TWI680946B - Infrared shielding body and infrared absorption material thereof - Google Patents

Infrared shielding body and infrared absorption material thereof Download PDF

Info

Publication number
TWI680946B
TWI680946B TW108119191A TW108119191A TWI680946B TW I680946 B TWI680946 B TW I680946B TW 108119191 A TW108119191 A TW 108119191A TW 108119191 A TW108119191 A TW 108119191A TW I680946 B TWI680946 B TW I680946B
Authority
TW
Taiwan
Prior art keywords
cesium
tungsten oxide
tungsten
infrared
composite tungsten
Prior art date
Application number
TW108119191A
Other languages
Chinese (zh)
Other versions
TW201936511A (en
Inventor
沈銘基
楊英家
楊政祐
沈璧中
Original Assignee
加美嘉華光電材料股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 加美嘉華光電材料股份有限公司 filed Critical 加美嘉華光電材料股份有限公司
Priority to TW108119191A priority Critical patent/TWI680946B/en
Publication of TW201936511A publication Critical patent/TW201936511A/en
Application granted granted Critical
Publication of TWI680946B publication Critical patent/TWI680946B/en

Links

Images

Abstract

An infrared absorption material includes composite-tungsten-oxide nanoparticles, the general expression of which is CsxSnyGezWO3, where X, Y and Z are less than 1, Cs refers to caesium, Sn refers to tin, Ge represents germanium, W refers to tungsten, and O refers to oxygen. The effect of absorption about an infrared light having a wavelength which is larger than 1500 nm can be improved by the composite-tungsten-oxide nanoparticles.

Description

紅外線遮蔽體及其紅外線吸收材料 Infrared shielding body and infrared absorbing material

相關申請案 Related application

本發明係為台灣第107119823號專利申請案(申請日:2018年06月08日)之分割案,其母案為台灣第103104032號專利申請案(申請日:2014年02月07日),該申請案之完整內容納入為本發明專利說明書的一部分以供參照。 The present invention is a division of Taiwan Patent Application No. 107119823 (application date: June 08, 2018), and its parent case is Taiwan Patent Application No. 103104032 (application date: February 07, 2014). The complete content of the application is included as part of the specification of the invention for reference.

本發明涉及一種熱射線遮蔽體及其熱射線吸收材料,特別是涉及一種紅外線遮蔽體及其紅外線吸收材料。 The invention relates to a heat ray shielding body and its heat ray absorbing material, in particular to an infrared shielding body and its infrared absorbing material.

按,從各式建築物、車輛等之門窗入射的太陽光線中,除可見光線外尚包含紫外線及紅外線,其中波長介於800~2500之近紅外線又稱為熱射線,係造成室內溫度上升的主要原因。 According to the press, the sun rays incident from the doors and windows of various buildings, vehicles, etc. include ultraviolet rays and infrared rays in addition to visible rays. Among them, near infrared rays with a wavelength of 800 to 2500 are also called heat rays, which cause the indoor temperature to rise. main reason.

為防止這類情況發生,近年來正積極開發可充分攝入可見光並同時遮蔽紅外線的遮蔽體,以維持亮度同時抑制室內溫度上升。舉例來說,早期紅外線阻隔玻璃皆以鍍上金屬(如銀、鋁)或金屬氧化物為主,而為有效阻隔紅外線,這類玻璃需鍍上多層膜或使用濺鍍方式進行鍍膜,導致成本不易降低。 To prevent this from happening, in recent years, we are actively developing shields that can fully absorb visible light and shield infrared rays at the same time to maintain brightness while suppressing indoor temperature rise. For example, early infrared blocking glass was mainly coated with metal (such as silver, aluminum) or metal oxide, and in order to effectively block infrared, this type of glass needs to be coated with a multi-layer film or using a sputtering method for coating, resulting in cost Not easy to lower.

日本第特開9-12338號前案揭示使用濺鍍方法在透明玻璃表面 鍍上複合鎢氧化物薄膜,以達到阻隔紅外線的效果。然而,使用濺鍍方法進行鍍膜時,需在高溫及真空條件下操作,造成玻璃上鍍膜的良率降低,並降低製造效率。 Japanese Patent Application Publication No. 9-12338 reveals the use of sputtering method on the surface of transparent glass The composite tungsten oxide film is plated to achieve the effect of blocking infrared rays. However, when the sputtering method is used for coating, it needs to be operated under high temperature and vacuum conditions, resulting in a reduction in the yield of the coating on the glass and a reduction in manufacturing efficiency.

日本第特開8-59300號前案揭示在玻璃上使用複合氧化鎢,以形成高可見光穿透率及高紅外線阻隔率的玻璃。 Japanese Patent Laid-Open No. 8-59300 discloses the use of composite tungsten oxide on glass to form glass with high visible light transmittance and high infrared blocking rate.

日本第4110762(B2)號前案揭示利用三氧化鎢來製作電致變色元件,其中三氧化鎢是將六氯化鎢溶於乙醇,並直接將乙醇蒸發後以100-500℃加熱而製得。 Japan's previous case No. 4110762 (B2) discloses the use of tungsten trioxide to make electrochromic elements. Tungsten trioxide is prepared by dissolving tungsten hexachloride in ethanol and directly evaporating ethanol and heating it at 100-500℃ .

日本第2535790(B2)號前案揭示將偏鎢酸銨與水溶性金屬鹽類溶於水後,先以80-250℃進行乾燥,再於300-700℃及氫氣氣氛下製得複合氧化鎢材料。此複合氧化鎢材料可應用在燃料電池電極材料、觸媒材料及電解裝置材料。 Japan's previous case No. 2535790 (B2) disclosed that after dissolving ammonium metatungstate and water-soluble metal salts in water, it was first dried at 80-250°C, and then composite tungsten oxide was prepared at 300-700°C under a hydrogen atmosphere material. The composite tungsten oxide material can be applied to fuel cell electrode materials, catalyst materials and electrolytic device materials.

美國第5385751號前案揭示使用化學氣相沉積法在透明玻璃表面鍍上適當厚度的氧化鎢摻雜氟薄膜,以達到阻隔紅外線的效果。然而,此方法不僅生產效率低,且所需的設備成本較高。 U.S. Patent No. 5,387,551 discloses that chemical vapor deposition is used to coat a transparent glass surface with an appropriate thickness of a tungsten oxide-doped fluorine film to achieve the effect of blocking infrared rays. However, this method not only has low production efficiency, but also requires high equipment costs.

美國第US20020090507號前案揭示一種可阻隔紅外線的光學薄膜,其包含UV硬化樹脂、可吸收1000-2500nm照射波長的金屬奈米粒子及可吸收700-1100nm照射波長的金屬奈米粒子。 U.S. Patent No. US20020090507 discloses an infrared film that can block infrared rays, which includes a UV-curable resin, metal nanoparticles that can absorb an irradiation wavelength of 1000-2500 nm, and metal nanoparticles that can absorb an irradiation wavelength of 700-1100 nm.

美國第US20120138842號前案揭示一種複合氧化鎢微粒子,其中氧化鎢摻雜VIIIB族金屬,以增進IR反射率。 U.S. Pat. No. US20120138842 discloses a composite tungsten oxide microparticle, in which tungsten oxide is doped with a Group VIIIB metal to improve IR reflectance.

本發明其中一目的,在於提供一種複合氧化鎢奈米微粒子之製造方法,其可以在氧化鎢分子上均勻地摻雜單一元素或多元素,且通過單一 溶液操作可以快速工業量產製造均一、高品質奈米微粒子。 One object of the present invention is to provide a method for manufacturing composite tungsten oxide nanoparticles, which can uniformly dope a single element or multiple elements on tungsten oxide molecules, and pass a single Solution operation can produce uniform, high-quality nanoparticles in rapid industrial mass production.

本發明另外一目的,在於提供一種紅外線吸收材料,其通過單一元素或多元素的摻雜,使複合分子的頻譜扭曲,而可以充分吸收波長大於1500nm之紅外線。 Another object of the present invention is to provide an infrared absorbing material which, by doping a single element or multiple elements, distorts the spectrum of the composite molecule, and can fully absorb infrared rays with a wavelength greater than 1500 nm.

本發明再一目的,在於提供一種紅外線遮蔽體,其可以充分攝入可見光並遮蔽紅外線,且具有良好的光學和導電性質。 Still another object of the present invention is to provide an infrared shielding body that can fully absorb visible light and shield infrared rays, and has good optical and conductive properties.

本發明所採用的另外一技術方案是:一種紅外線吸收材料,其包括多個複合氧化鎢奈米微粒子,其通式為:CsxSnyGezWO3;其中,X、Y及Z小於1;Cs表示銫;Sn表示錫;Ge表示鍺;W表示鎢;O表示氧。 Another technical solution adopted by the present invention is: an infrared absorbing material, which includes a plurality of composite tungsten oxide nanoparticles, and its general formula is: Cs x Sn y Ge z WO 3 ; wherein, X, Y and Z are less than 1. ; Cs means cesium; Sn means tin; Ge means germanium; W means tungsten; O means oxygen.

本發明所採用的再一技術方案是:一種紅外線遮蔽體,其為一奈米漿料與一媒體樹脂混合所製成,其中所述奈米漿料包括所述紅外線吸收材料與一分散劑。 Another technical solution adopted by the present invention is: an infrared shielding body, which is made by mixing a nano slurry with a media resin, wherein the nano slurry includes the infrared absorption material and a dispersant.

為使能更進一步瞭解本發明的特徵及技術內容,請參閱以下有關本發明的詳細說明與圖式,然而所提供的圖式僅用於提供參考與說明,並非用來對本發明加以限制。 In order to further understand the features and technical contents of the present invention, please refer to the following detailed description and drawings of the present invention. However, the drawings provided are for reference and explanation only, and are not intended to limit the present invention.

圖1為本發明之複合氧化鎢奈米微粒子之製造方法之流程示意圖。 FIG. 1 is a schematic flow chart of the method for manufacturing composite tungsten oxide nanoparticles of the present invention.

圖2為本發明之複合氧化鎢奈米微粒子之X光繞射圖譜。 2 is an X-ray diffraction pattern of composite tungsten oxide nanoparticles of the present invention.

圖3為本發明之複合氧化鎢奈米微粒子之穿透率光譜圖。 FIG. 3 is a transmission spectrum chart of composite tungsten oxide nanoparticles of the present invention.

圖4為本發明之複合氧化鎢奈米微粒子之壽命測試趨勢圖。 4 is a graph showing the life test trend of composite tungsten oxide nanoparticles of the present invention.

有鑑於氧化鎢具有吸收紅外線的能力卻不易形成奈米微粒子的問題,本發明提出一種簡易且能快速製備複合氧化鎢奈米微粒子之方法,利用此方法製造出的複合氧化鎢奈米微粒子,可具有優異的紅外線吸收特性與高可見光穿透性。 In view of the problem that tungsten oxide has the ability to absorb infrared light but is not easy to form nanoparticles, the present invention provides a simple and rapid method for preparing composite tungsten oxide nanoparticles. The composite tungsten oxide nanoparticles manufactured by this method can Has excellent infrared absorption characteristics and high visible light penetration.

以下是通過特定的具體實施例來說明本發明所公開有關“紅外線遮蔽體及其紅外線吸收材料的實施方式,本領域技術人員可由本說明書所公開的內容瞭解本發明的優點與效果。本發明可通過其他不同的具體實施例加以施行或應用,本說明書中的各項細節也可基於不同觀點與應用,在不悖離本發明的構思下進行各種修改與變更。另外,本發明的附圖僅為簡單示意說明,並非依實際尺寸的描繪,事先聲明。以下的實施方式將進一步詳細說明本發明的相關技術內容,但所公開的內容並非用以限制本發明的保護範圍。 The following is a description of the embodiments of the "infrared shielding body and its infrared absorbing material" disclosed by the present invention through specific specific examples. Those skilled in the art can understand the advantages and effects of the present invention from the contents disclosed in this specification. Through the implementation or application of other different specific embodiments, various details in this specification can also be based on different views and applications, without departing from the concept of the present invention to make various modifications and changes. In addition, the drawings of the present invention For the sake of simple illustration, not the actual size, it is stated in advance. The following embodiments will further describe the relevant technical content of the present invention, but the disclosed content is not intended to limit the scope of protection of the present invention.

請參考圖1,為本發明實施例之複合氧化鎢奈米微粒子之製造方法之流程示意圖。本發明之複合氧化鎢奈米微粒子之製造方法包括以下步驟:步驟S102,配製一溶膠液;步驟S104,調整溶膠液的酸鹼值;步驟S106,以超重力分離出凝膠體;以及步驟S108:在還原氣氛下對凝膠體進行熱處理。 Please refer to FIG. 1, which is a schematic flowchart of a method for manufacturing composite tungsten oxide nanoparticles according to an embodiment of the present invention. The method for manufacturing composite tungsten oxide nanoparticles of the present invention includes the following steps: Step S102, preparing a sol solution; Step S104, adjusting the pH value of the sol solution; Step S106, separating the gel by hypergravity; and Step S108 : Heat-treating the gel in a reducing atmosphere.

在步驟S102中,係將一鎢前驅物及至少一金屬之前驅物溶於一溶劑中,並持溫攪拌一預定時間,以形成所述溶膠液。於實際施行此步驟時,可先將鎢之前驅物溶於溶劑後,再加入金屬之前驅物並攪拌使之完全溶解。 In step S102, a tungsten precursor and at least one metal precursor are dissolved in a solvent, and the temperature is stirred for a predetermined time to form the sol solution. When actually performing this step, the tungsten precursor can be dissolved in the solvent, and then the metal precursor can be added and stirred to completely dissolve it.

在本實施例中,所述鎢之前驅物可為但不限於鎢酸、偏鎢酸銨、四氯氧鎢、四溴氧鎢、六氯化鎢、二氯二氧鎢、六氟化鎢或四氟氧鎢。所述金屬之前驅物可為但不限於IA-IIIA族(如H、He、鹼金屬、鹼土類或稀土類之元素)之氫氧化物、氯化物、硫酸化物或硝化物及過渡金屬之氫氧化物、氯化物、硫酸化物或硝化物。而所述溶劑可為但不限於乙醚、甲醇、乙醇、 異丙醇、正丁醇、2-丁醇、丙酮或丁酮。 In this embodiment, the tungsten precursor may be, but not limited to, tungstic acid, ammonium metatungstate, tungsten tetrachloride, tungsten tetrabromide, tungsten hexachloride, tungsten dichloride, tungsten hexafluoride Or tungsten oxyfluoride. The metal precursor may be, but not limited to, IA-IIIA group (such as H, He, alkali metal, alkaline earth or rare earth elements) hydroxide, chloride, sulfate or nitrate and transition metal hydrogen Oxides, chlorides, sulfates or nitrates. The solvent may be, but not limited to, ether, methanol, ethanol, Isopropyl alcohol, n-butanol, 2-butanol, acetone or butanone.

在步驟S104中,係將一調整物例如有機或無機鹼以滴入方式加入溶膠液中,直到產生凝膠體為止,其中鎢之前驅物於溶膠狀態(sol)下進行水解、縮合、聚合等反應後,再慢慢形成凝膠狀態(gel),如此所述凝膠體包含氧化鎢所形成之連續的網狀骨架及填充於骨架空隙中之IA-IIIA族金屬離子及/或過渡金屬離子。 In step S104, a modifier such as an organic or inorganic base is added dropwise to the sol solution until a gel is produced, wherein the tungsten precursor is hydrolyzed, condensed, polymerized, etc. in the sol state (sol) After the reaction, a gel state is gradually formed, so that the gel body includes a continuous network skeleton formed by tungsten oxide and IA-IIIA group metal ions and/or transition metal ions filled in the voids of the skeleton .

在步驟S106中,以超重力分離出凝膠體。此步驟係使用離心方式移除溶劑及未反應之雜質,以得到泥狀之凝膠體。在一變化實施例中,此步驟也可使用真空烘箱或真空濃縮器將所有溶劑蒸發。 In step S106, the gel is separated by supergravity. In this step, the solvent and unreacted impurities are removed by centrifugation to obtain a mud-like gel. In a variant embodiment, this step can also use a vacuum oven or vacuum concentrator to evaporate all the solvent.

在步驟S108中,所述凝膠體係在包含氫氣與鈍氣的混合氣氛下,以每分鐘1-10℃(較佳為每分鐘3-5℃)之升溫速率自室溫加熱至400-600℃(較佳為580℃),並持溫燒結2-8小時,使成晶相。 In step S108, the gel system is heated from room temperature to 400-600°C at a heating rate of 1-10°C per minute (preferably 3-5°C per minute) under a mixed atmosphere containing hydrogen and passive gas. (Preferably 580°C), and sintering at a temperature for 2-8 hours to make a crystalline phase.

值得注意的是,在一變化實施例中,所述凝膠體可先在包含IA-IIIA族元素之前驅氣體與鈍氣的混合氣氛下,以每分鐘1-10℃(較佳為每分鐘3-5℃)之升溫速率自室溫加熱至100-400℃(較佳為400℃),並持溫燒結1小時,以摻入IVA-VIIA族元素於氧化鎢分子後,然後再以相同升溫速率繼續加熱至400-600℃(較佳為580℃),並在包含氫氣與鈍氣的混合氣氛下持溫燒結2-8小時,如此即得到摻雜有單一或多元素的結晶型複合氧化鎢奈米微粒子。 It is worth noting that in a variant embodiment, the gel may be first mixed in a mixed atmosphere containing a precursor gas of IA-IIIA group and a passive gas at 1-10°C per minute (preferably per minute 3-5 ℃) heating rate from room temperature to 100-400 ℃ (preferably 400 ℃), and keep the temperature sintering for 1 hour, after doping the IVA-VIIA group element tungsten oxide molecules, and then the same temperature Continue heating to 400-600 ℃ (preferably 580 ℃), and sinter at a temperature of 2-8 hours in a mixed atmosphere containing hydrogen and passive gas, so as to obtain a crystalline composite oxide doped with single or multiple elements Tungsten nanoparticles.

本發明還提出一種紅外線吸收材料,其包括經由以上步驟而得到的結晶型複合氧化鎢奈米微粒子,其通式為:M1xM2yWO3Rz或M1xWO3RySz。式中,W表示鎢;O表示氧;M1、M2表示IA-IIIA族或過渡金屬元素,M1、M2優選為K、Rb、Cs或Ba,但M1不等於M2;R、S表示IVA-VIIA族元素,R、S優選為C、Si、Ge、Sn、N或Sb,但R不等於S;X、Y及Z小於1。 值得說明的是,摻雜之元素可補足氧化鎢對波長大於1500nm之紅外線之吸收效果。 The present invention also provides an infrared absorbing material, which includes crystalline composite tungsten oxide nanoparticles obtained through the above steps, and its general formula is: M1 x M2 y WO 3 R z or M1 x WO 3 R y S z . In the formula, W represents tungsten; O represents oxygen; M1, M2 represent IA-IIIA group or transition metal elements, M1, M2 are preferably K, Rb, Cs or Ba, but M1 is not equal to M2; R, S represents IVA-VIIA Group elements, R and S are preferably C, Si, Ge, Sn, N or Sb, but R is not equal to S; X, Y and Z are less than 1. It is worth noting that the doped elements can complement the absorption effect of tungsten oxide on infrared rays with a wavelength greater than 1500 nm.

進一步地,本發明更提出一種紅外線遮蔽體,其為一奈米漿料與一媒體樹脂混合所製成,其中所述奈米漿料包括所述紅外線吸收材料與一分散劑。 Further, the present invention further proposes an infrared shielding body, which is made by mixing a nano slurry with a media resin, wherein the nano slurry includes the infrared absorption material and a dispersant.

在本實施例中,所述紅外線遮蔽體的製備方法可包括以下步驟。首先,於適當溶劑中混合所述外線吸收材料與所述分散劑,其中所述分散劑可以是高分子酸性、高分子鹼性或高分子中性分散劑。接著,對前一步驟得到的混合物施予濕式粉碎,以形成所述奈米漿料;然後,混合所述奈米漿料於所述媒體樹脂後,將前一步驟得到的混合物塗佈於一基材表面,其中媒體樹脂可單獨或混合使用熱硬化樹脂、紫外線硬化樹脂、電子束硬化樹脂、常溫硬化樹脂、熱可塑性樹脂等。 In this embodiment, the method for preparing the infrared shielding body may include the following steps. First, the external absorption material and the dispersant are mixed in an appropriate solvent, wherein the dispersant may be a polymer acidic, polymer basic or polymer neutral dispersant. Next, the mixture obtained in the previous step is subjected to wet pulverization to form the nano slurry; then, after mixing the nano slurry with the media resin, the mixture obtained in the previous step is coated on A substrate surface, in which the media resin can be used alone or in combination with thermosetting resin, ultraviolet curing resin, electron beam curing resin, room temperature curing resin, thermoplastic resin, etc.

為使本領域的技術人員可以輕易地了解到本發明具體之優點或功效,並在不悖離本發明之精神下進行各種修飾與變更,以施行或應用本發明,下文中特列舉出數個實驗例以詳細說明本發明之複合氧化鎢奈米微粒子之製造方法,但本發明並非限制於此。 In order to enable those skilled in the art to easily understand the specific advantages or effects of the present invention, and make various modifications and changes without departing from the spirit of the present invention in order to implement or apply the present invention, a few are specifically listed below The experimental examples are used to explain in detail the manufacturing method of the composite tungsten oxide nanoparticles of the present invention, but the present invention is not limited thereto.

實施例一:直接將六氯化鎢、氫氧化銫、氫氧化鉀溶解於乙醇水溶液,以滴入方式加入適量水直到沉澱發生。其化學反應式如下:WCl6+H2O+CsOH+KOH → WOCl4+K+ +Cs+ +HCl+H2O Embodiment 1: Dissolve tungsten hexachloride, cesium hydroxide, and potassium hydroxide in an aqueous ethanol solution, and add an appropriate amount of water in a dropwise manner until precipitation occurs. The chemical reaction formula is as follows: WCl 6 +H 2 O+CsOH+KOH → WOCl 4 +K + +Cs + +HCl+H 2 O

WOCl4+Cs+ +K+ +HCl → WO3(↓)+Cs+ +K+ +6HCl WOCl 4 +Cs + +K + +HCl → WO 3 (↓)+Cs + +K + +6HCl

然後利用超重力將大部分溶液與沉澱物分離,得到泥狀沉澱物(凝膠體)再以真空烘箱抽取溶劑成乾燥粉末,將該乾燥氯氧化鎢銫之粉末放置於高溫爐中,並以一定比例之鈍氣與氫氣,使其複合氯氧化鎢鉀銫還原成氧化鎢鉀銫。其製程條件如下:於高溫爐中以每分鐘3-5℃之升溫速率,從室 溫升至580℃,在580℃持溫為2小時燒結。由此可得到結晶型複合氧化鎢奈米微粒子,其化學反應式如下:WOCl4+WO2Cl2+Cs+ +K+ +3H2O Then use supergravity to separate most of the solution from the precipitate to obtain a muddy precipitate (gel) and then extract the solvent into a dry powder in a vacuum oven. Place the dried tungsten oxychloride cesium powder in a high-temperature furnace and use A certain proportion of bluff gas and hydrogen reduce its composite tungsten oxychloride potassium cesium to tungsten potassium cesium oxide. The process conditions are as follows: in a high-temperature furnace at a heating rate of 3-5 °C per minute, from room temperature to 580 °C, sintering at 580 °C for 2 hours. Thus, crystalline composite tungsten oxide nanoparticles can be obtained, and the chemical reaction formula is as follows: WOCl 4 +WO 2 Cl 2 +Cs + +K + +3H 2 O

→ CsxKyWO3+6HCl(↑)(X,Y<1) → Cs x K y WO 3 +6HCl(↑)(X, Y<1)

請參考圖2,由XRD可看出其為含有銫、鉀之複合氧化鎢結晶。最後,以適當配方比例溶劑、分散劑及複合氧化鎢粉末研磨至粒徑小於100nm之奈米粒子,再以透明樹脂配成塗液。 Please refer to FIG. 2, it can be seen from XRD that it is a composite tungsten oxide crystal containing cesium and potassium. Finally, the appropriate proportion of solvent, dispersant and composite tungsten oxide powder is milled to nanoparticles with a particle size of less than 100 nm, and then a transparent resin is used to make a coating solution.

實施例二:直接將六氯化鎢、氫氧化銫、氫氧化銣溶解於乙醇水溶液,以滴入方式加入適量水直到沉澱發生。其化學反應式如下:WCl6+H2O+CsOH+RbOH → WOCl4+Rb+ +Cs+ +HCl Example 2: Dissolve tungsten hexachloride, cesium hydroxide and rubidium hydroxide in an aqueous ethanol solution, and add an appropriate amount of water in a dropwise manner until precipitation occurs. The chemical reaction formula is as follows: WCl 6 +H 2 O+CsOH+RbOH → WOCl 4 +Rb + +Cs + +HCl

WOCl4+Cs+ +Rb+ +HCl → WO3(↓)+Cs+ +Rb+ +6HCl WOCl 4 +Cs + +Rb + +HCl → WO 3 (↓)+Cs + +Rb + +6HCl

然後,利用超重力將大部分溶液與沉澱物分離,得到泥狀沉澱物再以真空烘箱抽取溶劑成乾燥粉末,將該乾燥氯氧化鎢銫之粉末放置於高溫爐中,並以一定比例之鈍氣與氫氣,使其複合氯氧化鎢銣銫還原成氧化鎢銣銫。其製程條件如下:於高溫爐中以每分鐘3-5℃之升溫速率,從室溫升至580℃,在580℃持溫為2小時燒結。由此可得到含有銫、銣之複合氧化鎢結晶,其化學反應式如下:WOCl4+WO2Cl2+Cs+ +Rb+ +3H2O Then, use supergravity to separate most of the solution from the precipitate to obtain a muddy precipitate. Then extract the solvent into a dry powder in a vacuum oven. Place the dry tungsten oxychloride cesium powder in a high-temperature furnace and passivate it in a certain proportion Gas and hydrogen reduce its composite tungsten oxychloride rubidium cesium to tungsten rubidium cesium oxide. The process conditions are as follows: in a high-temperature furnace at a heating rate of 3-5 °C per minute, from room temperature to 580 °C, sintering at 580 °C for 2 hours. Thus, a composite tungsten oxide crystal containing cesium and rubidium can be obtained, and the chemical reaction formula is as follows: WOCl 4 +WO 2 Cl 2 +Cs + +Rb + +3H 2 O

→ CsxRbyWO3+6HCl(↑)(X,Y<1) → Cs x Rb y WO 3 +6HCl(↑)(X,Y<1)

之後,以適當配方比例溶劑、分散劑及複合氧化鎢粉末研磨至粒徑小於100nm之奈米粒子,再以透明樹脂配成塗液。 Afterwards, the solvent, dispersant and composite tungsten oxide powder with appropriate formulation ratio are ground to nanoparticles with a particle size of less than 100 nm, and then a transparent resin is used to prepare a coating solution.

實施例三:直接將六氯化鎢、氫氧化銫、氫氧化鋇溶解於乙醇水溶液,以滴入方式加入適量水直到沉澱發生。其化學反應式如下:WCl6+H2O+CsOH+Ba(OH)2 → WOCl4+Ba2+ +Cs+ +HCl Embodiment 3: Dissolve tungsten hexachloride, cesium hydroxide, and barium hydroxide in an aqueous ethanol solution, and add an appropriate amount of water in a dropwise manner until precipitation occurs. The chemical reaction formula is as follows: WCl 6 +H 2 O+CsOH+B a (OH) 2 → WOCl 4 +Ba 2+ +Cs + +HCl

WOCl4+Cs+ +Ba2+ +HCl+H2O → WO3(↓)+Cs+ +Ba2+ +6HCl WOCl 4 +Cs + +Ba 2+ +HCl+H 2 O → WO 3 (↓)+Cs + +Ba 2+ +6HCl

然後利用超重力將大部分溶液與沉澱物分離,得到泥狀沉澱物再以真空烘箱抽取溶劑成乾燥粉末,將該乾燥氯氧化鎢銫之粉末放置於高溫爐中,並以一定比例之鈍氣與氫氣,使其複合氯氧化鎢銫鋇還原成氧化鎢銫鋇。其製程條件如下:於高溫爐中以每分鐘3-5℃之升溫速率,從室溫升至580℃,在580℃持溫為2小時燒結。由此可得到含有銫、鋇之複合氧化鎢結晶,其化學反應式如下:WOCl4+WO2Cl2+Cs+ +Ba2+ +3H2O Then use supergravity to separate most of the solution from the precipitate to obtain a muddy precipitate. Then extract the solvent into a dry powder in a vacuum oven, place the dry tungsten oxychloride powder in a high temperature furnace, and pass a certain proportion of inert gas With hydrogen, its composite tungsten cesium barium oxide is reduced to tungsten cesium barium oxide The process conditions are as follows: in a high-temperature furnace at a heating rate of 3-5 °C per minute, from room temperature to 580 °C, sintering at 580 °C for 2 hours. Thus, a composite tungsten oxide crystal containing cesium and barium can be obtained, and the chemical reaction formula is as follows: WOCl 4 +WO 2 Cl 2 +Cs + +Ba 2+ +3H 2 O

→ CsxBayWO3+6HCl(↑)(X,Y<1) → Cs x Ba y WO 3 +6HCl(↑)(X, Y<1)

由XRD可看出其為含有銫、鋇之複合氧化鎢結晶。最後,以適當配方比例溶劑、分散劑及複合氧化鎢粉末研磨至粒徑小於100nm之奈米粒子,再以透明樹脂配成塗液。 It can be seen from XRD that it is a composite tungsten oxide crystal containing cesium and barium. Finally, the appropriate proportion of solvent, dispersant and composite tungsten oxide powder is milled to nanoparticles with a particle size of less than 100 nm, and then a transparent resin is used to make a coating solution.

實施例四:直接將六氯化鎢、四氯化錫與氫氧化銫溶解於乙醇水溶液,以滴入方式加入適量氨水直到沉澱發生。其化學反應式如下:WCl6+H2O+CsOH+SnCl4 → WOCl4+Cs + +Sn4+ +HCl Example 4: Dissolve tungsten hexachloride, tin tetrachloride and cesium hydroxide directly in an aqueous ethanol solution, and add an appropriate amount of ammonia water in a dropwise manner until precipitation occurs. The chemical reaction formula is as follows: WCl 6 +H 2 O+C s OH+SnCl 4 → WOCl 4 +C s + +Sn 4+ +HCl

WOCl4+Cs+ +Sn4+ +2HCl+NH3(aq) WOCl 4 +Cs + +Sn 4+ +2HCl+NH 3 (aq)

→ WO3(↓)+Cs+ +Sn4+ +6N+H4Cl- → WO 3 (↓) + Cs + + Sn 4+ + 6N + H 4 Cl -

然後利用超重力將大部分溶液與沉澱物分離,得到泥狀沉澱物,以去離子水清洗掉銨鹽,再以真空烘箱抽取溶劑成乾燥粉末,將該乾燥氯氧化鎢銫之粉末放置於高溫爐中,並以一定比例之鈍氣與氫氣,使其複合氯氧化鎢銫錫還原成複合鎢銫錫氧化物。其製程條件如下:於高溫爐中以每分鐘3-5℃之升溫速率,從室溫升至580℃,在580℃持溫為2小時燒結。由此可得到結晶型複合氧化鎢奈米微粒子,其化學反應式如下:WOCl4+WO2Cl2+Cs+ +Sn4+ +3H2O Then use supergravity to separate most of the solution from the precipitate to obtain a muddy precipitate, wash off the ammonium salt with deionized water, then extract the solvent into a dry powder in a vacuum oven, and place the dry tungsten oxychloride cesium powder at high temperature In the furnace, with a certain proportion of inert gas and hydrogen, the composite tungsten cesium tin oxychloride is reduced to composite tungsten cesium tin oxide. The process conditions are as follows: in a high-temperature furnace at a heating rate of 3-5 °C per minute, from room temperature to 580 °C, sintering at 580 °C for 2 hours. Thus, crystalline composite tungsten oxide nanoparticles can be obtained, and the chemical reaction formula is as follows: WOCl 4 +WO 2 Cl 2 +Cs + +Sn 4+ +3H 2 O

→ CsxSnyWO3+6HCl(↑)(X,Y<1) → Cs x Sn y WO 3 +6HCl(↑)(X,Y<1)

由XRD可看出其為含有銫、錫之複合氧化鎢結晶。最後,以適當配方比例溶劑、分散劑及複合氧化鎢粉末研磨至粒徑小於100nm之奈米粒子,再以透明樹脂配成塗液。 It can be seen from XRD that it is a composite tungsten oxide crystal containing cesium and tin. Finally, the appropriate proportion of solvent, dispersant and composite tungsten oxide powder is milled to nanoparticles with a particle size of less than 100 nm, and then a transparent resin is used to make a coating solution.

實施例五,將六氯化鎢與氫氧化銫溶解於乙醇水溶液,以滴入方式加入適量氨水直到沉澱發生。其化學反應式如下:WCl6+H2O+CsOH → WOCl4+Cs+ +HCl+H2O In the fifth embodiment, tungsten hexachloride and cesium hydroxide are dissolved in an aqueous ethanol solution, and an appropriate amount of ammonia water is added dropwise until precipitation occurs. The chemical reaction formula is as follows: WCl 6 +H 2 O+CsOH → WOCl 4 +Cs + +HCl+H 2 O

WOCl4+Cs+ +6HCl+NH3(aq) WOCl 4 +Cs + +6HCl+NH 3 (aq)

→ WO3(↓)+Cs+ +6N+H4Cl → WO 3 (↓)+Cs + +6N + H 4 Cl

以真空烘箱抽取溶劑成乾燥粉末,將該乾燥氯氧化鎢銫之粉末放置於高溫爐中,並以一定比例之鈍氣與氫氣,使其複合氯氧化鎢銫還原成氧化鎢銫。其製程條件如下:於高溫爐中以每分鐘3-5℃之升溫速率,從室溫升至580℃,在580℃持溫為2小時燒結。由此可得到結晶型複合氧化鎢奈米微粒子,其化學反應式如下:WOCl4+WO2Cl2+Cs+ +N+H4Cl+H2O Extract the solvent into a dry powder in a vacuum oven, place the powder of dry tungsten cesium oxychloride in a high-temperature furnace, and reduce the compound tungsten oxychloride cesium oxychloride to cesium tungsten oxide with a certain proportion of inert gas and hydrogen. The process conditions are as follows: in a high-temperature furnace at a heating rate of 3-5 °C per minute, from room temperature to 580 °C, sintering at 580 °C for 2 hours. Thus, crystalline composite tungsten oxide nanoparticles can be obtained, and the chemical reaction formula is as follows: WOCl 4 +WO 2 Cl 2 +Cs + +N + H 4 Cl+H 2 O

→ CsxNyWO3+6HCl(↑)(X,Y<1) → Cs x N y WO 3 +6HCl(↑)(X, Y<1)

由元素分析可看出其為含有銫、氮之複合氧化鎢結晶。最後,以適當配方比例溶劑、分散劑及複合氧化鎢粉末研磨至粒徑小於100nm之奈米粒子,再以透明樹脂配成塗液。 It can be seen from elemental analysis that it is a composite tungsten oxide crystal containing cesium and nitrogen. Finally, the appropriate proportion of solvent, dispersant and composite tungsten oxide powder is milled to nanoparticles with a particle size of less than 100 nm, and then a transparent resin is used to make a coating solution.

實施例六:將六氯化鎢、氯化銻與氫氧化銫溶解於乙醇水溶液,以滴入方式加入適量氨水直到沉澱發生。其化學反應式如下:WCl6+H2O+CsOH+SbCl3 → WOCl4+Cs+ +Sb3+ +HCl+H2O Embodiment 6: Dissolve tungsten hexachloride, antimony chloride and cesium hydroxide in an aqueous ethanol solution, and add an appropriate amount of ammonia water in a dropwise manner until precipitation occurs. The chemical reaction formula is as follows: WCl 6 +H 2 O+CsOH+SbCl 3 → WOCl 4 +Cs + +Sb 3+ +HCl+H 2 O

WOCl4+Cs+ +Sb3+ +2HCl+NH3(aq) WOCl 4 +Cs + +Sb 3+ +2HCl+NH 3 (aq)

→ WO3(↓)+Cs+ +Sb3+ +6N+H4Cl- → WO 3 (↓) + Cs + + Sb 3+ + 6N + H 4 Cl -

然後利用超重力將大部分溶液與沉澱物分離,得到泥狀沉澱物,以去離子水清洗掉銨鹽,再以真空烘箱抽取溶劑成乾燥粉末,將該乾燥氯氧化鎢銫銻之粉末放置於高溫爐中,並以一定比例之鈍氣與氫氣,使其複合氯氧化鎢銫銻還原成氧化鎢銫銻。其製程條件如下:於高溫爐中以每分鐘3-5℃之升溫速率,從室溫升至580℃,在580℃持溫為2小時燒結。由此可得到結晶型複合氧化鎢奈米微粒子,其化學反應式如下:WOCl4+WO2Cl2+Cs+ +Sb3+ +3H2O Then use supergravity to separate most of the solution from the precipitate to obtain a muddy precipitate, wash off the ammonium salt with deionized water, and then extract the solvent into a dry powder in a vacuum oven. Place the dry tungsten oxychloride cesium antimony powder in In a high-temperature furnace, with a certain proportion of bluff gas and hydrogen, its composite tungsten oxychloride cesium antimony is reduced to tungsten cesium antimony oxide. The process conditions are as follows: in a high-temperature furnace at a heating rate of 3-5 °C per minute, from room temperature to 580 °C, sintering at 580 °C for 2 hours. Thus, crystalline composite tungsten oxide nanoparticles can be obtained, and the chemical reaction formula is as follows: WOCl 4 +WO 2 Cl 2 +Cs + +Sb 3+ +3H 2 O

→ CsxSbyWO3+6HCl(↑)(X,Y<1) → Cs x Sb y WO 3 +6HCl(↑)(X,Y<1)

由XRD可看出其為含有銫、銻之複合氧化鎢結晶。最後,以適當配方比例溶劑、分散劑及複合氧化鎢粉末研磨至粒徑小於100nm之奈米粒子,再以透明樹脂配成塗液。 It can be seen from XRD that it is a composite tungsten oxide crystal containing cesium and antimony. Finally, the appropriate proportion of solvent, dispersant and composite tungsten oxide powder is milled to nanoparticles with a particle size of less than 100 nm, and then a transparent resin is used to make a coating solution.

實施例七:將六氯化鎢與氫氧化銫溶解於乙醇水溶液,以滴入方式加入適量氨水直到沉澱發生。其化學反應式如下:WCl6+H2O+CsOH → WOCl4+Cs+ +HCl+H2O Embodiment 7: Dissolve tungsten hexachloride and cesium hydroxide in an ethanol aqueous solution, and add an appropriate amount of ammonia water in a dropwise manner until precipitation occurs. The chemical reaction formula is as follows: WCl 6 +H 2 O+CsOH → WOCl 4 +Cs + +HCl+H 2 O

WOCl4+Cs+ +2HCl+NH3(aq) WOCl 4 +Cs + +2HCl+NH 3 (aq)

→ WO3(↓)+Cs+ +6N+H4Cl → WO 3 (↓)+Cs + +6N + H 4 Cl

然後利用超重力將大部分溶液與沉澱物分離,得到泥狀沉澱物,以去離子水清洗掉銨鹽,再以真空烘箱抽取溶劑成乾燥粉末,將該乾燥氯氧化鎢銫之粉末放置於高溫爐中,以每分鐘3-5℃之升溫速率,先在400℃持溫1小時以鈍氣及甲烷一定比例通入,再以一定比例之鈍氣與氫氣,使其複合氯氧化鎢銫還原成氧化鎢銫。其製程條件如下:從室溫升至580℃,在580℃持溫為2小時燒結。由此可得到結晶型複合氧化鎢奈米微粒子,其化學反應式如下:WOCl4+WO2Cl2+Cs+ +CH4+3H2O Then use supergravity to separate most of the solution from the precipitate to obtain a muddy precipitate, wash off the ammonium salt with deionized water, then extract the solvent into a dry powder in a vacuum oven, and place the dry tungsten oxychloride cesium powder at high temperature In the furnace, at a heating rate of 3-5 ℃ per minute, firstly maintain the temperature at 400 ℃ for 1 hour and pass it in a certain ratio of inert gas and methane, and then in a certain ratio of inert gas and hydrogen to reduce the composite tungsten oxychloride cesium Tungsten oxide cesium. The process conditions are as follows: from room temperature to 580 ℃, sintering at 580 ℃ for 2 hours. Thus, crystalline composite tungsten oxide nanoparticles can be obtained, and the chemical reaction formula is as follows: WOCl 4 +WO 2 Cl 2 +Cs + +CH 4 +3H 2 O

→ CsxCyWO3+6HCl(↑)+H2O(X,Y<1) → Cs x C y WO 3 +6HCl(↑)+H 2 O(X,Y<1)

由元素分析可看出其為含有銫之複合氧化鎢結晶。最後,以適當配方比例溶劑、分散劑及複合氧化鎢粉末研磨至粒徑小於100nm之奈米粒子,再以透明樹脂配成塗液。 It can be seen from elemental analysis that it is a composite tungsten oxide crystal containing cesium. Finally, the appropriate proportion of solvent, dispersant and composite tungsten oxide powder is milled to nanoparticles with a particle size of less than 100 nm, and then a transparent resin is used to make a coating solution.

實施例八:將六氯化鎢、四氯化鍺與氫氧化銫溶解於乙醇水溶液,以滴入方式加入適量氨水直到沉澱發生。其化學反應式如下:WCl6+H2O+CsOH+GeCl4 → WOCl4+Cs+ +Ge4+ +HCl+H2O Embodiment 8: Dissolve tungsten hexachloride, germanium tetrachloride and cesium hydroxide in an aqueous ethanol solution, and add an appropriate amount of ammonia water in a dropwise manner until precipitation occurs. The chemical reaction formula is as follows: WCl 6 +H 2 O+CsOH+GeCl 4 → WOCl 4 +Cs + +Ge 4+ +HCl+H 2 O

WOCl4+Cs+ +Ge4+ +2HCl+NH3(aq) WOCl 4 +Cs + +Ge 4+ +2HCl+NH 3 (aq)

→ WO3(↓)+Cs+ +Ge4+ +6N+H4Cl- → WO 3 (↓) + Cs + + Ge 4+ + 6N + H 4 Cl -

然後利用超重力將大部分溶液與沉澱物分離,得到泥狀沉澱物,以去離子水清洗掉銨鹽,再以真空烘箱抽取溶劑成乾燥粉末,將該乾燥氯氧化鎢銫之粉末放置於高溫爐中,並以一定比例之鈍氣與氫氣,使其複合氯氧化鎢銫還原成氧化鎢銫。其製程條件如下:於高溫爐中以每分鐘3-5℃之升溫速率,從室溫升至580℃,在580℃持溫為2小時燒結。由此可得到結晶型複合氧化鎢奈米微粒子,其化學反應式如下:WOCl4+WO2Cl2+Cs+ +Ge4+ +3H2O Then use supergravity to separate most of the solution from the precipitate to obtain a muddy precipitate, wash off the ammonium salt with deionized water, then extract the solvent into a dry powder in a vacuum oven, and place the dry tungsten oxychloride cesium powder at high temperature In the furnace, and with a certain proportion of bluff gas and hydrogen, the composite tungsten oxychloride cesium is reduced to cesium tungsten oxide. The process conditions are as follows: in a high-temperature furnace at a heating rate of 3-5 °C per minute, from room temperature to 580 °C, sintering at 580 °C for 2 hours. Thus, crystalline composite tungsten oxide nanoparticles can be obtained, and the chemical reaction formula is as follows: WOCl 4 +WO 2 Cl 2 +Cs + +Ge 4+ +3H 2 O

→ CsxGeyWO3+6HCl(↑)(X,Y<1) → Cs x Ge y WO 3 +6HCl(↑)(X,Y<1)

由XRD可看出其為含有銫、鍺之複合氧化鎢結晶。最後,以適當配方比例溶劑、分散劑及複合氧化鎢粉末研磨至粒徑小於100nm之奈米粒子,再以透明樹脂配成塗液。 It can be seen from XRD that it is a composite tungsten oxide crystal containing cesium and germanium. Finally, the appropriate proportion of solvent, dispersant and composite tungsten oxide powder is milled to nanoparticles with a particle size of less than 100 nm, and then a transparent resin is used to make a coating solution.

實施例九:將六氯化鎢、四乙基矽氧烷與氫氧化銫溶解於乙醇水溶液,以滴入方式加入適量氨水直到沉澱發生。其化學反應式如下:WCl6+H2O+CsOH+Si(OEt)4 → WSiyOCl4+Cs+ +HCl+H2O Example 9: Dissolve tungsten hexachloride, tetraethylsiloxane and cesium hydroxide in an aqueous ethanol solution, and add an appropriate amount of ammonia water in a dropwise manner until precipitation occurs. The chemical reaction formula is as follows: WCl 6 +H 2 O+CsOH+Si(OEt) 4 → WSi y OCl 4 +Cs + +HCl+H 2 O

WSiyOCl4+Cs+ +2HCl+NH3(aq) WSi y OCl 4 +Cs + +2HCl+NH 3 (aq)

→ WSiyO3(↓)+Cs+ +6N+H4Cl → WSi y O 3 (↓)+Cs + +6N + H 4 Cl

然後利用超重力將大部分溶液與沉澱物分離,得到泥狀沉澱物,以去離子水清洗掉銨鹽,再以真空烘箱抽取溶劑成乾燥粉末,將該乾燥氯氧化鎢矽之粉末放置於高溫爐中,並以一定比例之鈍氣與氫氣,使其複合氯氧化鎢矽還原成氧化鎢矽。其製程條件如下:於高溫爐中以每分鐘3-5℃之升溫速率,從室溫升至580℃,在580℃持溫為2小時燒結。由此可得到結晶型複合氧化鎢奈米微粒子,其化學反應式如下:WSiyOCl4+WSiyO2Cl2+Cs+ +3H2O Then use supergravity to separate most of the solution from the precipitate to obtain a muddy precipitate, wash off the ammonium salt with deionized water, then extract the solvent into a dry powder in a vacuum oven, and place the dry tungsten oxychloride silicon powder at high temperature In the furnace, with a certain proportion of passive gas and hydrogen, the composite tungsten silicon oxychloride is reduced to tungsten silicon oxide. The process conditions are as follows: in a high-temperature furnace at a heating rate of 3-5 °C per minute, from room temperature to 580 °C, sintering at 580 °C for 2 hours. Thus, crystalline composite tungsten oxide nanoparticles can be obtained, and the chemical reaction formula is as follows: WSi y OCl 4 +WSi y O 2 Cl 2 +Cs + +3H 2 O

→ CsxSiyWO3+6HCl(↑)(X,Y<1) → Cs x Si y WO 3 +6HCl(↑)(X, Y<1)

由XRD可看出其為含有銫、矽之複合氧化鎢結晶。最後,以適當配方比例溶劑、分散劑及複合氧化鎢粉末研磨至粒徑小於100nm之奈米粒子,再以透明樹脂配成塗液。 It can be seen from XRD that it is a composite tungsten oxide crystal containing cesium and silicon. Finally, the appropriate proportion of solvent, dispersant and composite tungsten oxide powder is milled to nanoparticles with a particle size of less than 100 nm, and then a transparent resin is used to make a coating solution.

實施例十:直接將六氯化鎢、四氯化錫、四氯化鍺與氫氧化銫溶解於乙醇水溶液,以滴入方式加入適量氨水直到沉澱發生。其化學反應式如下:WCl6+H2O+CsOH+GeCl4+SnCl4 → WOCl4+Cs+ +Sn4+ +HCl Example 10: Dissolve tungsten hexachloride, tin tetrachloride, germanium tetrachloride, and cesium hydroxide in an aqueous ethanol solution, and add an appropriate amount of ammonia water in a dropwise manner until precipitation occurs. The chemical reaction formula is as follows: WCl 6 +H 2 O+CsOH+GeCl 4 +SnCl 4 → WOCl 4 +Cs + +Sn 4+ +HCl

WOCl4+Cs+ +Ge4+ +Sn4+ +2HCl+NH3(aq) WOCl 4 +Cs + +Ge 4+ +Sn 4+ +2HCl+NH 3 (aq)

→ WO3(↓)+Cs+ +Ge4+ +Sn4+ +6N+H4Cl- → WO 3 (↓) + Cs + + Ge 4+ + Sn 4+ + 6N + H 4 Cl -

然後利用超重力將大部分溶液與沉澱物分離,得到泥狀沉澱物,以去離子水清洗掉銨鹽,再以真空烘箱抽取溶劑成乾燥粉末,將該乾燥氯氧化鎢銫之粉末放置於高溫爐中,並以一定比例之鈍氣與氫氣,使其複合氯氧化鎢銫錫鍺還原成複合鎢銫錫鍺氧化物。其製程條件如下:於高溫爐中以每分鐘3-5℃之升溫速率,從室溫升至580℃,在580℃持溫為2小時燒結。由此可得到結晶型複合氧化鎢奈米微粒子,其化學反應式如下: WOCl4+WO2Cl2+Cs+ +Ge4+ +Sn4+ +3H2O Then use supergravity to separate most of the solution from the precipitate to obtain a muddy precipitate, wash off the ammonium salt with deionized water, then extract the solvent into a dry powder in a vacuum oven, and place the dry tungsten oxychloride cesium powder at high temperature In the furnace, with a certain proportion of passive gas and hydrogen, the composite tungsten cesium tin germanium oxychloride is reduced to composite tungsten cesium tin germanium oxide. The process conditions are as follows: in a high-temperature furnace at a heating rate of 3-5 °C per minute, from room temperature to 580 °C, sintering at 580 °C for 2 hours. Thus, crystalline composite tungsten oxide nanoparticles can be obtained, and the chemical reaction formula is as follows: WOCl 4 +WO 2 Cl 2 +Cs + +Ge 4+ +Sn 4+ +3H 2 O

→ CsxSnyGezWO3+6HCl(↑)(X,Y<1) → Cs x Sn y Ge z WO 3 +6HCl(↑)(X,Y<1)

由XRD可看出其為含有銫、錫、鍺之複合氧化鎢結晶。最後,以適當配方比例溶劑、分散劑及複合氧化鎢粉末研磨至粒徑小於100nm之奈米粒子,再以透明樹脂配成塗液。 It can be seen from XRD that it is a composite tungsten oxide crystal containing cesium, tin and germanium. Finally, the appropriate proportion of solvent, dispersant and composite tungsten oxide powder is milled to nanoparticles with a particle size of less than 100 nm, and then a transparent resin is used to make a coating solution.

比較例一,以乙醇為溶劑溶解六氯化鎢得到溶液甲;另以氯化銫溶於水而得到溶液乙。然後將甲乙溶液混合後加鹼性水溶液得到複合氯氧化鎢銫之深黑藍色沈澱物。然後利用超重力將大部分溶液與沉澱物分離,得到泥狀沉澱物再以真空烘箱抽取溶劑成乾燥粉末,將該乾燥氯氧化鎢銫之粉末放置於高溫爐中,並以一定比例之鈍氣與氫氣,使其複合氯氧化鎢銫還原成氧化鎢銫。其製程條件如下:於高溫爐中以每分鐘3-5℃之升溫速率,從室溫升至580℃,在580℃持溫為2小時燒結。由XRD可看出其為含有銫之複合氧化鎢結晶。最後,以適當配方比例溶劑、分散劑及複合氧化鎢粉末研磨至粒徑小於100nm之奈米粒子,再以透明樹脂配成塗液,可塗佈在各種透明、半透明及不透明的基材上,可達吸收、阻隔、保溫及防止紅外線偵測的各種用途,也可以運用在紡織抽絲、噴霧附著、沉浸各種表面處理而為保溫、蓄熱及太陽能量吸收等功能。 In Comparative Example 1, tungsten hexachloride was dissolved in ethanol to obtain solution A; and cesium chloride was dissolved in water to obtain solution B. Then, the methyl ethyl solution is mixed and then an alkaline aqueous solution is added to obtain a deep black blue precipitate of composite tungsten oxychloride cesium. Then use supergravity to separate most of the solution from the precipitate to obtain a muddy precipitate. Then extract the solvent into a dry powder in a vacuum oven, place the dry tungsten oxychloride powder in a high temperature furnace, and pass a certain proportion of inert gas With hydrogen, its composite tungsten oxychloride is reduced to tungsten cesium oxide. The process conditions are as follows: in a high-temperature furnace at a heating rate of 3-5 °C per minute, from room temperature to 580 °C, sintering at 580 °C for 2 hours. It can be seen from XRD that it is a composite tungsten oxide crystal containing cesium. Finally, the solvent, dispersant and composite tungsten oxide powder of appropriate formulation ratio are ground to nanoparticles with a particle size of less than 100nm, and then a transparent resin is formulated into a coating solution, which can be coated on various transparent, translucent and opaque substrates It can be used for various purposes such as absorption, blocking, heat preservation and infrared detection. It can also be used in textile spinning, spray adhesion, immersion in various surface treatments for heat preservation, heat storage and solar energy absorption.

比較例二,以乙醇為溶劑溶解六氯化鎢得到溶液甲;另以氯化鉀溶於水而得到溶液乙。然後將甲乙溶液混合後加鹼性水溶液得到複合氯氧化鎢鉀之深黑藍色沈澱物。然後利用超重力將大部分溶液與沉澱物分離,得到泥狀沉澱物再以真空烘箱抽取溶劑成乾燥粉末,將該乾燥氯氧化鎢鉀之粉末放置於高溫爐中,並以一定比例之鈍氣與氫氣,使其複合氯氧化鎢鉀還原成氧化鎢鉀。其製程條件如下:於高溫爐中以每分鐘3-5℃之升溫速率,從室溫升至580℃,在580℃持溫為2小時燒結。由XRD可看出其為含有鉀之複合氧化 鎢結晶。最後,以適當配方比例溶劑、分散劑及複合氧化鎢粉末研磨至粒徑小於100nm之奈米粒子,再以透明樹脂配成塗液,可塗佈在各種透明、半透明及不透明的基材上。 In Comparative Example 2, tungsten hexachloride was dissolved in ethanol to obtain solution A; and potassium chloride was dissolved in water to obtain solution B. Then, the methyl ethyl solution is mixed and then an alkaline aqueous solution is added to obtain a deep black and blue precipitate of composite potassium tungsten oxychloride. Then use supergravity to separate most of the solution from the precipitate to obtain a muddy precipitate and then extract the solvent into a dry powder in a vacuum oven. Place the dry powder of potassium tungsten oxychloride in a high-temperature furnace and pass a certain proportion of inert gas With hydrogen, the compound of potassium tungsten oxychloride is reduced to potassium tungsten oxide. The process conditions are as follows: in a high-temperature furnace at a heating rate of 3-5 °C per minute, from room temperature to 580 °C, sintering at 580 °C for 2 hours. It can be seen from XRD that it is a compound oxidation containing potassium Tungsten crystals. Finally, the solvent, dispersant and composite tungsten oxide powder with appropriate formulation ratio are ground to nanoparticles with a particle size of less than 100nm, and then a transparent resin is formulated into a coating solution, which can be coated on various transparent, translucent and opaque substrates .

比較例三,以乙醇為溶劑溶解六氯化鎢得到溶液甲;另以氯化鋇溶於水而得到溶液乙。然後將甲乙溶液混合後加鹼性水溶液得到複合氯氧化鎢鋇之深黑藍色沈澱物。然後利用超重力將大部分溶液與沉澱物分離,得到泥狀沉澱物再以真空烘箱抽取溶劑成乾燥粉末,將該乾燥氯氧化鎢鋇之粉末放置於高溫爐中,並以一定比例之鈍氣與氫氣,使其複合氯氧化鎢鋇還原成氧化鎢鋇。其製程條件如下:於高溫爐中以每分鐘3-5℃之升溫速率,從室溫升至580℃,在580℃持溫為2小時燒結。由XRD可看出其為含有鋇之複合氧化鎢結晶。最後,以適當配方比例溶劑、分散劑及複合氧化鎢粉末研磨至粒徑小於100nm之奈米粒子,再以透明樹脂配成塗液,可塗佈在各種透明、半透明及不透明的基材上。 In Comparative Example 3, tungsten hexachloride was dissolved in ethanol to obtain solution A; and barium chloride was dissolved in water to obtain solution B. Then, the methyl ethyl solution is mixed and then an alkaline aqueous solution is added to obtain a deep black-blue precipitate of compound tungsten oxychloride barium. Then use supergravity to separate most of the solution from the precipitate to obtain a muddy precipitate. Then extract the solvent into a dry powder in a vacuum oven, place the dry barium tungsten oxychloride powder in a high temperature furnace, and pass a certain proportion of inert gas With hydrogen, its composite barium tungsten oxychloride is reduced to barium tungsten oxide. The process conditions are as follows: in a high-temperature furnace at a heating rate of 3-5 °C per minute, from room temperature to 580 °C, sintering at 580 °C for 2 hours. It can be seen from XRD that it is a composite tungsten oxide crystal containing barium. Finally, the solvent, dispersant and composite tungsten oxide powder with appropriate formulation ratio are ground to nanoparticles with a particle size of less than 100nm, and then a transparent resin is formulated into a coating solution, which can be coated on various transparent, translucent and opaque substrates .

請參考表一所示,為總結上述之比較例以及實施例之步驟條件以及該複合鎢氧化物之粒徑大小、可見光穿透率以及紅外線阻隔率等特性概要記載。 Please refer to Table 1 for a summary description of the steps and conditions of the above-mentioned comparative examples and examples, as well as the particle size of the composite tungsten oxide, visible light transmittance and infrared blocking rate.

Figure 108119191-A0305-02-0016-1
Figure 108119191-A0305-02-0016-1
Figure 108119191-A0305-02-0017-2
Figure 108119191-A0305-02-0017-2

請配合參考圖3,為於橫軸採用穿透光之波長,於縱軸採用光的穿透率(%)之曲線圖;如圖所示,本發明之紅外線遮蔽體確實可讓波長介於400-700nm的可見光穿透,同時遮蔽眼睛所不可見之波長約為1000nm或更高之紅外線,由此可知,本發明之複合氧化鎢奈米微粒子具有優異之可見光(400-700nm)穿透特性以及紅外線吸收(1000-2500nm)特性。 Please refer to FIG. 3, in order to use the wavelength of the penetrating light on the horizontal axis and the graph of the light transmittance (%) on the vertical axis; as shown in the figure, the infrared shielding body of the present invention does allow the wavelength to be between 400-700nm visible light penetration, while blocking infrared rays with a wavelength of about 1000nm or higher that are invisible to the eyes, it can be seen that the composite tungsten oxide nanoparticles of the present invention have excellent visible light (400-700nm) transmission characteristics And infrared absorption (1000-2500nm) characteristics.

請配合參考圖4,為本發明之複合鎢氧化物奈米粒子之壽命測試趨勢圖。如圖所示,本發明之複合鎢氧化物奈米粒子經由1000小時之長時間照光測試,紅外線波段以及紫外線波段之阻隔率變化低於10%。 Please refer to FIG. 4 for the life test trend diagram of the composite tungsten oxide nanoparticles of the present invention. As shown in the figure, the composite tungsten oxide nanoparticles of the present invention have undergone a 1000-hour long-time illumination test, and the blocking rate of the infrared band and the ultraviolet band has changed less than 10%.

以上所公開的內容僅為本發明的優選可行實施例,並非因此侷限本發明的申請專利範圍,所以凡是運用本發明說明書及圖式內容所做的等效技術變化,均包含於本發明的申請專利範圍內。 The content disclosed above is only a preferred and feasible embodiment of the present invention, and therefore does not limit the scope of the patent application of the present invention, so any equivalent technical changes made by using the description and drawings of the present invention are included in the application of the present invention. Within the scope of the patent.

指定代表圖為流程圖,故無符號簡單說明 The designated representative diagram is a flowchart, so there is no symbol for a simple explanation

Claims (4)

一種紅外線吸收材料,其包括由銫、錫及鍺三者所構成之複合氧化鎢奈米微粒子,其通式為:CsxSnyGezWO3;其中,X、Y及Z小於1;Cs表示銫;Sn表示錫;Ge表示鍺;W表示鎢;O表示氧。 An infrared absorbing material, including composite tungsten oxide nanoparticles composed of cesium, tin and germanium, the general formula is: Cs x Sn y Ge z WO 3 ; wherein, X, Y and Z are less than 1; Cs Means cesium; Sn means tin; Ge means germanium; W means tungsten; O means oxygen. 一種紅外線遮蔽體,其為一奈米漿料與一媒體樹脂混合所製成,其中所述奈米漿料包括如申請專利範圍第1項所述的紅外線吸收材料與一分散劑。 An infrared shielding body is made by mixing a nano slurry with a media resin, wherein the nano slurry includes the infrared absorption material and a dispersant as described in item 1 of the patent application scope. 如申請專利範圍第2項所述的紅外線遮蔽體,其中,所述分散劑為高分子酸性、高分子鹼性或高分子中性分散劑。 The infrared shielding body as described in item 2 of the patent application range, wherein the dispersant is a polymer acidic, polymer basic or polymer neutral dispersant. 如申請專利範圍第2項所述的紅外線遮蔽體,其中,所述媒體樹脂包含熱硬化樹脂、紫外線硬化樹脂、電子束硬化樹脂、常溫硬化樹脂及熱可塑性樹脂之中的一種或兩種以上的組合。 The infrared shielding body as described in item 2 of the patent application range, wherein the media resin includes one or more of thermosetting resin, ultraviolet curing resin, electron beam curing resin, room temperature curing resin and thermoplastic resin combination.
TW108119191A 2014-02-07 2014-02-07 Infrared shielding body and infrared absorption material thereof TWI680946B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW108119191A TWI680946B (en) 2014-02-07 2014-02-07 Infrared shielding body and infrared absorption material thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW108119191A TWI680946B (en) 2014-02-07 2014-02-07 Infrared shielding body and infrared absorption material thereof

Publications (2)

Publication Number Publication Date
TW201936511A TW201936511A (en) 2019-09-16
TWI680946B true TWI680946B (en) 2020-01-01

Family

ID=68618339

Family Applications (1)

Application Number Title Priority Date Filing Date
TW108119191A TWI680946B (en) 2014-02-07 2014-02-07 Infrared shielding body and infrared absorption material thereof

Country Status (1)

Country Link
TW (1) TWI680946B (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201224067A (en) * 2010-12-07 2012-06-16 Ind Tech Res Inst Heat shielding material and method of manufacturing the same
TW201343782A (en) * 2012-02-22 2013-11-01 Sumitomo Metal Mining Co Method of producing composite tungsten oxide fine particle-dispersed polycarbonate resin composition and heat ray shielding molded product using the same and heat ray shielding laminate

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201224067A (en) * 2010-12-07 2012-06-16 Ind Tech Res Inst Heat shielding material and method of manufacturing the same
TW201343782A (en) * 2012-02-22 2013-11-01 Sumitomo Metal Mining Co Method of producing composite tungsten oxide fine particle-dispersed polycarbonate resin composition and heat ray shielding molded product using the same and heat ray shielding laminate

Also Published As

Publication number Publication date
TW201936511A (en) 2019-09-16

Similar Documents

Publication Publication Date Title
TWI640479B (en) Mathod for manufacturing composite-tungsten-oxide nanoparticles
JP5597268B2 (en) Transparent heat shielding material and method for producing the same
Huang et al. Solvothermal synthesis of Sb: SnO2 nanoparticles and IR shielding coating for smart window
WO2005037932A1 (en) Infrared shielding material microparticle dispersion, infrared shield, process for producing infrared shielding material microparticle, and infrared shielding material microparticle
JP5034272B2 (en) Tungsten-containing oxide fine particles, method for producing the same, and infrared shielding body using the same
JP2015057363A (en) Composition of nanoparticles of transparent metal oxide, method for manufacturing the same, and object consisting of the same
US9434652B2 (en) Infrared absorption material, method for fabricating the same, and thermal isolation structure employing the same
TWI807020B (en) Composite tungsten oxide film, manufacturing method thereof, and film-forming substrate and article having the same
JP2011063739A (en) Microparticle of near infrared ray shielding material, production method therefor, particle dispersion of near infrared ray shielding material, and near infrared ray shielding body
CN105762283A (en) Perovskite solar cell light-absorbing layer nano sol film-coating solution and preparation method
JP5387925B2 (en) Infrared shielding material fine particle dispersion, infrared shielding body, method for producing infrared shielding material fine particles, and infrared shielding material fine particles
KR101602486B1 (en) Fabricating method of light shielding structure
JP4904714B2 (en) Infrared shielding material fine particle dispersion, infrared shielding body, method for producing infrared shielding material fine particles, and infrared shielding material fine particles
JP2011063493A (en) Near-infrared ray shielding material microparticle dispersion, near-infrared ray shielding body and method for producing near-infrared ray shielding material dispersion
JP4182825B2 (en) Antimony tin oxide fine particles for sunscreen, dispersion for forming sunscreen using the same, sunscreen and transparent substrate for sunscreen
TWI680946B (en) Infrared shielding body and infrared absorption material thereof
TW201834972A (en) Infrared shielding body and infrared absorption material thereof
CN102516834B (en) Cerium-antimony codoped tin oxide thin film, powder and preparation method thereof
CN105448524A (en) Silver-doped organometallic perovskite material, solar cell and manufacturing method thereof
JP6171733B2 (en) Heat ray shielding dispersion forming coating solution and heat ray shielding body
JP2011063484A (en) Near-infrared ray shielding material microparticle, method for producing the same, near-infrared ray shielding material microparticle dispersion and near-infrared ray shielding body
CN114853068B (en) Titanium-doped cesium tungsten bronze powder and preparation method thereof
Trisdianto et al. Optical Transmittance, Electrical Resistivity and Microstructural Characteristics of Undoped and Fluorine-doped Tin Oxide Conductive Glass Fabricated by Spray Pyrolysis Technique with Modified Ultrasonic Nebulizer
JP2010059040A (en) Method for producing microparticle and heat-ray-shielding microparticle obtained thereby
Shah et al. Nanomaterials and nanocomposites for energy-efficient building envelopes

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees