WO2013122154A1 - 窒化物半導体装置 - Google Patents

窒化物半導体装置 Download PDF

Info

Publication number
WO2013122154A1
WO2013122154A1 PCT/JP2013/053549 JP2013053549W WO2013122154A1 WO 2013122154 A1 WO2013122154 A1 WO 2013122154A1 JP 2013053549 W JP2013053549 W JP 2013053549W WO 2013122154 A1 WO2013122154 A1 WO 2013122154A1
Authority
WO
WIPO (PCT)
Prior art keywords
nitride semiconductor
oxygen concentration
layer
concentration peak
interface
Prior art date
Application number
PCT/JP2013/053549
Other languages
English (en)
French (fr)
Inventor
敏 森下
藤田 耕一郎
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Priority to US14/372,970 priority Critical patent/US9171947B2/en
Priority to CN201380009413.XA priority patent/CN104115262B/zh
Publication of WO2013122154A1 publication Critical patent/WO2013122154A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/778Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface
    • H01L29/7786Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface with direct single heterostructure, i.e. with wide bandgap layer formed on top of active layer, e.g. direct single heterostructure MIS-like HEMT
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66446Unipolar field-effect transistors with an active layer made of a group 13/15 material, e.g. group 13/15 velocity modulation transistor [VMT], group 13/15 negative resistance FET [NERFET]
    • H01L29/66462Unipolar field-effect transistors with an active layer made of a group 13/15 material, e.g. group 13/15 velocity modulation transistor [VMT], group 13/15 negative resistance FET [NERFET] with a heterojunction interface channel or gate, e.g. HFET, HIGFET, SISFET, HJFET, HEMT
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/283Deposition of conductive or insulating materials for electrodes conducting electric current
    • H01L21/285Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation
    • H01L21/28506Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers
    • H01L21/28575Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising AIIIBV compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/08Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/0843Source or drain regions of field-effect devices
    • H01L29/0847Source or drain regions of field-effect devices of field-effect transistors with insulated gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/20Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L29/2003Nitride compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/45Ohmic electrodes
    • H01L29/452Ohmic electrodes on AIII-BV compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/778Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface
    • H01L29/7786Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface with direct single heterostructure, i.e. with wide bandgap layer formed on top of active layer, e.g. direct single heterostructure MIS-like HEMT
    • H01L29/7787Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface with direct single heterostructure, i.e. with wide bandgap layer formed on top of active layer, e.g. direct single heterostructure MIS-like HEMT with wide bandgap charge-carrier supplying layer, e.g. direct single heterostructure MODFET

Definitions

  • the present invention relates to a nitride semiconductor device.
  • an oxygen plasma treatment is performed on the surface of an n-type GaN contact layer to form an oxygen-doped layer, and then an ohmic electrode is formed on the n-type GaN contact layer, thereby forming an n-type GaN
  • the ohmic electrode has a high contact resistance and a sufficiently low contact resistance. I just could't get it.
  • an object of the present invention is to provide a nitride semiconductor device capable of reducing the contact resistance between the nitride semiconductor layer and the ohmic electrode.
  • the inventor has found that the substrate side region near the interface between the ohmic electrode made of TiAl-based material and the nitride semiconductor layer is in the vicinity of the interface.
  • the nitride semiconductor layer according to the oxygen concentration of the second oxygen concentration peak It was found that the characteristics of contact resistance with the ohmic electrode changed.
  • the present inventor has found for the first time that the contact resistance is greatly reduced when the oxygen concentration of the second oxygen concentration peak on the substrate side from the interface is within a specific range.
  • the nitride semiconductor device of the present invention is A substrate, A nitride semiconductor multilayer body formed on the substrate and having a heterointerface; An ohmic electrode made of a TiAl-based material formed at least partially on the nitride semiconductor multilayer body or in the nitride semiconductor multilayer body,
  • the nitride semiconductor laminate is A first nitride semiconductor layer formed on the substrate; A second nitride semiconductor layer formed on the first nitride semiconductor layer and forming a heterointerface with the first nitride semiconductor layer;
  • the oxygen concentration of the second oxygen concentration peak is It
  • the position of the second oxygen concentration peak is a depth of 65 nm or more and 110 nm or less from the interface.
  • the second oxygen concentration peak is located at a depth of 65 nm or more and 110 nm or less from the interface, the contact resistance between the nitride semiconductor multilayer body and the ohmic electrode can be reduced.
  • the nitride semiconductor stack is Having a recess that penetrates the second nitride semiconductor layer and reaches the two-dimensional electron gas layer near the heterointerface; At least a part of the ohmic electrode is embedded in the recess.
  • the contact resistance between the two-dimensional electron gas layer near the heterointerface and the ohmic electrode can be reduced.
  • the nitride semiconductor device of the present invention a position deeper than the position of the first oxygen concentration peak in the vicinity of the interface in the region on the substrate side of the interface between the ohmic electrode made of a TiAl-based material and the nitride semiconductor multilayer body.
  • the second oxygen concentration peak is 3 ⁇ 10 17 cm ⁇ 3 or more and 1.2 ⁇ 10 18 cm ⁇ 3 or less, the contact resistance between the nitride semiconductor stacked body and the ohmic electrode is reduced. it can.
  • FIG. 3 is a process cross-sectional view following FIG. 2.
  • FIG. 4 is a process cross-sectional view following FIG. 3.
  • FIG. 5 is a process cross-sectional view subsequent to FIG. 4. It is a graph which shows oxygen concentration distribution in the depth direction from the ohmic electrode side to the GaN layer side of the interface of an ohmic electrode and a GaN layer. It is a graph which shows concentration distribution of oxygen, Al, Ti, Ga in the depth direction from the ohmic electrode side to the GaN layer side at the interface between the ohmic electrode and the GaN layer.
  • FIG. 1 shows a cross-sectional view of a nitride semiconductor device according to an embodiment of the present invention, and this nitride semiconductor device is a GaN-based HFET (Hetero-junction Field Effect Transistor).
  • GaN-based HFET Hetero-junction Field Effect Transistor
  • the semiconductor device includes an undoped AlGaN buffer layer 15, an undoped GaN layer 1 as an example of a first nitride semiconductor layer, and an example of a second nitride semiconductor layer on a Si substrate 10.
  • a nitride semiconductor stacked body 20 composed of the undoped AlGaN layer 2 is formed.
  • a 2DEG layer (two-dimensional electron gas layer) 3 is generated in the vicinity of the interface between the undoped GaN layer 1 and the undoped AlGaN layer 2.
  • the GaN layer 1 may be replaced with an AlGaN layer having a composition having a smaller band gap than the AlGaN layer 2. Further, a layer having a thickness of about 1 nm made of GaN, for example, may be provided on the AlGaN layer 2 as a cap layer.
  • the source electrode 11 and the drain electrode 12 are formed in the recess 106 and the recess 109 that pass through the AlGaN layer 2 and the 2DEG layer 3 and reach the GaN layer 1 with a space therebetween.
  • a gate electrode 13 is formed on the AlGaN layer 2 between the source electrode 11 and the drain electrode 12 and on the source electrode 11 side.
  • the source electrode 11 and the drain electrode 12 are ohmic electrodes, and the gate electrode 13 is a Schottky electrode.
  • the source electrode 11, the drain electrode 12, the gate electrode 13, and the active regions of the GaN layer 1 and the AlGaN layer 2 on which the source electrode 11, the drain electrode 12, and the gate electrode 13 are formed constitute an HFET.
  • the active region means that carriers are generated between the source electrode 11 and the drain electrode 12 by the voltage applied to the gate electrode 13 disposed between the source electrode 11 and the drain electrode 12 on the AlGaN layer 2.
  • This is a region of the flowing nitride semiconductor stacked body 20 (GaN layer 1, AlGaN layer 2).
  • an insulating film 30 made of SiO 2 is formed on the AlGaN layer 2 excluding the region where the source electrode 11, the drain electrode 12, and the gate electrode 13 are formed in order to protect the AlGaN layer 2.
  • An interlayer insulating film 40 made of polyimide is formed on the Si substrate 10 on which the source electrode 11, the drain electrode 12, and the gate electrode 13 are formed.
  • reference numeral 41 denotes a via as a contact portion
  • 42 denotes a drain electrode pad.
  • the insulating film is not limited to SiO 2 , and SiN, Al 2 O 3, or the like may be used.
  • the insulating film preferably has a multilayer structure of a SiN film having a stoichiometric collapse on the surface of the semiconductor layer to suppress collapse and a SiO 2 or SiN film structure for surface protection.
  • the interlayer insulating film is not limited to polyimide, and an insulating material such as SiO 2 film manufactured by p-CVD (plasma CVD), SOG (Spin On Glass), or BPSG (boron, phosphorus, silicate, glass) is used. Also good.
  • a channel is formed by the two-dimensional electron gas layer (2DEG layer) 3 generated near the interface between the GaN layer 1 and the AlGaN layer 2, and a voltage is applied to the gate electrode 13 through this channel.
  • the HFET having the source electrode 11, the drain electrode 12, and the gate electrode 13 is turned on / off.
  • the HFET when a negative voltage is applied to the gate electrode 13, a depletion layer is formed in the GaN layer 1 below the gate electrode 13, and the HFET is turned off.
  • the voltage of the gate electrode 13 is zero, the HFET 13 is a normally-on type transistor in which the depletion layer disappears in the lower GaN layer 1 and is turned on.
  • the Si substrate and the undoped AlGaN buffer layer are not shown in order to make the drawings easy to see, and the sizes and intervals of the source electrode and the drain electrode are changed.
  • an undoped AlGaN buffer layer (not shown), undoped GaN is formed on a Si substrate (not shown) using MOCVD (Metal Organic Chemical Vapor Deposition) method.
  • a layer 101 and an undoped AlGaN layer 102 are formed in this order.
  • the thickness of the undoped GaN layer 101 is 1 ⁇ m, for example, and the thickness of the undoped AlGaN layer 102 is 30 nm, for example.
  • the GaN layer 101 and the AlGaN layer 102 constitute a nitride semiconductor stacked body 120.
  • an insulating film 130 (for example, SiO 2 ) is formed on the AlGaN layer 102 to a thickness of 200 nm by, for example, a plasma CVD (Chemical Vapor Deposition) method.
  • reference numeral 103 denotes a two-dimensional electron gas layer (2DEG layer) formed in the vicinity of the heterointerface between the GaN layer 101 and the AlGaN layer 102.
  • a portion where an ohmic electrode is to be formed is removed by dry etching, as shown in FIG.
  • Recesses 106 and 109 deeper than the 2DEG layer 103 are formed in a part of the GaN layer 101 so as to penetrate therethrough.
  • a chlorine-based gas is used in the dry etching.
  • the depth of the recesses 106 and 109 may be equal to or greater than the depth from the surface of the AlGaN layer 102 to the 2DEG layer 103, for example, 50 nm.
  • the self-bias potential Vdc of the RIE (reactive ion etching) apparatus is set to 180 V or more and 240 V or less in the dry etching.
  • O 2 plasma treatment, cleaning with HCl / H 2 O 2 , and cleaning with BHF (buffered hydrofluoric acid) or 1% HF (hydrofluoric acid) are sequentially performed.
  • annealing for reducing etching damage due to the dry etching is performed (for example, 500 to 850 ° C.).
  • Ti / Al / TiN are stacked by sequentially stacking Ti, Al, and TiN on the insulating film 130 and the recesses 106 and 109 to form an ohmic electrode.
  • a metal film 107 is formed.
  • the TiN layer is a cap layer for protecting the Ti / Al layer from a subsequent process.
  • a small amount (for example, 5 sccm) of oxygen is allowed to flow into the chamber during the Ti film formation.
  • the flow rate of the oxygen is set so that Ti oxide is not generated. Instead of flowing a small amount of oxygen into the chamber during the Ti film formation, oxygen may be flowed into the chamber at 50 sccm for 5 minutes before the Ti film formation.
  • both Ti and Al may be sputtered simultaneously. Further, Ti and Al may be deposited instead of sputtering.
  • patterns of ohmic electrodes 111 and 112 are formed by using normal photolithography and dry etching.
  • the substrate on which the ohmic electrodes 111 and 112 are formed for example, at 400 ° C. or more and 500 ° C. or less for 10 minutes or more, between the two-dimensional electron gas layer (2DEG layer) 103 and the ohmic electrodes 111 and 112 Ohmic contact is obtained.
  • the contact resistance can be greatly reduced as compared with the case where annealing is performed at a high temperature exceeding 500 ° C.
  • annealing at a low temperature of 400 ° C. or more and 500 ° C. or less the diffusion of the electrode metal into the insulating film 130 can be suppressed, and the characteristics of the insulating film 130 are not adversely affected.
  • the low temperature annealing can prevent deterioration of current collapse and characteristic fluctuation due to nitrogen desorption from the GaN layer 101.
  • “current collapse” is a phenomenon in which the on-resistance of a transistor in a high-voltage operation becomes higher than the on-resistance of the transistor in a low-voltage operation.
  • the ohmic electrodes 111 and 112 become the source electrode 11 and the drain electrode 12, and a gate electrode made of TiN or WN is formed between the ohmic electrodes 111 and 112 in a later step.
  • the source electrode 11 and the drain electrode 12 in the oxygen concentration distribution in the depth direction from the source electrode 11 and the drain electrode 12 as the ohmic electrodes to the GaN layer 1, the source electrode 11 and the drain electrode
  • a first oxygen concentration peak P1 is formed at a position near the interfaces S1 and S2 on the undoped GaN layer 1 side of the interfaces S1 and S2 between the GaN layer 1 and the GaN layer 1.
  • a second oxygen concentration peak P2 is formed at a position deeper than the first oxygen concentration peak P1.
  • the oxygen concentration of the second oxygen concentration peak P2 can be set to 3 ⁇ 10 17 cm ⁇ 3 or more and 1.2 ⁇ 10 18 cm ⁇ 3 or less.
  • the oxygen concentration at the first oxygen concentration peak is higher than the oxygen concentration at the second oxygen concentration peak.
  • the oxygen concentration at the first oxygen concentration peak is, for example, 1 ⁇ 10 18 (cm ⁇ 3 ) or more and 7 ⁇ 10 18 (cm ⁇ 3 ) or less.
  • FIG. 6 is a graph showing an example of the oxygen concentration distribution in the depth direction from the source electrode 11 side to the GaN layer 1 side of the interface S1 between the source electrode 11 and the undoped GaN layer 1. 6, the vertical axis scale 1.E + 00,1.E + 01, ..., 1.E + 06 , respectively, 1.0,1.0 ⁇ 10, ..., representative of 1.0 ⁇ 10 6.
  • This graph shows the results measured by SIMS (secondary ion mass spectrometry) using TEG (test element group), with the horizontal axis representing depth (nm) and the vertical axis representing relative secondary ion intensity. (counts).
  • SIMS secondary ion mass spectrometry
  • the first oxygen concentration peak P1 is located at a depth of about 8 nm from the interface S1 to the GaN layer 1 side, and a depth of about 108 nm from the interface S1 to the GaN layer 1 side.
  • the second oxygen concentration peak P2 is located.
  • the oxygen concentration of the second oxygen concentration peak P2 is about 8 ⁇ 10 17 cm ⁇ 3
  • the contact resistance between the ohmic electrode (source electrode 11) and the GaN layer 1 is 1.4 ⁇ mm. did it.
  • the interface S1 corresponds to the peak position of the relative secondary ion intensity (counts) of carbon C.
  • the oxygen concentration distribution in the depth direction from the drain electrode 12 side to the GaN layer 1 side of the interface S2 between the drain electrode 12 and the undoped GaN layer 1 is also the same as the graph of FIG.
  • the contact resistance between the drain electrode 12) and the GaN layer 1 could be 1.4 ⁇ mm.
  • FIG. 7 is a graph showing oxygen concentration distribution and Al, Ti, Ga concentration distribution in the depth direction from the source electrode side to the GaN layer 1 side of the interface S1 between the source electrode 11 and the undoped GaN layer 1. It is.
  • the vertical axis scale 1.E + 00,1.E + 01, ..., 1.E + 07 , respectively, 1.0,1.0 ⁇ 10, ..., representative of 1.0 ⁇ 10 7.
  • this graph shows the results of measurement by SIMS (secondary ion mass spectrometry) using TEG (test element group), with the horizontal axis representing depth (nm) and the vertical axis representing Relative secondary ionic strength (counts) is taken.
  • the interface S1 corresponds to the peak position of the relative secondary ion intensity (counts) of the carbon C.
  • a region having a depth of about 378 nm to a depth of about 438 nm is a region R1 in the vicinity of the interface, and a range of about 27 nm toward the shallower side than the interface S1 and about 33 nm toward the deeper side than the interface S1. Is the region R1 near the interface.
  • the concentration distribution of Al, Ti, and Ga in the depth direction from the drain electrode 12 side to the GaN layer 1 side of the interface S2 between the drain electrode 12 and the undoped GaN layer 1 is the same as the graph of FIG. It was.
  • the contact resistance increases rapidly. This is presumably because if the oxygen concentration at the second oxygen concentration peak P2 is too low, activation of oxygen, which is a reaction on the GaN layer side required for ohmic contact formation, is insufficient. Further, when the oxygen concentration at the second oxygen concentration peak P2 exceeds 1.2 ⁇ 10 18 cm ⁇ 3 , the contact resistance increases rapidly. This is because, when the oxygen concentration of the second oxygen concentration peak P2 is too high, excess oxygen reacts with Ti, and N is extracted from GaN by Ti, which is a reaction on the GaN layer 1 side necessary for ohmic contact formation. This is probably because the reaction is not sufficiently performed.
  • the ohmic contact formation is performed by setting the oxygen concentration of the second oxygen concentration peak P2 within the range of 3 ⁇ 10 17 cm ⁇ 3 to 1.2 ⁇ 10 18 cm ⁇ 3. It is considered that a low-resistance ohmic contact of about 2 ⁇ mm or less can be formed because oxygen activation on the GaN layer side and N extraction reaction from GaN can be promoted.
  • FIG. 11 shows the depth from the ohmic electrode side to the GaN layer side of the interface S0 between the ohmic electrode (source electrode, drain electrode) and the undoped GaN layer in the comparative example of the nitride semiconductor device (GaN-based HFET) of the above embodiment.
  • It is a graph which shows the concentration distribution of oxygen in a direction. 11, the vertical axis scale 1.E + 00,1.E + 01, ..., 1.E + 06 , respectively, 1.0,1.0 ⁇ 10, ..., representative of 1.0 ⁇ 10 6.
  • the cross-sectional structure of this comparative example is the same as the cross-sectional structure of the above embodiment shown in FIG. 1, but the oxygen concentration distribution shown in the graph is different from that of the above embodiment.
  • the graph of FIG. 11 shows the results of measurement by SIMS (secondary ion mass spectrometry) using TEG (test element group), with the horizontal axis representing depth (nm) and the vertical axis representing relative secondary.
  • the ionic strength (counts) is taken.
  • the first oxygen concentration peak P10 is located at a depth of about 15 nm from the interface S0 to the GaN layer side
  • the second oxygen concentration peak P10 is located at a depth of about 115 nm from the interface S0 to the GaN layer side.
  • the oxygen concentration peak P20 is located.
  • the oxygen concentration at the second oxygen concentration peak P20 is 2.0 ⁇ 10 17 cm ⁇ 3, which is lower than 3 ⁇ 10 17 cm ⁇ 3 , and the second oxygen concentration peak P20 Is no longer forming a concentration peak.
  • the contact resistance of the ohmic electrode was as high as 70 ⁇ mm, which was significantly increased compared to the contact resistance of the ohmic electrode of the embodiment (about 2 ⁇ mm or less).
  • the contact resistance ( ⁇ mm) increases rapidly. This is because if the self-bias potential Vdc is too small, the oxygen concentration of the second oxygen concentration peak P2 becomes too low (below 3 ⁇ 10 17 cm ⁇ 3 ), or the second oxygen concentration peak P2 is formed. It is thought that it will disappear. As described above, when the oxygen concentration of the second oxygen concentration peak P2 is low, it is considered that the activation of oxygen, which is a reaction on the GaN layer side necessary for forming the ohmic contact, is insufficient.
  • the contact resistance ( ⁇ mm) increases rapidly. This is presumably because, if the potential Vdc is too large, damage is so deep into the GaN layer 1 side that the oxygen concentration becomes too high (above 1.2 ⁇ 10 18 cm ⁇ 3 ). As described above, when the oxygen concentration of the second oxygen concentration peak P2 is high, it is considered that the N extraction reaction from GaN by Ti, which is a reaction on the GaN layer 1 side necessary for forming the ohmic contact, is not sufficiently performed. .
  • the relationship between the depth (nm) of the second oxygen concentration peak P2 from the interface S1 and the contact resistance ( ⁇ mm) of the source electrode 11 and the drain electrode 12 will be described with reference to FIG.
  • the contact resistance ( ⁇ mm) is set to 2 ⁇ mm or less. it can.
  • the depth (nm) of the second oxygen concentration peak P2 from the interface S1 is less than 65 nm, the distinction between the first oxygen concentration peak P1 and the second oxygen concentration peak P2 becomes unclear. Further, when the depth (nm) of the second oxygen concentration peak P2 from the interface S1 exceeds 110 nm, the second oxygen concentration peak P2 is hardly formed.
  • the oxygen concentration of the second oxygen concentration peak P2 can be set to a value within the range of 3 ⁇ 10 17 cm ⁇ 3 to 1.2 ⁇ 10 18 cm ⁇ 3.
  • the depth (nm) of the second oxygen concentration peak P2 from the interface S1 can be 65 nm or more and 110 nm or less (for example, 108 nm), and the contact resistance ( ⁇ mm) can be 2 ⁇ mm or less.
  • the insulating film 130, the AlGaN layer 102, and the GaN layer 101 are removed by dry etching to form the recesses 106 and 109.
  • the insulating film 130 is wet etched.
  • the recesses 106 and 109 may be formed by removing the AlGaN layer 102 and the GaN layer 101 by dry etching.
  • Ti / Al / TiN is laminated to form an ohmic electrode.
  • the present invention is not limited to this, and TiN may be omitted, and Ti / Al is laminated. Then, Au, Ag, Pt or the like may be laminated thereon.
  • the nitride semiconductor device using the Si substrate has been described.
  • the present invention is not limited to the Si substrate, and a sapphire substrate or an SiC substrate may be used, and a nitride semiconductor layer is formed on the sapphire substrate or the SiC substrate.
  • the nitride semiconductor layer may be grown on a substrate made of a nitride semiconductor, such as by growing an AlGaN layer on a GaN substrate.
  • a buffer layer may be formed between the substrate and the nitride semiconductor layer, or a hetero-improvement layer between the first nitride semiconductor layer and the second nitride semiconductor layer of the nitride semiconductor stacked body. May be formed.
  • the recess structure HFET in which the ohmic electrode reaches the GaN layer has been described.
  • the present invention is applied to an HFET in which an ohmic electrode serving as a source electrode and a drain electrode is formed on an undoped AlGaN layer without forming a recess. May be applied.
  • the nitride semiconductor device of the present invention is not limited to the HFET using 2DEG, and the same effect can be obtained even if it is a field effect transistor having another configuration.
  • a normally-on type HFET has been described.
  • the present invention may be applied to a normally-off type nitride semiconductor device. Further, the present invention may be applied not only to a Schottky electrode but also to a field effect transistor having an insulated gate structure.
  • the nitride semiconductor of the nitride semiconductor device of the present invention may be any material represented by Al x In y Ga 1-xy N (x ⁇ 0, y ⁇ 0, 0 ⁇ x + y ⁇ 1).

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Junction Field-Effect Transistors (AREA)
  • Electrodes Of Semiconductors (AREA)

Abstract

 窒化物半導体装置は、基板(10)と、窒化物半導体積層体(20)と、TiAl系材料からなるオーミック電極(11,12)とを備える。窒化物半導体積層体(20)は、上記基板(10)上に形成された第1の窒化物半導体層(1)と、第1の窒化物半導体層(1)とヘテロ界面を形成する第2の窒化物半導体層(2)とを有する。この窒化物半導体装置は、上記オーミック電極(11,12)から上記窒化物半導体積層体(20)に亘る深さ方向の酸素濃度分布において、上記オーミック電極(11,12)と上記窒化物半導体積層体(20)との界面よりも上記基板(10)側の領域の上記界面近傍の位置に第1の酸素濃度ピークを有し、上記第1の酸素濃度ピークよりも深い位置に、酸素濃度が3×1017cm-3以上かつ1.2×1018cm-3以下である第2の酸素濃度ピークを有する。

Description

窒化物半導体装置
 この発明は、窒化物半導体装置に関する。
 従来、窒化物半導体装置としては、n型GaNコンタクト層の表面に酸素プラズマ処理を行って酸素ドープ層を形成した後に、そのn型GaNコンタクト層上にオーミック電極を形成することによって、n型GaNコンタクト層とオーミック電極とのコンタクト抵抗を低減するものがある(特許第2967743号公報(特許文献1)参照)。
 ところが、上記窒化物半導体装置について、本発明者が実際に実験を行ってGaN層に酸素プラズマ処理を行った後にオーミック電極を形成した場合、オーミック電極のコンタクト抵抗が高く、十分に低いコンタクト抵抗を得ることはどうしてもできなかった。
特許第2967743号公報
 そこで、この発明の課題は、窒化物半導体層とオーミック電極とのコンタクト抵抗を低減できる窒化物半導体装置を提供することにある。
 本発明者は、窒化物半導体層上に形成されたオーミック電極のコンタクト抵抗について鋭意検討した結果、TiAl系材料からなるオーミック電極と窒化物半導体層との界面の基板側の領域において上記界面近傍に発生する第1の酸素濃度ピークと第1の酸素濃度ピークよりも深い位置の第2の酸素濃度ピークを発生させた場合に、上記第2の酸素濃度ピークの酸素濃度に応じて窒化物半導体層とオーミック電極とのコンタクト抵抗の特性が変化することを発見した。
 さらに、本発明者は、上記界面より基板側の第2の酸素濃度ピークの酸素濃度が特定の範囲内であるときにコンタクト抵抗が大幅に減少することを実験により初めて見出した。
 上記発見に基づき、この発明の窒化物半導体装置は、
 基板と、
 上記基板上に形成されていると共にヘテロ界面を有する窒化物半導体積層体と、
 上記窒化物半導体積層体上または上記窒化物半導体積層体内に少なくとも一部が形成されたTiAl系材料からなるオーミック電極と
を備え、
 上記窒化物半導体積層体は、
 上記基板上に形成された第1の窒化物半導体層と、
 上記第1の窒化物半導体層上に形成されていると共に上記第1の窒化物半導体層とヘテロ界面を形成する第2の窒化物半導体層と
を有し、
 上記TiAl系材料からなるオーミック電極から上記窒化物半導体積層体に亘る深さ方向の酸素濃度分布において、
 上記オーミック電極と上記窒化物半導体積層体との界面よりも上記基板側の領域の上記界面近傍の位置に第1の酸素濃度ピークを有し、
 上記第1の酸素濃度ピークよりも深い位置に第2の酸素濃度ピークを有し、
 上記第2の酸素濃度ピークの酸素濃度は、
 3×1017cm-3以上かつ1.2×1018cm-3以下であることを特徴としている。
 この発明の窒化物半導体装置によれば、上記TiAl系材料からなるオーミック電極と上記窒化物半導体積層体との界面の上記基板側の領域において、上記界面近傍の上記第1の酸素濃度ピークの位置よりも深い位置に、酸素濃度が3×1017cm-3以上かつ1.2×1018cm-3以下の第2の酸素濃度ピークを有することによって、上記窒化物半導体積層体と上記オーミック電極とのコンタクト抵抗を低減できる。
 また、一実施形態の窒化物半導体装置では、上記第2の酸素濃度ピークの位置が、上記界面から65nm以上かつ110nm以下の深さである。
 この実施形態によれば、上記界面から65nm以上かつ110nm以下の深さに上記第2の酸素濃度ピークが位置することによって、上記窒化物半導体積層体と上記オーミック電極とのコンタクト抵抗を低減できる。
 また、一実施形態の窒化物半導体装置では、上記窒化物半導体積層体は、
 上記第2の窒化物半導体層を貫通して上記ヘテロ界面近傍の2次元電子ガス層に達する凹部を有し、
 上記凹部に上記オーミック電極の少なくとも一部が埋め込まれている。
 この実施形態によれば、リセス構造の窒化物半導体装置において、上記ヘテロ界面近傍の2次元電子ガス層とオーミック電極とのコンタクト抵抗を低減できる。
 この発明の窒化物半導体装置によれば、TiAl系材料からなるオーミック電極と窒化物半導体積層体との界面の基板側の領域において、上記界面近傍の第1の酸素濃度ピークの位置よりも深い位置に、酸素濃度が3×1017cm-3以上かつ1.2×1018cm-3以下の第2の酸素濃度ピークを有するので、上記窒化物半導体積層体とオーミック電極とのコンタクト抵抗を低減できる。
この発明の実施形態の窒化物半導体装置の断面図である。 上記窒化物半導体装置の製造方法を説明するための工程断面図である。 図2に続く工程断面図である。 図3に続く工程断面図である。 図4に続く工程断面図である。 オーミック電極とGaN層との界面のオーミック電極側からGaN層側へ亘る深さ方向における酸素の濃度分布を示すグラフである。 オーミック電極とGaN層との界面のオーミック電極側からGaN層側へ亘る深さ方向における酸素,Al,Ti,Gaの濃度分布を示すグラフである。 上記実施形態の第2の酸素濃度ピークP2の酸素濃度(cm-3)とソース,ドレイン電極のコンタクト抵抗との関係を示すグラフである。 上記実施形態の製造工程のドライエッチングにおける自己バイアス電位Vdcとソース,ドレイン電極のコンタクト抵抗との関係を示すグラフである。 上記実施形態の第2の酸素濃度ピークP2の深さとソース,ドレイン電極のコンタクト抵抗との関係を示すグラフである。 比較例におけるオーミック電極とGaN層との界面のオーミック電極側からGaN層側へ亘る深さ方向における酸素の濃度分布を示すグラフである。
 以下、この発明を図示の実施の形態により詳細に説明する。
 図1は、この発明の実施形態の窒化物半導体装置の断面図を示しており、この窒化物半導体装置はGaN系HFET(Hetero-junction Field Effect Transistor;ヘテロ接合電界効果トランジスタ)である。
 この半導体装置は、図1に示すように、Si基板10上に、アンドープAlGaNバッファ層15、第1の窒化物半導体層の一例としてのアンドープGaN層1と、第2の窒化物半導体層の一例としてのアンドープAlGaN層2からなる窒化物半導体積層体20を形成している。このアンドープGaN層1とアンドープAlGaN層2との界面近傍に2DEG層(2次元電子ガス層)3が発生する。
 なお、上記GaN層1に替えて、上記AlGaN層2よりもバンドギャップの小さい組成を有するAlGaN層としてもよい。また、上記AlGaN層2上にキャップ層として例えばGaNからなる約1nmの厚さの層を設けてもよい。
 また、ソース電極11とドレイン電極12とを、上記AlGaN層2と2DEG層3を貫通してGaN層1まで達する凹部106と凹部109に互いに間隔をあけて形成している。また、AlGaN層2上に、ソース電極11とドレイン電極12との間かつソース電極11側にゲート電極13を形成している。ソース電極11とドレイン電極12はオーミック電極であり、ゲート電極13はショットキー電極である。上記ソース電極11と、ドレイン電極12と、ゲート電極13と、そのソース電極11,ドレイン電極12,ゲート電極13が形成されたGaN層1,AlGaN層2の活性領域でHFETを構成している。
 ここで、活性領域とは、AlGaN層2上のソース電極11とドレイン電極12との間に配置されたゲート電極13に印加される電圧によって、ソース電極11とドレイン電極12との間でキャリアが流れる窒化物半導体積層体20(GaN層1,AlGaN層2)の領域である。
 そして、ソース電極11とドレイン電極12とゲート電極13が形成された領域を除くAlGaN層2上に、AlGaN層2を保護するため、SiOからなる絶縁膜30を形成している。また、ソース電極11とドレイン電極12とゲート電極13とが形成されたSi基板10上に、ポリイミドからなる層間絶縁膜40を形成している。また、図1において、41はコンタクト部としてのビア、42はドレイン電極パッドである。なお、絶縁膜は、SiOに限らず、SiNやAlなどを用いてもよい。特に、絶縁膜として、コラプス抑制のために半導体層表面にストイキオメトリックを崩したSiN膜と表面保護のためのSiOやSiNの多層膜構造とするのが好ましい。また、層間絶縁膜は、ポリイミドに限らず、p-CVD(プラズマCVD)で製造したSiO膜やSOG(Spin On Glass)やBPSG(ホウ素・リン・シリケート・ガラス)などの絶縁材料を用いてもよい。
 上記構成の窒化物半導体装置において、GaN層1とAlGaN層2との界面近傍に発生した2次元電子ガス層(2DEG層)3でチャネルが形成され、このチャネルをゲート電極13に電圧を印加することにより制御して、ソース電極11とドレイン電極12とゲート電極13を有するHFETをオンオフさせる。このHFETは、ゲート電極13に負電圧が印加されているときにゲート電極13下のGaN層1に空乏層が形成されてオフ状態となる一方、ゲート電極13の電圧がゼロのときにゲート電極13下のGaN層1に空乏層がなくなってオン状態となるノーマリーオンタイプのトランジスタである。
 次に、上記窒化物半導体装置の製造方法を図2~図5に従って説明する。なお、図2~図5では、図を見やすくするためにSi基板やアンドープAlGaNバッファ層を図示せず、また、ソース電極とドレイン電極の大きさや間隔を変えている。
 まず、図2に示すように、Si基板(図示せず)上に、MOCVD(Metal Organic Chemical Vapor Deposition:有機金属気相成長)法を用いて、アンドープAlGaNバッファ層(図示せず)、アンドープGaN層101とアンドープAlGaN層102を順に形成する。アンドープGaN層101の厚さは例えば1μm、アンドープAlGaN層102の厚さは例えば30nmとする。このGaN層101とAlGaN層102が窒化物半導体積層体120を構成している。
 次に、AlGaN層102上に絶縁膜130(例えばSiO)を例えばプラズマCVD(Chemical Vapor Deposition:化学的気相成長))法により200nmの厚さに成膜する。図2において、103は、GaN層101とAlGaN層102とのヘテロ界面近傍に形成される2次元電子ガス層(2DEG層)である。
 次に、絶縁膜130上にフォトレジスト(図示せず)を塗布してパターニングした後、ドライエッチングにより、図3に示すように、オーミック電極を形成すべき部分を除去して、AlGaN層102を貫通してGaN層101の上側の一部に2DEG層103よりも深い凹部106,109を形成する。上記ドライエッチングでは、塩素系のガスを用いる。この凹部106,109の深さはAlGaN層102の表面から2DEG層103までの深さ以上であればよく、例えば50nmとする。
 また、この実施形態では、上記ドライエッチングにおいて、RIE(reactive ion etching:リアクティブイオンエッチング)装置の自己バイアス電位Vdcを180V以上かつ240V以下に設定した。
 次に、順次、Oプラズマ処理、HCl/Hによる洗浄、BHF(バッファードフッ酸)もしくは1%のHF(フッ酸)による洗浄を行なう。そして、上記ドライエッチングによるエッチングダメージを低減するためのアニールを行う(例えば500~850℃)。
 次に、図4に示すように、絶縁膜130上および凹部106,109にスパッタリングにより、Ti,Al,TiNを順に積層することで、Ti/Al/TiNを積層して、オーミック電極となる積層金属膜107を形成する。ここで、TiN層は、後工程からTi/Al層を保護するためのキャップ層である。
 上記スパッタリングで上記積層金属膜107を形成する時に、Ti成膜中に少量(例えば5sccm)の酸素をチャンバー内に流す。ここで、上記酸素の流量は、Tiの酸化物が生成されない量とする。なお、上記Ti成膜中に少量の酸素をチャンバー内に流すことに替えて、上記Ti成膜前にチャンバー内に酸素を例えば50sccmで5分間流してもよい。
 尚、上記スパッタリングにおいて、TiとAlの両方を同時にスパッタリングしてもよい。また、スパッタリングに替えて上記Ti,Alを蒸着してもよい。
 次に、図5に示すように、通常のフォトリソグラフィおよびドライエッチングを用いて、オーミック電極111,112のパターンを形成する。
 そして、オーミック電極111,112が形成された基板を例えば400℃以上かつ500℃以下で10分以上アニールすることによって、2次元電子ガス層(2DEG層)103とオーミック電極111,112との間にオーミックコンタクトが得られる。この場合、500℃を超える高温でアニールした場合に比べてコンタクト抵抗を大幅に低減できる。また、400℃以上かつ500℃以下の低温でアニールすることにより絶縁膜130への電極金属の拡散を抑制でき、絶縁膜130の特性に悪影響を与えることがない。また、上記低温のアニールにより、GaN層101からの窒素抜けによる電流コラプスの悪化や特性変動を防ぐことができる。なお、「電流コラプス」とは、低電圧動作でのトランジスタのオン抵抗と比べて高電圧動作でのトランジスタのオン抵抗が高くなってしまう現象である。
 このオーミック電極111,112がソース電極11とドレイン電極12となり、後の工程でオーミック電極111,112の間にTiNまたはWNなどからなるゲート電極が形成される。
 上記実施形態の窒化物半導体装置の製造方法によれば、上記オーミック電極としてのソース電極11,ドレイン電極12から上記GaN層1に亘る深さ方向の酸素濃度分布において、上記ソース電極11,ドレイン電極12と上記GaN層1との界面S1,S2の上記アンドープGaN層1側の上記界面S1,S2近傍の位置に第1の酸素濃度ピークP1が形成される。また、上記第1の酸素濃度ピークP1よりも深い位置に第2の酸素濃度ピークP2が形成される。また、上記製造方法により、第2の酸素濃度ピークP2の酸素濃度を、3×1017cm-3以上かつ1.2×1018cm-3以下にできる。また、上記第1の酸素濃度ピークの酸素濃度は、上記第2の酸素濃度ピークの酸素濃度よりも高い。上記第1の酸素濃度ピークの酸素濃度は、例えば、1×1018(cm-3)以上かつ7×1018(cm-3)以下になる。
 図6は、上記ソース電極11とアンドープGaN層1との界面S1のソース電極11側から上記GaN層1側へ亘る深さ方向における酸素の濃度分布の一例を示すグラフである。図6において、縦軸目盛の1.E+00、1.E+01、…、1.E+06は、それぞれ、1.0、1.0×10、…、1.0×10を表す。このグラフは、TEG(テスト・エレメント・グループ)を用い、SIMS(2次イオン質量分析法)により測定した結果を表し、横軸に深さ(nm)を取り、縦軸に相対2次イオン強度(counts)を取ったものである。図6では、一例として、上記界面S1から上記GaN層1側へ約8nmの深さに、第1の酸素濃度ピークP1が位置し、上記界面S1から上記GaN層1側へ約108nmの深さに、第2の酸素濃度ピークP2が位置している。図6の一例では、上記第2の酸素濃度ピークP2の酸素濃度は、約8×1017cm-3であり、オーミック電極(ソース電極11)とGaN層1とのコンタクト抵抗を1.4Ωmmにできた。
 尚、上記界面S1は、カーボンCの相対2次イオン強度(counts)のピークの位置に対応している。また、上記ドレイン電極12とアンドープGaN層1との界面S2のドレイン電極12側から上記GaN層1側へ亘る深さ方向における酸素の濃度分布も、図6のグラフと同様であり、オーミック電極(ドレイン電極12)とGaN層1とのコンタクト抵抗を1.4Ωmmにできた。
 図7は、上記ソース電極11とアンドープGaN層1との界面S1のソース電極側から上記GaN層1側へ亘る深さ方向における酸素の濃度分布、およびAl,Ti,Gaの濃度分布を示すグラフである。図7において、縦軸目盛の1.E+00、1.E+01、…、1.E+07は、それぞれ、1.0、1.0×10、…、1.0×10を表す。このグラフは、図6と同様、TEG(テスト・エレメント・グループ)を用い、SIMS(2次イオン質量分析法)により測定した結果を表し、横軸に深さ(nm)を取り、縦軸に相対2次イオン強度(counts)を取ったものである。上記界面S1は、カーボンCの相対2次イオン強度(counts)のピークの位置に対応している。図7のグラフでは、一例として、深さ約378nmから深さ約438nmの領域が界面近傍の領域R1であり、界面S1よりも浅い側へ約27nmと界面S1よりも深い側へ約33nmの範囲が界面近傍の領域R1である。
 尚、上記ドレイン電極12とアンドープGaN層1との界面S2のドレイン電極12側から上記GaN層1側へ亘る深さ方向におけるAl,Ti,Gaの濃度分布も、図7のグラフと同様であった。
 次に、図8に、上記窒化物半導体積層体20の2DEG層3と上記ソース電極11,ドレイン電極12とのコンタクト抵抗(Ωmm)と、上記第2の酸素濃度ピークP2の酸素濃度(cm-3)との関係を示す。図8において、横軸目盛のE+17、E+18、E+19は、それぞれ、×1017、×1018、×1019を表す。
 図8から分かるように、上記第2の酸素濃度ピークP2の酸素濃度(cm-3)を、3×1017cm-3以上かつ1.2×1018cm-3以下にすることで、上記コンタクト抵抗を約2Ωmm以下に低減できる。
 一方、上記第2の酸素濃度ピークP2の酸素濃度が、3×1017cm-3を下回ると、コンタクト抵抗が急増している。これは、上記第2の酸素濃度ピークP2の酸素濃度が低過ぎると、オーミックコンタクト形成に必要なGaN層側の反応である酸素の活性化が不足するからであると考えられる。また、上記第2の酸素濃度ピークP2の酸素濃度が、1.2×1018cm-3を上回ると、コンタクト抵抗が急増している。これは、上記第2の酸素濃度ピークP2の酸素濃度が高過ぎると、過剰な酸素がTiと反応し、オーミックコンタクト形成に必要なGaN層1側の反応であるTiによるGaNからのNの引き抜き反応が十分に行なわれないからであると考えられる。
 すなわち、この実施形態によれば、第2の酸素濃度ピークP2の酸素濃度を、3×1017cm-3~1.2×1018cm-3の範囲内に設定することで、オーミックコンタクト形成に必要なGaN層側の酸素の活性化,GaNからのNの引き抜き反応を促進できるので、約2Ωmm以下の低抵抗のオーミックコンタクトを形成できると考えられる。
 図11は、上記実施形態の窒化物半導体装置(GaN系HFET)の比較例におけるオーミック電極(ソース電極,ドレイン電極)とアンドープGaN層との界面S0のオーミック電極側からGaN層側へ亘る深さ方向における酸素の濃度分布を示すグラフである。図11において、縦軸目盛の1.E+00、1.E+01、…、1.E+06は、それぞれ、1.0、1.0×10、…、1.0×10を表す。この比較例の断面構造は、図1に示す上記実施形態の断面構造と同様であるが、上記グラフに示す酸素濃度分布が上記実施形態と異なる。
 図11のグラフは、TEG(テスト・エレメント・グループ)を用い、SIMS(2次イオン質量分析法)により測定した結果を表し、横軸に深さ(nm)を取り、縦軸に相対2次イオン強度(counts)を取ったものである。図11では、上記界面S0から上記GaN層側へ約15nmの深さに、第1の酸素濃度ピークP10が位置し、上記界面S0から上記GaN層側へ約115nmの深さに、第2の酸素濃度ピークP20が位置している。この比較例では、上記第2の酸素濃度ピークP20での酸素濃度は、2.0×1017cm-3であり、3×1017cm-3を下回っていて、第2の酸素濃度ピークP20が濃度ピークを形成しなくなりかけている。このため、この比較例では、上記オーミック電極のコンタクト抵抗が70Ωmmと高く、上記実施形態のオーミック電極のコンタクト抵抗(約2Ωmm以下)に比べて、大幅に増大していた。
 次に、図9を参照して、上記凹部106,109を形成するためのドライエッチングにおいて、RIE装置の自己バイアス電位Vdcと、上記ソース電極11,ドレイン電極12のコンタクト抵抗(Ωmm)との関係を説明する。図9から分かるように、上記ドライエッチング時の自己バイアス電位Vdcを、180V以上かつ240V以下に設定することにより、上記窒化物半導体積層体20の2DEG層3と上記ソース電極11,ドレイン電極12とのコンタクト抵抗(Ωmm)を、2Ωmm以下にできる。
 一方、上記自己バイアス電位Vdcが180Vを下回ると、上記コンタクト抵抗(Ωmm)が急増している。これは、上記自己バイアス電位Vdcが小さすぎると第2の酸素濃度ピークP2の酸素濃度が低くなり過ぎる(3×1017cm-3を下回る)、あるいは、第2の酸素濃度ピークP2が形成されなくなるからと考えられる。前述の如く、第2の酸素濃度ピークP2の酸素濃度が低いと、オーミックコンタクト形成に必要なGaN層側の反応である酸素の活性化が不足すると考えられる。
 また、上記電位Vdcが240Vを上回ると、上記コンタクト抵抗(Ωmm)が急増している。これは、上記電位Vdcが大き過ぎるとGaN層1側にダメージが深く入り過ぎて酸素濃度が高くなり過ぎる(1.2×1018cm-3を上回る)からと考えられる。前述の如く、第2の酸素濃度ピークP2の酸素濃度が高いと、オーミックコンタクト形成に必要なGaN層1側の反応であるTiによるGaNからのNの引き抜き反応が十分に行なわれないと考えられる。
 次に、図10に、上記界面S1からの第2の酸素濃度ピークP2の深さ(nm)と、上記ソース電極11,ドレイン電極12のコンタクト抵抗(Ωmm)との関係を説明する。図10から分かるように、上記第2の酸素濃度ピークP2の界面S1からの深さ(nm)が、65nm以上かつ110nm以下の深さであれば、上記コンタクト抵抗(Ωmm)を、2Ωmm以下にできる。上記第2の酸素濃度ピークP2の界面S1からの深さ(nm)が65nmを下回ると、第1の酸素濃度ピークP1と第2の酸素濃度ピークP2との区別が明確でなくなる。また、上記第2の酸素濃度ピークP2の界面S1からの深さ(nm)が110nmを上回ると、上記第2の酸素濃度ピークP2が殆ど形成されなくなる。
 前述した上記実施形態の製造方法によれば、上記第2の酸素濃度ピークP2の酸素濃度を、3×1017cm-3~1.2×1018cm-3の範囲内の値にできると共に、上記界面S1からの第2の酸素濃度ピークP2の深さ(nm)を、65nm以上かつ110nm以下の深さ(例えば108nm)にできて、上記コンタクト抵抗(Ωmm)を2Ωmm以下にできる。
 界面S1からの第2の酸素濃度ピークP2の深さが、65nm~110nmであることで、低温下(400℃~500℃のアニール)における基板側のオーミック形成に必要な反応(酸素の活性化、TiによるNの引き抜き等)の起こる深さが最適化され、オーミック形成反応が促進されると考えられる。
 なお、上記実施形態の窒化物半導体装置の製造方法によれば、絶縁膜130、AlGaN層102、GaN層101をドライエッチングにより除去し、凹部106,109を形成したが、絶縁膜130をウェットエッチングにより除去し、その後AlGaN層102、GaN層101をドライエッチングにより除去することにより、凹部106,109を形成してもよい。
 また、上記実施形態の窒化物半導体装置の製造方法によれば、Ti/Al/TiNを積層してオーミック電極としたが、これに限らず、TiNはなくともよく、また、Ti/Alを積層した後、その上にAu,Ag,Ptなどを積層してもよい。
 また、上記実施形態では、Si基板を用いた窒化物半導体装置について説明したが、Si基板に限らず、サファイヤ基板やSiC基板を用いてもよく、サファイヤ基板やSiC基板上に窒化物半導体層を成長させてもよいし、GaN基板にAlGaN層を成長させる等のように、窒化物半導体からなる基板上に窒化物半導体層を成長させてもよい。また、基板と窒化物半導体層との間にバッファ層を形成してもよいし、窒化物半導体積層体の第1の窒化物半導体層と第2の窒化物半導体層との間にヘテロ改善層を形成してもよい。
 また、上記実施形態では、オーミック電極がGaN層に達するリセス構造のHFETについて説明したが、リセスを形成せずにアンドープAlGaN層上にソース電極およびドレイン電極となるオーミック電極を形成したHFETにこの発明を適用してもよい。また、この発明の窒化物半導体装置は、2DEGを利用するHFETに限らず、他の構成の電界効果トランジスタであっても同様の効果が得られる。
 また、上記実施形態では、ノーマリーオンタイプのHFETについて説明したが、ノーマリーオフタイプの窒化物半導体装置にこの発明を適用してもよい。また、ショットキー電極に限らず、絶縁ゲート構造の電界効果トランジスタにこの発明を適用してもよい。
 この発明の窒化物半導体装置の窒化物半導体は、AlxInyGa1-x-yN(x≦0、y≦0、0≦x+y≦1)で表されるものであればよい。
 この発明の具体的な実施の形態について説明したが、この発明は上記実施形態に限定されるものではなく、この発明の範囲内で種々変更して実施することができる。
 1,101 GaN層
 2,102 AlGaN層
 3,103 2DEG層
 10 Si基板
 11 ソース電極
 12 ドレイン電極
 13 ゲート電極
 15 AlGaNバッファ層
 20,120 窒化物半導体積層体
 30,130 絶縁膜
 40 層間絶縁膜
 41 ビア
 42 ドレイン電極パッド
 106,109 凹部
 111,112 オーミック電極
 P1 第1の酸素濃度ピーク
 P2 第2の酸素濃度ピーク
 S1 界面

Claims (3)

  1.  基板(10)と、
     上記基板(10)上に形成されていると共にヘテロ界面を有する窒化物半導体積層体(20,120)と、
     上記窒化物半導体積層体(20,120)上または上記窒化物半導体積層体(20,120)内に少なくとも一部が形成されたTiAl系材料からなるオーミック電極(11,12,111,112)と
    を備え、
     上記窒化物半導体積層体(20,120)は、
     上記基板(10)上に形成された第1の窒化物半導体層(1,101)と、
     上記第1の窒化物半導体層(1,101)上に形成されていると共に上記第1の窒化物半導体層(1,101)とヘテロ界面を形成する第2の窒化物半導体層(2,102)と
    を有し、
     上記TiAl系材料からなるオーミック電極(11,12,111,112)から上記窒化物半導体積層体(20,120)に亘る深さ方向の酸素濃度分布において、
     上記オーミック電極(11,12,111,112)と上記窒化物半導体積層体(20,120)との界面よりも上記基板(10)側の領域の上記界面近傍の位置に第1の酸素濃度ピークを有し、
     上記第1の酸素濃度ピークよりも深い位置に第2の酸素濃度ピークを有し、
     上記第2の酸素濃度ピークの酸素濃度は、
     3×1017cm-3以上かつ1.2×1018cm-3以下であることを特徴とする窒化物半導体装置。
  2.  請求項1に記載の窒化物半導体装置において、
     上記第2の酸素濃度ピークの位置が、上記界面から65nm以上かつ110nm以下の深さであることを特徴とする窒化物半導体装置。
  3.  請求項1または2に記載の窒化物半導体装置において、
     上記窒化物半導体積層体(20,120)は、
     上記第2の窒化物半導体層(2,102)を貫通して上記ヘテロ界面近傍の2次元電子ガス層(3,103)に達する凹部(106,109)を有し、
     上記凹部(106,109)に上記オーミック電極(11,12,111,112)の少なくとも一部が埋め込まれていることを特徴とする窒化物半導体装置。
PCT/JP2013/053549 2012-02-15 2013-02-14 窒化物半導体装置 WO2013122154A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US14/372,970 US9171947B2 (en) 2012-02-15 2013-02-14 Nitride semiconductor device
CN201380009413.XA CN104115262B (zh) 2012-02-15 2013-02-14 氮化物半导体器件

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012030690A JP5750382B2 (ja) 2012-02-15 2012-02-15 窒化物半導体装置
JP2012-030690 2012-02-15

Publications (1)

Publication Number Publication Date
WO2013122154A1 true WO2013122154A1 (ja) 2013-08-22

Family

ID=48984263

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/053549 WO2013122154A1 (ja) 2012-02-15 2013-02-14 窒化物半導体装置

Country Status (4)

Country Link
US (1) US9171947B2 (ja)
JP (1) JP5750382B2 (ja)
CN (1) CN104115262B (ja)
WO (1) WO2013122154A1 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016031953A (ja) 2014-07-25 2016-03-07 株式会社タムラ製作所 半導体素子及びその製造方法、半導体基板、並びに結晶積層構造体
US9577048B1 (en) * 2015-09-24 2017-02-21 Epistar Corporation Heterostructure field-effect transistor
US10822129B2 (en) * 2017-06-07 2020-11-03 Automated Packaging Systems, Llc Tear open bag
JP2020061442A (ja) * 2018-10-09 2020-04-16 パナソニック株式会社 太陽電池セル

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005260052A (ja) * 2004-03-12 2005-09-22 Mitsubishi Electric Corp 半導体装置およびその製造方法
JP2010232503A (ja) * 2009-03-27 2010-10-14 Furukawa Electric Co Ltd:The 半導体装置および半導体装置の製造方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5818078A (en) * 1994-08-29 1998-10-06 Fujitsu Limited Semiconductor device having a regrowth crystal region
JP2967743B2 (ja) 1997-01-14 1999-10-25 日本電気株式会社 n型窒化ガリウム系半導体のコンタクト電極及びその形成方法
US7419892B2 (en) * 2005-12-13 2008-09-02 Cree, Inc. Semiconductor devices including implanted regions and protective layers and methods of forming the same
FR2914500B1 (fr) * 2007-03-30 2009-11-20 Picogiga Internat Dispositif electronique a contact ohmique ameliore
US8309987B2 (en) * 2008-07-15 2012-11-13 Imec Enhancement mode semiconductor device
CN101685844A (zh) * 2008-09-27 2010-03-31 中国科学院物理研究所 GaN基单芯片白光发光二极管外延材料
JP5737948B2 (ja) * 2008-12-26 2015-06-17 ルネサスエレクトロニクス株式会社 ヘテロ接合電界効果トランジスタ、ヘテロ接合電界トランジスタの製造方法、および電子装置
JP5457046B2 (ja) * 2009-02-13 2014-04-02 パナソニック株式会社 半導体装置
JP5715588B2 (ja) * 2012-03-28 2015-05-07 株式会社東芝 半導体装置およびその製造方法
WO2013153927A1 (ja) * 2012-04-11 2013-10-17 シャープ株式会社 窒化物半導体装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005260052A (ja) * 2004-03-12 2005-09-22 Mitsubishi Electric Corp 半導体装置およびその製造方法
JP2010232503A (ja) * 2009-03-27 2010-10-14 Furukawa Electric Co Ltd:The 半導体装置および半導体装置の製造方法

Also Published As

Publication number Publication date
US20150001586A1 (en) 2015-01-01
CN104115262B (zh) 2017-03-29
JP2013168497A (ja) 2013-08-29
JP5750382B2 (ja) 2015-07-22
CN104115262A (zh) 2014-10-22
US9171947B2 (en) 2015-10-27

Similar Documents

Publication Publication Date Title
JP5166576B2 (ja) GaN系半導体素子の製造方法
CN103930978B (zh) 场效应晶体管及其制造方法
WO2013153927A1 (ja) 窒化物半導体装置
JP2014045174A (ja) 窒化物半導体装置
WO2014148255A1 (ja) 窒化物半導体装置および窒化物半導体装置の製造方法
JP5750382B2 (ja) 窒化物半導体装置
WO2014003047A1 (ja) 窒化物半導体装置の電極構造およびその製造方法並びに窒化物半導体電界効果トランジスタ
CN110854185A (zh) 半导体装置
JP5236787B2 (ja) 窒化物半導体装置およびその製造方法
JP5917990B2 (ja) 窒化物半導体装置
WO2014003058A1 (ja) 窒化物半導体装置の電極構造および窒化物半導体電界効果トランジスタ
JP6018809B2 (ja) 窒化物半導体装置
WO2014129245A1 (ja) 窒化物半導体装置
WO2014167876A1 (ja) 窒化物半導体装置
WO2014181556A1 (ja) 電界効果トランジスタ
JP2013222800A (ja) 窒化物半導体装置およびその製造方法
US9852911B2 (en) Field effect transistor
JP2015073002A (ja) 化合物半導体装置及びその製造方法
JP5329606B2 (ja) 窒化物半導体装置の製造方法
WO2013125589A1 (ja) 窒化物半導体装置およびその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13748627

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14372970

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13748627

Country of ref document: EP

Kind code of ref document: A1