WO2016188388A1 - 一种进行服务质量管理的方法 - Google Patents

一种进行服务质量管理的方法 Download PDF

Info

Publication number
WO2016188388A1
WO2016188388A1 PCT/CN2016/082988 CN2016082988W WO2016188388A1 WO 2016188388 A1 WO2016188388 A1 WO 2016188388A1 CN 2016082988 W CN2016082988 W CN 2016082988W WO 2016188388 A1 WO2016188388 A1 WO 2016188388A1
Authority
WO
WIPO (PCT)
Prior art keywords
node
end node
target head
information
control range
Prior art date
Application number
PCT/CN2016/082988
Other languages
English (en)
French (fr)
Inventor
谌丽
焦斌
秦飞
Original Assignee
电信科学技术研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 电信科学技术研究院 filed Critical 电信科学技术研究院
Publication of WO2016188388A1 publication Critical patent/WO2016188388A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/16Central resource management; Negotiation of resources or communication parameters, e.g. negotiating bandwidth or QoS [Quality of Service]
    • H04W28/24Negotiating SLA [Service Level Agreement]; Negotiating QoS [Quality of Service]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/18Self-organising networks, e.g. ad-hoc networks or sensor networks

Definitions

  • the present invention relates to the field of wireless communication technologies, and in particular, to a method and device for performing quality of service management.
  • the new distributed network refers to the distributed deployment of a large number of terminals (ie, End Point, EP) and access to the upper layer network through local control nodes as needed.
  • a distributed network is an effective way to solve a large number of terminal deployments and end-to-end delays.
  • a cluster head and a series of end nodes (EndPoint) in a distributed network form a cluster, and EndPoint communication in the cluster is controlled by the cluster head device.
  • EndPoint EndPoint
  • Statically configured channel and security parameters are used between the cluster head and the EndPoint.
  • Each cluster is independent of each other, and EndPoint members between different clusters cannot communicate with each other.
  • the terminal determines the service base station according to the strength of the downlink pilot signal, and the service base station is responsible for providing the data transmission service for the access terminal.
  • the service base station forwards the uplink data received by the terminal to the core network, and the core network is responsible for providing the access terminal with the connection service to the external network.
  • Cluster heads manage communication between cluster members. Communication takes place through the gateway. The cluster head is not responsible for the QoS guarantee of the member nodes. When the nodes move between the clusters, only the data path is transferred.
  • the network when the terminal switches between the base stations, the network still guarantees the QoS of the terminal.
  • the terminal is always in the connected state, and the core network retains and utilizes the user subscription information to guarantee the user service quality.
  • the cluster head is not a base station, and only a simple control function can be performed, and the terminal is not uniformly controlled by the core network.
  • the distributed network has no core network control, and cannot use the LTE mechanism to ensure the quality of user service in the process of the terminal moving from one cluster to another.
  • the present invention provides a method and apparatus for performing quality of service management for terminal quality of service management for a distributed network.
  • the target head node determines that there is an end node that needs to be moved from the source node control range to the target head node control range;
  • the target head node After the end node switches to the target head node control range, the target head node performs quality of service management on the end node according to the user subscription information of the end node.
  • the target head node determines that after the end node needs to move from the source node control range to the target head node control range, before acquiring the user subscription information of the end node from the source node or from the network side, Also includes:
  • the target head node determines that the end node can be admitted.
  • the target head node obtains the user subscription information of the end node from the source node or from the network side, before performing the quality of service management on the end node according to the user subscription information of the end node, Also includes:
  • the target node determines that the end node can be accepted according to an admission decision made by the user subscription information to the end node.
  • the target head node determines that the end node needs to move from the source node control range to the target head node control range, including:
  • the target head node After receiving the identifier from the source node that includes the end node, the target head node determines that the end node needs to move from the source node control range to the target head node control range.
  • the target head node obtains the user subscription information of the end node from the network side, including:
  • the target head node sends a subscription information request message including the identifier of the end node to the network side, and receives user subscription information from the end node on the network side.
  • the method further includes:
  • the target head node receives current bearer information of the end node from the end node or the source node;
  • the target node After the end node accesses the target node, the target node establishes a corresponding bearer and configures a corresponding resource for the end node according to the current bearer information of the end node.
  • the target head node determines that an end node needs to move from a source node control range to the target header.
  • the node controls the scope it also includes:
  • the target head node receives identification information from the end node or the source node, wherein the identification information includes a data server identifier serving the end node and/or a peer communicating with the end node Identification
  • the target head node After the end node accesses the target head node, the target head node establishes a data routing relationship for the end node according to the identifier information.
  • the method further includes:
  • the target head node receives hop count information and intermediate node information from the end node or the source node;
  • the target node After the target node connects to the target node, the target node establishes a data routing relationship for the end node, and further includes:
  • the target head node After the end node accesses the target head node, the target head node establishes a data routing relationship for the end node according to the identifier information, the hop count information, and the intermediate node information.
  • the source node determines that there is an end node that needs to be moved from the source node control range to the target head node control range;
  • the user subscribes to the information and performs quality of service management on the end node.
  • a device for performing quality of service management according to an embodiment of the present invention includes:
  • a first determining module configured to determine that an end node needs to move from a source node control range to the target head node control range
  • An obtaining module configured to acquire user subscription information of the end node from the source node or from a network side
  • a management module configured to perform quality of service management on the end node according to user subscription information of the end node after the end node switches to the target head node control range.
  • the obtaining module is further configured to:
  • the user subscription information of the end node is obtained from the source node or from the network side.
  • the management module is further configured to:
  • the first determining module is specifically configured to:
  • the obtaining module is specifically configured to:
  • the management module is further configured to:
  • the corresponding bearer is established for the end node and the corresponding resource is configured according to the current bearer information of the end node.
  • the management module is further configured to:
  • the identification information includes a data server identifier serving the end node and/or a peer identifier communicating with the end node; After the end node accesses the target head node, establishing a data routing relationship for the end node according to the identifier information.
  • the management module is further configured to:
  • the end node receives hop count information and intermediate node information from the end node or the source node; after the end node accesses the target head node, according to the identification information, the hop count information, and the intermediate node information, The end node establishes a data routing relationship.
  • a second determining module configured to determine that the end node needs to move from the source node control range to the target head node control range
  • a sending module configured to send user subscription information of the end node to the target head node, so that the target head node is configured according to the end node after the end node switches to the target head node control range User subscription information, and quality of service management is performed on the end node.
  • a device for performing quality of service management according to an embodiment of the present invention where the device includes
  • a processor for reading a program in the memory performing the following process:
  • the end node needs to move from the source node control range to the target head node control range; the user node subscription information of the end node is obtained from the source node or the network side; after the end node switches to the target head node control range, according to the end node user Signing information and performing quality of service management on the end nodes.
  • a transceiver for receiving and transmitting data under the control of a processor.
  • the processor is also used to:
  • the user subscription information of the end node is obtained from the source node or from the network side.
  • the processor is also used to:
  • the service quality management of the end node is performed according to the user subscription information of the end node.
  • the processor is specifically configured to:
  • the processor is specifically configured to:
  • a subscription information request message including an identifier of the end node is transmitted to the network side, and user subscription information from the end node on the network side is received.
  • the processor is also used to:
  • the corresponding bearer is established for the end node and the corresponding resource is configured according to the current bearer information of the end node.
  • the processor is also used to:
  • the identification information includes a data server identifier serving the end node and/or a peer identifier communicating with the end node; after the end node accesses the target head node, according to the identification information Establish a data routing relationship for the end node.
  • the processor is also used to:
  • a processor for reading a program in the memory performing the following process:
  • the end node needs to move from the source node control range to the target head node control range; the user subscription information of the end node is sent to the target head node through the transceiver, so that the target head node switches to the target head node control range after the end node is switched According to the user subscription information of the end node, the end node is subjected to quality of service management.
  • a transceiver for receiving and transmitting data under the control of a processor.
  • the target head node of the target head node acquires user subscription information of the end node from the source node or from the network side; after the end node switches to the target head node control range, according to the The user subscription information of the end node performs quality of service management on the end node, thereby performing terminal service quality management on the distributed network.
  • FIG. 1A is a schematic structural diagram of a MESH network in the background art
  • 1B is a schematic structural diagram of a cellular network in the background art
  • FIG. 2A is a schematic structural diagram 1 of a distributed network according to an embodiment of the present invention.
  • FIG. 2B is a schematic structural diagram 2 of a distributed network according to an embodiment of the present invention.
  • FIG. 3 is a schematic flowchart of a method for performing quality of service management according to an embodiment of the present invention
  • FIG. 4 is a schematic flowchart of another method for performing quality of service management according to an embodiment of the present invention.
  • FIG. 5 is a schematic flowchart of a method for performing quality of service management based on acquiring end user subscription information from a source DSC according to an embodiment of the present invention
  • FIG. 6 is a schematic flowchart of a method for performing quality of service management based on acquiring end user subscription information from a network side according to an embodiment of the present invention
  • FIG. 7 is a schematic flowchart of a method for ensuring service continuity of a terminal in a mobile process according to an embodiment of the present invention.
  • FIG. 8 is a schematic structural diagram of a device for performing service quality management according to an embodiment of the present invention.
  • FIG. 9 is a schematic flowchart of a second method for performing quality of service management according to an embodiment of the present invention.
  • FIG. 10 is a schematic structural diagram of a device for performing service quality management according to a third embodiment of the present invention.
  • FIG. 11 is a schematic flowchart of a method for performing quality of service management according to a fourth embodiment of the present invention.
  • GSM Global System of Mobile communication
  • CDMA Code Division Multiple Access
  • WCDMA Wideband Code Division Multiple Access
  • GPRS General Packet Radio Service
  • LTE Long Term Evolution
  • LTE-A Advanced Long Term Evolution
  • UMTS Universal Mobile Telecommunication System
  • the user equipment includes but is not limited to a mobile station (Mobile Station, MS), a mobile terminal (Mobile Terminal), a mobile phone (Mobile Telephone), a mobile phone (handset). And portable devices, etc., the user equipment can communicate with one or more core networks via a Radio Access Network (RAN), for example, the user equipment can be a mobile phone (or "cellular" telephone ), a computer having a wireless communication function, etc., the user device may also be a portable, pocket-sized, handheld, computer-integrated or in-vehicle mobile device.
  • RAN Radio Access Network
  • a base station may refer to a device in an access network that communicates with a wireless terminal over one or more sectors over an air interface.
  • the base station can be configured to convert the received air frame and the IP packet into a router between the wireless terminal and the rest of the access network, wherein the rest of the access network can include an internet protocol. (IP) network.
  • IP internet protocol
  • the base station can also coordinate attribute management of the air interface.
  • the base station may be a Base Transceiver Station (BTS) in GSM or CDMA, or may be a base station (NodeB) in WCDMA, or may be an evolved base station in LTE (NodeB or eNB or e-NodeB, evolutional Node B), the invention is not limited.
  • BTS Base Transceiver Station
  • NodeB base station
  • NodeB evolved base station
  • LTE Long Term Evolutional Node B
  • the target node obtains the user subscription information of the end node from the source node or the network side; after the end node switches to the target head node control range, the service quality management is performed on the end node according to the user subscription information of the end node, Thereby, terminal service quality management is performed for the distributed network.
  • the head node control range of the present invention refers to the range of clusters controlled by the head node, that is, the managed mobile end nodes are subordinate to the cluster controlled by the head node.
  • the user subscription information of the present invention mainly includes but is not limited to some or all of the following information:
  • the subscription QoS information includes information such as the user scheduling priority, the maximum subscription rate of the user, and the guaranteed rate of the user.
  • the distributed network system of the embodiment of the present invention includes: a self-organizing or non-fixed infrastructure (MESH) access network, a cellular access network, a backhaul network, and a core network.
  • MSH self-organizing or non-fixed infrastructure
  • the MESH access network is connected to the core network through a backhaul network; the cellular access network is connected to the core network through a backhaul network.
  • the backhaul network includes a wired backhaul network, a wireless backhaul network, and a mobile cellular backhaul network.
  • the core network consists of various dedicated and general-purpose servers, data centers, routers, etc. It is responsible for contract management, user identity verification, authentication, policy control, billing management, and business management functions for various access devices.
  • the MESH access network mainly provides services for machine-type access devices (MTCs), in which a sensor device (such as a temperature sensor, a pressure sensor, a camera, etc.) can be bound to an end node (EndPoint), or an execution device can be bound.
  • MTCs machine-type access devices
  • a sensor device such as a temperature sensor, a pressure sensor, a camera, etc.
  • EndPoint end node
  • Actuators eg, accelerators, brakes, steering gears, robotic arms, etc.
  • physical entities eg, cars, bicycles, helmets, glasses, smart watches, unmanned aerial vehicles, etc.
  • the cellular access network mainly provides access services for a traditional handheld or vehicle-mounted access device (Device) or modem (Modem), and the cellular access network can also provide signaling and data to the core network for the MESH access network. Return service.
  • Device handheld or vehicle-mounted access device
  • Modem Modem
  • Me1 interface Interface established between DSC and NSC.
  • Me2 interface The interface established between the DSC and the DSC.
  • Me3 interface Interface established between DSC and EP (EndPoint).
  • Me4 interface Interface established between the EP and the EP.
  • C1 interface An interface established between the LSC and the NSC.
  • C2 interface An interface established between the LSC and the base station.
  • C3 interface An interface established between the LSC and the access point AP.
  • C5 interface Interface established between the access point AP and the device.
  • C6 interface Interface between Device and Device.
  • In1 Interface established between DSC and LSC.
  • In2 Interface established between the LSC and the LSC.
  • the MESH access network includes at least one DSC and at least one EP
  • the cellular access network includes at least one LSC, and further includes at least one base station and/or at least one AP
  • the core network includes at least one NSC.
  • the EP is an MTC-type access device with communication functions.
  • a specific physical device such as various sensor sensors, actuator actuators, accelerators, brake devices, robot arms, Aircraft, cars, bicycles, safety helmets, smart glasses, smart watches, etc.
  • a typical EP is a communication scenario that is oriented for close distances (eg, less than 100 m) and low data rates (eg, less than 1000 bits/s).
  • the embodiments of the present invention are also applicable to long-distance high-rate EP.
  • DSC Distributed Service Center DistributeServiceCenter
  • the DSC is configured to transmit, by the backhaul network, information related to the EP in the corresponding cluster with the core network, where the DSC is connected to each EP in the corresponding cluster.
  • the DSC and the surrounding and DSC-connected EndPoints form a cluster.
  • the DSC is also responsible for managing and maintaining the cluster.
  • the DSC manages the EPs in the corresponding clusters, coordinates communication with other neighboring clusters, and performs interference management.
  • the DSC can also coordinate interference with adjacent or co-covered heterogeneous radio resource control entities and perform cross-system communication with different systems.
  • the DSC can notify the surrounding DSC or LSC of the time or frequency information of the radio resources allocated for "intra-cluster communication";
  • the surrounding DSC and LSC avoid using the same time or frequency for communication.
  • the DSC can also notify the surrounding DSC or LSC of the interference information measured by itself or in the cluster EP;
  • the interference can be weakened by reducing the transmission power.
  • DSC is responsible for participating in the maintenance of member lists, for cluster member authentication, Participate in the maintenance of EndPoint-associated device types and service requirements.
  • DSC is used as the control point of the cluster, and is also responsible for coordinating communication with other neighboring clusters and interference management.
  • the DSC is also responsible for coordinating interference and cross-system communication with adjacent or co-covered heterogeneous radio resource control entities (eg The DSC is responsible for coordinating the base station for interference coordination).
  • the DSC supports hardware and software decoupling and software configurability.
  • the DSC is responsible for controlling the access of EP type terminals (also referred to as end nodes), and the DSC needs to verify the identity of the terminal during the terminal access process. Since the core network adopts a cluster-based management policy, the DSC is responsible for reporting the cluster information managed by itself to the core network, wherein the cluster information includes the number of members in the cluster managed by the DSC, and the service information activated in the cluster managed by the DSC.
  • LSC Local Service Center
  • the LSC is configured to transmit information related to a specific access device to the core network through the backhaul network, where the specific access device is an access device that accesses the base station or the AP connected to the LSC.
  • the LSC also performs connection management and transmission management for a specific access device.
  • transport management includes some or all of the following management:
  • Radio resource coordination is performed between adjacent or overlapping coverage MESH access networks.
  • the LSC may notify the surrounding DSC or LSC of the wireless line resource that allocates the "local access network" communication;
  • the surrounding DSC, LSC avoids using the same time or frequency resource communication.
  • the LSC may also notify the surrounding DSC or LSC according to the interference information measured by the AP, the BS, and the access device in the local access network;
  • the interference can be weakened by reducing the transmission power.
  • the cellular access network of the embodiment of the present invention has a plurality of cellular local access networks that can overlap each other.
  • the base stations in the cellular local access network may be various types of base stations.
  • the LSC and the base station or the access point AP together form a cellular local access network, wherein if the cellular local access network is formed by the LSC and the base station, it is responsible for providing wide area coverage for a specific geographical area; if the cellular local access network is operated by the LSC and When APs are formed together, they are responsible for enhancing the hotspot capacity.
  • the cellular access network has a plurality of cellular local access networks that can overlap each other.
  • the base station BS and the LSC together form a cellular local access network (macro network layer), which is responsible for providing a wide geographical area. Domain coverage service. Ensure that the access device always has a seamless connection experience during the mobile process.
  • a cellular local access network macro network layer
  • the base station can perform some or all of the following functions:
  • the multicast transmission service is broadcasted to the device system under wide-area coverage through the broadcast channel.
  • Access point AP 5.
  • the access point AP and the LSC together form a cellular local access network (hotspot network layer), which is responsible for providing capacity services for the hotspot area, thereby providing a higher data transmission rate for the access device.
  • the AP itself can be seen as a low-cost base station that is tailored for functionality and hardware capabilities.
  • the AP can perform some or all of the following functions:
  • radio resource scheduling and transmission parameter configuration are performed.
  • the Device can be a terminal, a Modem device, or other device capable of accessing the network through a cellular access network.
  • the Device itself may also provide a relay service to the core network or the external network for the members of the MESH access network.
  • the Device of the embodiment of the present invention can support access to a cellular network (for example, a linear distance from the base station antenna exceeding 1500 m) at a high speed (for example, a moving speed exceeding 500 km/h), and supports a very high data transmission rate. (eg data transfer rate greater than 1Gbps).
  • a cellular network for example, a linear distance from the base station antenna exceeding 1500 m
  • a high speed for example, a moving speed exceeding 500 km/h
  • a very high data transmission rate for example, a moving speed exceeding 500 km/h
  • the device in the embodiment of the present invention may receive broadcast service information by using a system broadcast channel.
  • the Device in the embodiment of the present invention may obtain a data transmission service by accessing a cellular network.
  • the device in the embodiment of the present invention can implement direct communication between devices.
  • NSC Network Service Center
  • the NSC is responsible for terminating the access network to the core network control plane interface.
  • NSC supports hardware and software decoupling and software configurability.
  • the NSC is configured to transmit the received DSC and/or LSC information to the core network through the backhaul network.
  • the NSC is responsible for terminating the control plane connection of the MESH access network and the cellular access network to the core network.
  • the NSC is responsible for authenticating the DSC and the LSC and establishing a secure tunnel.
  • the NSC can authenticate the DSC and/or the LSC and after the verification is passed in the DSC and/or LSC. Between, establish a secure tunnel for transmitting data over the backhaul network.
  • NSC, DSC, and LSC implement identity authentication through a certificate mechanism, and establish an IPsec secure channel to ensure the security of the Me1 and C1 interfaces.
  • the NSC can also manage the EP and the specific access device connected to the DSC in the service layer and the identity layer.
  • control plane signaling received from the MESH access network and the cellular access network including EP, Device identity verification, device type and service type verification and activation process associated with the EP, and Device
  • the device activates a session to a specific external network, and so on.
  • the NSC is responsible for managing the status information of the EP, including tracking management ("cluster" information currently accessed by the EP), session management (such as the service currently activated by the EP), and identity management (such as the device type and service type of the EP contract). .
  • the NSC is a central control unit, and both the LSC and the DSC belong to a distributed control unit.
  • LSC and DSC are responsible for controlling local and time-delayed functions.
  • the NSC is responsible for the overall, low latency requirements and controls for high security requirements.
  • the LSC is responsible for the management of the "cluster members" and saves the information of the current cluster members.
  • the method includes assigning a temporary identifier to the cluster member, and is responsible for performing radio resource allocation for intra-cluster communication, and managing the air interface frame format and air interface basic parameters in the cluster.
  • the DSC is responsible for managing the local access network, including maintaining the local access network AP and BS list, establishing a reliable connection between the AP and the BS, and performing radio resource allocation and coordination for intra-AP communication or intra-BS communication.
  • the DSC can also control the AP and BS user plane data forwarding path selection.
  • the DSC can also configure the AP, the BS in the air interface frame structure, the frame configuration parameters, and the AP, the transmission scheme used by the BS in the MAC layer, and the high layer protocol stack architecture.
  • the core network itself may deploy one or more NSCs, and different NSCs are equal to each other.
  • the LSC On the access network side, due to the distributed nature of the access network, the LSC is deployed according to the geographic area and the type of coverage or capacity enhancement area. Each LSC area is controlled by one LSC, and different LSCs are also equal to each other. There is no hierarchical relationship (whether the LSC control macro base station or the LSC control access point).
  • the clusters in the MESH access network can overlap each other;
  • the local access networks in the cellular access network can overlap each other;
  • the local access network and the clusters can overlap each other.
  • the MESH access network and the cellular access network use a dedicated frequency of a conventional cellular or other public common frequency.
  • the traditional cellular system uses a dedicated frequency, and the primary frequency is allocated to different operators for the frequencies used by specific cellular systems, such as CDMS, WCDMA, LTE, and TD-LTE; in addition to the dedicated frequencies used by conventional cellular systems, Frequency resources shared by multiple wireless communication systems of the same or different standards.
  • the distributed service center node of the embodiment of the present invention may be a DSC or other control kimono.
  • the access network central node of multiple end nodes.
  • the distributed service center performs charging control on a group of end nodes.
  • a group of end nodes controlled and served by a distributed service center can be called a cluster, and the distributed service center node has a function like "cluster head".
  • DSC1 controls the billing of the end nodes EP1, EP2, EP3, DSC2 controls the billing of the end nodes EP4, EP5, EP6; the basic billing measurement and overall control of DSC1 and DSC2 comes from the core network.
  • the core network can be an operator network, thereby enabling operators to effectively control distributed network charging.
  • clusters of embodiments of the invention may also be referred to as groups.
  • the DSC functional entity of the embodiment of the present invention may be a head node as a distributed service center.
  • the specific device may be a mobile end node, such as a handheld end node (eg, a smart phone), or a base station type device (eg, a micro base station) or a server class device or a distributed service center.
  • the EP of the embodiments of the present invention may be a mobile end node, such as a handheld end node (such as a smart phone), or a wearable device (such as a smart bracelet), or a machine type device (such as a sensor).
  • a mobile end node such as a handheld end node (such as a smart phone), or a wearable device (such as a smart bracelet), or a machine type device (such as a sensor).
  • the EP of the embodiment of the present invention may be invisible to the core network or may be visible to the core network.
  • the distributed service center node in the embodiment of the present invention may be a DSC or other access network central node that can control and serve multiple end node nodes.
  • the distributed service center performs charging control on a group of end nodes.
  • a group of end nodes controlled and served by a distributed service center can be called a cluster, and the distributed service center node has a function like "cluster head".
  • the end node accesses a cluster for operation, DSC1 controls the end nodes EP1, EP2, EP3, and DSC2 controls the end nodes EP4, EP5, and EP6.
  • the DSC in FIG. 2B is equivalent to a "cluster head", that is, a head node, which controls and manages a group of end nodes, and may be an independent entity or one of the end nodes, and the DSC may not be a fixed entity, for example, under a cluster.
  • Different end nodes can act as DSCs at different points in time according to requirements.
  • the data transmission route of the end node EP may not pass through the DSC, for example, directly acquiring data from the data server or relaying via other end nodes, and the DSC may control data routing and perform necessary resource management.
  • the DSC is different from the base station of the cellular network, and there is no centralized scheduling and fine resource management of the base station, and the control strength is not as large as that of the base station. It is different from the unified control of the unified security and user experience of the core network in the cellular network for all devices.
  • the end node EP When the end node initially accesses the system, the end node EP sends an authentication request to the authentication device through the distributed service center DSC, and the authentication device obtains the subscription information of the user from the server, and then sends the user to the DSC after the authentication ends. Signing information.
  • Authentication devices are typically located on the core network. For a distributed network, the core network does not manage each end node, and after the end node accesses, the user subscription information of the end node can be deleted. When the end nodes move between DSCs, the core network does not participate in management.
  • a method for performing quality of service management includes:
  • Step 301 The target head node determines that the end node needs to move from the source node control range to the target head node control range;
  • Step 302 The target head node acquires user subscription information of the end node from the source node or from the network side.
  • Step 303 After the end node switches to the target head node control range, the target head node performs quality of service management on the end node according to the user subscription information of the end node.
  • the head node in the embodiment of the present invention is a cluster management node, which may be a distributed service center.
  • the head node control range of the embodiment of the present invention refers to the range of the cluster controlled by the head node, that is, the end node is subordinate to the cluster controlled by the head node.
  • the embodiment of the present invention performs service quality management on the end node according to the user subscription information of the end node.
  • the quality of service management here includes but is not limited to some or all of the following management:
  • QoS control such as user scheduling priority, user maximum subscription rate, user guaranteed rate, etc.
  • resource configuration such as multi-user resource coordination, and so on.
  • the target head node needs to make an admission decision for the end node, and if the decision result is to allow admission, the end node can be switched to the target head node; otherwise, the end node is not allowed to switch to the target head node.
  • the load judgment There are many ways to accept the judgment, for example, according to the load judgment. Specifically, if the load is higher than the set load threshold, it is determined that the load is too heavy and cannot be accepted; otherwise, it can be accepted.
  • the number of end nodes can be determined according to the number of end nodes. If the number of end nodes currently accessed is greater than the set number of thresholds, it is determined that the number of access end nodes is too large to be accepted;
  • the embodiment of the present invention may also perform the obtained user subscription information when performing the admission determination.
  • the admission decision of the end node according to the user subscription information determines whether the resource that the current cluster can provide can satisfy the user guaranteed rate or the user.
  • the maximum signing rate thereby deciding whether to accept the user.
  • the target node may obtain the user subscription information after determining that the admission is allowed; if the admission decision requires the user subscription information, the target node needs to perform the admission decision. Get user subscription information.
  • the target head node determines that the end node needs to move from the source node control range to the target head node control range.
  • the subscription information request message including the identifier of the end node is sent to the network side, and the user subscription information from the end node on the network side is received.
  • the head node is a cluster control node and does not necessarily provide data transmission directly to the end node.
  • data comes from a local server or end-to-end communication between end nodes through one or more hops.
  • the end node moves from the source DSC to the target DSC, it needs to be re-established with the data server or the peer end node. Routing channel.
  • target In order for the target head node to better serve the end node of the access, an optional way is: target The head node serves the end node by obtaining some information.
  • the end node currently carries information, identification information, hop count information, and intermediate node information.
  • the end node currently carries information.
  • the target head node determines that the end node needs to move from the source node control range to the target head node control range, and receives the current bearer information of the end node from the end node or the source node;
  • the target node After the end node accesses the target head node, the target node establishes a corresponding bearer and configures the corresponding resource for the end node according to the current bearer information of the end node.
  • the corresponding bearer is established for the end node and the corresponding resource is configured according to the current bearer information of the end node.
  • the cluster resource managed by the target head node can accommodate all the current bearer transmissions of the end node, and in the cluster managed by the target head node, the bearer corresponding to the current bearer is established for the end node; if the cluster resource managed by the target head node only The current bearer transmission can be accommodated in some end nodes, and in the cluster managed by the target head node, the bearer and the high priority bearer with the guaranteed rate are preferentially established for the end node.
  • the identification information includes a data server identifier serving the end node and/or a peer identifier communicating with the end node.
  • the target head node determines that the end node needs to receive the identification information from the end node or the source node after moving from the source node control range to the target head node control range;
  • the target head node After the end node accesses the target head node, the target head node establishes a data routing relationship for the end node according to the identification information.
  • the establishing a data routing relationship for the end node according to the identification information is determined by a routing algorithm of the target head node. For example, after the target head node determines the data server identifier and the end node identifier, the intermediate node is determined according to the shortest path principle or considering the resource occupancy situation. The number of hops is used to finally determine the data routing relationship.
  • the end node and the peer identifier that communicates with the end node may be an identifier allocated by the access network, such as a C-RNTI under a specific head node, or an IP address, or a MAC address (a MAC address, ie, a hardware address, Used to define the terminal port).
  • a MAC address ie, a hardware address, Used to define the terminal port.
  • the Layer 3 network layer is responsible for the IP address
  • the Layer 2 data link layer is responsible for the MAC address.
  • the identifier information includes a data server identifier serving the end node and/or a peer identifier communicating with the end node.
  • the target head node needs to obtain the hop count information and the intermediate node information in addition to the identification information.
  • the target head node determines that the end node needs to move from the source node control range to the target head node control range, and receives the identification information, the hop count information, and the intermediate node information from the end node or the source node;
  • the target node After the target node is connected to the target node, the target node is based on the identification information, the hop count information, and the intermediate node information. Establish a data routing relationship for the end node.
  • the data routing relationship established for the end node according to the identification information, the hop count information and the intermediate node information is determined by the routing algorithm of the target head node, and the specific principle is the shortest path principle and/or the resource usage optimal principle.
  • another method for performing quality of service management according to an embodiment of the present invention includes:
  • Step 401 The source node determines that the end node needs to move from the source node control range to the target head node control range;
  • Step 402 The source node sends the user subscription information of the end node to the target head node, so that after the end node switches to the target head node control range, the target node performs service quality management on the end node according to the user subscription information of the end node. .
  • Example 1 The target head node obtains the end node user subscription information from the source node.
  • the method for obtaining service quality management based on acquiring end node user subscription information from a source node includes:
  • Step 1 The end node determines that the handover is required after the handover (or other head node discovery process), and initiates a handover request to the source node.
  • the handover request may carry an identifier of a target head node that the end node desires to access.
  • Step 2 After receiving the handover request, the source node sends a handover request to the target head node.
  • the handover request carries an end node identifier and user subscription information (such as QoS parameters).
  • Step 3 The target head node decides whether it can accept the end node and provide it with its required QoS service
  • the subscription information is stored in the context of the end node and a handover response is sent to the source node; otherwise, the rejection information is sent to the source node.
  • Step 4 If the source node receives the handover response from the target head node, it sends a handover response to the end node, which carries the target head node identifier.
  • Step 5 After receiving the handover response, the end node initiates a handover process to the target head node.
  • Example 2 The network side of the target head node obtains user subscription information.
  • the method for obtaining service quality management based on acquiring end node user subscription information from a network side includes:
  • Step 1 The end node determines that the handover is required after the handover (or other head node discovery process), and initiates a handover request to the source node.
  • the handover request may carry the target head node identifier expected by the end node.
  • Step 2 After receiving the handover request, the source node sends a handover request to the target head node.
  • the switch request carries an end node identifier.
  • Step 3 The header node decides whether it can accept the end node and provide it with its required QoS service
  • the subscription information is stored in the context of the end node, and the handover response is sent to the source node; otherwise, the rejection information is sent to the source node.
  • the number of end nodes can be determined according to the number of end nodes. If the number of end nodes currently accessed is greater than the set number of thresholds, it is determined that the number of access end nodes is too large to be accepted;
  • Step 4 If the source node receives the handover response from the target head node, it sends a handover response to the end node, which carries the target head node identifier.
  • Step 5 After receiving the handover response, the end node initiates a handover process to the target head node.
  • Step 6 The target head node sends a subscription information request to the server, where the user identifier is carried.
  • Step 7 The server sends the user subscription information to the target head node.
  • Step 8 The target head node stores the received user subscription information in the context of the corresponding end node.
  • Step 6 and Step 7 may be between Step 2 and Step 3; correspondingly, after obtaining the user subscription information, the target head node proceeds to Step 3, and performs an admission decision according to the user subscription information, and according to the acceptance judgment result. Determine whether to reply or reject the message to the source node.
  • Example 3 A method for ensuring business continuity of an end node during a mobile process.
  • the method for ensuring service continuity of an end node in a mobile process includes:
  • Embodiment 3 and Embodiment 1 can be performed simultaneously, and Embodiment 3 and Embodiment 2 can be performed simultaneously. That is, the data heading and the bearer information are notified to the target head node while transmitting the user subscription information.
  • the target head node establishes a data channel and establishes a corresponding bearer for the end node after the decision is accepted.
  • Step 1 The source node notifies the user data service information of the end node that the target head node needs to perform handover.
  • User data service information may include some or all of the following information:
  • the end node currently carries information, so that the target head node establishes a corresponding bearer and resource configuration for the end node;
  • the user data service information may further include hop count and intermediate node information, so that the target head node can correctly establish the data routing relationship.
  • the end node may also send the user data service information to the target head node.
  • the end node if the user data service information is sent by the end node to the target head node and is multi-hop, there are multiple cases according to different routing rules:
  • Case 2 The end node knows the complete path information, and the hop count and the intermediate node information are notified by the end node to the target head node.
  • Step 2 The target head node establishes a service bearer for the end node according to the received user data service information, and establishes a data routing channel.
  • Step 3 Notifying the data routing channel information established by the end node in the subsequent signaling interaction process, for example, notifying the end node of the next hop identifier or the data server identifier.
  • an embodiment of the present invention provides a device for performing quality of service management.
  • the principle of solving the problem is similar to the method for performing quality of service management in the embodiment of the present invention.
  • the implementation, repetitions will not be repeated.
  • the device for performing service quality management according to the first embodiment of the present invention includes:
  • a first determining module 801 configured to determine that an end node needs to move from a source node control range to a target head node control range;
  • the obtaining module 802 is configured to obtain user subscription information of the end node from the source node or from the network side;
  • the management module 803 is configured to perform quality of service management on the end node according to the user subscription information of the end node after the end node switches to the target head node control range.
  • the obtaining module 802 is further configured to:
  • the user subscription information of the end node is obtained from the source node or from the network side.
  • the management module 803 is further configured to:
  • the service quality management of the end node is performed according to the user subscription information of the end node.
  • the first determining module 801 is specifically configured to:
  • the obtaining module 802 is specifically configured to:
  • a subscription information request message including an identifier of the end node is transmitted to the network side, and user subscription information from the end node on the network side is received.
  • the management module 803 is further configured to:
  • the corresponding bearer is established for the end node and the corresponding resource is configured according to the current bearer information of the end node.
  • the management module 803 is further configured to:
  • the identification information includes a data server identifier serving the end node and/or a peer identifier communicating with the end node; after the end node accesses the target head node, according to the identification information Establish a data routing relationship for the end node.
  • the management module 803 is further configured to:
  • the second method for performing quality of service management according to the embodiment of the present invention includes:
  • a second determining module 901 configured to determine that an end node needs to move from a source node control range to a target head node control range;
  • the sending module 902 is configured to send the user subscription information of the end node to the target head node, so that the target head node performs the service quality on the end node according to the user subscription information of the end node after the end node switches to the target head node control range. management.
  • the target head node may also act as a source node.
  • the source node may also be the target head node, so the devices of Figures 8 and 9 may be combined in one entity, using the device function of Figure 8 or the device function of Figure 9 as needed.
  • a third device for performing quality of service management includes:
  • the processor 1001 is configured to read a program in the memory 1004 and perform the following process:
  • the end node needs to move from the source node control range to the target head node control range; the user node subscription information of the end node is obtained from the source node or the network side; after the end node switches to the target head node control range, according to the end node user Signing information and performing quality of service management on the end nodes.
  • the transceiver 1002 is configured to receive and transmit data under the control of the processor 1001.
  • the processor 1001 is further configured to:
  • the user subscription information of the end node is obtained from the source node or from the network side.
  • the processor 1001 is further configured to:
  • the service quality management of the end node is performed according to the user subscription information of the end node.
  • the processor 1001 is specifically configured to:
  • the processor 1001 is specifically configured to:
  • a subscription information request message including an identifier of the end node is transmitted to the network side, and user subscription information from the end node on the network side is received.
  • the processor 1001 is further configured to:
  • the corresponding bearer is established for the end node and the corresponding resource is configured according to the current bearer information of the end node.
  • the processor 1001 is further configured to:
  • the identification information includes a data server identifier serving the end node and/or a peer identifier communicating with the end node; after the end node accesses the target head node, according to the identification information Establish a data routing relationship for the end node.
  • the processor 1001 is further configured to:
  • bus 1000 may include any number of interconnected buses and bridges, and bus 1000 will include one or more processors represented by processor 1001 and memory represented by memory 1004. The various circuits are linked together. The bus 1000 can also link various other circuits, such as peripherals, voltage regulators, and power management circuits, as is known in the art, and therefore, will not be further described herein.
  • Bus interface 1003 provides an interface between bus 1000 and transceiver 1002.
  • the transceiver 1002 can be an element or a plurality of elements, such as a plurality of receivers and transmitters, providing means for communicating with various other devices on a transmission medium.
  • the data processed by the processor 1001 is transmitted over the wireless medium via the antenna 1005. Further, the antenna 1005 also receives the data and transmits the data to the processor 1001.
  • the processor 1001 is responsible for managing the bus 1000 and the usual processing, and can also provide various functions including timing, peripheral interfaces, voltage regulation, power management, and other control functions.
  • the memory 1004 can be used to store data used by the processor 1001 in performing operations.
  • the processor 1001 may be a CPU (Central Embedded Device), an Application Specific Integrated Circuit (ASIC), a Field-Programmable Gate Array (FPGA), or a Complex Programmable Logic Device ( Complex Programmable Logic Device, CPLD).
  • CPU Central Embedded Device
  • ASIC Application Specific Integrated Circuit
  • FPGA Field-Programmable Gate Array
  • CPLD Complex Programmable Logic Device
  • a fourth method for performing quality of service management includes:
  • the processor 1101 is configured to read a program in the memory 1104 and perform the following process:
  • the transceiver node 1102 sends the end node user subscription information to the target head node, so that the target head node switches to the target head node control range at the end node. Then, according to the user subscription information of the end node, the end node is subjected to quality of service management.
  • the transceiver 1102 is configured to receive and transmit data under the control of the processor 1101.
  • bus 1100 can include any number of interconnected buses and bridges, and bus 1100 will include one or more processors represented by processor 1101 and memory represented by memory 1104.
  • the various circuits are linked together.
  • the bus 1100 can also be used such as peripherals, voltage regulators, and power management circuits.
  • Various other circuits, such as the like, are linked together and are well known in the art and, therefore, will not be further described herein.
  • Bus interface 1103 provides an interface between bus 1100 and transceiver 1102.
  • the transceiver 1102 can be an element or a plurality of elements, such as a plurality of receivers and transmitters, providing means for communicating with various other devices on a transmission medium.
  • the data processed by the processor 1101 is transmitted over the wireless medium via the antenna 1105. Further, the antenna 1105 also receives the data and transmits the data to the processor 1101.
  • the processor 1101 is responsible for managing the bus 1100 and the usual processing, and can also provide various functions including timing, peripheral interfaces, voltage regulation, power management, and other control functions.
  • the memory 1104 can be used to store data used by the processor 1101 when performing operations.
  • the processor 1101 may be a CPU, an ASIC, an FPGA, or a CPLD.
  • the target head node may also serve as a source node.
  • the source node may also be the target head node, so the devices of FIGS. 10 and 11 may be combined in one entity, and the device function of FIG. 10 or the device function of FIG. 11 may be selected as needed.
  • the target head node of the target head node obtains the user subscription information of the end node from the source node or the network side; after the end node switches to the control range of the target head node, the user is contracted according to the user of the end node.
  • embodiments of the present invention can be provided as a method, system, or computer program product. Accordingly, the present invention may take the form of an entirely hardware embodiment, an entirely software embodiment, or a combination of software and hardware. Moreover, the invention can take the form of a computer program product embodied on one or more computer-usable storage media (including but not limited to disk storage, CD-ROM, optical storage, etc.) including computer usable program code.
  • computer-usable storage media including but not limited to disk storage, CD-ROM, optical storage, etc.
  • the computer program instructions can also be stored in a computer readable memory that can direct a computer or other programmable data processing device to operate in a particular manner, such that the instructions stored in the computer readable memory produce an article of manufacture comprising the instruction device.
  • the apparatus implements the functions specified in one or more blocks of a flow or a flow and/or block diagram of the flowchart.
  • These computer program instructions can also be loaded onto a computer or other programmable data processing device such that the computer Or performing a series of operational steps on other programmable devices to produce computer-implemented processing such that instructions executed on a computer or other programmable device are provided for implementing a block in a flow or a flow and/or block diagram of the flowchart Or the steps of the function specified in multiple boxes.

Abstract

涉及无线通信技术领域,特别涉及一种进行服务质量管理的方法和设备,用以对于分布式网络进行终端服务质量管理。本发明实施例所述目标头节点从所述源头节点或从网络侧获取所述末端节点的用户签约信息;在所述末端节点切换到所述目标头节点控制范围后,根据所述末端节点的用户签约信息,对所述末端节点进行服务质量管理,从而对于分布式网络进行终端服务质量管理。

Description

一种进行服务质量管理的方法
本申请要求在2015年05月26日提交中国专利局、申请号为201510275222.9、发明名称为“一种进行服务质量管理的方法和设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及无线通信技术领域,特别涉及一种进行服务质量管理的方法和设备。
背景技术
新型分布式网络是指大量终端(即末端节点,End Point,EP)分布式部署,并通过本地控制节点根据需要接入高层网络的方式。分布式网络是解决大量终端部署和端到端时延的有效方式。
如图1A所示,分布式网络中一个簇头和一系列末端节点(EndPoint)构成一个簇,簇内EndPoint通信通过簇头设备进行控制。簇头与EndPoint之间采用静态配置的信道与安全参数。各个簇之间相互独立,不同簇间的EndPoint成员无法相互通信。
如图1B所示,现有的蜂窝系统中,终端根据下行导频信号强度确定业务基站,业务基站负责为接入终端提供数据传输业务。业务基站将从终端接收到的上行数据转发给核心网,核心网负责为接入终端提供到外部网络的连接业务。
传统的分布式网络没有固定的拓扑和骨干,网络中的节点要同时充当主机和路由器,并通过存储转发技术帮助其他节点构成信息链路,簇头管理簇成员之间的通信,簇之间的通信通过网关进行。簇头不负责成员节点的QoS保障,节点在簇之间移动时只是数据路径的转移。
现有LTE系统中,终端在基站间切换时网络仍对终端进行QoS保障,切换过程中,终端始终处于连接态,核心网保留和利用用户签约信息,对用户服务质量进行保障。但在分布式网络中,簇头不是基站,只能进行简单的控制功能,且终端不是由核心网统一控制的。
与LTE系统比,分布式网络没有核心网控制,不能沿用LTE机制保证终端从一个簇移动到另一个簇过程中的用户服务质量。
综上所述,目前对于分布式网络进行终端服务质量管理的方案。
发明内容
本发明提供一种进行服务质量管理的方法和设备,用以对于分布式网络进行终端服务质量管理。
本发明实施例提供的一种进行服务质量管理的方法,该方法包括:
目标头节点确定有末端节点需要从源头节点控制范围移动到所述目标头节点控制范围;
所述目标头节点从所述源头节点或从网络侧获取所述末端节点的用户签约信息;
所述目标头节点在所述末端节点切换到所述目标头节点控制范围后,根据所述末端节点的用户签约信息,对所述末端节点进行服务质量管理。
可选的,所述目标头节点确定有末端节点需要从源头节点控制范围移动到所述目标头节点控制范围之后,从所述源头节点或从网络侧获取所述末端节点的用户签约信息之前,还包括:
所述目标头节点确定能够接纳所述末端节点。
可选的,所述目标头节点从所述源头节点或从网络侧获取所述末端节点的用户签约信息之后,根据所述末端节点的用户签约信息,对所述末端节点进行服务质量管理之前,还包括:
所述目标节点根据由所述用户签约信息对所述末端节点进行的接纳判决,确定能够接纳所述末端节点。
可选的,所述目标头节点确定有末端节点需要从源头节点控制范围移动到所述目标头节点控制范围,包括:
所述目标头节点在收到来自所述源头节点的包含所述末端节点的标识后,确定有末端节点需要从源头节点控制范围移动到所述目标头节点控制范围。
可选的,所述目标头节点从网络侧获取所述末端节点的用户签约信息,包括:
所述目标头节点向所述网络侧发送包含所述末端节点的标识的签约信息请求消息,并接收来自所述网络侧的所述末端节点的用户签约信息。
可选的,所述目标头节点确定有末端节点需要从源头节点控制范围移动到所述目标头节点控制范围之后,还包括:
所述目标头节点接收来自所述末端节点或所述源头节点的所述末端节点当前承载信息;
所述目标头节点在所述末端节点接入所述目标头节点后,根据所述末端节点当前承载信息,为所述末端节点建立对应的承载并配置对应的资源。
可选的,所述目标头节点确定有末端节点需要从源头节点控制范围移动到所述目标头 节点控制范围之后,还包括:
所述目标头节点接收来自所述末端节点或所述源头节点的标识信息,其中所述标识信息中包括为所述末端节点提供服务的数据服务器标识和/或与所述末端节点通信的对端标识;
所述目标头节点在所述末端节点接入所述目标头节点后,根据所述标识信息为所述末端节点建立数据路由关系。
可选的,所述目标头节点确定有末端节点需要从源头节点控制范围移动到所述目标头节点控制范围之后,还包括:
所述目标头节点接收来自所述末端节点或所述源头节点的跳数信息和中间节点信息;
所述目标头节点在所述末端节点接入所述目标头节点后,为所述末端节点建立数据路由关系,还包括:
所述目标头节点在所述末端节点接入所述目标头节点后,根据所述标识信息、跳数信息和中间节点信息,为所述末端节点建立数据路由关系。
本发明实施例提供的另一种进行服务质量管理的方法,该方法包括:
源头节点确定有末端节点需要从源头节点控制范围移动到所述目标头节点控制范围;
所述源头节点将所述末端节点的用户签约信息发送给所述目标头节点,以使所述目标头节点在所述末端节点切换到所述目标头节点控制范围后,根据所述末端节点的用户签约信息,对所述末端节点进行服务质量管理。
本发明实施例提供的一种进行服务质量管理的设备,该设备包括:
第一确定模块,用于确定有末端节点需要从源头节点控制范围移动到所述目标头节点控制范围;
获取模块,用于从所述源头节点或从网络侧获取所述末端节点的用户签约信息;
管理模块,用于在所述末端节点切换到所述目标头节点控制范围后,根据所述末端节点的用户签约信息,对所述末端节点进行服务质量管理。
可选的,所述获取模块还用于:
在确定能够接纳所述末端节点后,从所述源头节点或从网络侧获取所述末端节点的用户签约信息。
可选的,所述管理模块还用于:
根据由所述用户签约信息对所述末端节点进行的接纳判决,确定能够接纳所述末端节点后,根据所述末端节点的用户签约信息,对所述末端节点进行服务质量管理。
可选的,所述第一确定模块具体用于:
在收到来自所述源头节点的包含所述末端节点的标识后,确定有末端节点需要从源头节点控制范围移动到所述目标头节点控制范围。
可选的,所述获取模块具体用于:
向所述网络侧发送包含所述末端节点的标识的签约信息请求消息,并接收来自所述网络侧的所述末端节点的用户签约信息。
可选的,所述管理模块还用于:
接收来自所述末端节点或所述源头节点的所述末端节点当前承载信息;
在所述末端节点接入所述目标头节点后,根据所述末端节点当前承载信息,为所述末端节点建立对应的承载并配置对应的资源。
可选的,所述管理模块还用于:
接收来自所述末端节点或所述源头节点的标识信息,其中所述标识信息中包括为所述末端节点提供服务的数据服务器标识和/或与所述末端节点通信的对端标识;在所述末端节点接入所述目标头节点后,根据所述标识信息为所述末端节点建立数据路由关系。
可选的,所述管理模块还用于:
接收来自所述末端节点或所述源头节点的跳数信息和中间节点信息;在所述末端节点接入所述目标头节点后,根据所述标识信息、跳数信息和中间节点信息,为所述末端节点建立数据路由关系。
本发明实施例提供的另一种进行服务质量管理的设备,该设备包括:
第二确定模块,用于确定有末端节点需要从源头节点控制范围移动到所述目标头节点控制范围;
发送模块,用于将所述末端节点的用户签约信息发送给所述目标头节点,以使所述目标头节点在所述末端节点切换到所述目标头节点控制范围后,根据所述末端节点的用户签约信息,对所述末端节点进行服务质量管理。
本发明实施例提供的一种进行服务质量管理的设备,该设备包括
处理器,用于读取存储器中的程序,执行下列过程:
确定有末端节点需要从源头节点控制范围移动到目标头节点控制范围;从源头节点或从网络侧获取末端节点的用户签约信息;在末端节点切换到目标头节点控制范围后,根据末端节点的用户签约信息,对末端节点进行服务质量管理。
收发机,用于在处理器的控制下接收和发送数据。
可选的,处理器还用于:
在确定能够接纳末端节点后,从源头节点或从网络侧获取末端节点的用户签约信息。
可选的,处理器还用于:
根据由用户签约信息对末端节点进行的接纳判决,确定能够接纳末端节点后,根据末端节点的用户签约信息,对末端节点进行服务质量管理。
可选的,处理器具体用于:
在收到来自源头节点的包含末端节点的标识后,确定有末端节点需要从源头节点控制范围移动到目标头节点控制范围。
可选的,处理器具体用于:
向网络侧发送包含末端节点的标识的签约信息请求消息,并接收来自网络侧的末端节点的用户签约信息。
可选的,处理器还用于:
接收来自末端节点或源头节点的末端节点当前承载信息;
在末端节点接入目标头节点后,根据末端节点当前承载信息,为末端节点建立对应的承载并配置对应的资源。
可选的,处理器还用于:
接收来自末端节点或源头节点的标识信息,其中标识信息中包括为末端节点提供服务的数据服务器标识和/或与末端节点通信的对端标识;在末端节点接入目标头节点后,根据标识信息为末端节点建立数据路由关系。
可选的,处理器还用于:
接收来自末端节点或源头节点的跳数信息和中间节点信息;在末端节点接入目标头节点后,根据标识信息、跳数信息和中间节点信息,为末端节点建立数据路由关系。
本发明实施例提供的另一种进行服务质量管理的设备,该设备包括:
处理器,用于读取存储器中的程序,执行下列过程:
确定有末端节点需要从源头节点控制范围移动到目标头节点控制范围;通过收发机将末端节点的用户签约信息发送给目标头节点,以使目标头节点在末端节点切换到目标头节点控制范围后,根据末端节点的用户签约信息,对末端节点进行服务质量管理。
收发机,用于在处理器的控制下接收和发送数据。
本发明实施例目标头节点所述目标头节点从所述源头节点或从网络侧获取所述末端节点的用户签约信息;在所述末端节点切换到所述目标头节点控制范围后,根据所述末端节点的用户签约信息,对所述末端节点进行服务质量管理,从而对于分布式网络进行终端服务质量管理。
附图说明
图1A为背景技术中MESH网络结构示意图;
图1B为背景技术中蜂窝网结构示意图;
图2A为本发明实施例分布式网络的结构示意图一;
图2B为本发明实施例分布式网络的结构示意图二;
图3为本发明实施例一种进行服务质量管理的方法流程示意图;
图4为本发明实施例另一种进行服务质量管理的方法流程示意图;
图5为本发明实施例基于从源DSC获取终端用户签约信息进行服务质量管理的方法流程示意图;
图6为本发明实施例基于从网络侧获取终端用户签约信息进行服务质量管理的方法流程示意图;
图7为本发明实施例保证终端在移动过程中业务连续性的方法流程示意图;
图8为本发明实施例第一种进行服务质量管理的设备结构示意图;
图9为本发明实施例第二种进行服务质量管理的方法流程示意图;
图10为本发明实施例第三种进行服务质量管理的设备结构示意图;
图11为本发明实施例第四种进行服务质量管理的方法流程示意图。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
应理解,本发明的技术方案可以应用于各种通信系统,例如:全球移动通讯(Global System of Mobile communication,GSM)系统、码分多址(Code Division Multiple Access,CDMA)系统、宽带码分多址(Wideband Code Division Multiple Access,WCDMA)系统、通用分组无线业务(General Packet Radio Service,GPRS)、长期演进(Long Term Evolution,LTE)系统、先进的长期演进(Advanced long term evolution,LTE-A)系统、通用移动通信系统(Universal Mobile Telecommunication System,UMTS)等。
还应理解,在本发明实施例中,用户设备(User Equipment,UE)包括但不限于移动台(Mobile Station,MS)、移动终端(Mobile Terminal)、移动电话(Mobile Telephone)、手机(handset)及便携设备(portable equipment)等,该用户设备可以经无线接入网(RadioAccess Network,RAN)与一个或多个核心网进行通信,例如,用户设备可以是移动电话(或称为“蜂窝”电话)、具有无线通信功能的计算机等,用户设备还可以是便携式、袖珍式、手持式、计算机内置的或者车载的移动装置。
在本发明实施例中,基站(例如,接入点)可以是指接入网中在空中接口上通过一个或多个扇区与无线终端通信的设备。基站可用于将收到的空中帧与IP分组进行相互转换,作为无线终端与接入网的其余部分之间的路由器,其中接入网的其余部分可包括网际协议 (IP)网络。基站还可协调对空中接口的属性管理。例如,基站可以是GSM或CDMA中的基站(Base Transceiver Station,BTS),也可以是WCDMA中的基站(NodeB),还可以是LTE中的演进型基站(NodeB或eNB或e-NodeB,evolutional Node B),本发明并不限定。
本发明实施例目标头节点从源头节点或从网络侧获取末端节点的用户签约信息;在末端节点切换到目标头节点控制范围后,根据末端节点的用户签约信息,对末端节点进行服务质量管理,从而对于分布式网络进行终端服务质量管理。
本发明的头节点控制范围是指头节点控制的簇的范围,也就是说,所管理的移动末端节点从属于头节点控制的簇。
本发明的用户签约信息主要包括但不限于下列信息中的部分或全部:
用户标识、设备标识、接入限制、签约业务质量(Quality of Service,QoS)信息以及鉴权所需要的密钥和序列号等信息。其中签约QoS信息包括用户调度优先级、用户最大签约速率和用户保证速率等信息。
如图2A所示,本发明实施例分布式网络系统包括:自组织或无固定基础设施(MESH)接入网、蜂窝接入网、回传网络和核心网。
其中,MESH接入网通过回传网络,与核心网连接;蜂窝接入网通过回传网络,与核心网连接。
回传网络包括有线回传网络、无线回传网络和移动蜂窝回传网络。
核心网由各类专用和通用的服务器,数据中心,路由器等设备构成,负责对各类接入设备进行签约管理,用户身份验证,鉴权,策略控制,计费管理,业务管理方面功能。
MESH接入网主要为机器类接入设备(MTC)提供服务,其中与末端节点(EndPoint)可以绑定传感器类设备Sensor(例如,温度传感器,压力传感器,摄像头等),也可以绑定执行设备actuator(例如,加速器,制动器,转向器,机械臂等),也可以绑定物理实体(例如,汽车,自行车,头盔,眼镜,智能手表,无人驾驶飞行器等)。
蜂窝接入网主要为传统手持或车载式接入设备(Device)或称为调制解调器(Modem)提供接入服务,此外蜂窝接入网还可以为MESH接入网提供到核心网的信令与数据的回传服务。
在介绍具体系统架构前先介绍下图中的各接口:
Me1接口:DSC与NSC之间建立的接口。
Me2接口:DSC与DSC之间建立的接口。
Me3接口:DSC与EP(EndPoint)之间建立的接口。
Me4接口:EP与EP间建立的接口。
C1接口:LSC与NSC之间建立的接口。
C2接口:LSC与基站间建立的接口。
C3接口:LSC与接入点AP间建立的接口。
C4接口:基站与Device(设备)间建立的几口。
C5接口:接入点AP与Device间建立的接口。
C6接口:Device与Device设备间接口。
In1:DSC与LSC之间建立的接口。
In2:LSC与LSC之间建立的接口。
其中,MESH接入网包括至少一个DSC和至少一个EP,蜂窝接入网包括至少一个LSC,还包括至少一个基站和/或至少一个AP,核心网中包括至少一个NSC。
下面分别介绍每个实体。
1、末端节点EndPoint(EP):
EP是具有通信功能的MTC类型接入设备,通过接入“簇”获得数据传输服务,能够绑定到特定物理设备,例如各类传感器sensor、执行器actuator、加速器、制动装置、机械臂、飞行器、汽车、自行车、安全头盔、智能眼镜、智能手表等。根据绑定的特定物理设备不同,可以选择具有不同通信功能的EP。一般EP是面向近距离(例如小于100m),低数据速率(例如低于1000bits/s)的通信场景。本发明实施例也同样适用远距离高速率的EP。
2、分布式服务中心DistributeServiceCenter(DSC):
DSC,用于通过回传网络,与核心网之间传输对应簇中与EP相关的信息;其中,DSC与对应的簇中的每个EP连接。
在实施中,DSC与周围和DSC连接的EndPoints构成簇(Cluster)。
可选的,DSC还负责对簇进行管理和维护。
具体的,DSC对对应簇中的EP进行管理,并协调与其他相邻簇之间的通信,以及进行干扰管理。
若MESH接入网与其他无线网络共用无线资源,DSC还可以协调与相邻或同覆盖的异系统无线资源控制实体的干扰,以及与异系统进行跨系统通信。
比如DSC可以将分配用于“簇内通信”的无线资源的时间或频率信息通知周围的DSC或LSC;
相应的,周围DSC、LSC避免使用相同的时间或频率进行通信。
DSC还可以将自身或簇内EP测量到得干扰信息通知给周围DSC或LSC;
相应的,周围DSC或LSC判断自身对其他簇或“本地接入网”通信造成干扰,则可以通过降低发射功率等方式,弱化干扰。
在业务层和簇成员管理方面:DSC负责参与对成员列表的维护,对簇成员身份验证, 参与对EndPoint关联的设备类型和服务要求进行维护。
MESH接入网层面:DSC作为簇的控制点,还负责协调与其他相邻簇Cluster之间的通信,以及干扰管理。
在跨系统协同方面:对于MESH接入网与其他无线网络(例如蜂窝)共用无线资源情况下,DSC还负责协调与相邻或同覆盖的异系统无线资源控制实体进行干扰和跨系统通信(例如DSC负责协调基站进行干扰协调)。
DSC支持软硬件解耦合和软件可配置功能。DSC负责对EP类型的终端(也可称为末端节点)接入进行控制,DSC需要在终端接入过程中对终端身份进行验证。由于核心网采用基于簇的管理策略,因此DSC负责将自身管理的簇信息上报核心网,其中簇信息包括DSC管理的簇内成员数量信息、DSC管理的簇内激活的服务信息等。
3、本地服务中心LocalServiceCenter(LSC):
LSC,用于通过回传网络,与核心网之间传输与特定接入设备相关的信息;其中,特定接入设备是接入到与LSC连接的基站或AP的接入设备。
可选的,LSC还对特定接入设备进行连接管理和传输管理。
具体的,传输管理包括下列管理中的部分或全部:
进行跨基站和/或跨AP的干扰管理;
与相邻或重叠覆盖的蜂窝本地接入网之间进行干扰协调或无线资源协调;
在多基站和/或多AP传输方式下进行无线资源配置和/或传输参数配置;
与相邻或重叠覆盖的MESH接入网之间进行无线资源协调。
例如:LSC可以将分配“本地接入网”通信的无线线资源通知周围的DSC或LSC;
相应的,周围DSC,LSC避免使用相同的时间或频率资源通信。
LSC还可以根据本地接入网中AP,BS以及接入Device测量到得干扰信息通知给周围DSC或LSC;
相应的,周围DSC或LSC判断自身对其他簇或“本地接入网”通信造成干扰,则可以通过降低发射功率等方式,弱化干扰。
在实施中,本发明实施例的蜂窝接入网有多个可相互交叠的蜂窝本地接入网构成。蜂窝本地接入网中的基站可以是各种类型的基站。
LSC与基站或接入点AP共同构成蜂窝本地接入网,其中如果蜂窝本地接入网由LSC与基站共同构成,则负责为特定地理区域提供广域覆盖;如果蜂窝本地接入网由LSC与AP共同构成,则负责为热点容量增强服务。蜂窝接入网有多个可相互交叠的蜂窝本地接入网构成。
4、基站(BS):
基站BS与LSC共同组成蜂窝本地接入网(宏网络层),负责为特定地理区域提供广 域覆盖服务。保证接入设备在移动过程中始终获得无缝的连接体验。
具体的,基站可以进行下列功能中的部分或全部:
负责对无线接入过程进行控制;
负责对物理层无线传输相关的基带处理功能;
为单小区传输,进行无线资源调度和传输参数配置;
通过广播信道,为广域覆盖下设备体统广播多播传输服务。
5、接入点AP:
接入点AP与LSC共同组成蜂窝本地接入网(热点网络层),负责为热点地区提供容量服务,从而为接入设备提供更高的数据传输速率。AP本身可以看成是功能和硬件能力进行裁剪的低成本基站。
具体的,AP可以进行下列功能中的部分或全部:
负责对无线接入过程进行控制。
负责对物理层无线传输相关的基带处理功能。
为单小区传输,进行无线资源调度和传输参数配置。
在无设备接入情况下,可进入静默模式从而降低耗电。
6、设备Device:
Device可以是终端、Modem设备还可以是其他能够通过蜂窝接入网接入网络的设备。
可选的,Device本身还可以为MESH接入网成员提供到核心网或外部网络的中继服务。
可选的,本发明实施例的Device可以支持在高速情况下(例如,移动速度超过500km/h),接入蜂窝网(例如与基站天线直线距离超过1500m),并且支持非常高的数据传输速率(例如数据传输速率大于1Gbps)。
可选的,本发明实施例的Device可以通过系统广播信道接收广播服务信息。
可选的,本发明实施例的Device可以通过接入蜂窝网络获得数据传输服务。
可选的,本发明实施例的Device可以实现设备间进行直接通信。
7、网络服务中心NetworkServiceCenter(NSC):
NSC负责终结接入网到核心网控制面接口。NSC支持软硬件解耦合和软件可配置功能。
NSC,用于通过回传网络将收到的DSC和/或LSC的信息传输给核心网。
也就是说,在连接管理方面,NSC负责终结MESH接入网、蜂窝接入网到核心网的控制面连接。
可选的,网络层安全方面,NSC负责对DSC和LSC进行身份验证并建立安全隧道。
具体的,NSC可以对DSC和/或LSC进行身份验证,并在验证通过后在DSC和/或LSC 之间,建立经过回传网络的用于传输数据的安全隧道。
比如NSC与DSC、LSC通过证书机制实现身份认证,并建立IPsec安全通道,保证Me1和C1接口的安全性。
可选的,NSC还可以在业务层(Service)和身份层(identity),对与DSC连接的EP和特定接入设备进行管理。
可选的,负责对从MESH接入网和蜂窝接入网收到的控制面信令进行处理,包括EP,Device的身份验证,对EP关联的设备类型和服务类型验证与激活过程,为Device设备激活到特定外部网络的会话等。
比如NSC负责对EP的状态信息进行管理,包括跟踪管理(EP当前接入的“簇”信息),会话管理(例如EP当前激活的业务),身份管理(例如EP签约的设备类型和服务类型)。
在实施中,NSC属于中心式控制单元,而LSC和DSC都属于分布式控制单元。
可选的,在管理方面,LSC和DSC负责对本地的,时延要求高的功能进行控制。而NSC负责对全局性的,对时延要求不高,对安全性要求高的功能进行控制。
比如LSC负责“簇成员”管理,保存当前簇成员的信息。包括为簇成员分配临时标识,负责为簇内通信进行无线资源分配,以及对簇内空口帧格式、空口基本参数进行管理。
DSC负责对本地接入网进行管理,包括维护本地接入网AP,BS列表,建立维护与AP,BS间可靠连接,可以为AP内通信或BS内通信进行无线资源的分配与协调,负责对从AP和BS接入的Device的链接管理。DSC还可以控制AP和BS用户面数据转发路径选择,DSC还可以对AP、BS在空口帧结构,帧配置参数,以及AP,BS在MAC层使用的传输方案,以及高层协议栈架构进行配置。
在实施中,核心网本身可以部署一个或多个NSC,且不同NSC之间相互平等。在接入网侧,由于接入网分布式的特点,LSC根据地理区域,以及覆盖或容量提升区域的类型进行部署,每个LSC区域由一个LSC进行控制,不同LSC之间也是相互平等的关系,且不存在层级关系(无论LSC控制宏基站还是LSC控制接入点)。
其中,MESH接入网网络中各簇之间能够相互交叠;
蜂窝接入网中各本地接入网之间能够相互交叠;
本地接入网与簇之间能够相互交叠。
可选的,MESH接入网和蜂窝接入网使用传统蜂窝的专用频率或其他公用公共频率。比如传统蜂窝系统采用专用频率,主用频率被分配给不同运营商,用于特定蜂窝系统,例如CDMS,WCDMA,LTE,TD-LTE采用的频率;除传统蜂窝系统采用的专用频率之外,由多个相同或不同制式无线通信系统共用的频率资源。
如图2B所示,本发明实施例的分布式服务中心节点可以是DSC或其他可以控制和服 务多个末端节点的接入网中心节点。由分布式服务中心对一组末端节点进行计费控制,一个分布式服务中心控制和服务的一组末端节点可以称为一个簇,分布式服务中心节点具有类似“簇头”的功能。一个示例如下图所示,DSC1控制末端节点EP1、EP2、EP3的计费,DSC2控制末端节点EP4、EP5、EP6的计费;DSC1和DSC2的基本计费测量和总体控制来自与核心网。核心网可以是运营商网络,从而实现运营商对分布式网络计费的有效控制。
在实施中,本发明实施例的簇也可以称为组。
本发明实施例的DSC功能实体可以是作为分布式服务中心的头节点。具体的设备可以是能够移动的末端节点,比如手持类末端节点(例如智能手机),或基站类型设备(例如微型基站)或服务器类设备或分布式服务中心。
本发明实施例的EP可以是能够移动的末端节点,比如手持类末端节点(例如智能手机),或可穿戴设备(例如智能手环),或机器类设备(例如传感器)。
本发明实施例的EP可以对核心网不可见,也可以对核心网可见。
本发明实施例分布式服务中心节点可以是DSC或其他可以控制和服务多个末端节点节点的接入网中心节点。由分布式服务中心对一组末端节点进行计费控制,一个分布式服务中心控制和服务的一组末端节点可以称为一个簇,分布式服务中心节点具有类似“簇头”的功能。如图2B所示,末端节点接入一个簇进行工作,DSC1控制末端节点EP1、EP2、EP3,DSC2控制末端节点EP4、EP5、EP6。
图2B中的DSC相当于“簇头”,即头节点,对一组末端节点进行控制管理,可以是一个独立实体,也可以是其中一个末端节点,并且DSC可以不是固定实体,例如一个簇下的不同末端节点可以根据需求在不同时间点担任DSC。末端节点EP的数据传输路由可以不经由DSC,例如直接从数据服务器获取数据或经由其他末端节点中继,DSC可以控制数据路由和进行必要的资源管理。由此可见,在这种分布式网络下,DSC不同于蜂窝网的基站,没有基站的集中调度和精细资源管理,控制力度没有基站大。且不同于蜂窝网中核心网对于所有设备的统一安全性、用户体验等统一控制。
当末端节点初始接入系统时,末端节点EP通过分布式服务中心DSC向鉴权设备发送鉴权请求,鉴权设备从服务器中获得用户的签约信息,然后其在鉴权结束后向DSC发送用户的签约信息。鉴权设备一般位于核心网。对于分布式网络,核心网不对每个末端节点进行管理,末端节点接入后,可以将末端节点的用户签约信息删除。末端节点在DSC之间移动时,核心网不参与管理。
下面结合说明书附图对本发明实施例作进一步详细描述。
如图3所示,本发明实施例一种进行服务质量管理的方法包括:
步骤301、目标头节点确定有末端节点需要从源头节点控制范围移动到目标头节点控制范围;
步骤302、目标头节点从源头节点或从网络侧获取末端节点的用户签约信息;
步骤303、目标头节点在末端节点切换到目标头节点控制范围后,根据末端节点的用户签约信息,对末端节点进行服务质量管理。
其中,本发明实施例的头节点是一个簇的管理节点,可以是分布式服务中心。
本发明实施例的头节点控制范围是指头节点控制的簇的范围,也就是说,该末端节点从属于头节点控制的簇。
可选的,本发明实施例根据末端节点的用户签约信息,对末端节点进行服务质量管理。
这里的服务质量管理包括但不限于下列管理中的部分或全部:
QoS控制(比如用户调度优先级、用户最大签约速率、用户保证速率等),资源配置,多用户资源协调等。
在实施中,目标头节点需要对末端节点进行接纳判决,如果判决结果为允许接纳,则可以将末端节点切换到目标头节点,否则,不允许将末端节点切换到目标头节点。
接纳判决的方法有很多,比如根据负荷判决,具体的,如果负荷高于设定的负荷门限值,则确定负荷过重,不可以接纳;反之,可以接纳。
需要说明的是,采用负荷判决只是举例说明,其他能够进行判决的方式同样适用本发明实施例。比如可以根据末端节点数量判决,如果当前接入的末端节点数量大于设定的数量门限值,则确定接入末端节点数量过多,不可以接纳;反之,可以接纳。
除了上述方式,本发明实施例在进行接纳判决时还可以通过获取的用户签约信息进行。
具体的,目标头节点从源头节点或从网络侧获取末端节点的用户签约信息之后,根据用户签约信息对末端节点进行的接纳判决,如判决当前簇可提供的资源是否能满足用户保证速率或用户最大签约速率,从而判决是否接纳该用户。
需要说明的是,如果接纳判决不需要用户签约信息,则目标头节点可以在确定允许接纳后,去获取用户签约信息;如果接纳判决需要用户签约信息,则目标头节点在进行接纳判决之前就需要获取用户签约信息。
可选的,目标头节点在收到来自源头节点的包含末端节点的标识后,确定有末端节点需要从源头节点控制范围移动到目标头节点控制范围。
可选的,目标头节点需要从网络侧获取末端节点的用户签约信息时,向网络侧发送包含末端节点的标识的签约信息请求消息,并接收来自网络侧的末端节点的用户签约信息。
在实施中,头节点是簇控制节点,不一定直接为末端节点提供数据传输。在分布式网络中,数据来自本地服务器或通过一跳或多跳进行末端节点之间的端到端通信,末端节点从源DSC移动到目标DSC时,需要与数据服务器或对端末端节点重新建立路由通道。
基于此,为了让目标头节点对接入的末端节点更好地服务,一种可选的方式是:目标 头节点通过获取一些信息,为末端节点进行服务。
具体信息包括但不限于下列中的部分或全部:
末端节点当前承载信息、标识信息、跳数信息和中间节点信息。
下面分别进行介绍。
一、末端节点当前承载信息。
具体的,目标头节点确定有末端节点需要从源头节点控制范围移动到目标头节点控制范围之后,接收来自末端节点或源头节点的末端节点当前承载信息;
目标头节点在末端节点接入目标头节点后,根据末端节点当前承载信息,为末端节点建立对应的承载并配置对应的资源。
其中,根据末端节点当前承载信息,为末端节点建立对应的承载并配置对应的资源。例如目标头节点所管理的簇资源可容纳末端节点所有当前承载的传输,则在目标头节点管理的簇中,为末端节点建立与当前承载一致的承载;如果目标头节点所管理的簇资源只能容纳部分末端节点的当前承载的传输,则在目标头节点管理的簇中,优先为末端节点建立需要保障速率的承载和高优先级承载。
二、标识信息,其中标识信息中包括为末端节点提供服务的数据服务器标识和/或与末端节点通信的对端标识。
具体的,目标头节点确定有末端节点需要从源头节点控制范围移动到目标头节点控制范围之后,接收来自末端节点或源头节点的标识信息;
目标头节点在末端节点接入目标头节点后,根据标识信息为末端节点建立数据路由关系。
其中,根据标识信息为末端节点建立数据路由关系由目标头节点的路由算法确定,例如目标头节点确定数据服务器标识和末端节点标识后,按照最短路径原则或合并考虑资源占用情况,确定中间节点和跳数,从而最终确定数据路由关系。
可选的,末端节点和与末端节点通信的对端标识可以是接入网分配的标识,如特定头节点下的C-RNTI,或IP地址,或MAC地址(MAC位址即硬件位址,用于定义终端端口)。在OSI模型中,第三层网络层负责IP地址,第二层数据链路层则负责MAC位址。
三、标识信息、跳数信息和中间节点信息。其中,标识信息中包括为末端节点提供服务的数据服务器标识和/或与末端节点通信的对端标识。
如果末端节点与对端之间的传输是多跳,目标头节点除了获取标识信息,还需要获取跳数信息和中间节点信息。
具体的,目标头节点确定有末端节点需要从源头节点控制范围移动到目标头节点控制范围之后,接收来自末端节点或源头节点的标识信息、跳数信息和中间节点信息;
目标头节点在末端节点接入目标头节点后,根据标识信息、跳数信息和中间节点信息, 为末端节点建立数据路由关系。
其中,根据标识信息、跳数信息和中间节点信息,为末端节点建立数据路由关系由目标头节点的路由算法确定,具体原则为路径最短原则和/或资源使用率最优原则。
如图4所示,本发明实施例另一种进行服务质量管理的方法包括:
步骤401、源头节点确定有末端节点需要从源头节点控制范围移动到目标头节点控制范围;
步骤402、源头节点将末端节点的用户签约信息发送给目标头节点,以使目标头节点在末端节点切换到目标头节点控制范围后,根据末端节点的用户签约信息,对末端节点进行服务质量管理。
下面列举几个实施例对本发明的方案进行说明。
例一、目标头节点从源头节点获取末端节点用户签约信息。
如图5所示,本发明实施例基于从源头节点获取末端节点用户签约信息进行服务质量管理的方法包括:
步骤1:末端节点通过测量(或其他头节点发现过程)确定需要切换后,向源头节点发起切换请求。
可选的,切换请求中可以携带末端节点期望接入的目标头节点的标识。
步骤2:源头节点在收到切换请求后,向目标头节点发送切换请求。
可选的,切换请求中携带末端节点标识和用户签约信息(如QoS参数等)。
步骤3:目标头节点判决是否能接纳末端节点并为其提供其要求的QoS服务;
如果可以接纳该末端节点,在末端节点上下文中存储签约信息,并向源头节点发送切换应答;否则,向源头节点发送拒绝信息。
步骤4:如果源头节点收到来自目标头节点的切换应答,则向末端节点发送切换应答,其中携带目标头节点标识。
步骤5:末端节点在收到切换应答后,向目标头节点发起切换过程。
例二、目标头节点网络侧获取用户签约信息。
如图6所示,本发明实施例基于从网络侧获取末端节点用户签约信息进行服务质量管理的方法包括:
步骤1:末端节点通过测量(或其他头节点发现过程)确定需要切换后,向源头节点发起切换请求。
可选的,切换请求中可以携带末端节点期望的目标头节点标识。
步骤2:源头节点在收到切换请求后,向目标头节点发送切换请求。
可选的,切换请求中携带末端节点标识。
步骤3:标头节点判决是否能接纳末端节点并为其提供其要求的QoS服务;
如果可以接纳该末端节点,在末端节点上下文中存储签约信息,向源头节点发送切换应答;否则,向源头节点发送拒绝信息。
在实施中,进行接纳判决的方式有很多,一种可行的方式是:根据负荷判决,具体的,如果负荷高于设定的负荷门限值,则确定负荷过重,不可以接纳;反之,可以接纳。
需要说明的是,采用负荷判决只是举例说明,其他能够进行判决的方式同样适用本发明实施例。比如可以根据末端节点数量判决,如果当前接入的末端节点数量大于设定的数量门限值,则确定接入末端节点数量过多,不可以接纳;反之,可以接纳。
步骤4:如果源头节点收到来自目标头节点的切换应答,则向末端节点发送切换应答,其中携带目标头节点标识。
步骤5:末端节点在收到切换应答后,向目标头节点发起切换过程。
步骤6:目标头节点向服务器发送签约信息请求,其中携带用户标识。
步骤7:服务器将用户签约信息发送给目标头节点。
步骤8:目标头节点在对应的末端节点上下文中存储收到的用户签约信息。
需要说明的是:步骤6、步骤7可以在步骤2和步骤3之间;相应的,目标头节点获取用户签约信息后,进入步骤3,并根据用户签约信息进行接纳判决,并根据接纳判决结果确定向源头节点回复应答消息还是拒绝消息。
例三、保证末端节点在移动过程中业务连续性的方法。
如图7所示,本发明实施例保证末端节点在移动过程中业务连续性的方法包括:
实施例三和实施例一可以同步进行,实施例三和实施例二可以同步进行。即在传输用户签约信息的同时向目标头节点通知数据路由和承载的信息。目标头节点在判决接纳后就为末端节点建立数据通道和建立对应承载。
步骤1:源头节点通知目标头节点需要进行切换的末端节点的用户数据服务信息。
用户数据服务信息可以包括下列信息中的部分或全部:
末端节点当前承载信息,以使目标头节点为末端节点建立相应承载和资源配置;
为该末端节点提供服务的数据服务器标识,或与该末端节点通信的对端末端节点标识,以使目标头节点在该末端节点进入其管理的簇后,为该末端节点重新建立数据路由关系。
如果末端节点进行的传输是多跳(即传输过程需要经过多个设备),用户数据服务信息还可以包括跳数和中间节点信息,以使目标头节点可以正确进行数据路由关系建立。
除了由源头节点通知目标头节点需要进行切换的末端节点的用户数据服务信息,还可以由末端节点向目标头节点发送用户数据服务信息。
在实施中,如果由末端节点向目标头节点发送用户数据服务信息,并且是多跳,则根据不同的路由规则有多个情况:
情况一、多跳透明的,即末端节点只知道对端,这时跳数和中间节点信息由源头节点通知目标头节点。
情况二、末端节点知道完整路径信息,则跳数和中间节点信息由末端节点通知目标头节点。
步骤2:目标头节点根据收到的用户数据服务信息,为该末端节点建立业务承载,并建立数据路由通道。
步骤3:在后续信令交互过程中通知末端节点建立的数据路由通道信息,如告知末端节点下一跳标识或数据服务器标识。
基于同一发明构思,本发明实施例中还提供了一种进行服务质量管理的设备,由于该设备解决问题的原理与本发明实施例进行服务质量管理的方法相似,因此该设备的实施可以参见方法的实施,重复之处不再赘述。
如图8所示,本发明实施例第一种进行服务质量管理的设备包括:
第一确定模块801,用于确定有末端节点需要从源头节点控制范围移动到目标头节点控制范围;
获取模块802,用于从源头节点或从网络侧获取末端节点的用户签约信息;
管理模块803,用于在末端节点切换到目标头节点控制范围后,根据末端节点的用户签约信息,对末端节点进行服务质量管理。
可选的,获取模块802还用于:
在确定能够接纳末端节点后,从源头节点或从网络侧获取末端节点的用户签约信息。
可选的,管理模块803还用于:
根据由用户签约信息对末端节点进行的接纳判决,确定能够接纳末端节点后,根据末端节点的用户签约信息,对末端节点进行服务质量管理。
可选的,第一确定模块801具体用于:
在收到来自源头节点的包含末端节点的标识后,确定有末端节点需要从源头节点控制范围移动到目标头节点控制范围。
可选的,获取模块802具体用于:
向网络侧发送包含末端节点的标识的签约信息请求消息,并接收来自网络侧的末端节点的用户签约信息。
可选的,管理模块803还用于:
接收来自末端节点或源头节点的末端节点当前承载信息;
在末端节点接入目标头节点后,根据末端节点当前承载信息,为末端节点建立对应的承载并配置对应的资源。
可选的,管理模块803还用于:
接收来自末端节点或源头节点的标识信息,其中标识信息中包括为末端节点提供服务的数据服务器标识和/或与末端节点通信的对端标识;在末端节点接入目标头节点后,根据标识信息为末端节点建立数据路由关系。
可选的,管理模块803还用于:
接收来自末端节点或源头节点的跳数信息和中间节点信息;在末端节点接入目标头节点后,根据标识信息、跳数信息和中间节点信息,为末端节点建立数据路由关系。
如图9所示,本发明实施例第二种进行服务质量管理的方法包括:
第二确定模块901,用于确定有末端节点需要从源头节点控制范围移动到目标头节点控制范围;
发送模块902,用于将末端节点的用户签约信息发送给目标头节点,以使目标头节点在末端节点切换到目标头节点控制范围后,根据末端节点的用户签约信息,对末端节点进行服务质量管理。
在实施中,目标头节点也可能作为源头节点。源头节点也可能作为目标头节点,所以图8和图9的设备可以合在一个实体中,根据需要选择使用图8的设备功能或图9的设备功能。
如图10所示,本发明实施例第三种进行服务质量管理的设备包括:
处理器1001,用于读取存储器1004中的程序,执行下列过程:
确定有末端节点需要从源头节点控制范围移动到目标头节点控制范围;从源头节点或从网络侧获取末端节点的用户签约信息;在末端节点切换到目标头节点控制范围后,根据末端节点的用户签约信息,对末端节点进行服务质量管理。
收发机1002,用于在处理器1001的控制下接收和发送数据。
可选的,处理器1001还用于:
在确定能够接纳末端节点后,从源头节点或从网络侧获取末端节点的用户签约信息。
可选的,处理器1001还用于:
根据由用户签约信息对末端节点进行的接纳判决,确定能够接纳末端节点后,根据末端节点的用户签约信息,对末端节点进行服务质量管理。
可选的,处理器1001具体用于:
在收到来自源头节点的包含末端节点的标识后,确定有末端节点需要从源头节点控制范围移动到目标头节点控制范围。
可选的,处理器1001具体用于:
向网络侧发送包含末端节点的标识的签约信息请求消息,并接收来自网络侧的末端节点的用户签约信息。
可选的,处理器1001还用于:
接收来自末端节点或源头节点的末端节点当前承载信息;
在末端节点接入目标头节点后,根据末端节点当前承载信息,为末端节点建立对应的承载并配置对应的资源。
可选的,处理器1001还用于:
接收来自末端节点或源头节点的标识信息,其中标识信息中包括为末端节点提供服务的数据服务器标识和/或与末端节点通信的对端标识;在末端节点接入目标头节点后,根据标识信息为末端节点建立数据路由关系。
可选的,处理器1001还用于:
接收来自末端节点或源头节点的跳数信息和中间节点信息;在末端节点接入目标头节点后,根据标识信息、跳数信息和中间节点信息,为末端节点建立数据路由关系。
在图10中,总线架构(用总线1000来代表),总线1000可以包括任意数量的互联的总线和桥,总线1000将包括由处理器1001代表的一个或多个处理器和存储器1004代表的存储器的各种电路链接在一起。总线1000还可以将诸如外围设备、稳压器和功率管理电路等之类的各种其他电路链接在一起,这些都是本领域所公知的,因此,本文不再对其进行进一步描述。总线接口1003在总线1000和收发机1002之间提供接口。收发机1002可以是一个元件,也可以是多个元件,比如多个接收器和发送器,提供用于在传输介质上与各种其他装置通信的单元。经处理器1001处理的数据通过天线1005在无线介质上进行传输,进一步,天线1005还接收数据并将数据传送给处理器1001。
处理器1001负责管理总线1000和通常的处理,还可以提供各种功能,包括定时,外围接口,电压调节、电源管理以及其他控制功能。而存储器1004可以被用于存储处理器1001在执行操作时所使用的数据。
可选的,处理器1001可以是CPU(中央处埋器)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现场可编程门阵列(Field-Programmable Gate Array,FPGA)或复杂可编程逻辑器件(Complex Programmable Logic Device,CPLD)。
如图11所示,本发明实施例第四种进行服务质量管理的方法包括:
处理器1101,用于读取存储器1104中的程序,执行下列过程:
确定有末端节点需要从源头节点控制范围移动到目标头节点控制范围;通过收发机1102将末端节点的用户签约信息发送给目标头节点,以使目标头节点在末端节点切换到目标头节点控制范围后,根据末端节点的用户签约信息,对末端节点进行服务质量管理。
收发机1102,用于在处理器1101的控制下接收和发送数据。
在图11中,总线架构(用总线1100来代表),总线1100可以包括任意数量的互联的总线和桥,总线1100将包括由处理器1101代表的一个或多个处理器和存储器1104代表的存储器的各种电路链接在一起。总线1100还可以将诸如外围设备、稳压器和功率管理电路 等之类的各种其他电路链接在一起,这些都是本领域所公知的,因此,本文不再对其进行进一步描述。总线接口1103在总线1100和收发机1102之间提供接口。收发机1102可以是一个元件,也可以是多个元件,比如多个接收器和发送器,提供用于在传输介质上与各种其他装置通信的单元。经处理器1101处理的数据通过天线1105在无线介质上进行传输,进一步,天线1105还接收数据并将数据传送给处理器1101。
处理器1101负责管理总线1100和通常的处理,还可以提供各种功能,包括定时,外围接口,电压调节、电源管理以及其他控制功能。而存储器1104可以被用于存储处理器1101在执行操作时所使用的数据。
可选的,处理器1101可以是CPU、ASIC、FPGA或CPLD。
在实施例中,目标头节点也可能作为源头节点。源头节点也可能作为目标头节点,所以图10和图11的设备可以合在一个实体中,根据需要选择使用图10的设备功能或图11的设备功能。
从上述内容可以看出:本发明实施例目标头节点目标头节点从源头节点或从网络侧获取末端节点的用户签约信息;在末端节点切换到目标头节点控制范围后,根据末端节点的用户签约信息,对末端节点进行服务质量管理,从而对于分布式网络进行终端服务质量管理。
本领域内的技术人员应明白,本发明的实施例可提供为方法、系统、或计算机程序产品。因此,本发明可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本发明可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。
本发明是参照根据本发明实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机 或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
尽管已描述了本发明的优选实施例,但本领域内的技术人员一旦得知了基本创造性概念,则可对这些实施例作出另外的变更和修改。所以,所附权利要求意欲解释为包括优选实施例以及落入本发明范围的所有变更和修改。
显然,本领域的技术人员可以对本发明实施例进行各种改动和变型而不脱离本发明实施例的精神和范围。这样,倘若本发明实施例的这些修改和变型属于本发明权利要求及其等同技术的范围之内,则本发明也意图包含这些改动和变型在内。

Claims (18)

  1. 一种进行服务质量管理的方法,其特征在于,该方法包括:
    目标头节点确定有末端节点需要从源头节点控制范围移动到所述目标头节点控制范围;
    所述目标头节点从所述源头节点或从网络侧获取所述末端节点的用户签约信息;
    所述目标头节点在所述末端节点切换到所述目标头节点控制范围后,根据所述末端节点的用户签约信息,对所述末端节点进行服务质量管理。
  2. 如权利要求1所述的方法,其特征在于,所述目标头节点确定有末端节点需要从源头节点控制范围移动到所述目标头节点控制范围之后,从所述源头节点或从网络侧获取所述末端节点的用户签约信息之前,还包括:
    所述目标头节点确定能够接纳所述末端节点。
  3. 如权利要求1所述的方法,其特征在于,所述目标头节点从所述源头节点或从网络侧获取所述末端节点的用户签约信息之后,根据所述末端节点的用户签约信息,对所述末端节点进行服务质量管理之前,还包括:
    所述目标节点根据由所述用户签约信息对所述末端节点进行的接纳判决,确定能够接纳所述末端节点。
  4. 如权利要求1所述的方法,其特征在于,所述目标头节点确定有末端节点需要从源头节点控制范围移动到所述目标头节点控制范围,包括:
    所述目标头节点在收到来自所述源头节点的包含所述末端节点的标识后,确定有末端节点需要从源头节点控制范围移动到所述目标头节点控制范围。
  5. 如权利要求4所述的方法,其特征在于,所述目标头节点从网络侧获取所述末端节点的用户签约信息,包括:
    所述目标头节点向所述网络侧发送包含所述末端节点的标识的签约信息请求消息,并接收来自所述网络侧的所述末端节点的用户签约信息。
  6. 如权利要求1所述的方法,其特征在于,所述目标头节点确定有末端节点需要从源头节点控制范围移动到所述目标头节点控制范围之后,还包括:
    所述目标头节点接收来自所述末端节点或所述源头节点的所述末端节点当前承载信息;
    所述目标头节点在所述末端节点接入所述目标头节点后,根据所述末端节点当前承载信息,为所述末端节点建立对应的承载并配置对应的资源。
  7. 如权利要求1所述的方法,其特征在于,所述目标头节点确定有末端节点需要从源头节点控制范围移动到所述目标头节点控制范围之后,还包括:
    所述目标头节点接收来自所述末端节点或所述源头节点的标识信息,其中所述标识信息中包括为所述末端节点提供服务的数据服务器标识和/或与所述末端节点通信的对端标识;
    所述目标头节点在所述末端节点接入所述目标头节点后,根据所述标识信息为所述末端节点建立数据路由关系。
  8. 如权利要求7所述的方法,其特征在于,所述目标头节点确定有末端节点需要从源头节点控制范围移动到所述目标头节点控制范围之后,还包括:
    所述目标头节点接收来自所述末端节点或所述源头节点的跳数信息和中间节点信息;
    所述目标头节点在所述末端节点接入所述目标头节点后,为所述末端节点建立数据路由关系,还包括:
    所述目标头节点在所述末端节点接入所述目标头节点后,根据所述标识信息、跳数信息和中间节点信息,为所述末端节点建立数据路由关系。
  9. 一种进行服务质量管理的方法,其特征在于,该方法包括:
    源头节点确定有末端节点需要从源头节点控制范围移动到所述目标头节点控制范围;
    所述源头节点将所述末端节点的用户签约信息发送给所述目标头节点,以使所述目标头节点在所述末端节点切换到所述目标头节点控制范围后,根据所述末端节点的用户签约信息,对所述末端节点进行服务质量管理。
  10. 一种进行服务质量管理的设备,其特征在于,该设备包括:
    第一确定模块,用于确定有末端节点需要从源头节点控制范围移动到所述目标头节点控制范围;
    获取模块,用于从所述源头节点或从网络侧获取所述末端节点的用户签约信息;
    管理模块,用于在所述末端节点切换到所述目标头节点控制范围后,根据所述末端节点的用户签约信息,对所述末端节点进行服务质量管理。
  11. 如权利要求10所述的设备,其特征在于,所述获取模块还用于:
    在确定能够接纳所述末端节点后,从所述源头节点或从网络侧获取所述末端节点的用户签约信息。
  12. 如权利要求10所述的设备,其特征在于,所述管理模块还用于:
    根据由所述用户签约信息对所述末端节点进行的接纳判决,确定能够接纳所述末端节点后,根据所述末端节点的用户签约信息,对所述末端节点进行服务质量管理。
  13. 如权利要求10所述的设备,其特征在于,所述第一确定模块具体用于:
    在收到来自所述源头节点的包含所述末端节点的标识后,确定有末端节点需要从源头节点控制范围移动到所述目标头节点控制范围。
  14. 如权利要求13所述的设备,其特征在于,所述获取模块具体用于:
    向所述网络侧发送包含所述末端节点的标识的签约信息请求消息,并接收来自所述网络侧的所述末端节点的用户签约信息。
  15. 如权利要求10所述的设备,其特征在于,所述管理模块还用于:
    接收来自所述末端节点或所述源头节点的所述末端节点当前承载信息;
    在所述末端节点接入所述目标头节点后,根据所述末端节点当前承载信息,为所述末端节点建立对应的承载并配置对应的资源。
  16. 如权利要求10所述的设备,其特征在于,所述管理模块还用于:
    接收来自所述末端节点或所述源头节点的标识信息,其中所述标识信息中包括为所述末端节点提供服务的数据服务器标识和/或与所述末端节点通信的对端标识;在所述末端节点接入所述目标头节点后,根据所述标识信息为所述末端节点建立数据路由关系。
  17. 如权利要求16所述的设备,其特征在于,所述管理模块还用于:
    接收来自所述末端节点或所述源头节点的跳数信息和中间节点信息;在所述末端节点接入所述目标头节点后,根据所述标识信息、跳数信息和中间节点信息,为所述末端节点建立数据路由关系。
  18. 一种进行服务质量管理的设备,其特征在于,该设备包括:
    第二确定模块,用于确定有末端节点需要从源头节点控制范围移动到所述目标头节点控制范围;
    发送模块,用于将所述末端节点的用户签约信息发送给所述目标头节点,以使所述目标头节点在所述末端节点切换到所述目标头节点控制范围后,根据所述末端节点的用户签约信息,对所述末端节点进行服务质量管理。
PCT/CN2016/082988 2015-05-26 2016-05-23 一种进行服务质量管理的方法 WO2016188388A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510275222.9A CN106304204B (zh) 2015-05-26 2015-05-26 一种进行服务质量管理的方法和设备
CN201510275222.9 2015-05-26

Publications (1)

Publication Number Publication Date
WO2016188388A1 true WO2016188388A1 (zh) 2016-12-01

Family

ID=57392544

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/082988 WO2016188388A1 (zh) 2015-05-26 2016-05-23 一种进行服务质量管理的方法

Country Status (2)

Country Link
CN (1) CN106304204B (zh)
WO (1) WO2016188388A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111132227A (zh) * 2019-12-25 2020-05-08 中国电子科技集团公司第二十研究所 一种分层网络态势转发效率优化方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9955434B1 (en) * 2017-03-21 2018-04-24 Wipro Limited Method and system for controlling a transmit range of a wireless transmitter

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101237677A (zh) * 2007-02-02 2008-08-06 华为技术有限公司 系统间切换时传递QoS的方法、网络系统及目的侧网络
US20080247388A1 (en) * 2007-04-03 2008-10-09 Qualcomm Incorporated Transferring a session in a cluster
CN101772983A (zh) * 2007-07-31 2010-07-07 摩托罗拉公司 通信系统内的资源分配的系统和方法
CN102905334A (zh) * 2011-07-25 2013-01-30 上海无线通信研究中心 簇头辅助用户终端从d2d通信转换到蜂窝通信的方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102595406B (zh) * 2012-02-15 2014-08-20 电信科学技术研究院 一种签约信息的管理方法和设备

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101237677A (zh) * 2007-02-02 2008-08-06 华为技术有限公司 系统间切换时传递QoS的方法、网络系统及目的侧网络
US20080247388A1 (en) * 2007-04-03 2008-10-09 Qualcomm Incorporated Transferring a session in a cluster
CN101772983A (zh) * 2007-07-31 2010-07-07 摩托罗拉公司 通信系统内的资源分配的系统和方法
CN102905334A (zh) * 2011-07-25 2013-01-30 上海无线通信研究中心 簇头辅助用户终端从d2d通信转换到蜂窝通信的方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111132227A (zh) * 2019-12-25 2020-05-08 中国电子科技集团公司第二十研究所 一种分层网络态势转发效率优化方法
CN111132227B (zh) * 2019-12-25 2023-05-26 中国电子科技集团公司第二十研究所 一种分层网络态势转发效率优化方法

Also Published As

Publication number Publication date
CN106304204B (zh) 2020-02-21
CN106304204A (zh) 2017-01-04

Similar Documents

Publication Publication Date Title
EP3927107B1 (en) Method for establishing a fronthaul interface and base station
US11356924B2 (en) Radio communication system, base station, mobile station, communication control method, and computer readable medium
Rosa et al. Dual connectivity for LTE small cell evolution: Functionality and performance aspects
JP6785346B2 (ja) データ・オフロードのためのパスを確立する方法及び装置
EP2804422B1 (en) Offloading at a small cell access point
US10187928B2 (en) Methods and systems for controlling a SDN-based multi-RAT communication network
EP3008952B1 (en) Layered mobility
JP2017169243A (ja) マスターeNB及びその方法
EP3206458B1 (en) Communications method, device, and system
EP3267763B1 (en) Communication system and communication method
EP3301966B1 (en) Radio access network device, data processing method and ip packet processing method
JP2019527977A (ja) 無線アクセス技術を使用するワイヤレスネットワークにおけるシグナリングおよびリソース割振りの協調
US9668244B2 (en) Radio resource management method, macro base station, and low-power node
WO2018062286A1 (ja) 通信システム、無線アクセス装置、及び無線通信端末並びにこれらの制御方法
WO2022082601A1 (en) Method and apparatus for inter-donor mobility
JP6600741B2 (ja) 無線アクセスネットワークにおける制御プレーンとユーザプレーンの分離
Chekkouri et al. Connected vehicles in an intelligent transport system
WO2016188388A1 (zh) 一种进行服务质量管理的方法
KR20210003044A (ko) 통신 시스템에서 그룹 핸드오버를 위한 방법 및 장치
CA3064943A1 (en) Network support for locally offloaded traffic
WO2016161761A1 (zh) 数据传输方法及装置
TW202029786A (zh) 用於增加基於網際網路協定的語音(voip)網路覆蓋的方法
US20220046527A1 (en) Method and apparatus for relay utilizing sidelink in wireless communication system
Chen et al. Ultra-dense network architecture and technologies for 5G
WO2024026804A1 (zh) 移动节点的配置方法、移动节点和宿主设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16799276

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16799276

Country of ref document: EP

Kind code of ref document: A1