004059875A (en) 2002-07-31 2004-02-26 Sumitomo Metal Mining Co Ltd Masterbatch containing heat ray shielding ingredient, heat ray shielding transparent resin molding applied with the masterbatch and laminate thereof
JP2011012276A (en) * 2004-03-15 2011-01-20 Honeywell Internatl Inc Cellulose-reinforced resin composition
WO2005087680A1 (en) 2004-03-16 2005-09-22 Sumitomo Metal Mining Co., Ltd. Sun screening laminated structure
JP2008024902A (en) 2006-07-25 2008-02-07 Sumitomo Metal Mining Co Ltd Highly heat-resistant masterbatch, heat ray-shielding transparent resin molding, and heat ray-shielding transparent laminate
JP2010519270A (en) * 2007-02-21 2010-06-03 ビーエーエスエフ ソシエタス・ヨーロピア Symmetric azo compounds in flame retardant compositions
JP2012025828A (en) * 2010-07-22 2012-02-09 Shin-Etsu Chemical Co Ltd Releasing film

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019054476A1 (en) * 2017-09-14 2019-03-21 住友金属鉱山株式会社 Near infrared ray-absorbing fiber, fiber product using same, and method for producing fiber and fiber product
JPWO2019054476A1 (en) * 2017-09-14 2020-10-29 住友金属鉱山株式会社 Near-infrared absorbing fiber, textile products using it, and their manufacturing method
JP7226321B2 (en) 2017-09-14 2023-02-21 住友金属鉱山株式会社 Near-infrared absorbing fiber, textile product using the same, and method for producing the same

Also Published As

Publication number Publication date
KR101967018B1 (en) 2019-04-08
US9612366B2 (en) 2017-04-04
EP2818519B1 (en) 2018-04-11
KR20140129210A (en) 2014-11-06
JP2013170239A (en) 2013-09-02
CN104487511A (en) 2015-04-01
IN2014DN07007A (en) 2015-04-10
EP2818519A1 (en) 2014-12-31
ES2674677T3 (en) 2018-07-03
US20150024211A1 (en) 2015-01-22
EP2818519A4 (en) 2015-10-07
JP5942466B2 (en) 2016-06-29
TWI589641B (en) 2017-07-01
CN104487511B (en) 2019-01-04
TW201343782A (en) 2013-11-01

Similar Documents

Publication Publication Date Title
JP5942466B2 (en) Composite tungsten oxide fine particle dispersed polycarbonate resin composition, heat ray shielding molded article and heat ray shielding laminate using the same
JP4632094B2 (en) Manufacturing method of high heat-resistant masterbatch, heat ray shielding transparent resin molding, and heat ray shielding transparent laminate
AU2007360455B2 (en) Masterbatch with high heat resistance, heat-ray-shielding transparent molded resin, and heat-ray-shielding transparent layered product
JP5257626B2 (en) High heat resistant masterbatch, heat ray shielding transparent resin molding, and heat ray shielding transparent laminate
JP3982466B2 (en) Heat ray shielding component dispersion, method for producing the same, heat ray shielding film forming coating solution, heat ray shielding film and heat ray shielding resin molding obtained by using this dispersion
US7666930B2 (en) Master batch containing heat radiation shielding component, and heat radiation shielding transparent resin form and heat radiation shielding transparent laminate for which the master batch has been used
JP4182357B2 (en) Heat ray shielding resin sheet material, heat ray shielding resin sheet material laminate, and building structure using them
JP2012082326A (en) Master batch containing high heat-resistant heat ray shielding component, production method of the master batch, high heat-resistant heat ray shielding transparent resin molded article, and high heat-resistant heat ray shielding transparent laminate
JP2011063741A (en) Heat ray shielding resin sheet material, heat ray shielding resin sheet material laminate and building structure using these
JP5898397B2 (en) Near-infrared shielding polyester resin composition, near-infrared shielding polyester resin laminate, molded article and method for producing the same
JP5423636B2 (en) Manufacturing method of composite tungsten oxide fine particle-dispersed polycarbonate resin masterbatch, composite tungsten oxide fine particle-dispersed polycarbonate resin masterbatch obtained by the manufacturing method of the masterbatch, and molded body and laminate obtained using the masterbatch body
JP5257381B2 (en) Near-infrared shielding polyester resin composition, molded article thereof, and laminate thereof
JP2011063740A (en) Heat ray shielding resin sheet material, heat ray shielding resin sheet material laminate and building structure using these
JP5614586B2 (en) Heat ray shielding polycarbonate sheet, heat ray shielding polycarbonate sheet laminate, and method for producing heat ray shielding polycarbonate sheet
JP7024608B2 (en) Near-infrared absorbing fine particle dispersion and its manufacturing method
TWI535782B (en) Polycarbonate composition and heat shielding material
JP2018118463A (en) Heat ray-shielding transparent resin laminate
JP2009144037A (en) Tungsten oxide microparticle dispersion for addition to resin, molded product of tungsten oxide microparticle-dispersed vinyl chloride resin, and method for producing molded product of tungsten oxide microparticle-dispersed vinyl chloride resin
JPWO2019054493A1 (en) Solar-shielding fine particle dispersion and its manufacturing method, solar-shielding fine particle-containing masterbatch, and solar-shielding resin molded article using it, solar-shielding resin laminate

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13752375

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 14380538

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2013752375

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20147026129

Country of ref document: KR

Kind code of ref document: A