WO2013124940A1 - Resin-sealed semiconductor device and method for manufacturing same - Google Patents

Resin-sealed semiconductor device and method for manufacturing same Download PDF

Info

Publication number
WO2013124940A1
WO2013124940A1 PCT/JP2012/008023 JP2012008023W WO2013124940A1 WO 2013124940 A1 WO2013124940 A1 WO 2013124940A1 JP 2012008023 W JP2012008023 W JP 2012008023W WO 2013124940 A1 WO2013124940 A1 WO 2013124940A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin
semiconductor device
filler
control element
power element
Prior art date
Application number
PCT/JP2012/008023
Other languages
French (fr)
Japanese (ja)
Inventor
南尾 匡紀
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Priority to JP2013525060A priority Critical patent/JP5842109B2/en
Publication of WO2013124940A1 publication Critical patent/WO2013124940A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/29Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the material, e.g. carbon
    • H01L23/293Organic, e.g. plastic
    • H01L23/295Organic, e.g. plastic containing a filler
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/31Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape
    • H01L23/3107Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape the device being completely enclosed
    • H01L23/3135Double encapsulation or coating and encapsulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/50Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the subgroups H01L21/06 - H01L21/326, e.g. sealing of a cap to a base of a container
    • H01L21/56Encapsulations, e.g. encapsulation layers, coatings
    • H01L21/565Moulds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32245Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/4501Shape
    • H01L2224/45012Cross-sectional shape
    • H01L2224/45014Ribbon connectors, e.g. rectangular cross-section
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45117Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 400°C and less than 950°C
    • H01L2224/45124Aluminium (Al) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45144Gold (Au) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48111Disposition the wire connector extending above another semiconductor or solid-state body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48135Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
    • H01L2224/48137Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being arranged next to each other, e.g. on a common substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48257Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a die pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • H01L2224/491Disposition
    • H01L2224/49105Connecting at different heights
    • H01L2224/49109Connecting at different heights outside the semiconductor or solid-state body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/85Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
    • H01L2224/85909Post-treatment of the connector or wire bonding area
    • H01L2224/8592Applying permanent coating, e.g. protective coating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/73Means for bonding being of different types provided for in two or more of groups H01L24/10, H01L24/18, H01L24/26, H01L24/34, H01L24/42, H01L24/50, H01L24/63, H01L24/71
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/00014Technical content checked by a classifier the subject-matter covered by the group, the symbol of which is combined with the symbol of this group, being disclosed without further technical details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1305Bipolar Junction Transistor [BJT]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1305Bipolar Junction Transistor [BJT]
    • H01L2924/13055Insulated gate bipolar transistor [IGBT]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1306Field-effect transistor [FET]
    • H01L2924/13091Metal-Oxide-Semiconductor Field-Effect Transistor [MOSFET]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation

Definitions

  • the present invention relates to a resin-sealed semiconductor device and a method of manufacturing the same.
  • a sealed package is provided with a heat dissipation structure for cooling a semiconductor element by providing a gap between a metal cover and a refrigerant, and utilizing the heat of vaporization of the refrigerant absorbed by the porous member.
  • a heat dissipation structure for cooling a semiconductor element by providing a gap between a metal cover and a refrigerant, and utilizing the heat of vaporization of the refrigerant absorbed by the porous member.
  • FIG. 9 shows a cross-sectional configuration of the conventional sealed package disclosed in Patent Document 2. As shown in FIG.
  • the sealed package includes a substrate 102 on which the semiconductor element 101 is mounted, a metal cover 103 for covering the mounting surface of the substrate 102 and sealing the mounting surface, a flexible sheet 104, and a refrigerant. And the porous member 105 which adsorb
  • the semiconductor element 101 is in contact with the porous member 105 via the sheet 104. Therefore, when the temperature of the semiconductor element 101 rises, the refrigerant adsorbed by the porous member 105 is vaporized. As a result, the semiconductor element 101 is cooled by the heat of vaporization of the refrigerant.
  • the vaporized refrigerant vapor condenses in the form of water droplets on the inner wall surface of the metal cover 103 and is liquefied, and the liquefied refrigerant is adsorbed by the porous member 105.
  • JP 2008-004688 A Japanese Patent Application Publication No. 07-066575
  • the conventional hermetic package requires a porous member to be disposed inside the metal cover before joining the metal cover, which complicates the manufacturing process.
  • a resin-sealed semiconductor device includes: an exterior body; a lead frame which is sealed inside the exterior body and in which an end portion protrudes from the exterior body; A power element mounted on the lead frame and a control element sealed on the inside of the outer package and mounted on the lead frame, the power element and the control element in the outer package A sealing resin containing a filler is densely disposed in a region between the first and second regions in comparison with the other regions.
  • a lead frame on which a power element and a control element are mounted is disposed inside a mold to control the power element and control. Between the power element and the control element, the power element, the control element, and the lead frame are sealed with the second sealing resin after the first sealing resin containing the filler is injected into the region between the elements.
  • an outer package in which a sealing resin containing a filler is densely arranged is formed as compared with the other areas.
  • the long-term reliability of the semiconductor device can be secured.
  • FIG. 1 is a cross-sectional view showing a semiconductor device according to an embodiment of the present invention.
  • FIG. 2 is a partial enlarged cross-sectional view showing the internal structure of the semiconductor device according to the embodiment of the present invention.
  • FIG. 3 is a plan view showing the internal structure of the semiconductor device according to the embodiment of the present invention.
  • FIG. 4 is an enlarged plan view showing a porous filler used in a semiconductor device according to an embodiment of the present invention.
  • FIG. 5 is a cross-sectional view of a step showing the method of manufacturing the semiconductor device according to the embodiment of the present invention.
  • FIG. 6 is a plan view of a step showing the method of manufacturing the semiconductor device according to the embodiment of the present invention.
  • FIG. 1 is a cross-sectional view showing a semiconductor device according to an embodiment of the present invention.
  • FIG. 2 is a partial enlarged cross-sectional view showing the internal structure of the semiconductor device according to the embodiment of the present invention.
  • FIG. 3 is a plan view showing
  • FIG. 7 is a cross-sectional view of the next step showing the method of manufacturing the semiconductor device according to the embodiment of the present invention.
  • FIG. 8 is a plan view of the next process showing a method of manufacturing a semiconductor device according to an embodiment of the present invention.
  • FIG. 9 is a cross-sectional view showing a conventional sealed package.
  • the present invention is not limited to the contents described below as long as it is based on the basic features described in the present specification.
  • FIG. 1 shows a cross-sectional configuration of a semiconductor device according to an embodiment.
  • FIG. 2 shows an enlarged sectional view of the region A of FIG.
  • the semiconductor device according to the present embodiment is a resin-sealed semiconductor device.
  • the semiconductor device according to the present embodiment is used by being incorporated into a photovoltaic power generation system or a built-in target device such as a home appliance motor or a motor for an electric vehicle (EV).
  • a photovoltaic power generation system or a built-in target device such as a home appliance motor or a motor for an electric vehicle (EV).
  • EV electric vehicle
  • the semiconductor device 10 at least includes a lead frame 11, a power device 12, a heat sink 30, a control device 14, and an exterior body 15. .
  • the lead frame 11 has a first die pad portion 16 on which the power element 12 is mounted, a second die pad portion 40 on which the control element 14 is mounted, and a plurality of leads.
  • the lead frame 11 is made of, for example, a material having high thermal conductivity, such as copper (Cu). A part of the lead frame 11 is sealed in the exterior body 15, and ends of a plurality of leads of the lead frame 11 project from the side surface of the exterior body 15 toward the outside of the exterior body 15.
  • the power element 12 is mounted on the upper surface 16 a of the first die pad portion 16 in the lead frame 11.
  • the power element 12 is mounted on the upper surface 16 a by, for example, a brazing material 26.
  • the control element 14 is mounted on the upper surface 40 a of the second die pad portion 40 in the lead frame 11.
  • the control element 14 is mounted on the upper surface 40 a by, for example, silver (Ag) paste.
  • the power element 12 is, for example, an IGBT (insulated gate bipolar transistor) or a power MOSFET (metal oxide film field effect transistor).
  • a bonding pad (not shown) of power element 12 and a plurality of leads of lead frame 11 are electrically connected by metal member 13.
  • the control element 14 is an element that controls the power element 12 and incorporates a drive circuit, an overcurrent prevention circuit, and the like.
  • the bonding pads (not shown) of the control element 14 and the plurality of leads of the lead frame 11 are electrically connected by the metal member 13.
  • a bonding pad (not shown) of power element 12 and a bonding pad (not shown) of control element 14 are electrically connected by metal member 13.
  • the control element 14 controls the power element 12 via the metal members 13.
  • a vertical power MOSFET to which a diode 50 is connected is taken as an example of the power element 12.
  • the diode 50 and the bonding pad (not shown) of the power element 12 are electrically connected by the metal member 13.
  • the metal member 13 for example, an aluminum (Al) wire or a gold (Au) wire will be described as an example.
  • an aluminum (Al) ribbon or a copper (Cu) clip may be used instead of the aluminum wire or the gold wire.
  • the aluminum ribbon or the copper clip has a large cross-sectional area and a small wiring resistance as compared with the aluminum wire or the gold wire, so that the power loss in the semiconductor device 10 can be reduced.
  • the heat sink 30 is formed of, for example, a metal having high thermal conductivity such as copper (Cu) or aluminum (Al).
  • the heat sink 30 is fixed to the lower surface 16 b of the first die pad portion 16 in the lead frame 11 via the insulating sheet 41.
  • the insulating sheet 41 is formed of a thermally conductive insulating material having a three-layer structure in which an insulating layer is sandwiched by adhesive layers. The insulating sheet 41 effectively transfers the heat generated from the power element 12 to the heat sink 30.
  • the heat dissipation plate 30 is sealed by the exterior body 15 so that the lower surface 30 b of the heat dissipation plate 30 is exposed from the lower surface 15 b of the exterior body 15.
  • the heat generated from the power element 12 is efficiently transferred from the exposed lower surface 30 b of the heat sink 30 to the outside through the insulating sheet 41. Further, in the semiconductor device 10, the side surface 30 c of the heat dissipation plate 30 is covered with the exterior body 15, so the heat dissipation plate 30 and the lead frame 11 are integrated.
  • the exterior body 15 is a sealing resin containing a porous filler 35 in a part thereof, and is made of, for example, a sealing resin made of a thermosetting resin such as epoxy.
  • region which contains the porous filler 35 which is a part of exterior body 15 is later mentioned using FIG.
  • the region containing the porous filler 35 is referred to as “heat sealing resin region”, and the other regions are referred to as “normal sealing resin region”.
  • the exterior body 15 encloses and seals a part of the lead frame 11 including the power element 12, the control element 14, the second die pad portion 40, and the side surface 30 c of the heat sink 30. By sealing in this manner, the lead frame 11 and the heat sink 30 can be integrated, and the power element 12 and the control element 14 can be protected.
  • FIG. 3 is an internal structure of the semiconductor device 10 according to the present embodiment, and shows a plan configuration thereof.
  • the end portions of the lead frames 11 respectively project from the side surfaces of the exterior body 15.
  • An end portion of the lead frame 11 is connected as a mounting terminal of the semiconductor device 10 to a circuit such as an inverter control device, for example.
  • the porous filler 35 is densely arranged as compared with the other regions to form a sealing resin region for heat insulation (a region including the porous filler 35 densely).
  • the heat insulating sealing resin region is formed between the power element 12 and the control element 14 (the porous filler 35 is disposed densely), the heat generated from the power element 12 is generally This is to prevent transfer to the heat weak control element 14.
  • the porous filler 35 is contained in a proportion of 70% by weight or more (more desirably 90% by weight or more) in the sealing resin region for heat insulation.
  • the porous filler 35 is disposed more unevenly on the power element 12 side than on the control element 14 side. Since the porous filler 35 is disposed on the side of the power element 12 more unevenly than the side of the control element 14, the heat generated from the power element 12 can be more reliably prevented from being transmitted to the control element 14. .
  • the porous filler 35 is disposed around the metal member 13 connecting the power element 12 and the control element 14.
  • the metal member 13 connecting the power element 12 and the control element 14 is an example of a first metal member.
  • the metal member 13 which connects the power element 12 and the control element 14 is arrange
  • power devices generate heat due to switching operation at high speed or large current.
  • the reliability with respect to the operation is significantly reduced, and the power element may malfunction. Therefore, high heat resistance elements such as GaN or SiC are beginning to be applied as constituent materials of power elements.
  • the control element is formed of silicon (Si), so its heat resistance is low. For example, when the temperature of the control element rises to 125 ° C. or more due to the heat conduction from the power element, the reliability of the operation of the control element may be significantly reduced and the control element may malfunction.
  • the semiconductor device 10 solves this problem, and the porous filler 35 is disposed more densely in the region between the power element 12 and the control element 14 than in the other regions, and sealing for heat insulation is performed. By forming the resin region, it is possible to realize the semiconductor device 10 with high long-term reliability.
  • FIG. 4 is an enlarged view of the porous filler 35 used for the semiconductor device 10 according to the present embodiment.
  • the porous filler 35 as shown in FIG. 4, includes a plurality of pore sites 35b, which are air layers, inside the porous filler site 35a.
  • the porous filler 35 examples include silicon dioxide (silica: SiO 2 ), magnesium oxide (MgO), aluminum oxide (alumina: Al 2 O 3 ) or boron nitride (BN).
  • the porous filler 35 is preferably, for example, a spherical filler having a specific surface area of 300 m 2 / g or more and an average particle diameter of about 1 ⁇ m to 10 ⁇ m. If the porous filler 35 is spherical, the porous filler 35 and the sealing resin of the outer package 15 are not in surface contact but in point contact, so the contact area between the porous filler 35 and the sealing resin of the outer package 15 is It can be as large as possible. By increasing the contact area between the porous filler 35 and the sealing resin of the outer package 15, the packing density of the sealing resin can be improved, and the adhesion of the porous filler 35 to the sealing resin can be improved. it can.
  • a biphenyl type epoxy resin is prepared by preparing a biphenyl type epoxy resin containing about 90% by weight of spherical porous filler 35 having an average particle diameter of 2.8 ⁇ m and a specific surface area of 380 m 2 / g.
  • a sealing resin for heat insulation was used as a sealing resin for heat insulation, and the region between the power element 12 and the control element 14 was sealed with this sealing resin for heat insulation to manufacture a semiconductor device 10.
  • the pore portion 35 b which is an air layer has a thermal conductivity of 0.0241 W / m ⁇ K, and 0.2 to 0.4 W / in the thermal conductivity of the epoxy resin. It is about one fifth to one tenth of the value of m ⁇ K.
  • the heat generation is transmitted to the heat sink 30 via the first die pad portion 16 and the insulating sheet 41, and the sheath covering the power element 12 It is transmitted to the body 15.
  • the transfer of heat is blocked (insulated) in the sealing resin region for heat insulation, and the heat influence on the control element 14 is reduced. It is considered that this is because the pore portion 35 b which is an air layer contained in the porous filler 35 has a thermal conductivity lower than that of the epoxy resin forming the exterior body 15.
  • the temperature of the control element 14 can be suppressed to less than 125 ° C. even when the power element 12 generates heat and the temperature rises to near 200 ° C.
  • the heat generation temperature of the control element 14 can be maintained at less than 125 ° C. by the porous filler 35 closely disposed in the region between the power element 12 and the control element 14 .
  • the porous filler 35 closely disposed in the region between the power element 12 and the control element 14 .
  • the heat sink 30 with the insulating sheet 41 temporarily attached to the upper surface is placed on the lower mold 62 with the heat sink 30 facing downward.
  • the lead frame 11 is mounted on the lower mold 62 so that the lower surface 16 b of the first die pad portion 16 in the lead frame 11 is in contact with the insulating sheet 41.
  • the upper mold 63 is lowered, and the lead frame 11 is clamped by the upper mold 63 and the lower mold 62. Thereby, a cavity 65 is formed between the upper mold 63 and the lower mold 62.
  • the interior of the cavity 65 is filled with the epoxy resin 75 containing the porous filler 35 from at least one gate 70 provided on the upper mold 63 by, for example, a transfer molding method.
  • the epoxy resin 75 is a sealing resin for forming a sealing resin region for heat insulation, and is an example of a first sealing resin.
  • the gate 70 is formed vertically above the space between the power element 12 disposed inside the cavity 65 and the control element 14. Thereby, the epoxy resin 75 containing the porous filler 35 is filled between the power element 12 and the control element 14.
  • the position of the gate 70 provided in the upper mold 63 is disposed closer to the power element 12 than the intermediate position between the power element 12 and the control element 14 as shown in FIGS. 5 and 6. Is preferred.
  • the ratio of containing the porous filler 35 is higher on the power element 12 side than on the control element 14 side. That is, in the semiconductor device 10 according to the present embodiment, the porous filler 35 is disposed more unevenly in the power element 12 side than in the control element 14 side.
  • the epoxy resin 75 containing the porous filler 35 can be filled more reliably.
  • the epoxy resin 66 is injected from the gate 64 provided on the side surface of the upper mold 63, and the epoxy resin 66 is filled into the inside of the cavity 65.
  • the epoxy resin 66 is usually a sealing resin for forming a sealing resin region, and is an example of a second sealing resin.
  • the epoxy resin 66 penetrates so as to completely fill the cavity 65 of the upper mold 63.
  • the epoxy resin 66 injected from the gate 64 has higher fluidity than the epoxy resin 75 injected from the gate 70. Therefore, as shown in FIG.
  • the epoxy resin 66 injected from the gate 64 is filled so as to fill the area except the epoxy resin 75 already filled from the gate 70. That is, the epoxy resin 75 filled in the sealing resin region for heat insulation is filled in with the epoxy resin 66 in the remaining region (usually the sealing resin region) as it is. As a result, the area between the power element 12 and the control element 14 (the heat insulating sealing resin area) is filled with the epoxy resin 75, and the other area (usually the sealing resin area) is filled with the epoxy resin 66. . Then, by curing these epoxy resins 75 and 66, the exterior body 15 shown in FIG. 1 can be configured, and the semiconductor device 10 can be manufactured.
  • the viscosity of the epoxy resin 66 not containing the porous filler 35 is about 0.01 Pa ⁇ s, and the viscosity of the epoxy resin 75 containing the porous filler 35 is about 2 Pa ⁇ s.
  • the volume of the epoxy resin 75 be equal to or less than one third of the volume of the epoxy resin 66.
  • the outer body 15 may be formed by filling the epoxy resin 66 so as to surround the periphery thereof.
  • the sealing resin region for heat insulation by the epoxy resin 75 can be formed more reliably between the power element 12 and the control element 14.
  • the porous filler 35 is densely disposed in the vicinity of the power element 12 and the control element 14 in the inside of the exterior body 15 and is unevenly distributed on the power element 12 side.
  • the semiconductor device 10 which raised the heat insulation effect between the power element 12 and the control element 14 is realizable.
  • the heat insulation effect between the power element 12 and the control element 14 is enhanced, and the heat dissipation characteristics from the power element 12 to the heat sink 30 can realize the semiconductor device 10 as in the related art. Therefore, even if the temperature of the power element 12 becomes high, the influence of heat on the control element 14 can be reduced, and the semiconductor device 10 with stable operation can be realized.
  • the one where the content rate of the porous filler 35 is as low as possible is desirable. This is because the heat generated by the drive of the power element 12 through the exterior body 5 is increased when the content ratio of the porous filler 35 becomes high also in the area excluding the space between the power element 12 and the control element 14 (usually the sealing resin area). This is because the heat can not be released, and the heat radiation path of the power element 12 is eliminated except through the heat radiation plate 30, and it is necessary to make the heat radiation plate 30 or the like larger.
  • the number of lead frames 11 is not limited as long as the object of the present invention is realized.
  • a lead frame in which two separate lead frames are integrated may be used.
  • the thermal conductivity of the heat sink 30 becomes unnecessary, and the epoxy resin 75 containing the porous filler 35 is applied to the entire inside of the cavity 65. It is also considered possible to fill. That is, it is considered possible not to use the epoxy resin 66 as the exterior body 15.
  • the resin-sealed semiconductor device and the method for manufacturing the same according to the present invention can be applied to semiconductor devices and the like used for devices for large power such as air conditioners.

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)

Abstract

A resin-sealed semiconductor device (10) has: an outer housing (15); a lead frame (11), which is sealed inside of the outer housing (15), and which has an end portion thereof protruding from the outer housing (15); a power element (12), which is sealed inside of the outer housing (15), and which is mounted on the lead frame (11); and a control element (14), which is sealed inside of the outer housing (15), and which is mounted on the lead frame (11). In the outer housing (15), in a region between the power element (12) and the control element (14), a sealing resin (epoxy resin (75)) densely containing a filler (35) compared with a sealing resin in other regions is disposed.

Description

樹脂封止型半導体装置及びその製造方法Resin-sealed semiconductor device and method of manufacturing the same
 本発明は、樹脂封止型半導体装置及びその製造方法に関する。 The present invention relates to a resin-sealed semiconductor device and a method of manufacturing the same.
 近年、インバータ制御機器等に搭載されるパワー半導体素子は、高密度化及び高速化が求められている。その結果、パワー半導体素子では、高温動作を可能にする窒化ガリウム(GaN)又は炭化珪素(SiC)等の新材料が実用化されている。新材料を用いたパワー半導体素子では、半導体素子を実装するパッケージの放熱構造が重要である。 BACKGROUND In recent years, power semiconductor elements mounted on inverter control devices and the like have been required to have high density and high speed. As a result, in power semiconductor devices, new materials such as gallium nitride (GaN) or silicon carbide (SiC) that can operate at high temperatures have been put to practical use. In a power semiconductor element using a new material, a heat dissipation structure of a package mounting the semiconductor element is important.
 パッケージの放熱構造として、半導体素子を金属製カバーで覆い、金属製カバーの内部に絶縁性の冷媒を封入する放熱構造を備えた密閉型パッケージが提案されている(例えば、特許文献1を参照。)。 As a heat dissipation structure of a package, a sealed package provided with a heat dissipation structure for covering a semiconductor element with a metal cover and enclosing an insulating refrigerant inside the metal cover has been proposed (see, for example, Patent Document 1). ).
 また、図9に示すように、金属製カバーと冷媒との間に空隙を設け、多孔質部材に吸着させた冷媒の気化熱を利用して半導体素子を冷却する放熱構造を備えた密閉型パッケージも提案されている(例えば、特許文献2を参照。)。 Further, as shown in FIG. 9, a sealed package is provided with a heat dissipation structure for cooling a semiconductor element by providing a gap between a metal cover and a refrigerant, and utilizing the heat of vaporization of the refrigerant absorbed by the porous member. Have also been proposed (see, for example, Patent Document 2).
 以下、特許文献2に示された密閉型パッケージの放熱構造について説明する。 Hereinafter, the heat dissipation structure of the sealed package disclosed in Patent Document 2 will be described.
 図9は、特許文献2に示された従来の密閉型パッケージの断面構成を示している。 FIG. 9 shows a cross-sectional configuration of the conventional sealed package disclosed in Patent Document 2. As shown in FIG.
 図9に示すように、密閉型パッケージは、半導体素子101を実装した基板102と、基板102の実装面を覆うと共に実装面を密閉する金属製カバー103と、柔軟性を有するシート104と、冷媒を吸着した多孔質部材105とから構成されている。半導体素子101は、シート104を介して多孔質部材105と接している。このため、半導体素子101の温度が上がると、多孔質部材105に吸着されている冷媒が気化する。その結果、冷媒の気化熱により半導体素子101が冷却される。なお、気化した冷媒の蒸気は、金属製カバー103の内壁面で水滴状に凝結して液化し、液化した冷媒は、多孔質部材105に吸着される。 As shown in FIG. 9, the sealed package includes a substrate 102 on which the semiconductor element 101 is mounted, a metal cover 103 for covering the mounting surface of the substrate 102 and sealing the mounting surface, a flexible sheet 104, and a refrigerant. And the porous member 105 which adsorb | sucked. The semiconductor element 101 is in contact with the porous member 105 via the sheet 104. Therefore, when the temperature of the semiconductor element 101 rises, the refrigerant adsorbed by the porous member 105 is vaporized. As a result, the semiconductor element 101 is cooled by the heat of vaporization of the refrigerant. The vaporized refrigerant vapor condenses in the form of water droplets on the inner wall surface of the metal cover 103 and is liquefied, and the liquefied refrigerant is adsorbed by the porous member 105.
特開2008-004688号公報JP 2008-004688 A 特開平07-066575号公報Japanese Patent Application Publication No. 07-066575
 しかしながら、従来の密閉型パッケージでは、半導体素子を覆う金属製カバーと基板との接合部に、気化した冷媒の蒸気圧による応力が掛かる。 However, in the conventional sealed package, stress due to the vapor pressure of the vaporized refrigerant is applied to the joint portion between the metal cover covering the semiconductor element and the substrate.
 さらに、従来の密閉型パッケージは、金属製カバーを接合する前に、多孔質部材を金属製カバーの内部に配置する必要があるため、その製造工程が複雑である。 Furthermore, the conventional hermetic package requires a porous member to be disposed inside the metal cover before joining the metal cover, which complicates the manufacturing process.
 以上のように、従来の密閉型パッケージは、冷媒の蒸気圧により金属製カバーと基板との接合部に応力が掛かることから、半導体素子の長期信頼性を確保することが困難であるという課題がある。 As described above, in the conventional sealed type package, stress is applied to the joint portion between the metal cover and the substrate due to the vapor pressure of the refrigerant, so it is difficult to secure the long-term reliability of the semiconductor element. is there.
 上記の課題を解決するために、本発明に係る樹脂封止型半導体装置は、外装体と、外装体の内部に封止されると共に、外装体から端部が突出したリードフレームと、外装体の内部に封止されると共に、リードフレームに実装されたパワー素子と、外装体の内部に封止されると共に、リードフレームに実装された制御素子とを備え、外装体におけるパワー素子と制御素子との間の領域には、他の領域と比べてフィラーを含有する封止樹脂が密に配置されていることを特徴とする。 In order to solve the above-described problems, a resin-sealed semiconductor device according to the present invention includes: an exterior body; a lead frame which is sealed inside the exterior body and in which an end portion protrudes from the exterior body; A power element mounted on the lead frame and a control element sealed on the inside of the outer package and mounted on the lead frame, the power element and the control element in the outer package A sealing resin containing a filler is densely disposed in a region between the first and second regions in comparison with the other regions.
 また、上記の課題を解決するために、本発明に係る樹脂封止型半導体装置の製造方法は、パワー素子及び制御素子が実装されたリードフレームを金型の内部に配置し、パワー素子と制御素子との間の領域にフィラーを含有する第1封止樹脂を注入した後、パワー素子、制御素子及びリードフレームを第2封止樹脂で封止することで、パワー素子と制御素子との間の領域に、他の領域と比べてフィラーを含有する封止樹脂が密に配置された外装体を形成することを特徴とする。 Further, in order to solve the above problems, in the method of manufacturing a resin-sealed semiconductor device according to the present invention, a lead frame on which a power element and a control element are mounted is disposed inside a mold to control the power element and control. Between the power element and the control element, the power element, the control element, and the lead frame are sealed with the second sealing resin after the first sealing resin containing the filler is injected into the region between the elements. In the area of (1), an outer package in which a sealing resin containing a filler is densely arranged is formed as compared with the other areas.
 本発明によれば、半導体素子の長期信頼性を確保することができる。 According to the present invention, the long-term reliability of the semiconductor device can be secured.
図1は本発明の一実施形態に係る半導体装置を示す断面図である。FIG. 1 is a cross-sectional view showing a semiconductor device according to an embodiment of the present invention. 図2は本発明の一実施形態に係る半導体装置の内部構造を示す部分的な拡大断面図である。FIG. 2 is a partial enlarged cross-sectional view showing the internal structure of the semiconductor device according to the embodiment of the present invention. 図3は本発明の一実施形態に係る半導体装置の内部構造を示す平面図である。FIG. 3 is a plan view showing the internal structure of the semiconductor device according to the embodiment of the present invention. 図4は本発明の一実施形態に係る半導体装置に用いる多孔質フィラーを示す拡大平面図である。FIG. 4 is an enlarged plan view showing a porous filler used in a semiconductor device according to an embodiment of the present invention. 図5は本発明の一実施形態に係る半導体装置の製造方法を示す一工程の断面図である。FIG. 5 is a cross-sectional view of a step showing the method of manufacturing the semiconductor device according to the embodiment of the present invention. 図6は本発明の一実施形態に係る半導体装置の製造方法を示す一工程の平面図である。FIG. 6 is a plan view of a step showing the method of manufacturing the semiconductor device according to the embodiment of the present invention. 図7は本発明の一実施形態に係る半導体装置の製造方法を示す次工程の断面図である。FIG. 7 is a cross-sectional view of the next step showing the method of manufacturing the semiconductor device according to the embodiment of the present invention. 図8は本発明の一実施形態に係る半導体装置の製造方法を示す次工程の平面図である。FIG. 8 is a plan view of the next process showing a method of manufacturing a semiconductor device according to an embodiment of the present invention. 図9は従来の密閉型パッケージを示す断面図である。FIG. 9 is a cross-sectional view showing a conventional sealed package.
 本発明の一実施形態について図面を参照しながら説明する。 An embodiment of the present invention will be described with reference to the drawings.
 なお、本発明は、本明細書に記載された基本的な特徴に基づく限り、以下に記載の内容に限定されない。 The present invention is not limited to the contents described below as long as it is based on the basic features described in the present specification.
 (一実施形態)
 図1は、一実施形態に係る半導体装置の断面構成を示している。図2は、図1の領域Aを拡大した断面構成を示している。本実施形態に係る半導体装置は、樹脂封止型半導体装置である。本実施形態に係る半導体装置は、太陽光発電システム、又は家電用若しくは電気自動車(EV)用モータ等の組み込み対象装置に組み込んで使用される。
(One embodiment)
FIG. 1 shows a cross-sectional configuration of a semiconductor device according to an embodiment. FIG. 2 shows an enlarged sectional view of the region A of FIG. The semiconductor device according to the present embodiment is a resin-sealed semiconductor device. The semiconductor device according to the present embodiment is used by being incorporated into a photovoltaic power generation system or a built-in target device such as a home appliance motor or a motor for an electric vehicle (EV).
 図1及び図2に示すように、本実施形態に係る半導体装置10は、少なくとも、リードフレーム11と、パワー素子12と、放熱板30と、制御素子14と、外装体15とを備えている。リードフレーム11は、パワー素子12を搭載する第1ダイパッド部16と、制御素子14を搭載する第2ダイパッド部40と、複数のリードとを有する。 As shown in FIGS. 1 and 2, the semiconductor device 10 according to the present embodiment at least includes a lead frame 11, a power device 12, a heat sink 30, a control device 14, and an exterior body 15. . The lead frame 11 has a first die pad portion 16 on which the power element 12 is mounted, a second die pad portion 40 on which the control element 14 is mounted, and a plurality of leads.
 リードフレーム11は、例えば銅(Cu)等の熱伝導性が高い材料から形成されている。リードフレーム11の一部は外装体15に封止され、リードフレーム11の複数のリードの端部は、外装体15の側面から外装体15の外側に向けて突出している。リードフレーム11における第1ダイパッド部16の上面16aには、パワー素子12が実装されている。パワー素子12は、例えばろう材26により、上面16aに実装されている。また、リードフレーム11における第2ダイパッド部40の上面40aには、制御素子14が実装されている。制御素子14は、例えば銀(Ag)ペーストにより、上面40aに実装されている。 The lead frame 11 is made of, for example, a material having high thermal conductivity, such as copper (Cu). A part of the lead frame 11 is sealed in the exterior body 15, and ends of a plurality of leads of the lead frame 11 project from the side surface of the exterior body 15 toward the outside of the exterior body 15. The power element 12 is mounted on the upper surface 16 a of the first die pad portion 16 in the lead frame 11. The power element 12 is mounted on the upper surface 16 a by, for example, a brazing material 26. Further, the control element 14 is mounted on the upper surface 40 a of the second die pad portion 40 in the lead frame 11. The control element 14 is mounted on the upper surface 40 a by, for example, silver (Ag) paste.
 パワー素子12は、例えばIGBT(絶縁ゲート型バイポーラトランジスタ)、又はパワーMOSFET(金属酸化膜型電界効果トランジスタ)である。パワー素子12のボンディングパッド(図示せず)とリードフレーム11の複数のリードとは、金属部材13により電気的に接続されている。 The power element 12 is, for example, an IGBT (insulated gate bipolar transistor) or a power MOSFET (metal oxide film field effect transistor). A bonding pad (not shown) of power element 12 and a plurality of leads of lead frame 11 are electrically connected by metal member 13.
 制御素子14は、パワー素子12を制御する素子であり、駆動回路又は過電流防止回路等を内蔵している。制御素子14のボンディングパッド(図示せず)とリードフレーム11の複数のリードとは、金属部材13により電気的に接続されている。パワー素子12のボンディングパッド(図示せず)と制御素子14のボンディングパッド(図示せず)とは、金属部材13により電気的に接続されている。制御素子14は、これらの金属部材13を介して、パワー素子12を制御している。 The control element 14 is an element that controls the power element 12 and incorporates a drive circuit, an overcurrent prevention circuit, and the like. The bonding pads (not shown) of the control element 14 and the plurality of leads of the lead frame 11 are electrically connected by the metal member 13. A bonding pad (not shown) of power element 12 and a bonding pad (not shown) of control element 14 are electrically connected by metal member 13. The control element 14 controls the power element 12 via the metal members 13.
 以下の説明では、パワー素子12として、ダイオード50が接続された縦型パワーMOSFETを例にしている。ダイオード50とパワー素子12のボンディングパッド(図示せず)とは、金属部材13により電気的に接続されている。また、金属部材13として、例えばアルミニウム(Al)ワイヤ又は金(Au)ワイヤを例にして説明する。なお、金属部材13として、アルミニウムワイヤ又は金ワイヤの代わりに、アルミニウム(Al)リボン又は銅(Cu)クリップを用いてもよい。アルミニウムリボン又は銅クリップは、アルミニウムワイヤ又は金ワイヤと比べて断面積が大きく、配線抵抗値が小さくなるため、半導体装置10における電力損失を低減することができる。 In the following description, a vertical power MOSFET to which a diode 50 is connected is taken as an example of the power element 12. The diode 50 and the bonding pad (not shown) of the power element 12 are electrically connected by the metal member 13. Further, as the metal member 13, for example, an aluminum (Al) wire or a gold (Au) wire will be described as an example. As the metal member 13, an aluminum (Al) ribbon or a copper (Cu) clip may be used instead of the aluminum wire or the gold wire. The aluminum ribbon or the copper clip has a large cross-sectional area and a small wiring resistance as compared with the aluminum wire or the gold wire, so that the power loss in the semiconductor device 10 can be reduced.
 放熱板30は、例えば、銅(Cu)又はアルミニウム(Al)等の熱伝導性が高い金属から形成されている。リードフレーム11における第1ダイパッド部16の下面16bには、絶縁性シート41を介して、放熱板30が固着されている。絶縁性シート41は、絶縁層を接着層で挟む3層構造を有する熱伝導性の絶縁材料で形成されている。絶縁性シート41は、パワー素子12から発生する熱を効果的に放熱板30へ伝達する。放熱板30は、該放熱板30の下面30bが外装体15の下面15bから露出するように、外装体15により封止されている。このため、パワー素子12から生じる熱は、絶縁性シート41を介して、露出した放熱板30の下面30bから外部に、効率良く伝達される。また、半導体装置10において、放熱板30の側面30cは外装体15で覆われているため、放熱板30とリードフレーム11とは一体化されている。 The heat sink 30 is formed of, for example, a metal having high thermal conductivity such as copper (Cu) or aluminum (Al). The heat sink 30 is fixed to the lower surface 16 b of the first die pad portion 16 in the lead frame 11 via the insulating sheet 41. The insulating sheet 41 is formed of a thermally conductive insulating material having a three-layer structure in which an insulating layer is sandwiched by adhesive layers. The insulating sheet 41 effectively transfers the heat generated from the power element 12 to the heat sink 30. The heat dissipation plate 30 is sealed by the exterior body 15 so that the lower surface 30 b of the heat dissipation plate 30 is exposed from the lower surface 15 b of the exterior body 15. For this reason, the heat generated from the power element 12 is efficiently transferred from the exposed lower surface 30 b of the heat sink 30 to the outside through the insulating sheet 41. Further, in the semiconductor device 10, the side surface 30 c of the heat dissipation plate 30 is covered with the exterior body 15, so the heat dissipation plate 30 and the lead frame 11 are integrated.
 外装体15は、その一部に多孔質フィラー35を含有する封止樹脂であって、例えばエポキシ等の熱硬化性樹脂からなる封止樹脂で構成される。外装体15の一部である多孔質フィラー35を含有する領域については、図3を用いて後述する。本実施形態では、外装体15を構成する封止樹脂において、多孔質フィラー35を含有する領域を「断熱用封止樹脂領域」とし、その他の領域を「通常封止樹脂領域」としている。外装体15は、パワー素子12、制御素子14、第2ダイパッド部40を含むリードフレーム11の一部、並びに放熱板30の側面30cを内包して封止している。このように封止することにより、リードフレーム11と放熱板30とを一体化すると共に、パワー素子12と制御素子14とを保護することが可能となる。 The exterior body 15 is a sealing resin containing a porous filler 35 in a part thereof, and is made of, for example, a sealing resin made of a thermosetting resin such as epoxy. The area | region which contains the porous filler 35 which is a part of exterior body 15 is later mentioned using FIG. In the present embodiment, in the sealing resin constituting the outer package 15, the region containing the porous filler 35 is referred to as “heat sealing resin region”, and the other regions are referred to as “normal sealing resin region”. The exterior body 15 encloses and seals a part of the lead frame 11 including the power element 12, the control element 14, the second die pad portion 40, and the side surface 30 c of the heat sink 30. By sealing in this manner, the lead frame 11 and the heat sink 30 can be integrated, and the power element 12 and the control element 14 can be protected.
 図3は、本実施形態に係る半導体装置10の内部構造であって、その平面構成を示している。 FIG. 3 is an internal structure of the semiconductor device 10 according to the present embodiment, and shows a plan configuration thereof.
 図3に示すように、リードフレーム11の端部は、それぞれ外装体15の側面から突出している。リードフレーム11の端部は、半導体装置10の実装端子として、例えばインバータ制御機器等の回路と接続される。 As shown in FIG. 3, the end portions of the lead frames 11 respectively project from the side surfaces of the exterior body 15. An end portion of the lead frame 11 is connected as a mounting terminal of the semiconductor device 10 to a circuit such as an inverter control device, for example.
 ここで、本実施形態に係る半導体装置10は、図2及び図3に示すように、外装体15を構成する封止樹脂の内部において、パワー素子12と制御素子14との間の領域に、他の領域と比べて多孔質フィラー35を密に配置して、断熱用封止樹脂領域(多孔質フィラー35を密に含む領域)を形成していることを特徴とする。パワー素子12と制御素子14との間に断熱用封止樹脂領域を形成している(多孔質フィラー35を密に配置している)のは、パワー素子12から発生する熱が、一般的に熱に弱い制御素子14に伝達されることを、防ぐためである。本実施形態では、具体的には、断熱用封止樹脂領域において、多孔質フィラー35を、70重量%以上(さらに望ましくは90重量%以上)の割合で含有させている。 Here, in the semiconductor device 10 according to the present embodiment, as shown in FIGS. 2 and 3, in the region between the power element 12 and the control element 14 in the inside of the sealing resin forming the exterior body 15, It is characterized in that the porous filler 35 is densely arranged as compared with the other regions to form a sealing resin region for heat insulation (a region including the porous filler 35 densely). The heat insulating sealing resin region is formed between the power element 12 and the control element 14 (the porous filler 35 is disposed densely), the heat generated from the power element 12 is generally This is to prevent transfer to the heat weak control element 14. In the present embodiment, specifically, the porous filler 35 is contained in a proportion of 70% by weight or more (more desirably 90% by weight or more) in the sealing resin region for heat insulation.
 さらに、本実施形態に係る半導体装置10では、多孔質フィラー35を、制御素子14側よりもパワー素子12側に偏在して配置している。多孔質フィラー35が制御素子14側よりもパワー素子12側に偏在して配置されることで、パワー素子12から発生する熱が制御素子14に伝達されることを、さらに確実に防ぐことができる。 Furthermore, in the semiconductor device 10 according to the present embodiment, the porous filler 35 is disposed more unevenly on the power element 12 side than on the control element 14 side. Since the porous filler 35 is disposed on the side of the power element 12 more unevenly than the side of the control element 14, the heat generated from the power element 12 can be more reliably prevented from being transmitted to the control element 14. .
 また、外装体15を構成する封止樹脂の内部において、多孔質フィラー35は、パワー素子12と制御素子14とを接続する金属部材13を囲むように、その周囲に配置されている。パワー素子12と制御素子14とを接続する金属部材13は、第1金属部材の一例である。ここで、断熱用封止樹脂領域(多孔質フィラー35を密に含む領域)と通常封止樹脂領域(その他の領域)との界面に金属部材13が位置していると、界面にかかるせん断応力により金属部材13が破断する可能性がある。そこで、本実施形態では、図2に示すように、パワー素子12と制御素子14とを接続する金属部材13を多孔質フィラー35が完全に覆うように配置している。すなわち、パワー素子12と制御素子14とを接続する金属部材13の全てが、断熱用封止樹脂領域内に位置するように配置している。このように多孔質フィラー35を配置することにより、金属部材13が破断する可能性を低減することができる。 In addition, in the inside of the sealing resin forming the exterior body 15, the porous filler 35 is disposed around the metal member 13 connecting the power element 12 and the control element 14. The metal member 13 connecting the power element 12 and the control element 14 is an example of a first metal member. Here, when the metal member 13 is positioned at the interface between the heat-insulating sealing resin region (region including the porous filler 35 densely) and the normal sealing resin region (other regions), shear stress applied to the interface As a result, the metal member 13 may break. So, in this embodiment, as shown in FIG. 2, the metal member 13 which connects the power element 12 and the control element 14 is arrange | positioned so that the porous filler 35 may cover completely. That is, all the metal members 13 connecting the power element 12 and the control element 14 are disposed so as to be located in the heat insulating sealing resin region. By disposing the porous filler 35 in this manner, the possibility of breakage of the metal member 13 can be reduced.
 本実施形態に係る半導体装置10において、パワー素子12から発生する熱が制御素子14に伝達されるのを防ぐことができる理由について、以下に説明する。 The reason why the heat generated from the power element 12 can be prevented from being transmitted to the control element 14 in the semiconductor device 10 according to the present embodiment will be described below.
 一般的に、パワー素子は、高速又は大電流でのスイッチング動作により発熱する。このとき、例えばパワー素子のジャンクション温度が上昇して125℃以上になると、動作に対する信頼性が著しく低下し、パワー素子が誤動作する可能性がある。そこで、パワー素子の構成材料として、GaN又はSiC等の高耐熱素子が適用され始めている。しかし、パワー素子自体が高熱に耐えられても、制御素子は、シリコン(Si)により形成されるため、その耐熱性が低い。例えば、パワー素子からの熱伝導により制御素子の温度が上昇して125℃以上になると、該制御素子の動作に対する信頼性が著しく低下して、制御素子が誤動作する場合がある。制御素子が誤動作すると、正常な信号がパワー素子に伝達されず、半導体装置全体の特性及び信頼性が著しく低下する。本実施形態に係る半導体装置10は、この課題を解決し、パワー素子12と制御素子14との間の領域に多孔質フィラー35を、他の領域よりも密に配置して、断熱用封止樹脂領域を形成することにより、長期信頼性が高い半導体装置10を実現することを可能としている。 In general, power devices generate heat due to switching operation at high speed or large current. At this time, for example, when the junction temperature of the power element rises to 125 ° C. or more, the reliability with respect to the operation is significantly reduced, and the power element may malfunction. Therefore, high heat resistance elements such as GaN or SiC are beginning to be applied as constituent materials of power elements. However, even if the power element itself can withstand high heat, the control element is formed of silicon (Si), so its heat resistance is low. For example, when the temperature of the control element rises to 125 ° C. or more due to the heat conduction from the power element, the reliability of the operation of the control element may be significantly reduced and the control element may malfunction. When the control element malfunctions, a normal signal is not transmitted to the power element, and the characteristics and reliability of the entire semiconductor device are significantly reduced. The semiconductor device 10 according to the present embodiment solves this problem, and the porous filler 35 is disposed more densely in the region between the power element 12 and the control element 14 than in the other regions, and sealing for heat insulation is performed. By forming the resin region, it is possible to realize the semiconductor device 10 with high long-term reliability.
 ここで、断熱用封止樹脂領域(パワー素子12と制御素子14との間の領域)に密に配置した多孔質フィラー35の作用について説明する。 Here, the action of the porous filler 35 densely disposed in the heat insulating sealing resin region (the region between the power element 12 and the control element 14) will be described.
 図4に、本実施形態に係る半導体装置10に用いる多孔質フィラー35を拡大して示す。多孔質フィラー35は、図4に示すように、多孔質フィラー部位35aの内部に、空気層である複数の孔部位35bを含む。 FIG. 4 is an enlarged view of the porous filler 35 used for the semiconductor device 10 according to the present embodiment. The porous filler 35, as shown in FIG. 4, includes a plurality of pore sites 35b, which are air layers, inside the porous filler site 35a.
 多孔質フィラー35の材料としては、例えば二酸化珪素(シリカ:SiO)、酸化マグネシウム(MgO)、酸化アルミニウム(アルミナ:Al)又は窒化ボロン(BN)がある。また、多孔質フィラー35は、比表面積が300m/g以上で、平均粒径が約1μm以上且つ10μm以下の、例えば球状のフィラーが望ましい。多孔質フィラー35が球状であると、多孔質フィラー35と外装体15の封止樹脂とが面接触でなく点接触するため、多孔質フィラー35と外装体15の封止樹脂との接触面積を可能な限り大きくすることができる。多孔質フィラー35と外装体15の封止樹脂との接触面積を大きくすることで、封止樹脂の充填密度を向上させると共に、封止樹脂への多孔質フィラー35の密着性を向上させることができる。 Examples of the material of the porous filler 35 include silicon dioxide (silica: SiO 2 ), magnesium oxide (MgO), aluminum oxide (alumina: Al 2 O 3 ) or boron nitride (BN). The porous filler 35 is preferably, for example, a spherical filler having a specific surface area of 300 m 2 / g or more and an average particle diameter of about 1 μm to 10 μm. If the porous filler 35 is spherical, the porous filler 35 and the sealing resin of the outer package 15 are not in surface contact but in point contact, so the contact area between the porous filler 35 and the sealing resin of the outer package 15 is It can be as large as possible. By increasing the contact area between the porous filler 35 and the sealing resin of the outer package 15, the packing density of the sealing resin can be improved, and the adhesion of the porous filler 35 to the sealing resin can be improved. it can.
 本実施形態では、平均粒径が2.8μmで且つ比表面積が380m/gである球状の多孔質フィラー35を約90重量%含有したビフェニル系エポキシ樹脂を準備し、準備したビフェニル系エポキシ樹脂を断熱用封止樹脂として用い、パワー素子12と制御素子14との間の領域をこの断熱用封止樹脂で封止して、半導体装置10を製造した。本実施形態の場合の多孔質フィラー35内の空気層である孔部位35bは、熱伝導率が0.0241W/m・Kであり、エポキシ樹脂の熱伝導率における0.2~0.4W/m・Kの値の5分の1から10分の1程度である。 In this embodiment, a biphenyl type epoxy resin is prepared by preparing a biphenyl type epoxy resin containing about 90% by weight of spherical porous filler 35 having an average particle diameter of 2.8 μm and a specific surface area of 380 m 2 / g. Was used as a sealing resin for heat insulation, and the region between the power element 12 and the control element 14 was sealed with this sealing resin for heat insulation to manufacture a semiconductor device 10. In the porous filler 35 in the case of the present embodiment, the pore portion 35 b which is an air layer has a thermal conductivity of 0.0241 W / m · K, and 0.2 to 0.4 W / in the thermal conductivity of the epoxy resin. It is about one fifth to one tenth of the value of m · K.
 パワー素子12の発熱によりパワー素子12の温度が上昇した場合、その発熱は、第1ダイパッド部16と絶縁性シート41を介して放熱板30に伝達されると共に、パワー素子12を覆っている外装体15へと伝達される。このとき、本実施形態に係る半導体装置10では、断熱用封止樹脂領域で熱の伝達が遮断され(断熱され)、制御素子14への熱影響が低減される。これは、多孔質フィラー35に含まれる空気層である孔部位35bが、外装体15を形成するエポキシ樹脂よりも熱伝導率が低いためであると考えられる。具体的には、本実施形態に係る半導体装置10では、パワー素子12が発熱して200℃近くまで温度上昇した際にも、制御素子14の温度を125℃未満に抑えることができた。 When the temperature of the power element 12 rises due to the heat generation of the power element 12, the heat generation is transmitted to the heat sink 30 via the first die pad portion 16 and the insulating sheet 41, and the sheath covering the power element 12 It is transmitted to the body 15. At this time, in the semiconductor device 10 according to the present embodiment, the transfer of heat is blocked (insulated) in the sealing resin region for heat insulation, and the heat influence on the control element 14 is reduced. It is considered that this is because the pore portion 35 b which is an air layer contained in the porous filler 35 has a thermal conductivity lower than that of the epoxy resin forming the exterior body 15. Specifically, in the semiconductor device 10 according to the present embodiment, the temperature of the control element 14 can be suppressed to less than 125 ° C. even when the power element 12 generates heat and the temperature rises to near 200 ° C.
 本実施形態に係る半導体装置10によれば、パワー素子12と制御素子14との間の領域に密に配置した多孔質フィラー35により、制御素子14の発熱温度を125℃未満に保つことができる。これにより、密閉パッケージ構造を必要とせず、小型で生産性に優れ、パワー素子12及び制御素子14の長期動作信頼性が高い半導体装置を実現することができる。 According to the semiconductor device 10 according to the present embodiment, the heat generation temperature of the control element 14 can be maintained at less than 125 ° C. by the porous filler 35 closely disposed in the region between the power element 12 and the control element 14 . As a result, it is possible to realize a semiconductor device which does not require a hermetically sealed package structure, is compact and excellent in productivity, and has high long-term operation reliability of the power element 12 and the control element 14.
 以下、本発明の一実施形態に係る半導体装置の製造方法について、図5~図8を用いて説明する。 Hereinafter, a method of manufacturing a semiconductor device according to an embodiment of the present invention will be described with reference to FIGS.
 まず、図5に示すように、上面に絶縁性シート41を仮接着した放熱板30を下にして、下金型62に載置する。続いて、リードフレーム11における第1ダイパッド部16の下面16bが絶縁性シート41と接するように、下金型62にリードフレーム11を載置する。その後、上金型63を下降させ、リードフレーム11を、上金型63と下金型62とによってクランプする。これにより、上金型63と下金型62との間に、キャビティ65が形成される。続いて、例えばトランスファモールド法により、多孔質フィラー35を含有したエポキシ樹脂75を、上金型63に設けられた少なくとも1つのゲート70から、キャビティ65の内部に充填する。エポキシ樹脂75は、断熱用封止樹脂領域を形成するための封止樹脂であり、第1封止樹脂の一例である。ゲート70は、キャビティ65の内部に配置されたパワー素子12と制御素子14との間の空間の鉛直上方に、形成されている。これにより、パワー素子12と制御素子14との間に、多孔質フィラー35を含有したエポキシ樹脂75が充填される。 First, as shown in FIG. 5, the heat sink 30 with the insulating sheet 41 temporarily attached to the upper surface is placed on the lower mold 62 with the heat sink 30 facing downward. Subsequently, the lead frame 11 is mounted on the lower mold 62 so that the lower surface 16 b of the first die pad portion 16 in the lead frame 11 is in contact with the insulating sheet 41. Thereafter, the upper mold 63 is lowered, and the lead frame 11 is clamped by the upper mold 63 and the lower mold 62. Thereby, a cavity 65 is formed between the upper mold 63 and the lower mold 62. Subsequently, the interior of the cavity 65 is filled with the epoxy resin 75 containing the porous filler 35 from at least one gate 70 provided on the upper mold 63 by, for example, a transfer molding method. The epoxy resin 75 is a sealing resin for forming a sealing resin region for heat insulation, and is an example of a first sealing resin. The gate 70 is formed vertically above the space between the power element 12 disposed inside the cavity 65 and the control element 14. Thereby, the epoxy resin 75 containing the porous filler 35 is filled between the power element 12 and the control element 14.
 このとき、上金型63に設けられたゲート70の位置は、図5及び図6に示すように、パワー素子12と制御素子14との中間位置よりも、パワー素子12に近い側に配置されることが好ましい。ゲート70の位置をパワー素子12に近い側に配置することにより、多孔質フィラー35を含有する割合が、制御素子14側よりもパワー素子12側が高くなる。すなわち、本実施形態に係る半導体装置10では、多孔質フィラー35が、制御素子14側よりもパワー素子12側に偏在して配置される。なお、ゲート70を複数個配置することにより、多孔質フィラー35を含有したエポキシ樹脂75を、より確実に充填することができる。 At this time, the position of the gate 70 provided in the upper mold 63 is disposed closer to the power element 12 than the intermediate position between the power element 12 and the control element 14 as shown in FIGS. 5 and 6. Is preferred. By arranging the position of the gate 70 closer to the power element 12, the ratio of containing the porous filler 35 is higher on the power element 12 side than on the control element 14 side. That is, in the semiconductor device 10 according to the present embodiment, the porous filler 35 is disposed more unevenly in the power element 12 side than in the control element 14 side. By arranging a plurality of gates 70, the epoxy resin 75 containing the porous filler 35 can be filled more reliably.
 続いて、図7及び図8に示すように、上金型63の側面に設けたゲート64からエポキシ樹脂66を注入し、該エポキシ樹脂66をキャビティ65の内部に充填する。エポキシ樹脂66は、通常封止樹脂領域を形成するための封止樹脂であり、第2封止樹脂の一例である。本実施形態では、エポキシ樹脂66として流動性が高い組成の樹脂を用いているため、エポキシ樹脂66は、上金型63のキャビティ65を完全に充填するように入り込んでいく。本実施形態では、ゲート70から注入されたエポキシ樹脂75よりも、ゲート64から注入されたエポキシ樹脂66の方が、流動性が高い。このため、図7に示すように、ゲート64から注入されたエポキシ樹脂66は、既にゲート70から充填されたエポキシ樹脂75を除く領域を埋めるように充填される。すなわち、断熱用封止樹脂領域に予め充填されたエポキシ樹脂75はそのままで、残りの領域(通常封止樹脂領域)にエポキシ樹脂66が充填される。その結果、パワー素子12と制御素子14との間の領域(断熱用封止樹脂領域)にエポキシ樹脂75が充填され、それ以外の領域(通常封止樹脂領域)にエポキシ樹脂66が充填される。そして、これらエポキシ樹脂75、66を硬化させることで、図1に示す外装体15を構成し、半導体装置10を製造することができる。 Subsequently, as shown in FIGS. 7 and 8, the epoxy resin 66 is injected from the gate 64 provided on the side surface of the upper mold 63, and the epoxy resin 66 is filled into the inside of the cavity 65. The epoxy resin 66 is usually a sealing resin for forming a sealing resin region, and is an example of a second sealing resin. In the present embodiment, since the resin having a highly fluid composition is used as the epoxy resin 66, the epoxy resin 66 penetrates so as to completely fill the cavity 65 of the upper mold 63. In the present embodiment, the epoxy resin 66 injected from the gate 64 has higher fluidity than the epoxy resin 75 injected from the gate 70. Therefore, as shown in FIG. 7, the epoxy resin 66 injected from the gate 64 is filled so as to fill the area except the epoxy resin 75 already filled from the gate 70. That is, the epoxy resin 75 filled in the sealing resin region for heat insulation is filled in with the epoxy resin 66 in the remaining region (usually the sealing resin region) as it is. As a result, the area between the power element 12 and the control element 14 (the heat insulating sealing resin area) is filled with the epoxy resin 75, and the other area (usually the sealing resin area) is filled with the epoxy resin 66. . Then, by curing these epoxy resins 75 and 66, the exterior body 15 shown in FIG. 1 can be configured, and the semiconductor device 10 can be manufactured.
 なお、本実施形態では、多孔質フィラー35を含まないエポキシ樹脂66の粘性は、0.01Pa・s程度であり、多孔質フィラー35を含むエポキシ樹脂75の粘性は、2Pa・s程度である。 In the present embodiment, the viscosity of the epoxy resin 66 not containing the porous filler 35 is about 0.01 Pa · s, and the viscosity of the epoxy resin 75 containing the porous filler 35 is about 2 Pa · s.
 本実施形態では、外装体15の内部におけるパワー素子12と制御素子14との配置の比率に基づいて、ゲート70から注入したエポキシ樹脂75とゲート64から注入したエポキシ樹脂66との体積比を、エポキシ樹脂75:エポキシ樹脂66=1:3とした。なお、外装体15からも放熱することを考えると、エポキシ樹脂75の体積は、エポキシ樹脂66の体積の3分の1以下であることが望ましい。 In the present embodiment, the volume ratio of the epoxy resin 75 injected from the gate 70 to the epoxy resin 66 injected from the gate 64 based on the arrangement ratio of the power element 12 and the control element 14 inside the exterior body 15 is Epoxy resin 75: Epoxy resin 66 = 1: 3. Incidentally, in consideration of heat dissipation from the exterior body 15, it is preferable that the volume of the epoxy resin 75 be equal to or less than one third of the volume of the epoxy resin 66.
 なお、まず、パワー素子12と制御素子14との間に充填したエポキシ樹脂75を硬化させた後に、その周囲を囲むようにエポキシ樹脂66を充填させて、外装体15を形成してもよい。この場合、エポキシ樹脂75による断熱用封止樹脂領域を、パワー素子12と制御素子14との間により確実に形成することができる。 First, after curing the epoxy resin 75 filled between the power element 12 and the control element 14, the outer body 15 may be formed by filling the epoxy resin 66 so as to surround the periphery thereof. In this case, the sealing resin region for heat insulation by the epoxy resin 75 can be formed more reliably between the power element 12 and the control element 14.
 本実施形態に係る半導体装置10は、外装体15の内部において、多孔質フィラー35をパワー素子12と制御素子14との近傍に密に配置すると共に、パワー素子12側に偏在させている。これにより、パワー素子12と制御素子14との間の断熱効果を高めた半導体装置10を実現することができる。本実施形態により、パワー素子12と制御素子14との間の断熱効果を高めると共に、パワー素子12から放熱板30への放熱特性は、従来通りの半導体装置10を実現できる。そのため、パワー素子12の温度が高くなっても、制御素子14への熱の影響を小さくでき、動作が安定した半導体装置10を実現することができる。 In the semiconductor device 10 according to the present embodiment, the porous filler 35 is densely disposed in the vicinity of the power element 12 and the control element 14 in the inside of the exterior body 15 and is unevenly distributed on the power element 12 side. Thereby, the semiconductor device 10 which raised the heat insulation effect between the power element 12 and the control element 14 is realizable. According to the present embodiment, the heat insulation effect between the power element 12 and the control element 14 is enhanced, and the heat dissipation characteristics from the power element 12 to the heat sink 30 can realize the semiconductor device 10 as in the related art. Therefore, even if the temperature of the power element 12 becomes high, the influence of heat on the control element 14 can be reduced, and the semiconductor device 10 with stable operation can be realized.
 なお、外装体15におけるパワー素子12と制御素子14との間を除く領域(通常封止樹脂領域)では、多孔質フィラー35の含有割合は、できる限り低い方が望ましい。これは、パワー素子12と制御素子14との間を除く領域(通常封止樹脂領域)においても多孔質フィラー35の含有割合が高くなると、外装体5を通してパワー素子12の駆動により発生する熱を放出できず、パワー素子12の放熱経路が放熱板30を経由する以外になくなり、放熱板30等の大型化が必要となるためである。 In addition, in the area | region (normally sealing resin area | region) except between the power element 12 and the control element 14 in the exterior body 15, the one where the content rate of the porous filler 35 is as low as possible is desirable. This is because the heat generated by the drive of the power element 12 through the exterior body 5 is increased when the content ratio of the porous filler 35 becomes high also in the area excluding the space between the power element 12 and the control element 14 (usually the sealing resin area). This is because the heat can not be released, and the heat radiation path of the power element 12 is eliminated except through the heat radiation plate 30, and it is necessary to make the heat radiation plate 30 or the like larger.
 また、本実施形態に係る半導体装置10では、リードフレーム11の枚数は、本発明の目的を実現する限り、これに限られない。例えば、2枚の個別のリードフレームを一体化したリードフレームを用いてもよい。 Further, in the semiconductor device 10 according to the present embodiment, the number of lead frames 11 is not limited as long as the object of the present invention is realized. For example, a lead frame in which two separate lead frames are integrated may be used.
 また、放熱板30の熱伝導率を非常に高くすることが可能であれば、外装体15からの放熱が不要となり、多孔質フィラー35を含有したエポキシ樹脂75を、キャビティ65の内部の全体に充填させることも可能であると考えられる。すなわち、外装体15として、エポキシ樹脂66を使用しないことも可能であると考えられる。 Moreover, if it is possible to make the thermal conductivity of the heat sink 30 very high, the heat radiation from the exterior body 15 becomes unnecessary, and the epoxy resin 75 containing the porous filler 35 is applied to the entire inside of the cavity 65. It is also considered possible to fill. That is, it is considered possible not to use the epoxy resin 66 as the exterior body 15.
 本発明に係る樹脂封止型半導体装置及びその製造方法は、エアコン等の大電力用の機器に用いられる半導体装置等に適用できる。 The resin-sealed semiconductor device and the method for manufacturing the same according to the present invention can be applied to semiconductor devices and the like used for devices for large power such as air conditioners.
 10   半導体装置
 11   リードフレーム
 12   パワー素子
 13   金属部材
 14   制御素子
 15   外装体
 15b,16b,30b  下面
 16   第1ダイパッド部
 16a,40a  上面
 26   ろう材
 30   放熱板
 30b  下面
 30c  側面
 35   多孔質フィラー
 35a  多孔質フィラー部位
 35b  孔部位
 40   第2ダイパッド部
 41   絶縁性シート
 50   ダイオード
 62   下金型
 63   上金型
 64,70  ゲート
 65   キャビティ
 66,75  エポキシ樹脂
DESCRIPTION OF SYMBOLS 10 semiconductor device 11 lead frame 12 power element 13 metal member 14 control element 15 exterior body 15b, 16b, 30b lower surface 16 1st die pad part 16a, 40a upper surface 26 solder material 30 heat sink 30b lower surface 30c side 35 porous filler 35a porous Filler part 35 b Hole part 40 Second die pad part 41 Insulating sheet 50 Diode 62 Lower mold 63 Upper mold 64, 70 Gate 65 Cavity 66, 75 Epoxy resin

Claims (16)

  1.  外装体と、
     前記外装体の内部に封止されると共に、前記外装体から端部が突出したリードフレームと、
     前記外装体の内部に封止されると共に、前記リードフレームに実装されたパワー素子と、
     前記外装体の内部に封止されると共に、前記リードフレームに実装された制御素子と、を備え、
     前記外装体における前記パワー素子と前記制御素子との間の領域には、他の領域と比べてフィラーを含有する封止樹脂が密に配置されている、
    樹脂封止型半導体装置。
    Exterior body,
    A lead frame sealed inside the package and having an end protruding from the package;
    A power element sealed inside the exterior body and mounted on the lead frame;
    A control element sealed inside the outer package and mounted on the lead frame;
    A sealing resin containing a filler is densely disposed in a region between the power element and the control element in the outer package, as compared to the other regions.
    Resin-sealed semiconductor device.
  2.  前記フィラーは、前記制御素子側と比べて前記パワー素子側に偏在して配置されている、
    請求項1に記載の樹脂封止型半導体装置。
    The filler is disposed eccentrically on the power element side as compared to the control element side.
    The resin-sealed semiconductor device according to claim 1.
  3.  前記フィラーは、多孔質フィラーである、
    請求項1又は2に記載の樹脂封止型半導体装置。
    The filler is a porous filler.
    The resin-sealed semiconductor device according to claim 1.
  4.  前記フィラーは、内部に空気層を有する多孔質フィラーである、
    請求項3に記載の樹脂封止型半導体装置。
    The filler is a porous filler having an air layer inside.
    The resin-sealed semiconductor device according to claim 3.
  5.  前記フィラーは、球状のフィラーである、
    請求項1から4のいずれか1項に記載の樹脂封止型半導体装置。
    The filler is a spherical filler,
    The resin-sealed semiconductor device according to any one of claims 1 to 4.
  6.  前記外装体における前記パワー素子と前記制御素子との間の領域に配置された第1封止樹脂は、他の領域に配置された第2封止樹脂と比べて前記フィラーの含有率が高く、
     前記第1封止樹脂の流動性よりも前記第2封止樹脂の流動性が高い、
    請求項1から5のいずれか1項に記載の樹脂封止型半導体装置。
    The first sealing resin disposed in the region between the power element and the control element in the outer package has a higher content of the filler than the second sealing resin disposed in the other region,
    The flowability of the second sealing resin is higher than the flowability of the first sealing resin,
    The resin-sealed semiconductor device according to any one of claims 1 to 5.
  7.  前記第1封止樹脂の体積は、前記第2封止樹脂の体積の3分の1以下である、
    請求項6に記載の樹脂封止型半導体装置。
    The volume of the first sealing resin is one third or less of the volume of the second sealing resin.
    The resin-sealed semiconductor device according to claim 6.
  8.  前記外装体における前記パワー素子と前記制御素子との間の領域において、前記フィラーは、70重量%以上の割合で含有された、
    請求項1から7のいずれか1項に記載の樹脂封止型半導体装置。
    The filler is contained in a proportion of 70% by weight or more in a region between the power element and the control element in the exterior body.
    The resin-sealed semiconductor device according to any one of claims 1 to 7.
  9.  前記外装体における前記パワー素子と前記制御素子との間の領域において、前記フィラーは、90重量%以上の割合で含有された、
    請求項8に記載の樹脂封止型半導体装置。
    In the region between the power element and the control element in the outer package, the filler is contained in a proportion of 90% by weight or more.
    The resin-sealed semiconductor device according to claim 8.
  10.  前記外装体の内部において前記パワー素子と前記制御素子とを接続する第1金属部材の全てが、前記フィラーに覆われている、
    請求項1から9のいずれか1項に記載の樹脂封止型半導体装置。
    All of the first metal members that connect the power element and the control element inside the exterior body are covered with the filler.
    The resin-sealed semiconductor device according to any one of claims 1 to 9.
  11.  請求項1から10のいずれか1項に記載の樹脂封止型半導体装置が組み込まれた装置。 An apparatus incorporating the resin-sealed semiconductor apparatus according to any one of claims 1 to 10.
  12.  パワー素子及び制御素子が実装されたリードフレームを金型の内部に配置し、前記パワー素子と前記制御素子との間の領域にフィラーを含有する第1封止樹脂を注入した後、
     前記パワー素子、前記制御素子及び前記リードフレームを第2封止樹脂で封止することで、
     前記パワー素子と前記制御素子との間の領域に、他の領域と比べてフィラーを含有する封止樹脂が密に配置された外装体を形成する、
    樹脂封止型半導体装置の製造方法。
    A lead frame on which the power element and the control element are mounted is disposed inside the mold, and a first sealing resin containing a filler is injected into a region between the power element and the control element,
    By sealing the power element, the control element and the lead frame with a second sealing resin,
    In a region between the power element and the control element, an exterior body in which a sealing resin containing a filler is densely disposed as compared with the other regions is formed.
    A method of manufacturing a resin-sealed semiconductor device.
  13.  前記フィラーは、前記制御素子側と比べて前記パワー素子側に偏在して配置されている、
    請求項12に記載の樹脂封止型半導体装置の製造方法。
    The filler is disposed eccentrically on the power element side as compared to the control element side.
    A method of manufacturing a resin-sealed semiconductor device according to claim 12.
  14.  前記フィラーは、多孔質フィラーである、
    請求項12又は13に記載の樹脂封止型半導体装置の製造方法。
    The filler is a porous filler.
    A method of manufacturing a resin-sealed semiconductor device according to claim 12 or 13.
  15.  前記フィラーの含有割合が前記制御素子側よりも前記パワー素子側が高くなるように、前記第1封止樹脂を注入するゲートを、前記金型に配置された前記制御素子よりも前記パワー素子に近い側に配置した、
    請求項12から14のいずれか1項に記載の樹脂封止型半導体装置の製造方法。
    The gate for injecting the first sealing resin is closer to the power element than the control element disposed in the mold so that the content ratio of the filler is higher on the power element side than on the control element side. Placed on the side,
    A method of manufacturing a resin-sealed semiconductor device according to any one of claims 12 to 14.
  16.  前記第1封止樹脂を注入して硬化させた後に、前記第2封止樹脂を注入する、
    請求項12から15のいずれか1項に記載の樹脂封止型半導体装置の製造方法。
    The second sealing resin is injected after the first sealing resin is injected and cured.
    A method of manufacturing a resin-sealed semiconductor device according to any one of claims 12 to 15.
PCT/JP2012/008023 2012-02-23 2012-12-14 Resin-sealed semiconductor device and method for manufacturing same WO2013124940A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013525060A JP5842109B2 (en) 2012-02-23 2012-12-14 Resin-sealed semiconductor device and manufacturing method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-037100 2012-02-23
JP2012037100 2012-02-23

Publications (1)

Publication Number Publication Date
WO2013124940A1 true WO2013124940A1 (en) 2013-08-29

Family

ID=49005164

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/008023 WO2013124940A1 (en) 2012-02-23 2012-12-14 Resin-sealed semiconductor device and method for manufacturing same

Country Status (2)

Country Link
JP (1) JP5842109B2 (en)
WO (1) WO2013124940A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104901604A (en) * 2014-03-06 2015-09-09 株式会社日立功率半导体 Semiconductor device, and motor and air-conditioner using same
JP2018049894A (en) * 2016-09-20 2018-03-29 株式会社Flosfia Semiconductor device
JPWO2018142758A1 (en) * 2017-01-31 2019-11-21 パナソニックIpマネジメント株式会社 Electrolytic capacitor
JP2020504451A (en) * 2016-12-30 2020-02-06 日本テキサス・インスツルメンツ合同会社 Packaged semiconductor device with surface roughened particles
US20210043604A1 (en) * 2019-08-06 2021-02-11 Advanced Semiconductor Engineering, Inc. Semiconductor package structure and method of manufacturing the same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11236868A (en) * 1997-12-17 1999-08-31 Toyota Motor Corp Igniter
JP2012038792A (en) * 2010-08-04 2012-02-23 Panasonic Corp Resin sealed semiconductor device and method for manufacturing the same

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2543452Y2 (en) * 1990-12-21 1997-08-06 富士通テン株式会社 Semiconductor device
JPH1143566A (en) * 1997-07-29 1999-02-16 Nippon Zeon Co Ltd Norbornene-based resin composition
JP4381047B2 (en) * 2003-07-09 2009-12-09 東芝三菱電機産業システム株式会社 Semiconductor device
JP2005101580A (en) * 2003-08-28 2005-04-14 Matsushita Electric Ind Co Ltd Module with built-in circuit components, and its manufacturing method
JP4164874B2 (en) * 2004-05-31 2008-10-15 サンケン電気株式会社 Semiconductor device
JP4135101B2 (en) * 2004-06-18 2008-08-20 サンケン電気株式会社 Semiconductor device
JP4492257B2 (en) * 2004-08-26 2010-06-30 富士電機システムズ株式会社 Semiconductor module and manufacturing method thereof
JP2009295959A (en) * 2008-05-09 2009-12-17 Panasonic Corp Semiconductor device, and method for manufacturing thereof

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11236868A (en) * 1997-12-17 1999-08-31 Toyota Motor Corp Igniter
JP2012038792A (en) * 2010-08-04 2012-02-23 Panasonic Corp Resin sealed semiconductor device and method for manufacturing the same

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104901604A (en) * 2014-03-06 2015-09-09 株式会社日立功率半导体 Semiconductor device, and motor and air-conditioner using same
JP2018049894A (en) * 2016-09-20 2018-03-29 株式会社Flosfia Semiconductor device
JP2020504451A (en) * 2016-12-30 2020-02-06 日本テキサス・インスツルメンツ合同会社 Packaged semiconductor device with surface roughened particles
JP7206198B2 (en) 2016-12-30 2023-01-17 テキサス インスツルメンツ インコーポレイテッド Packaged semiconductor device with surface-roughened particles
JPWO2018142758A1 (en) * 2017-01-31 2019-11-21 パナソニックIpマネジメント株式会社 Electrolytic capacitor
JP7223968B2 (en) 2017-01-31 2023-02-17 パナソニックIpマネジメント株式会社 Electrolytic capacitor
US20210043604A1 (en) * 2019-08-06 2021-02-11 Advanced Semiconductor Engineering, Inc. Semiconductor package structure and method of manufacturing the same
US11139268B2 (en) * 2019-08-06 2021-10-05 Advanced Semiconductor Engineering, Inc. Semiconductor package structure and method of manufacturing the same

Also Published As

Publication number Publication date
JPWO2013124940A1 (en) 2015-05-21
JP5842109B2 (en) 2016-01-13

Similar Documents

Publication Publication Date Title
JP5873998B2 (en) Semiconductor device and manufacturing method thereof
JP6115738B2 (en) Semiconductor device and manufacturing method thereof
US9171773B2 (en) Semiconductor device
CN107863328B (en) Package cooled using a cooling fluid and comprising a shielding layer
WO2014097798A1 (en) Semiconductor device
US8125077B2 (en) Package with heat transfer
WO2013124940A1 (en) Resin-sealed semiconductor device and method for manufacturing same
WO2012053205A1 (en) Semiconductor device and production method for same
US11862542B2 (en) Dual side cooling power module and manufacturing method of the same
JP2019071412A (en) Chip package
JP2009252838A (en) Semiconductor device
JP5085972B2 (en) Insulating sheet and semiconductor device
JP2015115382A (en) Semiconductor device
JP6124810B2 (en) Power module
JP2012015557A (en) Insulation sheet and semiconductor device
JP5921723B2 (en) Semiconductor device
EP3958305A1 (en) Power semiconductor module arrangement and method for producing the same
JP5098284B2 (en) Semiconductor device
JP2012209470A (en) Semiconductor device, semiconductor device module, and manufacturing method of the semiconductor device
JP5368492B2 (en) Power semiconductor device
JP2015220295A (en) Power module and manufacturing method of the same
JP2017224689A (en) Semiconductor device
JP2017092250A (en) Semiconductor device and method of manufacturing the same
US8686545B2 (en) Semiconductor device and method for manufacturing the same
JP2012038792A (en) Resin sealed semiconductor device and method for manufacturing the same

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2013525060

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12869225

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12869225

Country of ref document: EP

Kind code of ref document: A1