WO2013125193A1 - Resin composition, polyimide resin film using same, display substrate, and production method for said display substrate - Google Patents

Resin composition, polyimide resin film using same, display substrate, and production method for said display substrate Download PDF

Info

Publication number
WO2013125193A1
WO2013125193A1 PCT/JP2013/000843 JP2013000843W WO2013125193A1 WO 2013125193 A1 WO2013125193 A1 WO 2013125193A1 JP 2013000843 W JP2013000843 W JP 2013000843W WO 2013125193 A1 WO2013125193 A1 WO 2013125193A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin composition
polyimide
polyimide precursor
resin film
film
Prior art date
Application number
PCT/JP2013/000843
Other languages
French (fr)
Japanese (ja)
Inventor
由美子 荒川
上田 篤
匡之 大江
Original Assignee
日立化成デュポンマイクロシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=49005391&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2013125193(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by 日立化成デュポンマイクロシステムズ株式会社 filed Critical 日立化成デュポンマイクロシステムズ株式会社
Priority to JP2014500907A priority Critical patent/JP6172139B2/en
Publication of WO2013125193A1 publication Critical patent/WO2013125193A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/54Silicon-containing compounds
    • C08K5/541Silicon-containing compounds containing oxygen
    • C08K5/5415Silicon-containing compounds containing oxygen containing at least one Si—O bond
    • C08K5/5419Silicon-containing compounds containing oxygen containing at least one Si—O bond containing at least one Si—C bond
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1067Wholly aromatic polyimides, i.e. having both tetracarboxylic and diamino moieties aromatically bound

Definitions

  • the present invention relates to a resin composition having both moderate adhesion and good peelability. Moreover, it is related with the polyimide resin film using the resin composition of this invention, a display substrate, and its manufacturing method.
  • a display substrate used for these small and medium displays can be obtained by forming TFTs (thin film transistors) on a glass substrate.
  • TFTs thin film transistors
  • the glass substrate is excellent in heat resistance and dimensional stability, but has a problem that the strength decreases when the weight is reduced and the thickness is reduced. Therefore, a plastic substrate has been proposed as a substrate that replaces the glass substrate.
  • a plastic substrate is easy to mold, has high toughness, and is strong against bending. Therefore, the plastic substrate is suitable for reducing the weight and thickness of a semiconductor element, and is useful as a flexible base material.
  • a method of manufacturing a display substrate using a thin plastic substrate includes a step of forming a plastic substrate on a support, a step of forming a semiconductor element such as a TFT on the plastic substrate, and a support of the plastic substrate. A step of peeling from the substrate.
  • Patent Document 1 a plastic substrate is provided on a hard carrier substrate (support) via a release layer, a pixel circuit and a display layer are formed thereon, and then peeled off from the hard carrier substrate by a laser.
  • the manufacturing method of the display substrate is described. With a flexible display substrate manufactured by this method, a lightweight and thin substrate can be formed.
  • Patent Document 1 a plastic layer containing parylene is used as one having high heat resistance.
  • the formation of a plastic layer containing parylene has a problem that the process is complicated.
  • an excimer laser device or the like is necessary because the plastic substrate needs to be peeled off by a laser.
  • Patent Document 2 a method of providing a silane coupling layer between an inorganic layer (support) and a polyimide layer which is a plastic substrate has been proposed (for example, Patent Document 2).
  • the polyimide resin film is physically peeled from the support without requiring a laser in the peeling step.
  • the adhesion strength between the formed layer or film and the adherend is significantly increased. , Tend to increase adhesion. And in order to raise adhesive force, it is necessary to increase the compounding quantity of a silane coupling agent to some extent, and it has not been used for the purpose of peeling a layer or a film from an adherend.
  • appropriate adhesion strength is expressed by blending a small amount of a specific (b) alkoxysilane compound among the silane coupling agents into (a) the polyimide precursor. The present invention has been achieved.
  • the present invention relates to the following.
  • R 1 represents a divalent organic group having an aromatic ring
  • R 2 represents a tetravalent organic group having an aromatic ring.
  • (b) The resin composition, wherein the alkoxysilane compound is any compound represented by the general formula (2) or (3).
  • R 1 and R 2 each independently represents a monovalent organic group
  • a step of applying a resin composition to a support and heating to form a polyimide resin film, a step of forming a semiconductor element on the polyimide resin film, and a polyimide resin film on which the semiconductor element is formed The said resin composition used for the manufacturing method of a display substrate including the process of peeling from.
  • the substrate when a semiconductor element such as a TFT is formed, the substrate has sufficient adhesion with the support, and it is neatly cleaned by a physical method without using a laser when peeling from the support.
  • a resin composition capable of forming a polyimide resin film (plastic substrate) that can be peeled (good peelability) can be provided. Further, it is possible to provide a resin composition capable of forming a polyimide resin film with small thermal expansion even when exposed to high temperatures when forming a semiconductor element. When the thermal expansion of the polyimide resin film is small, dimensional deviation can be suppressed when forming a semiconductor element such as a TFT.
  • the polyimide resin film using the resin composition of this invention is excellent in a mechanical characteristic and heat resistance.
  • this invention can provide the manufacturing method of the display substrate using this resin composition. Furthermore, the present invention can provide a display substrate formed by the manufacturing method.
  • the resin composition of the present invention is a resin composition containing (a) a polyimide precursor, (b) an alkoxysilane compound, and (c) an organic solvent, and the content of (b) is (a).
  • the content is 0.01 to 2% by mass with respect to the polyimide precursor.
  • the resin composition of the present invention contains (a) a polyimide precursor.
  • a polyimide precursor By containing a polyimide precursor, it is possible to form a polyimide resin film excellent in heat resistance and mechanical properties.
  • a polyimide precursor is a polyamic acid which has a structural unit represented by General formula (1) from a viewpoint of heat resistance and mechanical characteristics.
  • R 1 represents a divalent organic group having an aromatic ring
  • R 2 represents a tetravalent organic group having an aromatic ring.
  • the polyimide precursor is generally obtained by polymerizing tetracarboxylic dianhydride and diamine. This polymerization can be performed by mixing both in an organic solvent.
  • tetracarboxylic dianhydrides used to synthesize polyimide precursors include pyromellitic dianhydride, cyclohexyltetracarboxylic dianhydride, 3,3 ′, 4,4′-biphenyltetracarboxylic acid.
  • Examples of the diamine used for synthesizing the polyimide precursor include p-phenylenediamine, m-phenylenediamine, benzidine, 3,3′-dimethyl-4,4′-diaminobiphenyl, and 2,2′-dimethyl- 4,4′-diaminobiphenyl, 3,3′-diethyl-4,4′-diaminobiphenyl, 2,2′-diethyl-4,4′-diaminobiphenyl, p-xylylenediamine, m-xylylenediamine, 1,5-diaminonaphthalene, 3,3'-dimethoxybenzidine, 4,4'- (or 3,4'-, 3,3'-, 2,4'-) diaminodiphenylmethane, 4,4'- (or 3,4'-, 3,3'-, 2,4 '-) diaminodiphenyl ether, 4,4'- (or 3,4'-, 3,3-,
  • the organic solvent used for synthesizing the polyimide precursor is N-methyl-2-pyrrolidone, N, N-dimethylformamide, N, N-dimethylacetamide, ⁇ -butyrolactone, ⁇ -caprolactone, ⁇ -caprolactone, Examples include ⁇ -valerolactone, dimethyl sulfoxide, 1,4-dioxane, cyclohexanone, and the like, and two or more of these may be used in combination.
  • the weight average molecular weight of the polyimide precursor is preferably 5,000 to 300,000, more preferably 10,000 to 300,000 in terms of the weight average molecular weight from the viewpoint of elongation of the cured film and solubility in a solvent. 15,000 to 200,000 is particularly preferable.
  • the weight average molecular weight can be calculated by measuring with a gel permeation chromatography method and converting with a standard polystyrene calibration curve.
  • the polyimide precursor represented by the general formula (1) is a divalent organic group having an aromatic ring, and R 1 is a residue of the diamine (a diamine obtained by removing two amino groups). Is preferably a divalent organic group represented by any one of the following structural formulas (4) to (6).
  • R ′ each independently represents a monovalent alkyl group.
  • R ′ represents a halogen atom (fluorine, chlorine or a part or all of hydrogen atoms in the alkyl group). , Bromine, iodine).
  • R 1 in the general formula (1) is a divalent organic group represented by any one of the structural formulas (3) to (6), it has excellent mechanical properties and heat resistance, and has a low thermal expansion coefficient. can do.
  • R ′ in the general formulas (4) and (5) representing a monovalent alkyl group is preferably an alkyl group having 1 to 3 carbon atoms.
  • R 1 in the general formula (1) is a divalent organic group represented by any one of the structural formulas (3) to (6), (a) as a diamine used in the synthesis of the polyimide precursor, p-phenylenediamine, m-phenylenediamine, benzidine, 3,3'-dimethyl-4,4'-diaminobiphenyl, 2,2'-dimethyl-4,4'-diaminobiphenyl, 3,3'-diethyl-4 4,2'-diaminobiphenyl, 2,2'-diethyl-4,4'-diaminobiphenyl.
  • diamines are preferably used in an amount of 40% by mass or more, more preferably 60% by mass or more, and more preferably 80 to 100% by mass, based on the total amount of (a) diamine used in the synthesis of the polyimide precursor. Further preferred.
  • R 2 representing a tetravalent organic group having an aromatic ring is a tetravalent organic group represented by the following structural formula (7) or (8). It is preferable that
  • R 2 is any one of the above groups, the mechanical properties and heat resistance are excellent, and the thermal expansion coefficient can be lowered.
  • R 2 in the general formula (1) is a tetravalent organic group represented by the structural formula (7) or (8), (a) a tetracarboxylic dianhydride used in the synthesis of the polyimide precursor Includes pyromellitic dianhydride and 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride.
  • tetracarboxylic dianhydrides are preferably used in an amount of 40% by mass or more, more preferably 60% by mass or more based on the total amount of tetracarboxylic dianhydrides used in the synthesis of (a) polyimide precursor. It is preferable to use 80 to 100% by mass.
  • the polyimide precursor is preferably contained in an amount of 5 to 100% by mass with respect to the entire resin composition.
  • the resin composition of the present invention contains 0.01 to 2% by mass of (b) an alkoxysilane compound with respect to (a) the polyimide precursor.
  • (B) When 0.01 to 2% by mass of the alkoxysilane compound is contained, when forming a semiconductor element such as a TFT, it has sufficient adhesion to the support and is peeled from the support. It is possible to provide a resin composition capable of forming a polyimide resin film (plastic substrate) that can be peeled cleanly (good peelability) by a physical method without using a laser.
  • the content of the (b) alkoxysilane compound is preferably 0.02 to 2% by mass, more preferably 0.05 to 1% by mass relative to the (a) polyimide precursor. It is more preferably from 05 to 0.5% by mass, particularly preferably from 0.1 to 0.5% by mass. 1 H NMR is mentioned as a method of confirming content of the (b) alkoxysilane compound in a resin composition.
  • (B) As the alkoxysilane compound, it is preferable to use any compound represented by the general formula (2) or (3).
  • R 1 and R 2 each independently represents a monovalent organic group
  • Examples of the compound represented by the general formula (2) or (3) include 3-ureidopropyltriethoxysilane, bis (2-hydroxyethyl) -3-aminopropyltriethoxysilane, and 3-glycidoxypropyltrimethoxysilane.
  • 3-ureidopropyltriethoxysilane, bis (2-hydroxy) are preferable from the viewpoint of providing a polyimide resin film having sufficient adhesion to the support and having good releasability when peeled from the support.
  • Ethyl) -3-aminopropyltriethoxysilane, 3-glycidoxypropyltrimethoxysilane, or phenyltrimethoxysilane is preferably used, and 3-ureidopropyltriethoxysilane is most preferably used.
  • the resin composition of the present invention contains (c) an organic solvent.
  • the organic solvent may be an organic solvent remaining when (a) the polyimide precursor is synthesized, or a further organic solvent may be used to adjust the viscosity of the resin composition. .
  • the organic solvent is (a) the organic solvent remaining when the polyimide precursor is synthesized, (c) the organic solvent includes N-methyl-2-pyrrolidone, N, N-dimethylformamide, N , N-dimethylacetamide, ⁇ -butyrolactone, ⁇ -caprolactone, ⁇ -caprolactone, ⁇ -valerolactone, dimethyl sulfoxide, 1,4-dioxane, cyclohexanone and the like.
  • the above-mentioned solvents may be used, and propylene glycol monomethyl ether, propylene glycol monoethyl ether, propylene glycol monomethyl acetate, propylene Glycol monoethyl acetate, ethyl cellosolve, butyl cellosolve, toluene, xylene, ethanol, isopropyl alcohol, n-butanol, etc. may be used, and these may be used in combination of two or more.
  • the content of the organic solvent (c) is a mass ratio ((a) to the content of the polyimide precursor (a) from the viewpoint of applicability and the like capable of forming a good thin film.
  • the mass of the polyimide precursor / (c) the mass of the organic solvent) is preferably 5/95 to 95/5, more preferably 20/80 to 80/20, and 30/70 to 50/50. More preferably.
  • the mass ratio ((a) polyimide precursor mass / (c) organic solvent mass) is obtained by accurately measuring the total mass of the resin composition and the petri dish by placing the resin composition in a metal or glass petri dish.
  • the organic solvent is scattered at a temperature near the boiling point of the organic solvent, and the total mass of the petri dish and the resin composition after the treatment is accurately measured. From the total mass of the petri dish and the resin composition before and after the treatment, It is possible to calculate by dividing the mass and dividing the amount of the resin composition material after treatment by the amount of the resin composition material before treatment.
  • the temperature is made to scatter at or below the temperature at which the polyamic acid of the polyimide precursor is ring-closed to the polyimide. In general, the temperature should be lower than 150 ° C.
  • the resin composition of the present invention can impart photosensitivity as necessary.
  • an amine having an acryloyl group or a methacryloyl group is blended with polyamic acid (hydrogen atom of carboxylic acid bonded to R 2 in the general formula (1)) as a polyimide precursor.
  • Sex can be imparted.
  • examples of such amines include N, N-diethylaminopropyl methacrylate, N, N-dimethylaminopropyl methacrylate, N, N-diethylaminopropyl acrylate, N, N-diethylaminoethyl methacrylate, and the like. Not limited.
  • the resin composition of the present invention may contain other components (adhesion aid, acid generator, etc.) as long as the heat resistance and mechanical properties are not impaired.
  • the step of applying the resin composition to a support and heating to form a polyimide resin film, the step of forming a semiconductor element on the polyimide resin film, and the semiconductor element are formed. It is preferable to use for the manufacturing method of a display substrate including the process of peeling a polyimide resin film from a support body. Since the polyimide resin film of the present invention has good adhesion to the support (for example, 50 to 950 kg / cm 2 , stud pull evaluation method), a semiconductor element such as a TFT can be easily formed on the polyimide resin film. it can.
  • the polyimide resin film of the present invention has a low coefficient of thermal expansion (for example, a coefficient of thermal expansion at 100 to 200 ° C. of 15 ⁇ 10 ⁇ 6 / K or less) and a high glass transition temperature (for example, 250 ° C. or more). ), When forming a semiconductor element such as a TFT, even if it is exposed to a high temperature, dimensional deviation can be suppressed.
  • a low coefficient of thermal expansion for example, a coefficient of thermal expansion at 100 to 200 ° C. of 15 ⁇ 10 ⁇ 6 / K or less
  • a high glass transition temperature for example, 250 ° C. or more
  • the polyimide resin film of the present invention can be formed by heating the resin composition of the present invention. By heating, the polyimide precursor in the resin composition becomes polyimide, and good mechanical properties and heat resistance can be imparted to the polyimide resin film.
  • the polyimide resin film of the present invention is a so-called plastic substrate.
  • the method for producing a display substrate of the present invention comprises a step of applying a resin composition of the present invention to a support and heating to form a polyimide resin film, a step of forming a semiconductor element on the polyimide resin film, and the semiconductor element Each step of peeling the polyimide resin film on which is formed from the support.
  • the display substrate is not particularly limited, but refers to a substrate in which a semiconductor element such as a TFT is formed on a plastic substrate (in the present invention, a polyimide resin film).
  • the step of applying the resin composition of the present invention to the support is not particularly limited as long as it is a method capable of forming a uniform thickness on the support.
  • it can be applied by die coating, spin coating, or screen printing. is there.
  • the support to which the resin composition of the present invention is applied is not limited as long as it is a hard material having self-supporting properties, has heat resistance, and is smooth and free from the surface on which the resin composition is applied. That is, there is no particular limitation as long as it is difficult to deform even when exposed to high temperatures required in the manufacturing process of the display substrate.
  • a material having a glass transition temperature of 200 ° C. or higher, preferably 250 ° C. or higher examples of such a support include glass.
  • the thickness of the support is preferably from 0.3 to 5.0 mm, more preferably from 0.5 to 3.0 mm, and even more preferably from 0.7 to 1.5 mm.
  • the resin composition film formed in the step of applying the resin composition to the support is preferably subjected to a drying step. It is possible to remove the solvent in the resin composition stepwise by the drying step, thereby suppressing the surface roughness of the polyimide resin film after heat curing.
  • the drying step is preferably performed at 80 to 150 ° C. for 30 seconds to 5 minutes using a hot plate.
  • a polyimide resin film can be formed by heating the resin composition film. By this heating step, the imide ring of the polyimide precursor in the resin composition is closed, giving the polyimide resin film good mechanical properties and heat resistance.
  • the heating process can be any apparatus that can control the temperature increase rate and the atmosphere during curing, and can maintain a specific temperature for a certain period of time.
  • the temperature in the heating step is preferably 100 to 500 ° C., more preferably 200 to 475 ° C., and further preferably 250 to 450 ° C.
  • the heating time is preferably 1 minute to 6 hours, more preferably 3 minutes to 4 hours, and even more preferably 15 minutes to 2 hours.
  • the thickness of the polyimide resin film in the present invention is preferably 1 to 50 ⁇ m.
  • the thickness is 1 ⁇ m or more, the polyimide resin film has good mechanical properties, and it is possible to suppress the occurrence of defects in the polyimide resin film in the peeling process from the support. Further, when the thickness is 50 ⁇ m or less, it is possible to suppress the polyimide film surface roughness that is generated when the solvent is not uniformly vaporized during drying.
  • the thickness of the polyimide resin film is more preferably 3 to 40 ⁇ m, and further preferably 5 to 30 ⁇ m.
  • the method for producing a display substrate of the present invention includes a step of forming a semiconductor element such as a TFT on a polyimide resin film. Since the polyimide resin film obtained in the present invention is excellent in heat resistance and mechanical properties, the method for forming a semiconductor element or the like is not particularly limited, but the method for forming a semiconductor element differs depending on the type of device used for the display substrate. For example, when a TFT liquid crystal display device is manufactured, an amorphous silicon TFT, for example, can be formed thereon.
  • the TFT includes a gate metal layer, a silicon nitride gate dielectric layer, and an ITO pixel electrode. Further, a structure necessary for the liquid crystal display can be formed thereon by a known method.
  • the polyimide resin film is peeled off from the support after forming the semiconductor element.
  • the polyimide resin film using the resin composition of this invention has favorable peelability and a mechanical characteristic, it can peel cleanly with a physical method. Further, peeling may be performed by irradiating a laser or the like from the support side.
  • examples of the display substrate include flexible wiring plates, liquid crystal elements, and electronic paper.
  • it is optimal for application to a device that is desired to be thin and flexible.
  • a manufacturing example of a flexible liquid crystal display substrate using the method for manufacturing a display substrate of the present invention will be described with reference to the drawings.
  • a glass substrate 1 is prepared as a support, and the resin composition of the present invention is applied onto the glass substrate 1 by spin coating, and then baked on a hot plate at 130 ° C. for 2 minutes to obtain a thickness of about A film was formed to a thickness of 5 ⁇ m to obtain a resin composition film 2.
  • FIG. 2 using a curing furnace, heat curing at 200 ° C. for 30 minutes and further at 350 ° C. for 60 minutes to imidize the polyimide precursor in the resin composition, and the polyimide which is a solid resin film Resin film 3 was formed.
  • the film thickness of this polyimide resin film 3 is 3 ⁇ m.
  • a TFT electrode layer 4 is formed according to a known method.
  • a liquid crystal display element layer 5 and a cover film layer 6 are formed thereon according to a known method.
  • the polyimide resin film 3 on which the TFT electrode layer 4 and the like are formed is physically peeled from the glass substrate 1.
  • the thermal expansion coefficient of the polyimide resin film of the present invention is preferably 50 ⁇ 10 ⁇ 6 / K or less, more preferably 30 ⁇ 10 ⁇ 6 / K or less in the range of 100 to 200 ° C., and the support. More preferably, the coefficient of thermal expansion is comparable to that of a glass substrate (for example, glass substrate). The higher the coefficient of thermal expansion of the support and the polyimide resin film, the more reliable the substrate and polyimide film will not peel or warp during the process of semiconductor element formation.
  • a display substrate can be provided.
  • the coefficient of thermal expansion is obtained by cutting the polyimide film after dehydration ring closure into 5 mm x 15 mm, and increasing the temperature from 25 ° C to 450 ° C by 5 ° C per minute using a thermal mechanical analyzer (for example, manufactured by Rigaku Corporation). Can be measured.
  • the elongation at break of the polyimide resin film is preferably 5% or more (25 ° C.), more preferably 10% or more, and further preferably 15% or more.
  • the elongation at break can be measured by an autograph (for example, manufactured by Shimadzu Corporation) using a sample obtained by cutting a polyimide film after dehydration ring closure into 10 mm ⁇ 60 mm. If the elongation at break is 5% or more, there is a tendency that flexibility can be added because there is a likelihood even if it is bent.
  • the elastic modulus (tensile elastic modulus) of the polyimide resin is preferably 1 GPa or more (25 ° C.), more preferably 1.5 GPa or more, and further preferably 2 GPa or more.
  • the elastic modulus can be measured by an autograph (for example, manufactured by Shimadzu Corporation) using a sample obtained by cutting a polyimide film after dehydration ring closure into 10 mm ⁇ 60 mm. If the modulus of elasticity is 1 GPa or more, the coefficient of thermal expansion tends to be small, so deformation at high temperature exposure is small, that is, dimensional deviation is difficult to occur, and reliability of various devices using the polyimide resin of the present invention. Tend to improve. Furthermore, the adhesive force (stud pull evaluation method?) Between the formed polyimide resin and the substrate is 50 kg / cm 2 or more and 950 kg / cm 2 or less, more preferably 300 kg / cm 2 or less. When the adhesion is weaker than this range, the semiconductor element is formed and peeling from the support is likely to occur during lamination, and when the adhesion exceeds this range, the polyimide resin film or There is a possibility of damaging the semiconductor block.
  • an autograph for example, manufactured by Shimadzu Corporation
  • a polyimide precursor solution A having a viscosity of 1100 mPa ⁇ s (25 ° C.) was obtained.
  • the weight average molecular weight of this polyimide precursor was 70,000.
  • the content of the polyimide precursor was 13% by mass.
  • liquid polyimide precursor C having a viscosity of 13,000 mPa ⁇ s (25 ° C.).
  • the weight average molecular weight of this polyimide precursor was 72,000.
  • the content of the polyimide precursor was 13% by mass.
  • Example 1 0.013 g of UCT-801 (50% methanol solution of 3-ureidopropyltriethoxysilane: hereinafter the same) was added to 100 g of the polyimide precursor solution A, and then stirred for 3 hours to obtain a resin composition 1.
  • content of an alkoxysilane compound is 0.05 mass% with respect to (a) polyimide precursor.
  • the obtained resin composition 1 was applied onto a 6-inch silicon wafer by spin coating and then baked (dried) for 2 minutes on a hot plate at 130 ° C. to form a film having a thickness of 18 ⁇ m. Next, using a curing furnace, heat curing was performed at 200 ° C. for 30 minutes and further at 450 ° C.
  • the film thickness of the polyimide resin film after heat curing was 10 ⁇ m.
  • the polyimide resin film was measured for adhesion to the silicon substrate, thermal characteristics, and mechanical characteristics, and the results are shown in Table 1.
  • Adhesion was measured by a stud pull evaluation method (stud tensile peel strength measurement) using a Romulas (Thin Film Adhesion Strength Measuring Machine) manufactured by Quad Group. Specifically, a sample piece obtained by cutting a silicon substrate on which a polyimide resin film is formed by the above-mentioned method into 1 cm squares is prepared, and a stud pin with an epoxy resin is raised and fixed with a clip at the center, and the sample piece is heated in a 150 ° C. oven. An evaluation sample was prepared by heating and curing for a period of time and fixing the stud pin with epoxy resin to the polyimide resin film.
  • the sample for evaluation was set on a romulus, the load was increased at a rate of 5 kg / min, a tensile load was applied in the vertical direction, and the strength at which the polyimide resin film peeled from the silicon substrate was defined as the peel strength.
  • the thermal characteristics are as follows. When the temperature is raised from 25 ° C. to 450 ° C. at 5 ° C. per minute using a thermal mechanical analyzer manufactured by Rigaku Corporation, the temperature is in the range of 100 to 200 ° C. The expansion coefficient and 1% mass loss temperature were measured.
  • Example 2 0.052 g of UCT-801 was added to 100 g of polyimide precursor solution A, and then stirred for 3 hours to obtain a resin composition 2.
  • content of an alkoxysilane compound is 0.2 mass% with respect to a polyimide precursor (The polyimide precursor component in the polyimide precursor solution A).
  • Film formation was performed in the same manner as in Example 1, and the polyimide resin film obtained was evaluated for adhesion, thermal characteristics, and mechanical characteristics. The results are summarized in Table 1.
  • Example 3 After adding 0.13 g of UCT-801 to 100 g of polyimide precursor solution A, the mixture was stirred for 3 hours to obtain Resin Composition 3. In addition, content of an alkoxysilane compound is 0.5 mass% with respect to a polyimide precursor (The polyimide precursor component in the polyimide precursor solution A). Film formation was performed in the same manner as in Example 1, and the polyimide resin film obtained was evaluated for adhesion, thermal characteristics, and mechanical characteristics. The results are summarized in Table 1.
  • Example 4 After 0.26 g of UCT-801 was added to 100 g of the polyimide precursor solution A, the mixture was stirred for 3 hours to obtain a resin composition 4. In addition, content of an alkoxysilane compound is 1.0 mass% with respect to a polyimide precursor (The polyimide precursor component in the polyimide precursor solution A). Film formation was performed in the same manner as in Example 1, and the polyimide resin film obtained was evaluated for adhesion, thermal characteristics, and mechanical characteristics. The results are summarized in Table 1.
  • Example 5 0.018 g of UCT-801 was added to 100 g of the polyimide precursor solution B, and then stirred for 3 hours to obtain a resin composition 5.
  • content of an alkoxysilane compound is 0.05 mass% with respect to a polyimide precursor (The polyimide precursor component in the polyimide precursor solution B).
  • Film formation was performed in the same manner as in Example 1, and the polyimide resin film obtained was evaluated for adhesion, thermal characteristics, and mechanical characteristics. The results are summarized in Table 1.
  • Example 6 0.072 g of UCT-801 was added to 100 g of the polyimide precursor solution B, and then stirred for 3 hours to obtain a resin composition 6.
  • content of an alkoxysilane compound is 0.2 mass% with respect to a polyimide precursor (The polyimide precursor component in the polyimide precursor solution B).
  • Film formation was performed in the same manner as in Example 1, and the polyimide resin film obtained was evaluated for adhesion, thermal characteristics, and mechanical characteristics. The results are summarized in Table 1.
  • Example 7 After adding 0.18 g of UCT-801 to 100 g of the polyimide precursor solution B, the mixture was stirred for 3 hours to obtain a resin composition 7.
  • content of an alkoxysilane compound is 0.5 mass% with respect to a polyimide precursor (The polyimide precursor component in the polyimide precursor solution B).
  • Film formation was performed in the same manner as in Example 1, and the polyimide resin film obtained was evaluated for adhesion, thermal characteristics, and mechanical characteristics. The results are summarized in Table 2.
  • Example 8 0.072 g of SIB1140.0 (50% methanol solution of bis (2-hydroxyethyl) -3-aminopropyltriethoxysilane) was added to 100 g of the polyimide precursor solution B, and then stirred for 3 hours to obtain a resin composition 8. It was. In addition, content of an alkoxysilane compound is 0.2 mass% with respect to a polyimide precursor (The polyimide precursor component in the polyimide precursor solution B). Film formation was performed in the same manner as in Example 1, and the polyimide resin film obtained was evaluated for adhesion, thermal characteristics, and mechanical characteristics. The results are summarized in Table 2.
  • Example 9 0.18 g of SIB-1140 was added to 100 g of polyimide precursor solution B, and then stirred for 3 hours to obtain a resin composition 9.
  • content of an alkoxysilane compound is 0.5 mass% with respect to a polyimide precursor (The polyimide precursor component in the polyimide precursor solution B).
  • Film formation was performed in the same manner as in Example 1, and the polyimide resin film obtained was evaluated for adhesion, thermal characteristics, and mechanical characteristics. The results are summarized in Table 2.
  • Example 10 After adding 0.36 g of SIB-1140 to 100 g of the polyimide precursor solution B, the mixture was stirred for 3 hours to obtain a resin composition 10.
  • content of an alkoxysilane compound is 1.0 mass% with respect to a polyimide precursor (The polyimide precursor component in the polyimide precursor solution B).
  • Film formation was performed in the same manner as in Example 1, and the polyimide resin film obtained was evaluated for adhesion, thermal characteristics, and mechanical characteristics. The results are summarized in Table 2.
  • Example 11 0.072 g of KBM-103 (phenyltrimethoxysilane) was added to 100 g of the polyimide precursor solution B, followed by stirring for 3 hours to obtain a resin composition 11.
  • content of an alkoxysilane compound is 0.4 mass% with respect to a polyimide precursor (The polyimide precursor component in the polyimide precursor solution B).
  • Film formation was performed in the same manner as in Example 1, and the polyimide resin film obtained was evaluated for adhesion, thermal characteristics, and mechanical characteristics. The results are summarized in Table 2.
  • Example 12 After adding 0.18 g of KBM-103 to 100 g of the polyimide precursor solution B, the mixture was stirred for 3 hours to obtain a resin composition 12.
  • content of an alkoxysilane compound is 1.0 mass% with respect to a polyimide precursor (The polyimide precursor component in the polyimide precursor solution B).
  • Film formation was performed in the same manner as in Example 1, and the polyimide resin film obtained was evaluated for adhesion, thermal characteristics, and mechanical characteristics. The results are summarized in Table 2.
  • Example 13 After adding 0.36 g of KBM-103 to 100 g of the polyimide precursor solution B, the mixture was stirred for 3 hours to obtain a resin composition 13. In addition, content of an alkoxysilane compound is 2.0 mass% with respect to a polyimide precursor (The polyimide precursor component in the polyimide precursor solution B). Film formation was performed in the same manner as in Example 1, and the polyimide resin film obtained was evaluated for adhesion, thermal characteristics, and mechanical characteristics. The results are summarized in Table 2.
  • Example 14 0.072 g of KBM-403 (3-glycidoxypropyltriethoxysilane) was added to 100 g of the polyimide precursor solution B, followed by stirring for 3 hours to obtain a resin composition 14.
  • content of an alkoxysilane compound is 0.4 mass% with respect to a polyimide precursor (The polyimide precursor component in the polyimide precursor solution B).
  • Film formation was performed in the same manner as in Example 1, and the polyimide resin film obtained was evaluated for adhesion, thermal characteristics, and mechanical characteristics. The results are summarized in Table 2.
  • Example 15 After 0.18 g of KBM-403 was added to 100 g of the polyimide precursor solution B, the mixture was stirred for 3 hours to obtain a resin composition 15. In addition, content of an alkoxysilane compound is 1.0 mass% with respect to a polyimide precursor (The polyimide precursor component in the polyimide precursor solution B). Film formation was performed in the same manner as in Example 1, and the obtained polyimide film was evaluated for adhesion, thermal characteristics, and mechanical characteristics. The results are summarized in Table 3.
  • Example 16 After adding 0.36 g of KBM-403 to 100 g of the polyimide precursor solution B, the mixture was stirred for 3 hours to obtain a resin composition 16. In addition, content of an alkoxysilane compound is 2.0 mass% with respect to a polyimide precursor (The polyimide precursor component in the polyimide precursor solution B). Film formation was performed in the same manner as in Example 1, and the obtained polyimide resin film was evaluated for adhesion, thermal characteristics, and mechanical characteristics. The results are summarized in Table 3.
  • Example 17 After adding 0.14 g of UCT-801 to 100 g of the liquid polyimide precursor C, the mixture was stirred for 3 hours to obtain a liquid polyimide precursor resin composition 17. Film formation was performed in the same manner as in Example 1, and the obtained polyimide film was evaluated for adhesion, thermal characteristics, and mechanical characteristics. The results are summarized in Table 1.
  • Example 18 After adding 0.27 g of UCT-801 to 100 g of the liquid polyimide precursor C, the mixture was stirred for 3 hours to obtain a liquid polyimide precursor resin composition 18. Film formation was performed in the same manner as in Example 1, and the obtained polyimide film was evaluated for adhesion, thermal characteristics, and mechanical characteristics. The results are summarized in Table 1.
  • Example 19 After adding 0.54 g of UCT-801 to 100 g of the liquid polyimide precursor C, the mixture was stirred for 3 hours to obtain a liquid polyimide precursor resin composition 19. Film formation was performed in the same manner as in Example 1, and the obtained polyimide film was evaluated for adhesion, thermal characteristics, and mechanical characteristics. The results are summarized in Table 1.
  • Example 20 After adding 0.18 g of UCT-801 to 100 g of the liquid polyimide precursor D, the mixture was stirred for 3 hours to obtain a liquid polyimide precursor resin composition 20. Film formation was performed in the same manner as in Example 1, and the obtained polyimide film was evaluated for adhesion, thermal characteristics, and mechanical characteristics. The results are summarized in Table 1.
  • Example 21 After adding 0.36 g of UCT-801 to 100 g of the liquid polyimide precursor D, the mixture was stirred for 3 hours to obtain a liquid polyimide precursor resin composition 21. Film formation was performed in the same manner as in Example 1, and the obtained polyimide film was evaluated for adhesion, thermal characteristics, and mechanical characteristics. The results are summarized in Table 1.
  • Example 22 After adding 0.54 g of UCT-801 to 100 g of the liquid polyimide precursor D, the mixture was stirred for 3 hours to obtain a liquid polyimide precursor resin composition 22. Film formation was performed in the same manner as in Example 1, and the obtained polyimide film was evaluated for adhesion, thermal characteristics, and mechanical characteristics. The results are summarized in Table 1.
  • Example 1 The polyimide precursor solution A was formed into a film by the method described in Example 1, and the obtained polyimide resin film was evaluated for adhesion, thermal characteristics, and mechanical characteristics. The results are summarized in Table 3.
  • Example 2 The polyimide precursor solution B was formed into a film by the method described in Example 1, and the resulting polyimide resin film was evaluated for adhesion, thermal characteristics, and mechanical characteristics. The results are summarized in Table 3.
  • the polyimide precursor solution B was applied by spin coating onto a 6-inch silicon wafer pretreated with a silane coupling agent, and then baked on a hot plate at 130 ° C. for 2 minutes to form a film having a thickness of 18 ⁇ m. Subsequently, it was heated and cured at 200 ° C. for 30 minutes and further at 450 ° C. for 60 minutes using a curing furnace to obtain a resin film made of a polyimide resin film. The film thickness after imidization was 10 ⁇ m. The obtained polyimide resin film was evaluated for adhesion, thermal characteristics, and mechanical characteristics. The results are summarized in Table 3.
  • the content of the (b) alkoxysilane compound indicates the content (mass%) of the solid content of the component (b) relative to the polyimide precursor component (solid content) in the (a) polyimide precursor solution.
  • a resin film using a resin composition containing 0.01 to 2% by mass of an alkoxysilane compound has adhesion, peelability, and heat resistance (thermal expansion coefficient, 1% by mass). (Decrease temperature) and mechanical properties (breaking elongation and elastic modulus) were found to be excellent. Even if the polyimide resin films as in Examples 1 to 17 are thin films of 10 ⁇ m, semiconductor elements such as TFTs can be easily formed and can be easily peeled off from the support. On the other hand, in Comparative Examples 1 and 2 using a resin composition not containing a silane coupling agent, the adhesion decreased.

Abstract

Provided is a resin composition including (a) a polyimide precursor, (b) an alkoxysilane compound, and (c) an organic solvent, wherein the content of (b) relative to (a) the polyimide precursor is in the range of 0.01-2 mass%. It is preferable that the content of (b) the alkoxysilane compound relative to (a) the polyimide precursor be in the range of 0.02-2 mass%, or more preferably in the range 0.05-1 mass%.

Description

樹脂組成物、及びこれを用いたポリイミド樹脂膜、ディスプレイ基板とその製造方法Resin composition, polyimide resin film using the same, display substrate and method for producing the same
 本発明は、適度な密着性と良好な剥離性を併せ持つ、樹脂組成物に関する。また、本発明の樹脂組成物を用いたポリイミド樹脂膜、ディスプレイ基板とその製造方法に関する。 The present invention relates to a resin composition having both moderate adhesion and good peelability. Moreover, it is related with the polyimide resin film using the resin composition of this invention, a display substrate, and its manufacturing method.
 近年、スマートフォンやタブレット端末に代表される中小型ディスプレイが市場規模を広げている。これらの中小型ディスプレイに用いられるディスプレイ基板は、ガラス基板の上にTFT(薄膜トランジスタ)等を形成することで得ることができる。しかし、ガラス基板は耐熱性や寸法安定性に優れる一方、軽量化及び薄型化をすると、強度が低下するという問題を抱えている。
 そこで、ガラス基板に代わる基板として、プラスチック基板が提案されている。プラスチック基板は成形が容易で、高い靭性を有し折り曲げに強いことから、半導体素子の軽量化や薄型化に適しており、さらにフレキシブルな基材として有用である。
 薄型化したプラスチック基板を用いてディスプレイ基板を製造する方法は、支持体の上にプラスチック基板を形成する工程と、該プラスチック基板上にTFTなどの半導体素子を形成する工程と、プラスチック基板を支持体から剥離する工程を含む。
In recent years, small and medium-sized displays typified by smartphones and tablet terminals have expanded the market scale. A display substrate used for these small and medium displays can be obtained by forming TFTs (thin film transistors) on a glass substrate. However, the glass substrate is excellent in heat resistance and dimensional stability, but has a problem that the strength decreases when the weight is reduced and the thickness is reduced.
Therefore, a plastic substrate has been proposed as a substrate that replaces the glass substrate. A plastic substrate is easy to mold, has high toughness, and is strong against bending. Therefore, the plastic substrate is suitable for reducing the weight and thickness of a semiconductor element, and is useful as a flexible base material.
A method of manufacturing a display substrate using a thin plastic substrate includes a step of forming a plastic substrate on a support, a step of forming a semiconductor element such as a TFT on the plastic substrate, and a support of the plastic substrate. A step of peeling from the substrate.
 例えば、特許文献1には、硬質キャリア基板(支持体)の上に剥離層を介してプラスチック基板を設け、この上に画素回路及びディスプレイ層を形成した後、前記硬質キャリア基板からレーザーによって剥離するというディスプレイ基板の製造法が記載されている。
この方法により製造されたフレキシブルなディスプレイ基板により、軽量で薄い基板の形成が可能である。
For example, in Patent Document 1, a plastic substrate is provided on a hard carrier substrate (support) via a release layer, a pixel circuit and a display layer are formed thereon, and then peeled off from the hard carrier substrate by a laser. The manufacturing method of the display substrate is described.
With a flexible display substrate manufactured by this method, a lightweight and thin substrate can be formed.
 一方、TFTを形成する際、200℃以上の高温での処理が必要となる。しかし、プラスチック基板はガラス基板と比較して、耐熱性及び寸法安定性に劣る傾向があった。そこで特許文献1では、耐熱性の高いものとして、パリレンを含むプラスチック層を用いている。しかしパリレンを含むプラスチック層の形成はプロセスが煩雑であるという問題がある。
 また、特許文献1に記載のディスプレイ基板の製造方法では、プラスチック基板をレーザーにより剥離する必要があったため、エキシマレーザー装置などが必要であった。
On the other hand, when forming a TFT, processing at a high temperature of 200 ° C. or higher is required. However, the plastic substrate tends to be inferior in heat resistance and dimensional stability as compared with the glass substrate. Therefore, in Patent Document 1, a plastic layer containing parylene is used as one having high heat resistance. However, the formation of a plastic layer containing parylene has a problem that the process is complicated.
In addition, in the method for manufacturing a display substrate described in Patent Document 1, an excimer laser device or the like is necessary because the plastic substrate needs to be peeled off by a laser.
特開2007-512568号公報JP 2007-512568 A 特開2011-11455号公報JP 2011-11455 A
 そこで、無機層(支持体)とプラスチック基板であるポリイミド層との間にシランカップリング層を設ける方法が提案されている(例えば、特許文献2)。特許文献2の方法では、剥離工程においてレーザーを必要とせず、物理的に支持体からポリイミド樹脂膜を剥離する。 Therefore, a method of providing a silane coupling layer between an inorganic layer (support) and a polyimide layer which is a plastic substrate has been proposed (for example, Patent Document 2). In the method of Patent Document 2, the polyimide resin film is physically peeled from the support without requiring a laser in the peeling step.
 しかし特許文献2の製造方法では、シランカップリング層とポリイミド層を2層形成する必要があったため、工程が煩雑であった。
 そこで本発明では、TFTなどの半導体素子を形成する際に、支持体と十分な密着性を有し、かつ、支持体から剥離する際にレーザーを用いずに、物理的な方法で綺麗に剥離することが可能なポリイミド樹脂膜(プラスチック基板)を形成することが可能な樹脂組成物を提供することを目的とする。また良好な機械特性及び耐熱性を有するポリイミド樹脂膜を形成することが可能な樹脂組成物を提供することを目的とする。
 また本発明は、該樹脂組成物を用いたポリイミド樹脂膜と、ディスプレイ基板の製造方法を提供することを目的とする。さらに、本発明は該製造方法により形成されるディスプレイ基板を提供することを目的とする。
However, in the production method of Patent Document 2, since it is necessary to form two silane coupling layers and a polyimide layer, the process is complicated.
Therefore, in the present invention, when a semiconductor element such as a TFT is formed, it has sufficient adhesion to the support, and when peeling from the support, it is neatly removed by a physical method without using a laser. It aims at providing the resin composition which can form the polyimide resin film (plastic substrate) which can do. Moreover, it aims at providing the resin composition which can form the polyimide resin film which has a favorable mechanical characteristic and heat resistance.
Another object of the present invention is to provide a polyimide resin film using the resin composition and a method for producing a display substrate. Furthermore, an object of the present invention is to provide a display substrate formed by the manufacturing method.
 一般に、シランカップリング剤は、それを配合した組成物を被着体に塗布して、組成物の層や膜を形成した場合、形成した層や膜と被着体の密着強度が著しく増加し、接着性を高くする傾向にある。そして、接着力を高めるには、シランカップリング剤の配合量を、ある程度多くする必要があり、層や膜を被着体から剥がす目的には使用されてこなかった。本発明は、従来の使用方法に反し、(a)ポリイミド前駆体に、シランカップリング剤の中でも特定の(b)アルコキシシラン化合物を少量配合することで、適度な密着強度を発現することを見出し本発明に達したものである。
 本発明は次のものに関する。
<1> (a)ポリイミド前駆体と、(b)アルコキシシラン化合物と、(c)有機溶剤と、を含有する樹脂組成物であり、(b)アルコキシシラン化合物の含有量が(a)ポリイミド前駆体に対して0.01~2質量%である樹脂組成物。
<2>(a)ポリイミド前駆体が、一般式(1)で表される構造単位を有するポリアミド酸である、前記樹脂組成物。
In general, when a composition containing the silane coupling agent is applied to an adherend to form a layer or film of the composition, the adhesion strength between the formed layer or film and the adherend is significantly increased. , Tend to increase adhesion. And in order to raise adhesive force, it is necessary to increase the compounding quantity of a silane coupling agent to some extent, and it has not been used for the purpose of peeling a layer or a film from an adherend. The present invention has found that, contrary to the conventional method of use, appropriate adhesion strength is expressed by blending a small amount of a specific (b) alkoxysilane compound among the silane coupling agents into (a) the polyimide precursor. The present invention has been achieved.
The present invention relates to the following.
<1> A resin composition containing (a) a polyimide precursor, (b) an alkoxysilane compound, and (c) an organic solvent, wherein (b) the content of the alkoxysilane compound is (a) a polyimide precursor. A resin composition in an amount of 0.01 to 2% by mass based on the body.
<2> (a) The resin composition, wherein the polyimide precursor is a polyamic acid having a structural unit represented by the general formula (1).
Figure JPOXMLDOC01-appb-C000001
(一般式(1)中、Rは芳香族環を有する2価の有機基、Rは芳香族環を有する4価の有機基を示す。)
<3>(b)アルコキシシラン化合物の含有量が、(a)ポリイミド前駆体に対して0.02~2質量%である、前記樹脂組成物。
<4>(b)アルコキシシラン化合物の含有量が、(a)ポリイミド前駆体に対して0.05~1質量%である、前記樹脂組成物。
<5>(b)アルコキシシラン化合物が、一般式(2)又は(3)で表されるいずれかの化合物である、前記樹脂組成物。
Figure JPOXMLDOC01-appb-C000001
(In the general formula (1), R 1 represents a divalent organic group having an aromatic ring, and R 2 represents a tetravalent organic group having an aromatic ring.)
<3> The resin composition, wherein the content of the (b) alkoxysilane compound is 0.02 to 2 mass% with respect to (a) the polyimide precursor.
<4> The resin composition, wherein the content of (b) the alkoxysilane compound is 0.05 to 1% by mass with respect to (a) the polyimide precursor.
<5> (b) The resin composition, wherein the alkoxysilane compound is any compound represented by the general formula (2) or (3).
Figure JPOXMLDOC01-appb-C000002
(一般式(2)、(3)中、R及びRは各々独立に1価の有機基を示す)
<6>(a)ポリイミド前駆体の重量平均分子量が、15,000~200,000である前記樹脂組成物。
<7>樹脂組成物を支持体に塗布、加熱しポリイミド樹脂膜を形成する工程と、該ポリイミド樹脂膜上に半導体素子を形成する工程と、該半導体素子が形成されたポリイミド樹脂膜を支持体から剥離する工程とを含む、ディスプレイ基板の製造方法に用いられる、前記樹脂組成物。
<8>前記樹脂組成物を加熱して得られるポリイミド樹脂膜。
<9>前記樹脂組成物を支持体に塗布、加熱しポリイミド樹脂膜を形成する工程と、該ポリイミド樹脂膜上に半導体素子を形成する工程と、該半導体素子が形成されたポリイミド樹脂膜を支持体から剥離する工程の各工程とを含む、ディスプレイ基板の製造方法。
<10>前記ディスプレイ基板の製造方法により形成されるディスプレイ基板。
Figure JPOXMLDOC01-appb-C000002
(In General Formulas (2) and (3), R 1 and R 2 each independently represents a monovalent organic group)
<6> (a) The resin composition, wherein the polyimide precursor has a weight average molecular weight of 15,000 to 200,000.
<7> A step of applying a resin composition to a support and heating to form a polyimide resin film, a step of forming a semiconductor element on the polyimide resin film, and a polyimide resin film on which the semiconductor element is formed The said resin composition used for the manufacturing method of a display substrate including the process of peeling from.
<8> A polyimide resin film obtained by heating the resin composition.
<9> Applying and heating the resin composition to a support to form a polyimide resin film, forming a semiconductor element on the polyimide resin film, and supporting the polyimide resin film on which the semiconductor element is formed Each method of the process of peeling from a body, The manufacturing method of a display substrate.
<10> A display substrate formed by the display substrate manufacturing method.
 本発明によれば、TFTなどの半導体素子を形成する際に、支持体と十分な密着性を有し、かつ、支持体から剥離する際にレーザーを用いずに、物理的な方法で綺麗に剥離することが可能(剥離性が良好)なポリイミド樹脂膜(プラスチック基板)を形成することが可能な樹脂組成物を提供することができる。また半導体素子を形成する際に、高温に曝されても、熱膨張が小さいポリイミド樹脂膜を形成することが可能な樹脂組成物を提供することができる。ポリイミド樹脂膜の熱膨張が小さいと、TFTなどの半導体素子を形成する際に、寸法ずれを抑制することができる。また、本発明の樹脂組成物を用いたポリイミド樹脂膜は、機械特性及び耐熱性に優れる。
 また、本発明は、該樹脂組成物を用いたディスプレイ基板の製造方法を提供するができる。さらに、本発明は、該製造方法により形成されるディスプレイ基板を提供するができる。
According to the present invention, when a semiconductor element such as a TFT is formed, the substrate has sufficient adhesion with the support, and it is neatly cleaned by a physical method without using a laser when peeling from the support. A resin composition capable of forming a polyimide resin film (plastic substrate) that can be peeled (good peelability) can be provided. Further, it is possible to provide a resin composition capable of forming a polyimide resin film with small thermal expansion even when exposed to high temperatures when forming a semiconductor element. When the thermal expansion of the polyimide resin film is small, dimensional deviation can be suppressed when forming a semiconductor element such as a TFT. Moreover, the polyimide resin film using the resin composition of this invention is excellent in a mechanical characteristic and heat resistance.
Moreover, this invention can provide the manufacturing method of the display substrate using this resin composition. Furthermore, the present invention can provide a display substrate formed by the manufacturing method.
本発明のディスプレイ基板の製造方法の一形態を示す、断面図である。It is sectional drawing which shows one form of the manufacturing method of the display substrate of this invention. 本発明のディスプレイ基板の製造方法の一形態を示す、断面図である。It is sectional drawing which shows one form of the manufacturing method of the display substrate of this invention. 本発明のディスプレイ基板の製造方法の一形態を示す、断面図である。It is sectional drawing which shows one form of the manufacturing method of the display substrate of this invention. 本発明のディスプレイ基板の製造方法の一形態を示す、断面図である。It is sectional drawing which shows one form of the manufacturing method of the display substrate of this invention.
(樹脂組成物)
 本発明の樹脂組成物は、(a)ポリイミド前駆体と、(b)アルコキシシラン化合物と、(c)有機溶剤と、を含有する樹脂組成物であり、(b)の含有量が(a)ポリイミド前駆体に対して0.01~2質量%である。以下に各成分について記載する。
(Resin composition)
The resin composition of the present invention is a resin composition containing (a) a polyimide precursor, (b) an alkoxysilane compound, and (c) an organic solvent, and the content of (b) is (a). The content is 0.01 to 2% by mass with respect to the polyimide precursor. Each component is described below.
((a)ポリイミド前駆体)
 本発明の樹脂組成物は、(a)ポリイミド前駆体を含有する。ポリイミド前駆体を含有することで、耐熱性及び機械特性に優れたポリイミド樹脂膜を形成することが可能である。
 (a)ポリイミド前駆体は、耐熱性、機械特性の観点から、一般式(1)で表される構造単位を有するポリアミド酸であることが好ましい。
((A) polyimide precursor)
The resin composition of the present invention contains (a) a polyimide precursor. By containing a polyimide precursor, it is possible to form a polyimide resin film excellent in heat resistance and mechanical properties.
(A) It is preferable that a polyimide precursor is a polyamic acid which has a structural unit represented by General formula (1) from a viewpoint of heat resistance and mechanical characteristics.
Figure JPOXMLDOC01-appb-C000003
(一般式(1)中、Rは芳香族環を有する2価の有機基、Rは芳香族環を有する4価の有機基を示す。)
Figure JPOXMLDOC01-appb-C000003
(In the general formula (1), R 1 represents a divalent organic group having an aromatic ring, and R 2 represents a tetravalent organic group having an aromatic ring.)
 (a)ポリイミド前駆体は、一般にテトラカルボン酸二無水物とジアミンとを重合することにより得られる。この重合は両者を有機溶媒中で混合することにより行うことができる。 (A) The polyimide precursor is generally obtained by polymerizing tetracarboxylic dianhydride and diamine. This polymerization can be performed by mixing both in an organic solvent.
 (a)ポリイミド前駆体を合成するために用いるテトラカルボン酸二無水物としては、ピロメリット酸二無水物、シクロヘキシルテトラカルボン酸二無水物、3,3´,4,4´-ビフェニルテトラカルボン酸二無水物、3,3´,4,4´-ビシクロヘキシルテトラカルボン酸二無水物、4,4´-オキシジフタル酸二無水物、3,3´,4,4´-ベンゾフェノンテトラカルボン酸二無水物、1,2,5,6-ナフタレンテトラカルボン酸二無水物、1,4,5,8-ナフタレンテトラカルボン酸二無水物、4,4´-スルフォニルジフタル酸二無水物、2,2-ビス(3,4-ジカルボキシフェニル)プロパン二無水物等が挙げられ、また、これらは2種以上を併用してもよい。 (A) Examples of tetracarboxylic dianhydrides used to synthesize polyimide precursors include pyromellitic dianhydride, cyclohexyltetracarboxylic dianhydride, 3,3 ′, 4,4′-biphenyltetracarboxylic acid. Dianhydride, 3,3 ′, 4,4′-bicyclohexyltetracarboxylic dianhydride, 4,4′-oxydiphthalic dianhydride, 3,3 ′, 4,4′- benzophenonetetracarboxylic dianhydride 1,2,5,6-naphthalenetetracarboxylic dianhydride, 1,4,5,8-naphthalenetetracarboxylic dianhydride, 4,4′-sulfonyldiphthalic dianhydride, 2,2 -Bis (3,4-dicarboxyphenyl) propane dianhydride and the like may be mentioned, and two or more of these may be used in combination.
 (a)ポリイミド前駆体を合成するために用いるジアミンとしては、p-フェニレンジアミン、m-フェニレンジアミン、ベンジジン、3,3´-ジメチル-4,4´-ジアミノビフェニル、2,2´-ジメチル-4,4´-ジアミノビフェニル、3,3´-ジエチル-4,4´-ジアミノビフェニル、2,2´-ジエチル-4,4´-ジアミノビフェニル、p-キシリレンジアミン、m-キシリレンジアミン、1,5-ジアミノナフタレン、3,3´-ジメトキシベンジジン、4,4´-(又は3,4´-、3,3´-、2,4´-)ジアミノジフェニルメタン、4,4´-(又は3,4´-、3,3´-、2,4´-)ジアミノジフェニルエーテル、4,4´-(又は3,4´-、3,3´-、2,4´-)ジアミノジフェニルスルフォン、4,4´-(又は3,4´-、3,3´-、2,4´-)ジアミノジフェニルスルフィド、4,4´-ベンゾフェノンジアミン、3,3´-ベンゾフェノンジアミン、4,4´-ジ(4-アミノフェノキシ)フェニルスルフォン、4,4´-ビス(4-アミノフェノキシ)ビフェニル、1,4-ビス(4-アミノフェノキシ)ベンゼン、1,3-ビス(4-アミノフェノキシ)ベンゼン、1,1,1,3,3,3-ヘキサフルオロ-2,2-ビス(4-アミノフェニル)プロパン、2,2´-ビス(トリフルオロメチル)ベンジジン、2,2-ビス[4-(4-アミノフェノキシ)フェニル]プロパン、3,3-ジメチル-4,4´-ジアミノジフェニルメタン、3,3´,5,5´-テトラメチル-4,4´-ジアミノジフェニルメタン、4,4´-ジ(3-アミノフェノキシ)フェニルスルホン、3,3´-ジアミノジフェニルスルホン、2,2´-ビス(4-アミノフェニル)プロパン、5,5´-メチレン-ビス-(アントラニル酸)、3,5-ジアミノ安息香酸、3,3´-ジヒドロキシ-4,4´-ジアミノビフェニル、3,3´-ジメチル-4,4´-ジアミノビフェニル-6,6´-ジスルホン酸等の芳香族ジアミン、2,6-ジアミノピリジン、2,4-ジアミノピリジン、2,4-ジアミノ-s-トリアジン、2,7-ジアミノベンゾフラン、2,7-ジアミノカルバゾール、3,7-ジアミノフェノチアジン、2,5-ジアミノ-1,3,4-チアジアゾール、2,4-ジアミノ-6-フェニル-s-トリアジン等の複素環式ジアミン、トリメチレンジアミン、テトラメチレンジアミン、ヘキサメチレンジアミン、2,2-ジメチルプロピレンジアミン、1,4-シクロヘキサンジアミン等が挙げられ、また、これらは2種以上を併用して用いてもよい。 (A) Examples of the diamine used for synthesizing the polyimide precursor include p-phenylenediamine, m-phenylenediamine, benzidine, 3,3′-dimethyl-4,4′-diaminobiphenyl, and 2,2′-dimethyl- 4,4′-diaminobiphenyl, 3,3′-diethyl-4,4′-diaminobiphenyl, 2,2′-diethyl-4,4′-diaminobiphenyl, p-xylylenediamine, m-xylylenediamine, 1,5-diaminonaphthalene, 3,3'-dimethoxybenzidine, 4,4'- (or 3,4'-, 3,3'-, 2,4'-) diaminodiphenylmethane, 4,4'- (or 3,4'-, 3,3'-, 2,4 '-) diaminodiphenyl ether, 4,4'- (or 3,4'-, 3,3'-, 2,4'-) diaminodiphenyl sulfone, 4,4 ' (Or 3,4'-, 3,3'-, 2,4 '-) diaminodiphenyl sulfide, 4,4'-benzophenone diamine, 3,3'-benzophenone diamine, 4,4'-di (4-amino) Phenoxy) phenylsulfone, 4,4′-bis (4-aminophenoxy) biphenyl, 1,4-bis (4-aminophenoxy) benzene, 1,3-bis (4-aminophenoxy) benzene, 1,1,1 , 3,3,3-hexafluoro-2,2-bis (4-aminophenyl) propane, 2,2'-bis (trifluoromethyl) benzidine, 2,2-bis [4- (4-aminophenoxy) Phenyl] propane, 3,3-dimethyl-4,4′-diaminodiphenylmethane, 3,3 ′, 5,5′-tetramethyl-4,4′-diaminodiphenylmethane, 4,4′-di (3- Minophenoxy) phenylsulfone, 3,3'-diaminodiphenylsulfone, 2,2'-bis (4-aminophenyl) propane, 5,5'-methylene-bis- (anthranilic acid), 3,5-diaminobenzoic acid Aromatic diamines such as 3,3′-dihydroxy-4,4′-diaminobiphenyl, 3,3′-dimethyl-4,4′-diaminobiphenyl-6,6′-disulfonic acid, 2,6-diaminopyridine 2,4-diaminopyridine, 2,4-diamino-s-triazine, 2,7-diaminobenzofuran, 2,7-diaminocarbazole, 3,7-diaminophenothiazine, 2,5-diamino-1,3,4 -Heterocyclic diamines such as thiadiazole, 2,4-diamino-6-phenyl-s-triazine, trimethylenediamine, tetramethylenediamine , Hexamethylenediamine, 2,2-dimethylpropylene diamine, 1,4-cyclohexane diamine and the like, and these may be used in combination of two or more.
 (a)ポリイミド前駆体を合成するために用いる有機溶媒は、N-メチル-2-ピロリドン、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、γ-ブチロラクトン、ε-カプロラクトン、γ-カプロラクトン、γ-バレロラクトン、ジメチルスルホキシド、1,4-ジオキサン、シクロヘキサノンなどが挙げられ、また、これらは2種以上を併用してもよい。 (A) The organic solvent used for synthesizing the polyimide precursor is N-methyl-2-pyrrolidone, N, N-dimethylformamide, N, N-dimethylacetamide, γ-butyrolactone, ε-caprolactone, γ-caprolactone, Examples include γ-valerolactone, dimethyl sulfoxide, 1,4-dioxane, cyclohexanone, and the like, and two or more of these may be used in combination.
 (a)ポリイミド前駆体の重量平均分子量は、硬化膜の伸び及び溶媒への溶解性の観点から、重量平均分子量で、5,000~300,000が好ましく、10,000~300,000がより好ましく、15,000~200,000が特に好ましい。重量平均分子量は、ゲルパーミエ-ションクロマトグラフィー法により測定し、標準ポリスチレン検量線により換算して算出することができる。 (A) The weight average molecular weight of the polyimide precursor is preferably 5,000 to 300,000, more preferably 10,000 to 300,000 in terms of the weight average molecular weight from the viewpoint of elongation of the cured film and solubility in a solvent. 15,000 to 200,000 is particularly preferable. The weight average molecular weight can be calculated by measuring with a gel permeation chromatography method and converting with a standard polystyrene calibration curve.
 また、一般式(1)で表されるポリイミド前駆体は、芳香族環を有する2価の有機基であり、上記ジアミンの残基(ジアミンから2つのアミノ基を除いたもの)であるRが、下記構造式(4)~(6)のいずれかで表される2価の有機基であることが好ましい。 Further, the polyimide precursor represented by the general formula (1) is a divalent organic group having an aromatic ring, and R 1 is a residue of the diamine (a diamine obtained by removing two amino groups). Is preferably a divalent organic group represented by any one of the following structural formulas (4) to (6).
Figure JPOXMLDOC01-appb-C000004
(一般式(4)、(5)中、R’は、各々独立に1価のアルキル基を示す。また、R’はアルキル基中の水素原子の一部または全部がハロゲン原子(フッ素、塩素、臭素、ヨウ素)で置換されていてもよい。)
 一般式(1)のRが、構造式(3)~(6)のいずれかで表される2価の有機基である場合、機械特性や耐熱性に優れ、また、熱膨張係数を低くすることができる。
 ここで、1価のアルキル基を示す一般式(4)、(5)中のR’としては、炭素原子数1~3のアルキル基であることが好ましい。また、そのアルキル基の水素原子の一部または全部がハロゲン原子で置換されていてもよい。
 一般式(1)のRが、構造式(3)~(6)のいずれかで表される2価の有機基である場合、(a)ポリイミド前駆体の合成で用いられるジアミンとしては、p-フェニレンジアミン、m-フェニレンジアミン、ベンジジン、3,3´-ジメチル-4,4´-ジアミノビフェニル、2,2´-ジメチル-4,4´-ジアミノビフェニル、3,3´-ジエチル-4,4´-ジアミノビフェニル、2,2´-ジエチル-4,4´-ジアミノビフェニルが挙げられる。これらのジアミンは、(a)ポリイミド前駆体の合成で用いられるジアミンの総量に対して、40質量%以上用いることが好ましく、60%質量以上用いることがより好ましく、80~100質量%用いることがさらに好ましい。
Figure JPOXMLDOC01-appb-C000004
(In the general formulas (4) and (5), R ′ each independently represents a monovalent alkyl group. In addition, R ′ represents a halogen atom (fluorine, chlorine or a part or all of hydrogen atoms in the alkyl group). , Bromine, iodine).
When R 1 in the general formula (1) is a divalent organic group represented by any one of the structural formulas (3) to (6), it has excellent mechanical properties and heat resistance, and has a low thermal expansion coefficient. can do.
Here, R ′ in the general formulas (4) and (5) representing a monovalent alkyl group is preferably an alkyl group having 1 to 3 carbon atoms. In addition, some or all of the hydrogen atoms of the alkyl group may be substituted with halogen atoms.
When R 1 in the general formula (1) is a divalent organic group represented by any one of the structural formulas (3) to (6), (a) as a diamine used in the synthesis of the polyimide precursor, p-phenylenediamine, m-phenylenediamine, benzidine, 3,3'-dimethyl-4,4'-diaminobiphenyl, 2,2'-dimethyl-4,4'-diaminobiphenyl, 3,3'-diethyl-4 4,2'-diaminobiphenyl, 2,2'-diethyl-4,4'-diaminobiphenyl. These diamines are preferably used in an amount of 40% by mass or more, more preferably 60% by mass or more, and more preferably 80 to 100% by mass, based on the total amount of (a) diamine used in the synthesis of the polyimide precursor. Further preferred.
 また、一般式(1)で表される構造単位において、芳香族環を有する4価の有機基を示すRは、下記構造式(7)又は(8)で表される4価の有機基であることが好ましい。 In the structural unit represented by the general formula (1), R 2 representing a tetravalent organic group having an aromatic ring is a tetravalent organic group represented by the following structural formula (7) or (8). It is preferable that
Figure JPOXMLDOC01-appb-C000005
 Rが、上記のいずれかの基である場合、機械特性や耐熱性に優れ、また、熱膨張係数を低くすることができる。
 一般式(1)のRが、構造式(7)又は(8)で表される4価の有機基である場合、(a)ポリイミド前駆体の合成で用いられるテトラカルボン酸二無水物としては、ピロメリット酸二無水物、3,3´,4,4´-ビフェニルテトラカルボン酸二無水物、が挙げられる。これらのテトラカルボン酸二無水物は、(a)ポリイミド前駆体の合成で用いられるテトラカルボン酸二無水物の総量に対して、40質量%以上用いることが好ましく、60%質量以上用いることがより好ましく、80~100質量%用いることがさらに好ましい。
Figure JPOXMLDOC01-appb-C000005
When R 2 is any one of the above groups, the mechanical properties and heat resistance are excellent, and the thermal expansion coefficient can be lowered.
When R 2 in the general formula (1) is a tetravalent organic group represented by the structural formula (7) or (8), (a) a tetracarboxylic dianhydride used in the synthesis of the polyimide precursor Includes pyromellitic dianhydride and 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride. These tetracarboxylic dianhydrides are preferably used in an amount of 40% by mass or more, more preferably 60% by mass or more based on the total amount of tetracarboxylic dianhydrides used in the synthesis of (a) polyimide precursor. It is preferable to use 80 to 100% by mass.
 (a)ポリイミド前駆体は、樹脂組成物全体に対して、5~100質量%含有することが好ましい。 (A) The polyimide precursor is preferably contained in an amount of 5 to 100% by mass with respect to the entire resin composition.
((b)アルコキシシラン化合物)
 本発明の樹脂組成物は、(a)ポリイミド前駆体に対して(b)アルコキシシラン化合物を0.01~2質量%含有する。
 (b)アルコキシシラン化合物を0.01~2質量%含有することで、TFTなどの半導体素子を形成する際に、支持体と十分な密着性を有し、かつ、支持体から剥離する際にレーザーを用いずに、物理的な方法で綺麗に剥離することが可能(剥離性が良好)なポリイミド樹脂膜(プラスチック基板)を形成することが可能な樹脂組成物を提供することができる。
 (b)アルコキシシラン化合物の含有量が0.01質量%以上であることで、良好な支持体との十分な密着性を付与することができ、また(b)アルコキシシラン化合物の含有量が2質量%以下であることで、良好な剥離性を付与し、さらにポリイミド樹脂膜に良好な耐熱性と機械特性を付与することができる。(b)アルコキシシラン化合物の含有量は、(a)ポリイミド前駆体に対して、0.02~2質量%であることが好ましく、0.05~1質量%であることはより好ましく、0.05~0.5質量%であることがさらに好ましく、0.1~0.5質量%であることが特に好ましい。
 樹脂組成物中の(b)アルコキシシラン化合物の含有量を確認する方法としては、H NMRが挙げられる。
((B) alkoxysilane compound)
The resin composition of the present invention contains 0.01 to 2% by mass of (b) an alkoxysilane compound with respect to (a) the polyimide precursor.
(B) When 0.01 to 2% by mass of the alkoxysilane compound is contained, when forming a semiconductor element such as a TFT, it has sufficient adhesion to the support and is peeled from the support. It is possible to provide a resin composition capable of forming a polyimide resin film (plastic substrate) that can be peeled cleanly (good peelability) by a physical method without using a laser.
(B) When the content of the alkoxysilane compound is 0.01% by mass or more, sufficient adhesion to a good support can be imparted, and (b) the content of the alkoxysilane compound is 2 When the content is less than or equal to mass%, good peelability can be imparted, and good heat resistance and mechanical properties can be imparted to the polyimide resin film. The content of the (b) alkoxysilane compound is preferably 0.02 to 2% by mass, more preferably 0.05 to 1% by mass relative to the (a) polyimide precursor. It is more preferably from 05 to 0.5% by mass, particularly preferably from 0.1 to 0.5% by mass.
1 H NMR is mentioned as a method of confirming content of the (b) alkoxysilane compound in a resin composition.
 (b)アルコキシシラン化合物としては、一般式(2)又は(3)で表されるいずれかの化合物を用いることが好ましい。 (B) As the alkoxysilane compound, it is preferable to use any compound represented by the general formula (2) or (3).
Figure JPOXMLDOC01-appb-C000006
(一般式(2)、(3)中、R及びRは各々独立に1価の有機基を示す)
Figure JPOXMLDOC01-appb-C000006
(In General Formulas (2) and (3), R 1 and R 2 each independently represents a monovalent organic group)
 一般式(2)又は(3)で表される化合物としては、3-ウレイドプロピルトリエトキシシラン、ビス(2-ヒドロキシエチル)-3-アミノプロピルトリエトキシシラン、3-グリシドキシプロピルトリメトキシシラン、フェニルトリメトキシシラン、γ-アミノプロピルトリエトキシシラン、γ-アミノプロピルトリメトキシシラン、γ-アミノプロピルトリプロポキシシラン、γ-アミノプロピルトリブトキシシラン、γ-アミノエチルトリエトキシシラン、γ-アミノエチルトリメトキシシラン、γ-アミノエチルトリプロポキシシラン、γ-アミノエチルトリブトキシシラン、γ-アミノブチルトリエトキシシラン、γ-アミノブチルトリメトキシシラン、γ-アミノブチルトリプロポキシシラン、γ-アミノブチルトリブトキシシラン、等が挙げられ、また、これらは2種以上を併用して用いてもよい。これらの中でも、支持体と十分な密着性を有し、かつ、支持体から剥離する際に剥離性が良好なポリイミド樹脂膜を与える観点から、3-ウレイドプロピルトリエトキシシラン、ビス(2-ヒドロキシエチル)-3-アミノプロピルトリエトキシシラン、3-グリシドキシプロピルトリメトキシシラン、フェニルトリメトキシシランのいずれかを用いることが好ましく、3-ウレイドプロピルトリエトキシシランを用いることが最も好ましい。 Examples of the compound represented by the general formula (2) or (3) include 3-ureidopropyltriethoxysilane, bis (2-hydroxyethyl) -3-aminopropyltriethoxysilane, and 3-glycidoxypropyltrimethoxysilane. , Phenyltrimethoxysilane, γ-aminopropyltriethoxysilane, γ-aminopropyltrimethoxysilane, γ-aminopropyltripropoxysilane, γ-aminopropyltributoxysilane, γ-aminoethyltriethoxysilane, γ-aminoethyl Trimethoxysilane, γ-aminoethyltripropoxysilane, γ-aminoethyltributoxysilane, γ-aminobutyltriethoxysilane, γ-aminobutyltrimethoxysilane, γ-aminobutyltripropoxysilane, γ-aminobutyltributoxy Silane Etc., and also, it may be used in combination of two or more. Among these, 3-ureidopropyltriethoxysilane, bis (2-hydroxy) are preferable from the viewpoint of providing a polyimide resin film having sufficient adhesion to the support and having good releasability when peeled from the support. Ethyl) -3-aminopropyltriethoxysilane, 3-glycidoxypropyltrimethoxysilane, or phenyltrimethoxysilane is preferably used, and 3-ureidopropyltriethoxysilane is most preferably used.
((c)有機溶剤)
 本発明の樹脂組成物は、(c)有機溶剤を含有する。(c)有機溶剤を含有することで、支持体上への塗布性及び、ポリイミド樹脂膜の均一性が向上する。
 (c)有機溶剤は、(a)ポリイミド前駆体を合成した際に残留している有機溶剤であってもよく、また、樹脂組成物の粘度を調整するためにさらなる有機溶剤を用いてもよい。
((C) organic solvent)
The resin composition of the present invention contains (c) an organic solvent. (C) By containing the organic solvent, the coating property on the support and the uniformity of the polyimide resin film are improved.
(C) The organic solvent may be an organic solvent remaining when (a) the polyimide precursor is synthesized, or a further organic solvent may be used to adjust the viscosity of the resin composition. .
 (c)有機溶剤が(a)ポリイミド前駆体を合成した際に残留している有機溶剤である場合、(c)有機溶剤としてはN-メチル-2-ピロリドン、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、γ-ブチロラクトン、ε-カプロラクトン、γ-カプロラクトン、γ-バレロラクトン、ジメチルスルホキシド、1,4-ジオキサン、シクロヘキサノン等が挙げられる。 (C) When the organic solvent is (a) the organic solvent remaining when the polyimide precursor is synthesized, (c) the organic solvent includes N-methyl-2-pyrrolidone, N, N-dimethylformamide, N , N-dimethylacetamide, γ-butyrolactone, ε-caprolactone, γ-caprolactone, γ-valerolactone, dimethyl sulfoxide, 1,4-dioxane, cyclohexanone and the like.
 また、樹脂組成物の粘度を調整するために、(c)有機溶剤を用いる場合は、上述の溶媒を用いてもよく、またプロピレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテル、プロピレングリコールモノメチルアセテート、プロピレングリコールモノエチルアセテート、エチルセロソルブ、ブチルセロソルブ、トルエン、キシレン、エタノール、イソプロピルアルコール、n-ブタノールなどを用いても良く、これらは2種以上を併用してもよい。 In order to adjust the viscosity of the resin composition, (c) when an organic solvent is used, the above-mentioned solvents may be used, and propylene glycol monomethyl ether, propylene glycol monoethyl ether, propylene glycol monomethyl acetate, propylene Glycol monoethyl acetate, ethyl cellosolve, butyl cellosolve, toluene, xylene, ethanol, isopropyl alcohol, n-butanol, etc. may be used, and these may be used in combination of two or more.
 本発明の樹脂組成物において、(c)有機溶剤の含有量は、良好な薄膜を形成できる塗布性等の観点から、(a)ポリイミド前駆体の含有量に対して、質量割合((a)ポリイミド前駆体の質量/(c)有機溶媒の質量)で、5/95~95/5であることが好ましく、20/80~80/20であることがより好ましく、30/70~50/50であることがさらに好ましい。なお、質量割合((a)ポリイミド前駆体の質量/(c)有機溶媒の質量)は、金属またはガラス製シャーレに、樹脂組成物を入れ、樹脂組成物とシャーレの合計質量を精密に測定し、これを有機溶媒の沸点付近の温度で有機溶媒を飛散させ、シャーレと処理後の樹脂組成物の合計質量を精密に測定し、処理前後のシャーレと樹脂組成物のそれぞれの合計質量からシャーレの質量を引いて、処理後の樹脂組成物質量を処理前の樹脂組成物質量で割り算をして算出することができる。この際に、温度は、ポリイミド前駆体のポリアミック酸がポリイミドに閉環する温度以下で飛散させるようにする。一般には、150℃以下で、より低い温度にすると良い。 In the resin composition of the present invention, the content of the organic solvent (c) is a mass ratio ((a) to the content of the polyimide precursor (a) from the viewpoint of applicability and the like capable of forming a good thin film. The mass of the polyimide precursor / (c) the mass of the organic solvent) is preferably 5/95 to 95/5, more preferably 20/80 to 80/20, and 30/70 to 50/50. More preferably. The mass ratio ((a) polyimide precursor mass / (c) organic solvent mass) is obtained by accurately measuring the total mass of the resin composition and the petri dish by placing the resin composition in a metal or glass petri dish. Then, the organic solvent is scattered at a temperature near the boiling point of the organic solvent, and the total mass of the petri dish and the resin composition after the treatment is accurately measured. From the total mass of the petri dish and the resin composition before and after the treatment, It is possible to calculate by dividing the mass and dividing the amount of the resin composition material after treatment by the amount of the resin composition material before treatment. At this time, the temperature is made to scatter at or below the temperature at which the polyamic acid of the polyimide precursor is ring-closed to the polyimide. In general, the temperature should be lower than 150 ° C.
(その他の成分)
 本発明の樹脂組成物は、必要に応じて感光性を付与することが可能である。例えば、ネガ型の感光性を付与する場合、ポリイミド前駆体としてポリアミド酸(一般式(1)においてRに結合するカルボン酸の水素原子)にアクリロイル基又はメタクリロイル基を有するアミンを配合して感光性を付与することができる。このようなアミンとしては、例えば、N,N-ジエチルアミノプロピルメタクリレート、N,N-ジメチルアミノプロピルメタクリレート、N,N-ジエチルアミノプロピルアクリレート、N,N-ジエチルアミノエチルメタクリレートなどが挙げられるがこの範囲には限られない。ネガ型の感光性を付与する場合、一般的にはさらに、ラジカル重合開始剤等の光重合開始剤を、樹脂組成物総量に対して0.01~10質量%用いることが好ましい。
 本発明の樹脂組成物はその他、必要に応じて、耐熱性と機械特性を損なわない範囲で、その他の成分(密着助剤、酸発生剤等)を含有してもよい。
(Other ingredients)
The resin composition of the present invention can impart photosensitivity as necessary. For example, in the case of imparting negative photosensitivity, an amine having an acryloyl group or a methacryloyl group is blended with polyamic acid (hydrogen atom of carboxylic acid bonded to R 2 in the general formula (1)) as a polyimide precursor. Sex can be imparted. Examples of such amines include N, N-diethylaminopropyl methacrylate, N, N-dimethylaminopropyl methacrylate, N, N-diethylaminopropyl acrylate, N, N-diethylaminoethyl methacrylate, and the like. Not limited. When imparting negative photosensitivity, it is generally preferable to use a photopolymerization initiator such as a radical polymerization initiator in an amount of 0.01 to 10% by mass based on the total amount of the resin composition.
In addition, the resin composition of the present invention may contain other components (adhesion aid, acid generator, etc.) as long as the heat resistance and mechanical properties are not impaired.
 本発明の樹脂組成物は、該樹脂組成物を支持体に塗布、加熱しポリイミド樹脂膜を形成する工程と、該ポリイミド樹脂膜上に半導体素子を形成する工程と、該半導体素子が形成されたポリイミド樹脂膜を支持体から剥離する工程とを含む、ディスプレイ基板の製造方法に用いることが好ましい。
 本発明のポリイミド樹脂膜は、支持体と良好な密着性を有する(例えば50~950kg/cm、スタッドプル評価法)ため、ポリイミド樹脂膜上に簡単にTFTなどの半導体素子を形成することができる。また、本発明のポリイミド樹脂膜は、低い熱膨張係数(例えば100~200℃における熱膨張係数が15×10-6/K以下)であり、またガラス転移温度が高いため(例えば、250℃以上)、TFTなどの半導体素子を形成する際に、高温に曝されても、寸法ずれを抑制することができる。
In the resin composition of the present invention, the step of applying the resin composition to a support and heating to form a polyimide resin film, the step of forming a semiconductor element on the polyimide resin film, and the semiconductor element are formed. It is preferable to use for the manufacturing method of a display substrate including the process of peeling a polyimide resin film from a support body.
Since the polyimide resin film of the present invention has good adhesion to the support (for example, 50 to 950 kg / cm 2 , stud pull evaluation method), a semiconductor element such as a TFT can be easily formed on the polyimide resin film. it can. Further, the polyimide resin film of the present invention has a low coefficient of thermal expansion (for example, a coefficient of thermal expansion at 100 to 200 ° C. of 15 × 10 −6 / K or less) and a high glass transition temperature (for example, 250 ° C. or more). ), When forming a semiconductor element such as a TFT, even if it is exposed to a high temperature, dimensional deviation can be suppressed.
(ポリイミド樹脂膜)
 本発明のポリイミド樹脂膜は、本発明の樹脂組成物を加熱することで形成できる。加熱により、樹脂組成物中のポリイミド前駆体がポリイミドになり、ポリイミド樹脂膜に良好な機械特性及び耐熱性を付与することができる。
 本発明のポリイミド樹脂膜は、いわゆるプラスチック基板である。
(Polyimide resin film)
The polyimide resin film of the present invention can be formed by heating the resin composition of the present invention. By heating, the polyimide precursor in the resin composition becomes polyimide, and good mechanical properties and heat resistance can be imparted to the polyimide resin film.
The polyimide resin film of the present invention is a so-called plastic substrate.
(ディスプレイ基板の製造方法)
 本発明のディスプレイ基板の製造方法は、本発明の樹脂組成物を支持体に塗布、加熱しポリイミド樹脂膜を形成する工程と、該ポリイミド樹脂膜上に半導体素子を形成する工程と、該半導体素子が形成されたポリイミド樹脂膜を支持体から剥離する工程の各工程とを含む。
 本明細書において、ディスプレイ基板とは、特に制限はないが、プラスチック基板(本発明の場合、ポリイミド樹脂膜)上にTFTなどの半導体素子が形成された、基板のことをいう。
(Display substrate manufacturing method)
The method for producing a display substrate of the present invention comprises a step of applying a resin composition of the present invention to a support and heating to form a polyimide resin film, a step of forming a semiconductor element on the polyimide resin film, and the semiconductor element Each step of peeling the polyimide resin film on which is formed from the support.
In this specification, the display substrate is not particularly limited, but refers to a substrate in which a semiconductor element such as a TFT is formed on a plastic substrate (in the present invention, a polyimide resin film).
 本発明の樹脂組成物を支持体に塗布する工程は、支持体に均一な厚みを形成できる方法であれば、特に限定はされないが、例えば、ダイコーティングやスピンコーティング、スクリーン印刷による塗布が可能である。
 本発明の樹脂組成物を塗布する支持体は、自立性を持つ硬質なものであって、耐熱性があり、樹脂組成物を塗布する面に荒れがなく平滑なものであれば良い。つまりディスプレイ基板の製造工程において必要とされる高温に曝されても、変形しにくいものであれば特に制限はない。具体的には、200℃以上、好ましくは250℃以上のガラス転移温度を持つ素材を用いることが好ましく、このような支持体としてはガラスが挙げられる。支持体の厚さは、0.3~5.0mmが好ましく、0.5~3.0mmがより好ましく、0.7~1.5mmであるものがさらに好ましい。
The step of applying the resin composition of the present invention to the support is not particularly limited as long as it is a method capable of forming a uniform thickness on the support. For example, it can be applied by die coating, spin coating, or screen printing. is there.
The support to which the resin composition of the present invention is applied is not limited as long as it is a hard material having self-supporting properties, has heat resistance, and is smooth and free from the surface on which the resin composition is applied. That is, there is no particular limitation as long as it is difficult to deform even when exposed to high temperatures required in the manufacturing process of the display substrate. Specifically, it is preferable to use a material having a glass transition temperature of 200 ° C. or higher, preferably 250 ° C. or higher. Examples of such a support include glass. The thickness of the support is preferably from 0.3 to 5.0 mm, more preferably from 0.5 to 3.0 mm, and even more preferably from 0.7 to 1.5 mm.
 樹脂組成物を支持体に塗布する工程で形成された樹脂組成物膜は、次に、乾燥工程を行うことが好ましい。乾燥工程により樹脂組成物中の溶剤を段階的に除去することが可能となり、これにより加熱硬化後のポリイミド樹脂膜表面の荒れを抑制することができる。乾燥工程はホットプレートを用いて、80~150℃で30秒~5分間行うことが好ましい。
 樹脂組成物膜を加熱することでポリイミド樹脂膜を形成することができる。この加熱工程により、樹脂組成物中のポリイミド前駆体のイミド環が閉環し、ポリイミド樹脂膜に良好な機械特性及び耐熱性を与える。加熱工程は昇温速度及び硬化中の雰囲気のコントロールが可能で、一定時間、特定の温度を保持することが可能な装置であれば良い。加熱工程における温度は100~500℃であることが好ましく、200~475℃であることがより好ましく、250~450℃であることがさらに好ましい。また加熱時間は、1分~6時間であることが好ましく、3分~4時間であることがより好ましく、15分~2時間であることがさらに好ましい。
Next, the resin composition film formed in the step of applying the resin composition to the support is preferably subjected to a drying step. It is possible to remove the solvent in the resin composition stepwise by the drying step, thereby suppressing the surface roughness of the polyimide resin film after heat curing. The drying step is preferably performed at 80 to 150 ° C. for 30 seconds to 5 minutes using a hot plate.
A polyimide resin film can be formed by heating the resin composition film. By this heating step, the imide ring of the polyimide precursor in the resin composition is closed, giving the polyimide resin film good mechanical properties and heat resistance. The heating process can be any apparatus that can control the temperature increase rate and the atmosphere during curing, and can maintain a specific temperature for a certain period of time. The temperature in the heating step is preferably 100 to 500 ° C., more preferably 200 to 475 ° C., and further preferably 250 to 450 ° C. The heating time is preferably 1 minute to 6 hours, more preferably 3 minutes to 4 hours, and even more preferably 15 minutes to 2 hours.
 本発明におけるポリイミド樹脂膜の厚さは、1~50μmであることが望ましい。厚さが1μm以上であることで、ポリイミド樹脂膜は良好な機械特性を有し、支持体からの剥離工程でポリイミド樹脂膜に欠陥が生じることを抑制できる。また、50μm以下であることで、乾燥中に溶媒が均一に気化しないことにより発生するポリイミド膜表面荒れを抑制することができる。ポリイミド樹脂膜の厚さは、3~40μmであることがより好ましく、5~30μmであることがさらに好ましい。 The thickness of the polyimide resin film in the present invention is preferably 1 to 50 μm. When the thickness is 1 μm or more, the polyimide resin film has good mechanical properties, and it is possible to suppress the occurrence of defects in the polyimide resin film in the peeling process from the support. Further, when the thickness is 50 μm or less, it is possible to suppress the polyimide film surface roughness that is generated when the solvent is not uniformly vaporized during drying. The thickness of the polyimide resin film is more preferably 3 to 40 μm, and further preferably 5 to 30 μm.
 本発明のディスプレイ基板の製造方法は、ポリイミド樹脂膜上にTFTなどの半導体素子を形成する工程を含む。本発明において得られるポリイミド樹脂膜は、耐熱性及び機械特性に優れるため、半導体素子等を形成する方法は特に制限されないが、ディスプレイ基板に用いられるデバイスの種類により半導体素子の形成方法は異なる。
 例えば、TFT液晶ディスプレイデバイスを製造する場合には、この上に例えばアモルファスシリコンのTFTを形成することが出来る。TFTは、ゲート金属層、窒化ケイ素ゲート誘電体層、ITO画素電極を含む。さらにこの上に液晶ディスプレイに必要な構造を、公知の方法によって形成することも出来る。
The method for producing a display substrate of the present invention includes a step of forming a semiconductor element such as a TFT on a polyimide resin film. Since the polyimide resin film obtained in the present invention is excellent in heat resistance and mechanical properties, the method for forming a semiconductor element or the like is not particularly limited, but the method for forming a semiconductor element differs depending on the type of device used for the display substrate.
For example, when a TFT liquid crystal display device is manufactured, an amorphous silicon TFT, for example, can be formed thereon. The TFT includes a gate metal layer, a silicon nitride gate dielectric layer, and an ITO pixel electrode. Further, a structure necessary for the liquid crystal display can be formed thereon by a known method.
 ポリイミド樹脂膜は、半導体素子を形成した後、支持体から剥離する。剥離方法に特に制限はないが、本発明の樹脂組成物を用いたポリイミド樹脂膜は、良好な剥離性と機械特性を有するため、物理的な方法で綺麗に剥離することが可能である。また、支持体側からレーザー等を照射して剥離を行なっても良い。 The polyimide resin film is peeled off from the support after forming the semiconductor element. Although there is no restriction | limiting in particular in the peeling method, Since the polyimide resin film using the resin composition of this invention has favorable peelability and a mechanical characteristic, it can peel cleanly with a physical method. Further, peeling may be performed by irradiating a laser or the like from the support side.
 本発明における、ディスプレイ基板としては、フレキシブル配線版、液晶素子、電子ペーパーを挙げることが出来る。特に、薄型化かつフレキシブル性を付与したいデバイスへの適用に最適である。 In the present invention, examples of the display substrate include flexible wiring plates, liquid crystal elements, and electronic paper. In particular, it is optimal for application to a device that is desired to be thin and flexible.
 ここで本発明のディスプレイ基板の製造方法を用いたフレキシブル液晶ディスプレイ基板の製造例を図を用いて示す。
 図1に示すように支持体としてガラス基板1を用意し、ガラス基板1上に本発明の樹脂組成物を、スピンコートで塗布した後、130℃のホットプレートで2分間ベークし、厚さ約5μmになるように製膜し、樹脂組成物膜2を得た。次いで、図2に示すように、硬化炉を用い200℃で30分間、さらに350℃で60分間加熱硬化して、樹脂組成物中のポリイミド前駆体をイミド化し、固体状の樹脂膜であるポリイミド樹脂膜3を形成した。このポリイミド樹脂膜3の膜厚は3μmである。このポリイミド樹脂膜3上に、図3に示すように、既知の方法に従ってTFT電極層4を形成する。さらにその上に既知の方法に従って、液晶表示素子層5、カバーフィルム層6を形成する。その後、図4に示すように、ガラス基板1から、TFT電極層4などが形成されたポリイミド樹脂膜3を物理的に剥離する。このような方法により、信頼性に優れたフレキシブル液晶ディスプレイ基板を得ることができる。
Here, a manufacturing example of a flexible liquid crystal display substrate using the method for manufacturing a display substrate of the present invention will be described with reference to the drawings.
As shown in FIG. 1, a glass substrate 1 is prepared as a support, and the resin composition of the present invention is applied onto the glass substrate 1 by spin coating, and then baked on a hot plate at 130 ° C. for 2 minutes to obtain a thickness of about A film was formed to a thickness of 5 μm to obtain a resin composition film 2. Next, as shown in FIG. 2, using a curing furnace, heat curing at 200 ° C. for 30 minutes and further at 350 ° C. for 60 minutes to imidize the polyimide precursor in the resin composition, and the polyimide which is a solid resin film Resin film 3 was formed. The film thickness of this polyimide resin film 3 is 3 μm. On this polyimide resin film 3, as shown in FIG. 3, a TFT electrode layer 4 is formed according to a known method. Further, a liquid crystal display element layer 5 and a cover film layer 6 are formed thereon according to a known method. Thereafter, as shown in FIG. 4, the polyimide resin film 3 on which the TFT electrode layer 4 and the like are formed is physically peeled from the glass substrate 1. By such a method, a flexible liquid crystal display substrate having excellent reliability can be obtained.
 本発明のポリイミド樹脂膜の熱膨張率は、100~200℃の範囲において50×10-6/K以下であることが好ましく、30×10-6/K以下であることがより好ましく、支持体(例えばガラス基板)と同程度の熱膨張率であることがさらに好ましい。支持体の熱膨張率とポリイミド樹脂膜との熱膨張率が同程度であるほど、半導体素子形成のプロセス中に、支持体とポリイミド膜の剥離やそり、寸法ずれが起こりにくく、信頼性の高いディスプレイ基板を与えることができる。
 熱膨張率は、脱水閉環後のポリイミドフィルムを5mm×15mmに切り出したものを用い、サーマルメカニカルアナライザー(例えば、株式会社リガク製)によって25℃から450℃まで、毎分5℃ずつ昇温することで測定することができる。
The thermal expansion coefficient of the polyimide resin film of the present invention is preferably 50 × 10 −6 / K or less, more preferably 30 × 10 −6 / K or less in the range of 100 to 200 ° C., and the support. More preferably, the coefficient of thermal expansion is comparable to that of a glass substrate (for example, glass substrate). The higher the coefficient of thermal expansion of the support and the polyimide resin film, the more reliable the substrate and polyimide film will not peel or warp during the process of semiconductor element formation. A display substrate can be provided.
The coefficient of thermal expansion is obtained by cutting the polyimide film after dehydration ring closure into 5 mm x 15 mm, and increasing the temperature from 25 ° C to 450 ° C by 5 ° C per minute using a thermal mechanical analyzer (for example, manufactured by Rigaku Corporation). Can be measured.
 ポリイミド樹脂膜の破断伸びは、5%以上が好ましく(25℃)、10%以上がより好ましく、15%以上であることがさらに好ましい。破断伸びは、脱水閉環後のポリイミドフィルムを10mm×60mmに切り出したサンプルを用い、オートグラフ(例えば株式会社島津製作所製)により測定することができる。破断伸びが5%以上であると、折り曲げても尤度(ゆうど)があるためよりフレキシブル性を付加できる傾向がある。
 ポリイミド樹脂の弾性率(引っ張り弾性率)は、1GPa以上であることが好ましく(25℃)、1.5GPa以上であることがより好ましく、2GPa以上であることがさらに好ましい。弾性率は脱水閉環後のポリイミドフィルムを10mm×60mmに切り出したサンプルを用い、オートグラフ(例えば株式会社島津製作所製)により測定することができる。弾性率が1GPa以上であると、熱膨張係数が小さくなる傾向にあるため、高温曝露時の変形が小さくなる、つまり寸法ずれが生じにくくなり、本発明のポリイミド樹脂を用いた各種装置の信頼性が向上する傾向がある。
 さらに形成されるポリイミド樹脂と基盤との密着力(スタッドプル評価法?)は、50kg/cm以上、950kg/cm以下、より好ましくは、300kg/cm以下であることが望ましい。この範囲より密着力が弱い場合、半導体素子を形成、積層中に支持体との剥離が生じやすくなり、またこの範囲を超える密着力である場合は、支持体から剥離するときにポリイミド樹脂膜や半導体阻止にダメージを与える可能性がある。
The elongation at break of the polyimide resin film is preferably 5% or more (25 ° C.), more preferably 10% or more, and further preferably 15% or more. The elongation at break can be measured by an autograph (for example, manufactured by Shimadzu Corporation) using a sample obtained by cutting a polyimide film after dehydration ring closure into 10 mm × 60 mm. If the elongation at break is 5% or more, there is a tendency that flexibility can be added because there is a likelihood even if it is bent.
The elastic modulus (tensile elastic modulus) of the polyimide resin is preferably 1 GPa or more (25 ° C.), more preferably 1.5 GPa or more, and further preferably 2 GPa or more. The elastic modulus can be measured by an autograph (for example, manufactured by Shimadzu Corporation) using a sample obtained by cutting a polyimide film after dehydration ring closure into 10 mm × 60 mm. If the modulus of elasticity is 1 GPa or more, the coefficient of thermal expansion tends to be small, so deformation at high temperature exposure is small, that is, dimensional deviation is difficult to occur, and reliability of various devices using the polyimide resin of the present invention. Tend to improve.
Furthermore, the adhesive force (stud pull evaluation method?) Between the formed polyimide resin and the substrate is 50 kg / cm 2 or more and 950 kg / cm 2 or less, more preferably 300 kg / cm 2 or less. When the adhesion is weaker than this range, the semiconductor element is formed and peeling from the support is likely to occur during lamination, and when the adhesion exceeds this range, the polyimide resin film or There is a possibility of damaging the semiconductor block.
(合成例1:ポリイミド前駆体溶液Aの合成)
 窒素雰囲気下の200mlフラスコに、p-フェニレンジアミン6.99gとN-メチルピロリドン174gを仕込み、15分間、40℃で加熱攪拌しモノマーを溶解させた。
その後s-ビフェニルテトラカルボン酸二無水物(2,3,3´,4´-ビフェニルテトラカルボン酸2,3:3´,4´-二無水物)19.01gを加え、さらに30分間攪拌し、粘度1100mPa・s(25℃)のポリイミド前駆体溶液Aを得た。このポリイミド前駆体の重量平均分子量は70,000であった。得られたポリイミド前駆体溶液A中、ポリイミド前駆体の含有量は13質量%であった。
(Synthesis Example 1: Synthesis of polyimide precursor solution A)
In a 200 ml flask under a nitrogen atmosphere, 6.99 g of p-phenylenediamine and 174 g of N-methylpyrrolidone were charged, and heated and stirred at 40 ° C. for 15 minutes to dissolve the monomer.
Thereafter, 19.01 g of s-biphenyltetracarboxylic dianhydride (2,3,3 ′, 4′-biphenyltetracarboxylic acid 2,3: 3 ′, 4′-dianhydride) was added, and the mixture was further stirred for 30 minutes. A polyimide precursor solution A having a viscosity of 1100 mPa · s (25 ° C.) was obtained. The weight average molecular weight of this polyimide precursor was 70,000. In the obtained polyimide precursor solution A, the content of the polyimide precursor was 13% by mass.
(合成例2:ポリイミド前駆体溶液Bの合成)
 窒素雰囲気下の200mlフラスコに、p-フェニレンジアミン10.85g、ジアミノジフェニルエーテル0.10g、N-メチルピロリドン164gを仕込み、15分間、40℃で加熱攪拌しモノマーを溶解させた。その後s-ビフェニルテトラカルボン酸二無水物11.88gとピロメリット酸二無水物13.21gを加え、さらに30分間攪拌し、粘度1200mPa・s(25℃)のポリイミド前駆体溶液Bを得た。このポリイミド前駆体溶液Bの重量平均分子量は65,000であった。得られたポリイミド前駆体溶液B中、ポリイミド前駆体の含有量は18質量%であった。
(Synthesis Example 2: Synthesis of polyimide precursor solution B)
A 200 ml flask under nitrogen atmosphere was charged with 10.85 g of p-phenylenediamine, 0.10 g of diaminodiphenyl ether, and 164 g of N-methylpyrrolidone, and heated and stirred at 40 ° C. for 15 minutes to dissolve the monomer. Thereafter, 11.88 g of s-biphenyltetracarboxylic dianhydride and 13.21 g of pyromellitic dianhydride were added, and the mixture was further stirred for 30 minutes to obtain a polyimide precursor solution B having a viscosity of 1200 mPa · s (25 ° C.). The weight average molecular weight of this polyimide precursor solution B was 65,000. In the obtained polyimide precursor solution B, the content of the polyimide precursor was 18% by mass.
(合成例3:ポリイミド前駆体溶液Cの合成)
 窒素雰囲気下の200mlフラスコに、p-フェニレンジアミン7.22g、ジアミノジフェニルエーテル0.07g、N-メチルピロリドン173gを仕込み、15分間、40℃で加熱攪拌しモノマーを溶解させた。その後s-ビフェニルテトラカルボン酸二無水物19.64gとピロメリット酸二無水物0.07gを加え、さらに30分間攪拌し、粘度13000mPa・s(25℃)の液状ポリイミド前駆体Cを得た。このポリイミド前駆体の重量平均分子量は72,000であった。ポリイミド前駆体の含有量は13質量%であった。
(Synthesis Example 3: Synthesis of polyimide precursor solution C)
In a 200 ml flask under nitrogen atmosphere, 7.22 g of p-phenylenediamine, 0.07 g of diaminodiphenyl ether, and 173 g of N-methylpyrrolidone were charged, and the mixture was heated and stirred at 40 ° C. for 15 minutes to dissolve the monomer. Thereafter, 19.64 g of s-biphenyltetracarboxylic dianhydride and 0.07 g of pyromellitic dianhydride were added, and the mixture was further stirred for 30 minutes to obtain a liquid polyimide precursor C having a viscosity of 13,000 mPa · s (25 ° C.). The weight average molecular weight of this polyimide precursor was 72,000. The content of the polyimide precursor was 13% by mass.
(合成例4:ポリイミド前駆体溶液Dの合成)
 窒素雰囲気下の200mlフラスコに、p-フェニレンジアミン11.33g、ジアミノジフェニルエーテル0.11g、N-メチルピロリドン164gを仕込み、15分間、40℃で加熱攪拌しモノマーを溶解させた。その後s-ビフェニルテトラカルボン酸二無水物6.20gとピロメリット酸二無水物18.37gを加え、さらに30分間攪拌し、粘度1200mPa・s(25℃)の液状ポリイミド前駆体Dを得た。このポリイミド前駆体の重量平均分子量は60,000であった。ポリイミド前駆体の含有量は18質量%であった。
(Synthesis Example 4: Synthesis of polyimide precursor solution D)
A 200 ml flask in a nitrogen atmosphere was charged with 11.33 g of p-phenylenediamine, 0.11 g of diaminodiphenyl ether and 164 g of N-methylpyrrolidone, and heated and stirred at 40 ° C. for 15 minutes to dissolve the monomer. Thereafter, 6.20 g of s-biphenyltetracarboxylic dianhydride and 18.37 g of pyromellitic dianhydride were added, and the mixture was further stirred for 30 minutes to obtain a liquid polyimide precursor D having a viscosity of 1200 mPa · s (25 ° C.). The weight average molecular weight of this polyimide precursor was 60,000. The content of the polyimide precursor was 18% by mass.
(実施例1)
 ポリイミド前駆体溶液A100gに、UCT―801(3-ウレイドプロピルトリエトキシシランの50%メタノール溶液:以下同様)を0.013g添加後、3時間攪拌し、樹脂組成物1を得た。なお、(a)ポリイミド前駆体に対してアルコキシシラン化合物の含有量は0.05質量%である。
 得られた樹脂組成物1を6インチシリコンウエハ上にスピンコートで塗布した後130℃のホットプレートで2分間ベーク(乾燥)し、厚さ18μmになるように製膜した。次いで、硬化炉を用い200℃で30分間、さらに450℃で60分間加熱硬化して、樹脂組成物中のポリイミド前駆体をイミド化し、ポリイミド樹脂膜を得た。加熱硬化後のポリイミド樹脂膜の膜厚は10μmであった。このポリイミド樹脂膜について、シリコン基板との密着性、熱特性、機械特性を測定し、その結果をまとめて表1に示した。
(Example 1)
0.013 g of UCT-801 (50% methanol solution of 3-ureidopropyltriethoxysilane: hereinafter the same) was added to 100 g of the polyimide precursor solution A, and then stirred for 3 hours to obtain a resin composition 1. In addition, content of an alkoxysilane compound is 0.05 mass% with respect to (a) polyimide precursor.
The obtained resin composition 1 was applied onto a 6-inch silicon wafer by spin coating and then baked (dried) for 2 minutes on a hot plate at 130 ° C. to form a film having a thickness of 18 μm. Next, using a curing furnace, heat curing was performed at 200 ° C. for 30 minutes and further at 450 ° C. for 60 minutes to imidize the polyimide precursor in the resin composition to obtain a polyimide resin film. The film thickness of the polyimide resin film after heat curing was 10 μm. The polyimide resin film was measured for adhesion to the silicon substrate, thermal characteristics, and mechanical characteristics, and the results are shown in Table 1.
(密着性の評価)
 密着性は、Quad Group社製ロミュラス(薄膜密着強度測定機)を用いたスタッドプル評価法(スタッド引っ張り剥離強度測定)で測定した。具体的には、前記の方法でポリイミド樹脂膜を形成したシリコン基板を1cm角に切断したサンプル片を作製し、その中央にエポキシ樹脂付きスタッドピンを立てクリップで固定し、150℃のオーブンで1時間加熱硬化させエポキシ樹脂付きスタッドピンをポリイミド樹脂膜に固定し評価用サンプルを作製した。この評価用サンプルをロミュラスにセットし、5kg/minの割合で荷重を増加させ垂直方向に引っ張りの負荷を掛け、ポリイミド樹脂膜がシリコン基板から剥離するときの強度を剥離強度とした。
(Evaluation of adhesion)
Adhesion was measured by a stud pull evaluation method (stud tensile peel strength measurement) using a Romulas (Thin Film Adhesion Strength Measuring Machine) manufactured by Quad Group. Specifically, a sample piece obtained by cutting a silicon substrate on which a polyimide resin film is formed by the above-mentioned method into 1 cm squares is prepared, and a stud pin with an epoxy resin is raised and fixed with a clip at the center, and the sample piece is heated in a 150 ° C. oven. An evaluation sample was prepared by heating and curing for a period of time and fixing the stud pin with epoxy resin to the polyimide resin film. The sample for evaluation was set on a romulus, the load was increased at a rate of 5 kg / min, a tensile load was applied in the vertical direction, and the strength at which the polyimide resin film peeled from the silicon substrate was defined as the peel strength.
(剥離性の評価)
 シリコン基板上に形成したポリイミド樹脂膜にカミソリで切れ目を入れ、物理的な剥離を試み、以下に示すA~Dで評価した。
「A」:剥離性に優れており、カミソリで切れ目を入れると、そこから自然剥離する。
「B」:剥離性が良好(ピンセットで容易に剥離が可能)であるが、カミソリで切れ目を入れても自然剥離はしない。
「C」:剥離(ピンセットで剥離)できるが、ポリイミド樹脂膜に負担(伸びや変形、一部千切れ)が生じる膜に負担がかかる。
「D」:剥離できなかった。
(Evaluation of peelability)
The polyimide resin film formed on the silicon substrate was scored with a razor, and physical peeling was attempted.
“A”: Excellent peelability, and when the cut is made with a razor, it peels spontaneously.
“B”: Good peelability (can be easily peeled off with tweezers), but even if it is cut with a razor, natural peeling does not occur.
“C”: peeling (peeling with tweezers) is possible, but a load is imposed on a film in which a load (elongation, deformation, and partial tearing) occurs on the polyimide resin film.
"D": It was not able to peel.
(耐熱性(熱膨張率及び1%質量減少温度)の評価)
 熱特性は、株式会社リガク製サーマルメカニカルアナライザーを用い、5mm×15mmに切り出したポリイミド樹脂膜について25℃から450℃まで、毎分5℃ずつ昇温したときの、100~200℃の範囲の熱膨張係数及び1%質量減少温度を測定した。
(Evaluation of heat resistance (thermal expansion coefficient and 1% mass reduction temperature))
The thermal characteristics are as follows. When the temperature is raised from 25 ° C. to 450 ° C. at 5 ° C. per minute using a thermal mechanical analyzer manufactured by Rigaku Corporation, the temperature is in the range of 100 to 200 ° C. The expansion coefficient and 1% mass loss temperature were measured.
(機械特性(破断伸び及び弾性率)の評価)
 機械特性は、10mm×60mmに切り出したポリイミド樹脂膜について株式会社島津製作所製オートグラフを用い、破断伸びと弾性率(引っ張りに対するヤング率、引っ張り弾性率)を測定した。
(Evaluation of mechanical properties (breaking elongation and elastic modulus))
Mechanical properties were measured for elongation at break and elastic modulus (Young's modulus against tensile, tensile elastic modulus) using an autograph manufactured by Shimadzu Corporation for a polyimide resin film cut out to 10 mm × 60 mm.
(実施例2)
 ポリイミド前駆体溶液A100gに、UCT―801を0.052g添加後、3時間攪拌し、樹脂組成物2を得た。なお、ポリイミド前駆体(ポリイミド前駆体溶液A中のポリイミド前駆体成分)に対してアルコキシシラン化合物の含有量は0.2質量%である。
 実施例1と同様に成膜し、得られたポリイミド樹脂膜について、密着性、熱特性、機械特性を評価し、その結果を纏めて表1に示した。
(Example 2)
0.052 g of UCT-801 was added to 100 g of polyimide precursor solution A, and then stirred for 3 hours to obtain a resin composition 2. In addition, content of an alkoxysilane compound is 0.2 mass% with respect to a polyimide precursor (The polyimide precursor component in the polyimide precursor solution A).
Film formation was performed in the same manner as in Example 1, and the polyimide resin film obtained was evaluated for adhesion, thermal characteristics, and mechanical characteristics. The results are summarized in Table 1.
(実施例3)
 ポリイミド前駆体溶液A100gに、UCT―801を0.13g添加後、3時間攪拌し、樹脂組成物3得た。なお、ポリイミド前駆体(ポリイミド前駆体溶液A中のポリイミド前駆体成分)に対してアルコキシシラン化合物の含有量は0.5質量%である。
 実施例1と同様に成膜し、得られたポリイミド樹脂膜について、密着性、熱特性、機械特性を評価し、その結果を纏めて表1に示した。
(Example 3)
After adding 0.13 g of UCT-801 to 100 g of polyimide precursor solution A, the mixture was stirred for 3 hours to obtain Resin Composition 3. In addition, content of an alkoxysilane compound is 0.5 mass% with respect to a polyimide precursor (The polyimide precursor component in the polyimide precursor solution A).
Film formation was performed in the same manner as in Example 1, and the polyimide resin film obtained was evaluated for adhesion, thermal characteristics, and mechanical characteristics. The results are summarized in Table 1.
(実施例4)
 ポリイミド前駆体溶液A100gに、UCT―801を0.26g添加後、3時間攪拌し、樹脂組成物4を得た。なお、ポリイミド前駆体(ポリイミド前駆体溶液A中のポリイミド前駆体成分)に対してアルコキシシラン化合物の含有量は、1.0質量%である。
 実施例1と同様に成膜し、得られたポリイミド樹脂膜について、密着性、熱特性、機械特性を評価し、その結果を纏めて表1に示した。
(Example 4)
After 0.26 g of UCT-801 was added to 100 g of the polyimide precursor solution A, the mixture was stirred for 3 hours to obtain a resin composition 4. In addition, content of an alkoxysilane compound is 1.0 mass% with respect to a polyimide precursor (The polyimide precursor component in the polyimide precursor solution A).
Film formation was performed in the same manner as in Example 1, and the polyimide resin film obtained was evaluated for adhesion, thermal characteristics, and mechanical characteristics. The results are summarized in Table 1.
(実施例5)
 ポリイミド前駆体溶液B100gに、UCT―801を0.018g添加後、3時間攪拌し、樹脂組成物5を得た。なお、ポリイミド前駆体(ポリイミド前駆体溶液B中のポリイミド前駆体成分)に対してアルコキシシラン化合物の含有量は、0.05質量%である。
 実施例1と同様に成膜し、得られたポリイミド樹脂膜について、密着性、熱特性、機械特性を評価し、その結果を纏めて表1に示した。
(Example 5)
0.018 g of UCT-801 was added to 100 g of the polyimide precursor solution B, and then stirred for 3 hours to obtain a resin composition 5. In addition, content of an alkoxysilane compound is 0.05 mass% with respect to a polyimide precursor (The polyimide precursor component in the polyimide precursor solution B).
Film formation was performed in the same manner as in Example 1, and the polyimide resin film obtained was evaluated for adhesion, thermal characteristics, and mechanical characteristics. The results are summarized in Table 1.
(実施例6)
 ポリイミド前駆体溶液B100gに、UCT―801を0.072g添加後、3時間攪拌し、樹脂組成物6を得た。なお、ポリイミド前駆体(ポリイミド前駆体溶液B中のポリイミド前駆体成分)に対してアルコキシシラン化合物の含有量は、0.2質量%である。
 実施例1と同様に成膜し、得られたポリイミド樹脂膜について、密着性、熱特性、機械特性を評価し、その結果を纏めて表1に示した。
(Example 6)
0.072 g of UCT-801 was added to 100 g of the polyimide precursor solution B, and then stirred for 3 hours to obtain a resin composition 6. In addition, content of an alkoxysilane compound is 0.2 mass% with respect to a polyimide precursor (The polyimide precursor component in the polyimide precursor solution B).
Film formation was performed in the same manner as in Example 1, and the polyimide resin film obtained was evaluated for adhesion, thermal characteristics, and mechanical characteristics. The results are summarized in Table 1.
(実施例7)
 ポリイミド前駆体溶液B100gに、UCT―801を0.18g添加後、3時間攪拌し、樹脂組成物7を得た。なお、ポリイミド前駆体(ポリイミド前駆体溶液B中のポリイミド前駆体成分)に対してアルコキシシラン化合物の含有量は、0.5質量%である。
 実施例1と同様に成膜し、得られたポリイミド樹脂膜について、密着性、熱特性、機械特性を評価し、その結果を纏めて表2に示した。
(Example 7)
After adding 0.18 g of UCT-801 to 100 g of the polyimide precursor solution B, the mixture was stirred for 3 hours to obtain a resin composition 7. In addition, content of an alkoxysilane compound is 0.5 mass% with respect to a polyimide precursor (The polyimide precursor component in the polyimide precursor solution B).
Film formation was performed in the same manner as in Example 1, and the polyimide resin film obtained was evaluated for adhesion, thermal characteristics, and mechanical characteristics. The results are summarized in Table 2.
(実施例8)
 ポリイミド前駆体溶液B100gに、SIB1140.0(ビス(2-ヒドロキシエチル)-3-アミノプロピルトリエトキシシランの50%メタノール溶液)を0.072g添加後、3時間攪拌し、樹脂組成物8を得た。なお、ポリイミド前駆体(ポリイミド前駆体溶液B中のポリイミド前駆体成分)に対してアルコキシシラン化合物の含有量は、0.2質量%である。
 実施例1と同様に成膜し、得られたポリイミド樹脂膜について、密着性、熱特性、機械特性を評価し、その結果を纏めて表2に示した。
(Example 8)
0.072 g of SIB1140.0 (50% methanol solution of bis (2-hydroxyethyl) -3-aminopropyltriethoxysilane) was added to 100 g of the polyimide precursor solution B, and then stirred for 3 hours to obtain a resin composition 8. It was. In addition, content of an alkoxysilane compound is 0.2 mass% with respect to a polyimide precursor (The polyimide precursor component in the polyimide precursor solution B).
Film formation was performed in the same manner as in Example 1, and the polyimide resin film obtained was evaluated for adhesion, thermal characteristics, and mechanical characteristics. The results are summarized in Table 2.
(実施例9)
 ポリイミド前駆体溶液B100gに、SIB-1140を0.18g添加後、3時間攪拌し、樹脂組成物9を得た。なお、ポリイミド前駆体(ポリイミド前駆体溶液B中のポリイミド前駆体成分)に対してアルコキシシラン化合物の含有量は、0.5質量%である。
 実施例1と同様に成膜し、得られたポリイミド樹脂膜について、密着性、熱特性、機械特性を評価し、その結果を纏めて表2に示した。
Example 9
0.18 g of SIB-1140 was added to 100 g of polyimide precursor solution B, and then stirred for 3 hours to obtain a resin composition 9. In addition, content of an alkoxysilane compound is 0.5 mass% with respect to a polyimide precursor (The polyimide precursor component in the polyimide precursor solution B).
Film formation was performed in the same manner as in Example 1, and the polyimide resin film obtained was evaluated for adhesion, thermal characteristics, and mechanical characteristics. The results are summarized in Table 2.
(実施例10)
 ポリイミド前駆体溶液B100gに、SIB-1140を0.36g添加後、3時間攪拌し、樹脂組成物10を得た。なお、ポリイミド前駆体(ポリイミド前駆体溶液B中のポリイミド前駆体成分)に対してアルコキシシラン化合物の含有量は、1.0質量%である。
 実施例1と同様に成膜し、得られたポリイミド樹脂膜について、密着性、熱特性、機械特性を評価し、その結果を纏めて表2に示した。
(Example 10)
After adding 0.36 g of SIB-1140 to 100 g of the polyimide precursor solution B, the mixture was stirred for 3 hours to obtain a resin composition 10. In addition, content of an alkoxysilane compound is 1.0 mass% with respect to a polyimide precursor (The polyimide precursor component in the polyimide precursor solution B).
Film formation was performed in the same manner as in Example 1, and the polyimide resin film obtained was evaluated for adhesion, thermal characteristics, and mechanical characteristics. The results are summarized in Table 2.
(実施例11)
 ポリイミド前駆体溶液B100gに、KBM-103(フェニルトリメトキシシラン)を0.072g添加後、3時間攪拌し、樹脂組成物11を得た。なお、ポリイミド前駆体(ポリイミド前駆体溶液B中のポリイミド前駆体成分)に対してアルコキシシラン化合物の含有量は、0.4質量%である。
 実施例1と同様に成膜し、得られたポリイミド樹脂膜について、密着性、熱特性、機械特性を評価し、その結果を纏めて表2に示した。
(Example 11)
0.072 g of KBM-103 (phenyltrimethoxysilane) was added to 100 g of the polyimide precursor solution B, followed by stirring for 3 hours to obtain a resin composition 11. In addition, content of an alkoxysilane compound is 0.4 mass% with respect to a polyimide precursor (The polyimide precursor component in the polyimide precursor solution B).
Film formation was performed in the same manner as in Example 1, and the polyimide resin film obtained was evaluated for adhesion, thermal characteristics, and mechanical characteristics. The results are summarized in Table 2.
(実施例12)
 ポリイミド前駆体溶液B100gに、KBM-103を0.18g添加後、3時間攪拌し、樹脂組成物12を得た。なお、ポリイミド前駆体(ポリイミド前駆体溶液B中のポリイミド前駆体成分)に対してアルコキシシラン化合物の含有量は、1.0質量%である。
 実施例1と同様に成膜し、得られたポリイミド樹脂膜について、密着性、熱特性、機械特性を評価し、その結果を纏めて表2に示した。
Example 12
After adding 0.18 g of KBM-103 to 100 g of the polyimide precursor solution B, the mixture was stirred for 3 hours to obtain a resin composition 12. In addition, content of an alkoxysilane compound is 1.0 mass% with respect to a polyimide precursor (The polyimide precursor component in the polyimide precursor solution B).
Film formation was performed in the same manner as in Example 1, and the polyimide resin film obtained was evaluated for adhesion, thermal characteristics, and mechanical characteristics. The results are summarized in Table 2.
(実施例13)
 ポリイミド前駆体溶液B100gに、KBM-103を0.36g添加後、3時間攪拌し、樹脂組成物13を得た。なお、ポリイミド前駆体(ポリイミド前駆体溶液B中のポリイミド前駆体成分)に対してアルコキシシラン化合物の含有量は、2.0質量%である。
 実施例1と同様に成膜し、得られたポリイミド樹脂膜について、密着性、熱特性、機械特性を評価し、その結果を纏めて表2に示した。
(Example 13)
After adding 0.36 g of KBM-103 to 100 g of the polyimide precursor solution B, the mixture was stirred for 3 hours to obtain a resin composition 13. In addition, content of an alkoxysilane compound is 2.0 mass% with respect to a polyimide precursor (The polyimide precursor component in the polyimide precursor solution B).
Film formation was performed in the same manner as in Example 1, and the polyimide resin film obtained was evaluated for adhesion, thermal characteristics, and mechanical characteristics. The results are summarized in Table 2.
(実施例14)
 ポリイミド前駆体溶液B100gに、KBM-403(3-グリシドキシプロピルトリエトキシシラン)を0.072g添加後、3時間攪拌し、樹脂組成物14を得た。なお、ポリイミド前駆体(ポリイミド前駆体溶液B中のポリイミド前駆体成分)に対してアルコキシシラン化合物の含有量は、0.4質量%である。
 実施例1と同様に成膜し、得られたポリイミド樹脂膜について、密着性、熱特性、機械特性を評価し、その結果を纏めて表2に示した。
(Example 14)
0.072 g of KBM-403 (3-glycidoxypropyltriethoxysilane) was added to 100 g of the polyimide precursor solution B, followed by stirring for 3 hours to obtain a resin composition 14. In addition, content of an alkoxysilane compound is 0.4 mass% with respect to a polyimide precursor (The polyimide precursor component in the polyimide precursor solution B).
Film formation was performed in the same manner as in Example 1, and the polyimide resin film obtained was evaluated for adhesion, thermal characteristics, and mechanical characteristics. The results are summarized in Table 2.
(実施例15)
 ポリイミド前駆体溶液B100gに、KBM-403を0.18g添加後、3時間攪拌し、樹脂組成物15を得た。なお、ポリイミド前駆体(ポリイミド前駆体溶液B中のポリイミド前駆体成分)に対してアルコキシシラン化合物の含有量は、1.0質量%である。
 実施例1と同様に成膜し、得られたポリイミドフィルムについて、密着性、熱特性、機械特性を評価し、その結果を纏めて表3に示した。
(Example 15)
After 0.18 g of KBM-403 was added to 100 g of the polyimide precursor solution B, the mixture was stirred for 3 hours to obtain a resin composition 15. In addition, content of an alkoxysilane compound is 1.0 mass% with respect to a polyimide precursor (The polyimide precursor component in the polyimide precursor solution B).
Film formation was performed in the same manner as in Example 1, and the obtained polyimide film was evaluated for adhesion, thermal characteristics, and mechanical characteristics. The results are summarized in Table 3.
(実施例16)
 ポリイミド前駆体溶液B100gに、KBM-403を0.36g添加後、3時間攪拌し、樹脂組成物16を得た。なお、ポリイミド前駆体(ポリイミド前駆体溶液B中のポリイミド前駆体成分)に対してアルコキシシラン化合物の含有量は、2.0質量%である。
 実施例1と同様に成膜し、得られたポリイミド樹脂膜について、密着性、熱特性、機械特性を評価し、その結果を纏めて表3に示した。
(Example 16)
After adding 0.36 g of KBM-403 to 100 g of the polyimide precursor solution B, the mixture was stirred for 3 hours to obtain a resin composition 16. In addition, content of an alkoxysilane compound is 2.0 mass% with respect to a polyimide precursor (The polyimide precursor component in the polyimide precursor solution B).
Film formation was performed in the same manner as in Example 1, and the obtained polyimide resin film was evaluated for adhesion, thermal characteristics, and mechanical characteristics. The results are summarized in Table 3.
(実施例17)
 液状ポリイミド前駆体C100gに、UCT-801を0.14g添加後、3時間攪拌し、液状ポリイミド前駆体樹脂組成物17を得た。
 実施例1と同様に成膜し、得られたポリイミドフィルムについて、密着性、熱特性、機械特性を評価し、その結果を纏めて表1に示した。
(Example 17)
After adding 0.14 g of UCT-801 to 100 g of the liquid polyimide precursor C, the mixture was stirred for 3 hours to obtain a liquid polyimide precursor resin composition 17.
Film formation was performed in the same manner as in Example 1, and the obtained polyimide film was evaluated for adhesion, thermal characteristics, and mechanical characteristics. The results are summarized in Table 1.
(実施例18)
 液状ポリイミド前駆体C100gに、UCT-801を0.27g添加後、3時間攪拌し、液状ポリイミド前駆体樹脂組成物18を得た。
 実施例1と同様に成膜し、得られたポリイミドフィルムについて、密着性、熱特性、機械特性を評価し、その結果を纏めて表1に示した。
(Example 18)
After adding 0.27 g of UCT-801 to 100 g of the liquid polyimide precursor C, the mixture was stirred for 3 hours to obtain a liquid polyimide precursor resin composition 18.
Film formation was performed in the same manner as in Example 1, and the obtained polyimide film was evaluated for adhesion, thermal characteristics, and mechanical characteristics. The results are summarized in Table 1.
(実施例19)
 液状ポリイミド前駆体C100gに、UCT-801を0.54g添加後、3時間攪拌し、液状ポリイミド前駆体樹脂組成物19を得た。
 実施例1と同様に成膜し、得られたポリイミドフィルムについて、密着性、熱特性、機械特性を評価し、その結果を纏めて表1に示した。
(Example 19)
After adding 0.54 g of UCT-801 to 100 g of the liquid polyimide precursor C, the mixture was stirred for 3 hours to obtain a liquid polyimide precursor resin composition 19.
Film formation was performed in the same manner as in Example 1, and the obtained polyimide film was evaluated for adhesion, thermal characteristics, and mechanical characteristics. The results are summarized in Table 1.
(実施例20)
 液状ポリイミド前駆体D100gに、UCT-801を0.18g添加後、3時間攪拌し、液状ポリイミド前駆体樹脂組成物20を得た。
 実施例1と同様に成膜し、得られたポリイミドフィルムについて、密着性、熱特性、機械特性を評価し、その結果を纏めて表1に示した。
(Example 20)
After adding 0.18 g of UCT-801 to 100 g of the liquid polyimide precursor D, the mixture was stirred for 3 hours to obtain a liquid polyimide precursor resin composition 20.
Film formation was performed in the same manner as in Example 1, and the obtained polyimide film was evaluated for adhesion, thermal characteristics, and mechanical characteristics. The results are summarized in Table 1.
(実施例21)
 液状ポリイミド前駆体D100gに、UCT-801を0.36g添加後、3時間攪拌し、液状ポリイミド前駆体樹脂組成物21を得た。
 実施例1と同様に成膜し、得られたポリイミドフィルムについて、密着性、熱特性、機械特性を評価し、その結果を纏めて表1に示した。
(Example 21)
After adding 0.36 g of UCT-801 to 100 g of the liquid polyimide precursor D, the mixture was stirred for 3 hours to obtain a liquid polyimide precursor resin composition 21.
Film formation was performed in the same manner as in Example 1, and the obtained polyimide film was evaluated for adhesion, thermal characteristics, and mechanical characteristics. The results are summarized in Table 1.
(実施例22)
 液状ポリイミド前駆体D100gに、UCT-801を0.54g添加後、3時間攪拌し、液状ポリイミド前駆体樹脂組成物22を得た。
 実施例1と同様に成膜し、得られたポリイミドフィルムについて、密着性、熱特性、機械特性を評価し、その結果を纏めて表1に示した。
(Example 22)
After adding 0.54 g of UCT-801 to 100 g of the liquid polyimide precursor D, the mixture was stirred for 3 hours to obtain a liquid polyimide precursor resin composition 22.
Film formation was performed in the same manner as in Example 1, and the obtained polyimide film was evaluated for adhesion, thermal characteristics, and mechanical characteristics. The results are summarized in Table 1.
(比較例1)
 ポリイミド前駆体溶液Aを、実施例1に記載の方法で成膜し、得られたポリイミド樹脂膜について、密着性、熱特性、機械特性を評価し、その結果を纏めて表3に示した。
(Comparative Example 1)
The polyimide precursor solution A was formed into a film by the method described in Example 1, and the obtained polyimide resin film was evaluated for adhesion, thermal characteristics, and mechanical characteristics. The results are summarized in Table 3.
(比較例2)
 ポリイミド前駆体溶液Bを、実施例1に記載の方法で成膜し、得られたポリイミド樹脂膜について、密着性、熱特性、機械特性を評価し、その結果を纏めて表3に示した。
(Comparative Example 2)
The polyimide precursor solution B was formed into a film by the method described in Example 1, and the resulting polyimide resin film was evaluated for adhesion, thermal characteristics, and mechanical characteristics. The results are summarized in Table 3.
(比較例3)
 ポリイミド前駆体溶液Aを、シランカップリング剤で前処理(3-アミノプロピルトリエトキシシラン0.1質量%の1-メトキシ-2-プロパノール溶液を6インチシリコンウエハ上にスピンコート後、130℃でベークし溶剤を除去することで、3-アミノプロピルトリエトキシシランの単層膜を形成する)した6インチのシリコンウエハ上にスピンコートで塗布した後、130℃のホットプレートで2分間ベークし、厚さ18μmになるように製膜した。次いで、硬化炉を用い200℃で30分間、さらに450℃で60分間加熱硬化してイミド化し、ポリイミド樹脂膜を得た。イミド化後の膜厚は10μmであった。
 得られたポリイミド樹脂膜について、密着性、熱特性、機械特性を評価し、その結果を纏めて表3に示した。
(Comparative Example 3)
Polyimide precursor solution A was pretreated with a silane coupling agent (3-aminopropyltriethoxysilane 0.1 mass% 1-methoxy-2-propanol solution was spin-coated on a 6-inch silicon wafer, and then 130 ° C. After baking and removing the solvent, a single layer film of 3-aminopropyltriethoxysilane was formed on a 6-inch silicon wafer by spin coating, and then baked on a hot plate at 130 ° C. for 2 minutes. A film was formed to a thickness of 18 μm. Subsequently, it was heated and cured at 200 ° C. for 30 minutes and further at 450 ° C. for 60 minutes using a curing oven to obtain a polyimide resin film. The film thickness after imidization was 10 μm.
The obtained polyimide resin film was evaluated for adhesion, thermal characteristics, and mechanical characteristics. The results are summarized in Table 3.
(比較例4)
 ポリイミド前駆体溶液Bを、シランカップリング剤で前処理した6インチシリコンウエハ上にスピンコートで塗布した後、130℃のホットプレートで2分間ベークし、厚さ18μmになるように製膜した。次いで、硬化炉を用い200℃で30分間、さらに450℃で60分間加熱硬化してイミド化し、ポリイミド樹脂フィルムからなる樹脂膜を得た。
イミド化後の膜厚は10μmであった。
 得られたポリイミド樹脂膜について、密着性、熱特性、機械特性を評価し、その結果を纏めて表3に示した。
(Comparative Example 4)
The polyimide precursor solution B was applied by spin coating onto a 6-inch silicon wafer pretreated with a silane coupling agent, and then baked on a hot plate at 130 ° C. for 2 minutes to form a film having a thickness of 18 μm. Subsequently, it was heated and cured at 200 ° C. for 30 minutes and further at 450 ° C. for 60 minutes using a curing furnace to obtain a resin film made of a polyimide resin film.
The film thickness after imidization was 10 μm.
The obtained polyimide resin film was evaluated for adhesion, thermal characteristics, and mechanical characteristics. The results are summarized in Table 3.
(比較例5)
 ポリイミド前駆体溶液A100gに、UCT―801を0.78g添加後、3時間攪拌し、樹脂組成物を得た。なお、ポリイミド前駆体(ポリイミド前駆体溶液A中のポリイミド前駆体成分)に対してアルコキシシラン化合物の含有量は、3.0質量%である。
 実施例1と同様に成膜し、得られたポリイミド樹脂膜について、密着性、熱特性、機械特性を評価し、その結果を纏めて表1に示した。
(Comparative Example 5)
After adding 0.78 g of UCT-801 to 100 g of polyimide precursor solution A, the mixture was stirred for 3 hours to obtain a resin composition. In addition, content of an alkoxysilane compound is 3.0 mass% with respect to a polyimide precursor (The polyimide precursor component in the polyimide precursor solution A).
Film formation was performed in the same manner as in Example 1, and the polyimide resin film obtained was evaluated for adhesion, thermal characteristics, and mechanical characteristics. The results are summarized in Table 1.
(比較例6)
 液状ポリイミド前駆体Cを、実施例1に記載の方法で成膜し、得られたポリイミドフィルムについて、密着性、熱特性、機械特性を評価し、その結果を纏めて表1に示した。
(Comparative Example 6)
The liquid polyimide precursor C was formed into a film by the method described in Example 1, and the resulting polyimide film was evaluated for adhesion, thermal characteristics, and mechanical characteristics. The results are summarized in Table 1.
(比較例7)
 液状ポリイミド前駆体Dを、実施例1に記載の方法で成膜し、得られたポリイミドフィルムについて、密着性、熱特性、機械特性を評価し、その結果を纏めて表1に示した。
(Comparative Example 7)
The liquid polyimide precursor D was formed into a film by the method described in Example 1, and the obtained polyimide film was evaluated for adhesion, thermal properties, and mechanical properties. The results are summarized in Table 1.
Figure JPOXMLDOC01-appb-T000001
※(b)アルコキシシラン化合物の含有量は(a)ポリイミド前駆体溶液中のポリイミド前駆体成分(固形分)に対する(b)成分の固形分の含有量(質量%)を示す。
Figure JPOXMLDOC01-appb-T000001
* The content of the (b) alkoxysilane compound indicates the content (mass%) of the solid content of the component (b) relative to the polyimide precursor component (solid content) in the (a) polyimide precursor solution.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 実施例1~23に示したように、アルコキシシラン化合物を0.01~2質量%含有する樹脂組成物を用いた樹脂膜は、密着性、剥離性、耐熱性(熱膨張率、1%質量減少温度)及び、機械特性(破断伸び、及び弾性率)に優れることが分かった。実施例1~17のようなポリイミド樹脂膜は、10μmの薄膜であっても、TFTなどの半導体素子を容易に形成することが可能であり、また、支持体から簡単に剥離することができる。
 一方、シランカップリング剤を含有しない樹脂組成物を用いた比較例1及び2では、密着性が低下した。また、シランカップリング剤を含有する樹脂組成物を用いる代わりに、ウェハをシランカップリング剤で前処理した比較例3及び4では剥離性が悪かった。また、シランカップリング剤を3質量%用いた比較例5では、剥離性が悪かった。
As shown in Examples 1 to 23, a resin film using a resin composition containing 0.01 to 2% by mass of an alkoxysilane compound has adhesion, peelability, and heat resistance (thermal expansion coefficient, 1% by mass). (Decrease temperature) and mechanical properties (breaking elongation and elastic modulus) were found to be excellent. Even if the polyimide resin films as in Examples 1 to 17 are thin films of 10 μm, semiconductor elements such as TFTs can be easily formed and can be easily peeled off from the support.
On the other hand, in Comparative Examples 1 and 2 using a resin composition not containing a silane coupling agent, the adhesion decreased. Moreover, in the comparative examples 3 and 4 in which the wafer was pretreated with the silane coupling agent instead of using the resin composition containing the silane coupling agent, the peelability was poor. Moreover, in Comparative Example 5 using 3% by mass of the silane coupling agent, the peelability was poor.
 上記に本発明の実施形態及び/又は実施例を幾つか詳細に説明したが、当業者は、本発明の新規な教示及び効果から実質的に離れることなく、これら例示である実施形態及び/又は実施例に多くの変更を加えることが容易である。従って、これらの多くの変更は本発明の範囲に含まれる。
 この明細書に記載の文献及び本願のパリ優先の基礎となる日本出願明細書の内容を全てここに援用する。
 
 
Although several embodiments and / or examples of the present invention have been described in detail above, those skilled in the art will appreciate that these exemplary embodiments and / or embodiments are substantially without departing from the novel teachings and advantages of the present invention. It is easy to make many changes to the embodiment. Accordingly, many of these modifications are within the scope of the present invention.
The contents of the documents described in this specification and the specification of the Japanese application that is the basis of Paris priority of the present application are all incorporated herein.

Claims (10)

  1.  (a)ポリイミド前駆体と、(b)アルコキシシラン化合物と、(c)有機溶剤と、を含有する樹脂組成物であり、(b)アルコキシシラン化合物の含有量が(a)ポリイミド前駆体に対して0.01~2質量%である樹脂組成物。 It is a resin composition containing (a) a polyimide precursor, (b) an alkoxysilane compound, and (c) an organic solvent, and (b) the content of the alkoxysilane compound is relative to (a) the polyimide precursor. The resin composition is 0.01 to 2% by mass.
  2.  (a)ポリイミド前駆体が、一般式(1)で表される構造単位を有するポリアミド酸である、請求項1に記載の樹脂組成物。
    Figure JPOXMLDOC01-appb-C000007
    (一般式(1)中、Rは芳香族環を有する2価の有機基、Rは芳香族環を有する4価の有機基を示す。)
    (A) The resin composition of Claim 1 whose polyimide precursor is a polyamic acid which has a structural unit represented by General formula (1).
    Figure JPOXMLDOC01-appb-C000007
    (In the general formula (1), R 1 represents a divalent organic group having an aromatic ring, and R 2 represents a tetravalent organic group having an aromatic ring.)
  3.  (b)アルコキシシラン化合物の含有量が、(a)ポリイミド前駆体に対して0.02~2質量%である、請求項1又は2に記載の樹脂組成物。 3. The resin composition according to claim 1, wherein the content of (b) the alkoxysilane compound is 0.02 to 2% by mass with respect to (a) the polyimide precursor.
  4.  (b)アルコキシシラン化合物の含有量が、(a)ポリイミド前駆体に対して0.05~1質量%である、請求項1ないし3のいずれかに記載の樹脂組成物。 4. The resin composition according to claim 1, wherein the content of (b) the alkoxysilane compound is 0.05 to 1% by mass with respect to (a) the polyimide precursor.
  5.  (b)アルコキシシラン化合物が、一般式(2)又は(3)で表されるいずれかの化合物である、請求項1ないし4のいずれかに記載の樹脂組成物。
    Figure JPOXMLDOC01-appb-C000008
    (一般式(2)、(3)中、R及びRは各々独立に1価の有機基を示す)
    The resin composition according to any one of claims 1 to 4, wherein the (b) alkoxysilane compound is any compound represented by the general formula (2) or (3).
    Figure JPOXMLDOC01-appb-C000008
    (In General Formulas (2) and (3), R 1 and R 2 each independently represents a monovalent organic group)
  6.  (a)ポリイミド前駆体の重量平均分子量が、15,000~200,000である請求項1ないし5のいずれかに記載の樹脂組成物。 6. The resin composition according to claim 1, wherein (a) the polyimide precursor has a weight average molecular weight of 15,000 to 200,000.
  7.  樹脂組成物を支持体に塗布、加熱しポリイミド樹脂膜を形成する工程と、該ポリイミド樹脂膜上に半導体素子を形成する工程と、該半導体素子が形成されたポリイミド樹脂膜を支持体から剥離する工程とを含む、ディスプレイ基板の製造方法に用いられる、請求項1ないし6のいずれかに記載の樹脂組成物。 Applying the resin composition to a support and heating to form a polyimide resin film, forming a semiconductor element on the polyimide resin film, and peeling the polyimide resin film on which the semiconductor element is formed from the support The resin composition according to claim 1, wherein the resin composition is used in a method for producing a display substrate.
  8.  請求項1ないし6のいずれかに記載された樹脂組成物を加熱して得られるポリイミド樹脂膜。 A polyimide resin film obtained by heating the resin composition according to any one of claims 1 to 6.
  9.  請求項1ないし6のいずれかに記載の樹脂組成物を支持体に塗布、加熱しポリイミド樹脂膜を形成する工程と、該ポリイミド樹脂膜上に半導体素子を形成する工程と、該半導体素子が形成されたポリイミド樹脂膜を支持体から剥離する工程の各工程とを含む、ディスプレイ基板の製造方法。 A step of applying the resin composition according to claim 1 to a support and heating to form a polyimide resin film, a step of forming a semiconductor element on the polyimide resin film, and a step of forming the semiconductor element Each method of the process of peeling the made polyimide resin film from a support body, The manufacturing method of a display substrate.
  10.  請求項9に記載のディスプレイ基板の製造方法により形成されるディスプレイ基板。 A display substrate formed by the display substrate manufacturing method according to claim 9.
PCT/JP2013/000843 2012-02-23 2013-02-15 Resin composition, polyimide resin film using same, display substrate, and production method for said display substrate WO2013125193A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014500907A JP6172139B2 (en) 2012-02-23 2013-02-15 Resin composition, polyimide resin film using the same, display substrate and method for producing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-037369 2012-02-23
JP2012037369 2012-02-23

Publications (1)

Publication Number Publication Date
WO2013125193A1 true WO2013125193A1 (en) 2013-08-29

Family

ID=49005391

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2013/000843 WO2013125193A1 (en) 2012-02-23 2013-02-15 Resin composition, polyimide resin film using same, display substrate, and production method for said display substrate
PCT/JP2013/000845 WO2013125194A1 (en) 2012-02-23 2013-02-15 Production method for display substrates

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/000845 WO2013125194A1 (en) 2012-02-23 2013-02-15 Production method for display substrates

Country Status (3)

Country Link
JP (2) JP6172139B2 (en)
TW (3) TWI624365B (en)
WO (2) WO2013125193A1 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015081285A (en) * 2013-10-22 2015-04-27 日産化学工業株式会社 Resin composition for display substrate
WO2016024457A1 (en) * 2014-08-12 2016-02-18 株式会社カネカ Alkoxysilane-modified polyamic acid solution, laminate and flexible device using same, and laminate manufacturing method
WO2016158988A1 (en) * 2015-03-31 2016-10-06 日産化学工業株式会社 Composition for forming release layer, and release layer
CN106009664A (en) * 2015-03-27 2016-10-12 三星电子株式会社 Compositions, composites prepared therefrom, and films and electronic devices including the same
WO2017119450A1 (en) * 2016-01-08 2017-07-13 日産化学工業株式会社 Composition for forming substrate for flexible devices
WO2019111870A1 (en) * 2017-12-04 2019-06-13 ユニチカ株式会社 Solution to be coated onto glass substrate
US10435510B2 (en) 2013-02-07 2019-10-08 Kaneka Corporation Alkoxysilane-modified polyamic acid solution, laminate and flexible device each produced using same, and method for producing laminate
CN110520478A (en) * 2017-03-30 2019-11-29 日产化学株式会社 Peeling layer, which is formed, uses composition and peeling layer
WO2021193531A1 (en) * 2020-03-24 2021-09-30 東レ株式会社 Resin composition, method for producing display device or light reception device using same, substrate and device
KR20210132030A (en) 2019-02-26 2021-11-03 도레이 카부시키가이샤 Polyamic acid resin composition, polyimide resin film and manufacturing method thereof, laminate, and electronic device and manufacturing method thereof
JP2022515452A (en) * 2018-12-24 2022-02-18 ピーアイ・アドバンスド・マテリアルズ・カンパニー・リミテッド A polyamic acid composition for manufacturing a display substrate and a method for manufacturing a display substrate using the polyamic acid composition.
JP7402398B2 (en) 2017-02-03 2023-12-21 東京応化工業株式会社 Polyimide precursor composition
JP7461626B2 (en) 2018-12-04 2024-04-04 ユニチカ株式会社 Polyamic acid solution and method for producing laminate using same

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013125193A1 (en) * 2012-02-23 2013-08-29 日立化成デュポンマイクロシステムズ株式会社 Resin composition, polyimide resin film using same, display substrate, and production method for said display substrate
JP6175032B2 (en) * 2013-10-10 2017-08-02 Jfeケミカル株式会社 Benzofuran derivative composition, polyimide precursor composition and method for producing polyimide resin
JP6539965B2 (en) * 2014-09-16 2019-07-10 宇部興産株式会社 Method of manufacturing flexible device
JP6620805B2 (en) * 2015-03-04 2019-12-18 日産化学株式会社 Release layer forming composition
JP6743807B2 (en) * 2015-03-31 2020-08-19 日産化学株式会社 Release layer forming composition and release layer
JP6819292B2 (en) * 2015-10-23 2021-01-27 東レ株式会社 A resin composition for a display substrate, and a method for manufacturing a heat-resistant resin film, an organic EL display substrate, and an organic EL display using the resin composition.
WO2019073567A1 (en) * 2017-10-12 2019-04-18 シャープ株式会社 Non-flexible substrate having base layer, flexible display device and method for producing same
CN109839770A (en) * 2017-11-29 2019-06-04 张家港康得新光电材料有限公司 Flexible display panels and flexible liquid crystal display based on it
KR20220138011A (en) 2017-12-28 2022-10-12 유비이 가부시키가이샤 Polyimide precursor resin composition for forming flexible device substrate

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6469667A (en) * 1987-08-21 1989-03-15 Du Pont Polyimide coating composition
JPH03243625A (en) * 1990-02-21 1991-10-30 Hitachi Chem Co Ltd Polyimide precursor composition and production of polyimide
JPH0794834A (en) * 1993-09-20 1995-04-07 Toshiba Chem Corp Flexible printed circuit board
JP2006321229A (en) * 2005-04-19 2006-11-30 Ube Ind Ltd Polyimide film laminate
JP2009294536A (en) * 2008-06-06 2009-12-17 Hitachi Chem Co Ltd Photosensitive resin composition and method for joining substrates
JP2011514266A (en) * 2008-02-05 2011-05-06 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー High adhesion polyimide copper clad laminate and method for producing the same

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2687751B2 (en) * 1991-03-18 1997-12-08 信越化学工業株式会社 Photopolymer material
JP2001329170A (en) * 2000-05-19 2001-11-27 Hitachi Chemical Dupont Microsystems Ltd Cold-setting resin composition
KR101596985B1 (en) * 2009-01-29 2016-02-23 도레이 카부시키가이샤 Resin composition and display device formed using same
JP2010202729A (en) * 2009-03-02 2010-09-16 Hitachi Chemical Dupont Microsystems Ltd Polyimide precursor resin composition for flexible device substrates and method for producing flexible device using the same, and flexible device
WO2013125193A1 (en) * 2012-02-23 2013-08-29 日立化成デュポンマイクロシステムズ株式会社 Resin composition, polyimide resin film using same, display substrate, and production method for said display substrate

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6469667A (en) * 1987-08-21 1989-03-15 Du Pont Polyimide coating composition
JPH03243625A (en) * 1990-02-21 1991-10-30 Hitachi Chem Co Ltd Polyimide precursor composition and production of polyimide
JPH0794834A (en) * 1993-09-20 1995-04-07 Toshiba Chem Corp Flexible printed circuit board
JP2006321229A (en) * 2005-04-19 2006-11-30 Ube Ind Ltd Polyimide film laminate
JP2011514266A (en) * 2008-02-05 2011-05-06 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー High adhesion polyimide copper clad laminate and method for producing the same
JP2009294536A (en) * 2008-06-06 2009-12-17 Hitachi Chem Co Ltd Photosensitive resin composition and method for joining substrates

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10435510B2 (en) 2013-02-07 2019-10-08 Kaneka Corporation Alkoxysilane-modified polyamic acid solution, laminate and flexible device each produced using same, and method for producing laminate
US10626218B2 (en) 2013-02-07 2020-04-21 Kaneka Corporation Alkoxysilane-modified polyamic acid solution, laminate and flexible device each produced using same, and method for producing laminate
JP2015081285A (en) * 2013-10-22 2015-04-27 日産化学工業株式会社 Resin composition for display substrate
KR20170041798A (en) * 2014-08-12 2017-04-17 가부시키가이샤 가네카 Alkoxysilane-modified polyamic acid solution, laminate and flexible device using same, and laminate manufacturing method
KR102294065B1 (en) 2014-08-12 2021-08-26 가부시키가이샤 가네카 Alkoxysilane-modified polyamic acid solution, laminate and flexible device using same, and laminate manufacturing method
JPWO2016024457A1 (en) * 2014-08-12 2017-05-25 株式会社カネカ Alkoxysilane-modified polyamic acid solution, laminate and flexible device using the same, and method for producing laminate
US10308767B2 (en) 2014-08-12 2019-06-04 Kaneka Corporation Alkoxysilane-modified polyamic acid solution, laminate and flexible device using same, and laminate manufacturing method
WO2016024457A1 (en) * 2014-08-12 2016-02-18 株式会社カネカ Alkoxysilane-modified polyamic acid solution, laminate and flexible device using same, and laminate manufacturing method
JP2020114919A (en) * 2014-08-12 2020-07-30 株式会社カネカ Method for manufacturing alkoxysilane-modified polyamic acid solution, laminate manufacturing method, and flexible device manufacturing method
CN106009664A (en) * 2015-03-27 2016-10-12 三星电子株式会社 Compositions, composites prepared therefrom, and films and electronic devices including the same
KR20170132803A (en) * 2015-03-31 2017-12-04 닛산 가가쿠 고교 가부시키 가이샤 The composition for forming a peel layer and the peel layer
JPWO2016158988A1 (en) * 2015-03-31 2018-02-15 日産化学工業株式会社 Release layer forming composition and release layer
WO2016158988A1 (en) * 2015-03-31 2016-10-06 日産化学工業株式会社 Composition for forming release layer, and release layer
KR102534510B1 (en) * 2015-03-31 2023-05-19 닛산 가가쿠 가부시키가이샤 Composition for Forming Release Layer and Release Layer
WO2017119450A1 (en) * 2016-01-08 2017-07-13 日産化学工業株式会社 Composition for forming substrate for flexible devices
JP7402398B2 (en) 2017-02-03 2023-12-21 東京応化工業株式会社 Polyimide precursor composition
CN110520478A (en) * 2017-03-30 2019-11-29 日产化学株式会社 Peeling layer, which is formed, uses composition and peeling layer
CN110520478B (en) * 2017-03-30 2022-05-17 日产化学株式会社 Composition for forming release layer and release layer
CN111417605A (en) * 2017-12-04 2020-07-14 尤尼吉可株式会社 Solution for coating glass substrate
WO2019111870A1 (en) * 2017-12-04 2019-06-13 ユニチカ株式会社 Solution to be coated onto glass substrate
JP7461626B2 (en) 2018-12-04 2024-04-04 ユニチカ株式会社 Polyamic acid solution and method for producing laminate using same
JP2022515452A (en) * 2018-12-24 2022-02-18 ピーアイ・アドバンスド・マテリアルズ・カンパニー・リミテッド A polyamic acid composition for manufacturing a display substrate and a method for manufacturing a display substrate using the polyamic acid composition.
JP7235356B2 (en) 2018-12-24 2023-03-08 ピーアイ・アドバンスド・マテリアルズ・カンパニー・リミテッド Polyamic acid composition for manufacturing display substrate and method for manufacturing display substrate using the same
KR20210132030A (en) 2019-02-26 2021-11-03 도레이 카부시키가이샤 Polyamic acid resin composition, polyimide resin film and manufacturing method thereof, laminate, and electronic device and manufacturing method thereof
WO2021193531A1 (en) * 2020-03-24 2021-09-30 東レ株式会社 Resin composition, method for producing display device or light reception device using same, substrate and device

Also Published As

Publication number Publication date
TWI699385B (en) 2020-07-21
TWI648312B (en) 2019-01-21
TW201335239A (en) 2013-09-01
WO2013125194A1 (en) 2013-08-29
JPWO2013125194A1 (en) 2015-07-30
JP6024738B2 (en) 2016-11-16
TWI624365B (en) 2018-05-21
TW201841995A (en) 2018-12-01
JPWO2013125193A1 (en) 2015-07-30
TW201338978A (en) 2013-10-01
JP6172139B2 (en) 2017-08-02

Similar Documents

Publication Publication Date Title
JP6172139B2 (en) Resin composition, polyimide resin film using the same, display substrate and method for producing the same
JP2010202729A (en) Polyimide precursor resin composition for flexible device substrates and method for producing flexible device using the same, and flexible device
TWI717574B (en) Alkoxysilane-modified polyamic acid solution, laminate and flexible device made by using same, and method for producing laminate
JP2017524040A (en) Composition for polyimide film for flexible substrate of photoelectric device
JP6288227B2 (en) Polyimide precursor resin composition for forming flexible device substrate, method for producing flexible device using the same, flexible device
TW201946949A (en) Polyimide film for flexible display device substrate having improved thermal dissipation, method of manufacturing the same, and flexible display device comprising the same
JP6206446B2 (en) Polyimide precursor resin composition for forming flexible device substrate, method for producing flexible device using the same, flexible device
TWI809172B (en) Polyimide precursor composition, polyimide film, and flexible device and process for preparing the same
JP7461145B2 (en) Resin composition, polyimide, and method for producing polyimide film
TW202212419A (en) Polyimide precursor, polyimide precursor composition, polyimide film, manufacturing method thereof, and use thereof
CN112566963B (en) Polyimide film and flexible device using the same
TW202030225A (en) Polyimide film, laminate using the same and flexible display comprising the polyimide film and the laminate
JP6733220B2 (en) Resin composition and polyimide resin film
JP2022522084A (en) Diamine compound, and polyimide precursor and polyimide film using it
JP7173184B2 (en) Resin composition and polyimide resin film
JP2023054680A (en) Polyimide precursor resin composition and flexible display device including the same and method for producing the same
TWI809173B (en) Polyimide precursor composition and method for preparing the same, polyimide film, and flexible device and process for preparing the same
TWI750497B (en) Polyimide film, flexible device using same and preparation process thereof
JP6926393B2 (en) Resin composition and polyimide resin film
JP2020183540A (en) Resin composition and polyimide resin film
JP2022515452A (en) A polyamic acid composition for manufacturing a display substrate and a method for manufacturing a display substrate using the polyamic acid composition.
JPH07228839A (en) Polyimide varnish

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13751547

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014500907

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13751547

Country of ref document: EP

Kind code of ref document: A1