WO2013122051A1 - 糖液の製造方法、糖液及びエタノールの製造方法 - Google Patents

糖液の製造方法、糖液及びエタノールの製造方法 Download PDF

Info

Publication number
WO2013122051A1
WO2013122051A1 PCT/JP2013/053267 JP2013053267W WO2013122051A1 WO 2013122051 A1 WO2013122051 A1 WO 2013122051A1 JP 2013053267 W JP2013053267 W JP 2013053267W WO 2013122051 A1 WO2013122051 A1 WO 2013122051A1
Authority
WO
WIPO (PCT)
Prior art keywords
ammonia
sugar solution
treated
sugar
producing
Prior art date
Application number
PCT/JP2013/053267
Other languages
English (en)
French (fr)
Inventor
雅裕 丹羽
昌 進藤
孝伸 西田
淳平 岸本
淳 南野
栗原 宏征
山田 勝成
Original Assignee
Jx日鉱日石エネルギー株式会社
東レ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jx日鉱日石エネルギー株式会社, 東レ株式会社 filed Critical Jx日鉱日石エネルギー株式会社
Priority to US14/377,918 priority Critical patent/US10087469B2/en
Priority to EP13748499.4A priority patent/EP2816124B1/en
Priority to ES13748499.4T priority patent/ES2613682T3/es
Priority to BR112014019575A priority patent/BR112014019575B1/pt
Priority to CA2864256A priority patent/CA2864256C/en
Publication of WO2013122051A1 publication Critical patent/WO2013122051A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/02Preparation of oxygen-containing organic compounds containing a hydroxy group
    • C12P7/04Preparation of oxygen-containing organic compounds containing a hydroxy group acyclic
    • C12P7/06Ethanol, i.e. non-beverage
    • C12P7/08Ethanol, i.e. non-beverage produced as by-product or from waste or cellulosic material substrate
    • C12P7/10Ethanol, i.e. non-beverage produced as by-product or from waste or cellulosic material substrate substrate containing cellulosic material
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P19/00Preparation of compounds containing saccharide radicals
    • C12P19/02Monosaccharides
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P19/00Preparation of compounds containing saccharide radicals
    • C12P19/14Preparation of compounds containing saccharide radicals produced by the action of a carbohydrase (EC 3.2.x), e.g. by alpha-amylase, e.g. by cellulase, hemicellulase
    • CCHEMISTRY; METALLURGY
    • C13SUGAR INDUSTRY
    • C13KSACCHARIDES OBTAINED FROM NATURAL SOURCES OR BY HYDROLYSIS OF NATURALLY OCCURRING DISACCHARIDES, OLIGOSACCHARIDES OR POLYSACCHARIDES
    • C13K1/00Glucose; Glucose-containing syrups
    • C13K1/02Glucose; Glucose-containing syrups obtained by saccharification of cellulosic materials
    • CCHEMISTRY; METALLURGY
    • C13SUGAR INDUSTRY
    • C13KSACCHARIDES OBTAINED FROM NATURAL SOURCES OR BY HYDROLYSIS OF NATURALLY OCCURRING DISACCHARIDES, OLIGOSACCHARIDES OR POLYSACCHARIDES
    • C13K1/00Glucose; Glucose-containing syrups
    • C13K1/02Glucose; Glucose-containing syrups obtained by saccharification of cellulosic materials
    • C13K1/04Purifying
    • CCHEMISTRY; METALLURGY
    • C13SUGAR INDUSTRY
    • C13KSACCHARIDES OBTAINED FROM NATURAL SOURCES OR BY HYDROLYSIS OF NATURALLY OCCURRING DISACCHARIDES, OLIGOSACCHARIDES OR POLYSACCHARIDES
    • C13K13/00Sugars not otherwise provided for in this class
    • C13K13/002Xylose
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P2201/00Pretreatment of cellulosic or lignocellulosic material for subsequent enzymatic treatment or hydrolysis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/10Biofuels, e.g. bio-diesel

Definitions

  • the present invention relates to a method for producing a sugar solution, a method for producing a sugar solution and ethanol, wherein the sugar solution is produced from cellulosic biomass.
  • sugars used as fermentation raw materials for example, those derived from edible raw materials such as sugar cane, starch, sugar beet are used industrially.
  • sugars used as fermentation raw materials for example, those derived from edible raw materials such as sugar cane, starch, sugar beet are used industrially.
  • Cellulosic biomass mainly includes lignin, an aromatic polymer, and cellulose and hemicellulose, which are monosaccharide polymers.
  • a method for producing a sugar solution using cellulosic biomass as a raw material for example, a method of directly hydrolyzing cellulosic biomass using concentrated sulfuric acid or the like, or steaming, pulverizing, dilute sulfuric acid in advance to cellulosic biomass
  • a pretreatment-enzymatic saccharification method in which cellulose or hemicellulose is desorbed from lignin by pretreatment such as treatment, followed by hydrolysis with a saccharifying enzyme such as cellulase.
  • sugar liquid derived from cellulosic biomass obtained by these methods fermentation inhibitors such as hydroxymethylfurfural (HMF), furfural, and vanillin are generated during the production process, and the resulting sugar liquid is fermented to produce alcohol or the like.
  • HMF hydroxymethylfurfural
  • vanillin hydroxymethylfurfural
  • the sugar concentration of the obtained sugar solution may be low. In this case, it was necessary to concentrate the sugar concentration to several to ten times before being subjected to the fermentation process.
  • the pretreatment-enzymatic saccharification method generally has an advantage that the environmental load is small compared with the method of directly hydrolyzing the raw material, while the yield of sugar is low. Therefore, a pretreatment method using a treatment agent containing ammonia has been proposed as a pretreatment method with a small environmental load and a high sugar yield (see, for example, Patent Document 3).
  • a sugar solution obtained from cellulosic biomass that has been subjected to a pretreatment such as steaming treatment produces fermentation inhibitors such as hydroxymethylfurfural (HMF), furfural, and vanillin in the process of producing the sugar solution.
  • HMF hydroxymethylfurfural
  • furfural furfural
  • vanillin hydroxymethylfurfural
  • the fermentation of the sugar solution is inhibited when the obtained sugar solution is fermented to produce alcohol or the like.
  • the present invention uses cellulosic biomass pretreated with a treatment agent containing ammonia that can provide a high sugar yield in improving the production efficiency of ethanol and the like using a sugar solution obtained from cellulosic biomass. It is an object of the present invention to provide a method for producing a sugar solution, a method for producing a sugar solution and ethanol, which can improve the fermentation efficiency of the sugar solution when fermenting the sugar solution obtained in this manner.
  • the present inventors have intensively studied a method for producing a sugar solution, a method for producing a sugar solution and ethanol.
  • a hydrolyzate (ammonia-treated sugar liquid) obtained by hydrolyzing cellulosic biomass pretreated with ammonia with an enzyme contains coumarinamide and ferulamide as specific fermentation inhibitors.
  • the fermentation efficiency of the ammonia-treated sugar liquid is obtained by purifying and removing coumarinamide and / or ferulamide contained in the ammonia-treated sugar liquid and adjusting the concentration of coumarinamide and / or ferulamide to a predetermined range. It was found that can be improved.
  • the present invention has been completed based on such knowledge.
  • the present invention has the following configurations (1) to (6).
  • the manufacturing method of the sugar liquid characterized by including.
  • the fermentation efficiency of a sugar solution when fermenting a sugar solution obtained using cellulosic biomass pretreated with a treatment agent containing ammonia can be improved.
  • FIG. 1 is a flowchart showing an example of a method for producing a sugar liquid according to an embodiment of the present invention.
  • FIG. 2 is a diagram showing the results of analyzing the aromatic compound in the ammonia-treated sugar solution by HPLC.
  • FIG. 3 is a diagram showing a UV absorption spectrum of peak 1 of the ammonia-treated sugar solution.
  • FIG. 4 is a diagram showing a UV absorption spectrum of peak 2 of the ammonia-treated sugar solution.
  • FIG. 5 is a diagram showing a UV absorption spectrum of a coumarinamide preparation.
  • FIG. 6 is a diagram showing a UV absorption spectrum of a ferulamide preparation.
  • FIG. 7 is a diagram showing the relationship between the fermentation time and the ethanol concentration of the NF concentrate and the RO concentrate.
  • FIG. 1 is a flowchart showing an example of a method for producing a sugar liquid according to an embodiment of the present invention.
  • FIG. 2 is a diagram showing the results of analyzing the aromatic compound in the
  • FIG. 8 is a diagram showing the relationship between fermentation time and xylose concentration of NF concentrate and RO concentrate.
  • FIG. 9 is a diagram showing the relationship between fermentation time and ethanol concentration of NF concentrate and RO concentrate.
  • FIG. 10 is a diagram showing the relationship between the fermentation time and the xylose concentration of the NF concentrate and the RO concentrate.
  • FIG. 1 is a flowchart showing an example of a method for producing a sugar liquid according to the present embodiment. As shown in FIG. 1, the manufacturing method of the sugar liquid which concerns on this embodiment includes the following processes.
  • a pretreatment process for treating cellulosic biomass with a treatment agent containing ammonia to obtain an ammonia treated product (step S11)
  • B) A process for producing an ammonia-treated sugar solution to enzymatically saccharify the ammonia-treated product to obtain an ammonia-treated sugar solution (step S12)
  • cellulosic biomass refers to herbaceous biomass such as bagasse, switchgrass, napiergrass, Eliansus, corn stover (corn stalk), rice straw, and straw, and woody biomass such as trees and waste building materials. And so on.
  • the cellulosic biomass contains a polysaccharide such as cellulose or hemicellulose, and a sugar solution can be produced by hydrolyzing such a polysaccharide.
  • a sugar solution obtained by saccharifying cellulosic biomass is referred to as a cellulose-derived sugar solution.
  • Cellulose-derived sugar solutions contain monosaccharides such as glucose, xylose, mannose, and arabinose, and water-soluble polysaccharides such as cellobiose, cellooligosaccharide, and xylooligosaccharide. These sugars should be used as fermentation raw materials (carbon sources) for microorganisms. It can be converted into various chemicals such as ethanol, lactic acid and amino acids by microorganisms.
  • Pretreatment step: Step S11> Cellulosic biomass is treated with a treatment agent containing ammonia to obtain an ammonia treated product (pretreatment step: step S11).
  • a pretreatment method for cellulosic biomass generally, for example, steaming, pulverization, explosion, acid treatment with an acidic solution such as sulfuric acid, alkali treatment with an alkali solution such as sodium hydroxide, ammonia (NH 3 ) Treatment with an enzyme, treatment with an enzyme, treatment with a compound containing an amino group (NH 2 ), and the like.
  • a treatment agent containing ammonia is pretreated using a treatment agent containing ammonia.
  • Ammonia is easy to obtain and handle, and the pretreatment method using a treatment agent containing ammonia can saccharify cellulosic biomass more efficiently than other pretreatment methods.
  • the saccharification efficiency of the cellulosic biomass can be improved by pretreatment using a treatment agent containing ammonia in advance before saccharification of the cellulosic biomass.
  • a compound containing an amino group and other compounds may be used in combination.
  • the compound containing an amino group include methylamine, ethylamine, propylamine, butylamine, hydrazine, ethylenediamine, propanediamine, and butanediamine.
  • other compounds include carbon dioxide, nitrogen, ethylene, methane, ethane, propane, butane, pentane, hexane, toluene, benzene, phenol, dioxane, xylene, acetone, chloroform, carbon tetrachloride, ethanol, methanol, and propanol. And butanol.
  • the treatment agent containing ammonia may be any of liquid, gas, and gas-liquid mixed phase.
  • Cellulose biomass excellent in enzymatic saccharification efficiency can be obtained even when ammonia in any state of liquid, gas, and gas-liquid mixed phase is used.
  • the treatment agent containing ammonia may be a supercritical ammonia fluid or a subcritical ammonia fluid.
  • the method of treatment using the supercritical ammonia fluid there is no particular limitation on the method of treatment using the supercritical ammonia fluid, and it can be appropriately selected according to the purpose.
  • cellulosic biomass and ammonia are introduced into a reactor such as an autoclave and reacted. It can be carried out by heating and pressurizing the inside of the chamber to bring ammonia into a supercritical state. Since supercritical ammonia fluid has high permeability into cellulosic biomass, cellulosic biomass suitable for enzymatic saccharification can be obtained efficiently in a short time.
  • the harvested cellulosic biomass may be used as it is, but before the cellulosic biomass is pretreated, the cellulosic biomass having an average particle size of a predetermined size or less is preliminarily cut and pulverized.
  • the particles may be pretreated after being formed.
  • the particle diameter of the cellulosic biomass particles is not particularly limited and may be appropriately selected depending on the intended purpose.
  • the diameter is preferably 5 mm or less, more preferably 1 mm or less, and further preferably 0.1 mm or less. preferable.
  • the particle diameter of the cellulosic biomass exceeds 5 mm, the saccharification treatment of the cellulosic biomass may be insufficient.
  • the particle diameter of the cellulosic biomass is within the above range, the time required for the saccharification treatment of the cellulosic biomass can be shortened and the amount of ammonia used can be reduced.
  • the harvested cellulosic biomass may be used as it is and pretreated with a treatment agent containing ammonia, but is not limited thereto, and when cellulosic biomass is pretreated.
  • the cellulosic biomass may be dried and then pretreated by adding a treatment agent containing ammonia.
  • a pretreatment method for cellulosic biomass a method of treating with a treatment agent containing ammonia is used, but the above-mentioned other cellulosic biomass pretreatment methods may be used in combination.
  • Step S12 An enzyme is added to the ammonia-treated product obtained in the pretreatment step (step S11) and saccharified by enzyme treatment to obtain an ammonia-treated sugar solution (hydrolyzate) (ammonia-treated sugar solution production step: step S12).
  • an enzyme is added to the ammonia-treated product obtained in the pretreatment step (step S11) and saccharified by enzyme treatment to obtain an ammonia-treated sugar solution (hydrolyzate) (ammonia-treated sugar solution production step: step S12).
  • a sugar liquid obtained by saccharifying cellulosic biomass treated with a treatment agent containing ammonia is referred to as an ammonia-treated sugar liquid.
  • Sugar solution produced from cellulosic biomass contains a fermentation inhibitor, although the amount or composition varies depending on the pretreatment or saccharification method. Fermentation inhibition refers to the growth rate of microorganisms, the production amount of chemicals, and the amount of accumulation compared to the case of using reagent monosaccharides as fermentation raw materials when manufacturing chemical products using cellulose-derived sugar liquid as fermentation raw materials. Or a phenomenon in which the production speed decreases. A substance that causes a fermentation inhibition phenomenon in this fermentation process and interferes with the fermentation reaction is called a fermentation inhibition substance.
  • the fermentation inhibitor include acetic acid, formic acid, levulinic acid, sugar hyperdegradation product furfural, hydroxymethylfurfural (HMF), lignin-derived aromatic compounds vanillin, acetovanillin, and guaiacol. Etc.
  • the ammonia-treated sugar solution contains coumarinamide and ferulamide as fermentation inhibitors.
  • Kumaramide and ferulamide are not contained in cellulose-derived sugar solutions obtained by treatments other than ammonia treatment, but are contained in ammonia-treated sugar solutions. It can be said that it is a substance.
  • Coumaramide and ferulamide are amide compounds produced by condensation of coumaric acid or ferulic acid and ammonia, respectively.
  • Coumaric acid or ferulic acid is contained in cellulosic biomass.
  • step S11 coumarate and ferulamide in the ammonia-treated sugar solution are treated with ammonia when coumaric acid and ferulic acid in the cellulosic biomass are added to the cellulosic biomass in the pretreatment step (step S11). It can be said that this was caused by condensation reaction with ammonia molecules.
  • Kumaramide and ferulamide are included in the ammoniated sugar solution regardless of whether the herbaceous or woody cellulosic biomass is used as the raw material, but more in the case of using the herbaceous biomass as the raw material. It is. Therefore, when using ammonia-treated sugar liquor as a raw material for fermentation without purification, the fermentation efficiency is lower when using herbaceous biomass as the raw material than when using woody biomass. End up. However, according to the present invention, by purifying the ammonia-treated sugar solution, the same fermentation efficiency can be obtained regardless of whether the biomass is a herbaceous or woody biomass.
  • the solid concentration of the ammonia-treated product is more preferably 5% by mass or more and less than 10% by mass.
  • concentration of the solid matter of the ammonia-treated product is 10% by mass or less
  • the enzyme-treated saccharification is performed by adding an enzyme to the ammonia-treated product in the ammonia-treated sugar solution preparation step (step S12) described later, It is possible to suppress an increase in the concentration of the fermentation inhibiting substance in the ammonia-treated sugar liquid obtained without inhibiting the reaction.
  • the concentration of the solid product of the ammonia-treated product is 1% by mass or more, energy and processing time for concentration to a concentration necessary for use as a raw material for fermentation production can be suppressed, and the cost can be reduced. Economically advantageous.
  • the solvent component containing the solid product of the ammonia-treated product is not particularly limited as long as it can disperse the solid product of the ammonia-treated product, and water or the like is used.
  • the enzyme used for enzymatic saccharification of the processed ammonia product is not particularly limited as long as it is an enzyme (cellulase) having cellulolytic activity, but includes exo-type cellulase or endo-type cellulase having crystalline cellulose-degrading activity.
  • the cellulase is preferably used.
  • a cellulase produced by a filamentous fungus is preferable, a cellulase produced by a Trichoderma bacterium is more preferable among the filamentous fungi, and a cellulase produced by Trichoderma reesei is more preferable among the bacteria belonging to the genus Trichoderma.
  • the enzyme saccharification is preferably performed in the vicinity of pH 3 to 7, more preferably in the vicinity of pH 5.
  • the reaction temperature for the enzymatic saccharification is preferably 40 to 70 ° C, more preferably around 50 ° C.
  • the ammonia-treated sugar solution obtained by the enzymatic saccharification may be used for the subsequent step as it is, or may be used for the subsequent step after removing solids by solid-liquid separation such as centrifugation or membrane separation. Good.
  • Step S13 The coumarinamide and / or ferulamide contained in the ammonia-treated sugar solution obtained by the ammonia-treated sugar solution production step (step S12) is purified and removed to obtain a purified sugar solution having a predetermined concentration (step for producing a purified sugar solution: step S13).
  • the concentration of coumarinamide and / or ferulamide in the purified sugar solution is in a concentration range of 10 to 1100 ppm, more preferably 10 to 800 ppm, and further preferably 10 to 450 ppm.
  • concentration of coumarinamide and / or ferulamide in the purified sugar liquid is 1100 ppm or less, the fermentation efficiency is remarkably improved.
  • concentration of a refined sugar liquid is 10 ppm or more, the increase in the energy and cost which are required for the refinement
  • the concentration of the purified sugar solution is less than 10 ppm, the energy and cost required for the purification of the ammonia-treated sugar solution.
  • the fermentation efficiency of the refined sugar solution does not improve any more, it is economically disadvantageous and not preferable.
  • the method for purifying the ammonia-treated sugar solution is not particularly limited, and examples thereof include distillation, extraction, crystallization, recrystallization, column chromatography, and membrane separation. These ammonia-treated sugar solution purification treatment methods may be used singly or in combination.
  • membrane treatment is preferably used, and nanofiltration membrane is particularly preferably used.
  • the nanofiltration membrane can prevent permeation of sugar in the ammonia-treated sugar solution and allow permeation of coumarinamide and / or ferulamide. Therefore, by using a nanofiltration membrane for purification of the ammonia-treated sugar solution, it is possible to simultaneously perform sugar concentration and removal of ferulamide and coumarinamide.
  • the nanofiltration membrane is a separation membrane generally defined as “a membrane that transmits monovalent ions and blocks divalent ions”, and is also called a nanofilter, nanofiltration membrane, or NF membrane.
  • the nanofiltration membrane is a membrane that is considered to have a minute void of about several nanometers, and is mainly used to block fine particles, molecules, ions, salts, and the like in water.
  • the material for forming the nanofiltration membrane may be a polymer material such as cellulose acetate polymer, polyamide, polyester, polyimide, vinyl polymer, but is not limited to the membrane composed of the one kind of material.
  • a film including a plurality of film materials may be used.
  • the membrane structure of the nanofiltration membrane includes an asymmetric membrane having a dense layer on at least one side of the membrane, and having fine pores with gradually increasing pore diameters from the dense layer to the inside of the membrane or the other side, and the denseness of the asymmetric membrane. Either a composite membrane having a very thin functional layer formed of another material on the layer may be used.
  • the composite membrane for example, a composite membrane in which a nanofilter composed of a functional layer of polyamide is formed on a support membrane made of polysulfone as a membrane material can be used.
  • a composite membrane is described in, for example, JP-A-62-201606.
  • a composite membrane having a high-pressure resistance, high water permeability, and high solute removal performance and having an excellent potential and a functional layer of polyamide is preferable.
  • a structure in which polyamide is used as a functional layer and is held by a support made of a porous membrane or nonwoven fabric is suitable.
  • the polyamide semipermeable membrane a composite semipermeable membrane having a functional layer of a crosslinked polyamide obtained by polycondensation reaction of a polyfunctional amine and a polyfunctional acid halide on a support is suitable.
  • carboxylic acid components of monomers constituting the polyamide include, for example, trimesic acid, benzophenone tetracarboxylic acid, trimellitic acid, pyrometic acid, isophthalic acid, terephthalic acid, naphthalene
  • trimesic acid benzophenone tetracarboxylic acid, trimellitic acid, pyrometic acid, isophthalic acid, terephthalic acid, naphthalene
  • Aromatic carboxylic acids such as dicarboxylic acid, diphenyl carboxylic acid, pyridine carboxylic acid and the like can be mentioned, but considering solubility in a film forming solvent, trimesic acid, isophthalic acid, terephthalic acid, and a mixture thereof are more preferable.
  • Preferred amine components of the monomers constituting the polyamide include m-phenylenediamine, p-phenylenediamine, benzidine, methylenebisdianiline, 4,4′-diaminobiphenyl ether, dianisidine, 3,3 ′, 4- Triaminobiphenyl ether, 3,3 ′, 4,4′-tetraaminobiphenyl ether, 3,3′-dioxybenzidine, 1,8-naphthalenediamine, m (p) -monomethylphenylenediamine, 3,3′- Monomethylamino-4,4′-diaminobiphenyl ether, 4, N, N ′-(4-aminobenzoyl) -p (m) -phenylenediamine-2,2′-bis (4-aminophenylbenzimidazole), 2 , 2'-bis (4-aminophenylbenzoxazole), 2,2'-bis (4-aminophenyl) Secondary
  • N is an integer of 1 or more.
  • the nanofiltration membrane is generally used as a spiral membrane module, but the nanofiltration membrane used in this embodiment is also preferably used as a spiral membrane module.
  • preferable nanofiltration membrane modules include, for example, GE Sepa, a nanofiltration membrane manufactured by GE Osmonics, which is a cellulose acetate-based nanofiltration membrane, NF99 or NF99HF, a nanofiltration membrane manufactured by Alfa Laval, which has a functional layer of polyamide, NF-45, NF-90, NF-200, NF-270, or NF-400, a nanofiltration membrane manufactured by Filmtec Co., Ltd.
  • nanofiltration membrane modules SU-210, SU-220, SU-600 or SU-610 manufactured by Toray Industries, Inc. having a functional layer of a polyamide containing the constituents shown, and more preferably Alfa Laval nano filter with polyamide as functional layer NF99 or NF99HF of a membrane, NF-45, NF-90, NF-200 or NF-400 of a nanofiltration membrane manufactured by Filmtec Co., which has a functional layer of cross-linked piperazine polyamide, and a main component of the above chemical formula 1 is a nanofiltration membrane module SU-210, SU-220, SU-600 or SU-610 manufactured by Toray Industries, Inc., which has a functional layer of a polyamide containing the constituent shown in 1.
  • nanofiltration membrane module SU-210, SU-220 manufactured by Toray Industries, Inc., which includes a crosslinked piperazine polyamide as a main component and a functional layer of a polyamide containing the component represented by the above chemical formula 1.
  • the pH of the ammoniated sugar solution used for the nanofiltration membrane is not particularly limited, but is preferably pH 1-5.
  • the pH is less than 1, the membrane is denatured when used for a long period of time, and the membrane performance such as flux and permeability is remarkably lowered.
  • the pH is greater than 5, the removal rate of the fermentation inhibitor may be remarkably lowered. Because.
  • the pH of the ammonia-treated sugar solution within the above range and filtering with a nanofiltration membrane, the removal efficiency of the fermentation inhibitor can be improved.
  • the nanofiltration membrane can be stably used for a long period of time because it has an effect of suppressing fouling of the nanofiltration membrane.
  • the acid or alkali used for adjusting the pH of the ammonia-treated sugar solution is not particularly limited.
  • the acid include hydrochloric acid, sulfuric acid, nitric acid, phosphoric acid, and the like, and sulfuric acid, nitric acid, phosphoric acid, and more preferably sulfuric acid from the viewpoint of economy are preferable from the viewpoint of preventing inhibition during fermentation.
  • the alkali is preferably ammonia, sodium hydroxide, calcium hydroxide and an aqueous solution containing them from the viewpoint of economy, more preferably ammonia or sodium hydroxide, which is a monovalent ion from the viewpoint of membrane fouling, and more preferably fermentation. Ammonia is used from the standpoint that it is difficult to inhibit time.
  • the step of adjusting the pH of the ammonia-treated sugar solution may be performed before passing through the nanofiltration membrane.
  • the pH may be adjusted to 5 or less during the hydrolysis reaction. Further, in the case of a process of reusing the enzyme contained in the filtrate, the enzyme tends to be deactivated when the pH is lowered to 4 or less. Therefore, it is possible to adjust the pH of the filtrate after removing the enzyme contained in the filtrate. preferable.
  • the temperature of the ammonia-treated sugar solution that passes through the nanofiltration membrane is not particularly limited, but can be set as appropriate from the viewpoint of enhancing the ability to remove the fermentation inhibitor during filtration of the nanofiltration membrane to be used. Specifically, when filtering with a nanofiltration membrane, it is preferable that the temperature of the ammonia-treated sugar solution is 40 ° C. to 80 ° C., because the ability to remove the fermentation inhibitor from the nanofiltration membrane is enhanced. When the temperature of the ammonia-treated sugar solution when filtering through the nanofiltration membrane is 40 ° C. or higher, the ability to remove the fermentation inhibitor contained in the ammonia-treated sugar solution is increased, but the temperature of the ammonia-treated sugar solution is 80 ° C. If it is higher, the nanofiltration membrane is denatured, so that the membrane characteristics may be lost. Therefore, the removal performance of the fermentation inhibitor of the nanofiltration membrane can be improved by setting the temperature of the ammonia-treated sugar solution within the above range.
  • nanofiltration method specifically, for example, it can be performed according to the method described in International Publication No. 2010/067785.
  • the fermentation-inhibiting substance can be removed more efficiently by adding water to the ammonia-treated sugar solution.
  • the content of the fermentation inhibitor contained in the purified sugar solution after nanofiltration can be adjusted by the amount of water to be added. Specifically, the greater the amount of water, the smaller the content of the fermentation inhibitor contained in the purified sugar solution after nanofiltration.
  • a purified sugar solution having a predetermined concentration can be obtained by purifying and removing coumarinamide and / or ferulamide contained in the ammonia-treated sugar solution.
  • Ethanol can be produced by performing fermentation using the obtained refined sugar solution as a fermentation raw material.
  • the method for producing ethanol from the purified sugar solution obtained using the method for producing a sugar solution according to the present embodiment is not particularly limited.
  • a method for producing ethanol for example, a two-stage fermentation method described in JP-A-2009-296983 can be mentioned.
  • hexoses such as glucose and mannose are converted to ethanol in the primary fermentation step by yeast or bacteria, and then pentoses such as xylose are converted to ethanol in the secondary fermentation step.
  • known bacteria can be used, and among them, yeasts such as Saccharomyces cerevisiae are preferable.
  • yeast is highly resistant to ethanol and can produce ethanol at a concentration of 5% or more.
  • Bacteria used in the secondary fermentation process can use pentose assimilating yeasts such as Pichia stippitis, and among them, fermentation inhibition resistant strains are preferred.
  • the purified sugar solution obtained by using the method for producing a sugar solution according to the present embodiment includes a specific coumarinamide and / or a ammonia-containing sugar solution obtained by treating cellulosic biomass with a treatment agent containing ammonia as a fermentation inhibitor. Since ferulamide is removed, fermentation is not hindered when used as a fermentation raw material. Therefore, by using the purified sugar solution obtained by using the method for producing a sugar solution according to the present embodiment as a fermentation raw material, it is possible to improve the efficiency of ethanol production.
  • Example 1 Production and analysis of purified sugar solution> [A. Preparation of ammonia-treated sugar solution] (1. Crushing treatment of cellulosic biomass) Eliansus was used as cellulosic biomass. The Eliansus was pulverized using a cutter mill while controlling the particle size with a screen having an opening of 4 mm. The average particle size (d50) measured by the laser diffraction method was about 975 ⁇ m. The ground Eliansus was dried overnight at a temperature of 40 ° C. and a reduced pressure of 5 kPa. The moisture content of the Elianthus after drying was about 0.5% by mass based on the mass of the Elianthus after drying.
  • ammonia was introduced into the autoclave so that the pressure became 1.2 MPa at a temperature of 120 ° C. by opening a valve installed in a pipe connecting the autoclave and the pressure vessel. Under this temperature and pressure conditions, the cellulose chip was treated with ammonia under stirring for 2.5 hours. Thereafter, the pressure was released to discharge ammonia, and nitrogen gas was further circulated through the autoclave to remove ammonia remaining in the cellulose chip particles, thereby obtaining pretreated biomass. This was used as ammonia-treated cellulose (ammonia-treated product).
  • the obtained hydrolyzate was subjected to centrifugation to separate a solution component from undegraded cellulose and lignin.
  • the solution component was further applied to a microfiltration membrane having a pore diameter of 0.45 ⁇ m (Steril Cup, manufactured by Millipore) to remove insoluble particles of micron order.
  • the solution component obtained by the above method was used as an ammonia-treated sugar solution.
  • [B. Production of purified sugar solution] (5. Sugar concentration by nanofiltration membrane)
  • the obtained ammonia-treated sugar solution was filtered using a nanofiltration membrane (UTC-60, manufactured by Toray Industries, Inc.) at normal temperature and an operating pressure of 4 MPa.
  • the concentrated solution obtained by filtration was used as a purified sugar solution.
  • the membrane separator was a flat membrane unit (SEPA CF-II, manufactured by GE Osmonics, effective membrane area 140 cm 2 ).
  • peak 3 was found to be coumaric acid because it coincided with the HPLC elution time of the coumaric acid sample.
  • the elution time of the remaining two compounds is HMF, furfural, vanillin, acetovanillone, ferulic acid, coniferyl aldehyde, which are known as aromatic compounds contained in cellulosic biomass-derived sugar liquid. It did not match any of the guaiacol products. Therefore, these two types of peaks (peak 1 and peak 2) were separated by HPLC, and the molecular weight was analyzed by LC / MS (LCMS-IT-TOF and LC20A, manufactured by Shimadzu).
  • the molecular weights were 163.063 and 193.074, respectively.
  • coumaric acid and ferulic acid are subjected to a condensation reaction with ammonia molecules, it is expected that coumaric acid and ferulamide are generated.
  • the molecular weights calculated from the structural formulas of coumarinamide and ferulamide are 163.172 and 193.198, respectively, which coincide with the molecular weights obtained by the LC / MS. Two types of peaks (peak 1 and peak 2) were estimated to be coumarinamide and ferulamide.
  • FIGS. 3 to 6 show the UV absorption spectra of the ammonia-treated sugar solution peak 1 and peak 2, and the coumarinamide sample and ferulamide sample, which were obtained when HPLC was performed.
  • the measurement wavelength was 200 nm to 400 nm.
  • the UV absorption spectra of the peak 1 of the ammonia-treated sugar solution and the coumarinamide preparation coincided.
  • the UV absorption spectra of the peak 2 of the ammonia-treated sugar solution and the ferulamide preparation almost coincided.
  • Peak 1 and Peak 2 contained in the ammonia-treated sugar solution which is a hydrolyzate of ammonia-treated cellulose, are coumarinamide and ferulamide, and the ammonia-treated sugar solution contains a large amount of these compounds. Turned out to be.
  • Table 1 shows the concentration of each component in the stock solution before filtration (ammonia-treated sugar solution), the concentrated sugar solution after filtration (purified sugar solution), and the permeate. The components were analyzed according to the HPLC analysis conditions described in “C. Analysis of ammonia-treated sugar solution”.
  • the sugar components that is, glucose and xylose are concentrated 5.9 times and 4.9 times in the concentrated sugar solution, respectively.
  • components other than sugar acetic acid, coumaric acid, coumarinamide, ferulamide
  • the ammonia-treated sugar solution is filtered through a nanofiltration membrane. Many of the sugar components in the stock solution could be separated efficiently on the non-permeate side, and most of the components other than the sugar could be separated on the permeate side.
  • Example 2 Growth test using a model solution containing coumarinamide, coumaric acid, and ferulamide>
  • A. Growth test of Pichia stipitis using model sugar solution any one of coumarinamide, coumaric acid, and ferulamide was added to the medium at a concentration of 2 ppm to 200 ppm. Each medium was subjected to a proliferation test. Further, as a positive control, the same test was performed on a YPDX medium containing no additive.
  • A. Growth test of Pichia stipitis using model sugar solution The Pichia stipitis NBRC1687 strain was statically cultured at 25 ° C.
  • pre-culture on a YPDX agar medium prepared by adding 2% agar to the YPDX medium described in Table 3 below.
  • One of the colonies formed on the agar medium was inoculated into 10 mL of YPDX medium using a sterilized platinum loop, and cultured with shaking in a test tube having a volume of 20 mL at 25 ° C. and 120 spm for 48 hours (preculture).
  • 1 mL of the medium after the pre-culture was added to 9 mL of the YPDX medium, and the culture was further continued at 25 ° C. and 60 spm in a test tube having a volume of 20 mL (main culture). Sampling was performed at 0, 24, and 48 hours after the start of culture, and the growth of bacterial cells was observed by measuring monosaccharide concentration and absorbance (OD660).
  • Table 4 shows the results of analyzing the concentrations of glucose and xylose in the medium during sampling in this example.
  • NF concentrate 1 A concentrated sugar solution (hereinafter referred to as NF concentrate 1) of the ammonia-treated sugar solution using a nanofiltration membrane was prepared by the method described in “5. Furthermore, after adding and mixing an equal volume of water to the NF concentrate 1, filtration through the nanofiltration membrane is performed again under the conditions described in “5. Sugar concentration through the nanofiltration membrane” in Example 1, NF concentrate 2 was obtained. Furthermore, after adding the same volume of water as the NF concentrate 2 to the NF concentrate 2, filtration with the nanofiltration membrane is performed again according to the conditions described in “5. Sugar concentration with the nanofiltration membrane” in Example 1. , NF concentrate 3 was obtained. Table 5 shows the concentration of each component of the concentrated sugar solution (hereinafter, RO concentrated solution) obtained by the reverse osmosis membrane obtained by the methods described in NF concentrated solutions 1 to 3 and Comparative Example 1.
  • RO concentrated solution the concentration of the concentrated sugar solution obtained by the reverse osmosis membrane obtained by the methods described in NF concentrated solutions 1 to 3 and Comparative Example 1.
  • Ethanol production test using ammoniated sugar solution According to the following “C. Ethanol production test of Pichia stipitsi using ammonia-treated sugar solution”, the concentrated saccharified solution (NF concentrate) of the ammonia-treated sugar solution using a nanofiltration membrane and the method described in Comparative Example 1 were obtained. Ethanol was produced using a concentrated saccharified solution (RO concentrated solution) using a reverse osmosis membrane, and the fermentation characteristics of each were compared.
  • the ethanol production test from the ammonia-treated sugar solution was performed according to the two-stage fermentation method described in the specification of JP-A-2009-296983. First, as a primary fermentation, Saccharomyces cerevisiae was cultured in an ammonia-treated sugar solution concentrate, and glucose was converted to ethanol. It was confirmed that fermentation inhibition was not observed when either NF concentrate or RO concentrate was used. It was done.
  • Pichia stipitis was cultured in a primary fermentation solution adjusted to an ethanol concentration of 10 g / L by a rotary evaporator, and xylose contained in the primary fermentation solution was converted to ethanol.
  • the relationship between the fermentation time and the ethanol concentration in the primary fermentation liquid derived from the NF concentrated liquid and the primary fermented liquid derived from the RO concentrated liquid is shown in FIG. 7, and the primary fermentation liquid derived from the NF concentrated liquid and the primary fermentation derived from the RO concentrated liquid.
  • the relationship between the fermentation time in the liquid and the xylose concentration is shown in FIG. As a result, as shown in FIGS.
  • ethanol production in the primary fermentation liquid derived from the RO concentrate is greatly inhibited in the secondary fermentation by Pichia stipitsis, compared with ethanol production in the primary fermentation liquid derived from the NF concentrate.
  • the consumption rate of xylose, the ethanol production rate and the final ethanol production concentration decreased. Therefore, it became clear that the concentration by the reverse osmosis membrane concentrates the alcohol fermentation inhibitor more significantly than the concentration by the nanofiltration membrane.
  • Example 5 Verification of ethanol production inhibition by permeate after membrane filtration> Ethanol production was performed using the filtrate (permeate) obtained when producing the NF concentrate and the RO concentrate. The permeate derived from the NF concentrate and the RO concentrate was used as the NF permeate and the RO permeate, respectively. Each permeate was concentrated 3 times using a rotary evaporator. Yeast extract, polypeptone, and xylose were added to the concentrated permeate so that the final concentrations were 0.5%, 1.0%, and 7.0%, respectively. Pichia stipitis was added to these prepared liquid media to produce ethanol. As a control, the same verification was carried out using water added with yeast extract, polypeptone, and xylose so as to have the same composition as above.
  • FIG. 9 shows the relationship between the fermentation time of NF concentrate and RO concentrate and the ethanol concentration
  • FIG. 10 shows the relationship between the fermentation time and xylose concentration of NF concentrate and RO concentrate.
  • xylose consumption and ethanol production were performed in the medium containing the RO permeate as in the control.
  • the medium containing NF permeate reduced the xylose consumption rate to about 75% of the control and the ethanol production rate to about 60%. Therefore, it was clarified from this result that the ethanol production inhibiting substance permeates the membrane and accumulates in the filtrate by the concentration treatment of the ammonia-treated sugar solution with the nanofiltration membrane. Therefore, it was shown that the ethanol production inhibitor can be removed by the concentration treatment using the nanofiltration membrane.
  • Example 6 Ammonia-treated cellulose concentration during saccharification> To 0.4 kg of the ammonia-treated cellulose described in “2. Ammonia treatment of cellulosic biomass” in Example 1, water was added according to the amount of water added during charging shown in Table 6 below, and the ammonia-treated cellulose concentration was adjusted to 5, 10, Adjusted to 15 and 20%, respectively. After adding a small amount of concentrated sulfuric acid to this and adjusting the pH to 5, the cellulase preparation (Accellace Duet, manufactured by Genencor) is added to the amount of enzyme protein by 1/100 of the dry mass of ammonia-treated cellulose. Then, enzymatic saccharification reaction was carried out at 50 ° C. for 24 hours.
  • Table 6 Ammonia treatment of cellulosic biomass
  • the obtained hydrolyzate was subjected to centrifugation to separate a solution component from undegraded cellulose or lignin.
  • the solution component was further applied to a microfiltration membrane having a pore diameter of 0.45 ⁇ m (Steril Cup, manufactured by Millipore) to remove insoluble particles of micron order.
  • the solution component obtained by the above method was subjected to nanofiltration membrane treatment in accordance with “5. Sugar concentration by nanofiltration membrane” in Example 1 to obtain an NF concentrate. The concentration rate was adjusted so that the glucose concentration in the concentrated solution was approximately 10%. Table 7 shows the concentration of each component in each concentrate.
  • the total amount of coumarinamide and ferulamide in the NF concentrate is 1100 ppm or less when the ammonia-treated cellulose concentration during enzyme saccharification is 5% and 10%.
  • the concentration of the ammonia-treated cellulose at that time was 15% and 20%, the total amount of coumarinamide and ferulamide in the NF concentrate was remarkably high, which was 1250 ppm and 1390 ppm, respectively. Therefore, from this result and Example 5, when the total amount of coumarinamide and ferulamide in the sugar solution is 1100 ppm or less, the microorganism can grow and ethanol can be efficiently produced by the microorganism. Therefore, it has been found that the ammonia-treated cellulose concentration during enzyme saccharification is preferably 10% or less.

Abstract

 本発明の糖液の製造方法は、セルロース系バイオマスをアンモニアを含む処理剤で処理し、アンモニア処理物を得る前処理工程(ステップS11)と、アンモニア処理物を酵素糖化し、アンモニア処理糖液を得るアンモニア処理糖液の作製工程(ステップS12)と、アンモニア処理糖液に含まれるクマルアミドおよび/またはフェルラアミドを精製除去し、クマルアミドおよび/またはフェルラアミドの濃度が10~1100ppmの精製糖液を得る精製糖液の作製工程(ステップS13)と、を含むことを特徴とする。

Description

糖液の製造方法、糖液及びエタノールの製造方法
 本発明は、セルロース系バイオマスから糖液を製造する糖液の製造方法、糖液及びエタノールの製造方法に関する。
 糖を原料とした化学品の発酵生産プロセスは、種々の工業原料生産に利用されている。現在、発酵原料となる糖としては、例えば、さとうきび、澱粉、テンサイなどの食用原料に由来するものが工業的に使用されている。しかしながら、今後は世界人口の増加により食用原料が不足し、価格が高騰することが懸念され、再生可能な非食用資源、すなわちセルロース系バイオマスから効率的に糖液を製造するプロセスの構築が課題となっている。
 セルロース系バイオマスは、主に芳香族系重合物のリグニンと、単糖の重合物であるセルロースやヘミセルロースを含む。セルロース系バイオマスを原料とした糖液の製造方法として、例えば、濃硫酸などを用いて直接原料であるセルロース系バイオマスを加水分解する方法や、セルロース系バイオマスに予め蒸煮処理、微粉砕処理、希硫酸処理などの前処理を施してセルロースやヘミセルロースをリグニンから脱離した後、セルラーゼ等の糖化酵素により加水分解を行う前処理-酵素糖化法等がある。
 これらの方法により得られるセルロース系バイオマス由来の糖液では、その製造の過程でヒドロキシメチルフルフラール(HMF)、フルフラール、バニリンなどの発酵阻害物質が生成し、得られた糖液を発酵してアルコール等を生産する際に糖液の発酵を阻害するという課題があった。また、糖液製造の処理条件によっては得られる糖液の糖濃度が薄い場合があり、この場合は発酵工程に供する前に数倍~10倍程度に糖濃度を濃縮する必要があった。そこで、セルロース系バイオマスを原料として糖液を製造する際、糖液に含まれる発酵阻害物質を取り除くと同時に、糖の濃度を高めることができる方法として、ナノろ過膜を用いた糖液の処理方法が開示されている(例えば、特許文献1、2参照)。
 また、前処理-酵素糖化法は、一般に、直接原料を加水分解する方法と比べて環境負荷が小さいという利点を有する一方、糖の収率は低い。そこで、環境負荷が小さく、かつ高い糖収率が得られる前処理方法として、アンモニアを含む処理剤を用いた前処理方法が提案されている(例えば、特許文献3参照)。
国際公開第2009/110374号パンフレット 国際公開第2010/067785号パンフレット 特開2008-161125号公報
 前述のとおり、一般に、蒸煮処理等の前処理を施したセルロース系バイオマスから得られる糖液では、糖液を製造する過程でヒドロキシメチルフルフラール(HMF)、フルフラール、バニリンなどの発酵阻害物質が生成し、得られた糖液を発酵してアルコール等を生産する際に糖液の発酵を阻害する。
 一方、特許文献3に記載のアンモニアを含む処理剤による前処理法を用いて、上記前処理-酵素糖化法により得られた糖液は、上記のような既知の発酵阻害物質はほとんど検出されていないにも関わらず、セルロース系バイオマスを用いて得られた糖液と同様、糖液の発酵が阻害されていることが見出された。
 すなわち、本発明は、セルロース系バイオマスから得られた糖液を用いてエタノール等の製造効率の向上を図るにあたり、高い糖収率が得られるアンモニアを含む処理剤で前処理したセルロース系バイオマスを用いて得られる糖液を発酵する際の糖液の発酵効率を向上させることができる糖液の製造方法、糖液及びエタノールの製造方法を提供することを課題とする。
 上述した課題を解決し、目的を達成するために、本発明者らは糖液の製造方法、糖液及びエタノールの製造方法について鋭意研究をした。その結果、アンモニアで前処理したセルロース系バイオマスを酵素で加水分解して得られる加水分解物(アンモニア処理糖液)は特有の発酵阻害物質としてクマルアミドおよびフェルラアミドを含んでいることを発見した。この得られた知見に基づいて、アンモニア処理糖液に含まれるクマルアミドおよび/またはフェルラアミドを精製除去し、クマルアミドおよび/またはフェルラアミドを所定範囲の濃度とすることにより、アンモニア処理糖液の発酵効率を向上させることができることを見出した。本発明は、係る知見に基づいて完成されたものである。
 すなわち、本発明は以下の(1)~(6)の構成を有する。
(1) セルロース系バイオマスをアンモニアを含む処理剤で処理し、アンモニア処理物を得る前処理工程と、
 前記アンモニア処理物を酵素糖化し、アンモニア処理糖液を得るアンモニア処理糖液の作製工程と、
 前記アンモニア処理糖液に含まれるクマルアミドおよび/またはフェルラアミドを精製除去し、クマルアミドおよび/またはフェルラアミドの濃度が10~1100ppmの精製糖液を得る精製糖液の作製工程と、
を含むことを特徴とする糖液の製造方法。
(2) 前記セルロース系バイオマスが、草本系バイオマスを含むことを特徴とする上記(1)に記載の糖液の製造方法。
(3) 前記アンモニア処理糖液の精製処理にナノ濾過膜を用いることを特徴とする上記(1)又は(2)に記載の糖液の製造方法。
(4) 前記アンモニア処理物を酵素糖化する際、前記アンモニア処理物の固形物の濃度が1~10質量%の範囲内の溶液を用いて前記アンモニア処理物を酵素糖化することを特徴とする上記(1)から(3)の何れか1つに記載の糖液の製造方法。
(5) 上記(1)から(4)の何れか1つに記載の糖液の製造方法を用いて得られることを特徴とする糖液。
(6) 上記(5)に記載の糖液を発酵原料として用いてエタノールを製造することを特徴とするエタノールの製造方法。
 本発明によれば、アンモニアを含む処理剤で前処理したセルロース系バイオマスを用いて得られる糖液を発酵する際の糖液の発酵効率を向上させることができる。
図1は、本発明の実施形態に係る糖液の製造方法の一例を示すフローチャートである。 図2は、アンモニア処理糖液中の芳香族化合物をHPLCにて分析した結果を示す図である。 図3は、アンモニア処理糖液のピーク1のUV吸収スペクトルを示す図である。 図4は、アンモニア処理糖液のピーク2のUV吸収スペクトルを示す図である。 図5は、クマルアミド標品のUV吸収スペクトルを示す図である。 図6は、フェルラアミド標品のUV吸収スペクトルを示す図である。 図7は、NF濃縮液とRO濃縮液との発酵時間とエタノール濃度との関係を示す図である。 図8は、NF濃縮液とRO濃縮液との発酵時間とキシロース濃度との関係を示す図である。 図9は、NF濃縮液とRO濃縮液との発酵時間とエタノール濃度との関係を示す図である。 図10は、NF濃縮液とRO濃縮液との発酵時間とキシロース濃度との関係を示す図である。
 以下、本発明の実施の形態(以下、実施形態という)を図面を参照しつつ詳細に説明する。なお、下記の発明を実施するための実施形態により本発明が限定されるものではない。また、下記実施形態における構成要素には、当業者が容易に想定できるもの、実質的に同一のもの、いわゆる均等の範囲のものが含まれる。さらに、下記実施形態で開示した構成要素は適宜組み合わせてもよいし、適宜選択して用いてもよい。
 本発明の実施形態に係る糖液の製造方法について、図面を参照して説明する。図1は、本実施形態に係る糖液の製造方法の一例を示すフローチャートである。図1に示すように、本実施形態に係る糖液の製造方法は、以下の工程を含む。
 (A) セルロース系バイオマスをアンモニアを含む処理剤で処理し、アンモニア処理物を得る前処理工程(ステップS11)
 (B) アンモニア処理物を酵素糖化し、アンモニア処理糖液を得るアンモニア処理糖液の作製工程(ステップS12)
 (C) アンモニア処理糖液に含まれるクマルアミドおよび/またはフェルラアミドを精製除去し、クマルアミドおよび/またはフェルラアミドの濃度が10~1100ppmの濃度範囲の精製糖液を得る精製糖液の作製工程(ステップS13)
 本明細書において、セルロース系バイオマスとは、バガス、スイッチグラス、ネピアグラス、エリアンサス、コーンストーバー(トウモロコシの茎)、稲わら、麦わらなどの草本系バイオマス、また樹木、廃建材などの木質系バイオマスなどのことである。前記セルロース系バイオマスは、セルロースあるいはヘミセルロースなどの多糖を含有しており、こうした多糖を加水分解することにより糖液を製造することが可能である。
 一般に、セルロース系バイオマスの加水分解のことを、糖化と呼ぶ。また、本実施形態ではセルロース系バイオマスを糖化することにより得られた糖液をセルロース由来糖液と呼ぶ。セルロース由来糖液は、グルコース、キシロース、マンノース、アラビノースなどの単糖、セロビオース、セロオリゴ糖、キシロオリゴ糖などの水溶性多糖を含んでおり、こうした糖類は微生物の発酵原料(炭素源)として使用することができ、微生物によりエタノール、乳酸、アミノ酸など様々な化学品に変換することが可能である。
<前処理工程:ステップS11>
 セルロース系バイオマスをアンモニアを含む処理剤で処理し、アンモニア処理物を得る(前処理工程:ステップS11)。セルロース系バイオマスの前処理方法としては、一般的に、例えば、蒸煮処理、微粉砕処理、爆砕処理、硫酸などの酸性溶液による酸処理、水酸化ナトリウムなどアルカリ溶液によるアルカリ処理、アンモニア(NH3)による処理、酵素処理、アミノ基(NH2)を含む化合物による処理などが挙げられる。これらの前処理方法の中でも、本実施形態においては、アンモニアを含む処理剤を用いてセルロース系バイオマスを前処理する。アンモニアは入手及び取り扱いが容易であり、アンモニアを含む処理剤を用いた前処理方法は他の前処理方法に比べてセルロース系バイオマスを効率良く糖化できる。セルロース系バイオマスを糖化する前に予めアンモニアを含む処理剤を用いて前処理することで、セルロース系バイオマスの糖化の効率を向上させることができる。
 アンモニアを含む処理剤としては、アンモニア以外に、アミノ基を含む化合物、その他の化合物を複数組み合わせて使用してもよい。アミノ基を含む化合物としては、例えば、メチルアミン、エチルアミン、プロピルアミン、ブチルアミン、ヒドラジン、エチレンジアミン、プロパンジアミン、ブタンジアミンなどが挙げられる。その他の化合物としては、例えば、二酸化炭素、窒素、エチレン、メタン、エタン、プロパン、ブタン、ペンタン、ヘキサン、トルエン、ベンゼン、フェノール、ジオキサン、キシレン、アセトン、クロロホルム、四塩化炭素、エタノール、メタノール、プロパノール、ブタノールなどが挙げられる。
 本実施形態においては、アンモニアを含む処理剤は、液体、気体、気液混合相のいずれであってもよい。液体、気体、気液混合相のいずれの状態のアンモニアを用いた場合でも酵素糖化効率に優れたセルロース系バイオマスを得ることができる。また、アンモニアを含む処理剤は、超臨界アンモニア流体又は亜臨界アンモニア流体でもよい。超臨界アンモニア流体を用いて処理する方法としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、セルロース系バイオマスとアンモニアとを、オートクレーブ等の反応器内に導入し、反応器内を加熱加圧して、アンモニアを超臨界状態にすることにより行うことができる。超臨界アンモニア流体はセルロース系バイオマス内部への浸透性が高いため、短時間で効率的に酵素糖化に適したセルロース系バイオマスを得ることができる。
 本実施形態においては、収穫したセルロース系バイオマスはそのまま使用してもよいが、セルロース系バイオマスを前処理する前に予め裁断、粉砕等して、平均粒子径が所定の大きさ以下のセルロース系バイオマスの粒子としてから前処理してもよい。セルロース系バイオマスの粒子径を予め小さくしておくことで、取り扱いが容易であると共に、アンモニアを含む処理剤による処理の効率の向上を図ることができる。
 セルロース系バイオマスの粒子の粒子径としては、特に制限はなく、目的に応じて適宜選択することができるが、例えば、5mm径以下が好ましく、1mm径以下がより好ましく、0.1mm径以下が更に好ましい。セルロース系バイオマスの粒子の粒子径が、5mm径を超えると、セルロース系バイオマスの糖化処理が不十分となることがある。セルロース系バイオマスの粒子の粒子径が上記範囲内の場合には、セルロース系バイオマスの糖化処理に要する時間を短縮できると共に、アンモニアの使用量を少なくできる。
 本実施形態においては、収穫したセルロース系バイオマスをそのまま使用してアンモニアを含む処理剤を用いて前処理してもよいが、これに限定されるものではなく、セルロース系バイオマスを前処理する際に用いるアンモニアの回収を図る観点から、セルロース系バイオマスは乾燥してからアンモニアを含む処理剤を添加して前処理するようにしてもよい。
 本実施形態においては、セルロース系バイオマスの前処理方法として、アンモニアを含む処理剤で処理する方法を用いているが、上述の他のセルロース系バイオマスの前処理方法を併用してもよい。
<アンモニア処理糖液の作製工程:ステップS12>
 前処理工程(ステップS11)により得られたアンモニア処理物に酵素を添加して酵素処理により糖化し、アンモニア処理糖液(加水分解物)を得る(アンモニア処理糖液の作製工程:ステップS12)。本実施形態においては、アンモニアを含む処理剤で処理を施したセルロース系バイオマスを糖化することにより得られた糖液を、アンモニア処理糖液という。
 セルロース系バイオマスに由来して生じる糖液(セルロース由来糖液)は、前処理や糖化の方法によって量あるいは成分に差があるが、発酵阻害物質を含んでいる。発酵阻害とは、セルロース由来糖液を発酵原料として化学品を製造する際に、試薬単糖を発酵原料として使用する場合と比較して、微生物の増殖速度や、化学品の生産量、蓄積量、あるいは生産速度などが低下する現象のことである。こうした発酵工程で発酵阻害の現象を引き起こし、発酵反応を妨害する原因物質のことを発酵阻害物質という。発酵阻害物質としては、具体的には、例えば、酢酸、蟻酸、レブリン酸、糖の過分解物であるフルフラール、ヒドロキシメチルフルフラール(HMF)、リグニン由来の芳香族化合物であるバニリン、アセトバニリン、グアヤコールなどが挙げられる。
 アンモニア処理糖液は、発酵阻害物質として、クマルアミドおよびフェルラアミドを含んでいる。クマルアミドおよびフェルラアミドは、アンモニア処理以外の処理により得られたセルロース由来糖液には含まれていないがアンモニア処理糖液には含まれていることから、アンモニア処理糖液に含まれる特有の発酵阻害物質であるといえる。クマルアミド、フェルラアミドは、各々クマル酸又はフェルラ酸とアンモニアとの縮合により生じるアミド化合物である。クマル酸又はフェルラ酸は、セルロース系バイオマス中に含まれている。よって、アンモニア処理糖液中のクマルアミド、フェルラアミドは、前処理工程(ステップS11)においてセルロース系バイオマスにアンモニアを含む処理剤を添加した際に、セルロース系バイオマス中のクマル酸、フェルラ酸がアンモニア処理によりアンモニア分子と縮合反応することにより生じたものといえる。
 クマルアミド、フェルラアミドは、草本系、木本系のどちらのセルロース系バイオマスを原料として使用した場合も、アンモニア処理糖液中に含まれるが、草本系バイオマスを原料とした場合の方がより多く含まれる。そのため、アンモニア処理糖液を、精製処理せずにそのまま発酵原料として使用する際、草本系バイオマスを原料とした場合では、木本系バイオマスを原料とした場合と比較して発酵効率が低くなってしまう。しかし、本発明によれば、アンモニア処理糖液を精製処理することにより、草本系、木本系のどちらのバイオマスを原料とした場合でも同等の発酵効率が得られる。なお、アンモニア処理糖液中のクマルアミド、フェルラアミドが、木本系バイオマスを原料として使用した場合よりも草本系バイオマスを原料として使用した場合の方が多い理由は、元々バイオマス中に含まれているクマル酸、フェルラ酸の量が、草本系バイオマスの方が多いためであるといえる。
 アンモニア処理物を酵素糖化する際のアンモニア処理物の固形物の濃度は1質量%以上10質量%以下の範囲内の溶液を用いてアンモニア処理物を酵素糖化することが好ましい。アンモニア処理物の固形物の濃度は、より好ましくは5質量%以上10質量%未満である。アンモニア処理物の固形物の濃度が10質量%以下の場合には、アンモニア処理物を後述するアンモニア処理糖液の作製工程(ステップS12)でアンモニア処理物に酵素を添加して酵素糖化すると、糖化反応が阻害されず、得られるアンモニア処理糖液中の発酵阻害物質の濃度が高くなるのを抑制できる。また、アンモニア処理物の固形物の濃度が1質量%以上の場合には、発酵生産の原料として使用するために必要な濃度に濃縮する際のエネルギー及び処理時間が抑えられ、費用を低減でき、経済的に有利である。
 アンモニア処理物の固形物を含む溶媒成分としては、アンモニア処理物の固形物を分散させることができるものであればよく、水などが用いられる。
 前記アンモニア処理物の酵素糖化に使用する酵素としては、セルロース分解活性を有する酵素(セルラーゼ)であれば特に限定されないが、結晶性セルロースの分解活性を有するエキソ型セルラーゼ、あるいはエンド型セルラーゼを含んでなるセルラーゼが好ましく使用される。こうしたセルラーゼとしては、糸状菌が産生するセルラーゼが好ましく、糸状菌の中でもトリコデルマ属細菌が産生するセルラーゼがより好ましく、トリコデルマ属細菌の中でもトリコデルマ・リーセイ(Trichoderma reesei)が産生するセルラーゼがさらに好ましい。
 前記酵素糖化はpH3~7の付近で行うことが好ましく、pH5付近で行うことがより好ましい。また、前記酵素糖化の反応温度は40~70℃であることが好ましく、50℃付近であることがより好ましい。
 前記酵素糖化によって得られるアンモニア処理糖液は、そのまま後段のステップに供してもよく、また、遠心分離法や膜分離法などによる固液分離によって固形物を除去した後に後段のステップに供してもよい。
<精製糖液の作製工程:ステップS13>
 アンモニア処理糖液の作製工程(ステップS12)により得られたアンモニア処理糖液に含まれるクマルアミドおよび/またはフェルラアミドを精製除去し、所定濃度の精製糖液を得る(精製糖液の作製工程:ステップS13)。
 精製糖液中のクマルアミドおよび/またはフェルラアミド濃度は、10~1100ppmの濃度範囲であり、より好ましくは10~800ppmであり、更に好ましく10~450ppmである。精製糖液中のクマルアミドおよび/またはフェルラアミドの濃度が1100ppm以下の場合には、発酵効率が著しく改善する。また、精製糖液の濃度が10ppm以上の場合には、アンモニア処理糖液の精製に要するエネルギーやコストの増大を抑制することができる。すなわち、精製糖液の発酵効率はクマルアミドおよび/またはフェルラアミドの濃度が低くなればなるほどより改善されるが、精製糖液の濃度を10ppm未満としても、アンモニア処理糖液の精製に要するエネルギーやコストが膨大になるばかりであり、精製糖液の発酵効率はそれ以上改善しないため、経済的に不利であり、好ましくない。
 アンモニア処理糖液の精製処理方法は、特に限定されないが、例えば、蒸留、抽出、晶析、再結晶、カラムクロマトグラフィー、膜分離などが挙げられる。これらのアンモニア処理糖液の精製処理方法は単独で用いてもよいし、複数を組み合わせて用いてもよい。上記アンモニア処理糖液の精製処理方法の中でも、膜処理を用いることが好ましく、特にナノ濾過膜を用いることが好ましい。ナノ濾過膜は、アンモニア処理糖液中の糖の透過を阻止すると共に、クマルアミドおよび/またはフェルラアミドを透過させることができる。よって、アンモニア処理糖液の精製にナノ濾過膜を用いることによって、糖濃縮とフェルラアミド、クマルアミドの除去を同時に行うことが可能となる。
 ナノ濾過膜とは、「一価のイオンは透過し、二価のイオンを阻止する膜」と一般に定義される分離膜であり、ナノフィルター、ナノフィルトレーション膜、NF膜とも呼ばれる。ナノ濾過膜は、数ナノメートル程度の微小空隙を有していると考えられる膜であり、主として、水中の微小粒子や分子、イオン、塩類等を阻止するために用いられる。
 ナノ濾過膜を形成する材料としては、酢酸セルロース系ポリマー、ポリアミド、ポリエステル、ポリイミド、ビニルポリマーなどの高分子素材を使用することができるが、前記1種類の素材で構成される膜に限定されず、複数の膜素材を含む膜であってもよい。また、ナノ濾過膜の膜構造は、膜の少なくとも片面に緻密層を持ち、緻密層から膜内部あるいはもう片方の面に向けて徐々に大きな孔径の微細孔を有する非対称膜や、非対称膜の緻密層の上に別の素材で形成された非常に薄い機能層を有する複合膜のどちらでもよい。複合膜としては、例えば、ポリスルホンを膜素材とする支持膜にポリアミドの機能層からなるナノフィルターを構成させた複合膜を用いることができる。このような複合膜としては、例えば、特開昭62-201606号公報に記載されている。
 これらの中でも高耐圧性と高透水性、高溶質除去性能を兼ね備え、優れたポテンシャルを有する、ポリアミドを機能層とした複合膜が好ましい。操作圧力に対する耐久性と、高い透水性、阻止性能を維持できるためには、ポリアミドを機能層とし、それを多孔質膜や不織布からなる支持体で保持する構造のものが適している。また、ポリアミド半透膜としては、多官能アミンと多官能酸ハロゲン化物との重縮合反応により得られる架橋ポリアミドの機能層を支持体に有してなる複合半透膜が適している。
 ポリアミドを機能層とするナノ濾過膜において、ポリアミドを構成する単量体の好ましいカルボン酸成分としては、例えば、トリメシン酸、ベンゾフェノンテトラカルボン酸、トリメリット酸、ピロメット酸、イソフタル酸、テレフタル酸、ナフタレンジカルボン酸、ジフェニルカルボン酸、ピリジンカルボン酸などの芳香族カルボン酸が挙げられるが、製膜溶媒に対する溶解性を考慮すると、トリメシン酸、イソフタル酸、テレフタル酸、およびこれらの混合物がより好ましい。
 前記ポリアミドを構成する単量体の好ましいアミン成分としては、m-フェニレンジアミン、p-フェニレンジアミン、ベンジジン、メチレンビスジアニリン、4,4’-ジアミノビフェニルエーテル、ジアニシジン、3,3‘,4-トリアミノビフェニルエーテル、3,3’,4,4‘-テトラアミノビフェニルエーテル、3,3’-ジオキシベンジジン、1,8-ナフタレンジアミン、m(p)-モノメチルフェニレンジアミン、3,3’-モノメチルアミノ-4,4’-ジアミノビフェニルエーテル、4,N,N‘-(4-アミノベンゾイル)-p(m)-フェニレンジアミン-2,2’-ビス(4-アミノフェニルベンゾイミダゾール)、2,2’-ビス(4-アミノフェニルベンゾオキサゾール)、2,2‘-ビス(4-アミノフェニルベンゾチアゾール)等の芳香環を有する一級ジアミン、ピペラジン、ピペリジンまたはこれらの誘導体等の二級ジアミンが挙げられ、中でもピペラジンまたはピペリジンを単量体として含む架橋ポリアミドを機能層とするナノ濾過膜は耐圧性、耐久性の他に、耐熱性、耐薬品性を有していることから好ましく用いられる。より好ましくは架橋ピペラジンポリアミドまたは架橋ピペリジンポリアミドを主成分とし、かつ、下記化学式1で示される構成成分を含有するポリアミドであり、さらに好ましくは架橋ピペラジンポリアミドを主成分とし、かつ、下記化学式1で示される構成成分を含有するポリアミドである。また、下記化学式1中、n=3のものが好ましく用いられる。架橋ピペラジンポリアミドを主成分とし、かつ下記化学式1で示される構成成分を含有するポリアミドを機能層とするナノ濾過膜としては、例えば、特開昭62-201606号公報に記載のものが挙げられ、具体例として、架橋ピペラジンポリアミドを主成分とし、かつ、下記化学式1中、n=3のものを構成成分として含有するポリアミドを機能層とする、東レ株式会社製の架橋ピペラジンポリアミド系ナノ濾過膜のUTC60が挙げられる。
Figure JPOXMLDOC01-appb-C000001
(nは1以上の整数である。)
 ナノ濾過膜は一般にスパイラル型の膜モジュールとして使用されるが、本実施形態で用いるナノ濾過膜も、スパイラル型の膜モジュールとして好ましく使用される。好ましいナノ濾過膜モジュールの具体例としては、例えば、酢酸セルロース系のナノ濾過膜であるGE Osmonics社製ナノ濾過膜のGEsepa、ポリアミドを機能層とするアルファラバル社製ナノ濾過膜のNF99またはNF99HF、架橋ピペラジンポリアミドを機能層とするフィルムテック社製ナノ濾過膜のNF-45、NF-90、NF-200、NF-270またはNF-400、あるいは架橋ピペラジンポリアミドを主成分とし、かつ前記化学式1で示される構成成分を含有するポリアミドを機能層とする、東レ株式会社製のUTC60を含む同社製ナノ濾過膜モジュールSU-210、SU-220、SU-600またはSU-610が挙げられ、より好ましくはポリアミドを機能層とするアルファラバル社製ナノ濾過膜のNF99またはNF99HF、架橋ピペラジンポリアミドを機能層とするフィルムテック社製ナノ濾過膜のNF-45、NF-90、NF-200またはNF-400、あるいは架橋ピペラジンポリアミドを主成分とし、かつ前記化学式1で示される構成成分を含有するポリアミドを機能層とする、東レ株式会社製のUTC60を含む同社製ナノ濾過膜モジュールSU-210、SU-220、SU-600またはSU-610であり、さらに好ましくは架橋ピペラジンポリアミドを主成分とし、かつ前記化学式1で示される構成成分を含有するポリアミドを機能層とする、東レ株式会社製のUTC60を含む同社製ナノ濾過膜モジュールSU-210、SU-220、SU-600またはSU-610である。
 ナノ濾過膜に供するアンモニア処理糖液のpHは特に限定されないが、pH1~5であることが好ましい。pHが1未満であると長期間使用した際に膜が変性してフラックス、透過率といった膜性能が著しく低下し、pHが5より大きいと、発酵阻害物質の除去率が著しく低下する場合があるためである。アンモニア処理糖液のpHを上記範囲内に調整してナノ濾過膜で濾過することで、発酵阻害物質の除去効率を向上させることができる。また、アンモニア処理糖液のpHが上記範囲内の場合には、ナノ濾過膜のファウリングを抑制する効果があるため、ナノ濾過膜を長期間安定して使用することができる。
 アンモニア処理糖液のpH調整に使用する酸もしくはアルカリは特に限定されるものではない。酸としては、例えば、塩酸、硫酸、硝酸、リン酸などが挙げられ、好ましくは発酵時の阻害が起こりにくい観点から硫酸、硝酸、リン酸、より好ましくは経済性の観点から硫酸である。アルカリとしては、好ましくは経済性の観点からアンモニア、水酸化ナトリウム、水酸化カルシウムとそれらを含む水溶液、より好ましくは膜ファウリングの観点から1価イオンであるアンモニア、水酸化ナトリウム、さらに好ましくは発酵時の阻害が起こりにくい観点からアンモニアである。
 アンモニア処理糖液のpH調整を行う段階は、ナノ濾過膜を通過させる前であればよい。またセルロース系バイオマスの加水分解に酵素を利用する場合は、加水分解反応時にpHを5以下に調整しておいてもよい。また、濾液に含まれる酵素を再利用するプロセスの場合にはpHを4以下まで低下させると酵素の失活が起こりやすいため、濾液に含まれる酵素を除去した後の濾液をpH調整することが好ましい。
 ナノ濾過膜を通過させるアンモニア処理糖液の温度は特に限定されないが、使用するナノ濾過膜の濾過時の発酵阻害物質の除去能を高める観点から適宜設定することができる。具体的には、ナノ濾過膜で濾過する場合、アンモニア処理糖液の温度が40℃~80℃であれば、ナノ濾過膜の発酵阻害物質の除去性能が高まるため、好ましい。ナノ濾過膜で濾過する場合のアンモニア処理糖液の温度が40℃以上の場合には、アンモニア処理糖液に含まれる発酵阻害物質の除去性能が大きくなるが、アンモニア処理糖液の温度が80℃より高いとナノ濾過膜が変性してしまうため、膜特性が失われることがある。そのため、アンモニア処理糖液の温度を上記範囲内とすることで、ナノ濾過膜の発酵阻害物質の除去性能を向上させることができる。
 また、ナノ濾過の方法としては、具体的には、例えば、国際公開第2010/067785号に記載されている方法に準じて行うことができる。
 ナノ濾過膜を用いてアンモニア処理糖液をろ過する場合には、アンモニア処理糖液に加水を行うことより、更に効率よく発酵阻害物質を除去することができる。また、加水する水の量によって、ナノ濾過後の精製糖液に含まれる発酵阻害物質の含有量を調節することができる。具体的には、加水の量が多ければ多いほど、ナノ濾過後の精製糖液に含まれる発酵阻害物質の含有量は少なくなる。
 このように、アンモニア処理糖液に含まれるクマルアミドおよび/またはフェルラアミドを精製除去することで、所定濃度の精製糖液が得られる。
 以上のように、本実施形態に係る糖液の製造方法によれば、セルロース系バイオマスをアンモニアを含む処理剤で処理したアンモニア処理物を酵素糖化して得られるアンモニア処理糖液に含まれるクマルアミドおよび/またはフェルラアミドを精製除去し、所定濃度の精製糖液を得ることができる。アンモニア処理糖液に発酵阻害物質として含まれる特有のクマルアミドおよび/またはフェルラアミドを該糖液を発酵する前に予め低減しておくことにより、発酵効率を向上させることができる。
 得られた精製糖液を発酵原料として用いて発酵を行うことでエタノールを製造することができる。本実施形態に係る糖液の製造方法を用いて得られる精製糖液からエタノールを製造する方法は特に限定されるものではない。エタノールを製造する方法としては、例えば、特開2009-296983号公報に記載されている二段階発酵方法が挙げられる。二段階発酵方法は、酵母や細菌により、一次発酵工程においてグルコースやマンノースなどの6炭糖をエタノールに変換し、続いて二次発酵工程においてキシロースなどの5炭糖をエタノールに変換する。一次発酵工程で使用する菌は、公知のものを使用できるが、その中でも、サッカロマイセス・セレビシエなどの酵母が好ましい。酵母は、エタノール耐性が高く、5%以上の濃度のエタノールを生産することができるためである。二次発酵工程で使用する菌は、ピキア・スティピティスなどの5炭糖資化性酵母を使用することができ、その中でも発酵阻害耐性能付与株が好ましい。
 本実施形態に係る糖液の製造方法を用いて得られた精製糖液は、セルロース系バイオマスをアンモニアを含む処理剤で処理したアンモニア処理糖液に発酵阻害物質として含まれる特有のクマルアミドおよび/またはフェルラアミドが除去されているため、発酵原料として用いる場合に発酵が阻害されることはない。よって、本実施形態に係る糖液の製造方法を用いて得られた精製糖液を発酵原料として用いることで、エタノールの製造の効率化を図ることが可能となる。
 本発明の内容を実施例及び比較例を用いて以下に詳細に説明するが、本発明は以下の実施例に限定されるものではない。
<実施例1:精製糖液の作製・分析>
[A.アンモニア処理糖液の作製]
(1.セルロース系バイオマスの粉砕処理)
 セルロース系バイオマスとしてエリアンサスを用いた。前記エリアンサスを4mmの目開きを有するスクリーンで粒度を制御しながらカッターミルを用いて粉砕した。レーザー回折法で測定した平均粒子径(d50)は約975μmであった。粉砕後のエリアンサスを、温度40℃、5kPaの減圧下にて一昼夜乾燥した。乾燥後のエリアンサスの含水率は乾燥後のエリアンサスの質量を基準として0.5質量%程度であった。
(2.セルロース系バイオマスのアンモニア処理)
 得られた粉砕・乾燥後のセルロースをセルロースチップとしてアンモニア処理を行った。内容積が約5Lの攪拌装置を備えたステンレス・スチール製オートクレーブに、前記セルロースチップを200g充填した。次に、オートクレーブ内への加圧窒素ガスの導入/脱圧を繰り返して、オートクレーブ内の空気を除去し、窒素ガスへと置換した。その後このオートクレーブを120℃まで昇温した。昇温後、オートクレーブ内を脱圧し、更に減圧にして窒素ガスを排気した。一方、別途の圧力容器に加圧アンモニアを導入し、120℃よりやや高い温度までこのアンモニアを昇温した。その後、前記オートクレーブと前記圧力容器とを連結する配管に設置したバルブを開くことにより、前記オートクレーブに、温度120℃において圧力1.2MPaとなるようにアンモニアを導入した。この温度、圧力条件にて2.5時間、攪拌下にセルロースチップをアンモニアにより処理した。その後、脱圧してアンモニアを排出し、更に窒素ガスをオートクレーブに流通させてセルロースチップ粒子中に残留したアンモニアを除去し、前処理バイオマスを得た。これをアンモニア処理セルロース(アンモニア処理物)として用いた。
(3.アンモニア処理セルロースの加水分解)
 アンモニア処理セルロース0.4kgに水7.6kgを添加し、アンモニア処理セルロース濃度を5%とした。これに少量の濃硫酸または水酸化ナトリウム水溶液を加えてpHを5に調整した後、トリコデルマ・リーセイ由来のセルラーゼ製剤(アクセルレース・デュエット、Genencor社製)を、アンモニア処理セルロース乾燥質量に対し、酵素タンパク質質量で100分の1の量を添加し、50℃で24時間糖化反応を行った。この糖化反応により得られたものを加水分解物として用いた。
(4.加水分解物の固液分離)
 得られた加水分解物を、遠心分離に供し、溶液成分と、未分解セルロースおよびリグニンとを分離した。前記溶液成分を、更に細孔径0.45μmの精密濾過膜(ステリカップ、Millipore社製)に供することにより、ミクロンオーダーの不溶性粒子を除去した。以上の方法により得られた溶液成分を、アンモニア処理糖液として用いた。
[B.精製糖液の作製]
(5.ナノ濾過膜による糖濃縮)
 得られたアンモニア処理糖液を、ナノ濾過膜(UTC-60、東レ社製)を用いて、常温にて操作圧力4MPaで濾過を行った。濾過して得られた濃縮液を精製糖液として用いた。なお、膜分離装置は平膜ユニット(SEPA CF-II、GE Osmonics社製、有効膜面積140cm2)を使用した。
[C.アンモニア処理糖液の分析]
 上記「4.加水分解物の固液分離」で得られたアンモニア処理糖液に含まれる糖類、有機酸、芳香族化合物を分析した。アンモニア処理糖液の糖類、有機酸、芳香族化合物の各分析条件を以下に示す。
(HPLC分析条件)
1.糖類分析条件
 アンモニア処理糖液中のグルコース、キシロース濃度は、下記に示す高速液体クロマトグラフィー(High Performance Liquid Chromatography:HPLC)条件で、標品との比較により定量した。
機器:ACQUITY UPLC システム(Waters社製)
カラム:ACQUITY UPLC BEH Amide 1.7μm 2.1×100mm Column(Waters社製)
移動相:A液;80%アセトニトリル+0.2%TEA、B液;30%アセトニトリル+0.2%TEA
流速:0.3mL/min
温度:55℃
2.有機酸分析条件
 アンモニア処理糖液中の酢酸の濃度は、下記に示すHPLC条件で、標品との比較により定量した。
機器:日立高速液体クロマトグラフ Lachrom elite(Hitachi社製)
カラム:GL-C610H-S (Hitachi社製)
移動相:3mM過塩素酸
反応液:ブロモチモールブルー溶液
検出方法:UV-VIS検出器
流速 移動相:0.5mL/min  反応液:0.6mL/min
温度:60℃
3.芳香族化合物分析条件
 アンモニア処理糖液中のクマル酸、クマルアミド、フェルラアミドの濃度は、下記に示すHPLC条件で、標品との比較により定量した。また、同時に各検出ピークのUV吸収スペクトル(測定波長:200nm~400nm)を得た。
機器:日立高速液体クロマトグラフ Lachrom elite(Hitachi社製)
カラム:Synergi 2.5μm Hydro‐RP 100A(Phenomenex社製)
検出方法:Diode Array 検出器
流速:0.6 mL/min
温度:40℃
 得られたアンモニア処理糖液の糖類を、上記「1.糖類分析条件」に記載のHPLC条件にて分析した結果、主要な糖類成分として、グルコース、キシロースが含まれることが確認された。また、アンモニア処理糖液の有機酸を上記「2.有機酸分析条件」に記載のHPLC条件にて分析した結果、主要な有機酸成分として、酢酸が含まれることが分かった。また、アンモニア処理糖液中の芳香族化合物を上記「3.芳香族化合物分析条件」に記載のHPLC条件にて分析した結果を図2に示す。図2に示すように、アンモニア処理糖液からは主要なピークが3つ検出(ピーク1、ピーク2、ピーク3参照)された。
 これらのうち、ピーク3は、クマル酸標品のHPLC溶出時間と一致したためクマル酸であることが判明した。また、残り2つの化合物(ピーク1、ピーク2)の溶出時間は、セルロース系バイオマス由来糖液に含まれる芳香族化合物として知られているHMF、フルフラール、バニリン、アセトバニロン、フェルラ酸、コニフェリルアルデヒド、グアヤコールのいずれの標品とも一致しなかった。そこで、HPLCによりこれら2種のピーク(ピーク1、ピーク2)を分取し、LC/MS(LCMS‐IT‐TOFおよびLC20A、Shimadzu社製)にて分子量を分析した。
 その結果、分子量はそれぞれ163.063、193.074であることが判明した。クマル酸、フェルラ酸が、アンモニア分子と縮合反応するとクマルアミド、フェルラアミドが生成することが予想される。クマルアミド、フェルラアミドの構造式から算出される分子量は、各々163.172、193.198であり、上記LC/MSで得られた分子量と一致することから、アンモニア処理セルロース糖液に含まれる残りの2種のピーク(ピーク1およびピーク2)は、クマルアミド、フェルラアミドであることが推定された。
 そこで、クマルアミドおよびフェルラアミド標品に関して、委託合成(委託先:VSN社 合成研究所)し、合成した標品のHPLC溶出時間を測定した。その結果、アンモニア処理糖液中のピーク1と標品混合液中のクマルアミド標品の溶出時間(3.74分)およびアンモニア処理糖液中のピーク2と標品混合液中のフェルラアミド標品の溶出時間(5.25分)が完全に一致した(図2参照)。
 HPLCを行った際に得られた、アンモニア処理糖液のピーク1およびピーク2と、クマルアミド標品およびフェルラアミド標品との各々のUV吸収スペクトルを図3~図6に示す。また、測定波長は200nm~400nmとした。図3、図5に示すように、アンモニア処理糖液のピーク1とクマルアミド標品とのUV吸収スペクトルは一致した。また、図4、図6に示すように、アンモニア処理糖液のピーク2とフェルラアミド標品とのUV吸収スペクトルはほぼ一致した。
 以上の分析の結果より、アンモニア処理セルロースの加水分解物であるアンモニア処理糖液に含まれるピーク1およびピーク2は、クマルアミド、フェルラアミドであり、アンモニア処理糖液には、これらの化合物が多く含まれていることが判明した。
[D.精製糖液の分析]
 濾過前の原液(アンモニア処理糖液)、濾過後の濃縮糖液(精製糖液)および透過液中の各成分濃度を表1に示す。なお、成分の分析には上記「C.アンモニア処理糖液の分析」に記載のHPLC分析条件に従って分析を行った。
Figure JPOXMLDOC01-appb-T000002
 表1から明らかなように、アンモニア処理糖液をナノ濾過膜に通じて濾過することにより、濃縮糖液では糖成分、すなわちグルコース、キシロースがそれぞれ5.9倍、4.9倍に濃縮されており、一方で糖以外の成分(酢酸、クマル酸、クマルアミド、フェルラアミド)は1~2.4倍程度にしか濃縮されておらず、アンモニア処理糖液をナノ濾過膜に通じて濾過することにより、原液中の糖成分の多くは非透過側へ、糖以外の成分の多くは透過側へと、それぞれ効率よく分離できた。
<比較例1:アンモニア処理糖液を逆浸透膜で糖濃縮した場合の検討>
 分離膜に逆浸透膜(UTC-80、東レ社製)を使用し、操作圧を5MPaとすること以外、実施例1の「5.ナノ濾過膜による糖濃縮」と同様の方法で濾過を行った。濾過前の原液(アンモニア処理糖液)、濾過後の濃縮糖液(精製糖液)および透過液中の各成分濃度を表2に示す。なお、成分の分析には、上記と同様、HPLCを用いて行った。
Figure JPOXMLDOC01-appb-T000003
 表2から明らかなようにグルコース、キシロースの単糖成分およびその他の成分は、ほとんど透過液には含まれていなかった。よって、分離膜として逆浸透膜を用いた場合、アンモニア処理糖液中に含まれる糖成分とクマルアミドおよびフェルラアミドとを分離できないことが確認できた。
<実施例2:クマルアミド、クマル酸、フェルラアミドを含むモデル溶液を使用した増殖試験>
 下記「A.モデル糖液を使用したピキア・スティピティスの増殖試験」の本培養において、培地中に、クマルアミド、クマル酸、フェルラアミドのうちいずれかひとつを添加物として2ppm~200ppmの濃度で添加した培地についてそれぞれ増殖試験を行った。また、ポジティブコントロールとして、添加物を含まないYPDX培地についても同様に試験を行った。
(A.モデル糖液を使用したピキア・スティピティスの増殖試験)
 ピキア・スティピティスNBRC1687株を、下記表3に記載のYPDX培地に2%の寒天を加えて作製したYPDX寒天培地にて、25℃で静置培養した(前々培養)。寒天培地上に形成されたコロニーのひとつを、滅菌した白金耳を用いて、YPDX培地10mLに播種し、25℃、120spmにて容積が20mLの試験管内で48時間振盪培養した(前培養)。前培養後の培地1mLを、YPDX培地9mLに添加し、容積が20mLの試験管内で、25℃、60spmにて更に培養を続けた(本培養)。培養開始後0、24、48時間にそれぞれサンプリングを行い、単糖濃度や吸光度(OD660)を測定することにより、菌体の増殖を観察した。
Figure JPOXMLDOC01-appb-T000004
 本実施例において、サンプリングの際に、培地中のグルコース、キシロースの濃度を分析した結果を表4に示す。
Figure JPOXMLDOC01-appb-T000005
 表4から明らかなように、添加物の濃度が20ppm以上の場合、いずれの添加物においてもキシロース消費がポジティブコントロールに対して遅くなっており、増殖阻害が起きていることが分かった。一方、添加物の濃度が2ppmでは、いずれの添加物においても増殖阻害は全く見られなかった。また、クマル酸よりも、クマルアミドおよびフェルラアミドの方が増殖阻害性は強く、その傾向はグルコースの消費速度に対して特に顕著であることが判明した。すなわち、ピキア・スティピティスの培養において、クマルアミドおよびフェルラアミドが発酵阻害物質であることが判明した。
<実施例3.ナノ濾過膜による濃縮糖液の増殖試験>
 実施例1の「5.ナノ濾過膜による糖濃縮」に記載の方法により、アンモニア処理糖液のナノ濾過膜による濃縮糖液(以下、NF濃縮液1とする。)を調整した。更に、NF濃縮液1に、等体積の水を添加して混合した後、ナノ濾過膜による濾過を、実施例1の「5.ナノ濾過膜による糖濃縮」に記載の条件にて再度行い、NF濃縮液2を得た。更に、NF濃縮液2に、NF濃縮液2と同じ体積の水を添加した後、ナノ濾過膜による濾過を、実施例1の「5.ナノ濾過膜による糖濃縮」に記載の条件に従って再度行い、NF濃縮液3を得た。NF濃縮液1~3および比較例1に記載の方法により得られた逆浸透膜による濃縮糖液(以下、RO濃縮液)の各成分濃度を表5に示す。
 また、それぞれの糖液を使用して、下記「B.アンモニア処理糖液の濃縮液を使用したピキア・スティピティスの増殖試験」に記載の方法により増殖試験を行った。試験結果を表5に示す。増殖試験の結果は、培養開始48時間後の吸光度(OD660)が、ポジティブコントロールに対して50%~100%の場合を++、10%~50%の場合を+、10%未満の場合を-として表記した。なお、ポジティブコントロールの吸光度(OD660)は48時間後で約15であった。
(B.アンモニア処理糖液の濃縮液を使用したピキア・スティピティスの増殖試験)
 アンモニア処理糖液の濃縮液について増殖試験を行う場合は、アンモニア処理糖液の濃縮液に、ポリペプトン、酵母エキスをそれぞれ上記表3に記載のYPDX培地と同じ濃度となるように添加したものを本培養の培地として使用する以外は、上記「A.モデル糖液を使用したピキア・スティピティスの増殖試験」と同様の方法で培養を行った。また、ポジティブコントロールは「A.モデル糖液を使用したピキア・スティピティスの増殖試験」と同様の方法で培養を行った。
Figure JPOXMLDOC01-appb-T000006
 表5から明らかなように、NF濃縮液に水を添加し、ナノ濾過を繰り返すたびに、クマル酸、クマルアミド、フェルラアミドの濃度が低下していた。一方、逆浸透膜を用いて濾過した場合では、これらの物質は顕著に濃縮されていた。また、増殖試験の結果より、糖液中のクマルアミド、フェルラアミド濃度の合計が1100ppm以下であれば、増殖が可能であるといえる。よって、本結果より、クマルアミド、フェルラアミドを除去するためには逆浸透膜ではなくナノ濾過膜で処理する必要があることが確認された。また、本結果および実施例2より、ナノ濾過では、クマルアミド、フェルラアミドの濃度の合計が1100ppm以下の濃度範囲となるように精製処理を行うことによって効率的な微生物の増殖が可能になることが判明した。
<実施例4.アンモニア処理糖液を使用したエタノール生産試験>
 下記「C.アンモニア処理糖液を使用したピキア・スティピティスのエタノール生産試験」に従い、アンモニア処理糖液のナノ濾過膜による濃縮糖化液(NF濃縮液)と比較例1に記載の方法により得られた逆浸透膜による濃縮糖化液(RO濃縮液)とを使用してエタノール生産を行い、それぞれにおける発酵特性の比較を行った。
(C.アンモニア処理糖液を使用したピキア・スティピティスのエタノール生産試験)
 アンモニア処理糖液からのエタノール生産試験は、特開2009-296983号公報の明細書に記載された二段階発酵方法に準じて行った。まず一次発酵として、アンモニア処理糖液濃縮液でサッカロマイセス・セレビシエを培養し、グルコースをエタノールに変換したところ、NF濃縮液、RO濃縮液のいずれを使用した場合も発酵阻害を受けなかったことが確認された。
 次に二次発酵として、ロータリーエバポレーターによりエタノール濃度を10g/Lに調整した一次発酵液でピキア・スティピティスを培養し、一次発酵液に含まれるキシロースをエタノールに変換した。二次発酵における、NF濃縮液由来一次発酵液とRO濃縮液由来一次発酵液での発酵時間とエタノール濃度との関係を図7に示し、NF濃縮液由来一次発酵液とRO濃縮液由来一次発酵液での発酵時間とキシロース濃度との関係を図8に示す。その結果、図7、8に示すように、ピキア・スティピティスによる二次発酵ではRO濃縮液由来一次発酵液でのエタノール生産が大きく阻害され、NF濃縮液由来一次発酵液でのエタノール生産と比較してキシロースの消費速度、エタノール生成速度とエタノール最終生成濃度が減少した。そのため、ナノ濾過膜による濃縮よりも逆浸透膜による濃縮がアルコール発酵阻害物質をより顕著に濃縮することが明らかとなった。
<実施例5:膜濾過後の透過液によるエタノール生産阻害の検証>
 NF濃縮液およびRO濃縮液を生成する際に得られる濾液(透過液)を用いたエタノール生産を行った。NF濃縮液およびRO濃縮液に由来する透過液をそれぞれNF透過液およびRO透過液とした。各透過液はロータリーエバポレーターを用いて3倍に濃縮した。濃縮した透過液に酵母エキス、ポリペプトン、キシロースを終濃度がそれぞれ0.5%、1.0%、7.0%になるように添加した。これらの調製された液体培地にピキア・スティピティスを添加し、エタノール生産を行った。対照として水に上記と同様の組成になるように酵母エキス、ポリペプトン、キシロースを加えたものを用いて同様の検証を行った。
 NF濃縮液とRO濃縮液との発酵時間とエタノール濃度との関係を図9に示し、NF濃縮液とRO濃縮液との発酵時間とキシロース濃度との関係を図10に示す。図9、10に示すように、RO透過液を含む培地では対照と同様のキシロース消費とエタノール生成を行った。しかしながら、NF透過液を含む培地ではキシロース消費速度が対照の約75%に、エタノール生成速度が約60%に減少した。よって、この結果から、アンモニア処理糖液のナノ濾過膜による濃縮処理によりエタノール生産阻害物質が膜を透過し、濾液に蓄積することが明らかとなった。従って、ナノ濾過膜による濃縮処理によりエタノール生産阻害物質の除去を行うことができることが示された。
<実施例6:糖化時のアンモニア処理セルロース濃度>
 実施例1の「2.セルロース系バイオマスのアンモニア処理」に記載のアンモニア処理セルロース0.4kgに、下記表6に記載の仕込み時加水量に従って水を添加し、アンモニア処理セルロース濃度を5、10、15、20%にそれぞれ調整した。これに少量の濃硫酸を加えてpHを5に調整した後、セルラーゼ製剤(アクセルレース・デュエット、Genencor社製)を、アンモニア処理セルロース乾燥質量に対し、酵素タンパク質質量で100分の1の量を添加し、50℃で24時間酵素糖化反応を行った。得られた加水分解物を遠心分離に供し、溶液成分と、未分解セルロースあるいはリグニンとを分離した。前記溶液成分を、更に細孔径0.45μmの精密濾過膜(ステリカップ、Millipore社製)に供することにより、ミクロンオーダーの不溶性粒子を除去した。以上の方法により得られた溶液成分を、実施例1の「5.ナノ濾過膜による糖濃縮」に従ってナノ濾過膜処理し、NF濃縮液を得た。なお濃縮倍率は、濃縮液中のグルコース濃度がおよそ10%となるように調整した。それぞれの濃縮液中の各成分濃度を表7に示す。
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
 表7から明らかなように、NF濃縮液中のクマルアミド、フェルラアミドの濃度の合計量は、酵素糖化時のアンモニア処理セルロース濃度が5%および10%の場合では共に1100ppm以下であるが、酵素糖化時のアンモニア処理セルロース濃度が15%、20%ではNF濃縮液中のクマルアミド、フェルラアミドの濃度の合計量は顕著に高くなっており、それぞれ1250ppm、1390ppmであった。よって、本結果ならびに実施例5より、糖液中のクマルアミド、フェルラアミドの濃度の合計量が1100ppm以下の場合には、微生物は生育可能であり、効率的な微生物によるエタノールの生産は可能であるため、酵素糖化時のアンモニア処理セルロース濃度は10%以下とすることが好ましいことが判明した。

Claims (6)

  1.  セルロース系バイオマスをアンモニアを含む処理剤で処理し、アンモニア処理物を得る前処理工程と、
     前記アンモニア処理物を酵素糖化し、アンモニア処理糖液を得るアンモニア処理糖液の作製工程と、
     前記アンモニア処理糖液に含まれるクマルアミドおよび/またはフェルラアミドを精製除去し、クマルアミドおよび/またはフェルラアミドの濃度が10~1100ppmの精製糖液を得る精製糖液の作製工程と、
    を含むことを特徴とする糖液の製造方法。
  2.  前記セルロース系バイオマスが、草本系バイオマスを含むことを特徴とする請求項1に記載の糖液の製造方法。
  3.  前記アンモニア処理糖液の精製処理にナノ濾過膜を用いることを特徴とする請求項1または2に記載の糖液の製造方法。
  4.  前記アンモニア処理物を酵素糖化する際、前記アンモニア処理物の固形物の濃度が1~10質量%の範囲内の溶液を用いて前記アンモニア処理物を酵素糖化することを特徴とする請求項1から3の何れか1項に記載の糖液の製造方法。
  5.  請求項1から4の何れか1項に記載の糖液の製造方法を用いて得られることを特徴とする糖液。
  6.  請求項5に記載の糖液を発酵原料として用いてエタノールを製造することを特徴とするエタノールの製造方法。
PCT/JP2013/053267 2012-02-13 2013-02-12 糖液の製造方法、糖液及びエタノールの製造方法 WO2013122051A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US14/377,918 US10087469B2 (en) 2012-02-13 2013-02-12 Method of producing sugar solution, sugar solution, and method of producing ethanol
EP13748499.4A EP2816124B1 (en) 2012-02-13 2013-02-12 Method for producing sugar solutions with low concentrations of coumaramide and/or ferulamide
ES13748499.4T ES2613682T3 (es) 2012-02-13 2013-02-12 Procedimiento para producir una solución de azúcar con una concentración baja de cumaramida y/o ferulamida
BR112014019575A BR112014019575B1 (pt) 2012-02-13 2013-02-12 método para a produção de uma solução de açúcar
CA2864256A CA2864256C (en) 2012-02-13 2013-02-12 Method for producing sugar solution, sugar solution, and method for producing ethanol

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-028962 2012-02-13
JP2012028962A JP2013162777A (ja) 2012-02-13 2012-02-13 糖液の製造方法、糖液及びエタノールの製造方法

Publications (1)

Publication Number Publication Date
WO2013122051A1 true WO2013122051A1 (ja) 2013-08-22

Family

ID=48984161

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/053267 WO2013122051A1 (ja) 2012-02-13 2013-02-12 糖液の製造方法、糖液及びエタノールの製造方法

Country Status (7)

Country Link
US (1) US10087469B2 (ja)
EP (1) EP2816124B1 (ja)
JP (1) JP2013162777A (ja)
BR (1) BR112014019575B1 (ja)
CA (1) CA2864256C (ja)
ES (1) ES2613682T3 (ja)
WO (1) WO2013122051A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014024989A1 (ja) * 2012-08-10 2014-02-13 東レ株式会社 クマルアミドの製造方法

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104561183B (zh) * 2015-01-16 2019-01-22 天津大学 一种玉米秸秆的预处理方法
US9777303B2 (en) 2015-07-23 2017-10-03 Fluid Quip Process Technologies, Llc Systems and methods for producing a sugar stream
US11053557B2 (en) 2018-03-15 2021-07-06 Fluid Quip Technologies, Llc System and method for producing a sugar stream using membrane filtration
US11519013B2 (en) 2018-03-15 2022-12-06 Fluid Quip Technologies, Llc System and method for producing a sugar stream with front end oil separation
US11505838B2 (en) 2018-04-05 2022-11-22 Fluid Quip Technologies, Llc Method for producing a sugar stream
US10480038B2 (en) 2018-04-19 2019-11-19 Fluid Quip Technologies, Llc System and method for producing a sugar stream
US10995351B1 (en) 2020-09-14 2021-05-04 Fluid Quip Technologies, Llc System and method for producing a carbohydrate stream from a cellulosic feedstock

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62201606A (ja) 1985-09-20 1987-09-05 Toray Ind Inc 複合半透膜及びその製造方法
JP2008161125A (ja) 2006-12-28 2008-07-17 Univ Of Tokyo 糖の製造方法、エタノールの製造方法、及び乳酸の製造方法、並びにこれらに用いられる酵素糖化用セルロース及びその製造方法
WO2009110374A1 (ja) 2008-03-05 2009-09-11 東レ株式会社 多糖類系バイオマス由来化合物の製造方法
JP2009296983A (ja) 2008-06-17 2009-12-24 Akita Prefecture エタノール製造方法
WO2010067785A1 (ja) 2008-12-09 2010-06-17 東レ株式会社 糖液の製造方法
WO2011111451A1 (ja) * 2010-03-10 2011-09-15 東レ株式会社 精製糖水溶液の製造方法および化学品の製造方法
WO2011162009A1 (ja) * 2010-06-24 2011-12-29 東レ株式会社 精製糖水溶液の製造方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101938604B1 (ko) 2011-02-18 2019-01-15 도레이 카부시키가이샤 당액의 제조 방법

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62201606A (ja) 1985-09-20 1987-09-05 Toray Ind Inc 複合半透膜及びその製造方法
JP2008161125A (ja) 2006-12-28 2008-07-17 Univ Of Tokyo 糖の製造方法、エタノールの製造方法、及び乳酸の製造方法、並びにこれらに用いられる酵素糖化用セルロース及びその製造方法
WO2009110374A1 (ja) 2008-03-05 2009-09-11 東レ株式会社 多糖類系バイオマス由来化合物の製造方法
JP2009296983A (ja) 2008-06-17 2009-12-24 Akita Prefecture エタノール製造方法
WO2010067785A1 (ja) 2008-12-09 2010-06-17 東レ株式会社 糖液の製造方法
WO2011111451A1 (ja) * 2010-03-10 2011-09-15 東レ株式会社 精製糖水溶液の製造方法および化学品の製造方法
WO2011162009A1 (ja) * 2010-06-24 2011-12-29 東レ株式会社 精製糖水溶液の製造方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
BOWMAN M. J. ET AL.: "Liquid chromatography- mass spectrometry investigation of enzyme- resistant xylooligosaccharide structures of switchgrass associated with ammonia pretreatment, enzymatic saccharification, and fermentation.", BIORESOURCE TECHNOLOGY, vol. 110, 28 January 2012 (2012-01-28), pages 437 - 447, XP055159473 *
See also references of EP2816124A4

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014024989A1 (ja) * 2012-08-10 2014-02-13 東レ株式会社 クマルアミドの製造方法
US9527802B2 (en) 2012-08-10 2016-12-27 Toray Industries, Inc. Method of manufacturing coumaramide

Also Published As

Publication number Publication date
JP2013162777A (ja) 2013-08-22
US10087469B2 (en) 2018-10-02
EP2816124A4 (en) 2015-07-15
US20150004647A1 (en) 2015-01-01
BR112014019575A2 (pt) 2017-06-27
CA2864256A1 (en) 2013-08-22
BR112014019575A8 (pt) 2018-10-23
CA2864256C (en) 2020-03-24
EP2816124B1 (en) 2016-12-21
ES2613682T3 (es) 2017-05-25
EP2816124A1 (en) 2014-12-24
BR112014019575B1 (pt) 2019-12-17

Similar Documents

Publication Publication Date Title
WO2013122051A1 (ja) 糖液の製造方法、糖液及びエタノールの製造方法
RU2516792C2 (ru) Способ получения сахарного раствора
WO2011111451A1 (ja) 精製糖水溶液の製造方法および化学品の製造方法
WO2012077697A1 (ja) 濃縮糖水溶液の製造方法
JP5246379B2 (ja) 糖液の製造方法
AU2013261286B2 (en) Method for producing sugar solution
WO2012077698A1 (ja) 濃縮糖水溶液の製造法
CA2831543C (en) Method for producing sugar solution
JP5728817B2 (ja) キシロース糖液の製造方法
US20140024826A1 (en) Systems and methods for improving fermentation
RU2583689C2 (ru) Способ получения сахарного раствора
WO2011162009A1 (ja) 精製糖水溶液の製造方法
AU2014288309B2 (en) Method for producing saccharide solution
WO2014103185A1 (ja) 濃縮糖化液製造方法
WO2012128358A1 (ja) バイオマスを原料とする発酵装置
JP2013255457A (ja) 濃縮糖水溶液およびエタノールの製造方法
JP2016007160A (ja) 糖液の製造方法及び多糖類系バイオマス由来化合物の製造方法
WO2012128359A1 (ja) バイオマスを原料とする糖液製造装置
WO2014024989A1 (ja) クマルアミドの製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13748499

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2013748499

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2013748499

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2864256

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 14377918

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: IDP00201405423

Country of ref document: ID

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112014019575

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112014019575

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20140807