WO2013123879A1 - 用于保护永磁电机的方法及永磁风力发电机组 - Google Patents

用于保护永磁电机的方法及永磁风力发电机组 Download PDF

Info

Publication number
WO2013123879A1
WO2013123879A1 PCT/CN2013/071708 CN2013071708W WO2013123879A1 WO 2013123879 A1 WO2013123879 A1 WO 2013123879A1 CN 2013071708 W CN2013071708 W CN 2013071708W WO 2013123879 A1 WO2013123879 A1 WO 2013123879A1
Authority
WO
WIPO (PCT)
Prior art keywords
permanent magnet
short
magnet motor
circuit current
protection unit
Prior art date
Application number
PCT/CN2013/071708
Other languages
English (en)
French (fr)
Inventor
王相明
赵祥
吴彦龙
张文臣
Original Assignee
北京金风科创风电设备有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京金风科创风电设备有限公司 filed Critical 北京金风科创风电设备有限公司
Publication of WO2013123879A1 publication Critical patent/WO2013123879A1/zh

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P9/00Arrangements for controlling electric generators for the purpose of obtaining a desired output
    • H02P9/10Control effected upon generator excitation circuit to reduce harmful effects of overloads or transients, e.g. sudden application of load, sudden removal of load, sudden change of load
    • H02P9/12Control effected upon generator excitation circuit to reduce harmful effects of overloads or transients, e.g. sudden application of load, sudden removal of load, sudden change of load for demagnetising; for reducing effects of remanence; for preventing pole reversal
    • H02P9/123Control effected upon generator excitation circuit to reduce harmful effects of overloads or transients, e.g. sudden application of load, sudden removal of load, sudden change of load for demagnetising; for reducing effects of remanence; for preventing pole reversal for demagnetising; for reducing effects of remanence
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H7/00Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions
    • H02H7/06Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for dynamo-electric generators; for synchronous capacitors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H7/00Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions
    • H02H7/08Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for dynamo-electric motors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P2101/00Special adaptation of control arrangements for generators
    • H02P2101/15Special adaptation of control arrangements for generators for wind-driven turbines

Definitions

  • the present invention relates to wind power generation technology, and more particularly to a method for protecting a permanent magnet motor and a permanent magnet wind power generator set. Background technique
  • Direct-drive permanent magnet units and doubly-fed generator sets are two typical types of wind turbines, and direct-drive permanent magnet units have the advantages of low energy consumption, high efficiency and rotor-free excitation. At the same time, direct-drive permanent magnet units also have excellent performance. Low voltage ride-through capability, which provides a good foundation for grid-friendly operation and large-area grid connection of wind turbines. As a result, related companies continue to increase their research on direct drive permanent magnet units.
  • the direct-drive permanent magnet unit may have a short-circuit condition during operation, such as the inside of the generator.
  • the stator is short-circuited or the DC bus of the external converter is short-circuited.
  • the demagnetizing field generated by the short-circuit current causes the permanent magnet to demagnetize.
  • the peak value of the short-circuit current may be greater than 4000A. The demagnetizing field at this time will cause severe demagnetization of the permanent magnet.
  • fuses are often used to protect the short circuit of the motor.
  • this method is mainly used for the slow response of the excitation method.
  • the response time usually takes several hundred milliseconds or more. It cannot be used to protect permanent magnet motors or permanent magnet wind turbines to prevent short circuits. The effect of current on the demagnetization caused by the permanent magnet.
  • the technical problem to be solved by the present invention is to provide a method for protecting a permanent magnet motor for the above-mentioned defects existing in a permanent magnet wind power generator, which can effectively prevent demagnetization of the permanent magnet, thereby improving the permanent magnet wind power generator set. Security performance.
  • the present invention also provides a permanent magnet wind power generator with high safety and stability.
  • the technical solution adopted to solve the above technical problems is to provide a method for protecting a permanent magnet motor for protecting a permanent magnet of a permanent magnet motor, comprising the steps of:
  • the protection unit limits the magnitude of the short circuit current of the permanent magnet motor to prevent the short circuit current from demagnetizing the permanent magnet of the permanent magnet motor.
  • the protection unit limits the magnitude of the short-circuit current of the permanent magnet motor by breaking a short-circuit current.
  • the protection unit limits the magnitude of the short-circuit current of the permanent magnet motor by limiting the peak value of the short-circuit current.
  • the invention also provides a permanent magnet wind power generator comprising a permanent magnet motor, a converter and a transformer, wherein an output end of the permanent magnet motor is connected to an input end of the converter, and an output end of the converter Connected to the input end of the transformer, the output end of the transformer is connected to the power grid, and a circuit for limiting the short-circuit current of the permanent magnet motor is provided in a circuit between the output end of the permanent magnet motor and the power grid The unit is protected from the short circuit current causing demagnetization of the 7 j magnet of the n motor.
  • the protection unit is disposed between an output end of the permanent magnet motor and an input end of the current transformer, or between an output end of the current transformer and an input end of the transformer, or Provided between the output of the transformer and the power grid, or set in the change Between the rotor side and the mesh side of the flow device.
  • one or more of the protection units are provided in each of the circuits for connecting the permanent magnet motor to the current transformer.
  • the response time of the protection unit is less than 10 ms.
  • the protection unit limits the short circuit current of the permanent magnet motor to below 2000A.
  • the protection unit is a high speed breaker, and the high speed breaker limits the magnitude of the short circuit current of the permanent magnet motor by breaking the short circuit current.
  • the protection unit is a superconducting current limiter, and the superconducting current limiter limits a magnitude of a short-circuit current of the permanent magnet motor by limiting a peak value of the short-circuit current.
  • the superconducting current limiter includes a superconducting component and a current limiting resistor connected in parallel with each other, the superconducting component failing when a short circuit current occurs, and the current limiting resistor limits the short circuit current of the permanent magnet motor size.
  • the method for protecting a permanent magnet motor controls the magnitude of the demagnetizing field by limiting the magnitude of the short-circuit current of the permanent magnet motor, thereby avoiding The short-circuit current causes the demagnetization of the permanent magnet of the permanent magnet motor, so that the short-circuit current can be prevented from causing damage to the generator set, thereby effectively preventing the demagnetization of the permanent magnet and improving the safety of the permanent magnet wind power generator.
  • the permanent magnet wind power generator provided by the invention directly connects a protection unit for limiting the short circuit current of the permanent magnet motor between the output end of the permanent magnet motor and the power grid, thereby effectively avoiding the short circuit current and causing the permanent magnet motor to be permanent
  • the magnet is demagnetized, which in turn increases the safety and reliability of the permanent magnet wind turbine.
  • FIG. 1 is a schematic view showing the principle of a permanent magnet wind power generator set according to an embodiment of the present invention
  • 2 is a schematic diagram of a high speed breaker according to Embodiment 1 of the present invention
  • FIG. 3 is a graph showing a peak simulation curve of a short-circuit current of a permanent magnet motor after installing a high-speed breaker according to an embodiment of the present invention
  • FIG. 4 is a schematic diagram of a superconducting current limiter used in Embodiment 2 of the present invention. detailed description
  • FIG. 1 is a schematic diagram of the principle of a permanent magnet wind power generator set according to an embodiment of the present invention.
  • the permanent magnet wind power generator includes a permanent magnet motor 1, a converter 2 and a transformer 3.
  • the output of the permanent magnet motor 1 is connected to the input end of the converter 2, and the permanent magnet motor 1 and the converter are connected.
  • the connection position of 2 forms a connection point A; the output of the converter 2 is connected to the input of the transformer 3, and the connection position of the converter 2 and the transformer 3 forms a connection point C; the output of the transformer 3 is connected to the grid 4, Moreover, the connection position of the transformer 3 and the grid 4 forms a connection point D.
  • a connection point B is formed at a connection position between the mesh side and the rotor side inside the converter 2.
  • the short circuit fault of the circuit outside the permanent magnet motor 1 may cause damage to the permanent magnet motor 1.
  • the short circuit current causes the demagnetizing field to cause the permanent magnet to demagnetize. Therefore, the permanent magnet motor 1 is required.
  • the short circuit current generated by the outer circuit is limited.
  • the protection unit 5 is provided at the position of the connection point A, and the magnitude of the short-circuit current of the permanent magnet motor 1 is limited by the protection unit 5.
  • This embodiment sets the protection unit 5 at the connection point A position.
  • the protection unit 5 can only be placed at the connection point A position, and the protection unit 5 can also be placed at the connection point B, the connection point C or the connection point D position.
  • a short circuit fault may occur at any position from the connection point A to the connection point D, and the short circuit current generated by the short circuit fault may cause the permanent magnet of the permanent magnet motor 1 to demagnetize.
  • the protection unit 5 When the position of the connection point A is set, the protection unit 5 can avoid the short-circuit current at the grid 4 and any position between the connection point A and the connection point D; when the protection unit 5 is disposed at the connection point B position, the protection unit 5 can be avoided Short-circuit current at any position between the grid 4 and the connection point B and the connection point D; when the protection unit 5 is placed at the connection point C position, the protection unit 5 can avoid any position between the grid 4 and the connection point C and the connection point D Short-circuit current at the place; When the protection unit 5 is placed at the connection point D position, the protection unit 5 can only avoid the short-circuit current of the grid 4.
  • the protection unit 5 is a high speed breaker.
  • Fig. 2 is a schematic diagram of a high speed interrupter according to a first embodiment of the present invention.
  • the high speed breaker includes a fault sensor 13, a high speed breaking bridge 14, an arc extinguishing fuse 15 and an isolating transformer 16.
  • the fault sensor 13 is in the same branch as the high speed breaking bridge 14, one end of the isolating transformer 16 is connected to the fault sensor 13, and the other end is connected to the high speed breaking bridge 14; the arc extinguishing fuse 15 is in the fault sensor 13 and The parallel branch of the branch where the high-speed breaking bridge 14 is located.
  • the high speed breaker 14 is mounted in a circuit between the permanent magnet motor 1 and the converter 2, and the fault sensor 13 is used to sense a short circuit fault in the circuit.
  • the fault sensor 13 senses a short circuit fault in the circuit
  • the short circuit signal is sent to the high speed breaking bridge 14, the high speed breaking bridge 14 will be quickly disconnected, and then the current is transferred to the arc extinguishing fuse 15 branch, and finally
  • the arc-extinguishing fuse 15 completely cuts off the circuit, that is, the permanent magnet motor 1 is disconnected from the external circuit to avoid a large short-circuit current of the permanent magnet motor 1, thereby avoiding a short-circuit current generating a large demagnetizing field in the permanent magnet motor 1, and thus Preventing short circuit currents causes demagnetization of permanent magnets.
  • the high speed breaker 14 in this embodiment preferably satisfies the performance parameter requirements in Table 1. It should be noted that the performance parameters such as rated voltage, rated current, operating frequency, short-time withstand current, segmentation characteristics, cold resistance, altitude and working environment of the high-speed breaker 14 can be determined according to actual working conditions. And the performance parameters in Table 1 are not the only performance parameter requirements of the high speed breaker 14.
  • Short-time withstand voltage ⁇ Single set of winding short-time withstand current 792A, time is about 3s Segmentation characteristic Limit current to below 2000A within 10ms
  • Altitude is divided into two categories: 2000m and 2000m"4000m
  • the high speed breaker 14 can disconnect the permanent magnet motor 1 from the external circuit in less than 10 ms (milliseconds), and limit the peak value of the short circuit current to 2000 A or less to control The magnitude of the demagnetizing field is thereby prevented from demagnetizing the permanent magnet of the permanent magnet motor 1 due to the demagnetizing field caused by an excessive short-circuit current.
  • Fig. 3 is a graph showing the peak value of the short-circuit current of the permanent magnet motor before and after the installation of the high-speed breaker according to the embodiment of the present invention.
  • (a) is a peak curve of the short-circuit current of the permanent magnet motor 1 when the high-speed breaker 14 is not mounted (before the high-speed breaker 14 is installed), and (b) the curve is that the high-speed breaker 14 is mounted.
  • the peak value of the short-circuit current of the permanent magnet motor 1 (after the high-speed breaker 14 is mounted).
  • the peak value of the short-circuit current of the permanent magnet motor 1 is about 4500 A, and the peak value of the short-circuit current of the permanent magnet motor 1 after the high-speed breaker 14 is installed. Less than 2000A. It can be seen that the high-speed breaker 14 can reduce the peak value of the short-circuit current of the permanent magnet motor 1, thereby controlling the magnitude of the demagnetizing field caused by the short circuit, thereby effectively avoiding the demagnetization of the permanent magnet.
  • Embodiment 2 adopts a method different from Embodiment 1 to avoid short-circuit current to permanent magnet motor
  • the damage caused by the second embodiment is to prevent the short-circuit current from causing damage to the hydro-magnetic motor by limiting the peak value of the short-circuit current.
  • the protection unit 5 used in the second embodiment is a superconducting current limiter.
  • 4 is a schematic diagram of a superconducting current limiter used in Embodiment 2 of the present invention.
  • the superconducting current limiter includes a superconducting component 51 and a current limiting resistor 52 connected in parallel with each other.
  • the superconducting current limiter is connected in series to the circuit connecting the permanent magnet motor 1 and the grid 4.
  • the superconducting member 51 fails, and the current limiting resistor 52 limits the magnitude of the short-circuit current of the permanent magnet motor 1.
  • the short-circuit current of the permanent magnet motor 1 is quickly limited to within 2000A within 10ms, thereby limiting the magnitude of the demagnetizing field.
  • the second embodiment except the protection unit 5 is different from the first embodiment, and the other structures are completely the same, and will not be mentioned here.
  • the peak simulation curve of the short-circuit current of the permanent magnet motor before and after the series connection of the superconducting current limiter in the circuit for connecting the permanent magnet motor 1 and the grid 4 is similar to that of FIG. Therefore, the superconducting current limiter is used to reduce the peak value of the short-circuit current of the permanent magnet motor 1, thereby limiting the magnitude of the demagnetizing field caused by the short-circuit current, thereby preventing the short-circuit current bow from demagnetizing the permanent magnet.
  • the permanent magnet motor 1 and the converter 2 are connected by three sets of windings and six circuits. Therefore, in the converter 2, the grid side and the rotor side include a total of six loops.
  • the protection unit 5 is placed at the connection point B position, in order to limit the magnitude of the short-circuit current of the permanent magnet motor 1, it is necessary to provide at least one protection unit 5 in each circuit.
  • the permanent magnet wind power generator provided by the above embodiment has a protection unit for limiting the short circuit current of the permanent magnet motor in series with the output end of the permanent magnet motor, and the permanent magnet motor can be used within 10 ms by the protection unit.
  • the short-circuit current is limited to a safe range, thereby effectively controlling the magnitude of the demagnetizing field, and avoiding the external short circuit of the permanent magnet motor, causing the permanent magnet of the permanent magnet motor to demagnetize, thereby improving the safety and reliability of the permanent magnet wind turbine.
  • the cost of the permanent magnet wind turbine can also be reduced, and the maintenance is convenient.
  • the embodiment of the present invention further provides a A method for protecting a permanent magnet motor for protecting a permanent magnet of a permanent magnet motor.
  • the method for protecting a permanent magnet motor includes the following steps:
  • the protection unit limits the magnitude of the short-circuit current of the permanent magnet motor, thereby controlling the magnitude of the demagnetizing field, thereby preventing the short-circuit current from causing demagnetization of the permanent magnet of the 7j magneto.
  • the magnitude of the short-circuit current of the permanent magnet motor can be limited by breaking the short-circuit current, such as the high-speed breaker described in the first embodiment; or by limiting the peak value of the short-circuit current.
  • the magnitude of the short-circuit current of the permanent magnet motor is as in the superconducting current limiter described in the second embodiment. No matter which way to limit the short-circuit current, you can
  • the short-circuit current of the permanent magnet motor is limited to less than 2000A within 10ms.
  • the size of the demagnetizing field is controlled by limiting the magnitude of the short-circuit current of the permanent magnet motor, thereby avoiding demagnetization of the permanent magnet of the permanent magnet motor due to the short-circuit current, thereby avoiding damage of the short-circuit current to the permanent magnet wind turbine, and thus improving
  • the safety and reliability of permanent magnet wind turbines reduce the cost of permanent magnet wind turbines and make maintenance easier.
  • Exemplary embodiments, however, the invention is not limited thereto. Various modifications and improvements can be made by those skilled in the art without departing from the spirit and scope of the invention. These modifications and improvements are also considered to be within the scope of the invention.

Abstract

本发明提供一种用于保护永磁电机的方法及永磁风力发电机组,该方法包括以下步骤:将所述永磁电机和电网建立电连接;在用于连接永磁电机和电网的电路中串接保护单元;当用于连接所述永磁电机和所述电网的所述电路中出现短路电流时,所述保护单元限制所述永磁电机的短路电流的大小,以避免所述短路电流导致所述永磁电机的永磁体的退磁。该保护方法可以有效地防止永磁体退磁,进而提高永磁风力发电机组的安全性和可靠性,而且可以降低永磁风力发电机组的成本。

Description

用于保护永磁电机的方法及永磁风力发电机组
技术领域
本发明涉及风力发电技术,具体涉及一种用于保护永磁电机的方法 及永磁风力发电机组。 背景技术
直驱永磁机组和双馈发电机组是两种典型的风力发电机组,而且直 驱永磁机组具有能耗低、 效率高以及免转子励磁的优点, 同时, 直驱永 磁机组还具有优良的低电压穿越能力,这为电网友好运行以及风电机组 的大面积并网提供了良好的基础。 因此, 相关企业不断地增大对直驱永 磁机组的研究。
众所周知,直驱永磁机组在运行过程中的发热会使永磁体的温度升 高, 从而导致永磁体性能的下降; 而且直驱永磁机组在运行过程中可能 出现短路工况, 如发电机内部的定子短路或外部变流器的直流母线短 路, 短路电流产生的退磁场会导致永磁体退磁。 当变流器的直流母线发 生短路时, 短路电流峰值可能大于 4000A , 此时的退磁场将会导致永磁 体发生严重的退磁。
目前, 常采用熔断装置来防护电机的短路, 但是该方法主要用于励 方法响应速度较慢, 响应时间通常需要几百毫秒以上, 无法用于保护永 磁电机或永磁风力发电机组以防止短路电流对永磁体造成的退磁影响。
因此, 目前是通过提高永磁体的矫顽力来防止永磁电机在短路情况 下发生退磁, 这需要提高永磁体中能提高矫顽力的稀土元素,这就增加 了永磁体的成本, 从而导致风力发电机的成本上升。
为此, 申请人认为有必要提出一种新的保护永磁电机的方法和装 置, 用以避免短路电流对永磁体造成损坏。 发明内容
本发明要解决的技术问题就是针对永磁风力发电机组中存在的上 述缺陷, 提供一种用于保护永磁电机的方法, 其可以有效地防止永磁体 的退磁, 从而提高永磁风力发电机组的安全性能。
为此,本发明还提供一种永磁风力发电机组,其安全性和稳定性高。 解决上述技术问题所采用的技术方案是提供一种用于保护永磁电 机的方法, 其用于保护永磁电机的永磁体, 包括以下步骤:
将所述永磁电机和电网建立电连接;在用于连接永磁电机和电网的 电路中串接保护单元; 当用于连接所述永磁电机和所述电网的所述电路 中出现短路电流时, 所述保护单元限制所述永磁电机的短路电流的大 小, 以避免所述短路电流导致所述永磁电机的永磁体的退磁。
其中,所述保护单元是通过断开短路电流的方式来限制所述永磁电 机的所述短路电流的大小。
其中,所述保护单元是通过限制短路电流的峰值来限制所述永磁电 机的短路电流的大小。
本发明还提供一种永磁风力发电机组, 包括永磁电机、 变流器以及 变压器, 所述永磁电机的输出端与所述变流器的输入端连接, 所述变流 器的输出端与所述变压器的输入端连接, 所述变压器的输出端连接电 网,在所述永磁电机的输出端与所述电网之间的电路中设有用于限制所 述永磁电机的短路电流大小的保护单元,以避免所述短路电流导致所述 n电机的 7j磁体的退磁。
其中,所述保护单元设置在所述永磁电机的输出端与所述变流器的 输入端之间,或者设置在所述变流器的输出端与所述变压器的输入端之 间, 或者设置在所述变压器的输出端与所述电网之间, 或设置在所述变 流器的转子侧和网侧之间。
其中,在用于连接所述永磁电机与所述变流器的每个回路中均设置 一个或多个所述保护单元。
其中, 所述保护单元的响应时间小于 10ms。
其中, 所述保护单元将所述永磁电机的短路电流限制在 2000A以 下。
其中, 所述保护单元为高速开断器, 所述高速开断器通过断开短路 电流的方式来限制所述永磁电机的短路电流的大小。
其中, 其特征在于, 所述保护单元为超导限流器, 所述超导限流器 通过限制短路电流的峰值来限制所述永磁电机的短路电流的大小。
其中, 所述超导限流器包括相互并联的超导部件和限流电阻, 所述 超导部件在出现短路电流时失效,所述限流电阻限制所述永磁电机的所 述短路电流的大小。
本发明具有以下有益效果:
相对于传统的采用高矫顽力的永磁材料的方式而言,本发明提供的 用于保护永磁电机的方法是通过限制永磁电机的短路电流的大小来来 控制退磁场的大小, 避免短路电流导致永磁电机的永磁体的退磁, 从而 可以避免短路电流对发电机组造成损害, 进而有效地防止永磁体退磁, 提高永磁风力发电机组的安全性。
本发明提供的永磁风力发电机组,在永磁电机的输出端与电网之间 串接用于限制永磁电机的短路电流大小的保护单元,从而可以有效地避 免短路电流导致永磁电机的永磁体退磁,进而使永磁风力发电机组的安 全性和可靠性提高。 附图说明
图 1为本发明实施例一永磁风力发电机组原理示意图; 图 2为本发明实施例一提供的高速开断器的原理图;
图 3为本发明实施例一安装高速开断器后永磁电机的短路电流的 峰值模拟曲线图;
图 4为本发明实施例二中采用的超导限流器的原理图。 具体实施方式
为使本领域的技术人员更好地理解本发明的技术方案,下面结合附 图对本发明提供的用于保护永磁电机的保护方法及永磁风力发电机组 进行详细描述。
图 1为本发明实施例一永磁风力发电机组原理示意图。请参阅图 1 , 永磁风力发电机组包括永磁电机 1、 变流器 2和变压器 3 , 永磁电机 1 的输出端与变流器 2的输入端连接,而且永磁电机 1和变流器 2的连接 位置形成连接点 A; 变流器 2的输出端与变压器 3的输入端连接, 而且 变流器 2和变压器 3的连接位置形成连接点 C; 变压器 3的输出端与电 网 4连接, 而且变压器 3和电网 4的连接位置形成连接点 D。 另外, 在 变流器 2内部的网侧与转子侧的连接位置形成连接点 B。
在永磁风力发电机组的运行过程中,永磁电机 1外侧的电路的短路 故障可能对永磁电机 1造成损害,如短路电流引起退磁场进而导致永磁 体退磁,因此,需要对永磁电机 1外侧的电路产生的短路电流进行限制。 本实施例是在连接点 A的位置处设置保护单元 5 , 借助保护单元 5来限 制永磁电机 1的短路电流的大小。
本实施例将保护单元 5设置在连接点 A位置。 但这并不表明, 保护 单元 5仅能设置在连接点 A位置, 保护单元 5也可以设置在连接点 B、 连接点 C或连接点 D位置。 实际上, 在永磁风力发电机组运行时, 连接 点 A到连接点 D任何位置都可能产生短路故障,该短路故障产生的短路 电流可能导致永磁电机 1的永磁体退磁。 因此, 可以理解, 当保护单元 5设置在连接点 A位置时, 保护单元 5可以避免电网 4以及连接点 A和 连接点 D之间任何位置处的短路电流; 当保护单元 5设置在连接点 B 位置时,保护单元 5可以避免电网 4以及连接点 B和连接点 D之间任何 位置处的短路电流; 当保护单元 5设置在连接点 C位置时, 保护单元 5 可以避免电网 4以及连接点 C和连接点 D之间任何位置处的短路电流; 当保护单元 5设置在连接点 D位置时, 保护单元 5仅可以避免电网 4 的短路电流。
本实施例中, 保护单元 5为高速开断器。 图 2为本发明实施例一提 供的高速开断器的原理图。请参阅图 2 ,高速开断器包括故障感应器 13、 高速开断桥 14、 灭弧熔断器 15 以及隔离变压器 16。 其中, 故障感应器 13与高速开断桥 14处于同一支路, 隔离变压器 16的一端与故障感应 器 13连接, 另一端与高速开断桥 14连接; 灭弧熔断器 15处于故障感 应器 13和高速开断桥 14所在支路的并联支路上。
使用时, 将高速开断器 14安装在永磁电机 1和变流器 2之间的电 路中, 故障感应器 13用于感应电路中的短路故障。 当故障感应器 13 感应到电路中出现短路故障时, 将短路信号发送至高速开断桥 14 , 高 速开断桥 14将迅速断开, 再将电流转移到灭弧熔断器 15支路, 最后由 灭弧熔断器 15彻底切断电路, 即将永磁电机 1与外电路断开, 以避免 永磁电机 1的短路电流较大,从而避免短路电流在永磁电机 1产生较大 的退磁场, 进而可以防止短路电流造成永磁体的退磁。
本实施例中的高速开断器 14优选满足表 1中的性能参数要求。 需 要说明的是, 高速开断器 14的额定电压、 额定电流、 工作频率、 短时 耐受电流、 分段特性、 冷态电阻、 海拔高度以及工作环境等性能参数可 以根据实际工况需要确定, 且表 1中的性能参数并不是高速开断器 14 的唯一的性能参数要求。
表 1 性能 要求
额定电压 Ue 1600AC
额定电:;巟 Ie 660A
工作频率 6~ 17Hz
短时耐受电:;巟 单套绕组短时耐受电流 792A , 时间约为 3s 分段特性 10ms 内将电流限制在 2000A以下
额定工作制度 不间断工作
冷态电阻 室温 ( 25 °CT30 °C ) 下, < 150 μ Ω
海拔高度 分 < 2000m和 2000m"4000m两类
工作环境 环境温度- 30 °CT45 °C , 湿度 15%~95% , 温升 < 30 °C 安全认证 ETL/UL . CE、 TUV和 CCC
误动作率 < 1
本实施例在电路中出现短路故障时, 高速开断器 14能够在小于 10ms (毫秒)的时间内将永磁电机 1与外电路断开, 并将短路电流的峰 值限制在 2000A以下, 以控制退磁场的大小, 从而避免因过大的短路电 流引起的退磁场导致永磁电机 1的永磁体的退磁。
图 3为本发明实施例一安装高速开断器前后永磁电机的短路电流 的峰值模拟曲线图。 在图 3中, (a)曲线为未安装高速开断器 14时(安 装高速开断器 14之前)永磁电机 1的短路电流的峰值曲线, (b)曲线为 安装有高速开断器 14时(安装高速开断器 14之后)永磁电机 1的短路 电流的峰值曲线。 请参阅图 3 , 永磁风力发电机组中未安装高速开断器 14时, 永磁电机 1的短路电流的峰值约为 4500A , 而安装高速开断器 14后永磁电机 1的短路电流的峰值小于 2000A。 由此可知, 高速开断器 14可以降低永磁电机 1的短路电流的峰值, 从而可以控制短路造成的 退磁场的大小, 进而有效地避免永磁体退磁。
实施例二
实施例二采用不同于实施例一的方式来避免短路电流对永磁电机 造成的损伤,实施例二是通过限制短路电流的峰值来避免短路电流对水 磁电机造成损伤。
在实施例二中使用的保护单元 5为超导限流器。图 4为本发明实施 例二中采用的超导限流器的原理图。 请参阅图 4 , 超导限流器包括相互 并联的超导部件 51和限流电阻 52。 使用时, 将超导限流器串接在连接 永磁电机 1和电网 4的电路中。 当电路中出现短路故障时, 超导部件 51失效, 限流电阻 52限制永磁电机 1的短路电流的大小。 通过调节限 流电阻 52的大小, 在 10ms 内将永磁电机 1的短路电流快速地限制在 2000A以内, 从而限制退磁场的大小。
实施例二除采用的保护单元 5不同于实施例一外,其它结构完全相 同, 这里不再赞述。 在用于连接永磁电机 1和电网 4的电路中串接超导 限流器前后永磁电机的短路电流的峰值模拟曲线与图 3相似。 因此,借 助超导限流器来降低永磁电机 1的短路电流的峰值,从而限制了短路电 流引起的退磁场的大小, 进而可以避免短路电流弓 I起永磁体退磁。
在实施例一和实施例二中,永磁电机 1与变流器 2是通过三套绕组、 六个回路相连。 因此, 在变流器 2中, 网侧和转子侧共包括六个回路。 当将保护单元 5设置在连接点 B位置时,为了限制永磁电机 1的短路电 流的大小, 需要在每个回路中设置至少一个保护单元 5。
上述实施例提供的永磁风力发电机组,在永磁电机的输出端与电网 之间串接用于限制永磁电机的短路电流大小的保护单元,借助保护单元 可以在 10ms 内将永磁电机的短路电流限制在安全范围内, 从而有效地 控制退磁场的大小, 避免永磁电机外部短路导致永磁电机的永磁体退 磁, 进而可以提高永磁风力发电机组的安全性和可靠性。 相对于传统的 采用高矫顽力的永磁材料的方式而言,还可以降低永磁风力发电机组的 成本, 而且方便维护。
针对上述实施例提供的永磁风力发电机组,本发明实施例还提供一 种用于保护永磁电机的方法, 其用于保护永磁电机的永磁体。 该用于保 护永磁电机的方法包括以下步骤:
将所述永磁电机和电网建立电连接;
在用于连接永磁电机和电网的电路中串接保护单元;
当用于连接永磁电机和电网的电路中出现短路电流时,该保护单元 限制永磁电机的短路电流的大小, 从而控制退磁场的大小, 进而避免短 路电流导致 7j磁电机的永磁体退磁。
在本实施例中,可以通过断开短路电流的方式来限制所述永磁电机 的短路电流的大小, 如采用实施例一所述的高速开断器; 也可以通过限 制短路电流的峰值来限制所述永磁电机的短路电流的大小,如采用实施 例二所述的超导限流器。 不管采用哪种限制短路电流的方式, 均可以在
10ms内将永磁电机的短路电流限制在 2000A以内。
本实施例通过限制永磁电机的短路电流的大小来控制退磁场的大 小, 避免因短路电流导致永磁电机的永磁体退磁, 从而可以避免短路电 流对永磁风力发电机组的损害,进而可以提高永磁风力发电机组的安全 性和可靠性, 降低永磁风力发电机组的成本, 使维护方便。 的示例性实施方式, 然而本发明并不局限于此。 对于本领域内的普通技 术人员而言, 在不脱离本发明的精神和实质的情况下, 可以做出各种变 型和改进, 这些变型和改进也视为本发明的保护范围。

Claims

权 利 要 求 书
1.一种用于保护永磁电机的方法, 其用于保护永磁电机的永磁体, 其特征在于, 包括以下步骤:
将所述永磁电机和电网建立电连接;
在用于连接所述永磁电机和所述电网的电路中串接保护单元; 当用于连接所述永磁电机和所述电网的所述电路中出现短路电流 时, 所述保护单元限制所述永磁电机的短路电流的大小, 以避免所述短 路电流导致所述永磁电机的永磁体的退磁。
2.根据权利要求 1所述的保护方法, 其特征在于, 所述保护单元通 过断开短路电流来限制所述永磁电机的所述短路电流的大小。
3.根据权利要求 1所述的保护方法, 其特征在于, 所述保护单元通 过限制短路电流的峰值来限制所述永磁电机的短路电流的大小。
4.一种永磁风力发电机组, 包括永磁电机、 变流器以及变压器,所 述永磁电机的输出端与所述变流器的输入端连接,所述变流器的输出端 与所述变压器的输入端连接, 所述变压器的输出端连接电网, 其特征在 于,在所述永磁电机的输出端与所述电网之间的电路中设有用于限制所 述永磁电机的短路电流大小的保护单元,以避免所述短路电流导致所述 H电机的 7j磁体的退磁。
5.根据权利要求 4所述永磁风力发电机组, 其特征在于, 所述保护 单元设置在所述永磁电机的输出端与所述变流器的输入端之间,或者设 置在所述变流器的输出端与所述变压器的输入端之间,或者设置在所述 变压器的输出端与所述电网之间,或设置在所述变流器的转子侧和网侧 之间。
6.根据权利要求 4所述永磁风力发电机组, 其特征在于, 在用于连 接所述永磁电机与所述变流器的每个回路中均设置一个或多个所述保 护单元。
7.根据权利要求 4所述的永磁风力发电机组, 其特征在于, 所述保 护单元的响应时间小于 10ms。
8.根据权利要求 4所述的永磁风力发电机组, 其特征在于, 所述保 护单元将所述永磁电机的短路电流限制在 2000A以下。
9.根据权利要求 4-8中任意一项所述的永磁风力发电机组,其特征 在于, 所述保护单元为高速开断器, 所述高速开断器通过断开短路电流 来限制所述永磁电机的短路电流的大小。
10.根据权利要求 4-8中任意一项所述的永磁风力发电机组, 其特 征在于, 所述保护单元为超导限流器, 所述超导限流器通过限制短路电 流的峰值来限制所述永磁电机的短路电流的大小。
1 1.根据权利要求 10所述永磁风力发电机组, 其特征在于, 所述超 导限流器包括相互并联的超导部件和限流电阻,所述超导部件在出现短 路电流时失效, 所述限流电阻限制所述永磁电机的所述短路电流的大 小。
PCT/CN2013/071708 2012-02-20 2013-02-20 用于保护永磁电机的方法及永磁风力发电机组 WO2013123879A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201210038272.1A CN103259252B (zh) 2012-02-20 2012-02-20 一种用于保护永磁电机的方法及永磁风力发电机组
CN201210038272.1 2012-02-20

Publications (1)

Publication Number Publication Date
WO2013123879A1 true WO2013123879A1 (zh) 2013-08-29

Family

ID=48963026

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/071708 WO2013123879A1 (zh) 2012-02-20 2013-02-20 用于保护永磁电机的方法及永磁风力发电机组

Country Status (2)

Country Link
CN (1) CN103259252B (zh)
WO (1) WO2013123879A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10644500B2 (en) 2018-01-02 2020-05-05 Ge Global Sourcing Llc Ceramic permanent magnet protection

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103825530A (zh) * 2014-03-07 2014-05-28 华中科技大学 一种超导电机系统及其应用
CN110098634A (zh) * 2019-02-25 2019-08-06 上海电机学院 一种带超导限流器的风电并网系统

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006311684A (ja) * 2005-04-27 2006-11-09 Mitsubishi Electric Corp 永久磁石式風力発電設備の短絡事故検出装置
US20070216165A1 (en) * 2006-03-14 2007-09-20 Shinya Oohara Hydrogen production system using wind turbine generator
US20080277938A1 (en) * 2007-05-09 2008-11-13 Hitachi, Ltd. Wind Power Generation System and Operating Method Thereof
CN101741076A (zh) * 2010-01-15 2010-06-16 中国科学院电工研究所 一种基于ybco高温超导带材的短路故障限流器
US20110140424A1 (en) * 2010-06-30 2011-06-16 Thomas Edenfeld Method for operating a wind turbine, method for determining the temperature of a permanent magnet and controller for a wind turbine
CN102312781A (zh) * 2010-06-29 2012-01-11 通用电气公司 风力涡轮机和用于操作风力涡轮机的方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009005553A (ja) * 2007-06-25 2009-01-08 Hitachi Ltd 永久磁石モータの制御方式および方法、並びにエレベータの制御方式
CN202034764U (zh) * 2011-05-19 2011-11-09 大禹电气科技股份有限公司 安全装置和电机

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006311684A (ja) * 2005-04-27 2006-11-09 Mitsubishi Electric Corp 永久磁石式風力発電設備の短絡事故検出装置
US20070216165A1 (en) * 2006-03-14 2007-09-20 Shinya Oohara Hydrogen production system using wind turbine generator
US20080277938A1 (en) * 2007-05-09 2008-11-13 Hitachi, Ltd. Wind Power Generation System and Operating Method Thereof
CN101741076A (zh) * 2010-01-15 2010-06-16 中国科学院电工研究所 一种基于ybco高温超导带材的短路故障限流器
CN102312781A (zh) * 2010-06-29 2012-01-11 通用电气公司 风力涡轮机和用于操作风力涡轮机的方法
US20110140424A1 (en) * 2010-06-30 2011-06-16 Thomas Edenfeld Method for operating a wind turbine, method for determining the temperature of a permanent magnet and controller for a wind turbine

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10644500B2 (en) 2018-01-02 2020-05-05 Ge Global Sourcing Llc Ceramic permanent magnet protection

Also Published As

Publication number Publication date
CN103259252A (zh) 2013-08-21
CN103259252B (zh) 2015-11-25

Similar Documents

Publication Publication Date Title
JP5014437B2 (ja) 励磁機と、送電系統に接続されない電力変換器とを有する可変速風力タービンのための電圧低下対応ライドスルーシステム
EP3084907B1 (en) Variable impedance device for a wind turbine
EP2341607B1 (en) System for wind turbine electrical control and operation
CN102939695B (zh) 电机的保护电路及方法
WO2016140122A1 (ja) 直流遮断装置
TWI606665B (zh) 快速開關故障電流限制器及電流限制器系統
TW201310839A (zh) 雙饋型風力發電系統的直流斬波裝置與方法
CN102646991B (zh) 用于双馈式风力发电机组低电压穿越的开关和动态电阻
WO2014143603A1 (en) Methods and apparatus for protection in a multi-phase machine
EP2403091A2 (en) Circuit breaker with overvoltage protection
CN106300309A (zh) 一种具有快速恢复能力的柔性直流电网故障限流器
WO2013123879A1 (zh) 用于保护永磁电机的方法及永磁风力发电机组
JP5188853B2 (ja) Spd切り離し装置
CN110912101B (zh) 一种非接触无源式spd后备保护断路器
CN201820574U (zh) 静止无功发生器系统过流保护用电抗器
US20120243129A1 (en) Shorting protection for systems having electric machines
CN102255299B (zh) 一种双馈风力发电机变流器主动式保护方法及装置
JP5258633B2 (ja) 単3中性線欠相保護付漏電遮断器
Das et al. Operation and starting of PAM motors using vacuum contactors
CN102412599A (zh) 一种双馈风力发电系统低电压穿越用Crowbar装置
CN204118716U (zh) 一种适用于多源电网的分布式电源故障保护装置
CN102306926A (zh) 发电用变流器的故障保护方法及装置
CN201682292U (zh) 一种基于低电压穿越的斩波装置
JP5042895B2 (ja) Spd切り離し装置
CN203800859U (zh) 一种超导电机系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13751741

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13751741

Country of ref document: EP

Kind code of ref document: A1