WO2013125150A1 - 通信制御装置、通信制御方法、基地局及び通信制御システム - Google Patents

通信制御装置、通信制御方法、基地局及び通信制御システム Download PDF

Info

Publication number
WO2013125150A1
WO2013125150A1 PCT/JP2012/083667 JP2012083667W WO2013125150A1 WO 2013125150 A1 WO2013125150 A1 WO 2013125150A1 JP 2012083667 W JP2012083667 W JP 2012083667W WO 2013125150 A1 WO2013125150 A1 WO 2013125150A1
Authority
WO
WIPO (PCT)
Prior art keywords
communication
small cell
base station
interference control
interference
Prior art date
Application number
PCT/JP2012/083667
Other languages
English (en)
French (fr)
Inventor
亮 澤井
Original Assignee
ソニー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニー株式会社 filed Critical ソニー株式会社
Priority to EP12869458.5A priority Critical patent/EP2819450B1/en
Priority to US14/378,458 priority patent/US10206217B2/en
Priority to BR112014020130A priority patent/BR112014020130A8/pt
Priority to RU2014133425A priority patent/RU2014133425A/ru
Priority to JP2014500885A priority patent/JP6070687B2/ja
Priority to CN201280069704.3A priority patent/CN104115518B/zh
Priority to KR20147019997A priority patent/KR20140127806A/ko
Publication of WO2013125150A1 publication Critical patent/WO2013125150A1/ja
Priority to IN6760DEN2014 priority patent/IN2014DN06760A/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria
    • H04W72/541Allocation or scheduling criteria for wireless resources based on quality criteria using the level of interference
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J11/00Orthogonal multiplex systems, e.g. using WALSH codes
    • H04J11/0023Interference mitigation or co-ordination
    • H04J11/005Interference mitigation or co-ordination of intercell interference
    • H04J11/0056Inter-base station aspects
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/02Resource partitioning among network components, e.g. reuse partitioning
    • H04W16/10Dynamic resource partitioning
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/02Arrangements for optimising operational condition
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/24TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters
    • H04W52/243TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters taking into account interferences
    • H04W52/244Interferences in heterogeneous networks, e.g. among macro and femto or pico cells or other sector / system interference [OSI]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/24Cell structures
    • H04W16/28Cell structures using beam steering
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/24Cell structures
    • H04W16/32Hierarchical cell structures

Definitions

  • the present disclosure relates to a communication control device, a communication control method, a base station, and a communication control system.
  • LTE Long Term Evolution
  • WiMAX Wireless Fidelity
  • LTE-A Long Term Evolution-Advanced
  • the small cell is a concept including a femtocell, a nanocell, a picocell, a microcell, and the like.
  • the small cell is typically introduced by installing a smaller base station (also referred to as an access point) than a macro cell base station (for example, eNB (evolved Node B) in LTE).
  • eNB evolved Node B
  • Patent Document 1 proposes a method for cooperatively controlling the transmission power or transmission rate of a macro cell and a small cell.
  • Patent Document 2 proposes a method for cooperatively controlling the transmission beams of the macro cell and the small cell.
  • a performance acquisition unit that acquires a parameter indicating communication performance on a signaling path of a base station of a small cell that at least partially overlaps a macro cell of a wireless communication system, and the performance acquisition unit that acquires the parameter
  • a selection unit that selects an interference control scheme for controlling interference between the macro cell and the small cell based on a parameter, and a base station of the small cell according to the interference control scheme selected by the selection unit
  • a communication control device including an interference control unit that transmits an interference control signal to
  • a control node of a wireless communication system acquiring a parameter indicating communication performance on a signaling path of a small cell base station at least partially overlapping a macro cell, and the acquired parameter And selecting an interference control scheme for controlling interference between the macro cell and the small cell, and transmitting an interference control signal to the base station of the small cell according to the selected interference control scheme And a communication control method is provided.
  • a base station of a small cell that overlaps at least partially with a macro cell of a wireless communication system, the control node controlling interference between the macro cell and the small cell, the macro cell
  • a communication unit that receives an interference control signal of an interference control method selected based on a parameter indicating a communication performance on a signaling path between the base station and the small control unit according to the interference control signal received by the communication unit;
  • a base station including a control unit that controls wireless communication with a terminal connected to a cell.
  • a small cell base station that at least partially overlaps a macro cell of a wireless communication system, and a performance acquisition unit that acquires a parameter indicating communication performance on a signaling path of the small cell base station,
  • a selection unit that selects an interference control method for controlling interference between the macro cell and the small cell based on the parameter acquired by the performance acquisition unit, and the interference selected by the selection unit
  • a communication control system including a control node including an interference control unit that transmits an interference control signal to a base station of the small cell according to a control method.
  • the technique according to the present disclosure it is possible to flexibly switch the interference control method for controlling the interference between the macro cell and the small cell.
  • FIG. 1 is an explanatory diagram for explaining an existing network architecture of an LTE-based wireless communication system.
  • a radio access network 10 is a network including a radio link between a user terminal (UE) and a base station (eNB), which is implemented as, for example, E-UTRAN (Evolved-UTRA Network).
  • the core network 20 is implemented as EPC (Evolved Packet Core) including, for example, P-GW, S-GW, and MME, and has various roles such as user terminal location registration, charging, and QoS (Quality of Service) management. It is a network.
  • the external network 30 is an IP (Internet Protocol) network also called a PDN (Packet Data Network), and various application (AP) servers can be mounted on the external network 30.
  • IP Internet Protocol
  • PDN Packet Data Network
  • Each node shown in FIG. 1 has the following role. 1 shows only representative nodes of the wireless communication system, other types of nodes may also be included in the wireless communication system.
  • HSS Home Subscriber Server
  • MME Mobility Management Entity
  • MME Mobility Management Entity
  • P-GW PDN-Gateway
  • S-GW Serving-Gateway
  • ENB evolved Node B
  • RRM Radio resource management
  • UE User Equipment
  • the following logical interfaces can be formed between the nodes shown in FIG. 1 using, for example, a GTP (GPRS Tunneling Protocol) tunnel.
  • SGi an interface between the P-GW and the PDN.
  • S5 / S8 An interface that mainly transfers user packets between the S-GW and the P-GW.
  • S11 An interface that mainly transfers control signals for mobility management and session management between the S-GW and the MME.
  • S6a an interface between MME and HSS.
  • S1-U User plane interface between eNB and S-GW.
  • S1-MME Control plane interface between eNB and MME.
  • X2 User plane and control plane interface between base stations. Details of these interfaces are mentioned in “Overall description; Stage (Release 11)” (3GPP TS 36.300 V11.0.0 (2011-12)).
  • FIG. 2 is an explanatory diagram for explaining various bearers established on the communication path between the nodes shown in FIG.
  • an EPS Evolved Packet System
  • An end-to-end communication path can be configured by the EPS bearer and the external bearer.
  • E-RAB EPS-Radio Access Bearer
  • a radio bearer is established between the UE and the eNB.
  • the radio bearer and the S1 bearer constitute an E-RAB.
  • an EPS bearer is configured by the radio bearer, the S1 bearer, and the S5 / S8 bearer.
  • the EPS bearer identifier is assigned by the MME. Packets sent from or received by the UE are forwarded through these bearers.
  • a base station of a cellular radio communication system represented by eNB shown in FIGS. 1 and 2 provides a radio communication service to a terminal connected to a macro cell.
  • the radius of the macro cell is generally several hundred meters to several tens of kilometers.
  • the small cell can be introduced to complement the macro cell and increase the communication capacity.
  • the small cell is a concept including a femto cell, a nano cell, a pico cell, a micro cell, and the like, and is introduced by installing various types of small and medium base stations.
  • Table 1 illustrates several types of small cell base stations.
  • IF type is a classification related to an interface with a macro cell base station.
  • RRH and hot zone base stations having an X2 interface with a macro cell base station can be classified as type 2, and femtocell base stations and relay stations without an X2 interface can be classified as type 1.
  • Access type is a classification related to acceptance of access from the UE. The access types of the RRH, hot zone base station, and relay station are open, and all user terminals can be connected to the small cells of these base stations in principle. On the other hand, the access type of the femtocell base station is closed, and only limited user terminals can be connected to the femtocell in principle.
  • FIG. 3 is an explanatory diagram for explaining an example of the arrangement of small cells.
  • a macro cell 12 served by one base station (eNB) is shown.
  • the macro cell base station is connected to the core network by a wired link.
  • four small cells 14a-14d that at least partially overlap the macrocell 12.
  • the base station (S-BS) of the small cell 14a is connected to the core network by a wired link.
  • the base station of the small cell 14b is connected to the base station of the macro cell by a wired link.
  • the base station of the small cell 14c is connected to the base station of the macro cell via a radio link.
  • the base station of the small cell 14d is connected to the core network via an external network (PDN).
  • PDN external network
  • a cooperation manager is a functional entity introduced in order to realize cooperative control between such a macro cell and a small cell.
  • a cooperation manager may be arrange
  • 4A-4E show some typical examples of coordination manager deployments.
  • the cooperation manager (CM) is arranged as a new control node in the core network 20.
  • signaling between the cooperation manager and the small cell type 1 base station may be performed via the external network 30.
  • signaling between the coordination manager and the small cell type 2 base station may be performed via the macro cell base station (eNB).
  • the cooperation manager (CM) is arranged as a new function on the control node (for example, MME) in the core network 20.
  • the control node for example, MME
  • signaling between the cooperation manager and the small cell type 1 base station may be performed via the external network 30.
  • signaling between the coordination manager and the small cell type 2 base station may be performed via the macro cell base station (eNB).
  • the cooperation manager (CM) is arranged as a new function on the macro cell base station (eNB).
  • signaling between the cooperation manager and the small cell type 1 base station may be performed via the core network 20 and the external network 30.
  • signaling between the cooperation manager and the small cell type 2 base station may be performed on the X2 interface.
  • the coordination manager is arranged as a new function on the small cell base station.
  • signaling between the cooperation manager and base stations of other small cells of different types may be performed via the radio access network 10, the core network 20, and the external network 30.
  • the coordination manager is located on a type 2 base station, signaling between the coordination manager and the macrocell base station may be performed on the X2 interface.
  • the cooperation manager (CM) is arranged as a new server device in the external network 30.
  • signaling between the coordination manager and the small cell type 1 base station may be performed via a communication link between the external network 30 and the type 1 base station.
  • signaling between the cooperation manager and the small cell type 2 base station may be performed via the core network 20.
  • the cooperation manager may be controlled by an application server of IMS (IP Multimedia Subsystem).
  • IMS IP Multimedia Subsystem
  • the application server that controls the cooperation manager is arranged in the external network 30, for example. And the setting of a cooperation manager can be performed via the said application server.
  • the wired link may be a high-speed link such as FTTH (Fiber To The Home), or the wired link It may be a low-speed link such as ISDN (Integrated Services Digital Network).
  • FTTH Fiber To The Home
  • ISDN Integrated Services Digital Network
  • FIG. 5 is a block diagram illustrating an example of the configuration of the cooperation manager 100 according to the first embodiment.
  • the cooperation manager 100 includes a communication unit 110, a storage unit 120, and a control unit 130.
  • the communication unit 110 is a communication module for communication with other nodes by the cooperation manager 100.
  • the communication unit 110 may include a wireless communication module including an antenna and an RF (Radio Frequency) circuit, or may include a wired communication module such as a LAN (Local Area Network) connection terminal.
  • RF Radio Frequency
  • the storage unit 120 stores a program and data for the operation of the cooperation manager 100 using a storage medium such as a hard disk or a semiconductor memory.
  • the storage unit 120 may store a threshold value to be compared with a communication performance parameter when the selection unit 124 described later selects an interference control method.
  • Control Unit 130 corresponds to a processor such as a CPU (Central Processing Unit) or a DSP (Digital Signal Processor).
  • the control unit 130 operates various functions of the cooperation manager 100 by executing a program stored in the storage unit 120 or another storage medium.
  • the control unit 130 has three functional modules: a performance acquisition unit 132, a selection unit 134, and an interference control unit 136.
  • the performance acquisition unit 132 acquires a communication performance parameter indicating the communication performance on the signaling path of the base station of the small cell specified as an interference control target.
  • the communication performance parameter is typically a parameter indicating at least one of throughput and latency.
  • the performance acquisition unit 132 may measure the communication performance for the signaling itself. Instead, the performance acquisition unit 132 may request communication performance measurement from another control node such as P-GW, S-GW, or eNB, for example.
  • the communication performance may be measured, for example, by repeatedly transmitting and receiving a test signal (for example, a ping signal), or may be measured based on actual traffic statistics.
  • Communication performance can be measured between different nodes depending on the type of small cell base station.
  • the small cell base station is a type 2 base station, since the base station has an X2 interface, it is possible to perform signaling without going through an external network.
  • the communication performance is measured for at least one bearer constituting the EPS bearer illustrated in FIG.
  • bearer the communication performance may depend on the arrangement of the coordination manager.
  • the small cell base station is a type 1 base station, since the base station does not have an X2 interface, signaling is usually performed via an external network. In that case, the communication performance is measured end-to-end (eg, between the small cell base station and the coordination manager, or between the small cell base station and the macro cell base station).
  • the performance acquisition unit 132 outputs a communication performance parameter indicating the communication performance measured in this way to the selection unit 134.
  • the selection unit 134 selects an interference control method for controlling radio signal interference between the macro cell and the small cell based on the communication performance parameter acquired by the performance acquisition unit 132.
  • Candidate interference control schemes that can be selected by the selection unit 134 may be any two or more interference control schemes that differ in the amount of signaling overhead or latency tolerance. For example, in the first criterion, the selection unit 134 may select an interference control method that requires more signaling overhead when the communication performance parameter indicates that communication performance (for example, throughput) is higher. Further, in the second criterion, the selection unit 134 selects an interference control method having higher tolerance to latency when the communication performance parameter indicates that the communication performance is lower (for example, the latency is higher). obtain. These criteria may be used alone or in combination.
  • the first interference control method that can be selected by the selection unit 134 is a frequency band separation method.
  • different use frequency bands are assigned to the macro cell and the small cell. If there is enough free space in frequency resources and the used frequency band can be allocated quasi-statically (that is, fixedly in a span of several hundred msec or more), the signaling overhead in the first interference control scheme is Extremely low. Also, even if the signaling latency is relatively large, the first interference control scheme can operate effectively.
  • the second interference control method that can be selected by the selection unit 134 is a power / rate adjustment method.
  • transmission power or transmission rate is adjusted between the macro cell and the small cell.
  • control data such as a transmission power value, an allowable interference amount, and an estimated interference amount are signaled.
  • the amount of control data may depend on the number of user links, the number of resource blocks for each channel, the number of channels, etc., in addition to the transmission power value, the allowable interference amount, and the estimated interference amount of bits.
  • the second interference control scheme requires higher throughput and lower latency on the signaling path.
  • the third interference control method that can be selected by the selection unit 134 is a beam adjustment method.
  • the transmission beam or the reception beam is adjusted between the macro cell and the small cell.
  • control data such as a beam steering matrix, an allowable interference amount, and an estimated interference amount are signaled.
  • the amount of control data may depend on the number of user links, the number of resource blocks for each channel, the number of channels, etc., in addition to the number of bits of the beam steering matrix, the allowable interference amount, and the estimated interference amount.
  • the data size of the beam steering matrix increases as the number of transmission / reception antennas increases.
  • the third interference control scheme requires higher throughput and equivalent or smaller latency on the signaling path.
  • the present invention is not limited to these examples, and other interference control methods may be selected. Further, an interference control method that uses two or more of the first to third interference control methods described above may be selected.
  • the selection unit 134 When selecting the interference control method based on the communication performance parameter, the selection unit 134 outputs an identifier for identifying the selected method to the interference control unit 136.
  • the interference control unit 136 cooperatively controls interference between the macro cell and the small cell according to the interference control method selected by the selection unit 134. For example, when the selection unit 134 selects the first interference control method, the interference control unit 136 designates a frequency band different from the frequency band assigned to the macro cell as the use frequency band to the small cell base station. The interference control signal to be transmitted is transmitted. Further, for example, when the second interference control method is selected by the selection unit 134, the interference control unit 136 transmits the transmission power to the macro cell base station and the small cell base station according to the technique described in Patent Document 1. Alternatively, an interference control signal instructing to adjust the transmission rates to each other is transmitted.
  • the interference control unit 136 transmits the transmission beam to the macro cell base station and the small cell base station according to the method described in Patent Document 2.
  • an interference control signal instructing to adjust reception beams to each other is transmitted. As a result, interference between the macro cell and the small cell can be suppressed.
  • the acquisition of the communication performance parameter by the performance acquisition unit 132 and the selection of the interference control method by the selection unit 134 may be repeated periodically at a constant cycle. Instead, a communication performance parameter may be acquired by the performance acquisition unit 132 and an interference control method may be selected by the selection unit 134 in response to a request from a base station or user terminal that has detected interference exceeding a predetermined level. .
  • FIG. 6 is a block diagram illustrating an example of a configuration of the small cell base station 200 according to the first embodiment.
  • the base station 200 includes a wireless communication unit 210, a network communication unit 220, a storage unit 230, and a control unit 240.
  • the wireless communication unit 210 is a wireless communication module for providing a wireless communication service to a terminal connected to a small cell.
  • the wireless communication unit 210 includes an antenna and an RF circuit.
  • the transmission power of the radio signal transmitted from the radio communication unit 210 can be controlled so as to be suppressed within a range in which interference given to the macro cell is allowed.
  • the wireless communication unit 210 typically includes a plurality of antennas, and can direct a transmission beam or a reception beam in a direction identified by a beam steering matrix (or a precoding matrix).
  • the network communication unit 220 is a communication module for communication between the small cell base station 200 and a control node such as a cooperation manager.
  • the network communication unit 220 may include a wireless communication module that can be shared with the wireless communication unit 210, or may include a wired communication module such as a LAN connection terminal.
  • the storage unit 230 stores a program and data for the operation of the base station 200 using a storage medium such as a hard disk or a semiconductor memory.
  • the storage unit 230 may store a transmission power value, a transmission rate, a beam steering matrix, or the like that is instructed from the coordination manager or adjusted with the base station of the macro cell.
  • the control unit 240 corresponds to a processor such as a CPU or DSP.
  • the control unit 240 operates various functions of the base station 200 by executing a program stored in the storage unit 230 or another storage medium.
  • the control unit 240 has two functional modules, a setting unit 242 and a communication control unit 244.
  • the setting unit 242 sets communication parameters for wireless communication with a terminal connected to the small cell according to the interference control signal received by the network communication unit 220.
  • one of the interference control methods is designated from the cooperation manager. Subsequent interference control may be performed via the coordination manager or may be performed directly with the base station of the macro cell.
  • the setting unit 242 sets the use frequency band of the wireless communication unit 210 to a frequency band different from the use frequency band of the macro cell.
  • the setting unit 242 is adjusted so that the transmission power or transmission rate of the wireless communication unit 210 is suppressed within a range in which interference given to the macro cell is allowed. Set to value.
  • the setting unit 242 sets the direction of the transmission beam or the reception beam of the wireless communication unit 210 using the designated beam steering matrix.
  • the communication control unit 244 controls wireless communication with a terminal connected to the small cell. For example, the communication control unit 244 allocates frequency resources within the range of the used frequency band set by the setting unit 242 to each terminal, and distributes scheduling information within the small cell. Then, the communication control unit 244 causes the radio communication unit 210 to receive the uplink signal and transmit the downlink signal according to the frequency resource assignment. The communication control unit 244 can also control the transmission power, the transmission rate, or the directivity of the transmission beam or the reception beam of each terminal connected to the small cell according to the interference control signal received by the network communication unit 220.
  • FIG. 7 is a sequence diagram showing an example of the flow of communication control processing according to the first embodiment.
  • the communication control process illustrated in FIG. 7 is started by the initial setup in step S100.
  • a small cell base station 200 is installed in a macro cell, and a communication connection is typically established between one coordination manager (CM) 100 and the small cell base station 200 through an authentication procedure. .
  • CM coordination manager
  • the cooperation manager 100 transmits a performance measurement request to the P-GW (may be S-GW) (step S110).
  • the P-GW measures the communication performance on the signaling path of the small cell base station 200 (step S120).
  • the P-GW reports the value of the communication performance parameter indicating the throughput and latency for each bearer to be measured to the cooperation manager 100 (step S130).
  • the cooperation manager 100 selects an interference control method based on the acquired communication performance parameter (step S140). Then, the cooperation manager 100 transmits an interference control signal to the base station 200 of the small cell and the base station of the macro cell according to the selected interference control scheme (step S150). Accordingly, interference is suppressed between the small cell base station 200 and the macro cell base station according to the interference control scheme selected by the cooperation manager 100.
  • communication performance measurement and interference control may be repeated periodically or on a request basis as necessary.
  • FIG. 8 is a flowchart showing an example of the performance measurement process executed in step S120 of FIG.
  • the small cell base station 200 has an X2 interface (step S122).
  • the communication performance is measured for at least one bearer constituting the EPS bearer (step S124).
  • the communication performance is measured end-to-end (step S126).
  • FIG. 9 is a flowchart showing an example of the flow of the interference control method selection process executed in step S140 of FIG.
  • the performance acquisition unit 132 of the cooperation manager 100 acquires a communication performance parameter indicating the communication performance on the signaling path of the base station 200 of the small cell (step S141).
  • the selection unit 134 determines whether or not the communication performance indicated by the communication performance parameter satisfies the first condition (step S142).
  • the first condition may be, for example, a condition that the throughput is higher than the first throughput threshold value and the latency is smaller than the first latency threshold value (the comparison with any one of the threshold values may be omitted). Good).
  • the selection unit 134 selects the first interference control method (frequency band separation method) (step S143).
  • the selection unit 134 determines whether or not the communication performance satisfies the second condition (step S144).
  • the second condition may be a condition that is stricter than the first condition, for example, a condition that the throughput is higher than the second throughput threshold value and the latency is smaller than the second latency threshold value (whichever Comparison with one of the threshold values may be omitted). If it is determined that the communication performance does not satisfy the second condition, the selection unit 134 selects the second interference control method (power / rate adjustment method) (step S145). On the other hand, when it is determined that the second condition with more severe communication performance is satisfied, the selection unit 134 selects the third interference control method (beam adjustment method) (step S146).
  • the communication performance problem for interference control signaling can also be solved by deploying a high-speed interface with the coordination manager in the small cell base station.
  • the interface for interference control may be provided by newly installing a physical communication line such as an optical fiber, for example.
  • the interface for interference control may be deployed as a logical interface (for example, GTP tunnel or VPN (Virtual Private Network)) on an existing communication line.
  • the interface for interference control may be a dedicated interface for interference control signaling, or may be an interface shared with other purpose signaling.
  • FIGS. 10A to 10E show examples of interfaces for interference control with respect to each of the arrangements of the cooperation managers exemplified in FIGS. 4A to 4E.
  • the interface for interference control can be deployed between the cooperation manager arranged as a new control node and the base station of each small cell.
  • the interface for interference control may be provided between the cooperation manager arranged in the MME and the type 1 base station.
  • Type 2 base stations can communicate with the coordination manager via the X2 interface and the S1-MME interface.
  • the interface for interference control can be deployed between the cooperation manager arranged in the eNB and the type 1 base station.
  • Type 2 base stations can communicate with the coordination manager via the X2 interface.
  • the interface for interference control may be provided between a small cell base station in which the cooperation manager is arranged and another small cell base station.
  • the interference control interface may be provided between the eNB and the type 1 base station.
  • Type 2 base stations can communicate with the eNB via the X2 interface.
  • the eNB can communicate with the coordination manager via the S1-U interface, the S5 / S8 interface, and the SGi interface.
  • the cooperation manager according to the second embodiment described below has a mode in which the interference control method is fixedly selected according to whether the small cell base station has an interface for interference control and communication performance. The mode for dynamically selecting the interference control method is switched according to the mode.
  • FIG. 11 is a block diagram illustrating an example of the configuration of the cooperation manager 300 according to the second embodiment.
  • the cooperation manager 300 includes a communication unit 310, a storage unit 120, and a control unit 330.
  • the communication unit 310 is a communication module for communication with other nodes by the cooperation manager 300.
  • the communication unit 310 may include a wireless communication module or a wired communication module.
  • the communication unit 310 can also terminate an interference control interface with the base station of the small cell.
  • the control unit 330 corresponds to a processor such as a CPU or a DSP.
  • the control unit 330 operates various functions of the cooperation manager 300 by executing a program stored in the storage unit 120 or another storage medium.
  • the control unit 330 has four functional modules: a performance acquisition unit 132, a selection unit 334, an interference control unit 136, and an IF determination unit 338.
  • the IF determination unit 338 determines whether or not a small cell base station specified as an object of interference control has a logical or physical communication interface for interference control. Then, IF determination unit 338 outputs the determination result to selection unit 334. The determination by the IF determination unit 338 may be performed based on, for example, identification information or capability information of a small cell base station acquired at the time of the initial setup illustrated in FIG.
  • (2-2) Selection Unit When the IF determination unit 338 determines that the small cell base station has an interface for interference control, the selection unit 334 performs interference control for the small cell base station. Then, a predefined interference control method is selected.
  • the interference control method selected here may be, for example, the above-described second interference control method, third interference control method, or any other method effective for interference control.
  • the selection unit 334 acquires the performance as in the selection unit 134 according to the first embodiment. The interference control method is selected based on the communication performance parameter acquired by the unit 132.
  • the candidate interference control methods that can be selected by the selection unit 334 may be, for example, the first to third interference control methods described above.
  • the selection unit 334 outputs an identifier for identifying the selected interference control method to the interference control unit 136. Then, according to the interference control method selected by the selection unit 334, the interference control unit 136 performs cooperative interference control between the macro cell and the small cell.
  • FIG. 12 is a flowchart illustrating an example of a flow of interference control scheme selection processing according to the second embodiment.
  • the IF determination unit 338 of the cooperation manager 300 determines whether or not the small cell base station has an interface for interference control (step S240). If it is determined that the small cell base station has an interface for interference control, the process proceeds to step S246. On the other hand, if it is determined that the base station of the small cell does not have an interface for interference control, the process proceeds to step S241.
  • step S241 the performance acquisition unit 132 acquires a communication performance parameter indicating the communication performance on the signaling path of the small cell base station (step S241).
  • the selection unit 334 determines whether or not the communication performance indicated by the communication performance parameter satisfies the first condition (step S242). When it is determined that the communication performance does not satisfy the first condition, the selection unit 334 selects the first interference control method (frequency band separation method) (step S243).
  • the first interference control method frequency band separation method
  • the selection unit 334 determines whether the communication performance satisfies the second condition (step S244).
  • the second condition is a stricter condition than the first condition. If it is determined that the communication performance does not satisfy the second condition, the selection unit 334 selects the second interference control method (power / rate adjustment method) (step S245).
  • the selection unit 334 selects the third interference control method (beam adjustment method). ) Is selected (step S246).
  • an interference control method different from the first to third interference control methods may be selected by the cooperation manager 300. Also, an interference control method that uses two or more of the first to third interference control methods together may be selected.
  • the interference control method for controlling the interference between the macro cell and the small cell is selected based on the communication performance on the signaling path of the base station of the small cell. This makes it possible to switch between flexible methods, such as selecting a simpler interference control method when communication performance is not sufficient, and selecting a closer interference control method when sufficient communication performance is obtained. It becomes. Therefore, no matter how the small cells are arranged, it is possible to maintain good communication quality and increase the communication capacity by using the optimum interference control method. Also, the optimum interference control method can be selected wherever the cooperation manager is located in the network architecture.
  • the communication performance parameter indicates that the communication performance is higher
  • an interference control method that requires more signaling overhead can be selected. If the communication performance is high, a large amount of signaling overhead can be transmitted at high speed and with low delay. Therefore, in this case, it is possible to effectively suppress interference while efficiently using frequency resources by utilizing an interference control method based on closer signaling.
  • an interference control method with higher tolerance to latency can be selected. If the communication performance is low, an interference control method that requires immediacy does not work properly. Therefore, in this case, it is beneficial to reliably suppress interference by utilizing an interference control method (for example, a frequency separation method) that is highly resistant to latency.
  • an interference control method for example, a frequency separation method
  • the interference control method when the small cell base station does not have an interface for interference control, the interference control method can be selected based on the communication performance parameter. Therefore, when there is an interface for interference control, use the resource-efficient interference control method by utilizing the interface, and when there is no interface for interference control, appropriate interference control according to the communication performance A scheme can be used.
  • a series of control processing by each device described in this specification may be realized using any of software, hardware, and a combination of software and hardware.
  • a program constituting the software is stored in advance in a storage medium provided inside or outside each device.
  • Each program is read into a RAM at the time of execution, for example, and executed by a processor such as a CPU.
  • a performance acquisition unit for acquiring a parameter indicating communication performance on a signaling path of a small cell base station that at least partially overlaps a macro cell of a wireless communication system;
  • a selection unit that selects an interference control method for controlling interference between the macro cell and the small cell based on the parameter acquired by the performance acquisition unit; According to the interference control method selected by the selection unit, an interference control unit that transmits an interference control signal to the base station of the small cell;
  • a communication control device comprising: (2) The communication control device according to (1), wherein the selection unit selects an interference control method that requires more signaling overhead when the parameter indicates that the communication performance is higher.
  • the said control part is a communication control apparatus as described in said (1) which selects the interference control system with higher tolerance to a latency, when the said parameter shows that the said communication performance is lower.
  • the selection unit selects an interference control method based on the parameter when the base station of the small cell does not have a logical or physical communication interface for interference control, (1) to (3 The communication control device according to any one of the above.
  • the selection unit includes: A first scheme for assigning different use frequency bands to the macro cell and the small cell; A second scheme for adjusting transmission power or transmission rate between the macro cell and the small cell; and A third scheme for adjusting a transmission beam or a reception beam between the macro cell and the small cell; An interference control method is selected based on the parameter from candidates including two or more of The communication control apparatus according to any one of (1) to (4).
  • the performance acquisition unit acquires the parameter indicating communication performance of at least one bearer constituting an EPS (Evolved Packet System) bearer on the signaling path when the small cell base station has an X2 interface.
  • the communication control device according to any one of (1) to (5).
  • the performance acquisition unit acquires the parameter indicating end-to-end communication performance on the signaling path when the small cell base station does not have an X2 interface.
  • the communication control apparatus according to any one of claims.
  • (8) The communication control apparatus according to any one of (1) to (7), wherein the parameter includes at least one of throughput and latency.
  • the communication control device according to any one of (1) to (8), wherein the communication control device is located in a core network of the wireless communication system.
  • the communication control apparatus according to any one of (1) to (8), wherein the communication control apparatus is located in the macro cell.
  • the communication control apparatus is located in an external IP network of the wireless communication system.
  • a base station comprising: (14) A small cell base station that at least partially overlaps a macro cell of a wireless communication system; and A performance acquisition unit for acquiring a parameter indicating communication performance on a signaling path of the base station of the small cell;
  • a selection unit that selects an interference control method for controlling interference between the macro cell and the small cell based on the parameter acquired by the performance acquisition unit; and An interference control unit for transmitting an interference control signal to a base station of the small cell according to the interference control method selected by the selection unit;
  • a control node comprising: Including communication control system.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

【課題】マクロセルとスモールセルとの間の干渉を制御するための干渉制御方式を柔軟に切り替えることを可能とすること。 【解決手段】無線通信システムのマクロセルに少なくとも部分的に重複するスモールセルの基地局のシグナリング経路上の通信性能を示すパラメータを取得する性能取得部と、前記性能取得部により取得される前記パラメータに基づいて、前記マクロセルと前記スモールセルとの間の干渉を制御するための干渉制御方式を選択する選択部と、前記選択部により選択される前記干渉制御方式に従って、前記スモールセルの基地局へ干渉制御信号を送信する干渉制御部と、を備える通信制御装置を提供する。

Description

通信制御装置、通信制御方法、基地局及び通信制御システム
 本開示は、通信制御装置、通信制御方法、基地局及び通信制御システムに関する。
 近年、LTE(Long Term Evolution)及びWiMAXなどの高速なセルラ無線通信方式が実用化され、モバイルユーザにより享受される無線通信サービスの通信レートは大きく向上した。さらに、LTE-A(LTE-Advanced)などの第4世代セルラ無線通信方式が導入されれば、通信レートは一層向上するものと期待される。
 一方で、モバイルユーザの数は急速に増加しており、高データレートを要求するアプリケーションの利用も広まってきている。結果として、セルラ無線通信方式の発展は、モバイルユーザの全てのニーズを満足させるには至っていない。そこで、マクロセルを補完して通信容量を増加させるために、スモールセルの導入が進められている。スモールセルは、フェムトセル、ナノセル、ピコセル及びマイクロセルなどを含む概念である。スモールセルは、典型的には、マクロセルの基地局(例えば、LTEにおけるeNB(evolved Node B))と比較してより小さい基地局(アクセスポイントともいう)を設置することにより導入される。しかし、マクロセルとスモールセルとが重複する領域では、スモールセルにおいて送受信される無線信号がマクロセルに接続する端末へ干渉を与えるというリスクが生じる。
 スモールセルの導入に伴う干渉のリスクを回避するために、下記特許文献1は、マクロセル及びスモールセルの送信電力又は送信レートを協調的に制御する手法を提案している。下記特許文献2は、マクロセル及びスモールセルの送信ビームを協調的に制御する手法を提案している。
特開2011-211369号公報 特開2011-211368号公報
 しかしながら、マクロセルとスモールセルとの間の協調的な干渉制御を実現するためには、それらセルの基地局の間の高速かつ低レイテンシなシグナリングが求められる。例えば、上記特許文献1又は2により提案されている手法を有効に動作させるためには、数無線フレーム、即ち数10msecを超えないレイテンシが望ましいと考えられる。しかし、現実には、スモールセルの形態又は干渉制御機能の配置に依存して、干渉制御のために上述したような所望の通信性能が得られないケースもあり得る。
 従って、マクロセルとスモールセルとの間の干渉を制御するための干渉制御方式を柔軟に切り替えることのできる仕組みが提供されることが望ましい。
 本開示によれば、無線通信システムのマクロセルに少なくとも部分的に重複するスモールセルの基地局のシグナリング経路上の通信性能を示すパラメータを取得する性能取得部と、前記性能取得部により取得される前記パラメータに基づいて、前記マクロセルと前記スモールセルとの間の干渉を制御するための干渉制御方式を選択する選択部と、前記選択部により選択される前記干渉制御方式に従って、前記スモールセルの基地局へ干渉制御信号を送信する干渉制御部と、を備える通信制御装置が提供される。
 また、本開示によれば、無線通信システムの制御ノードにおいて、マクロセルに少なくとも部分的に重複するスモールセルの基地局のシグナリング経路上の通信性能を示すパラメータを取得することと、取得される前記パラメータに基づいて、前記マクロセルと前記スモールセルとの間の干渉を制御するための干渉制御方式を選択することと、選択される前記干渉制御方式に従って、前記スモールセルの基地局へ干渉制御信号を送信することと、を含む通信制御方法が提供される。
 また、本開示によれば、無線通信システムのマクロセルに少なくとも部分的に重複するスモールセルの基地局であって、前記マクロセルと前記スモールセルとの間の干渉を制御する制御ノードから、前記マクロセルの基地局との間のシグナリング経路上の通信性能を示すパラメータに基づいて選択される干渉制御方式の干渉制御信号を受信する通信部と、前記通信部により受信される前記干渉制御信号に従って、前記スモールセルに接続する端末との間の無線通信を制御する制御部と、を備える基地局が提供される。
 また、本開示によれば、無線通信システムのマクロセルに少なくとも部分的に重複するスモールセルの基地局と、前記スモールセルの基地局のシグナリング経路上の通信性能を示すパラメータを取得する性能取得部、前記性能取得部により取得される前記パラメータに基づいて、前記マクロセルと前記スモールセルとの間の干渉を制御するための干渉制御方式を選択する選択部、及び、前記選択部により選択される前記干渉制御方式に従って、前記スモールセルの基地局へ干渉制御信号を送信する干渉制御部、を備える制御ノードと、を含む通信制御システムが提供される。
 本開示に係る技術によれば、マクロセルとスモールセルとの間の干渉を制御するための干渉制御方式を柔軟に切り替えることが可能となる。
LTEベースの無線通信システムの既存のネットワークアーキテクチャについて説明するための説明図である。 図1に示したノード間の通信経路上で確立される様々なベアラについて説明するための説明図である。 スモールセルの配置の一例について説明するための説明図である。 干渉制御のための協調マネージャの配置の第1の例を示す説明図である。 干渉制御のための協調マネージャの配置の第2の例を示す説明図である。 干渉制御のための協調マネージャの配置の第3の例を示す説明図である。 干渉制御のための協調マネージャの配置の第4の例を示す説明図である。 干渉制御のための協調マネージャの配置の第5の例を示す説明図である。 第1の実施形態に係る協調マネージャの構成の一例を示すブロック図である。 第1の実施形態に係る基地局の構成の一例を示すブロック図である。 第1の実施形態に係る通信制御処理の流れの一例を示すシーケンス図である。 第1の実施形態に係る性能測定処理の流れの一例を示すフローチャートである。 第1の実施形態に係る干渉制御方式選択処理の流れの一例を示すフローチャートである。 干渉制御用のインタフェースの第1の例について説明するための説明図である。 干渉制御用のインタフェースの第2の例について説明するための説明図である。 干渉制御用のインタフェースの第3の例について説明するための説明図である。 干渉制御用のインタフェースの第4の例について説明するための説明図である。 干渉制御用のインタフェースの第5の例について説明するための説明図である。 第2の実施形態に係る協調マネージャの構成の一例を示すブロック図である。 第2の実施形態に係る干渉制御方式選択処理の流れの一例を示すフローチャートである。
 以下に添付図面を参照しながら、本開示の好適な実施の形態について詳細に説明する。なお、本明細書及び図面において、実質的に同一の機能構成を有する構成要素については、同一の符号を付することにより重複説明を省略する。
 また、以下の順序で説明を行う。
  1.システムの概要
   1-1.既存のシステムの構成
   1-2.協調マネージャ(CM)の配置
   1-3.課題の説明
  2.第1の実施形態
   2-1.協調マネージャの構成例
   2-2.基地局の構成例
   2-3.処理の流れ
  3.第2の実施形態
   3-1.干渉制御用のインタフェースの配備
   3-2.協調マネージャの構成例
   3-3.処理の流れ
  4.まとめ
 <1.システムの概要>
  [1-1.既存のシステムの構成]
 まず、図1~図3を用いて、既存のセルラ無線通信システムの構成の一例を説明する。なお、ここでは、既存のシステムの一例として、LTE(E-UTRA(Evolved-UMTS Terrestrial Radio Access)ともいう)に基づく無線通信システムについて説明する。しかしながら、本開示に係る技術は、かかる例に限定されず、W-CDMA、CDMA2000、WiMAX及びLTE-Aなどの様々なセルラ無線通信方式に基づく無線通信システムに広く適用可能である。
 図1は、LTEベースの無線通信システムの既存のネットワークアーキテクチャについて説明するための説明図である。図1を参照すると、無線アクセスネットワーク10、コアネットワーク20及び外部ネットワーク30が示されている。無線アクセスネットワーク10は、例えばE-UTRAN(Evolved-UTRA Network)として実装される、ユーザ端末(UE)と基地局(eNB)との間の無線リンクを含むネットワークである。コアネットワーク20は、例えばP-GW、S-GW及びMMEを含むEPC(Evolved Packet Core)として実装される、ユーザ端末の位置登録、課金及びQoS(Quality of Service)管理などの様々な役割を有するネットワークである。外部ネットワーク30は、PDN(Packet Data Network)とも呼ばれるIP(Internet Protocol)ネットワークであり、外部ネットワーク30上には様々なアプリケーション(AP)サーバが実装され得る。
 図1に示した各ノードは、それぞれ次のような役割を有する。なお、図1では無線通信システムの代表的なノードのみを示しているが、他の種類のノードもまた無線通信システムに含まれ得る。
 ・HSS(Home Subscriber Server):加入者の識別情報、プロフィール情報及び認証情報などを管理するサーバである。
 ・MME(Mobility Management Entity):UEとの間でNAS(Non Access Stratum)信号を送受信し、モビリティ管理、セッション管理及びページングなどを行うエンティティである。複数のeNBと接続される。
 ・P-GW(PDN-Gateway):EPCとPDNとの間の接続点に位置し、UEへのIPアドレスの割当て、IPヘッダの付与及び削除などを行うゲートウェイである。課金管理を行う場合もある。
 ・S-GW(Serving-Gateway):E-UTRANとEPCとの間の接続点に位置し、ユーザプレーンのパケットをルーティングするゲートウェイである。UEがeNB間又はUTRAN間でハンドオーバする場合には、S-GWがアンカーポイントとなる。
 ・eNB(evolved Node B):マクロセル内の無線リンクを実現する基地局である。無線リソース管理(RRM:Radio Resource Management)、無線ベアラ制御及びスケジューリングなどを行う。
 ・UE(User Equipment):eNBにより提供される無線通信サービスを利用するユーザ端末である。
 図1に示したノード間には、例えばGTP(GPRS Tunneling Protocol)トンネルを用いて、次のような論理インタフェースが形成され得る。
 ・SGi:P-GWとPDNとの間のインタフェースである。
 ・S5/S8:S-GWとP-GWとの間で主にユーザパケットを転送するインタフェースである。
 ・S11:S-GWとMMEとの間で主にモビリティ管理及びセッション管理のための制御信号を転送するインタフェースである。
 ・S6a:MMEとHSSとの間のインタフェースである。
 ・S1-U:eNBとS-GWとの間のユーザプレーンのインタフェースである。
 ・S1-MME:eNBとMMEとの間の制御プレーンのインタフェースである。
 ・X2:基地局間のユーザプレーン及び制御プレーンのインタフェースである。
なお、これらインタフェースの詳細は、“Overall description; Stage (Release 11)”(3GPP TS 36.300 V11.0.0 (2011-12))において言及されている。
 図2は、図1に示したノード間の通信経路上で確立される様々なベアラについて説明するための説明図である。図2の例において、EPS(Evolved Packet System)ベアラは、UEとP-GWとの間に確立される。EPSベアラと外部ベアラとによりエンドツーエンドの通信経路が構成され得る。E-RAB(EPS-Radio Access Bearer)は、UEとS-GWとの間に確立される。無線ベアラは、UEとeNBとの間に確立される。無線ベアラとS1ベアラとによりE-RABが構成される。また、無線ベアラ、S1ベアラ及びS5/S8ベアラによりEPSベアラが構成される。EPSベアラの識別子は、MMEにより割当てられる。UEから送信され又はUEにより受信されるパケットは、これらベアラを通じて転送される。
 図1及び図2に示したeNBに代表されるセルラ無線通信システムの基地局は、マクロセルに接続する端末へ無線通信サービスを提供する。マクロセルの半径は、一般的には、数百メートルから十数キロメートルである。しかし、マクロセルの境界付近、建物の陰、地下又は屋内などの空間では、マクロセルの基地局からの無線信号の強度が低下する結果として、通信が不能となり又はデータレートが不足するといった問題が生じ得る。このような状況において、スモールセルは、マクロセルを補完して通信容量を増加させるために導入され得る。スモールセルは、上述したように、フェムトセル、ナノセル、ピコセル及びマイクロセルなどを含む概念であり、様々な種類の中小規模の基地局を設置することにより導入される。表1は、スモールセルの基地局のいくつかの種類を例示している。
Figure JPOXMLDOC01-appb-T000001
 表1において「IFタイプ」は、マクロセルの基地局との間のインタフェースに関する分類である。マクロセルの基地局との間にX2インタフェースを有するRRH及びホットゾーン基地局はタイプ2に、X2インタフェースを有しないフェムトセル基地局及び中継局はタイプ1に分類され得る。「アクセスタイプ」は、UEからのアクセスの受け入れに関する分類である。RRH、ホットゾーン基地局及び中継局のアクセスタイプはオープンであり、これら基地局のスモールセルには原則として全てのユーザ端末が接続可能である。一方、フェムトセル基地局のアクセスタイプはクローズドであり、フェムトセルには原則として限定されたユーザ端末のみが接続可能である。
 図3は、スモールセルの配置の一例について説明するための説明図である。図3を参照すると、1つの基地局(eNB)によりサービスを提供されるマクロセル12が示されている。マクロセルの基地局は、コアネットワークと有線リンクで接続される。また、図3には、マクロセル12と少なくとも部分的に重複する4つのスモールセル14a~14dもまた示されている。スモールセル14aの基地局(S-BS)は、コアネットワークと有線リンクで接続される。スモールセル14bの基地局は、マクロセルの基地局と有線リンクで接続される。スモールセル14cの基地局は、マクロセルの基地局と無線リンクで接続される。スモールセル14dの基地局は、外部ネットワーク(PDN)を介してコアネットワークと接続される。
 このようにマクロセル内にスモールセルが配置される場合、スモールセルにおいて送受信される無線信号がマクロセルに接続する端末へ干渉を与えるというリスクが生じる。そのようなリスクを回避するために、いくつかの干渉制御方式が利用可能である。最も単純な干渉制御方式は、使用周波数帯の分離であろう。しかし、周波数リソースが枯渇化している状況下では、マクロセルの使用周波数帯と異なる周波数帯を常にスモールセルに割当てることができるとは限らない。従って、上記特許文献1により提案されているような、マクロセル及びスモールセルの送信電力若しくは送信レートを協調的に制御する干渉制御方式、又は上記特許文献2により提案されているような、マクロセル及びスモールセルの送受信ビームを協調的に制御する干渉制御方式もまた有益である。協調マネージャ(CM:Cooperation Manager)は、そのようなマクロセルとスモールセルとの間の協調的な制御を実現するために導入される機能エンティティである。
  [1-2.協調マネージャ(CM)の配置]
 協調マネージャは、スモールセルの基地局との間で通信可能ないずれの通信ノード上に配置されてもよい。図4A~図4Eは、協調マネージャの配置のいくつかの典型的な例を示している。
 図4Aの例において、協調マネージャ(CM)は、コアネットワーク20内の新たな制御ノードとして配置されている。この場合、協調マネージャとスモールセルのタイプ1の基地局との間のシグナリングは、外部ネットワーク30を介して行われ得る。一方、協調マネージャとスモールセルのタイプ2の基地局との間のシグナリングは、マクロセルの基地局(eNB)を介して行われ得る。
 図4Bの例において、協調マネージャ(CM)は、コアネットワーク20内の制御ノード(例えば、MME)上の新たな機能として配置されている。この場合にも、協調マネージャとスモールセルのタイプ1の基地局との間のシグナリングは、外部ネットワーク30を介して行われ得る。一方、協調マネージャとスモールセルのタイプ2の基地局との間のシグナリングは、マクロセルの基地局(eNB)を介して行われ得る。
 図4Cの例において、協調マネージャ(CM)は、マクロセルの基地局(eNB)上の新たな機能として配置されている。この場合、協調マネージャとスモールセルのタイプ1の基地局との間のシグナリングは、コアネットワーク20及び外部ネットワーク30を介して行われ得る。一方、協調マネージャとスモールセルのタイプ2の基地局との間のシグナリングは、X2インタフェース上で行われ得る。
 図4Dの例において、協調マネージャ(CM)は、スモールセルの基地局上の新たな機能として配置されている。この場合、協調マネージャとタイプの異なる他のスモールセルの基地局との間のシグナリングは、無線アクセスネットワーク10、コアネットワーク20及び外部ネットワーク30を介して行われ得る。協調マネージャがタイプ2の基地局上に配置される場合には、協調マネージャとマクロセルの基地局との間のシグナリングは、X2インタフェース上で行われ得る。
 図4Eの例において、協調マネージャ(CM)は、外部ネットワーク30内の新たなサーバ装置として配置されている。この場合、協調マネージャとスモールセルのタイプ1の基地局との間のシグナリングは、外部ネットワーク30と当該タイプ1の基地局との間の通信リンクを介して行われ得る。一方、協調マネージャとスモールセルのタイプ2の基地局との間のシグナリングは、コアネットワーク20を介して行われ得る。
 なお、図4A~図4Eのいずれにおいても、協調マネージャは、IMS(IP Multimedia Subsystem)のアプリケーションサーバにより制御されてよい。協調マネージャを制御するアプリケーションサーバは、例えば、外部ネットワーク30内に配置される。そして、当該アプリケーションサーバを介して、協調マネージャの設定が実行され得る。
  [1-3.課題の説明]
 一般的には、セル間でより緊密に協調する方式ほど、より周波数リソースを効率的に使用しながら干渉を抑制することができる。しかしながら、緊密な協調のためには、高速かつ低レイテンシなシグナリングが求められる。例えば、上記特許文献1又は2により提案されている手法を有効に動作させるためには、数無線フレーム、即ち数10msecを超えないレイテンシが望ましいと考えられる。しかし、現実には、スモールセルの形態又は協調マネージャの配置に依存して、干渉制御のために所望の通信性能が得られないケースもあり得る。
 表1及び図3から理解されるように、スモールセルの種類及び設置の形態には、様々な例がある。スモールセルの基地局が有線リンクを有する場合であっても、地域に依存して、その有線リンクはFTTH(Fiber To The Home)のような高速リンクである可能性もあり、又はその有線リンクはISDN(Integrated Services Digital Network)のような低速リンクである可能性もある。また、図4A~図4Eから理解されるように、協調マネージャの配置に依存して、干渉制御のためのシグナリング経路もまた様々である。
 そこで、次節より説明する2つの実施形態では、干渉制御のために実際に得られる通信性能に応じて干渉制御方式を柔軟に切り替えるための仕組みが提供される。
 <2.第1の実施形態>
  [2-1.協調マネージャの構成例]
 図5は、第1の実施形態に係る協調マネージャ100の構成の一例を示すブロック図である。図5を参照すると、協調マネージャ100は、通信部110、記憶部120及び制御部130を備える。
   (1)通信部
 通信部110は、協調マネージャ100による他のノードとの間の通信のための通信モジュールである。通信部110は、アンテナ及びRF(Radio Frequency)回路を含む無線通信モジュールを含んでもよく、又はLAN(Local Area Network)接続端子などの有線通信モジュールを含んでもよい。
   (2)記憶部
 記憶部120は、ハードディスク又は半導体メモリなどの記憶媒体を用いて、協調マネージャ100の動作のためのプログラム及びデータを記憶する。例えば、記憶部120は、後述する選択部124が干渉制御方式を選択する際に通信性能パラメータと比較する閾値を記憶してもよい。
   (3)制御部
 制御部130は、CPU(Central Processing Unit)又はDSP(Digital Signal Processor)などのプロセッサに相当する。制御部130は、記憶部120又は他の記憶媒体に記憶されるプログラムを実行することにより、協調マネージャ100の様々な機能を動作させる。本実施形態において、制御部130は、性能取得部132、選択部134及び干渉制御部136という3つの機能モジュールを有する。
   (3-1)性能取得部
 性能取得部132は、干渉制御の対象として特定されるスモールセルの基地局のシグナリング経路上の通信性能を示す通信性能パラメータを取得する。通信性能パラメータは、典型的には、スループット及びレイテンシのうち少なくとも1つを示すパラメータである。性能取得部132は、干渉制御のためのシグナリングが協調マネージャを介して行われる場合には、当該シグナリングについての通信性能を自ら測定してもよい。その代わりに、性能取得部132は、例えばP-GW、S-GW又はeNBなどの他の制御ノードに通信性能の測定を要求してもよい。通信性能は、例えば、テスト用信号(例えばping信号)を複数回繰り返し送受信することにより測定されてもよく、又は実際のトラフィックの統計に基づいて測定されてもよい。
 通信性能は、スモールセルの基地局の種類に応じて、異なるノード間で測定され得る。例えば、スモールセルの基地局がタイプ2の基地局である場合には、当該基地局はX2インタフェースを有するため、外部ネットワークを介することなくシグナリングを行うことが可能である。その場合、通信性能は、図2に例示したEPSベアラを構成する少なくとも1つのベアラについて測定される。いずれのベアラについて通信性能が測定されるかは、協調マネージャの配置に依存し得る。また、スモールセルの基地局がタイプ1の基地局である場合には、当該基地局はX2インタフェースを有しないため、シグナリングは、通常外部ネットワークを介して行われる。その場合、通信性能は、エンドツーエンドで(例えば、スモールセルの基地局と協調マネージャとの間、又はスモールセルの基地局とマクロセルの基地局との間で)測定される。
 性能取得部132は、このように測定される通信性能を示す通信性能パラメータを、選択部134へ出力する。
   (3-2)選択部
 選択部134は、性能取得部132により取得される通信性能パラメータに基づいて、マクロセルとスモールセルとの間の無線信号の干渉を制御するための干渉制御方式を選択する。選択部134により選択され得る干渉制御方式の候補は、シグナリングオーバヘッドの量又はレイテンシへの耐性の互いに異なる任意の2つ以上の干渉制御方式であってよい。例えば、第1の基準において、選択部134は、通信性能(例えばスループット)がより高いことを通信性能パラメータが示している場合に、より多くのシグナリングオーバヘッドを要する干渉制御方式を選択し得る。また、第2の基準において、選択部134は、通信性能がより低い(例えばレイテンシがより大きい)ことを通信性能パラメータが示している場合に、よりレイテンシへの耐性の高い干渉制御方式を選択し得る。これらの基準は、単独で使用されてもよく、又は組合わされてもよい。
 一例として、選択部134により選択され得る第1の干渉制御方式は、周波数帯分離方式である。第1の干渉制御方式では、マクロセル及びスモールセルに互いに異なる使用周波数帯が割当てられる。周波数リソースに十分な空きがあり、使用周波数帯を準静的に(即ち、数百msec以上のスパンで固定的に)割当てることが可能であれば、第1の干渉制御方式におけるシグナリングのオーバヘッドは極めて少なく抑えられる。また、シグナリングのレイテンシが比較的大きくても、第1の干渉制御方式は有効に動作し得る。
 選択部134により選択され得る第2の干渉制御方式は、電力/レート調整方式である。第2の干渉制御方式では、マクロセル及びスモールセルの間で送信電力又は送信レートが調整される。第2の干渉制御方式の詳細については、上記特許文献1を参照されたい。第2の干渉制御方式では、送信電力値、許容干渉量及び推定干渉量などの制御データがシグナリングされる。制御データのデータ量は、送信電力値、許容干渉量及び推定干渉量のビット数に加えて、ユーザリンク数、チャネルごとのリソースブロック数、チャネル数などに依存し得る。第1の干渉制御方式と比較すると、第2の干渉制御方式では、シグナリング経路上のより高いスループット及びより小さいレイテンシが求められる。
 選択部134により選択され得る第3の干渉制御方式は、ビーム調整方式である。第3の干渉制御方式では、マクロセル及びスモールセルの間で送信ビーム又は受信ビームが調整される。第3の干渉制御方式の詳細については、上記特許文献2を参照されたい。第3の干渉制御方式では、ビームステアリング行列、許容干渉量及び推定干渉量などの制御データがシグナリングされる。制御データのデータ量は、ビームステアリング行列、許容干渉量及び推定干渉量のビット数に加えて、ユーザリンク数、チャネルごとのリソースブロック数、チャネル数などに依存し得る。また、ビームステアリング行列のデータサイズは、送受信アンテナの数が多くなるほど大きくなる。第2の干渉制御方式と比較すると、第3の干渉制御方式では、シグナリング経路上のより高いスループット及び同等又はより小さいレイテンシが求められる。
 なお、これら例に限定されず、他の干渉制御方式が選択されてもよい。また、上述した第1~第3の干渉制御方式のうちの2つ以上を併用する干渉制御方式が選択されてもよい。
 選択部134は、通信性能パラメータに基づいて干渉制御方式を選択すると、選択した方式を識別する識別子を干渉制御部136へ出力する。
   (3-3)干渉制御部
 干渉制御部136は、選択部134により選択される干渉制御方式に従って、マクロセルとスモールセルとの間で干渉を協調的に制御する。例えば、干渉制御部136は、選択部134により第1の干渉制御方式が選択されると、スモールセルの基地局へ、マクロセルに割当てられている周波数帯とは異なる周波数帯を使用周波数帯として指定する干渉制御信号を送信する。また、例えば、干渉制御部136は、選択部134により第2の干渉制御方式が選択されると、マクロセルの基地局及びスモールセルの基地局へ、上記特許文献1に記載された手法に従って送信電力又は送信レートを互いに調整することを指示する干渉制御信号を送信する。また、例えば、干渉制御部136は、選択部134により第3の干渉制御方式が選択されると、マクロセルの基地局及びスモールセルの基地局へ、上記特許文献2に記載された手法に従って送信ビーム又は受信ビームを互いに調整することを指示する干渉制御信号を送信する。その結果、マクロセルとスモールセルとの間の干渉が抑制され得る。
 性能取得部132による通信性能パラメータの取得、及び選択部134による干渉制御方式の選択は、一定の周期で周期的に繰り返されてもよい。その代わりに、所定のレベルを超える干渉を検知した基地局又はユーザ端末からの要求に応じて、性能取得部132により通信性能パラメータが取得され、選択部134により干渉制御方式が選択されてもよい。
  [2-2.基地局の構成例]
 スモールセルの基地局200は、上述した協調マネージャ100と共に通信制御システムを構成する。図6は、第1の実施形態に係るスモールセルの基地局200の構成の一例を示すブロック図である。図6を参照すると、基地局200は、無線通信部210、ネットワーク通信部220、記憶部230及び制御部240を備える。
   (1)無線通信部
 無線通信部210は、スモールセルに接続する端末へ無線通信サービスを提供するための無線通信モジュールである。無線通信部210は、アンテナ及びRF回路を含む。無線通信部210から送信される無線信号の送信電力は、マクロセルに与える干渉が許容される範囲内に抑制されるように制御され得る。また、無線通信部210は、典型的には複数のアンテナを有し、ビームステアリング行列(あるいはプリコーディング行列)によって識別される方向へ、送信ビーム又は受信ビームを向けることが可能である。
   (2)ネットワーク通信部
 ネットワーク通信部220は、スモールセルの基地局200と協調マネージャなどの制御ノードとの間の通信のための通信モジュールである。ネットワーク通信部220は、無線通信部210と共通化され得る無線通信モジュールを含んでもよく、又はLAN接続端子などの有線通信モジュールを含んでもよい。
   (3)記憶部
 記憶部230は、ハードディスク又は半導体メモリなどの記憶媒体を用いて、基地局200の動作のためのプログラム及びデータを記憶する。例えば、記憶部230は、協調マネージャから指示され、又はマクロセルの基地局との間で調整される送信電力値、送信レート又はビームステアリング行列などを記憶し得る。
   (4)制御部
 制御部240は、CPU又はDSPなどのプロセッサに相当する。制御部240は、記憶部230又は他の記憶媒体に記憶されるプログラムを実行することにより、基地局200の様々な機能を動作させる。本実施形態において、制御部240は、設定部242及び通信制御部244という2つの機能モジュールを有する。
   (4-1)設定部
 設定部242は、ネットワーク通信部220により受信される干渉制御信号に従って、スモールセルに接続する端末との間の無線通信のための通信パラメータを設定する。干渉制御が開始される際には、協調マネージャから、いずれかの干渉制御方式が指定される。その後の干渉制御は、協調マネージャを介して行われてもよく、又はマクロセルの基地局との間で直接的に行われてもよい。例えば、第1の干渉制御方式が指定された場合、設定部242は、無線通信部210の使用周波数帯を、マクロセルの使用周波数帯とは異なる周波数帯に設定する。また、第2の干渉制御方式が指定された場合、設定部242は、無線通信部210の送信電力又は送信レートを、マクロセルに与える干渉が許容される範囲内に抑制されるように調整された値に設定する。また、第3の干渉制御方式が指定された場合、設定部242は、指定されるビームステアリング行列を用いて、無線通信部210の送信ビーム又は受信ビームの方向を設定する。
   (4-2)通信制御部
 通信制御部244は、スモールセルに接続する端末との間の無線通信を制御する。例えば、通信制御部244は、設定部242により設定される使用周波数帯の範囲内の周波数リソースを各端末に割当てて、スケジューリング情報をスモールセル内に配信する。そして、通信制御部244は、周波数リソースの割当てに従って、無線通信部210によりアップリンク信号を受信させ及びダウンリンク信号を送信させる。また、通信制御部244は、ネットワーク通信部220により受信される干渉制御信号に従って、スモールセルに接続する各端末の送信電力、送信レート又は送信ビーム若しくは受信ビームの指向性をも制御し得る。
  [2-3.処理の流れ]
   (1)全体的な流れ
 図7は、第1の実施形態に係る通信制御処理の流れの一例を示すシーケンス図である。
 図7に例示される通信制御処理は、ステップS100における初期セットアップによって開始される。初期セットアップにおいて、マクロセル内にスモールセルの基地局200が設置され、典型的には1つの協調マネージャ(CM)100とスモールセルの基地局200との間で認証手続を経て通信接続が確立される。
 初期セットアップが完了すると、スモールセルの基地局200のシグナリング経路上の通信性能が測定される。図7の例では、協調マネージャ100は、P-GW(S-GWであってもよい)へ性能測定要求を送信している(ステップS110)。協調マネージャ100からの性能測定要求に応じて、P-GWは、スモールセルの基地局200のシグナリング経路上の通信性能を測定する(ステップS120)。そして、P-GWは、例えば、測定対象のベアラごとのスループット及びレイテンシを示す通信性能パラメータの値を、協調マネージャ100へ報告する(ステップS130)。
 協調マネージャ100は、通信性能パラメータが取得されると、取得された通信性能パラメータに基づいて、干渉制御方式を選択する(ステップS140)。そして、協調マネージャ100は、選択した干渉制御方式に従って、スモールセルの基地局200及びマクロセルの基地局へ干渉制御信号を送信する(ステップS150)。それにより、スモールセルの基地局200とマクロセルの基地局との間で、協調マネージャ100により選択された干渉制御方式に従って干渉が抑制される。
 その後、必要に応じて、通信性能の測定及び干渉制御が周期的に又はリクエストベースで繰り返され得る。
   (2)性能測定処理
 図8は、図7のステップS120において実行される性能測定処理の流れの一例を示すフローチャートである。図8の例において、まず、スモールセルの基地局200がX2インタフェースを有するか否かが判定される(ステップS122)。ここで、スモールセルの基地局200がX2インタフェースを有すると判定された場合には、EPSベアラを構成する少なくとも1つのベアラについて、通信性能が測定される(ステップS124)。一方、スモールセルの基地局200がX2インタフェースを有しないと判定された場合には、エンドツーエンドで通信性能が測定される(ステップS126)。
   (3)干渉制御方式選択処理
 図9は、図7のステップS140において実行される干渉制御方式選択処理の流れの一例を示すフローチャートである。図9の例において、協調マネージャ100の性能取得部132は、スモールセルの基地局200のシグナリング経路上の通信性能を示す通信性能パラメータを取得する(ステップS141)。
 次に、選択部134は、通信性能パラメータにより示される通信性能が第1の条件を満たすか否かを判定する(ステップS142)。第1の条件は、例えばスループットが第1のスループット閾値よりも高く、かつレイテンシが第1のレイテンシ閾値よりも小さい、という条件であってよい(いずれか一方の閾値との比較は省略されてもよい)。ここで通信性能が第1の条件を満たさないと判定された場合には、選択部134は、第1の干渉制御方式(周波数帯分離方式)を選択する(ステップS143)。
 ステップS142において、通信性能が第1の条件を満たすと判定された場合には、選択部134は、さらに通信性能が第2の条件を満たすか否かを判定する(ステップS144)。第2の条件は、第1の条件よりも厳しい条件であって、例えばスループットが第2のスループット閾値よりも高く、かつレイテンシが第2のレイテンシ閾値よりも小さい、という条件であってよい(いずれか一方の閾値との比較は省略されてもよい)。ここで通信性能が第2の条件を満たさないと判定された場合には、選択部134は、第2の干渉制御方式(電力/レート調整方式)を選択する(ステップS145)。一方、通信性能がより厳しい第2の条件を満たすと判定された場合には、選択部134は、第3の干渉制御方式(ビーム調整方式)を選択する(ステップS146)。
 <3.第2の実施形態>
  [3-1.干渉制御用のインタフェースの配備]
 干渉制御のシグナリングのための通信性能の問題は、協調マネージャとの間の高速なインタフェースをスモールセルの基地局に配備することによっても解決され得る。干渉制御用のインタフェースは、例えば、光ファイバなどの物理的な通信回線を新たに設置することにより配備されてもよい。その代わりに、干渉制御用のインタフェースは、既存の通信回線上の論理的なインタフェース(例えば、GTPトンネル又はVPN(Virtual Private Network)など)として配備されてもよい。干渉制御用のインタフェースは、干渉制御のシグナリングのための専用のインタフェースであってもよく、又は他の目的のシグナリングと共用されるインタフェースであってもよい。
 図10A~図10Eは、図4A~図4Eに例示した協調マネージャの配置の各々についての干渉制御用のインタフェースの例をそれぞれ示している。
 図10Aの例では、干渉制御用のインタフェースは、新たな制御ノードとして配置される協調マネージャと各スモールセルの基地局との間に配備され得る。
 図10Bの例では、干渉制御用のインタフェースは、MMEに配置される協調マネージャとタイプ1の基地局との間に配備され得る。タイプ2の基地局は、X2インタフェース及びS1-MMEインタフェースを介して協調マネージャと通信可能である。
 図10Cの例では、干渉制御用のインタフェースは、eNBに配置される協調マネージャとタイプ1の基地局との間に配備され得る。タイプ2の基地局は、X2インタフェースを介して協調マネージャと通信可能である。
 図10Dの例では、干渉制御用のインタフェースは、協調マネージャが配置されるスモールセルの基地局と他のスモールセルの基地局との間に配備され得る。
 図10Eの例では、干渉制御用のインタフェースは、eNBとタイプ1の基地局との間に配備され得る。タイプ2の基地局は、X2インタフェースを介してeNBと通信可能である。eNBは、S1-Uインタフェース、S5/S8インタフェース及びSGiインタフェースを介して協調マネージャとの間で通信可能である。
 図10A~図10Eに例示したような干渉制御用のインタフェースが配備される場合には、スモールセルの基地局と協調マネージャとの間で十分な通信性能が得られると想定される。従って、そのようなスモールセルについては、あらためて通信性能が測定されることなく、予め定義されるいずれかの効果的な干渉制御方式が選択されてよい。一方で、干渉制御用のインタフェースが配備されないスモールセルの基地局については、第1の実施形態において説明したような通信性能に応じた干渉制御方式の選択が有益である。そこで、以下に説明する第2の実施形態に係る協調マネージャは、スモールセルの基地局が干渉制御用のインタフェースを有するか否かに応じて、干渉制御方式を固定的に選択するモードと通信性能に応じて干渉制御方式を動的に選択するモードとを切り替える。
  [3-2.協調マネージャの構成例]
 図11は、第2の実施形態に係る協調マネージャ300の構成の一例を示すブロック図である。図11を参照すると、協調マネージャ300は、通信部310、記憶部120及び制御部330を備える。
   (1)通信部
 通信部310は、協調マネージャ300による他のノードとの間の通信のための通信モジュールである。通信部310は、無線通信モジュールを含んでもよく、又は有線通信モジュールを含んでもよい。本実施形態において、通信部310は、スモールセルの基地局との間の干渉制御用のインタフェースをも終端し得る。
   (2)制御部
 制御部330は、CPU又はDSPなどのプロセッサに相当する。制御部330は、記憶部120又は他の記憶媒体に記憶されるプログラムを実行することにより、協調マネージャ300の様々な機能を動作させる。本実施形態において、制御部330は、性能取得部132、選択部334、干渉制御部136及びIF判定部338という4つの機能モジュールを有する。
   (2-1)IF判定部
 IF判定部338は、干渉制御の対象として特定されるスモールセルの基地局が干渉制御用の論理的な又は物理的な通信インタフェースを有するか否かを判定する。そして、IF判定部338は、判定の結果を選択部334へ出力する。IF判定部338による判定は、例えば、図7に例示した初期セットアップの際に取得されるスモールセルの基地局の識別情報又はケイパビリティ情報などに基づいて行われてよい。
   (2-2)選択部
 選択部334は、スモールセルの基地局が干渉制御用のインタフェースを有するとIF判定部338により判定された場合には、当該スモールセルの基地局についての干渉制御のために、予め定義される干渉制御方式を選択する。ここで選択される干渉制御方式は、例えば、上述した第2の干渉制御方式、第3の干渉制御方式、又は干渉制御のために効果的なその他の任意の方式であってよい。一方、選択部334は、スモールセルの基地局が干渉制御用のインタフェースを有しないとIF判定部338により判定された場合には、第1の実施形態に係る選択部134と同様に、性能取得部132により取得される通信性能パラメータに基づいて干渉制御方式を選択する。選択部334により選択され得る干渉制御方式の候補は、例えば、上述した第1~第3の干渉制御方式であってよい。選択部334は、選択した干渉制御方式を識別する識別子を干渉制御部136へ出力する。そして、選択部334により選択された干渉制御方式に従って、干渉制御部136により、マクロセルとスモールセルとの間の協調的な干渉制御が実行される。
  [3-3.処理の流れ]
 図12は、第2の実施形態に係る干渉制御方式選択処理の流れの一例を示すフローチャートである。
 図12の例において、まず、協調マネージャ300のIF判定部338は、スモールセルの基地局が干渉制御用のインタフェースを有するか否かを判定する(ステップS240)。ここで、スモールセルの基地局が干渉制御用のインタフェースを有すると判定された場合には、処理はステップS246へ進む。一方、スモールセルの基地局が干渉制御用のインタフェースを有しないと判定された場合には、処理はステップS241へ進む。
 ステップS241において、性能取得部132は、スモールセルの基地局のシグナリング経路上の通信性能を示す通信性能パラメータを取得する(ステップS241)。
 次に、選択部334は、通信性能パラメータにより示される通信性能が第1の条件を満たすか否かを判定する(ステップS242)。ここで通信性能が第1の条件を満たさないと判定された場合には、選択部334は、第1の干渉制御方式(周波数帯分離方式)を選択する(ステップS243)。
 ステップS242において、通信性能が第1の条件を満たすと判定された場合には、選択部334は、さらに通信性能が第2の条件を満たすか否かを判定する(ステップS244)。第2の条件は、第1の条件よりも厳しい条件である。ここで通信性能が第2の条件を満たさないと判定された場合には、選択部334は、第2の干渉制御方式(電力/レート調整方式)を選択する(ステップS245)。
 一方、通信性能が第2の条件を満たすと判定された場合、又はスモールセルの基地局が干渉制御用のインタフェースを有する場合には、選択部334は、第3の干渉制御方式(ビーム調整方式)を選択する(ステップS246)。
 なお、本実施形態においても、協調マネージャ300により第1~第3の干渉制御方式とは異なる干渉制御方式が選択されてもよい。また、第1~第3の干渉制御方式のうちの2つ以上を併用する干渉制御方式が選択されてもよい。
 <4.まとめ>
 ここまで、図5~図12を用いて、本開示に係る技術の2つの実施形態について詳細に説明した。上述した実施形態によれば、スモールセルの基地局のシグナリング経路上の通信性能に基づいて、マクロセルとスモールセルとの間の干渉を制御するための干渉制御方式が選択される。それにより、通信性能が十分でない場合にはより簡易な干渉制御方式を選択し、及び十分な通信性能が得られる場合にはより緊密な干渉制御方式を選択するといった、柔軟な方式の切り替えが可能となる。従って、スモールセルがどのように配置される場合にも、最適な干渉制御方式を使用して良好な通信品質を維持し、通信容量を高めることができる。また、協調マネージャがネットワークアーキテクチャのどこに位置する場合にも、最適な干渉制御方式を選択することができる。
 例えば、通信性能がより高いことを通信性能パラメータが示している場合には、より多くのシグナリングオーバヘッドを要する干渉制御方式が選択され得る。通信性能が高ければ、多くのシグナリングオーバヘッドを高速かつ低遅延で送信することができる。従って、この場合、より緊密なシグナリングに基づく干渉制御方式を活用して、周波数リソースを効率的に使用しながら干渉を効果的に抑制することができる。
 また、例えば、通信性能がより低いことを通信性能パラメータが示している場合には、よりレイテンシへの耐性の高い干渉制御方式が選択され得る。通信性能が低ければ、即時性が求められるような干渉制御方式は適切に動作しない。従って、この場合、レイテンシへの耐性の高い干渉制御方式(例えば、周波数分離方式)を活用して、干渉を確実に抑制することが有益である。
 また、第2の実施形態によれば、スモールセルの基地局が干渉制御用のインタフェースを有しない場合に、通信性能パラメータに基づいて干渉制御方式が選択され得る。従って、干渉制御用のインタフェースが存在する場合には当該インタフェースを活用してリソース効率の高い干渉制御方式を使用し、干渉制御用のインタフェースが存在しない場合には通信性能に応じた適切な干渉制御方式を使用することができる。
 なお、本明細書において説明した各装置による一連の制御処理は、ソフトウェア、ハードウェア、及びソフトウェアとハードウェアとの組合せのいずれを用いて実現されてもよい。ソフトウェアを構成するプログラムは、例えば、各装置の内部又は外部に設けられる記憶媒体に予め格納される。そして、各プログラムは、例えば、実行時にRAMに読み込まれ、CPUなどのプロセッサにより実行される。
 以上、添付図面を参照しながら本開示の好適な実施形態について詳細に説明したが、本開示の技術的範囲はかかる例に限定されない。本開示の技術分野における通常の知識を有する者であれば、特許請求の範囲に記載された技術的思想の範疇内において、各種の変更例または修正例に想到し得ることは明らかであり、これらについても、当然に本開示の技術的範囲に属するものと了解される。
 なお、以下のような構成も本開示の技術的範囲に属する。
(1)
 無線通信システムのマクロセルに少なくとも部分的に重複するスモールセルの基地局のシグナリング経路上の通信性能を示すパラメータを取得する性能取得部と、
 前記性能取得部により取得される前記パラメータに基づいて、前記マクロセルと前記スモールセルとの間の干渉を制御するための干渉制御方式を選択する選択部と、
 前記選択部により選択される前記干渉制御方式に従って、前記スモールセルの基地局へ干渉制御信号を送信する干渉制御部と、
 を備える通信制御装置。
(2)
 前記選択部は、前記通信性能がより高いことを前記パラメータが示している場合に、より多くのシグナリングオーバヘッドを要する干渉制御方式を選択する、前記(1)に記載の通信制御装置。
(3)
 前記選択部は、前記通信性能がより低いことを前記パラメータが示している場合に、よりレイテンシへの耐性の高い干渉制御方式を選択する、前記(1)に記載の通信制御装置。
(4)
 前記選択部は、前記スモールセルの基地局が干渉制御用の論理的な又は物理的な通信インタフェースを有しない場合に、前記パラメータに基づいて干渉制御方式を選択する、前記(1)~(3)のいずれか1項に記載の通信制御装置。
(5)
 前記選択部は、
 前記マクロセル及び前記スモールセルに互いに異なる使用周波数帯を割当てる第1の方式、
 前記マクロセル及び前記スモールセルの間で送信電力又は送信レートを調整する第2の方式、並びに、
 前記マクロセル及び前記スモールセルの間で送信ビーム又は受信ビームを調整する第3の方式、
 のうち2つ以上を含む候補から、前記パラメータに基づいて干渉制御方式を選択する、
 前記(1)~(4)のいずれか1項に記載の通信制御装置。
(6)
 前記性能取得部は、前記スモールセルの基地局がX2インタフェースを有する場合には、前記シグナリング経路上のEPS(Evolved Packet System)ベアラを構成する少なくとも1つのベアラについての通信性能を示す前記パラメータを取得する、前記(1)~(5)のいずれか1項に記載の通信制御装置。
(7)
 前記性能取得部は、前記スモールセルの基地局がX2インタフェースを有しない場合には、前記シグナリング経路上のエンドツーエンドの通信性能を示す前記パラメータを取得する、前記(1)~(6)のいずれか1項に記載の通信制御装置。
(8)
 前記パラメータは、スループット及びレイテンシのうち少なくとも1つを含む、前記(1)~(7)のいずれか1項に記載の通信制御装置。
(9)
 前記通信制御装置は、前記無線通信システムのコアネットワーク内に位置する、前記(1)~(8)のいずれか1項に記載の通信制御装置。
(10)
 前記通信制御装置は、前記マクロセル内に位置する、前記(1)~(8)のいずれか1項に記載の通信制御装置。
(11)
 前記通信制御装置は、前記無線通信システムの外部IPネットワーク内に位置する、前記(1)~(8)のいずれか1項に記載の通信制御装置。
(12)
 無線通信システムの制御ノードにおいて、マクロセルに少なくとも部分的に重複するスモールセルの基地局のシグナリング経路上の通信性能を示すパラメータを取得することと、
 取得される前記パラメータに基づいて、前記マクロセルと前記スモールセルとの間の干渉を制御するための干渉制御方式を選択することと、
 選択される前記干渉制御方式に従って、前記スモールセルの基地局へ干渉制御信号を送信することと、
 を含む通信制御方法。
(13)
 無線通信システムのマクロセルに少なくとも部分的に重複するスモールセルの基地局であって、
 前記マクロセルと前記スモールセルとの間の干渉を制御する制御ノードから、前記マクロセルの基地局との間のシグナリング経路上の通信性能を示すパラメータに基づいて選択される干渉制御方式の干渉制御信号を受信する通信部と、
 前記通信部により受信される前記干渉制御信号に従って、前記スモールセルに接続する端末との間の無線通信を制御する制御部と、
 を備える基地局。
(14)
 無線通信システムのマクロセルに少なくとも部分的に重複するスモールセルの基地局と、
 前記スモールセルの基地局のシグナリング経路上の通信性能を示すパラメータを取得する性能取得部、
 前記性能取得部により取得される前記パラメータに基づいて、前記マクロセルと前記スモールセルとの間の干渉を制御するための干渉制御方式を選択する選択部、及び、
 前記選択部により選択される前記干渉制御方式に従って、前記スモールセルの基地局へ干渉制御信号を送信する干渉制御部、
 を備える制御ノードと、
 を含む通信制御システム。
 100,300  協調マネージャ(通信制御装置)
 132      性能取得部
 134,334  選択部
 136      干渉制御部
 338      IF判定部
 200      基地局
 220      通信部
 240      制御部
 

Claims (14)

  1.  無線通信システムのマクロセルに少なくとも部分的に重複するスモールセルの基地局のシグナリング経路上の通信性能を示すパラメータを取得する性能取得部と、
     前記性能取得部により取得される前記パラメータに基づいて、前記マクロセルと前記スモールセルとの間の干渉を制御するための干渉制御方式を選択する選択部と、
     前記選択部により選択される前記干渉制御方式に従って、前記スモールセルの基地局へ干渉制御信号を送信する干渉制御部と、
     を備える通信制御装置。
  2.  前記選択部は、前記通信性能がより高いことを前記パラメータが示している場合に、より多くのシグナリングオーバヘッドを要する干渉制御方式を選択する、請求項1に記載の通信制御装置。
  3.  前記選択部は、前記通信性能がより低いことを前記パラメータが示している場合に、よりレイテンシへの耐性の高い干渉制御方式を選択する、請求項1に記載の通信制御装置。
  4.  前記選択部は、前記スモールセルの基地局が干渉制御用の論理的な又は物理的な通信インタフェースを有しない場合に、前記パラメータに基づいて干渉制御方式を選択する、請求項1に記載の通信制御装置。
  5.  前記選択部は、
     前記マクロセル及び前記スモールセルに互いに異なる使用周波数帯を割当てる第1の方式、
     前記マクロセル及び前記スモールセルの間で送信電力又は送信レートを調整する第2の方式、並びに、
     前記マクロセル及び前記スモールセルの間で送信ビーム又は受信ビームを調整する第3の方式、
     のうち2つ以上を含む候補から、前記パラメータに基づいて干渉制御方式を選択する、
     請求項1に記載の通信制御装置。
  6.  前記性能取得部は、前記スモールセルの基地局がX2インタフェースを有する場合には、前記シグナリング経路上のEPS(Evolved Packet System)ベアラを構成する少なくとも1つのベアラについての通信性能を示す前記パラメータを取得する、請求項1に記載の通信制御装置。
  7.  前記性能取得部は、前記スモールセルの基地局がX2インタフェースを有しない場合には、前記シグナリング経路上のエンドツーエンドの通信性能を示す前記パラメータを取得する、請求項1に記載の通信制御装置。
  8.  前記パラメータは、スループット及びレイテンシのうち少なくとも1つを含む、請求項1に記載の通信制御装置。
  9.  前記通信制御装置は、前記無線通信システムのコアネットワーク内に位置する、請求項1に記載の通信制御装置。
  10.  前記通信制御装置は、前記マクロセル内に位置する、請求項1に記載の通信制御装置。
  11.  前記通信制御装置は、前記無線通信システムの外部IPネットワーク内に位置する、請求項1に記載の通信制御装置。
  12.  無線通信システムの制御ノードにおいて、マクロセルに少なくとも部分的に重複するスモールセルの基地局のシグナリング経路上の通信性能を示すパラメータを取得することと、
     取得される前記パラメータに基づいて、前記マクロセルと前記スモールセルとの間の干渉を制御するための干渉制御方式を選択することと、
     選択される前記干渉制御方式に従って、前記スモールセルの基地局へ干渉制御信号を送信することと、
     を含む通信制御方法。
  13.  無線通信システムのマクロセルに少なくとも部分的に重複するスモールセルの基地局であって、
     前記マクロセルと前記スモールセルとの間の干渉を制御する制御ノードから、前記マクロセルの基地局との間のシグナリング経路上の通信性能を示すパラメータに基づいて選択される干渉制御方式の干渉制御信号を受信する通信部と、
     前記通信部により受信される前記干渉制御信号に従って、前記スモールセルに接続する端末との間の無線通信を制御する制御部と、
     を備える基地局。
  14.  無線通信システムのマクロセルに少なくとも部分的に重複するスモールセルの基地局と、
     前記スモールセルの基地局のシグナリング経路上の通信性能を示すパラメータを取得する性能取得部、
     前記性能取得部により取得される前記パラメータに基づいて、前記マクロセルと前記スモールセルとの間の干渉を制御するための干渉制御方式を選択する選択部、及び、
     前記選択部により選択される前記干渉制御方式に従って、前記スモールセルの基地局へ干渉制御信号を送信する干渉制御部、
     を備える制御ノードと、
     を含む通信制御システム。
     
     
PCT/JP2012/083667 2012-02-20 2012-12-26 通信制御装置、通信制御方法、基地局及び通信制御システム WO2013125150A1 (ja)

Priority Applications (8)

Application Number Priority Date Filing Date Title
EP12869458.5A EP2819450B1 (en) 2012-02-20 2012-12-26 Communication control device, communication control method, base station, and communication control system
US14/378,458 US10206217B2 (en) 2012-02-20 2012-12-26 Communication control device, communication control method, base station, and communication control system
BR112014020130A BR112014020130A8 (pt) 2012-02-20 2012-12-26 Dispositivo e método de controle de comunicação, estação base, e, sistema de controle de comunicação
RU2014133425A RU2014133425A (ru) 2012-02-20 2012-12-26 Устройство и способ управления передачей данных, базовая станция и система управления передачей данных
JP2014500885A JP6070687B2 (ja) 2012-02-20 2012-12-26 通信制御装置、通信制御方法、基地局及び通信制御システム
CN201280069704.3A CN104115518B (zh) 2012-02-20 2012-12-26 通信控制设备、通信控制方法、基站和通信控制系统
KR20147019997A KR20140127806A (ko) 2012-02-20 2012-12-26 통신 제어 장치, 통신 제어 방법, 기지국 및 통신 제어 시스템
IN6760DEN2014 IN2014DN06760A (ja) 2012-02-20 2014-08-12

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012033853 2012-02-20
JP2012-033853 2012-02-20

Publications (1)

Publication Number Publication Date
WO2013125150A1 true WO2013125150A1 (ja) 2013-08-29

Family

ID=49005350

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/083667 WO2013125150A1 (ja) 2012-02-20 2012-12-26 通信制御装置、通信制御方法、基地局及び通信制御システム

Country Status (9)

Country Link
US (1) US10206217B2 (ja)
EP (1) EP2819450B1 (ja)
JP (1) JP6070687B2 (ja)
KR (1) KR20140127806A (ja)
CN (1) CN104115518B (ja)
BR (1) BR112014020130A8 (ja)
IN (1) IN2014DN06760A (ja)
RU (1) RU2014133425A (ja)
WO (1) WO2013125150A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020504541A (ja) * 2017-04-25 2020-02-06 華為技術有限公司Huawei Technologies Co.,Ltd. 負荷再配置方法、装置、およびシステム

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101365230B (zh) * 2007-08-07 2010-08-11 华为技术有限公司 异构网络切换/改变时的用户分离方法、系统及装置
RU2607273C2 (ru) * 2012-02-20 2017-01-10 Сони Корпорейшн Устройство и способ управления передачей данных и система управления передачей данными
US20160227454A1 (en) * 2013-09-27 2016-08-04 Nokia Solutions And Networks Oy Method, Apparatus and Computer Program for Control of a Data Bearer
JP2016012881A (ja) * 2014-06-30 2016-01-21 ソニー株式会社 装置、方法及びプログラム
US10721151B2 (en) * 2015-10-15 2020-07-21 Telefonaktiebolaget Lm Ericsson (Publ) Method for locating a bottleneck in a radio communication network
US11026167B2 (en) 2016-12-20 2021-06-01 Sony Corporation Communication apparatus and communication method
US10051488B1 (en) 2017-10-19 2018-08-14 At&T Intellectual Property I, L.P. Dual mode communications device with remote device feedback and methods for use therewith
WO2020061724A1 (en) * 2018-09-24 2020-04-02 Qualcomm Incorporated Triggering mechanism for remote interference management

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010048513A2 (en) * 2008-10-24 2010-04-29 Qualcomm Incorporated Method and apparatus for separable channel state feedback in a wireless communication system
WO2010131841A2 (en) * 2009-05-15 2010-11-18 Samsung Electronics Co., Ltd. Method of allocating resource for hierarchical cellular system and transmission frame for performing the method
WO2011118248A1 (ja) * 2010-03-25 2011-09-29 ソニー株式会社 通信制御方法、および中小規模基地局
JP2011211369A (ja) 2010-03-29 2011-10-20 Sony Corp 通信制御方法、通信システム、および管理サーバ
JP2011211368A (ja) 2010-03-29 2011-10-20 Sony Corp 通信制御方法、通信システム、および管理サーバ

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101662775B (zh) * 2008-08-27 2013-08-28 上海华为技术有限公司 一种减少基站干扰的方法、装置及系统
US8705501B2 (en) * 2009-03-09 2014-04-22 Qualcomm Incorporated Method and apparatus for facilitating a communication between an access point base station and a neighboring base station
KR101524752B1 (ko) * 2009-10-23 2015-06-10 삼성전자주식회사 셀간 협력을 위한 통신 시스템
CN102202353B (zh) * 2010-03-24 2014-09-10 电信科学技术研究院 一种干扰协调控制的方法、装置及系统
US20110267948A1 (en) * 2010-05-03 2011-11-03 Koc Ali T Techniques for communicating and managing congestion in a wireless network
US9288690B2 (en) 2010-05-26 2016-03-15 Qualcomm Incorporated Apparatus for clustering cells using neighbor relations
JP5452375B2 (ja) * 2010-06-03 2014-03-26 株式会社日立製作所 基地局
KR101712380B1 (ko) * 2010-06-14 2017-03-06 삼성전자주식회사 인지적 간섭 제어 방법 및 장치
KR20120034902A (ko) * 2010-10-04 2012-04-13 삼성전자주식회사 계층 셀에서의 간섭 제어를 위한 매크로 기지국, 매크로 단말, 소형 기지국 및 소형 단말의 통신 방법
RU2587651C2 (ru) * 2011-02-07 2016-06-20 Телефонактиеболагет Л М Эрикссон (Пабл) Выбор базовой станции (антенны) для передачи по восходящей линии связи зондирующих опорных сигналов, srs

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010048513A2 (en) * 2008-10-24 2010-04-29 Qualcomm Incorporated Method and apparatus for separable channel state feedback in a wireless communication system
WO2010131841A2 (en) * 2009-05-15 2010-11-18 Samsung Electronics Co., Ltd. Method of allocating resource for hierarchical cellular system and transmission frame for performing the method
WO2011118248A1 (ja) * 2010-03-25 2011-09-29 ソニー株式会社 通信制御方法、および中小規模基地局
JP2011211369A (ja) 2010-03-29 2011-10-20 Sony Corp 通信制御方法、通信システム、および管理サーバ
JP2011211368A (ja) 2010-03-29 2011-10-20 Sony Corp 通信制御方法、通信システム、および管理サーバ

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2819450A4

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020504541A (ja) * 2017-04-25 2020-02-06 華為技術有限公司Huawei Technologies Co.,Ltd. 負荷再配置方法、装置、およびシステム
JP7097894B2 (ja) 2017-04-25 2022-07-08 華為技術有限公司 負荷再配置方法、装置、およびシステム
US11540172B2 (en) 2017-04-25 2022-12-27 Huawei Technologies Co., Ltd. Load relocation in a communications network
US11950136B2 (en) 2017-04-25 2024-04-02 Huawei Technologies Co., Ltd. Load relocation in a communications network

Also Published As

Publication number Publication date
CN104115518A (zh) 2014-10-22
CN104115518B (zh) 2018-11-06
JPWO2013125150A1 (ja) 2015-07-30
JP6070687B2 (ja) 2017-02-01
US20150045049A1 (en) 2015-02-12
BR112014020130A8 (pt) 2017-07-11
EP2819450B1 (en) 2020-02-26
EP2819450A4 (en) 2015-10-21
US10206217B2 (en) 2019-02-12
RU2014133425A (ru) 2016-03-10
IN2014DN06760A (ja) 2015-06-26
BR112014020130A2 (ja) 2017-06-20
EP2819450A1 (en) 2014-12-31
KR20140127806A (ko) 2014-11-04

Similar Documents

Publication Publication Date Title
JP6070687B2 (ja) 通信制御装置、通信制御方法、基地局及び通信制御システム
US20220225264A1 (en) Apparatus and method for service subscription through e2 interface in radio access network communication system
KR101574491B1 (ko) 고속 이용자들을 위한 셀 분할
EP2850880B1 (en) Inter-cell cooperation for making handover decisions in multi-sector deployments
EP2947951B1 (en) Double-connection implementation method and base station
JP6567686B2 (ja) データ・オフロードのためのパスを確立する方法及び装置
KR102018057B1 (ko) 중첩 셀 환경에서의 조정 다중점 송수신 방법
CN102883441B (zh) 一种无线宽带通信方法和装置
EP2941050B1 (en) Inter-cell movement in small cell enhancement scenario
KR101483073B1 (ko) 릴레이―강화 액세스 네트워크들에서의 최적화된 시그널링
CN103888981B (zh) 一种通信路径的确定方法和装置
CN108418609B (zh) 对多点传输进行无线承载管理的系统和方法
JP6164333B2 (ja) 情報処理装置及び通信制御装置
US20140308953A1 (en) Method and apparatus for managing radio resources in multi-carrier and hetnet-integrated mobile access environment
CN104469852A (zh) 建立本地分流承载的方法和设备
KR20150010560A (ko) 무선 통신 시스템의 협력 통신 방법 및 장치
EP3032912A1 (en) Connection management method and access network element
US12063591B2 (en) Method and apparatus for relay utilizing sidelink in wireless communication system
Chen et al. Smart traffic offloading with Mobile edge computing for disaster-resilient communication networks
CN105191401A (zh) 通信系统中确定具有双连接的用户设备的移动性的方法
CN105792292B (zh) 一种基站切换方法、系统及相关装置
WO2016188388A1 (zh) 一种进行服务质量管理的方法
Hasan et al. 5G communication technology
CN106034363A (zh) 一种数据转发方法及移动锚点
Arora et al. Control-and user-plane splitting in small cell architecture of 4G LTE-A

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12869458

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014500885

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20147019997

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2012869458

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2014133425

Country of ref document: RU

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14378458

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112014020130

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112014020130

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20140813