WO2013122199A1 - Organic thin film solar cell element - Google Patents

Organic thin film solar cell element Download PDF

Info

Publication number
WO2013122199A1
WO2013122199A1 PCT/JP2013/053683 JP2013053683W WO2013122199A1 WO 2013122199 A1 WO2013122199 A1 WO 2013122199A1 JP 2013053683 W JP2013053683 W JP 2013053683W WO 2013122199 A1 WO2013122199 A1 WO 2013122199A1
Authority
WO
WIPO (PCT)
Prior art keywords
organic thin
solar cell
thin film
film solar
layer
Prior art date
Application number
PCT/JP2013/053683
Other languages
French (fr)
Japanese (ja)
Inventor
明 殷
郵司 吉田
敏広 山成
Original Assignee
凸版印刷株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 凸版印刷株式会社 filed Critical 凸版印刷株式会社
Publication of WO2013122199A1 publication Critical patent/WO2013122199A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/80Constructional details
    • H10K30/88Passivation; Containers; Encapsulations
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/30Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising bulk heterojunctions, e.g. interpenetrating networks of donor and acceptor material domains
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/50Photovoltaic [PV] devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/111Organic polymers or oligomers comprising aromatic, heteroaromatic, or aryl chains, e.g. polyaniline, polyphenylene or polyphenylene vinylene
    • H10K85/113Heteroaromatic compounds comprising sulfur or selene, e.g. polythiophene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/20Carbon compounds, e.g. carbon nanotubes or fullerenes
    • H10K85/211Fullerenes, e.g. C60
    • H10K85/215Fullerenes, e.g. C60 comprising substituents, e.g. PCBM
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Definitions

  • the present invention relates to an organic thin film solar cell element. This application claims priority based on Japanese Patent Application No. 2012-031834 for which it applied to Japan on February 16, 2012, and uses the content here.
  • Organic solar cells such as dye-sensitized solar cells and organic thin-film solar cells are being studied as solar cells that can reduce costs.
  • the dye-sensitized solar cell has a problem of solidification of the electrolytic solution.
  • an organic thin film solar cell using a low molecular electron donating organic semiconductor and a low molecular electron accepting organic semiconductor, or using a conjugated conductive polymer does not require an electrolyte, and a roll-to-roll method, etc. Therefore, it is expected to be a next-generation solar cell with a low manufacturing cost, a light weight and a low power generation cost.
  • a polymer-type organic thin film solar cell using a conjugated conductive polymer can be manufactured by wet coating without using a vapor deposition process, so that the manufacturing cost of the solar cell can be further reduced.
  • the organic thin film solar cell has a lower photoelectric conversion efficiency than a solar cell using an inorganic semiconductor, an improvement in the photoelectric conversion efficiency is required for practical use. For this reason, various studies have been conducted on the configuration and materials of the photoelectric conversion layer (organic thin film photoelectric conversion layer) constituting the organic thin film solar cell.
  • Non-patent Document 1 As the first attempt at organic thin-film solar cells, Tang et al. In 1986 made copper phthalocyanine as an electron-donating organic semiconductor (p-type organic semiconductor, donor) and as an electron-accepting organic semiconductor (n-type organic semiconductor, acceptor). A planar pn junction type configuration using perylene was devised and it was announced that conversion efficiency exceeding 1% was obtained (Non-patent Document 1). However, in such a planar pn junction type organic thin film solar cell, photoelectric conversion is performed only at the pn interface, and only a small part of the irradiated light is converted into electricity.
  • Non-Patent Document 2 a bulk heterojunction type organic thin film solar cell blended with a p-type organic semiconductor and an n-type organic semiconductor, which can further improve the conversion efficiency.
  • a bulk heterojunction type organic thin film solar cell is an organic thin film. It has become the mainstream of solar cells (Non-Patent Document 2).
  • the organic thin film solar cell includes an organic thin film solar cell component having at least a transparent electrode (anode), a metal electrode (cathode), and an organic film disposed therebetween.
  • This organic film includes at least an organic thin film photoelectric conversion layer.
  • these organic films and metal electrodes are liable to deteriorate due to moisture, oxygen, gas generated from components, heat, and the like. Therefore, in order to prolong the life of the organic thin film solar cell, it is necessary to increase the durability of the organic thin film solar cell constituent portion against moisture, oxygen, gas generated from the constituent member, heat, and the like.
  • the method of placing the organic thin-film solar cell component in an atmosphere excluding moisture and oxygen, the method of reducing the gas generated from the component as much as possible, the heat generated when driving the organic thin-film solar cell element is efficient
  • a method of adopting a structure that can often escape to the outside can be considered.
  • a cap method already used in the field of organic EL display panels is considered as a method of placing the organic thin film solar cell constituent part in an atmosphere excluding moisture and oxygen.
  • the cap method the organic thin-film solar cell constituent part is enclosed in a sealed container composed of a base material and a sealing cap.
  • FIG. 2 An example of an organic thin film solar cell element in which a desiccant is enclosed is shown in FIG.
  • the organic thin film solar cell element 20 shown in FIG. 2 is formed by sequentially laminating a transparent electrode layer 22, an organic thin film photoelectric conversion layer 23, and a metal electrode layer 24 on a base material 21. Further, a sealing cap 26 made of glass, metal or the like is placed thereon. The sealing cap 26 is fixed to the base material 21 with a sealing agent 27 and forms a sealed container together with the base material 21. A sheet-like desiccant layer 28 is provided on the inner surface of the sealing cap 26.
  • Patent Document 1 proposes a method of bonding an organic thin-film solar cell element and a housing through the hot melt type member via a hot melt type member containing a moisture scavenger and a wax.
  • the moisture trapping agent those that trap moisture by a chemical reaction, such as powdered inorganic oxides such as barium oxide and calcium oxide, and organometallic compounds are used.
  • Patent Document 1 since the method described in Patent Document 1 uses wax, heat resistance and adhesiveness are insufficient. Therefore, after pasting together via a hot-melt type member, it is necessary to apply and seal the sealing agent around it, and there is a problem that the manufacturing process is complicated. Moreover, since durability is inadequate, there also exists a problem that durability of the sealed organic thin-film solar cell element is not enough.
  • the present invention has been made in view of the above circumstances, and an object thereof is to provide an organic thin film solar cell element that is excellent in durability and easy to manufacture.
  • the organic thin-film solar cell element that solves the above problems has the following configuration.
  • the desiccant may be at least one selected from the group consisting of activated carbon, zeolite, magnesium sulfate, sodium sulfate, calcium chloride, and silica gel. [3] In the above [1] and [2], the desiccant may be zeolite. [4] In the above [1] to [3], the desiccant may be encapsulated in microcapsules. [5] In the above [1] to [4], the adhesive is selected from the group consisting of acrylic resins, epoxy resins, fluorine resins, silicone resins, chloroprene resins, butyl rubber resins, and styrene butadiene rubber resins.
  • the adhesive may contain an epoxy resin.
  • the sealing substrate may be a glass plate, a metal plate, a metal foil, or a gas barrier film.
  • an organic thin film solar cell element excellent in durability and easy to manufacture can be provided.
  • FIG. 1 is a schematic cross-sectional view illustrating the configuration of an organic thin film solar cell element 10 according to this embodiment.
  • the organic thin film solar cell element 10 includes a base material 1, an organic thin film solar cell component 5 provided on the base material 1, an adhesive layer 6 provided on the organic thin film solar cell component 5, and an adhesive layer 6. And a continuous film-like or sheet-like sealing substrate 7 provided on the top.
  • the organic thin film solar cell constituent part 5 has a multilayer structure in which the transparent electrode layer 2, the organic thin film photoelectric conversion layer 3, and the metal electrode layer 4 are laminated in this order from the substrate 1 side.
  • the transparent electrode layer 2 functions as an anode, and the metal electrode layer 4 functions as a cathode.
  • the transparent electrode layer 2 is provided so as to partially cover the substrate 1.
  • the organic thin film photoelectric conversion layer 3 is provided so as to partially cover the transparent electrode layer 2 and a portion of the substrate 1 that is not covered with the transparent electrode layer 2.
  • the metal electrode layer 4 is provided so as to cover the organic thin film photoelectric conversion layer 3 and a portion of the substrate 1 that is not covered with the transparent electrode layer 2 and the organic thin film photoelectric conversion layer 3.
  • the adhesive layer 6 is provided on the metal electrode layer 4 so as to cover the entire organic thin film photoelectric conversion layer 3.
  • the adhesive layer 6 is obtained by curing an adhesive layer forming composition in which an adhesive containing a photocurable resin or a thermosetting resin and a physical adsorption type desiccant are mixed, and is composed of a cured adhesive. In the matrix portion 6a, the particulate desiccant 6b is dispersed.
  • sunlight enters from the substrate 1 side, passes through the transparent electrode layer 2, and the organic thin film photoelectric conversion layer 3 converts the light energy into electric power. Therefore, a transparent substrate that transmits sunlight is used as the substrate 1.
  • the adhesive layer 6 is provided on the metal electrode layer 4 so as to cover the entire organic thin film photoelectric conversion layer 3, thereby sealing the organic thin film solar cell component. Therefore, the metal electrode layer 4 and the organic thin film photoelectric conversion layer 3 are not easily affected by moisture and oxygen over a long period of time. Therefore, the organic thin film solar cell component 5 can maintain stable photoelectric conversion characteristics over a long period of time. Therefore, the organic thin film solar cell using the organic thin film solar cell element 10 can maintain stable power generation characteristics over a long period of time.
  • the adhesive layer 6 has an excellent barrier property, adhesive strength, and heat resistance because the matrix portion 6a of the adhesive layer 6 is made of a cured resin and the physical adsorption type desiccant 6b is included in the adhesive layer 6. This is considered to be because it has durability and the like, is less likely to cause deterioration of barrier properties and interlayer adhesion due to heat and time, and can prevent entry and passage of moisture, oxygen, and the like from the outside over a long period of time. Moreover, in this embodiment, since it is not necessary to cover the side surface of an organic thin film solar cell structure part like the conventional sealing cap, it is only necessary to laminate
  • the organic thin film solar cell element 10 of the present embodiment sunlight enters from the substrate 1 side, passes through the transparent electrode layer 2, and the organic thin film photoelectric conversion layer 3 converts the light energy into electric power. Therefore, as the substrate 1, a transparent material that transmits sunlight is used.
  • the substrate 1 include a glass substrate, a quartz substrate, and a plastic substrate.
  • the plastic constituting the plastic substrate include polypropylene, polyethersulfone, polycarbonate, cycloolefin polymer, polyarylate, polyamide, polymethyl methacrylate, polyethylene terephthalate, and polyethylene naphthalate. Any one of these may be used alone or in combination of two or more.
  • the plastic substrate may be plate-shaped or film-shaped.
  • a plastic film is preferable.
  • the thickness of the film is preferably 10 to 1000 ⁇ m, more preferably 50 to 250 ⁇ m.
  • an inorganic metal compound coat layer may be provided on the side where the transparent electrode layer 2 of the plastic base material is not formed, or a gas barrier film may be laminated.
  • the inorganic metal compound include metal oxides such as silicon oxide and aluminum oxide; metal fluorides such as aluminum fluoride and magnesium fluoride; metal nitrides such as silicon nitride and aluminum nitride.
  • the gas barrier film include a polyvinylidene chloride film, a polyvinyl chloride film, and an ethylene-vinyl acetate copolymer saponified film.
  • a conductive film such as a metal composite oxide film, a metal film, or a fine particle dispersion film in which metal oxide or metal fine particles are dispersed in an epoxy resin or an acrylic resin is used as a single layer or a laminated layer.
  • the metal composite oxide include ITO (indium tin composite oxide), indium zinc composite oxide, and zinc aluminum composite oxide.
  • the metal include gold and platinum.
  • the conductive film may be patterned.
  • an auxiliary electrode may be provided in the conductive film. Examples of the material for the auxiliary electrode include metal materials such as copper and aluminum.
  • the thickness of the transparent electrode layer 2 is not particularly limited, and there is no particular problem as long as it is 5 ⁇ m or more, more preferably 50 ⁇ m to 150 ⁇ m. When the thickness is 5 ⁇ m or less, the electrical resistance increases and the conductivity is significantly lowered. On the other hand, when the thickness is 150 ⁇ m or more, the material cost increases, which is not practically preferable.
  • the electric resistance of the transparent electrode layer 2 is preferably 200 ⁇ / ⁇ or less, and more preferably 50 ⁇ / ⁇ or less as the surface resistivity (sheet resistance).
  • the electrical resistance of the transparent electrode layer 2 can be measured with a commercially available resistivity meter in accordance with JISK7194: 1994.
  • the unit ⁇ / ⁇ is a dimensionless number.
  • Organic thin film photoelectric conversion layer 3 As the organic thin film photoelectric conversion layer 3, a so-called bulk heterojunction type organic thin film photoelectric conversion layer in which a p-type organic semiconductor material and an n-type organic semiconductor material are mixed has a relatively high conversion efficiency. This is preferable from the viewpoint of film formation. However, this invention is not limited to this, It can select suitably from well-known organic thin film photoelectric converting layers.
  • the p-type organic semiconductor material include conductive polymer materials such as polythiophene (PT), polyphenylene vinylene (PPV), and derivatives thereof.
  • Examples of the PT derivative include poly (3-hexylthiophene) (P3HT), poly (3-octylthiophene) (P3OT), and the like.
  • P3HT poly (3-hexylthiophene)
  • P3OT poly (3-octylthiophene)
  • a PT derivative having a regioregular steric structure is preferred.
  • Examples of the PPV derivative include poly (2-methoxy-5- (2′-ethylhexyloxy) -1,4-phenylene vinylene) (MEHPPV).
  • MEHPPV poly (2-methoxy-5- (2′-ethylhexyloxy) -1,4-phenylene vinylene
  • n-type organic semiconductor material include fullerene such as C 60 and C 70 and derivatives thereof.
  • fullerene derivatives include PCBM ([6,6] -Phenyl-C 61 -Butyric acid Methyl ester).
  • the mixing ratio (mass ratio) of the p-type polymer material and the n-type organic semiconductor material in the bulk heterojunction organic thin film photoelectric conversion layer is not particularly limited, but is generally 10/90 to 90/10. If it is within the range, there is no problem.
  • the thickness of the organic thin film photoelectric conversion layer 3 is preferably 5 to 1000 nm, more preferably 10 to 100 nm. The thickness of the organic thin film photoelectric conversion layer 3 can be measured with a commercially available film thickness meter.
  • Metal electrode layer 4 When the metal electrode layer 4 is used as a cathode, a material having a high electron injection efficiency and a low work function can be used as a material constituting the metal electrode layer 4, and examples thereof include Mg, Al, and Yb.
  • the thickness of the metal electrode layer 4 is preferably 50 to 100 nm. The thickness of the metal electrode layer 4 can be measured with a commercially available film thickness meter.
  • the adhesive layer 6 is obtained by curing an adhesive layer forming composition in which an adhesive containing a photocurable resin or a thermosetting resin and a physical adsorption type desiccant are mixed. Since the physical adsorption type desiccant physically adsorbs moisture and oxygen, the organic thin-film solar cell element 10 can be thinned and the manufacturing process can be simplified by including it in the adhesive layer 6.
  • the physical adsorption type desiccant include activated carbon, zeolite, magnesium sulfate, sodium sulfate, calcium chloride, activated aluminum oxide, and silica gel. These desiccants may be used alone or in combination of two or more.
  • the physical adsorption type desiccant is preferably at least one selected from the group consisting of activated carbon, zeolite, magnesium sulfate, sodium sulfate, calcium chloride and silica gel because of its high hygroscopicity.
  • zeolite is particularly preferable because of its high moisture absorption and long moisture absorption duration.
  • the desiccant is particulate.
  • the size and shape of the desiccant particles Preferably, those having an average particle size of about 1 ⁇ m to 100 ⁇ m are used. When the average particle size is 100 ⁇ m or less, sufficient hygroscopicity is easily obtained. When it is 1 ⁇ m or more, the handleability is good.
  • the desiccant is preferably encapsulated in microcapsules.
  • microencapsulation before mixing with the adhesive has the effect of preventing crushing during mixing with the adhesive.
  • microencapsulation means encapsulating a desiccant in a microcapsule.
  • Well-known methods such as an interfacial polymerization method, a submerged drying method, a spray drying method, a dry-type mixing method, can be used.
  • the adhesive may contain either a photocurable resin or a thermosetting resin.
  • the photocurable resin is not particularly limited as long as it can be cured by irradiation with ultraviolet rays or visible light, and a known photocurable resin can be used, and examples thereof include an acrylic resin, an epoxy resin, and a polyester resin. It does not specifically limit as a thermosetting resin, A well-known thermosetting resin can be used. In order to cause deterioration and crystallization of the material by heat during curing, those having a curing temperature of 150 ° C. or lower are preferable, and those having a curing temperature of 100 ° C. or lower are more preferable.
  • thermosetting resin examples include, for example, acrylic resins, epoxy resins, fluorine resins, silicone resins, chloroprene resins, butyl rubber resins, styrene butadiene rubber resins, and the like. These may be used alone or in combination of two or more.
  • the adhesive may contain components other than the photocurable resin and the thermosetting resin. Examples of the other components include photoinitiators, thermosetting catalysts, additives such as reactive monomers, organic solvents, and the like.
  • the composition for forming an adhesive layer is obtained by mixing the adhesive and the desiccant.
  • the ratio of a desiccant is 1 to 50% by mass is preferable, and 5 to 25% by mass is more preferable.
  • the thickness of the adhesive layer 6 is not particularly limited, and is preferably 1 to 100 ⁇ m, more preferably 5 to 20 ⁇ m, because the adhesive strength as the adhesive layer 6 and the effect of blocking moisture and oxygen are excellent.
  • the sealing substrate 7 is provided to protect the organic thin film solar cell element 10. It is preferable that the sealing substrate 7 has a barrier property against water vapor or oxygen. Examples of such a sealing substrate 7 include a glass plate, a metal plate, a metal foil, and a gas barrier film.
  • the surface of the sealing substrate 7 that is in contact with the adhesive layer 6 may be subjected to a surface treatment such as ultraviolet rays, electron beams, or corona in order to improve the adhesion with the adhesive.
  • the manufacturing method of the organic thin film solar cell element 10 is not particularly limited, but can be produced, for example, by a production method including the following steps (1) to (3).
  • FIG. 1 The process of forming the organic thin film solar cell structure part 5 by laminating
  • An adhesive layer-forming composition is prepared by mixing an adhesive containing a photocurable resin or a thermosetting resin and a physical adsorption type desiccant, and the adhesive layer-forming composition is The process of coating on the base material 1 in which the organic thin film solar cell structure part 5 was provided so that all the organic thin film photoelectric converting layers 3 might be covered.
  • examples of the method of forming the transparent electrode layer 2 include a method of forming a conductive film on the substrate 1 and patterning as necessary.
  • a method for forming a conductive film a known film formation method depending on the material, for example, a resistance film deposition method, an electron beam deposition method, a reactive deposition method, an ion plating method, a dry deposition method such as a sputtering method, A wet film forming method such as a gravure printing method or a screen printing method can be used.
  • an existing patterning method such as a mask vapor deposition method, a photolithography method, a wet etching method, or a dry etching method can be used depending on a material or a film forming method.
  • the film-forming method of the organic thin film photoelectric converting layer 3 does not specifically limit as the film-forming method of the organic thin film photoelectric converting layer 3, According to the structure of the organic thin film photoelectric converting layer 3, and the material to be used, well-known methods, such as a coating method and a vapor deposition method, can be used. In particular, the coating method is preferable because it can be manufactured with a large area and low cost.
  • the film formation of the organic thin film photoelectric conversion layer 3 by the coating method is performed by, for example, preparing a coating liquid by dissolving the p-type polymer material and the n-type organic semiconductor material in a solvent, and applying the coating liquid to the substrate 1. It can be carried out by applying and heating.
  • the solvent used for the film formation is not particularly limited as long as it can dissolve the p-type polymer material and the n-type organic semiconductor material to be used.
  • the solvent those capable of dissolving the p-type polymer material and the n-type organic semiconductor material at a concentration of 0.1% by mass or more are preferable.
  • Specific examples of the solvent include hydrocarbon solvents such as toluene, xylene, mesitylene, tetralin, decalin, bicyclohexyl, n-butylbenzene, sec-butylbenzene, tert-butylbenzene, carbon tetrachloride, chloroform, dichloromethane.
  • Halogenated saturated hydrocarbon solvents such as dichloroethane, chlorobutane, bromobutane, chloropentane, bromopentane, chlorohexane, bromohexane, chlorocyclohexane and bromocyclohexane, and halogenated unsaturated hydrocarbons such as chlorobenzene, dichlorobenzene and trichlorobenzene
  • the solvent include ether solvents such as tetrahydrofuran and tetrahydropyran.
  • the coating method of the above coating liquid spin coating method, casting method, micro gravure coating method, gravure coating method, bar coating method, roll coating method, wire bar coating method, dip coating method, spray coating method, screen printing Method, flexographic printing method, offset printing method, inkjet printing method, dispenser printing method, nozzle coating method, capillary coating method and the like.
  • the spin coat method, the flexographic printing method, the inkjet printing method, and the dispenser printing method are preferable.
  • the organic thin film photoelectric conversion layer 3 is formed by heating and annealing the coating film formed by applying the coating liquid at 80 to 150 ° C.
  • the heating time is preferably about 1 to 20 minutes.
  • the heating method is not particularly limited, and for example, an oven, infrared rays, or the like may be used.
  • a known film forming method such as a vacuum evaporation method such as a sputtering method or a resistance heating method can be used depending on the material.
  • step (2) as a method for applying the composition for forming an adhesive layer, a coating method such as roll coating, spin coating, screen printing, spray coating, or the like can be used depending on the material.
  • a coating method such as roll coating, spin coating, screen printing, spray coating, or the like can be used depending on the material.
  • the step (3) as a method for curing the composition for forming an adhesive layer, a method of photocuring by irradiating ultraviolet rays, visible light, or the like, or a method of heat curing can be used depending on the resin contained in the adhesive. .
  • the adhesive surface with the adhesive is improved on the laminated surface of the sealing substrate 7 (the surface on the side in contact with the adhesive layer 6). Therefore, surface treatment such as ultraviolet rays, electron beams, corona may be performed.
  • the organic thin film solar cell element 10 can be obtained as described above.
  • the present invention is not limited to this, A design change etc. are possible unless it deviates from the technical idea of this invention.
  • the simplest layer configuration transparent electrode / organic thin film photoelectric conversion layer / metal electrode
  • the present invention is not limited to this and is well known.
  • a layer structure can be adopted.
  • a functional layer other than the organic thin film photoelectric conversion layer may be laminated between the transparent electrode and the metal electrode as necessary.
  • the functional layer other than the organic thin film photoelectric conversion layer include a hole transfer layer, an electron transfer layer, a positive electrode buffer layer, and a negative electrode buffer layer.
  • PEDOT poly (3,4-ethylenedioxythiophene) -poly (styrene sulfonic acid)
  • PEDOT poly (3,4-ethylenedioxythiophene) -poly (styrene sulfonic acid)
  • LiF, Li, lithium oxide, or the like can be used by stacking several nanometers.
  • these functional layers can be formed by dry deposition methods such as resistance heating vapor deposition, electron beam vapor deposition, reactive vapor deposition, ion plating, and sputtering, spin coating gravure printing, and screen printing. It can be formed using a wet film forming method such as a method.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Nanotechnology (AREA)
  • Electromagnetism (AREA)
  • Mathematical Physics (AREA)
  • Theoretical Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Photovoltaic Devices (AREA)

Abstract

 An organic thin film solar cell element equipped with: a substrate; an organic thin film solar cell constituting portion which is provided on the substrate and in which at least a transparent electrode layer, an organic thin film photovoltaic conversion layer, and a metallic electrode layer are layered in said order; an adhesive layer provided on the organic thin film solar cell constituting portion so as to completely cover the organic thin film photovoltaic conversion layer; and a sealing layer provided on the adhesive layer. The adhesive layer is obtained by curing an adhesive layer-forming composition in which a physical adsorption drying agent has been mixed with an adhesive agent containing a photocurable resin or a thermocurable resin.

Description

有機薄膜太陽電池素子Organic thin-film solar cell element
 本発明は、有機薄膜太陽電池素子に関する。
本願は、2012年2月16日に日本に出願された特願2012-031834号に基づき優先権を主張し、その内容をここに援用する。
The present invention relates to an organic thin film solar cell element.
This application claims priority based on Japanese Patent Application No. 2012-031834 for which it applied to Japan on February 16, 2012, and uses the content here.
 近年、地球環境保護や温暖化防止に対する意識が非常に高くなってきている。地球温暖化への影響が最も大きいと考えられている二酸化炭素の排出を抑制するため、石油、石炭、天然ガスなどの化石燃料の利用を削減することが最も重要である。一方、人類の生活活動の拡大に伴いエネルギーに対する需要がますます大きくなっているが、現在エネルギー源として普及している化石燃料やウランなどは何れも資源が有限で将来その資源量が減っていくと考えられる。エネルギーを確保するため、これらの枯渇性エネルギーの代わりに、再生可能エネルギーの開発が必須となっている。 In recent years, awareness of global environmental protection and global warming prevention has become very high. It is most important to reduce the use of fossil fuels such as oil, coal, and natural gas in order to reduce carbon dioxide emissions, which are considered to have the greatest impact on global warming. On the other hand, the demand for energy is increasing with the expansion of human activities, but fossil fuels and uranium, which are currently popular as energy sources, all have limited resources and the amount of resources will decrease in the future. it is conceivable that. In order to secure energy, the development of renewable energy is indispensable instead of these exhaustible energy.
 クリーンで無尽蔵の太陽光を利用する太陽光エネルギーは、再生可能エネルギーとして最も注目され、太陽光発電の市場が近年急速に拡大している。
 現在、太陽光発電に用いられる太陽電池としては、光電変換層に単結晶シリコン、多結晶シリコン、アモルファスシリコン、化合物半導体などの無機半導体を用いたものが実用化されている。しかし、無機半導体を用いた太陽電池は、火力発電や原子力発電などに比べて製造コストが高い。一般家庭に広く普及するためには、より安価に製造できる太陽電池の開発が要求される。
Solar energy that uses clean and inexhaustible sunlight has attracted the most attention as renewable energy, and the photovoltaic power generation market has been rapidly expanding in recent years.
Currently, solar cells that are used for photovoltaic power generation have been put into practical use that use an inorganic semiconductor such as single crystal silicon, polycrystalline silicon, amorphous silicon, or a compound semiconductor for the photoelectric conversion layer. However, a solar cell using an inorganic semiconductor has a higher manufacturing cost than thermal power generation or nuclear power generation. In order to spread widely in general households, development of solar cells that can be manufactured at a lower cost is required.
 コストを低減することが可能な太陽電池として、色素増感太陽電池や有機薄膜太陽電池のような有機系太陽電池が検討されている。これらのうち色素増感太陽電池は、電解液の固体化が課題となっている。これに対し、低分子電子供与性有機半導体と低分子電子受容性有機半導体とを用いる、又は共役系導電性重合体を用いる有機薄膜太陽電池は、電解液が不要であり、ロールツウロール法などの安価なプロセスで大面積に作製することが可能であるため、製造コストが安く、軽量で低発電コストの次世代太陽電池として期待されている。特に共役系導電性重合体を用いる高分子型の有機薄膜太陽電池は、蒸着プロセスを使わずウェット塗布によって製造することができるため、太陽電池の製造コストをより安くできると考えられる。しかし有機薄膜太陽電池は、無機半導体を用いた太陽電池に比べて光電変換効率が低いため、実用化のためには光電変換効率の向上が求められる。そのため、有機薄膜太陽電池を構成する光電変換層(有機薄膜光電変換層)の構成や材料について種々の検討が行われている。 Organic solar cells such as dye-sensitized solar cells and organic thin-film solar cells are being studied as solar cells that can reduce costs. Among these, the dye-sensitized solar cell has a problem of solidification of the electrolytic solution. On the other hand, an organic thin film solar cell using a low molecular electron donating organic semiconductor and a low molecular electron accepting organic semiconductor, or using a conjugated conductive polymer does not require an electrolyte, and a roll-to-roll method, etc. Therefore, it is expected to be a next-generation solar cell with a low manufacturing cost, a light weight and a low power generation cost. In particular, a polymer-type organic thin film solar cell using a conjugated conductive polymer can be manufactured by wet coating without using a vapor deposition process, so that the manufacturing cost of the solar cell can be further reduced. However, since the organic thin film solar cell has a lower photoelectric conversion efficiency than a solar cell using an inorganic semiconductor, an improvement in the photoelectric conversion efficiency is required for practical use. For this reason, various studies have been conducted on the configuration and materials of the photoelectric conversion layer (organic thin film photoelectric conversion layer) constituting the organic thin film solar cell.
 有機薄膜太陽電池の最初の試みとしては、1986年にTangらが、電子供与性有機半導体(p型有機半導体、ドナー)として銅フタロシアニンと、電子受容性有機半導体(n型有機半導体、アクセプター)としてペリレンを用いた平面pn接合型の構成を考案し、1%を越す変換効率を得たと発表した(非特許文献1)。しかし、このような平面pn接合型の有機薄膜太陽電池において、光電変換はpnの界面でしか行われず、照射された光のごく一部しか電気に変換されない。その後、変換効率をさらに向上することができる、p型有機半導体とn型有機半導体をブレンドしたバルクヘテロ接合型の有機薄膜太陽電池が提案され、現在、バルクヘテロ接合型の有機薄膜太陽電池は、有機薄膜太陽電池の主流となっている(非特許文献2)。 As the first attempt at organic thin-film solar cells, Tang et al. In 1986 made copper phthalocyanine as an electron-donating organic semiconductor (p-type organic semiconductor, donor) and as an electron-accepting organic semiconductor (n-type organic semiconductor, acceptor). A planar pn junction type configuration using perylene was devised and it was announced that conversion efficiency exceeding 1% was obtained (Non-patent Document 1). However, in such a planar pn junction type organic thin film solar cell, photoelectric conversion is performed only at the pn interface, and only a small part of the irradiated light is converted into electricity. Thereafter, a bulk heterojunction type organic thin film solar cell blended with a p-type organic semiconductor and an n-type organic semiconductor, which can further improve the conversion efficiency, was proposed. Currently, a bulk heterojunction type organic thin film solar cell is an organic thin film. It has become the mainstream of solar cells (Non-Patent Document 2).
 有機薄膜太陽電池は、少なくとも透明電極(陽極)と、金属電極(陰極)と、それらの間に配置された有機膜とを有する有機薄膜太陽電池構成部を具備している。この有機膜は、少なくとも有機薄膜光電変換層を含んでいる。しかしこれらの有機膜や金属電極は、水分、酸素、構成部材から発生するガス、熱等により劣化しやすい。したがって、有機薄膜太陽電池の長寿命化のためには、有機薄膜太陽電池構成部の水分、酸素、構成部材から発生するガス、熱等に対する耐久性を高める必要がある。このような方法としては、水分や酸素を排除した雰囲気に有機薄膜太陽電池構成部を置く方法、構成部材から発生するガスを極力少なくする方法、有機薄膜太陽電池素子の駆動時に発生する熱が効率よく外部に逃げ得る構造を採用する方法等が考えられる。
 上記のうち、水分や酸素を排除した雰囲気に有機薄膜太陽電池構成部を置く方法としては、有機EL表示パネルの分野で既に使われているキャップ方式が考えられている。キャップ方式では、基材と封止キャップで構成した密閉容器内に有機薄膜太陽電池構成部が封入される。しかし、このような有機薄膜太陽電池素子においては、通常、密封容器内の有機薄膜太陽電池構成部と封止キャップとの間に隙間が存在するため、この隙間に存在する水分や酸素が有機膜や金属電極を劣化させるおそれがある。
The organic thin film solar cell includes an organic thin film solar cell component having at least a transparent electrode (anode), a metal electrode (cathode), and an organic film disposed therebetween. This organic film includes at least an organic thin film photoelectric conversion layer. However, these organic films and metal electrodes are liable to deteriorate due to moisture, oxygen, gas generated from components, heat, and the like. Therefore, in order to prolong the life of the organic thin film solar cell, it is necessary to increase the durability of the organic thin film solar cell constituent portion against moisture, oxygen, gas generated from the constituent member, heat, and the like. As such a method, the method of placing the organic thin-film solar cell component in an atmosphere excluding moisture and oxygen, the method of reducing the gas generated from the component as much as possible, the heat generated when driving the organic thin-film solar cell element is efficient A method of adopting a structure that can often escape to the outside can be considered.
Among the methods described above, as a method of placing the organic thin film solar cell constituent part in an atmosphere excluding moisture and oxygen, a cap method already used in the field of organic EL display panels is considered. In the cap method, the organic thin-film solar cell constituent part is enclosed in a sealed container composed of a base material and a sealing cap. However, in such an organic thin film solar cell element, there is usually a gap between the organic thin film solar cell constituent part in the sealed container and the sealing cap. Or the metal electrode may be deteriorated.
 上記の密封容器内の隙間に存在する水分を排除するために、乾燥剤を封入する方法が提案されている。
 乾燥剤を封入した有機薄膜太陽電池素子の一例を図2に示す。図2に示す有機薄膜太陽電池素子20は、基材21の上に、透明電極層22、有機薄膜光電変換層23、金属電極層24を順次積層して有機薄膜太陽電池構成部25が形成され、その上にガラスや金属等で構成された封止キャップ26が被せられている。封止キャップ26は、シール剤27で基材21に固定され、基材21とともに密閉容器を形成している。封止キャップ26の内側表面にはシート状の乾燥剤層28が設けられている。
 しかし、この方法では、有機薄膜太陽電池構成部25及び乾燥剤層28を内包する空間が形成されるように封止キャップ26を加工する必要があるため、製造工程が煩雑、コストが高いといった問題がある。また、有機薄膜太陽電池素子20を薄膜型、軽量化、大面積化することも困難である。
 上記の問題に対し、特許文献1には、水分捕捉剤及びワックスを含むホットメルト型部材を介して、有機薄膜太陽電池素子と筐体とを前記ホットメルト型部材を介して貼り合わせる方法が提案されている。水分捕捉剤としては、酸化バリウム、酸化カルシウム等の粉末状無機酸化物や有機金属化合物など、化学反応によって水分を捕捉するものが用いられている。
In order to eliminate the water | moisture content which exists in the clearance gap in said sealed container, the method of enclosing a desiccant is proposed.
An example of an organic thin film solar cell element in which a desiccant is enclosed is shown in FIG. The organic thin film solar cell element 20 shown in FIG. 2 is formed by sequentially laminating a transparent electrode layer 22, an organic thin film photoelectric conversion layer 23, and a metal electrode layer 24 on a base material 21. Further, a sealing cap 26 made of glass, metal or the like is placed thereon. The sealing cap 26 is fixed to the base material 21 with a sealing agent 27 and forms a sealed container together with the base material 21. A sheet-like desiccant layer 28 is provided on the inner surface of the sealing cap 26.
However, in this method, since it is necessary to process the sealing cap 26 so as to form a space containing the organic thin film solar cell component 25 and the desiccant layer 28, the manufacturing process is complicated and the cost is high. There is. It is also difficult to make the organic thin-film solar cell element 20 thin-film type, light weight, and large in area.
In order to solve the above problem, Patent Document 1 proposes a method of bonding an organic thin-film solar cell element and a housing through the hot melt type member via a hot melt type member containing a moisture scavenger and a wax. Has been. As the moisture trapping agent, those that trap moisture by a chemical reaction, such as powdered inorganic oxides such as barium oxide and calcium oxide, and organometallic compounds are used.
日本国特開2009-99805号公報Japanese Unexamined Patent Publication No. 2009-99805
 しかし、特許文献1に記載されている方法は、ワックスを使用しているため耐熱性や接着性が不充分である。そのため、ホットメルト型部材を介して貼り合わせた後、その周囲にシール剤を塗工し、固化させる必要があり、製造工程が煩雑であるという問題がある。また、耐久性が不充分であることから、封止した有機薄膜太陽電池素子の耐久性が充分ではないという問題もある。 However, since the method described in Patent Document 1 uses wax, heat resistance and adhesiveness are insufficient. Therefore, after pasting together via a hot-melt type member, it is necessary to apply and seal the sealing agent around it, and there is a problem that the manufacturing process is complicated. Moreover, since durability is inadequate, there also exists a problem that durability of the sealed organic thin-film solar cell element is not enough.
 本発明は、上記事情に鑑みてなされたものであって、耐久性に優れ、製造も容易な有機薄膜太陽電池素子の提供を目的とする。 The present invention has been made in view of the above circumstances, and an object thereof is to provide an organic thin film solar cell element that is excellent in durability and easy to manufacture.
 上記課題を解決する本発明の一態様に係る有機薄膜太陽電池素子は以下の構成を有する。
 [1]基材と、前記基材上に設けられた、少なくとも透明電極層、有機薄膜光電変換層及び金属電極層がこの順に積層した有機薄膜太陽電池構成部と、前記有機薄膜太陽電池構成部上に、前記有機薄膜光電変換層の全てを覆うように設けられた接着層と、前記接着層上に設けられた封止基材と、を具備し、前記接着層は、光硬化性樹脂または熱硬化性樹脂を含有する接着剤と、物理吸着系の乾燥剤とを混合した接着層形成用組成物を硬化させて得られる。
 [2]上記[1]において、前記乾燥剤は、活性炭、ゼオライト、硫酸マグネシウム、硫酸ナトリウム、塩化カルシウム及びシリカゲルからなる群から選ばれる少なくとも1種であってもよい。
 [3]上記[1]及び[2]において、前記乾燥剤は、ゼオライトであってもよい。
 [4]上記[1]~[3]において、前記乾燥剤は、マイクロカプセル中に内包されていてもよい。
 [5]上記[1]~[4]において、前記接着剤は、アクリル樹脂、エポキシ系樹脂、フッ素系樹脂、シリコーン系樹脂、クロロプレン系樹脂、ブチルゴム系樹脂及びスチレンブタジエンゴム系樹脂からなる群から選ばれる少なくとも1種を含有していてもよい。
 [6]上記[1]~[5]において、前記接着剤は、エポキシ樹脂を含有していてもよい。
 [7]上記[1]~[6]において、前記封止基材は、ガラス板、金属板、金属箔又はガスバリア性フィルムであってもよい。
The organic thin-film solar cell element according to one embodiment of the present invention that solves the above problems has the following configuration.
[1] A base material, an organic thin film solar cell constituent part provided on the base material, in which at least a transparent electrode layer, an organic thin film photoelectric conversion layer, and a metal electrode layer are laminated in this order, and the organic thin film solar cell constituent part An adhesive layer provided to cover all of the organic thin film photoelectric conversion layer, and a sealing substrate provided on the adhesive layer, wherein the adhesive layer is a photocurable resin or It is obtained by curing an adhesive layer forming composition in which an adhesive containing a thermosetting resin and a physical adsorption type desiccant are mixed.
[2] In the above [1], the desiccant may be at least one selected from the group consisting of activated carbon, zeolite, magnesium sulfate, sodium sulfate, calcium chloride, and silica gel.
[3] In the above [1] and [2], the desiccant may be zeolite.
[4] In the above [1] to [3], the desiccant may be encapsulated in microcapsules.
[5] In the above [1] to [4], the adhesive is selected from the group consisting of acrylic resins, epoxy resins, fluorine resins, silicone resins, chloroprene resins, butyl rubber resins, and styrene butadiene rubber resins. It may contain at least one selected.
[6] In the above [1] to [5], the adhesive may contain an epoxy resin.
[7] In the above [1] to [6], the sealing substrate may be a glass plate, a metal plate, a metal foil, or a gas barrier film.
 上記本発明の態様によれば、耐久性に優れ、製造も容易な有機薄膜太陽電池素子を提供できる。 According to the above aspect of the present invention, an organic thin film solar cell element excellent in durability and easy to manufacture can be provided.
本発明の一実施形態に係る有機薄膜太陽電池素子の一例を示す概略断面図である。It is a schematic sectional drawing which shows an example of the organic thin film solar cell element which concerns on one Embodiment of this invention. 従来の有機薄膜太陽電池素子の一例を示す概略断面図である。It is a schematic sectional drawing which shows an example of the conventional organic thin film solar cell element.
 以下、本発明の一実施形態に係る有機薄膜太陽電池素子の一例について、添付図面を参照しながら説明する。ただし本発明は以下の実施形態に限定されるものではない。
 図1は、本実施形態に係る有機薄膜太陽電池素子10の構成を説明する概略断面図である。
 有機薄膜太陽電池素子10は、基材1と、基材1上に設けられた有機薄膜太陽電池構成部5と、有機薄膜太陽電池構成部5上に設けられた接着層6と、接着層6上に設けられた、連続したフィルム状又は枚葉のシート状の封止基材7と、を具備する。
 有機薄膜太陽電池構成部5は、基材1側から、透明電極層2と有機薄膜光電変換層3と金属電極層4とがこの順に積層され多層構造を有している。透明電極層2は陽極、金属電極層4は陰極として機能する。
 透明電極層2は基材1を部分的に被覆するように設けられている。有機薄膜光電変換層3は、透明電極層2と、基材1の透明電極層2で被覆されていない部分とを部分的に被覆するように設けられている。金属電極層4は、有機薄膜光電変換層3と、基材1の透明電極層2及び有機薄膜光電変換層3で被覆されていない部分とを被覆するように設けられている。
 接着層6は、金属電極層4上に、有機薄膜光電変換層3の全てを覆うように設けられている。これにより、有機薄膜光電変換層3が接するのは、基材1、透明電極層2、金属電極層4、接着層6である。
 接着層6は、光硬化性樹脂または熱硬化性樹脂を含有する接着剤と、物理吸着系の乾燥剤とを混合した接着層形成用組成物を硬化させて得られ、硬化した接着剤で構成されるマトリックス部6a内に粒子状の乾燥剤6bが分散した構造を有する。
 本実施形態に係る有機薄膜太陽電池素子10においては、基材1側から太陽光が入射し、透明電極層2を通過して有機薄膜光電変換層3でその光エネルギーが電力に変換される。そのため、基材1としては、太陽光を透過する透明基材が用いられる。
Hereinafter, an example of an organic thin film solar cell element according to an embodiment of the present invention will be described with reference to the accompanying drawings. However, the present invention is not limited to the following embodiments.
FIG. 1 is a schematic cross-sectional view illustrating the configuration of an organic thin film solar cell element 10 according to this embodiment.
The organic thin film solar cell element 10 includes a base material 1, an organic thin film solar cell component 5 provided on the base material 1, an adhesive layer 6 provided on the organic thin film solar cell component 5, and an adhesive layer 6. And a continuous film-like or sheet-like sealing substrate 7 provided on the top.
The organic thin film solar cell constituent part 5 has a multilayer structure in which the transparent electrode layer 2, the organic thin film photoelectric conversion layer 3, and the metal electrode layer 4 are laminated in this order from the substrate 1 side. The transparent electrode layer 2 functions as an anode, and the metal electrode layer 4 functions as a cathode.
The transparent electrode layer 2 is provided so as to partially cover the substrate 1. The organic thin film photoelectric conversion layer 3 is provided so as to partially cover the transparent electrode layer 2 and a portion of the substrate 1 that is not covered with the transparent electrode layer 2. The metal electrode layer 4 is provided so as to cover the organic thin film photoelectric conversion layer 3 and a portion of the substrate 1 that is not covered with the transparent electrode layer 2 and the organic thin film photoelectric conversion layer 3.
The adhesive layer 6 is provided on the metal electrode layer 4 so as to cover the entire organic thin film photoelectric conversion layer 3. Thereby, it is the base material 1, the transparent electrode layer 2, the metal electrode layer 4, and the contact bonding layer 6 that the organic thin film photoelectric converting layer 3 contacts.
The adhesive layer 6 is obtained by curing an adhesive layer forming composition in which an adhesive containing a photocurable resin or a thermosetting resin and a physical adsorption type desiccant are mixed, and is composed of a cured adhesive. In the matrix portion 6a, the particulate desiccant 6b is dispersed.
In the organic thin film solar cell element 10 according to the present embodiment, sunlight enters from the substrate 1 side, passes through the transparent electrode layer 2, and the organic thin film photoelectric conversion layer 3 converts the light energy into electric power. Therefore, a transparent substrate that transmits sunlight is used as the substrate 1.
 有機薄膜太陽電池素子10においては、接着層6を、金属電極層4上に、有機薄膜光電変換層3の全てを覆うように設けて有機薄膜太陽電池構成部を封止している。したがって、金属電極層4や、有機薄膜光電変換層3が、長期にわたって水分や酸素の影響を受けにくい。そのため、有機薄膜太陽電池構成部5が、長期にわたって安定した光電変換特性を維持することができる。したがって、有機薄膜太陽電池素子10を用いた有機薄膜太陽電池は、長期にわたって安定した発電特性を維持できる。これは、接着層6のマトリックス部6aが樹脂硬化物で構成され、かつ物理吸着系の乾燥剤6bが接着層6に含まれることで、接着層6が優れたバリア性、接着強度、耐熱性、耐久性等を有しており、熱や経時によるバリア性の低下や層間密着性の低下が生じにくく、外部からの水分、酸素等の侵入、通過を長期にわたって抑制できるためと考えられる。
 また、本実施形態においては、従来の封止キャップのように有機薄膜太陽電池構成部の側面を覆う必要がなく、シート状の封止基材7を積層するだけでよいため、加工に要する工程やコストを削減できる。そのため、従来に比べて、有機薄膜太陽電池素子の製造工程の短縮とコストの削減ができる。また、有機薄膜太陽電池素子を薄型化することもできる。
In the organic thin film solar cell element 10, the adhesive layer 6 is provided on the metal electrode layer 4 so as to cover the entire organic thin film photoelectric conversion layer 3, thereby sealing the organic thin film solar cell component. Therefore, the metal electrode layer 4 and the organic thin film photoelectric conversion layer 3 are not easily affected by moisture and oxygen over a long period of time. Therefore, the organic thin film solar cell component 5 can maintain stable photoelectric conversion characteristics over a long period of time. Therefore, the organic thin film solar cell using the organic thin film solar cell element 10 can maintain stable power generation characteristics over a long period of time. This is because the adhesive layer 6 has an excellent barrier property, adhesive strength, and heat resistance because the matrix portion 6a of the adhesive layer 6 is made of a cured resin and the physical adsorption type desiccant 6b is included in the adhesive layer 6. This is considered to be because it has durability and the like, is less likely to cause deterioration of barrier properties and interlayer adhesion due to heat and time, and can prevent entry and passage of moisture, oxygen, and the like from the outside over a long period of time.
Moreover, in this embodiment, since it is not necessary to cover the side surface of an organic thin film solar cell structure part like the conventional sealing cap, it is only necessary to laminate | stack the sheet-like sealing base material 7, The process required for a process And cost can be reduced. Therefore, compared with the past, the manufacturing process of an organic thin-film solar cell element can be shortened and cost can be reduced. Moreover, an organic thin film solar cell element can also be reduced in thickness.
<基材1>
 本実施形態の有機薄膜太陽電池素子10においては、基材1側から太陽光が入射し、透明電極層2を通過して有機薄膜光電変換層3でその光エネルギーが電力に変換される。そのため、基材1としては、太陽光を透過する透明なものが用いられる。
 基材1としては、例えば、ガラス基材、石英基材、プラスチック基材等が挙げられる。
 プラスチック基材を構成するプラスチックとしては、ポリプロピレン、ポリエーテルサルフォン、ポリカーボネート、シクロオレフィンポリマー、ポリアリレート、ポリアミド、ポリメチルメタクリレート、ポリエチレンテレフタレート、ポリエチレンナフタレート等が挙げられる。これらのいずれか1種を単独で用いても2種以上を併用してもよい。
 プラスチック基材は、板状でもフィルム状でもよい。フレキシブルな有機薄膜太陽電池の製造が可能となり、安価に素子を提供することができることから、プラスチックフィルムが好ましい。プラスチックフィルムを用いる場合、フィルムの厚みは、10~1000μmが好ましく、50~250μmがより好ましい。
 基材1として、上記のようなプラスチック基材の透明電極層2を成膜しない側に、無機金属化合物のコート層を設けるか、またはガスバリア性フィルムを積層したものを用いてもよい。無機金属化合物としては、酸化ケイ素、酸化アルミニウム等の金属酸化物;フッ化アルミニウム、フッ化マグネシウム等の金属フッ化物;窒化ケイ素、窒化アルミニウム等の金属窒化物などが挙げられる。ガスバリア性フィルムとしては、ポリ塩化ビニリデンフィルム、ポリ塩化ビニルフィルム、エチレン-酢酸ビニル共重合体ケン化物フィルムなどが挙げられる。
<Substrate 1>
In the organic thin film solar cell element 10 of the present embodiment, sunlight enters from the substrate 1 side, passes through the transparent electrode layer 2, and the organic thin film photoelectric conversion layer 3 converts the light energy into electric power. Therefore, as the substrate 1, a transparent material that transmits sunlight is used.
Examples of the substrate 1 include a glass substrate, a quartz substrate, and a plastic substrate.
Examples of the plastic constituting the plastic substrate include polypropylene, polyethersulfone, polycarbonate, cycloolefin polymer, polyarylate, polyamide, polymethyl methacrylate, polyethylene terephthalate, and polyethylene naphthalate. Any one of these may be used alone or in combination of two or more.
The plastic substrate may be plate-shaped or film-shaped. Since a flexible organic thin film solar cell can be manufactured and an element can be provided at low cost, a plastic film is preferable. When a plastic film is used, the thickness of the film is preferably 10 to 1000 μm, more preferably 50 to 250 μm.
As the base material 1, an inorganic metal compound coat layer may be provided on the side where the transparent electrode layer 2 of the plastic base material is not formed, or a gas barrier film may be laminated. Examples of the inorganic metal compound include metal oxides such as silicon oxide and aluminum oxide; metal fluorides such as aluminum fluoride and magnesium fluoride; metal nitrides such as silicon nitride and aluminum nitride. Examples of the gas barrier film include a polyvinylidene chloride film, a polyvinyl chloride film, and an ethylene-vinyl acetate copolymer saponified film.
<透明電極層2>
 透明電極層2としては、金属複合酸化物膜、金属膜、金属酸化物や金属の微粒子をエポキシ樹脂やアクリル樹脂などに分散した微粒子分散膜等の導電膜を、単層もしくは積層して使用することができる。金属複合酸化物としては、ITO(インジウムスズ複合酸化物)、インジウム亜鉛複合酸化物、亜鉛アルミニウム複合酸化物などが挙げられる。金属としては、金、白金などが挙げられる。導電膜は、パターニングされていてもよい。
 導電膜には、透明電極層2の配線抵抗を低くするために、補助電極が併設されてもよい。補助電極の材料としては、銅やアルミニウムなどの金属材料が挙げられる。
<Transparent electrode layer 2>
As the transparent electrode layer 2, a conductive film such as a metal composite oxide film, a metal film, or a fine particle dispersion film in which metal oxide or metal fine particles are dispersed in an epoxy resin or an acrylic resin is used as a single layer or a laminated layer. be able to. Examples of the metal composite oxide include ITO (indium tin composite oxide), indium zinc composite oxide, and zinc aluminum composite oxide. Examples of the metal include gold and platinum. The conductive film may be patterned.
In order to reduce the wiring resistance of the transparent electrode layer 2, an auxiliary electrode may be provided in the conductive film. Examples of the material for the auxiliary electrode include metal materials such as copper and aluminum.
 透明電極層2の厚みは、特に限定されず、5μm以上、より好ましくは50μmから150μmの範囲であれば特に問題ない。5μm以下になると、電気抵抗が大きくなり、導電性が著しく低下する。一方、厚みが150μm以上になると、材料コストが大きくなり、実用上に好ましくない。
 透明電極層2の電気抵抗は、表面抵抗率(シート抵抗)として、200Ω/□以下が好ましく、50Ω/□以下がより好ましい。透明電極層2の電気抵抗は、市販の抵抗率計によりJISK7194:1994に準拠して測定できる。単位Ω/□の□は無次元数である。
The thickness of the transparent electrode layer 2 is not particularly limited, and there is no particular problem as long as it is 5 μm or more, more preferably 50 μm to 150 μm. When the thickness is 5 μm or less, the electrical resistance increases and the conductivity is significantly lowered. On the other hand, when the thickness is 150 μm or more, the material cost increases, which is not practically preferable.
The electric resistance of the transparent electrode layer 2 is preferably 200Ω / □ or less, and more preferably 50Ω / □ or less as the surface resistivity (sheet resistance). The electrical resistance of the transparent electrode layer 2 can be measured with a commercially available resistivity meter in accordance with JISK7194: 1994. The unit Ω / □ is a dimensionless number.
<有機薄膜光電変換層3>
 有機薄膜光電変換層3としては、p型有機半導体材料とn型有機半導体材料とを混合した、いわゆるバルクへテロ接合型の有機薄膜光電変換層が、変換効率が比較的に高く、塗布法で成膜できる等の点から好適である。ただし本発明はこれに限定されず、公知の有機薄膜光電変換層のなかから適宜選択できる。
 前記p型有機半導体材料としては、例えば、ポリチオフェン(PT)、ポリフェニレンビニレン(PPV)、その誘導体などの導電性高分子材料が挙げられる。PT誘導体としては、例えばポリ(3-ヘキシルチオフェン)(P3HT)、ポリ(3-オクチルチオフェン)(P3OT)等が挙げられる。特にレジオレギュラ立体構造を有するPT誘導体が好ましい。PPV誘導体としては、例えばポリ(2-メトキシ-5-(2’-エチルヘキシルオキシ)-1,4-フェニレンビニレン)(MEHPPV)等が挙げられる。またはこれら誘導体の共重合体でもよい。
 前記n型有機半導体材料としては、例えばC60、C70等のフラーレンやその誘導体が挙げられる。フラーレン誘導体としては、例えばPCBM([6,6]-Phenyl-C61-Butyric acid Methyl ester)などが挙げられる。
 バルクへテロ接合型の有機薄膜光電変換層における上記p型高分子材料とn型有機半導体材料との混合比率(質量比)は、特に限定されないが、一般的に10/90~90/10の範囲であれば特に問題がない。
 有機薄膜光電変換層3の厚みは、5~1000nmが好ましく、10~100nmがより好ましい。有機薄膜光電変換層3の厚みは市販の膜厚計により測定できる。
<Organic thin film photoelectric conversion layer 3>
As the organic thin film photoelectric conversion layer 3, a so-called bulk heterojunction type organic thin film photoelectric conversion layer in which a p-type organic semiconductor material and an n-type organic semiconductor material are mixed has a relatively high conversion efficiency. This is preferable from the viewpoint of film formation. However, this invention is not limited to this, It can select suitably from well-known organic thin film photoelectric converting layers.
Examples of the p-type organic semiconductor material include conductive polymer materials such as polythiophene (PT), polyphenylene vinylene (PPV), and derivatives thereof. Examples of the PT derivative include poly (3-hexylthiophene) (P3HT), poly (3-octylthiophene) (P3OT), and the like. In particular, a PT derivative having a regioregular steric structure is preferred. Examples of the PPV derivative include poly (2-methoxy-5- (2′-ethylhexyloxy) -1,4-phenylene vinylene) (MEHPPV). Alternatively, a copolymer of these derivatives may be used.
Examples of the n-type organic semiconductor material include fullerene such as C 60 and C 70 and derivatives thereof. Examples of fullerene derivatives include PCBM ([6,6] -Phenyl-C 61 -Butyric acid Methyl ester).
The mixing ratio (mass ratio) of the p-type polymer material and the n-type organic semiconductor material in the bulk heterojunction organic thin film photoelectric conversion layer is not particularly limited, but is generally 10/90 to 90/10. If it is within the range, there is no problem.
The thickness of the organic thin film photoelectric conversion layer 3 is preferably 5 to 1000 nm, more preferably 10 to 100 nm. The thickness of the organic thin film photoelectric conversion layer 3 can be measured with a commercially available film thickness meter.
<金属電極層4>
 金属電極層4を陰極として用いる場合、金属電極層4を構成する材料としては、電子注入効率の高い、仕事関数の低い物質を用いることができ、例えばMg、Al、Ybなどが挙げられる。
 金属電極層4の厚みは、50~100nmが好ましい。金属電極層4の厚みは市販の膜厚計により測定できる。
<Metal electrode layer 4>
When the metal electrode layer 4 is used as a cathode, a material having a high electron injection efficiency and a low work function can be used as a material constituting the metal electrode layer 4, and examples thereof include Mg, Al, and Yb.
The thickness of the metal electrode layer 4 is preferably 50 to 100 nm. The thickness of the metal electrode layer 4 can be measured with a commercially available film thickness meter.
<接着層6>
 接着層6は、光硬化性樹脂または熱硬化性樹脂を含有する接着剤と、物理吸着系の乾燥剤とを混合した接着層形成用組成物を硬化させて得られる。
 物理吸着系の乾燥剤は、物理的に水分や酸素を吸着するため、これを接着層6に含有させることで、有機薄膜太陽電池素子10の薄型化、製造工程の簡略化が可能となる。
 物理吸着系の乾燥剤としては、例えば活性炭、ゼオライト、硫酸マグネシウム、硫酸ナトリウム、塩化カルシウム、活性酸化アルミニウム、シリカゲル等が挙げられる。これらの乾燥剤はいずれか1種を単独で用いても2種以上を併用してもよい。
 物理吸着系の乾燥剤としては、上記の中でも、吸湿力が強いことから、活性炭、ゼオライト、硫酸マグネシウム、硫酸ナトリウム、塩化カルシウム及びシリカゲルからなる群から選ばれる少なくとも1種が好ましい。中でも、吸湿量が多く、吸湿持続時間が長いことから、ゼオライトが特に好ましい。
<Adhesive layer 6>
The adhesive layer 6 is obtained by curing an adhesive layer forming composition in which an adhesive containing a photocurable resin or a thermosetting resin and a physical adsorption type desiccant are mixed.
Since the physical adsorption type desiccant physically adsorbs moisture and oxygen, the organic thin-film solar cell element 10 can be thinned and the manufacturing process can be simplified by including it in the adhesive layer 6.
Examples of the physical adsorption type desiccant include activated carbon, zeolite, magnesium sulfate, sodium sulfate, calcium chloride, activated aluminum oxide, and silica gel. These desiccants may be used alone or in combination of two or more.
Among the above, the physical adsorption type desiccant is preferably at least one selected from the group consisting of activated carbon, zeolite, magnesium sulfate, sodium sulfate, calcium chloride and silica gel because of its high hygroscopicity. Among these, zeolite is particularly preferable because of its high moisture absorption and long moisture absorption duration.
 前記乾燥剤は、粒子状である。乾燥剤粒子のサイズや形状に特に制限はない。好ましくは、平均粒子径が1μm~100μm程度の大きさのものを用いる。平均粒子径が100μm以下であると、充分な吸湿力が得られやすい。1μm以上であると、取扱い性が良好である。 The desiccant is particulate. There is no particular limitation on the size and shape of the desiccant particles. Preferably, those having an average particle size of about 1 μm to 100 μm are used. When the average particle size is 100 μm or less, sufficient hygroscopicity is easily obtained. When it is 1 μm or more, the handleability is good.
 前記乾燥剤は、マイクロカプセル中に内包されていることが好ましい。乾燥剤の粒子は強度的に弱く脆い傾向があるが、接着剤と混合する前にマイクロカプセル化しておくことで、接着剤との混合時に砕けることを防ぐ効果がある。ここで、マイクロカプセル化とは、マイクロカプセルの中に乾燥剤を封入することをいう。
 マイクロカプセル化の手法としては、特に制限はなく、界面重合法、液中乾燥法、噴霧乾燥法、乾式混合法などの既知の方法を用いることができる。
The desiccant is preferably encapsulated in microcapsules. Although the particles of the desiccant tend to be weak and brittle in strength, microencapsulation before mixing with the adhesive has the effect of preventing crushing during mixing with the adhesive. Here, microencapsulation means encapsulating a desiccant in a microcapsule.
There is no restriction | limiting in particular as a method of microencapsulation, Well-known methods, such as an interfacial polymerization method, a submerged drying method, a spray drying method, a dry-type mixing method, can be used.
 接着剤は、光硬化性樹脂、熱硬化性樹脂のいずれを含有するものであってもよい。
 光硬化性樹脂としては、紫外線又は可視光を照射して硬化できるものであれば特に限定されず、公知の光硬化性樹脂を使用でき、例えばアクリル樹脂、エポキシ樹脂、ポリエステル樹脂等が挙げられる。
 熱硬化性樹脂としては、特に限定されず、公知の熱硬化性樹脂を使用できる。硬化中の熱により材料の劣化、結晶化を引き起こすため、硬化温度が150℃以下であるものが好ましく、硬化温度が100℃以下であるものがより好ましい。
 熱硬化性樹脂の好ましい具体例としては、例えば、アクリル系樹脂、エポキシ系樹脂、フッ素系樹脂、シリコーン系樹脂、クロロプレン系樹脂、ブチルゴム系樹脂、スチレンブタジエンゴム系樹脂などが挙げられる。これらはいずれか1種を単独で用いても2種以上を併用してもよい。
 接着剤は、光硬化性樹脂及び熱硬化性樹脂以外の他の成分を含有してもよい。該他の成分としては、例えば光開始剤、熱硬化触媒、反応性モノマー等の添加剤、有機溶剤などが挙げられる。
The adhesive may contain either a photocurable resin or a thermosetting resin.
The photocurable resin is not particularly limited as long as it can be cured by irradiation with ultraviolet rays or visible light, and a known photocurable resin can be used, and examples thereof include an acrylic resin, an epoxy resin, and a polyester resin.
It does not specifically limit as a thermosetting resin, A well-known thermosetting resin can be used. In order to cause deterioration and crystallization of the material by heat during curing, those having a curing temperature of 150 ° C. or lower are preferable, and those having a curing temperature of 100 ° C. or lower are more preferable.
Preferable specific examples of the thermosetting resin include, for example, acrylic resins, epoxy resins, fluorine resins, silicone resins, chloroprene resins, butyl rubber resins, styrene butadiene rubber resins, and the like. These may be used alone or in combination of two or more.
The adhesive may contain components other than the photocurable resin and the thermosetting resin. Examples of the other components include photoinitiators, thermosetting catalysts, additives such as reactive monomers, organic solvents, and the like.
 上記接着剤と乾燥剤とを混合することにより接着層形成用組成物が得られる。
 接着剤と乾燥剤との混合比率に特に制限はないが、接着剤に含まれる光硬化性樹脂又は熱硬化性樹脂と乾燥剤との合計量を100質量%とした場合、乾燥剤の割合は、1~50質量%が好ましく、5~25質量%がより好ましい。
 上記接着層形成用組成物を用いた接着層6の形成方法については後で説明する。
The composition for forming an adhesive layer is obtained by mixing the adhesive and the desiccant.
Although there is no restriction | limiting in particular in the mixing ratio of an adhesive agent and a desiccant, When the total amount of the photocurable resin or thermosetting resin and desiccant contained in an adhesive agent is 100 mass%, the ratio of a desiccant is 1 to 50% by mass is preferable, and 5 to 25% by mass is more preferable.
A method for forming the adhesive layer 6 using the composition for forming an adhesive layer will be described later.
 接着層6が含有する水分を極力少なくすることが好ましい。
 接着層6の厚みには、特に制限はなく、1~100μm、より好ましくは5~20μmであれば、接着層6としての接着強度、水分や酸素を遮断する効果等に優れることから好ましい。
It is preferable to reduce the water content of the adhesive layer 6 as much as possible.
The thickness of the adhesive layer 6 is not particularly limited, and is preferably 1 to 100 μm, more preferably 5 to 20 μm, because the adhesive strength as the adhesive layer 6 and the effect of blocking moisture and oxygen are excellent.
<封止基材7>
 封止基材7は、有機薄膜太陽電池素子10を保護するために設けられる。
 封止基材7は、水蒸気や酸素などに対するバリア性を有することが好ましい。そのような封止基材7として例えばガラス板、金属板、金属箔、ガスバリア性フィルム等が挙げられる。
 封止基材7の、接着層6と接する面に、接着剤との密着性を向上させる等のために、紫外線、電子線、コロナなどの表面処理が施されていてもよい。
<Sealing substrate 7>
The sealing substrate 7 is provided to protect the organic thin film solar cell element 10.
It is preferable that the sealing substrate 7 has a barrier property against water vapor or oxygen. Examples of such a sealing substrate 7 include a glass plate, a metal plate, a metal foil, and a gas barrier film.
The surface of the sealing substrate 7 that is in contact with the adhesive layer 6 may be subjected to a surface treatment such as ultraviolet rays, electron beams, or corona in order to improve the adhesion with the adhesive.
<有機薄膜太陽電池素子10の製造方法>
 有機薄膜太陽電池素子10の製造方法は、特に限定されないが、例えば以下の工程(1)~(3)を含む製造方法により製造できる。
 (1)基材1上に、透明電極層2と有機薄膜光電変換層3と金属電極層4とを順次積層して有機薄膜太陽電池構成部5を形成する工程。
 (2)光硬化性樹脂または熱硬化性樹脂を含有する接着剤と、物理吸着系の乾燥剤とを混合して接着層形成用組成物を調製し、該接着層形成用組成物を、前記有機薄膜太陽電池構成部5が設けられた基材1上に、有機薄膜光電変換層3の全てを覆うように塗工する工程。
 (3)塗工した接着層形成用組成物上に封止基材7を積層した後、該接着層形成用組成物を硬化させる工程。
<The manufacturing method of the organic thin film solar cell element 10>
The method for producing the organic thin film solar cell element 10 is not particularly limited, but can be produced, for example, by a production method including the following steps (1) to (3).
(1) The process of forming the organic thin film solar cell structure part 5 by laminating | stacking the transparent electrode layer 2, the organic thin film photoelectric converting layer 3, and the metal electrode layer 4 in order on the base material 1. FIG.
(2) An adhesive layer-forming composition is prepared by mixing an adhesive containing a photocurable resin or a thermosetting resin and a physical adsorption type desiccant, and the adhesive layer-forming composition is The process of coating on the base material 1 in which the organic thin film solar cell structure part 5 was provided so that all the organic thin film photoelectric converting layers 3 might be covered.
(3) A step of curing the adhesive layer forming composition after laminating the sealing substrate 7 on the coated adhesive layer forming composition.
 工程(1)において、透明電極層2の形成方法としては、例えば、基材1に導電膜を成膜し、必要に応じてパターニングする方法が挙げられる。
 導電膜の成膜方法としては、材料に応じて公知の成膜方法、例えば抵抗加熱蒸着法、電子ビーム蒸着法、反応性蒸着法、イオンプレーティング法、スパッタリング法などの乾式成膜法や、グラビア印刷法、スクリーン印刷法などの湿式成膜法などを用いることができる。
 導電膜のパターニング方法としては、材料や成膜方法に応じて、マスク蒸着法、フォトリソグラフィー法、ウェットエッチング法、ドライエッチング法などの既存のパターニング法を用いることができる。
In the step (1), examples of the method of forming the transparent electrode layer 2 include a method of forming a conductive film on the substrate 1 and patterning as necessary.
As a method for forming a conductive film, a known film formation method depending on the material, for example, a resistance film deposition method, an electron beam deposition method, a reactive deposition method, an ion plating method, a dry deposition method such as a sputtering method, A wet film forming method such as a gravure printing method or a screen printing method can be used.
As a method for patterning the conductive film, an existing patterning method such as a mask vapor deposition method, a photolithography method, a wet etching method, or a dry etching method can be used depending on a material or a film forming method.
 有機薄膜光電変換層3の成膜方法としては、特に限定されず、有機薄膜光電変換層3の構成や使用する材料に応じて、塗布法や蒸着法などの公知の方法を用いることができる。
 特に、大面積、低コストで製造できることから、塗布法が好ましい。
 塗布法による有機薄膜光電変換層3の成膜は、例えば、上記p型高分子材料とn型有機半導体材料を溶媒に溶解して塗工液を調製し、該塗工液を基材1に塗布し、加熱することにより実施できる。
 上記成膜に用いる溶媒は、使用するp型高分子材料及びn型有機半導体材料を溶解させ得るものであれば特に制限はない。溶媒としては、p型高分子材料及びn型有機半導体材料をそれぞれ0.1質量%以上の濃度で溶解させることができるものが好ましい。
 溶媒として具体的には、例えば、トルエン、キシレン、メシチレン、テトラリン、デカリン、ビシクロヘキシル、n-ブチルベンゼン、sec-ブチルベンゼン、tert-ブチルベンゼン等の炭化水素系溶媒、四塩化炭素、クロロホルム、ジクロロメタン、ジクロロエタン、クロロブタン、ブロモブタン、クロロペンタン、ブロモペンタン、クロロヘキサン、ブロモヘキサン、クロロシクロヘキサン、ブロモシクロヘキサン等のハロゲン化飽和炭化水素系溶媒、クロロベンゼン、ジクロロベンゼン、トリクロロベンゼン等のハロゲン化不飽和炭化水素系溶媒、テトラヒドロフラン、テトラヒドロピラン等のエーテル類系溶媒等が挙げられる。
 上記塗工液の塗工方法としては、スピンコート法、キャスティング法、マイクログラビアコート法、グラビアコート法、バーコート法、ロールコート法、ワイアーバーコート法、ディップコート法、スプレーコート法、スクリーン印刷法、フレキソ印刷法、オフセット印刷法、インクジェット印刷法、ディスペンサー印刷法、ノズルコート法、キャピラリーコート法等が挙げられる。これらの中でも、スピンコート法、フレキソ印刷法、インクジェット印刷法、ディスペンサー印刷法が好ましい。
 上記塗工液の塗工により形成された塗膜を80~150℃で加熱してアニールすることで、有機薄膜光電変換層3が形成される。加熱時間は1~20分程度が好ましい。加熱の方法は特に限定されないが、例えばオーブン、赤外線などを使用すればよい。
It does not specifically limit as the film-forming method of the organic thin film photoelectric converting layer 3, According to the structure of the organic thin film photoelectric converting layer 3, and the material to be used, well-known methods, such as a coating method and a vapor deposition method, can be used.
In particular, the coating method is preferable because it can be manufactured with a large area and low cost.
The film formation of the organic thin film photoelectric conversion layer 3 by the coating method is performed by, for example, preparing a coating liquid by dissolving the p-type polymer material and the n-type organic semiconductor material in a solvent, and applying the coating liquid to the substrate 1. It can be carried out by applying and heating.
The solvent used for the film formation is not particularly limited as long as it can dissolve the p-type polymer material and the n-type organic semiconductor material to be used. As the solvent, those capable of dissolving the p-type polymer material and the n-type organic semiconductor material at a concentration of 0.1% by mass or more are preferable.
Specific examples of the solvent include hydrocarbon solvents such as toluene, xylene, mesitylene, tetralin, decalin, bicyclohexyl, n-butylbenzene, sec-butylbenzene, tert-butylbenzene, carbon tetrachloride, chloroform, dichloromethane. Halogenated saturated hydrocarbon solvents such as dichloroethane, chlorobutane, bromobutane, chloropentane, bromopentane, chlorohexane, bromohexane, chlorocyclohexane and bromocyclohexane, and halogenated unsaturated hydrocarbons such as chlorobenzene, dichlorobenzene and trichlorobenzene Examples of the solvent include ether solvents such as tetrahydrofuran and tetrahydropyran.
As the coating method of the above coating liquid, spin coating method, casting method, micro gravure coating method, gravure coating method, bar coating method, roll coating method, wire bar coating method, dip coating method, spray coating method, screen printing Method, flexographic printing method, offset printing method, inkjet printing method, dispenser printing method, nozzle coating method, capillary coating method and the like. Among these, the spin coat method, the flexographic printing method, the inkjet printing method, and the dispenser printing method are preferable.
The organic thin film photoelectric conversion layer 3 is formed by heating and annealing the coating film formed by applying the coating liquid at 80 to 150 ° C. The heating time is preferably about 1 to 20 minutes. The heating method is not particularly limited, and for example, an oven, infrared rays, or the like may be used.
 金属電極層4の成膜方法としては、材料に応じて、スパッタ法や抵抗加熱法等の真空蒸着法など公知の成膜方法を用いることができる。 As a method for forming the metal electrode layer 4, a known film forming method such as a vacuum evaporation method such as a sputtering method or a resistance heating method can be used depending on the material.
 工程(2)において、接着層形成用組成物の塗工方法としては、材料に応じて、ロールコート、スピンコート、スクリーン印刷法、スプレーコートなどのコーティング法、印刷法などを用いることができる。 In step (2), as a method for applying the composition for forming an adhesive layer, a coating method such as roll coating, spin coating, screen printing, spray coating, or the like can be used depending on the material.
 工程(3)において、接着層形成用組成物の硬化方法は、接着剤に含まれる樹脂に応じて、紫外線、可視光等を照射して光硬化させる方法又は加熱硬化させる方法を用いることができる。
 封止基材7を接着層形成用組成物上に積層する前に、封止基材7の積層面(接着層6と接する側の表面)に、接着剤との密着性を向上させる等のために、紫外線、電子線、コロナなどの表面処理を施してもよい。
 以上のようにして、有機薄膜太陽電池素子10を得ることができる。
In the step (3), as a method for curing the composition for forming an adhesive layer, a method of photocuring by irradiating ultraviolet rays, visible light, or the like, or a method of heat curing can be used depending on the resin contained in the adhesive. .
Before laminating the sealing substrate 7 on the composition for forming an adhesive layer, the adhesive surface with the adhesive is improved on the laminated surface of the sealing substrate 7 (the surface on the side in contact with the adhesive layer 6). Therefore, surface treatment such as ultraviolet rays, electron beams, corona may be performed.
The organic thin film solar cell element 10 can be obtained as described above.
 以上、本発明の実施形態について詳細に説明したが、本発明はこれに限定されることはなく、本発明の技術的思想を逸脱しない限り、設計変更等も可能である。
 例えば、上記の実施形態では、有機薄膜太陽電池構成部として、最も単純な層構成(透明電極/有機薄膜光電変換層/金属電極)を示したが、本発明はこれに限定されず、公知の層構成を採用できる。
 例えば、必要に応じて、透明電極と金属電極との間に、有機薄膜光電変換層以外の機能性層が積層されていてもよい。有機薄膜光電変換層以外の機能性層としては、例えば、ホール移動層、電子移動層、正極バッファー層、負極バッファー層等が挙げられる。例えばホール移動層としては、PEDOT:PSS(ポリ(3,4-エチレンジオキシチオフェン)-ポリ(スチレンスルホン酸))を膜厚50~100nm積層して用いることができる。電子移動層としては、LiF、Liや酸化リチウムなどを膜厚数nm積層して用いることができる。これらの機能性層は、材料に応じて、抵抗加熱蒸着法、電子ビーム蒸着法、反応性蒸着法、イオンプレーティング法、スパッタリング法などの乾式成膜法や、スピンコートグラビア印刷法、スクリーン印刷法などの湿式成膜法などを用いて形成することができる。
As mentioned above, although embodiment of this invention was described in detail, this invention is not limited to this, A design change etc. are possible unless it deviates from the technical idea of this invention.
For example, in the above embodiment, the simplest layer configuration (transparent electrode / organic thin film photoelectric conversion layer / metal electrode) has been shown as the organic thin film solar cell component, but the present invention is not limited to this and is well known. A layer structure can be adopted.
For example, a functional layer other than the organic thin film photoelectric conversion layer may be laminated between the transparent electrode and the metal electrode as necessary. Examples of the functional layer other than the organic thin film photoelectric conversion layer include a hole transfer layer, an electron transfer layer, a positive electrode buffer layer, and a negative electrode buffer layer. For example, as the hole transfer layer, PEDOT: PSS (poly (3,4-ethylenedioxythiophene) -poly (styrene sulfonic acid)) can be used in a thickness of 50 to 100 nm. As the electron transfer layer, LiF, Li, lithium oxide, or the like can be used by stacking several nanometers. Depending on the material, these functional layers can be formed by dry deposition methods such as resistance heating vapor deposition, electron beam vapor deposition, reactive vapor deposition, ion plating, and sputtering, spin coating gravure printing, and screen printing. It can be formed using a wet film forming method such as a method.
 1 …基材
 2 …透明電極層
 3 …有機薄膜光電変換層
 4 …金属電極層
 5 …有機薄膜太陽電池構成部
 6 …接着層
 6a …マトリックス部
 6b …乾燥剤
 7  …封止基材
 10 …有機薄膜太陽電池素子
 20 …有機薄膜太陽電池素子
 21 …基材
 22 …透明電極層
 23 …有機薄膜光電変換層
 24 …金属電極層
 25 …有機薄膜太陽電池構成部
 26 …封止キャップ
 27 …シール剤
 28 …乾燥剤層
DESCRIPTION OF SYMBOLS 1 ... Base material 2 ... Transparent electrode layer 3 ... Organic thin film photoelectric converting layer 4 ... Metal electrode layer 5 ... Organic thin film solar cell component part 6 ... Adhesive layer 6a ... Matrix part 6b ... Desiccant 7 ... Sealing base material 10 ... Organic Thin film solar cell element 20 ... Organic thin film solar cell element 21 ... Base material 22 ... Transparent electrode layer 23 ... Organic thin film photoelectric conversion layer 24 ... Metal electrode layer 25 ... Organic thin film solar cell component 26 ... Sealing cap 27 ... Sealing agent 28 ... desiccant layer

Claims (7)

  1.  基材と、
    前記基材上に設けられた、少なくとも透明電極層、有機薄膜光電変換層及び金属電極層がこの順に積層した有機薄膜太陽電池構成部と、
    前記有機薄膜太陽電池構成部上に、前記有機薄膜光電変換層の全てを覆うように設けられた接着層と、
    前記接着層上に設けられた封止基材と、
    を具備し、
     前記接着層は、光硬化性樹脂または熱硬化性樹脂を含有する接着剤と、物理吸着系の乾燥剤とを混合した接着層形成用組成物を硬化させて得られる有機薄膜太陽電池素子。
    A substrate;
    Provided on the base material, at least a transparent electrode layer, an organic thin film photoelectric conversion layer, and an organic thin film solar cell component having a metal electrode layer laminated in this order;
    On the organic thin film solar cell component, an adhesive layer provided so as to cover all of the organic thin film photoelectric conversion layer,
    A sealing substrate provided on the adhesive layer;
    Comprising
    The adhesive layer is an organic thin-film solar cell element obtained by curing an adhesive layer forming composition in which an adhesive containing a photocurable resin or a thermosetting resin and a physical adsorption type desiccant are mixed.
  2.  前記乾燥剤は、活性炭、ゼオライト、硫酸マグネシウム、硫酸ナトリウム、塩化カルシウム及びシリカゲルからなる群から選ばれる少なくとも1種である請求項1に記載の有機薄膜太陽電池素子。 The organic thin-film solar cell element according to claim 1, wherein the desiccant is at least one selected from the group consisting of activated carbon, zeolite, magnesium sulfate, sodium sulfate, calcium chloride, and silica gel.
  3.  前記乾燥剤は、ゼオライトである請求項1又は2に記載の有機薄膜太陽電池素子。 The organic thin film solar cell element according to claim 1 or 2, wherein the desiccant is zeolite.
  4.  前記乾燥剤は、マイクロカプセル中に内包されている請求項1~3のいずれか一項に記載の有機薄膜太陽電池素子。 The organic thin-film solar cell element according to any one of claims 1 to 3, wherein the desiccant is encapsulated in a microcapsule.
  5.  前記接着剤は、アクリル樹脂、エポキシ系樹脂、フッ素系樹脂、シリコーン系樹脂、クロロプレン系樹脂、ブチルゴム系樹脂及びスチレンブタジエンゴム系樹脂からなる群から選ばれる少なくとも1種を含有する請求項1~4のいずれか一項に記載の有機薄膜太陽電池素子。 The adhesive contains at least one selected from the group consisting of acrylic resins, epoxy resins, fluorine resins, silicone resins, chloroprene resins, butyl rubber resins, and styrene butadiene rubber resins. Organic thin-film solar cell element as described in any one of these.
  6.  前記接着剤は、エポキシ樹脂を含有する請求項1~5のいずれか一項に記載の有機薄膜太陽電池素子。 The organic thin-film solar cell element according to any one of claims 1 to 5, wherein the adhesive contains an epoxy resin.
  7.  前記封止基材は、ガラス板、金属板、金属箔又はガスバリア性フィルムである請求項1~6のいずれか一項に記載の有機薄膜太陽電池素子。 The organic thin-film solar cell element according to any one of claims 1 to 6, wherein the sealing substrate is a glass plate, a metal plate, a metal foil, or a gas barrier film.
PCT/JP2013/053683 2012-02-16 2013-02-15 Organic thin film solar cell element WO2013122199A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-031834 2012-02-16
JP2012031834A JP5999831B2 (en) 2012-02-16 2012-02-16 Organic thin-film solar cell element

Publications (1)

Publication Number Publication Date
WO2013122199A1 true WO2013122199A1 (en) 2013-08-22

Family

ID=48984308

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/053683 WO2013122199A1 (en) 2012-02-16 2013-02-15 Organic thin film solar cell element

Country Status (3)

Country Link
JP (1) JP5999831B2 (en)
TW (1) TW201340431A (en)
WO (1) WO2013122199A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105490642A (en) * 2015-12-24 2016-04-13 合肥晶澳太阳能科技有限公司 Method for testing snail track of photovoltaic module
CN114583058A (en) * 2020-11-30 2022-06-03 株式会社理光 Photoelectric conversion element, photoelectric conversion module, electronic instrument, and power supply module

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015167226A (en) * 2014-02-14 2015-09-24 三菱化学株式会社 organic thin film solar cell module
JP6456685B2 (en) * 2014-12-25 2019-01-23 国立研究開発法人産業技術総合研究所 Organic thin film solar cell
CN104701207B (en) * 2015-03-04 2017-06-23 通威太阳能(合肥)有限公司 A kind of snail line Forecasting Methodology for solar cell module
JP5933061B1 (en) * 2015-03-13 2016-06-08 株式会社東芝 Solar cell module
TWI560900B (en) * 2015-07-17 2016-12-01 Formosa Plastics Corp A method of manufacturing a dye-sensitized solar cells
CN105632962A (en) * 2016-03-04 2016-06-01 九江市旭阳光电科技有限公司 Snail track test method for solar cell component
JP6733832B1 (en) 2018-11-26 2020-08-05 東レ株式会社 Organic solar cell module, manufacturing method thereof, electronic device, optical sensor and imaging device
CN112670418A (en) * 2020-12-22 2021-04-16 常州亚玛顿股份有限公司 Packaging structure and packaging method of perovskite battery component
CN112670416A (en) * 2020-12-22 2021-04-16 常州亚玛顿股份有限公司 Packaging structure and packaging method of perovskite battery component
CN115915793A (en) 2021-09-30 2023-04-04 株式会社理光 Photoelectric conversion element, photoelectric conversion module, and electronic device
EP4188053A1 (en) 2021-11-26 2023-05-31 Ricoh Company, Ltd. Photoelectric conversion element, photoelectric conversion module, electronic device, and partition
JPWO2023132134A1 (en) * 2022-01-07 2023-07-13
JP7472409B2 (en) 2022-01-07 2024-04-22 パナソニックホールディングス株式会社 Solar Cell

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0369171A (en) * 1989-06-20 1991-03-25 Photon Energ Inc Thin film photoelectric panel and manufacture thereof
JP2004165513A (en) * 2002-11-14 2004-06-10 Matsushita Electric Works Ltd Organic photoelectric conversion element and its sealing method
JP2009099805A (en) * 2007-10-17 2009-05-07 Komatsu Seiren Co Ltd Hot-melt type member for organic thin-film solar cell and sealing panel for organic thin-film solar cell element housing
WO2010150648A1 (en) * 2009-06-25 2010-12-29 コニカミノルタホールディングス株式会社 Organic electronics panel and method for producing the same
JP2011151195A (en) * 2010-01-21 2011-08-04 Dainippon Printing Co Ltd Organic thin film solar cell, and method of manufacturing the same

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07169567A (en) * 1993-12-16 1995-07-04 Idemitsu Kosan Co Ltd Organic el element
JP2006228493A (en) * 2005-02-16 2006-08-31 Toppan Printing Co Ltd Organic electroluminescent element and its manufacturing method
JP2009259656A (en) * 2008-04-18 2009-11-05 Toyo Ink Mfg Co Ltd Sealer
JP2010055861A (en) * 2008-08-27 2010-03-11 Panasonic Corp Light-emitting device, and manufacturing method of light-emitting device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0369171A (en) * 1989-06-20 1991-03-25 Photon Energ Inc Thin film photoelectric panel and manufacture thereof
JP2004165513A (en) * 2002-11-14 2004-06-10 Matsushita Electric Works Ltd Organic photoelectric conversion element and its sealing method
JP2009099805A (en) * 2007-10-17 2009-05-07 Komatsu Seiren Co Ltd Hot-melt type member for organic thin-film solar cell and sealing panel for organic thin-film solar cell element housing
WO2010150648A1 (en) * 2009-06-25 2010-12-29 コニカミノルタホールディングス株式会社 Organic electronics panel and method for producing the same
JP2011151195A (en) * 2010-01-21 2011-08-04 Dainippon Printing Co Ltd Organic thin film solar cell, and method of manufacturing the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105490642A (en) * 2015-12-24 2016-04-13 合肥晶澳太阳能科技有限公司 Method for testing snail track of photovoltaic module
CN105490642B (en) * 2015-12-24 2017-10-20 合肥晶澳太阳能科技有限公司 A kind of method of testing of photovoltaic module snail line
CN114583058A (en) * 2020-11-30 2022-06-03 株式会社理光 Photoelectric conversion element, photoelectric conversion module, electronic instrument, and power supply module

Also Published As

Publication number Publication date
JP2013168572A (en) 2013-08-29
TW201340431A (en) 2013-10-01
JP5999831B2 (en) 2016-09-28

Similar Documents

Publication Publication Date Title
JP5999831B2 (en) Organic thin-film solar cell element
KR101700989B1 (en) Organic electronic device and method for producing the same
JP5655568B2 (en) Organic photoelectric conversion element, solar cell, and optical sensor array
KR100986159B1 (en) Organic solar cell enhancing energy conversion efficiency and method for preparing the same
US8492647B2 (en) Organic solar cell and method for forming the same
JP2016178187A (en) Solar battery module
JP2011151195A (en) Organic thin film solar cell, and method of manufacturing the same
WO2016035432A1 (en) Photoelectric conversion element, wiring substrate for photoelectric conversion element, method for producing photoelectric conversion element, and photoelectric conversion structure
JP5772836B2 (en) Organic photoelectric conversion layer material composition, organic photoelectric conversion element, method for producing organic photoelectric conversion element, and solar cell
Ayllon et al. Application of MEH-PPV/SnO2 bilayer as hybrid solar cell
WO2011052510A1 (en) Organic thin film solar cell and method for manufacturing same
JP2012099592A (en) Organic photoelectric conversion element, solar cell and method for manufacturing the same
KR101033304B1 (en) Light emitting organic photovoltaic cells and mathod of manufacturing the same
Nakamura et al. High-performance polymer photovoltaic devices with inverted structure prepared by thermal lamination
JP2010182720A (en) Organic photoelectric converting element
Lee et al. Improved photovoltaic effect of polymer solar cells with nanoscale interfacial layers
JP2014053383A (en) Tandem organic photoelectric conversion element and solar cell using the same
WO2011052509A1 (en) Method for production of organic photoelectric conversion element
JP5303828B2 (en) Organic thin film solar cell
JP2010147276A (en) Organic photoelectric conversion element
JP2013026483A (en) Organic photoelectric conversion element, method for manufacturing the same, and solar cell
JP5652314B2 (en) Organic photoelectric conversion element and manufacturing method thereof
CN102576810A (en) Organic photoelectric conversion element and production method therefor
JP5608040B2 (en) Organic photoelectric conversion element
JP2011124469A (en) Organic photoelectric conversion element, solar cell and optical sensor array using the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13749216

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13749216

Country of ref document: EP

Kind code of ref document: A1