WO2013121889A1 - Microchannel device and manufacturing device therefor - Google Patents

Microchannel device and manufacturing device therefor Download PDF

Info

Publication number
WO2013121889A1
WO2013121889A1 PCT/JP2013/052148 JP2013052148W WO2013121889A1 WO 2013121889 A1 WO2013121889 A1 WO 2013121889A1 JP 2013052148 W JP2013052148 W JP 2013052148W WO 2013121889 A1 WO2013121889 A1 WO 2013121889A1
Authority
WO
WIPO (PCT)
Prior art keywords
main body
plate
porous body
inlet
body plate
Prior art date
Application number
PCT/JP2013/052148
Other languages
French (fr)
Japanese (ja)
Inventor
淳子 伊藤
Original Assignee
アルプス電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by アルプス電気株式会社 filed Critical アルプス電気株式会社
Priority to JP2014500162A priority Critical patent/JP5819513B2/en
Priority to CN201380009414.4A priority patent/CN104114272B/en
Publication of WO2013121889A1 publication Critical patent/WO2013121889A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/0093Microreactors, e.g. miniaturised or microfabricated reactors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/40Static mixers
    • B01F25/45Mixers in which the materials to be mixed are pressed together through orifices or interstitial spaces, e.g. between beads
    • B01F25/452Mixers in which the materials to be mixed are pressed together through orifices or interstitial spaces, e.g. between beads characterised by elements provided with orifices or interstitial spaces
    • B01F25/4522Mixers in which the materials to be mixed are pressed together through orifices or interstitial spaces, e.g. between beads characterised by elements provided with orifices or interstitial spaces the components being pressed through porous bodies, e.g. flat plates, blocks or cylinders, which obstruct the whole diameter of the tube
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F33/00Other mixers; Mixing plants; Combinations of mixers
    • B01F33/30Micromixers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00781Aspects relating to microreactors
    • B01J2219/00783Laminate assemblies, i.e. the reactor comprising a stack of plates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00781Aspects relating to microreactors
    • B01J2219/00819Materials of construction
    • B01J2219/00824Ceramic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00781Aspects relating to microreactors
    • B01J2219/00819Materials of construction
    • B01J2219/00833Plastic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00781Aspects relating to microreactors
    • B01J2219/00819Materials of construction
    • B01J2219/00835Comprising catalytically active material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00781Aspects relating to microreactors
    • B01J2219/00819Materials of construction
    • B01J2219/00837Materials of construction comprising coatings other than catalytically active coatings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00781Aspects relating to microreactors
    • B01J2219/00819Materials of construction
    • B01J2219/00844Comprising porous material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00781Aspects relating to microreactors
    • B01J2219/00851Additional features
    • B01J2219/00858Aspects relating to the size of the reactor
    • B01J2219/0086Dimensions of the flow channels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00781Aspects relating to microreactors
    • B01J2219/00889Mixing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00781Aspects relating to microreactors
    • B01J2219/0095Control aspects
    • B01J2219/00988Leakage

Definitions

  • the present invention relates to a micro-channel device in which an input passage, an output passage, and a processing tank are formed in a main body, and a processing body is accommodated in the processing tank, and in particular, a micro that can closely contact the processing body and the main body.
  • the present invention relates to a flow path device and a manufacturing apparatus thereof.
  • a micro-channel device is used as a device for mixing, reacting or separating a small amount of fluid.
  • the microreactor described in Patent Document 1 is provided with a catalytic reaction section inside a casing.
  • the catalytic reaction part is composed of a molded body obtained by molding a powder of a catalytically active substance, and a large number of continuous pores are formed in the molded body.
  • the reactive substance is supplied from the inflow port, the reactive substance branches into a large number of continuous pores and is allowed to react with the catalytically active substance.
  • the catalytic reaction part is composed of a porous substrate holding a catalytically active substance, and the reactive substance supplied from the inlet is introduced into the substrate and reacted with the catalytically active substance.
  • a plurality of flow paths and reaction parts are formed on a substrate, and a membrane filter having a pore diameter of 0.001 to 0.3 ⁇ m is held in the reaction part.
  • the collection solution is sent to the reaction section, and the reaction section collects NO 2 gas in the collection solution.
  • the microreactor described in Patent Document 1 does not consider the airtightness or liquid tightness of the boundary between the molded body having continuous pores and the casing, or the boundary between the porous substrate and the casing.
  • gas or liquid When gas or liquid is mixed or reacted, gas or liquid tends to be leached out to the boundary portion, and there is a problem that accuracy of mixing or reaction with a fluid is lowered.
  • the chemical microdevice described in Patent Document 2 also does not consider the air tightness and liquid tightness of the boundary between the substrate and the membrane filter, and in this case also, when trying to mix or react the fluid , Fluid easily leaches into the boundary portion.
  • the present invention solves the above-described conventional problems, and when a gas or liquid is mixed or chemically reacted using a porous material, a phenomenon in which fluid oozes between the porous material and the main body portion occurs. It is an object of the present invention to provide a microchannel device and a manufacturing apparatus thereof that are difficult to perform mixing and reaction effectively.
  • the present invention provides a processing tank, a plate-shaped main body in which an input passage leading to the processing tank, an output passage extending from the processing tank is formed, and a processing body disposed in the processing tank.
  • the treatment body has a porous body and a synthetic resin coating layer surrounding the porous body, the coating layer is in close contact with the inner surface of the treatment tank, and the input layer and the input passage An inlet that communicates with the porous body and an inlet that communicates the porous body and the output passage are formed.
  • the porous body is surrounded by the synthetic resin layer, and this synthetic resin layer is in close contact with the inner surface of the main body. Therefore, it is possible to improve the air tightness and liquid tightness between the porous body and the inner surface of the main body part, and it is difficult for liquid and gas to leach into the boundary part, and the probability that the fluid can be processed inside the porous body. Can be improved.
  • the covering layer is preferably formed of the same synthetic resin material as that of the main body. In this configuration, the covering layer and the main body portion can be easily adhered.
  • the porous body is preferably a porous body of sintered ceramics having a monolith structure.
  • a porous body of crystalline ceramics has a limit in increasing processing accuracy, but by covering the periphery with a synthetic resin coating layer, the boundary between the porous body and the main body is adhered to the coating layer.
  • the fluid can be processed inside the porous body.
  • highly accurate fluid processing utilizing the structure of the porous body becomes possible.
  • the porous body is porous silica.
  • the present invention can be configured such that the porous body is plate-shaped, the inlet is formed on the plate surface, and the inlet is formed on the side surface of the plate.
  • the said porous body is elongate shape, The said inlet can be formed in the one end surface facing the length direction, and the said inlet can be comprised in the other end surface.
  • the main body is composed of a plurality of synthetic resin plates, and the plate is formed with holes or recesses that constitute the treatment tank and the input passage and the output passage.
  • the bonding surfaces are closely bonded without using an adhesive, and the coating layer and the plate are closely bonded without using an adhesive.
  • a plurality of synthetic resin main body plates constituting a main body are configured with a processing tank, an input path leading to the processing tank, and an output path extending from the processing tank.
  • Forming a hole or recess to be A step of applying light energy to the bonding surface of the main body plate to modify the bonding surface;
  • a step in which a porous body is covered with a synthetic resin coating layer, and a treatment body in which an inlet and an outlet leading to the porous body are formed is installed inside the treatment tank;
  • the modified bonding surfaces of the main body plate are brought into contact with each other, heated and pressurized, and the bonding surfaces are bonded to each other without using an adhesive, and the surface of the covering layer is bonded to each main body panel.
  • Adhering and bonding without using agents The input passage is communicated with the inlet, and the output passage is communicated with the immersion outlet.
  • the processing body is placed in the processing tank after being heated and pressed to be molded.
  • a compressive force is applied to the treatment body, and an adhesive is used between the surface of the covering layer and each main body panel. It is preferable that they are bonded closely together.
  • the microchannel device of the present invention improves the airtightness and liquid tightness between the porous body arranged inside the main body and the inner surface of the main body, and allows the fluid to be mixed efficiently by the porous body. It becomes possible to react.
  • the manufacturing method of the micro-channel device of the present invention makes it possible to perform bonding between the main body plates and bonding between the coating layer of the treatment body and the main body plate without using an adhesive.
  • FIG. 1A is an enlarged cross-sectional view taken along line VI-VI in FIG.
  • FIG. 1A is an enlarged cross-sectional view taken along line VII-VII in FIG.
  • FIG. 10 is an enlarged cross-sectional view of the microchannel device taken along line XI-XI in FIG.
  • FIG. 10 is an enlarged cross-sectional view of the microchannel device taken along line XII-XII in FIG.
  • FIG. 10 is an enlarged cross-sectional view of the microchannel device taken along line XIII-XIII in FIG.
  • the perspective view of the process body used for the microchannel apparatus of 2nd Embodiment, (A) (B) is sectional drawing which shows the process body shown in FIG. 14 according to embodiment,
  • the microchannel device 1 includes a first main body plate 10, a second main body plate 20, and a third main body plate 30.
  • the main body is configured by being stacked in the thickness direction.
  • the first main body plate 10, the second main body plate 20, and the third main body plate are all formed of the same synthetic resin material.
  • a preferred synthetic resin material is a cyclic polyolefin resin (COP) which has chemical resistance and low fluorescence.
  • COP cyclic polyolefin resin
  • the synthetic resin can be freely selected according to the physical properties of the fluid used.
  • the first main body plate 10, the second main body plate 20, and the third main body plate 30 have the same thickness dimension t.
  • the thickness dimension t is about 0.3 to 3.0 mm. In this embodiment, the thickness dimension t is 1.0 mm.
  • the first main body plate 10, the second main body plate 20, and the third main body plate 30 have a quadrangular planar shape.
  • the first main body plate 10 has a quadrangular planar shape, and has a joining surface 10a and an outer surface 10b as shown in FIG. 2B.
  • Positioning holes 11 are formed in four corners of a rectangular plane of the first main body plate 10 so as to penetrate in the thickness direction.
  • Holes serving as inflow ports 12 and 13 are formed in two positions on the upper side of the first main body plate 10 so as to penetrate in the thickness direction, and holes serving as output passages 14 are located at one position on the lower side in the figure. It is formed to penetrate in the direction.
  • the second main body plate 20 has a quadrangular planar shape, and has a first joining surface 20a and a second joining surface 20b as shown in FIG. 3B. is doing.
  • Positioning holes 21 are formed through four corners of a rectangular plane of the second main body plate 20.
  • the positioning holes 11 formed in the first main body plate 10 and the positioning holes 21 formed in the second main body plate 20 have the same opening diameter and the same arrangement pitch.
  • the second main body plate 20 is formed with two holes 22 and 23 penetrating in the plate thickness direction.
  • the inlets 12 and 13 of the first main body plate 10 and the inlets 22 and 23 of the second main body plate 20 are formed with the same opening diameter and the same arrangement pitch.
  • the second body plate 20 is formed in a concave shape toward the second bonding surface 20 b by opening to the first bonding surface 20 a.
  • a tank 25 is formed.
  • the opening shape opened to the first bonding surface 20a is a perfect circle.
  • the treatment tank 25 has a circular bottom surface 25a and a tapered side surface 25b that rises from the periphery of the bottom surface 25a and gradually increases the opening area toward the first bonding surface 20a. Is formed.
  • the depth dimension D from the first joining surface 20 a of the treatment tank 25 is in the range of 30 to 80% of the plate thickness dimension t of the second main body plate 20.
  • the depth dimension D is 70% of the plate thickness dimension t, which is 0.7 mm.
  • the treatment tank 25 is formed with a concave output passage 24 extending in a radial direction from one portion of the tapered side surface 25b.
  • the depth dimension d from the first joining surface 20a of the output passage 24 is about 0.05 to 0.3 mm, and the depth dimension d in this embodiment is 0.1 mm.
  • the output passage 24 is formed at a position where it can communicate with the output passage 14 formed in the first main body plate 10.
  • An input passage 26 is formed at the center of the true circle diameter of the bottom surface 25a of the treatment tank 25. As shown in FIG. 7, the input passage 26 is a hole penetrating from the bottom surface 25a of the treatment tank 25 to the second bonding surface 20b.
  • the third main body plate 30 has a quadrangular planar shape, and has a joining surface 30a and an outer surface 30b as shown in FIG. 4B.
  • Positioning holes 31 are formed through four corners of a rectangular plane of the third main body plate 30.
  • the positioning hole 11 formed in the first main body plate 10 and the positioning hole 21 formed in the second main body plate 20 and the positioning hole 31 formed in the third main body plate 30 have the same opening diameter and They are formed with the same arrangement pitch.
  • the joining surface 30a of the third main body plate 30 is provided with inflow passages 32 and 33 formed by two concave portions extending obliquely.
  • the start end 32 a of one inflow passage 32 is located directly below the inlet 22 formed in the second main body plate 20, and the start end 33 a of the other inflow passage 33 is formed in the second main body plate 20. It is located directly under the entrance 23.
  • the input surface 36 formed by a linearly extending recess is formed on the joint surface 30a of the third main body plate 30.
  • a terminal end 36 a of the input passage 36 faces directly below the input passage 26 communicating with the processing tank 25 of the second main body plate 20.
  • the depth dimension d (see FIGS. 6 and 7) of the inflow passages 32 and 33 and the input passage 36 from the joining surface 30a is the same as the depth dimension d of the output passage 24.
  • the mixing passage 35 includes a narrow passage 35 a continuous with the end 32 b of the inflow passage 32, a narrow passage 35 b continuous with the end 33 b of the inflow passage 33, and the input passage 36.
  • a narrow passage 35c continuous with the start end 36b is connected at the connecting portion 35c.
  • the processing body 40 is accommodated in the processing tank 25 formed in the second main body plate 20.
  • the processing body 40 includes a disk-shaped porous body 41 and a coating layer 42 that covers the periphery thereof.
  • the covering layer 42 there are opened an inlet 43 facing the center of the plate surface 41 a of the porous body 41 facing downward in FIG. 7 and a plurality of inlets 44 facing the side surface 41 b of the porous body 41. is doing.
  • the inlet 43 faces the input passage 26 formed in the bottom surface 25 a of the processing tank 25.
  • An output space 25c is formed on the entire periphery of the processing layer 25 formed on the second main body plate 40 by the shape of the side surface of the processing body 40 and the tapered portion 26b. A plurality of the outlets 44 opened to the processing body 40 are opposed to the output space 25c.
  • a plate material having a plate thickness t of 1.0 mm formed of cyclic polyolefin resin (COP) is used, and the first main body plate 10 shown in FIG. 2, the second main body plate 20 shown in FIG. 3, and FIG.
  • the third body plate 30 is processed.
  • the inlets and outlets of the main body plates 10, 20, 30, the input passages and the output passages, and the recesses and holes constituting the processing tank may be formed by injection molding or pressing, or physically processed by a laser or the like. May be.
  • the porous body 41 is used for mixing liquids, promoting chemical reactions, or separating components in fluids.
  • the porous body 41 can be made of various materials such as ceramics and polymers depending on the required processing and the type of fluid used. You can choose.
  • a porous body of sintered ceramics having a monolith structure is preferable because high-performance separation and mixing can be performed with low flow path loss.
  • a silica monolith formed entirely of integral silica gel is suitable.
  • a product manufactured by Kyoto Monotech Co., Ltd. can be used.
  • a porous body 41 made of porous silica having a diameter of about 12 mm and a thickness of about 0.5 mm is used.
  • the coating layer 42 covering the porous body 41 is composed of two synthetic resin films 42a and 42b.
  • the synthetic resin films 42a and 42b are formed of a synthetic resin material that can be bonded to the first main body plate 10 and the second main body plate 20 without using an adhesive by heating and pressure treatment, and preferably
  • the synthetic resin films 42 a and 42 b are formed of the same cyclic polyolefin resin (COP) as the material of the first main body plate 10 and the second main body plate 20.
  • COP cyclic polyolefin resin
  • a plurality of synthetic resin films 42a and 42b having a thickness of 10 to 200 ⁇ m are laminated and used.
  • one synthetic resin film 42a is circular, and an inlet 43 is opened at the center thereof.
  • the other synthetic resin film 42b is also circular, and a plurality of inlets 44 are opened along an arc shape.
  • the porous body 41 has a limit in increasing the accuracy of the outer shape.
  • a sintered body having a large gap such as a sintered ceramic having a monolith structure
  • it is difficult to increase the dimensional accuracy because the sintered shape is limited.
  • the sintered body is a brittle material, it is difficult to improve the dimensional accuracy. Therefore, when the cylindrical sintered body is cut and then polished into a disk shape, the thickness accuracy of the porous body 41, the flatness of each of the plate surfaces 41a and 41c, and the plate surface 41a The accuracy of the parallelism with the plate surface 41b cannot be so high.
  • the porous body 41 is sandwiched between the two synthetic resin films 42a and 42b, and is pressed from above and below with a flat plate or a press die as shown in FIG. 9 (C). Further, by heating, the synthetic resin films 42a and 42b are slightly compressed up and down to smooth the surfaces of the synthetic resin films 42a and 42b, and the two surfaces 40a and 40b of the treatment body 40 are parallel to each other. Mold.
  • the synthetic resin films 42a and 42b are heated and pressurized on the outer periphery of the side surface 41b of the porous body 41 and bonded to each other, as shown in FIG. Are joined to form a protruding portion 42c protruding from the side surface 41b.
  • the protrusion 42c is cut and removed along the cutting line Lc.
  • the disc-shaped processing body 40 in which the periphery of the porous body 41 is surrounded by the coating layer 42 of the synthetic resin films 42a and 42b is completed.
  • the processing body 40 has upper and lower surfaces 40 a and 40 b parallel to each other, facing the coating layer 42, the inlet 43 facing the center of the plate surface 41 a of the porous body 41, and the side surface 41 b of the porous body 41.
  • a number of immersion outlets 44 are formed.
  • the bonding surface 10a of the first main body plate 10 is modified.
  • the surface of the cyclic polyolefin resin (COP) is activated by irradiating the bonding surface 10a with vacuum ultraviolet light (VUV).
  • VUV vacuum ultraviolet light
  • the first bonding surface 20a of the second main body plate 20 and the inner surface of the concave treatment tank 25 are irradiated with vacuum ultraviolet light (VUV) to activate the surfaces.
  • the processing body 40 obtained in the step of FIG. 9C is accommodated in the processing tank 25, and the bonding surface 10a of the first main body plate 10 and the first bonding surface 20a of the second main body plate 20 are combined. Face to face.
  • the four positioning pins are respectively inserted into the four positioning holes 11 and the four positioning holes 21 without gaps, and the first main body plate 10 and the second main body plate with reference to the positioning holes 11 and 21. 20 is positioned.
  • the body plates 10 and 20 are pressurized while applying heat of 90 to 110 ° C. for about 5 to 20 minutes, and the body plates 10 and 20 are joined.
  • the boundary surface is in a compatible state in the heating and pressurizing steps. It adheres firmly without using an adhesive and is firmly joined. Furthermore, since the joining surface 10a of the 1st main body plate 10 and the inner surface of the process tank 25 of the 2nd main body plate 20 are activated, it appears on one surface 40a of the process body 40 as shown in FIG.
  • the covering layer 42 is closely bonded to the bottom surface 25a of the treatment tank 25, and the covering layer 42 appearing on the other surface 40b is closely bonded to the bonding surface 10a.
  • the covering layer 42 is formed of the same cyclic polyolefin (COP) as the first main body plate 10 and the second main body plate 20, the covering layer 42 is the first main body plate 10 in the heating and pressurizing step. And the second body plate 20 are in close contact with each other, and the boundary portion thereof is in a compatible state and firmly fixed.
  • COP cyclic polyolefin
  • the first main body plate 10 is formed. And the second main body plate 20 are heated and pressurized, one surface 40a of the processing body 40 is securely bonded to the bottom surface 25a of the processing tank 25 and the other surface 40b is bonded to the bonding surface. 10a is securely adhered and joined. Further, when the two surfaces 40a and 40b of the liquid treatment body 40 are irradiated with vacuum ultraviolet light (VUV) to activate the resin molecules on the surface of the coating layer 42 and then housed in the treatment tank 25, the treatment is performed.
  • VUV vacuum ultraviolet light
  • the surfaces 40a and 40b of the body 40 can be fixed to the first main body plate 10 and the second main body plate 20 more firmly.
  • the second joining surface 20b of the second main body plate 20 and the joining surface 30a of the third main body plate 30 are irradiated with vacuum ultraviolet light (VUV), and the positioning pins inserted into the positioning holes 11 and 21,
  • VUV vacuum ultraviolet light
  • the positioning holes 31 are inserted without gaps, the second main body plate 20 and the third main body plate 30 are positioned, and the bonding surface 30a of the third main body plate 30 is second bonded to the second main body plate 20.
  • VUV vacuum ultraviolet light
  • first body plate 10, the second body plate 20, and the third body plate 30 may be joined first, or the three body plates 10, 20, 30 may be joined simultaneously. May be.
  • the inlet 12 of the second body plate 20 communicates with the inlet 22 of the second body plate 20 and the start end 32 a of the inflow passage 32 of the third body plate 30.
  • the inlet 13 of the first main body plate 10, the inlet 23 of the second main body plate 20, and the start end 33 a of the inflow passage 33 of the third main body plate 30 communicate with each other.
  • the terminal end 36a of the input passage 36 of the third main body plate 30 and the input passage 26 communicating with the processing tank 25 of the second main body plate 20 communicate with each other. Further, the output passage 14 of the first main body plate 10 communicates with the output passage 24 and the output space 25c of the second main body plate 20.
  • fluid such as liquid or gas is injected from the inlet 12 and the inlet 13 that open to the outer surface 10 b of the first main body plate 10. At this time, it is preferable to give an injection pressure to the fluid.
  • the fluid given to the inlet 12 shown in FIG. 6 passes through the inlet 22 of the second body plate 20 and is given to the inflow passage 32 of the third body plate 30.
  • the fluid given to the inflow port 13 passes through the inflow port 23 of the second main body plate 20 and is given to the inflow passage 33 of the third main body plate 30.
  • the fluid supplied to the inflow passage 32 and the fluid supplied to the inflow passage 33 are mixed in the mixing passage 35 shown in FIG.
  • the mixed fluid supplied to the input passage 36 passes from the input passage 36 shown in FIG. 7 through the input passage 26 formed in the second main body plate 20 to the processing body 40 accommodated in the processing tank 25. Given.
  • the coating layer 42 of the processing body 40 since the inlet 43 is opened at a position facing the input passage 26, the mixed fluid is supplied from the inlet 43 into the porous body 41.
  • the covering layer 42 on the downward surface 40a of the processing body 40 is in close contact with and joined to the bottom surface 25a of the processing tank 25, and the boundary portion is airtight and liquid-tight.
  • the coating layer 42 on the upward surface 40a of the treatment body 40 is closely bonded to the bonding surface 10a of the first main body plate 10, and the boundary portion is airtight and liquid-tight.
  • the mixed fluid given to the inlet 43 does not ooze out at the boundary between the surface 40a and the bottom surface 25a and the boundary between the surface 40b and the bonding surface 10a, and most of the fluid is porous. It passes through the inside of the body 41 and leaches out from an outlet 44 formed in the coating layer 42 into an output space 25 c that is an outer peripheral region of the treatment tank 25.
  • the mixed fluid is injected from the center of the downward plate surface 41a, moves through the pores inside the disk-shaped porous body 41 while diffusing in the radial direction, and moves around the circumference. It leaches out from the side surface 41b, which is a surface, into the immersion outlet 44. In the process, the mixed fluid is mixed evenly inside the porous body 41 and leached into the output space 25c.
  • the mixed fluid leached into the output space 25c is taken out via the output passage 24 shown in FIG. 7 and the output passage 14 formed in the first main body plate 10.
  • fluids separately supplied to the inlet 12 and the inlet 13 are mixed inside the processing body 40.
  • a catalyst or a catalyst is added to the pores of the porous body 41 of the processing body 40.
  • a chemical reaction may be caused in a single fluid or a mixed fluid supplied to the porous body 41 by holding the reactive substance or forming the porous body 41 with the reactive substance.
  • the first main body plate 10, the second main body plate 20, and the third main body plate 30 are joined without using an adhesive, and the covering layer 42 of the processing body 40, the first main body plate 10, and the second main body are combined. Since the plate 20 is also joined without using an adhesive, the fluid that is supplied to the inside of the microchannel device 1 and mixed and reacted is not affected by the adhesive.
  • the microchannel device 101 of the second embodiment shown in FIG. 10 has a main body part in which a first main body plate 110 and a second main body plate 120 are joined as shown in FIG.
  • Positioning holes 111 are opened at four locations on the first main body plate 110
  • positioning holes 121 are opened at four locations on the second main body plate 120.
  • the same positioning pins are inserted into the positioning holes 111 and 121 to position the two main body plates 110 and 120, and the bonding surface 110a of the first main body plate 110 and the bonding surface 120a of the second main body plate 120 face each other.
  • this bonding is performed without using an adhesive by activating the surface of the plate by irradiating the bonding surfaces 110a and 120a with vacuum infrared light (VUV).
  • VUV vacuum infrared light
  • the first main body plate 110 is formed with a hole serving as the inlet 112 and a hole serving as the inlet 13 penetrating therethrough.
  • Grooves are formed in the joining surface 110a of the first main body plate 110 and the joining surface 120a of the second main body plate 120, and the grooves of both the main body plates are combined to form an inflow passage 132.
  • the inlet 112 communicates with the inflow passage 132.
  • an inflow passage 133 formed at the joining boundary between the first main body plate 110 and the second main body plate 120 communicates with the inflow port 112.
  • a groove (concave portion) is formed in the joining surface 110 a of the first body plate 110 and the joining surface 120 a of the second body plate 120, and the joining portions of both body plates 110 and 120 are formed.
  • a mixing passage 135 communicating with the respective inflow passages 132 and 133 and an input passage 136 extending from the mixing passage 135 are formed.
  • a treatment tank 125 having a recess is formed at the joint between the main body plates 110 and 120, and the input passage 136 communicates with the treatment tank 125.
  • the processing tank 125 has a perfect circular cross section.
  • an output passage 114 is formed through the first main body plate 110, and the output passage 114 communicates with the processing tank 125.
  • the processing body 140 is held in the processing tank 125. As illustrated in FIG. 14, the processing body 140 includes a cylindrical body 143 and a coating layer 142 surrounding the cylindrical body 143.
  • the cylindrical body 143 is a cylindrical porous body 141 formed of the same porous silica as the porous body 41 of the first embodiment, and the porous body. 141, and a coating layer 145 made of polyimide or the like coated on the surface of the glass tube 144.
  • the treatment body 140 has a coating layer 142 formed on the outer peripheral surface of the coat layer 145.
  • the entire cylindrical body 143 is a porous body 141 formed of porous silica, and a coating layer 142 is formed directly around the porous body 141.
  • the treatment body 140 has an outer side of the end portion of the covering body 142 and one end portion of the porous body 141 serving as an inlet 146.
  • the other end of the porous body 141 is an immersion port 147.
  • the covering layer 142 is formed of a film of a synthetic resin material that can be bonded to the first main body plate 110 and the second main body plate 120 without using an adhesive.
  • the first main body plate 110 and the second main body plate 120 are formed of a cyclic polyolefin resin (COP), and the covering layer 142 is also formed of the same cyclic polyolefin resin (COP) film.
  • COP cyclic polyolefin resin
  • the treatment body 140 is formed by winding the cylindrical body 143 with a synthetic resin film and then heating and pressurizing it so that the outer peripheral surface can be close to the cylindrical surface. It is installed in the tank 125. Or you may install in the processing tank 125 as it is, without shape
  • FIG. 9 Similar to the embodiment shown in FIG. 9, the treatment body 140 is formed by winding the cylindrical body 143 with a synthetic resin film and then heating and pressurizing it so that the outer peripheral surface can be close to the cylindrical surface. It is installed in the tank 125. Or you may install in the processing tank 125 as it is, without shape
  • the vacuum ultraviolet light is applied to the bonding surface 110a of the first main body plate 110 and the bonding surface 120a of the second main body plate 120. Further, the treatment body 140 does not give or provides vacuum ultraviolet light to the surface of the coating layer 142, and as shown in FIG. 12, the treatment tank 125 between the first main body plate 110 and the second main body plate 120. Sandwiched between. And both plates 110 and 120 are heated and pressurized, and the joining surface 110a of the first body plate 110 and the joining surface 120a of the second body plate 120 are in close contact and joined without using an adhesive. The surface of the coating layer 142 of the processing body 140 is closely bonded to the inner surface of the processing bath 125 without using an adhesive.
  • the coating layer 142 is compressed, and the surface thereof and the inner surface of the treatment bath 125 can be more reliably adhered to each other.
  • surplus gaps 125 a and 125 a extending from the treatment tank 125 are formed in the first main body plate 110, and a part of the compressed coating layer 142 is part of the surplus gaps 125 a and 125 a.
  • the excess gaps 125a and 125a are formed continuously or discontinuously in the range of the length L in FIG.
  • the length L is set shorter than the length dimension of the coating layer 142 in the axial direction.
  • the input-side input space 125b and the output-side output space 125c in the portion of the processing tank 125 shown in FIG. 12 where the processing body 140 is not installed communicate with each other in a region other than the porous body 141. It becomes difficult to do. As a result, the fluid introduced from the input passage 136 can surely flow into the porous body 141.
  • the fluid supplied by applying pressure from the inlet 112 and the inlet 113 passes through the inflow passage 132 and the inflow passage 133 and is mixed in the mixing passage 135 to be input. It is given from the passage 136 to the input space 125 b of the processing tank 125.
  • the mixed fluid in the input space 125 b passes through the inside of the cylindrical porous body 141 from the inlet 146 to be mixed or reacted, and reaches the output space 125 c of the treatment tank 125 from the inlet 147, from the output passage 114. It is taken out.
  • the coating layers 42 and 142 of the treatment bodies 40 and 140 are formed of a synthetic resin film such as COP.
  • a synthetic resin film such as COP.
  • the coating layers 42 and 142 may be formed by applying and drying.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Dispersion Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Micromachines (AREA)

Abstract

[Problem] To provide a microchannel device and a manufacturing method for a microchannel device with a structure making the leaching-out of liquid or gas from a processed object less likely. [Solution] A first panel (10), a second panel (20) and a third panel (30) made of a cyclic polyolefin resin are joined without using an adhesive. A processing tank (25) is formed by the joined panels, and a processed object (40) is placed inside the processing tank (25). The processed object (40) has a porous body (41) and a coating layer (42) enveloping the body. The coating layer (42) is made of the same synthetic resin as the panels, and the coating layer (42) is joined in close contact to the inner surface of the processing tank (25) without using an adhesive. A fluid is injected into the porous body (41) via an input channel (26) and via an infiltration inlet (43) formed in the coating layer (42), is dispersed, mixed and reacted inside the porous body (41), and discharged via an immersion outlet (44).

Description

マイクロ流路装置およびその製造装置Micro-channel device and manufacturing apparatus thereof
 本発明は、本体部に入力通路と出力通路および処理槽が形成されて、処理槽に処理体が収納されたマイクロ流路装置に係り、特に処理体と本体部とを密着させることができるマイクロ流路装置およびその製造装置に関する。 The present invention relates to a micro-channel device in which an input passage, an output passage, and a processing tank are formed in a main body, and a processing body is accommodated in the processing tank, and in particular, a micro that can closely contact the processing body and the main body. The present invention relates to a flow path device and a manufacturing apparatus thereof.
 少量の流体を混合しまたは反応させあるいは分離する装置としてマイクロ流路装置が使用されている。 A micro-channel device is used as a device for mixing, reacting or separating a small amount of fluid.
 特許文献1に記載されたマイクロリアクタは、筐体の内部に触媒反応部が設けられている。触媒反応部は、触媒活性物質の粉末を成形した成形体で構成され、成形体に多数の連続細孔が形成されている。流入口から反応性物質が供給されると、この反応性物質が多数の連続細孔に分岐して流入し、触媒活性物質と反応させられる。または、前記触媒反応部が、触媒活性物質を保持した多孔質の基体で構成され、流入口から供給された反応性物質が基体の内部に導かれ、触媒活性物質と反応させられる。 The microreactor described in Patent Document 1 is provided with a catalytic reaction section inside a casing. The catalytic reaction part is composed of a molded body obtained by molding a powder of a catalytically active substance, and a large number of continuous pores are formed in the molded body. When the reactive substance is supplied from the inflow port, the reactive substance branches into a large number of continuous pores and is allowed to react with the catalytically active substance. Alternatively, the catalytic reaction part is composed of a porous substrate holding a catalytically active substance, and the reactive substance supplied from the inlet is introduced into the substrate and reacted with the catalytically active substance.
 特許文献2に記載された化学マイクロデバイスは、基板に複数の流路と反応部が形成され、前記反応部に0.001~0.3μmの孔径のメンブランフィルターが保持されている。この発明は、捕集溶液を反応部に送り、反応部で捕集溶液にNO2ガスを捕集させるというものである。 In the chemical microdevice described in Patent Document 2, a plurality of flow paths and reaction parts are formed on a substrate, and a membrane filter having a pore diameter of 0.001 to 0.3 μm is held in the reaction part. In this invention, the collection solution is sent to the reaction section, and the reaction section collects NO 2 gas in the collection solution.
特開2006-175361号公報JP 2006-175361 A 特開2004-97978号公報JP 2004-97978 A
 特許文献1に記載されたマイクロリアクタは、連続細孔を有する成形体と筐体との境界部、または多孔質の基体と筐体との境界部の気密性や液密性が考慮されておらず、気体や液体を混合したり反応させようとしたときに、前記境界部に気体や液体が浸出しやすくなり、流体に対する混合や反応の精度が低下する課題がある。 The microreactor described in Patent Document 1 does not consider the airtightness or liquid tightness of the boundary between the molded body having continuous pores and the casing, or the boundary between the porous substrate and the casing. When gas or liquid is mixed or reacted, gas or liquid tends to be leached out to the boundary portion, and there is a problem that accuracy of mixing or reaction with a fluid is lowered.
 特許文献2に記載された化学マイクロデバイスも、基板とメンブランフィルターとの境界部の気密性や液密性が考慮されておらず、この場合も、流体を混合したり反応させようとしたときに、前記境界部に流体が浸出しやすい。 The chemical microdevice described in Patent Document 2 also does not consider the air tightness and liquid tightness of the boundary between the substrate and the membrane filter, and in this case also, when trying to mix or react the fluid , Fluid easily leaches into the boundary portion.
 本発明は上記従来の課題を解決するものであり、多孔質体を用いて気体や液体を混合させまたは化学反応させる際に、流体が多孔質体と本体部との間に滲み出る現象を起こりにくくして、混合や反応を効果的に行えるようにしたマイクロ流路装置およびその製造装置を提供することを目的としている。 The present invention solves the above-described conventional problems, and when a gas or liquid is mixed or chemically reacted using a porous material, a phenomenon in which fluid oozes between the porous material and the main body portion occurs. It is an object of the present invention to provide a microchannel device and a manufacturing apparatus thereof that are difficult to perform mixing and reaction effectively.
 本発明は、処理槽と、前記処理槽に至る入力通路と、前記処理槽から延びる出力通路とが内部に形成された板状の本体部、および前記処理槽の内部に配置された処理体とが設けられたマイクロ流路装置において、
 前記処理体は、多孔質体と前記多孔質体を囲む合成樹脂製の被覆層とを有し、前記被覆層が前記処理槽の内面に密着しており、前記被覆層に、前記入力通路と前記多孔質体とを連通する浸入口と、前記多孔質体と前記出力通路とを連通する浸出口が形成されていることを特徴とするものである。
The present invention provides a processing tank, a plate-shaped main body in which an input passage leading to the processing tank, an output passage extending from the processing tank is formed, and a processing body disposed in the processing tank. In the microchannel device provided with
The treatment body has a porous body and a synthetic resin coating layer surrounding the porous body, the coating layer is in close contact with the inner surface of the treatment tank, and the input layer and the input passage An inlet that communicates with the porous body and an inlet that communicates the porous body and the output passage are formed.
 本発明のマイクロ流路装置の処理体は、多孔質体が合成樹脂層で囲まれて、この合成樹脂層が本体部の内面に密着している。そのため、多孔質体と本体部の内面との気密性や液密性を高めることができ、前記境界部に液や気体が浸出しにくくなって、流体を多孔質体の内部で処理できる確率を向上させることができる。 In the treatment body of the microchannel device of the present invention, the porous body is surrounded by the synthetic resin layer, and this synthetic resin layer is in close contact with the inner surface of the main body. Therefore, it is possible to improve the air tightness and liquid tightness between the porous body and the inner surface of the main body part, and it is difficult for liquid and gas to leach into the boundary part, and the probability that the fluid can be processed inside the porous body. Can be improved.
 本発明は、前記被覆層が、前記本体部と同じ合成樹脂材料で形成されていることが好ましい。この構成では被覆層と本体部とを密着させやすくなる。 In the present invention, the covering layer is preferably formed of the same synthetic resin material as that of the main body. In this configuration, the covering layer and the main body portion can be easily adhered.
 本発明は、前記多孔質体が、モノリス構造の焼結セラミックスの多孔質体であることが好ましい。結晶セラミックスの多孔質体は加工精度を高くするのに限界があるが、その周囲を合成樹脂製の被覆層で被覆することで、多孔質体と本体部との境界部を被覆層で密着させて、多孔質体の内部で流体の処理が可能になる。また、多孔質体の構造を活かした高精度の流体処理が可能になる。 In the present invention, the porous body is preferably a porous body of sintered ceramics having a monolith structure. A porous body of crystalline ceramics has a limit in increasing processing accuracy, but by covering the periphery with a synthetic resin coating layer, the boundary between the porous body and the main body is adhered to the coating layer. Thus, the fluid can be processed inside the porous body. In addition, highly accurate fluid processing utilizing the structure of the porous body becomes possible.
 本発明は、例えば、前記多孔質体が、多孔質シリカである。
 本発明は、前記多孔質体が板状であり、板表面に前記浸入口が形成され、板の側面に前記浸出口が形成されているものとして構成できる。または、前記多孔質体は長尺形状であり、その長さ方向に向く一方の端面に前記浸入口が形成され、他方の端面に前記浸出口が形成されているものとして構成できる。
In the present invention, for example, the porous body is porous silica.
The present invention can be configured such that the porous body is plate-shaped, the inlet is formed on the plate surface, and the inlet is formed on the side surface of the plate. Or the said porous body is elongate shape, The said inlet can be formed in the one end surface facing the length direction, and the said inlet can be comprised in the other end surface.
 本発明は、前記本体部は、複数の合成樹脂製のプレートで構成され、前記プレートに、前記処理槽ならびに前記入力通路と前記出力通路を構成する穴または凹部が形成されており、
 複数のプレートは、接合表面どうしが接着剤を用いることなく密着して接合されているとともに、前記被覆層とプレートとが接着剤を用いることなく密着して接合されているものである。
In the present invention, the main body is composed of a plurality of synthetic resin plates, and the plate is formed with holes or recesses that constitute the treatment tank and the input passage and the output passage.
In the plurality of plates, the bonding surfaces are closely bonded without using an adhesive, and the coating layer and the plate are closely bonded without using an adhesive.
 プレートどうしおよび被覆層とプレートとを接着剤を用いることなく密着して接合させることで、供給される流体が接着剤の影響を受けることを防止できる。 It is possible to prevent the supplied fluid from being affected by the adhesive by closely bonding the plates or the coating layer and the plate without using an adhesive.
 本発明のマイクロ流路装置の製造方法は、本体部を構成する複数の合成樹脂製の本体プレートに、処理槽と、前記処理槽に至る入力通路と、前記処理槽から延びる出力通路とを構成する穴または凹部を形成する工程と、
 本体プレートの接合表面に光エネルギーを与えて接合表面を改質する工程と、
 多孔質体が合成樹脂製の被覆層で覆われるとともに、前記多孔質体に通じる浸入口と浸出口とが形成された処理体を前記処理槽の内部に設置する工程と、
 本体プレートの改質された接合表面どうしを接触させ加熱し且つ加圧して、前記接合表面どうしを接着剤を用いることなく密着させて接合するとともに、前記被覆層の表面をそれぞれの本体パネルに接着剤を用いることなく密着させて接合し、
 前記入力通路を前記浸入口に連通させ、前記出力通路を前記浸出口に連通させることを特徴とするものである。
In the method for manufacturing a microchannel device of the present invention, a plurality of synthetic resin main body plates constituting a main body are configured with a processing tank, an input path leading to the processing tank, and an output path extending from the processing tank. Forming a hole or recess to be
A step of applying light energy to the bonding surface of the main body plate to modify the bonding surface;
A step in which a porous body is covered with a synthetic resin coating layer, and a treatment body in which an inlet and an outlet leading to the porous body are formed is installed inside the treatment tank;
The modified bonding surfaces of the main body plate are brought into contact with each other, heated and pressurized, and the bonding surfaces are bonded to each other without using an adhesive, and the surface of the covering layer is bonded to each main body panel. Adhering and bonding without using agents,
The input passage is communicated with the inlet, and the output passage is communicated with the immersion outlet.
 本発明のマイクロ流路装置の製造方法は、前記処理体を、加熱し且つ加圧して成形した後に、前記処理槽の内部に設置することが好ましい。 In the method for manufacturing a microchannel device of the present invention, it is preferable that the processing body is placed in the processing tank after being heated and pressed to be molded.
 さらに、本体プレートの改質された接合表面どうしを接触させ加熱し且つ加圧する工程で、前記処理体に圧縮力を与えて、前記被覆層の表面とそれぞれの本体パネルとを接着剤を用いることなく密着させて接合することが好ましい。 Further, in the step of bringing the modified bonding surfaces of the main body plate into contact with each other and heating and pressurizing, a compressive force is applied to the treatment body, and an adhesive is used between the surface of the covering layer and each main body panel. It is preferable that they are bonded closely together.
 本発明のマイクロ流路装置は、本体部の内部に配置された多孔質体と前記本体部の内面との間の気密性や液密性を高め、多孔質体によって流体を効率よく混合したり反応させることが可能になる。 The microchannel device of the present invention improves the airtightness and liquid tightness between the porous body arranged inside the main body and the inner surface of the main body, and allows the fluid to be mixed efficiently by the porous body. It becomes possible to react.
 本発明のマイクロ流路装置の製造方法は、本体プレートどうしの接合、および処理体の被覆層と本体プレートとの接合を、接着剤を用いることなく行うことが可能になる。 The manufacturing method of the micro-channel device of the present invention makes it possible to perform bonding between the main body plates and bonding between the coating layer of the treatment body and the main body plate without using an adhesive.
(A)は本発明の第1の実施の形態のマイクロ流路装置の平面図、(B)は右側面図、(A) is a plan view of the microchannel device of the first embodiment of the present invention, (B) is a right side view, (A)はマイクロ流路装置の第1の本体プレートを示す平面図、(B)は右側面図、(A) is a plan view showing a first body plate of the microchannel device, (B) is a right side view, (A)はマイクロ流路装置の第2の本体プレートを示す平面図、(B)は右側面図、(A) is a plan view showing a second body plate of the microchannel device, (B) is a right side view, (A)はマイクロ流路装置の第3の本体プレートを示す平面図、(B)は右側面図、(A) is a plan view showing a third body plate of the microchannel device, (B) is a right side view, 図4(A)の一部拡大平面図、4A is a partially enlarged plan view of FIG. マイクロ流路装置を、図1(A)のVI-VI線で切断した拡大断面図、FIG. 1A is an enlarged cross-sectional view taken along line VI-VI in FIG. マイクロ流路装置を、図1(A)のVII-VII線で切断した拡大断面図、FIG. 1A is an enlarged cross-sectional view taken along line VII-VII in FIG. マイクロ流路装置に用いられる処理体の製造方法を示す説明図、Explanatory drawing which shows the manufacturing method of the process body used for a microchannel apparatus, (A)(B)(C)は、マイクロ流路装置に用いられる処理体の製造方法を示す説明図、(A) (B) (C) is explanatory drawing which shows the manufacturing method of the process body used for a microchannel apparatus, 本発明の第2の実施の形態のマイクロ流路装置を示す平面図、The top view which shows the microchannel apparatus of the 2nd Embodiment of this invention, マイクロ流路装置を、図10のXI-XI線で切断した拡大断面図、FIG. 10 is an enlarged cross-sectional view of the microchannel device taken along line XI-XI in FIG. マイクロ流路装置を、図10のXII-XII線で切断した拡大断面図、FIG. 10 is an enlarged cross-sectional view of the microchannel device taken along line XII-XII in FIG. マイクロ流路装置を、図10のXIII-XIII線で切断した拡大断面図、FIG. 10 is an enlarged cross-sectional view of the microchannel device taken along line XIII-XIII in FIG. 第2の実施の形態のマイクロ流路装置に用いられる処理体の斜視図、The perspective view of the process body used for the microchannel apparatus of 2nd Embodiment, (A)(B)は、図14に示す処理体を実施の形態別に示す断面図、(A) (B) is sectional drawing which shows the process body shown in FIG. 14 according to embodiment,
 図1(B)に示すように、本発明の第1の実施の形態のマイクロ流路装置1は、第1の本体プレート10と第2の本体プレート20および第3の本体プレート30がその板厚方向に重ねられて本体部が構成されている。 As shown in FIG. 1B, the microchannel device 1 according to the first embodiment of the present invention includes a first main body plate 10, a second main body plate 20, and a third main body plate 30. The main body is configured by being stacked in the thickness direction.
 第1の本体プレート10と第2の本体プレート20および第3の本体プレートは、いずれも同じ合成樹脂材料で形成されている。好ましい合成樹脂材料は、薬品に対する耐性を有し且つ蛍光性の低い環状ポリオレフィン樹脂(COP)である。ただし、使用する流体の物性などに応じて前記合成樹脂を自由に選択することが可能である。 The first main body plate 10, the second main body plate 20, and the third main body plate are all formed of the same synthetic resin material. A preferred synthetic resin material is a cyclic polyolefin resin (COP) which has chemical resistance and low fluorescence. However, the synthetic resin can be freely selected according to the physical properties of the fluid used.
 第1の本体プレート10と第2の本体プレート20および第3の本体プレート30は、同じ厚み寸法tを有している。厚み寸法tは0.3~3.0mm程度であり、この実施の形態では厚み寸法tが1.0mmである。第1の本体プレート10と第2の本体プレート20および第3の本体プレート30は共に平面形状が四角形である。 The first main body plate 10, the second main body plate 20, and the third main body plate 30 have the same thickness dimension t. The thickness dimension t is about 0.3 to 3.0 mm. In this embodiment, the thickness dimension t is 1.0 mm. The first main body plate 10, the second main body plate 20, and the third main body plate 30 have a quadrangular planar shape.
 図2(A)に示すように、第1の本体プレート10は、平面形状が四角形であり、図2(B)に示すように、接合表面10aと外表面10bとを有している。第1の本体プレート10の四角形の平面の4つの角部に位置決め穴11が板厚方向に貫通して形成されている。第1の本体プレート10の図示上方の2箇所に、流入口12,13となる穴が板厚方向に貫通して形成されており、図示下方の1箇所に出力通路14となる穴が板厚方向に貫通して形成されている。 As shown in FIG. 2A, the first main body plate 10 has a quadrangular planar shape, and has a joining surface 10a and an outer surface 10b as shown in FIG. 2B. Positioning holes 11 are formed in four corners of a rectangular plane of the first main body plate 10 so as to penetrate in the thickness direction. Holes serving as inflow ports 12 and 13 are formed in two positions on the upper side of the first main body plate 10 so as to penetrate in the thickness direction, and holes serving as output passages 14 are located at one position on the lower side in the figure. It is formed to penetrate in the direction.
 図3(A)に示すように、第2の本体プレート20は、平面形状が四角形であり、図3(B)に示すように、第1の接合表面20aと第2の接合表面20bを有している。第2の本体プレート20の四角形の平面の4つの角部に位置決め穴21が貫通して形成されている。第1の本体プレート10に形成された位置決め穴11と第2の本体プレート20に形成された位置決め穴21は互いに同じ開口径で且つ同じ配列ピッチで形成されている。 As shown in FIG. 3A, the second main body plate 20 has a quadrangular planar shape, and has a first joining surface 20a and a second joining surface 20b as shown in FIG. 3B. is doing. Positioning holes 21 are formed through four corners of a rectangular plane of the second main body plate 20. The positioning holes 11 formed in the first main body plate 10 and the positioning holes 21 formed in the second main body plate 20 have the same opening diameter and the same arrangement pitch.
 図3(A)に示すように、第2の本体プレート20には、2つの流入口22,23となる穴が板厚方向に貫通して形成されている。第1の本体プレート10の流入口12,13と第2の本体プレート20の流入口22,23は、互いに同じ開口径で且つ同じ配列ピッチで形成されている。 As shown in FIG. 3A, the second main body plate 20 is formed with two holes 22 and 23 penetrating in the plate thickness direction. The inlets 12 and 13 of the first main body plate 10 and the inlets 22 and 23 of the second main body plate 20 are formed with the same opening diameter and the same arrangement pitch.
 図3(A)と図7に示されているように、第2の本体プレート20には、第1の接合表面20aに開口して第2の接合表面20bに向けて凹状に形成された処理槽25が形成されている。処理槽25は第1の接合表面20aに開口している開口形状が真円形である。図3(A)および図7に示すように、処理槽25は円形の底面25aと、前記底面25aの周縁から立ち上がって第1の接合表面20aに向けて開口面積を徐々に広くするテーパ側面25bが形成されている。 As shown in FIGS. 3A and 7, the second body plate 20 is formed in a concave shape toward the second bonding surface 20 b by opening to the first bonding surface 20 a. A tank 25 is formed. In the treatment tank 25, the opening shape opened to the first bonding surface 20a is a perfect circle. As shown in FIGS. 3A and 7, the treatment tank 25 has a circular bottom surface 25a and a tapered side surface 25b that rises from the periphery of the bottom surface 25a and gradually increases the opening area toward the first bonding surface 20a. Is formed.
 処理槽25の第1の接合表面20aからの深さ寸法Dは、第2の本体プレート20の板厚寸法tの30~80%の範囲である。この実施の形態では、深さ寸法Dが板厚寸法tの70%であり、0.7mmである。 The depth dimension D from the first joining surface 20 a of the treatment tank 25 is in the range of 30 to 80% of the plate thickness dimension t of the second main body plate 20. In this embodiment, the depth dimension D is 70% of the plate thickness dimension t, which is 0.7 mm.
 図1と図7に示すように、処理槽25には、テーパ側面25bの1箇所から半径方向へ延長された出力通路24が凹状に形成されている。出力通路24の第1の接合表面20aからの深さ寸法dは、0.05~0.3mm程度であり、この実施の形態の深さ寸法dは0.1mmである。出力通路24は、第1の本体プレート10に形成された出力通路14と連通できる位置に形成されている。 As shown in FIGS. 1 and 7, the treatment tank 25 is formed with a concave output passage 24 extending in a radial direction from one portion of the tapered side surface 25b. The depth dimension d from the first joining surface 20a of the output passage 24 is about 0.05 to 0.3 mm, and the depth dimension d in this embodiment is 0.1 mm. The output passage 24 is formed at a position where it can communicate with the output passage 14 formed in the first main body plate 10.
 処理槽25の底面25aの真円径の中心に入力通路26が形成されている。図7に示すように、入力通路26は、処理槽25の底面25aから第2の接合表面20bまでを貫通する穴である。 An input passage 26 is formed at the center of the true circle diameter of the bottom surface 25a of the treatment tank 25. As shown in FIG. 7, the input passage 26 is a hole penetrating from the bottom surface 25a of the treatment tank 25 to the second bonding surface 20b.
 図4(A)に示すように、第3の本体プレート30は、平面形状が四角形であり、図4(B)に示すように、接合表面30aと外表面30bを有している。第3の本体プレート30の四角形の平面の4つの角部に位置決め穴31が貫通して形成されている。第1の本体プレート10に形成された位置決め穴11ならびに第2の本体プレート20に形成された位置決め穴21と、第3の本体プレート30に形成された位置決め穴31は、互いに同じ開口径で且つ同じ配列ピッチで形成されている。 As shown in FIG. 4A, the third main body plate 30 has a quadrangular planar shape, and has a joining surface 30a and an outer surface 30b as shown in FIG. 4B. Positioning holes 31 are formed through four corners of a rectangular plane of the third main body plate 30. The positioning hole 11 formed in the first main body plate 10 and the positioning hole 21 formed in the second main body plate 20 and the positioning hole 31 formed in the third main body plate 30 have the same opening diameter and They are formed with the same arrangement pitch.
 図4(A)に示すように、第3の本体プレート30の接合表面30aには、斜めに延びる2つの凹部で形成された流入通路32,33が設けられている。一方の流入通路32の始端32aは、第2の本体プレート20に形成された流入口22の真下に位置し、他方の流入通路33の始端33aは、第2の本体プレート20に形成された流入口23の真下に位置している。 As shown in FIG. 4A, the joining surface 30a of the third main body plate 30 is provided with inflow passages 32 and 33 formed by two concave portions extending obliquely. The start end 32 a of one inflow passage 32 is located directly below the inlet 22 formed in the second main body plate 20, and the start end 33 a of the other inflow passage 33 is formed in the second main body plate 20. It is located directly under the entrance 23.
 第3の本体プレート30の接合表面30aには、直線的に延びる凹部で形成された入力通路36が形成されている。入力通路36の終端36aは、第2の本体プレート20の処理槽25に通じる前記入力通路26の真下に対向している。 The input surface 36 formed by a linearly extending recess is formed on the joint surface 30a of the third main body plate 30. A terminal end 36 a of the input passage 36 faces directly below the input passage 26 communicating with the processing tank 25 of the second main body plate 20.
 流入通路32,33と入力通路36の接合表面30aからの深さ寸法d(図6、図7参照)は、前記出力通路24の深さ寸法dとおなじである。 The depth dimension d (see FIGS. 6 and 7) of the inflow passages 32 and 33 and the input passage 36 from the joining surface 30a is the same as the depth dimension d of the output passage 24.
 図4(A)に示すように、流入通路32の終端32bと流入通路33の終端33bおよび入力通路36の始端36bは、混合通路35を介して連通されている。図5に拡大して示されているように、混合通路35は、流入通路32の終端32bと連続する細路35aと、流入通路33の終端33bと連続する細路35bと、入力通路36の始端36bと連続する細路35cが、連結部35cにおいて連結されて構成されている。 4A, the end 32b of the inflow passage 32, the end 33b of the inflow passage 33, and the start end 36b of the input passage 36 are communicated with each other through the mixing passage 35. As shown in an enlarged view in FIG. 5, the mixing passage 35 includes a narrow passage 35 a continuous with the end 32 b of the inflow passage 32, a narrow passage 35 b continuous with the end 33 b of the inflow passage 33, and the input passage 36. A narrow passage 35c continuous with the start end 36b is connected at the connecting portion 35c.
 図7に示すように、第2の本体プレート20に形成された処理槽25に、処理体40が収納されている。処理体40は、円板形状の多孔質体41とその周囲を覆う被覆層42とから構成されている。被覆層42には、図7において下に向けられている多孔質体41の板面41aの中心に対向する浸入口43と、多孔質体41の側面41bに対向する複数の浸出口44が開口している。 As shown in FIG. 7, the processing body 40 is accommodated in the processing tank 25 formed in the second main body plate 20. The processing body 40 includes a disk-shaped porous body 41 and a coating layer 42 that covers the periphery thereof. In the covering layer 42, there are opened an inlet 43 facing the center of the plate surface 41 a of the porous body 41 facing downward in FIG. 7 and a plurality of inlets 44 facing the side surface 41 b of the porous body 41. is doing.
 図7に示すように、処理槽25に処理体40が収納されると、浸入口43が、処理槽25の底面25aに形成された入力通路26に対向する。第2の本体プレート40に形成された処理層25の周囲全周に、処理体40の側面とテーパ部26bの形状によって出力空間25cが形成される。処理体40に開口している複数の浸出口44は前記出力空間25cに対向する。 As shown in FIG. 7, when the processing body 40 is stored in the processing tank 25, the inlet 43 faces the input passage 26 formed in the bottom surface 25 a of the processing tank 25. An output space 25c is formed on the entire periphery of the processing layer 25 formed on the second main body plate 40 by the shape of the side surface of the processing body 40 and the tapered portion 26b. A plurality of the outlets 44 opened to the processing body 40 are opposed to the output space 25c.
 次に、前記マイクロ流路装置1の製造方法を説明する。
 環状ポリオレフィン樹脂(COP)で形成された板厚tが1.0mmの板材が使用されて、図2に示す第1の本体プレート10と図3に示す第2の本体プレート20および図4に示す第3の本体プレート30が加工される。本体プレート10,20,30の流入口と流出口および入力通路と出力通路ならびに処理槽を構成する凹部や穴は、射出成型やプレス加工で形成されてもよいし、レーザなどで物理的に加工されてもよい。
Next, a method for manufacturing the microchannel device 1 will be described.
A plate material having a plate thickness t of 1.0 mm formed of cyclic polyolefin resin (COP) is used, and the first main body plate 10 shown in FIG. 2, the second main body plate 20 shown in FIG. 3, and FIG. The third body plate 30 is processed. The inlets and outlets of the main body plates 10, 20, 30, the input passages and the output passages, and the recesses and holes constituting the processing tank may be formed by injection molding or pressing, or physically processed by a laser or the like. May be.
 図8と図9は、処理体40の製造方法を示している。
 多孔質体41は、液体の混合や化学反応の促進、または流体中の成分の分離を行うためのものであり、要求される処理や使用する流体の種類によってセラミック、高分子など種々のものから選択することができる。特に、モノリス構造の焼結セラミックスの多孔質体は、低い流路損失で高性能の分離、混合ができるために好ましい。特に、全体が一体のシリカゲルで形成されたシリカモノリスが好適であり、例えば、株式会社京都モノテック製のものを用いることができる。図8に示すように、多孔質シリカである多孔質体41は、直径が12mm、厚さ寸法が0.5mm程度のものが使用される。
8 and 9 show a method for manufacturing the processing body 40.
The porous body 41 is used for mixing liquids, promoting chemical reactions, or separating components in fluids. The porous body 41 can be made of various materials such as ceramics and polymers depending on the required processing and the type of fluid used. You can choose. In particular, a porous body of sintered ceramics having a monolith structure is preferable because high-performance separation and mixing can be performed with low flow path loss. In particular, a silica monolith formed entirely of integral silica gel is suitable. For example, a product manufactured by Kyoto Monotech Co., Ltd. can be used. As shown in FIG. 8, a porous body 41 made of porous silica having a diameter of about 12 mm and a thickness of about 0.5 mm is used.
 図8に示すように、多孔質体41を覆う被覆層42は、2枚の合成樹脂フィルム42a,42bによって構成されている。合成樹脂フィルム42a,42bは、第1の本体プレート10と第2の本体プレート20に対し加熱且つ加圧処理で接着剤を用いることなく密着して接合できる合成樹脂材料で形成されており、好ましくは、合成樹脂フィルム42a,42bは、第1の本体プレート10ならびに第2の本体プレート20の材質と同じ環状ポリオレフィン樹脂(COP)で形成される。合成樹脂フィルム42a,42bは、厚さが10~200μmのものが複数枚積層されて使用される。 As shown in FIG. 8, the coating layer 42 covering the porous body 41 is composed of two synthetic resin films 42a and 42b. The synthetic resin films 42a and 42b are formed of a synthetic resin material that can be bonded to the first main body plate 10 and the second main body plate 20 without using an adhesive by heating and pressure treatment, and preferably The synthetic resin films 42 a and 42 b are formed of the same cyclic polyolefin resin (COP) as the material of the first main body plate 10 and the second main body plate 20. A plurality of synthetic resin films 42a and 42b having a thickness of 10 to 200 μm are laminated and used.
 図8に示すように、一方の合成樹脂フィルム42aは円形であり、その中心部に浸入口43が開孔している。他方の合成樹脂フィルム42bも円形であり、円弧形状に沿って複数の浸出口44が開孔している。 As shown in FIG. 8, one synthetic resin film 42a is circular, and an inlet 43 is opened at the center thereof. The other synthetic resin film 42b is also circular, and a plurality of inlets 44 are opened along an arc shape.
 図9(A)に示すように、多孔質体41は外形の精度を高くするのに限界がある。特に、モノリス構造の焼結セラミックなどの空隙が大きい焼結体では、焼結形状に制約があるため、寸法精度を高めることが困難である。また、焼結体は脆い材料であるため、寸法精度を高めるのが難しい。そのため、円柱状の焼結体を切断してから研磨して円板形状に形成した場合に、多孔質体41の厚みの精度、板面41a,41cのそれぞれの平面度、ならびに板面41aと板面41bとの平行度の精度をあまり高くできない。 As shown in FIG. 9A, the porous body 41 has a limit in increasing the accuracy of the outer shape. In particular, in a sintered body having a large gap such as a sintered ceramic having a monolith structure, it is difficult to increase the dimensional accuracy because the sintered shape is limited. Further, since the sintered body is a brittle material, it is difficult to improve the dimensional accuracy. Therefore, when the cylindrical sintered body is cut and then polished into a disk shape, the thickness accuracy of the porous body 41, the flatness of each of the plate surfaces 41a and 41c, and the plate surface 41a The accuracy of the parallelism with the plate surface 41b cannot be so high.
 そこで、図9(B)に示すように、多孔質体41を2枚の合成樹脂フィルム42a,42bの間に挟み込み、図9(C)に示すように、上下から平板またはプレス型で加圧し且つ加熱して、合成樹脂フィルム42a,42bを上下にやや圧縮させて、合成樹脂フィルム42a,42bの表面を平滑にするとともに、処理体40の2つの表面40a,40bが互いに平行となるように成形する。 Therefore, as shown in FIG. 9 (B), the porous body 41 is sandwiched between the two synthetic resin films 42a and 42b, and is pressed from above and below with a flat plate or a press die as shown in FIG. 9 (C). Further, by heating, the synthetic resin films 42a and 42b are slightly compressed up and down to smooth the surfaces of the synthetic resin films 42a and 42b, and the two surfaces 40a and 40b of the treatment body 40 are parallel to each other. Mold.
 合成樹脂フィルム42a,42bは、多孔質体41の側面41bの外周で加熱され加圧されて接合させられるので、図9(C)に示すように、処理体40の側部に、合成樹脂フィルムが接合されて側面41bから突出した突出部42cが形成される。この突出部42cは切断線Lcにおいて切断されて除去される。 Since the synthetic resin films 42a and 42b are heated and pressurized on the outer periphery of the side surface 41b of the porous body 41 and bonded to each other, as shown in FIG. Are joined to form a protruding portion 42c protruding from the side surface 41b. The protrusion 42c is cut and removed along the cutting line Lc.
 その結果、多孔質体41の周囲が合成樹脂フィルム42a,42bによる被覆層42で囲まれた円板形状の処理体40が完成する。処理体40は、上下の表面40a,40bが互いに平行であり、被覆層42に、多孔質体41の板面41aの中心部に対向する浸入口43と、多孔質体41の側面41bに対向する多数の浸出口44が形成されている。 As a result, the disc-shaped processing body 40 in which the periphery of the porous body 41 is surrounded by the coating layer 42 of the synthetic resin films 42a and 42b is completed. The processing body 40 has upper and lower surfaces 40 a and 40 b parallel to each other, facing the coating layer 42, the inlet 43 facing the center of the plate surface 41 a of the porous body 41, and the side surface 41 b of the porous body 41. A number of immersion outlets 44 are formed.
 次に、第1の本体プレート10の接合表面10aを改質処理する。この改質出処理では、前記接合表面10aに真空紫外光(VUV)を照射し、環状ポリオレフィン樹脂(COP)の表面の分子を活性化させる。同様に、第2の本体プレート20の第1の接合表面20aおよび凹状の処理槽25の内面に、真空紫外光(VUV)を照射し、その表面を活性化させる。 Next, the bonding surface 10a of the first main body plate 10 is modified. In this modified out treatment, the surface of the cyclic polyolefin resin (COP) is activated by irradiating the bonding surface 10a with vacuum ultraviolet light (VUV). Similarly, the first bonding surface 20a of the second main body plate 20 and the inner surface of the concave treatment tank 25 are irradiated with vacuum ultraviolet light (VUV) to activate the surfaces.
 図9(C)の工程で得られた処理体40を処理槽25の内部に収納し、第1の本体プレート10の接合表面10aと第2の本体プレート20の第1の接合表面20aとを対面させる。このとき、4本の位置決めピンがそれぞれ4箇所の位置決め穴11と4箇所の位置決め穴21に隙間なく挿入されて、位置決め穴11,21を基準として第1の本体プレート10と第2の本体プレート20とが位置決めされる。本体プレート10,20は、90~110℃の熱を5~20分程度与えながら加圧され、両本体プレート10,20が接合される。 The processing body 40 obtained in the step of FIG. 9C is accommodated in the processing tank 25, and the bonding surface 10a of the first main body plate 10 and the first bonding surface 20a of the second main body plate 20 are combined. Face to face. At this time, the four positioning pins are respectively inserted into the four positioning holes 11 and the four positioning holes 21 without gaps, and the first main body plate 10 and the second main body plate with reference to the positioning holes 11 and 21. 20 is positioned. The body plates 10 and 20 are pressurized while applying heat of 90 to 110 ° C. for about 5 to 20 minutes, and the body plates 10 and 20 are joined.
 第1の本体プレート10の接合表面10aと第2の本体プレート20の第1の接合表面20aは、表面が活性化されているので、前記加熱および加圧工程で境界面が相溶状態となり、接着剤を用いることなく密着して強固に接合される。さらに、第1の本体プレート10の接合表面10aと第2の本体プレート20の処理槽25の内面が活性化されているため、図7に示すように、処理体40の一方の表面40aに現れている被覆層42が処理槽25の底面25aに密着して接合され、他方の表面40bに現れている被覆層42が接合表面10aに密着して接合される。 Since the surfaces of the bonding surface 10a of the first main body plate 10 and the first bonding surface 20a of the second main body plate 20 are activated, the boundary surface is in a compatible state in the heating and pressurizing steps. It adheres firmly without using an adhesive and is firmly joined. Furthermore, since the joining surface 10a of the 1st main body plate 10 and the inner surface of the process tank 25 of the 2nd main body plate 20 are activated, it appears on one surface 40a of the process body 40 as shown in FIG. The covering layer 42 is closely bonded to the bottom surface 25a of the treatment tank 25, and the covering layer 42 appearing on the other surface 40b is closely bonded to the bonding surface 10a.
 被覆層42が、第1の本体プレート10および第2の本体プレート20と同じ環状ポリオレフィン(COP)で形成されていると、前記加熱・加圧工程で、被覆層42が第1の本体プレート10と第2の本体プレート20と密着し、その境界部が相溶状態となって、強固に固着される。 When the covering layer 42 is formed of the same cyclic polyolefin (COP) as the first main body plate 10 and the second main body plate 20, the covering layer 42 is the first main body plate 10 in the heating and pressurizing step. And the second body plate 20 are in close contact with each other, and the boundary portion thereof is in a compatible state and firmly fixed.
 図9(C)に示した処理体40の表面40aと表面40bとの厚さ寸法を、処理槽25の深さ寸法Dよりもやや大きめに形成しておくことで、第1の本体プレート10と第2の本体プレート20とが加熱されて加圧されるときに、処理体40の一方の表面40aが処理槽25の底面25aに確実に密着して接合され、他方の表面40bが接合表面10aに確実に密着して接合されるようになる。さらに、液処理体40の2つの表面40a,40bに真空紫外光(VUV)を照射し被覆層42の表面の樹脂の分子を活性化させてから、処理槽25の内部に収納させると、処理体40の表面40a,40bを、第1の本体プレート10と第2の本体プレート20にさらに強固に密着させて固定できるようになる。 By forming the thickness dimension of the surface 40a and the surface 40b of the treatment body 40 shown in FIG. 9C slightly larger than the depth dimension D of the treatment tank 25, the first main body plate 10 is formed. And the second main body plate 20 are heated and pressurized, one surface 40a of the processing body 40 is securely bonded to the bottom surface 25a of the processing tank 25 and the other surface 40b is bonded to the bonding surface. 10a is securely adhered and joined. Further, when the two surfaces 40a and 40b of the liquid treatment body 40 are irradiated with vacuum ultraviolet light (VUV) to activate the resin molecules on the surface of the coating layer 42 and then housed in the treatment tank 25, the treatment is performed. The surfaces 40a and 40b of the body 40 can be fixed to the first main body plate 10 and the second main body plate 20 more firmly.
 さらに、第2の本体プレート20の第2の接合表面20bと第3の本体プレート30の接合表面30aに真空紫外光(VUV)を照射し、位置決め穴11,21に挿入された位置決めピンに、位置決め穴31を隙間なく挿入させて、第2の本体プレート20と第3の本体プレート30とを位置決めし、第3の本体プレート30の接合表面30aを第2の本体プレート20の第2の接合表面30aに加圧し加熱することで、第3の本体プレート30と第2の本体プレート20を、接着剤を用いることなく密着させて接合することができる。 Further, the second joining surface 20b of the second main body plate 20 and the joining surface 30a of the third main body plate 30 are irradiated with vacuum ultraviolet light (VUV), and the positioning pins inserted into the positioning holes 11 and 21, The positioning holes 31 are inserted without gaps, the second main body plate 20 and the third main body plate 30 are positioned, and the bonding surface 30a of the third main body plate 30 is second bonded to the second main body plate 20. By pressurizing and heating the surface 30a, the third main body plate 30 and the second main body plate 20 can be brought into close contact with each other without using an adhesive.
 なお、第1の本体プレート10と第2の本体プレート20および第3の本体プレート30のどのプレートどうしを先に接合してもよいし、3枚の本体プレート10,20,30を同時に接合してもよい。 Any one of the first body plate 10, the second body plate 20, and the third body plate 30 may be joined first, or the three body plates 10, 20, 30 may be joined simultaneously. May be.
 本体部となる第1の本体プレート10と第2の本体プレート20および第3の本体プレート30とが接合されると、図1(A)と図6に示すように、第1の本体プレート10の流入口12と第2の本体プレート20の流入口22および第3の本体プレート30の流入通路32の始端32aとが連通する。同様に、第1の本体プレート10の流入口13と第2の本体プレート20の流入口23および第3の本体プレート30の流入通路33の始端33aとが連通する。 When the first main body plate 10 serving as the main body portion, the second main body plate 20 and the third main body plate 30 are joined, as shown in FIG. 1A and FIG. The inlet 12 of the second body plate 20 communicates with the inlet 22 of the second body plate 20 and the start end 32 a of the inflow passage 32 of the third body plate 30. Similarly, the inlet 13 of the first main body plate 10, the inlet 23 of the second main body plate 20, and the start end 33 a of the inflow passage 33 of the third main body plate 30 communicate with each other.
 図7に示すように、第3の本体プレート30の入力通路36の終端36aと、第2の本体プレート20の処理槽25に通じる入力通路26とが連通する。また、第1の本体プレート10の出力通路14と、第2の本体プレート20の出力通路24ならびに出力空間25cとが連通する。 As shown in FIG. 7, the terminal end 36a of the input passage 36 of the third main body plate 30 and the input passage 26 communicating with the processing tank 25 of the second main body plate 20 communicate with each other. Further, the output passage 14 of the first main body plate 10 communicates with the output passage 24 and the output space 25c of the second main body plate 20.
 上記のようにして製造されたマイクロ流路装置1は、第1の本体プレート10の外表面10bに開口する流入口12と流入口13から液体や気体などの流体が注入される。このとき流体に注入圧力を与えておくことが好ましい。 In the microchannel device 1 manufactured as described above, fluid such as liquid or gas is injected from the inlet 12 and the inlet 13 that open to the outer surface 10 b of the first main body plate 10. At this time, it is preferable to give an injection pressure to the fluid.
 図6に示す流入口12に与えられた流体は、第2の本体プレート20の流入口22を通過し、第3の本体プレート30の流入通路32に与えられる。同様に、流入口13に与えられた流体は、第2の本体プレート20の流入口23を通過して、第3の本体プレート30の流入通路33に与えられる。流入通路32に供給された流体と、流入通路33に供給された流体は、図5に示す混合通路35で混合されて混合流体となって入力通路36に与えられる。 The fluid given to the inlet 12 shown in FIG. 6 passes through the inlet 22 of the second body plate 20 and is given to the inflow passage 32 of the third body plate 30. Similarly, the fluid given to the inflow port 13 passes through the inflow port 23 of the second main body plate 20 and is given to the inflow passage 33 of the third main body plate 30. The fluid supplied to the inflow passage 32 and the fluid supplied to the inflow passage 33 are mixed in the mixing passage 35 shown in FIG.
 入力通路36に与えられた混合流体は、図7に示す入力通路36から、第2の本体プレート20に形成された入力通路26を通過して、処理槽25に収納されている処理体40に与えられる。 The mixed fluid supplied to the input passage 36 passes from the input passage 36 shown in FIG. 7 through the input passage 26 formed in the second main body plate 20 to the processing body 40 accommodated in the processing tank 25. Given.
 処理体40の被覆層42には、入力通路26と対向する位置に浸入口43が開口しているため、混合流体は、浸入口43から多孔質体41の内部に供給される。処理体40の下向きの表面40aの被覆層42は、処理槽25の底面25aに密着して接合され、境界部が気密状態で且つ液密状態である。同様に処理体40の上向きの表面40aの被覆層42は、第1の本体プレート10の接合表面10aに密着して接合され、境界部が気密状態で且つ液密状態である。よって、浸入口43に与えられた混合流体は、前記表面40aと前記底面25aとの境界部および前記表面40bと前記接合表面10aとの境界部に滲み出ることなく、ほとんどの流体が、多孔質体41の内部を通過し、被覆層42に形成された浸出口44から、処理槽25の外周領域である出力空間25cに浸出する。 In the coating layer 42 of the processing body 40, since the inlet 43 is opened at a position facing the input passage 26, the mixed fluid is supplied from the inlet 43 into the porous body 41. The covering layer 42 on the downward surface 40a of the processing body 40 is in close contact with and joined to the bottom surface 25a of the processing tank 25, and the boundary portion is airtight and liquid-tight. Similarly, the coating layer 42 on the upward surface 40a of the treatment body 40 is closely bonded to the bonding surface 10a of the first main body plate 10, and the boundary portion is airtight and liquid-tight. Therefore, the mixed fluid given to the inlet 43 does not ooze out at the boundary between the surface 40a and the bottom surface 25a and the boundary between the surface 40b and the bonding surface 10a, and most of the fluid is porous. It passes through the inside of the body 41 and leaches out from an outlet 44 formed in the coating layer 42 into an output space 25 c that is an outer peripheral region of the treatment tank 25.
 多孔質体41では、下向きの板面41aの中心部から混合流体が注入され、円板状の多孔質体41の内部の細孔を通過して放射方向へ拡散しながら移動して、円周面である側面41bから浸出口44に浸出する。その過程において、混合流体は多孔質体41の内部でさらに均等に混合され、出力空間25cに浸出する。 In the porous body 41, the mixed fluid is injected from the center of the downward plate surface 41a, moves through the pores inside the disk-shaped porous body 41 while diffusing in the radial direction, and moves around the circumference. It leaches out from the side surface 41b, which is a surface, into the immersion outlet 44. In the process, the mixed fluid is mixed evenly inside the porous body 41 and leached into the output space 25c.
 出力空間25cに浸出した混合流体は、図7に示す出力通路24と、第1の本体プレート10に形成された出力通路14を経て取り出される。 The mixed fluid leached into the output space 25c is taken out via the output passage 24 shown in FIG. 7 and the output passage 14 formed in the first main body plate 10.
 なお、前記実施の形態では、流入口12と流入口13に別々に供給された流体が処理体40の内部で混合されるが、例えば、処理体40の多孔質体41の細孔に触媒や反応物質を保持させ、または多孔質体41を反応性物質で形成しておくことで、多孔質体41に供給される単一の流体または混合流体に化学反応を生じさせてもよい。 In the above-described embodiment, fluids separately supplied to the inlet 12 and the inlet 13 are mixed inside the processing body 40. For example, a catalyst or a catalyst is added to the pores of the porous body 41 of the processing body 40. A chemical reaction may be caused in a single fluid or a mixed fluid supplied to the porous body 41 by holding the reactive substance or forming the porous body 41 with the reactive substance.
 第1の本体プレート10と第2の本体プレート20および第3の本体プレート30は、接着剤を用いることなく接合され、処理体40の被覆層42と第1の本体プレート10ならびに第2の本体プレート20も接着剤を用いることなく接合されているため、マイクロ流路装置1の内部に供給されて混合され、反応させられる流体が接着剤の影響を受けることがない。 The first main body plate 10, the second main body plate 20, and the third main body plate 30 are joined without using an adhesive, and the covering layer 42 of the processing body 40, the first main body plate 10, and the second main body are combined. Since the plate 20 is also joined without using an adhesive, the fluid that is supplied to the inside of the microchannel device 1 and mixed and reacted is not affected by the adhesive.
 図10に示す第2の実施の形態のマイクロ流路装置101は、図11に示すように第1の本体プレート110と第2の本体プレート120とが接合された本体部が形成されている。第1の本体プレート110の4箇所に位置決め穴111が開口し、第2の本体プレート120の4箇所に位置決め穴121が開口している。位置決め穴111,121に同じ位置決めピンが挿入されて2つの本体プレート110,120が位置決めされ、第1の本体プレート110の接合表面110aと、第2の本体プレート120の接合表面120aが対面して接合される。この接合は、第1の実施の形態と同様に、接合表面110a,120aに真空赤外光(VUV)を照射してプレート表面を活性化させて、接着剤を用いないで接合する。 The microchannel device 101 of the second embodiment shown in FIG. 10 has a main body part in which a first main body plate 110 and a second main body plate 120 are joined as shown in FIG. Positioning holes 111 are opened at four locations on the first main body plate 110, and positioning holes 121 are opened at four locations on the second main body plate 120. The same positioning pins are inserted into the positioning holes 111 and 121 to position the two main body plates 110 and 120, and the bonding surface 110a of the first main body plate 110 and the bonding surface 120a of the second main body plate 120 face each other. Be joined. As in the first embodiment, this bonding is performed without using an adhesive by activating the surface of the plate by irradiating the bonding surfaces 110a and 120a with vacuum infrared light (VUV).
 図10と図11に示すように、第1の本体プレート110に流入口112となる穴と流入口13となる穴が貫通して形成されている。第1の本体プレート110の接合表面110aと第2の本体プレート120の接合表面120aに溝(凹部)が形成され、両本体プレートの溝が合わされて流入通路132が形成されている。前記流入口112は流入通路132に連通している。同様に、第1の本体プレート110と第2の本体プレート120との接合境界に形成された流入通路133が前記流入口112に連通している。 10 and 11, the first main body plate 110 is formed with a hole serving as the inlet 112 and a hole serving as the inlet 13 penetrating therethrough. Grooves (concave portions) are formed in the joining surface 110a of the first main body plate 110 and the joining surface 120a of the second main body plate 120, and the grooves of both the main body plates are combined to form an inflow passage 132. The inlet 112 communicates with the inflow passage 132. Similarly, an inflow passage 133 formed at the joining boundary between the first main body plate 110 and the second main body plate 120 communicates with the inflow port 112.
 図10と図12に示すように、第1の本体プレート110の接合表面110aと第2の本体プレート120の接合表面120aに溝(凹部)が形成され、両本体プレート110,120の接合部に、それぞれの流入通路132,133に通じる混合通路135、ならびに混合通路135から延びる入力通路136が形成されている。さらに、両本体プレート110,120の接合部に凹部が合わされた処理槽125が形成されており、入力通路136が処理槽125に連通している。図13に示すように、処理槽125は断面が真円形状である。 As shown in FIGS. 10 and 12, a groove (concave portion) is formed in the joining surface 110 a of the first body plate 110 and the joining surface 120 a of the second body plate 120, and the joining portions of both body plates 110 and 120 are formed. A mixing passage 135 communicating with the respective inflow passages 132 and 133 and an input passage 136 extending from the mixing passage 135 are formed. Further, a treatment tank 125 having a recess is formed at the joint between the main body plates 110 and 120, and the input passage 136 communicates with the treatment tank 125. As shown in FIG. 13, the processing tank 125 has a perfect circular cross section.
 図12に示すように、第1の本体プレート110に出力通路114が貫通して形成されており、出力通路114が前記処理槽125に連通している。 As shown in FIG. 12, an output passage 114 is formed through the first main body plate 110, and the output passage 114 communicates with the processing tank 125.
 処理槽125に処理体140が保持されている。図14に示すように、処理体140は円柱体143と、円柱体143の周囲を囲む被覆層142とを有している。 The processing body 140 is held in the processing tank 125. As illustrated in FIG. 14, the processing body 140 includes a cylindrical body 143 and a coating layer 142 surrounding the cylindrical body 143.
 図15(A)に示す実施の形態では、円柱体143が、第1の実施の形態の多孔質体41と同じ多孔性シリカで形成された円柱状の多孔質体141と、前記多孔質体141を保持するガラス管144と、ガラス管144の表面にコーティングされたポリイミドなどのコート層145を有している。処理体140はコート層145の外周面に被覆層142が形成されている。 In the embodiment shown in FIG. 15A, the cylindrical body 143 is a cylindrical porous body 141 formed of the same porous silica as the porous body 41 of the first embodiment, and the porous body. 141, and a coating layer 145 made of polyimide or the like coated on the surface of the glass tube 144. The treatment body 140 has a coating layer 142 formed on the outer peripheral surface of the coat layer 145.
 図15(B)に示す実施の形態では、円柱体143の全体が多孔性シリカで形成された多孔質体141であり、多孔質体141の周囲に直接に被覆層142が形成されている。 In the embodiment shown in FIG. 15B, the entire cylindrical body 143 is a porous body 141 formed of porous silica, and a coating layer 142 is formed directly around the porous body 141.
 図12と図14に示すように、処理体140は、被覆体142の端部の外側で且つ多孔質体141の一方の端部が浸入口146となり、被覆体142の端部の外側で且つ多孔質体141の他方の端部が浸出口147である。 As shown in FIG. 12 and FIG. 14, the treatment body 140 has an outer side of the end portion of the covering body 142 and one end portion of the porous body 141 serving as an inlet 146. The other end of the porous body 141 is an immersion port 147.
 被覆層142は、第1の本体プレート110と第2の本体プレート120に、接着剤を用いることなく接合可能な合成樹脂材料のフィルムで形成されている。例えば、第1の本体プレート110と第2の本体プレート120が、環状ポリオレフィン樹脂(COP)で形成され、被覆層142も同じ環状ポリオレフィン樹脂(COP)のフィルムで形成されている。 The covering layer 142 is formed of a film of a synthetic resin material that can be bonded to the first main body plate 110 and the second main body plate 120 without using an adhesive. For example, the first main body plate 110 and the second main body plate 120 are formed of a cyclic polyolefin resin (COP), and the covering layer 142 is also formed of the same cyclic polyolefin resin (COP) film.
 図9に示した実施の形態と同様に、処理体140は、円柱体143を合成樹脂フィルムで巻いた後に、加熱し加圧して外周面が円筒面に近時できるように成形してから処理槽125に設置される。または、処理体140を成形することなく、そのまま処理槽125に設置してもよい。 Similar to the embodiment shown in FIG. 9, the treatment body 140 is formed by winding the cylindrical body 143 with a synthetic resin film and then heating and pressurizing it so that the outer peripheral surface can be close to the cylindrical surface. It is installed in the tank 125. Or you may install in the processing tank 125 as it is, without shape | molding the process body 140. FIG.
 第1の本体プレート110の接合表面110aと第2の本体プレート120の接合表面120aに真空紫外光を与える。また、処理体140は、被覆層142の表面に真空紫外光を与えまたは与えることなく、図12に示すように、第1の本体プレート110と第2の本体プレート120との間の処理槽125に挟み込む。そして両プレート110,120が加熱されて加圧され、第1の本体プレート110の接合表面110aと第2の本体プレート120の接合表面120aとが接着剤を用いることなく密着して接合されるとともに、処理体140の被覆層142の表面が、処理槽125の内面に接着剤を用いることなく密着して接合される。 The vacuum ultraviolet light is applied to the bonding surface 110a of the first main body plate 110 and the bonding surface 120a of the second main body plate 120. Further, the treatment body 140 does not give or provides vacuum ultraviolet light to the surface of the coating layer 142, and as shown in FIG. 12, the treatment tank 125 between the first main body plate 110 and the second main body plate 120. Sandwiched between. And both plates 110 and 120 are heated and pressurized, and the joining surface 110a of the first body plate 110 and the joining surface 120a of the second body plate 120 are in close contact and joined without using an adhesive. The surface of the coating layer 142 of the processing body 140 is closely bonded to the inner surface of the processing bath 125 without using an adhesive.
 被覆層142の外周面の直径を、処理槽125の内径寸法よりも大きめに形成しておくことで、第1の本体プレート110と第2の本体プレート120とが加熱されて加圧されるときに、被覆層142が圧縮され、その表面と処理槽125の内面とがさらに確実に密着できるようになる。 When the first main body plate 110 and the second main body plate 120 are heated and pressurized by forming the diameter of the outer peripheral surface of the coating layer 142 larger than the inner diameter of the treatment tank 125. In addition, the coating layer 142 is compressed, and the surface thereof and the inner surface of the treatment bath 125 can be more reliably adhered to each other.
 また、図13に示すように、第1の本体プレート110に、処理槽125から延長する余剰隙間125a,125aを形成しておき、圧縮された被覆層142の一部がこの余剰隙間125a,125aの内部に逃げるようにしておくことで、さらに被覆層142と処理槽125の内面とが密着しやすくなる。なお、前記余剰隙間125a,125aは、図12において長さLの範囲に連続的にまたは不連続に形成される。長さLは被覆層142の軸方向の長さ寸法よりも短く設定されている。 Further, as shown in FIG. 13, surplus gaps 125 a and 125 a extending from the treatment tank 125 are formed in the first main body plate 110, and a part of the compressed coating layer 142 is part of the surplus gaps 125 a and 125 a. By making it escape inside, the coating layer 142 and the inner surface of the treatment tank 125 are more likely to be in close contact with each other. The excess gaps 125a and 125a are formed continuously or discontinuously in the range of the length L in FIG. The length L is set shorter than the length dimension of the coating layer 142 in the axial direction.
 これにより、図12に示す処理槽125のうちの処理体140が設置されていない部分のうちの入力側の入力空間125bと出力側の出力空間125cとが、多孔質体141以外の領域で連通しにくくなる。これにより、入力通路136から導入された流体を多孔質体141の内部に確実に流入させることができるようになる。 Thereby, the input-side input space 125b and the output-side output space 125c in the portion of the processing tank 125 shown in FIG. 12 where the processing body 140 is not installed communicate with each other in a region other than the porous body 141. It becomes difficult to do. As a result, the fluid introduced from the input passage 136 can surely flow into the porous body 141.
 第2の実施の形態のマイクロ流路装置は、流入口112と流入口113から圧力を与えて供給された流体が、流入通路132と流入通路133を通過して混合通路135で混合され、入力通路136から処理槽125の入力空間125bに与えられる。入力空間125bの混合流体は浸入口146から円柱状の多孔質体141の内部を通過して混合されあるいは反応させられて、浸出口147から処理槽125の出力空間125cに至り、出力通路114から取り出される。 In the microchannel device of the second embodiment, the fluid supplied by applying pressure from the inlet 112 and the inlet 113 passes through the inflow passage 132 and the inflow passage 133 and is mixed in the mixing passage 135 to be input. It is given from the passage 136 to the input space 125 b of the processing tank 125. The mixed fluid in the input space 125 b passes through the inside of the cylindrical porous body 141 from the inlet 146 to be mixed or reacted, and reaches the output space 125 c of the treatment tank 125 from the inlet 147, from the output passage 114. It is taken out.
 前記各実施の形態では、処理体40,140の被覆層42,142がCOPなどの合成樹脂フィルムで形成されているが、例えば、多孔質体41,141の周囲に、溶媒で溶解したCOP樹脂を塗布し、乾燥させることで、被覆層42,142が形成されてもよい。 In each of the above embodiments, the coating layers 42 and 142 of the treatment bodies 40 and 140 are formed of a synthetic resin film such as COP. For example, a COP resin dissolved in a solvent around the porous bodies 41 and 141. The coating layers 42 and 142 may be formed by applying and drying.
1 マイクロ流路装置
10 第1の本体プレート
10a 接合表面
12,13 流入口
14 出力通路
20 第2の本体プレート
20a 第1の接合表面
20b 第2の接合表面
22,23 流入口
24 出力通路
25 処理槽
26 入力通路
30 第3の本体プレート
30a 接合表面
32,33 流入通路
35 混合通路
36 入力通路
40 処理体
41 多孔質体
41a 板面
41b 側面
42 被覆層
42a,42b 合成樹脂フィルム
43 浸入口
44 浸出口
110 第1の本体プレート
110a 接合表面
112,113 流入口
113 流出口
114 出力通路
120 第2の本体プレート
120a 接合表面
125 処理槽
132,133 流入通路
135 混合流路
136 入力通路
140 処理体
141 多孔質体
142 被覆層
DESCRIPTION OF SYMBOLS 1 Microchannel apparatus 10 1st main body plate 10a Joining surface 12,13 Inlet 14 Output channel | path 20 2nd main body plate 20a 1st joining surface 20b 2nd joining surface 22,23 Inlet 24 Output channel 25 Processing Tank 26 Input passage 30 Third body plate 30a Joining surfaces 32, 33 Inflow passage 35 Mixing passage 36 Input passage 40 Processing body 41 Porous body 41a Plate surface 41b Side surface 42 Coating layer 42a, 42b Synthetic resin film 43 Inlet 44 Immersion Outlet 110 First body plate 110a Joining surface 112, 113 Inlet 113 Outlet 114 Output passage 120 Second body plate 120a Joining surface 125 Treatment tank 132, 133 Inflow passage 135 Mixing passage 136 Input passage 140 Treatment body 141 Porous Material 142 Coating Layer

Claims (10)

  1.  処理槽と、前記処理槽に至る入力通路と、前記処理槽から延びる出力通路とが内部に形成された板状の本体部、および前記処理槽の内部に配置された処理体とが設けられたマイクロ流路装置において、
     前記処理体は、多孔質体と前記多孔質体を囲む合成樹脂製の被覆層とを有し、前記被覆層が前記処理槽の内面に密着しており、前記被覆層に、前記入力通路と前記多孔質体とを連通する浸入口と、前記多孔質体と前記出力通路とを連通する浸出口が形成されていることを特徴とするマイクロ流路装置。
    A treatment tank, a plate-like main body portion in which an input passage leading to the treatment tank, an output passage extending from the treatment tank is formed, and a treatment body disposed in the treatment tank are provided. In the microchannel device,
    The treatment body has a porous body and a synthetic resin coating layer surrounding the porous body, the coating layer is in close contact with the inner surface of the treatment tank, and the input layer and the input passage A micro-channel device, wherein an inlet that communicates with the porous body and an inlet that communicates the porous body and the output passage are formed.
  2.  前記被覆層が、前記本体部と同じ合成樹脂材料で形成されている請求項1記載のマイクロ流路装置。 The microchannel device according to claim 1, wherein the coating layer is formed of the same synthetic resin material as that of the main body.
  3.  前記多孔質体が、モノリス構造の焼結セラミックスの多孔質体である請求項1または2記載のマイクロ流路装置。 3. The microchannel apparatus according to claim 1, wherein the porous body is a porous body of sintered ceramics having a monolith structure.
  4.  前記多孔質体が、多孔質シリカである請求項3記載のマイクロ流路装置。 4. The microchannel device according to claim 3, wherein the porous body is porous silica.
  5.  前記多孔質体が板状であり、板表面に前記浸入口が形成され、板の側面に前記浸出口が形成されている請求項1ないし4のいずれかに記載のマイクロ流路装置。 The microchannel device according to any one of claims 1 to 4, wherein the porous body has a plate shape, the inlet is formed on a plate surface, and the inlet is formed on a side surface of the plate.
  6.  前記多孔質体は長尺形状であり、その長さ方向に向く一方の端面に前記浸入口が形成され、他方の端面に前記浸出口が形成されている請求項1ないし4のいずれかに記載のマイクロ流路装置。 5. The porous body according to claim 1, wherein the porous body has an elongated shape, the inlet is formed on one end surface facing the length direction, and the inlet is formed on the other end surface. Microchannel device.
  7.  前記本体部は、複数の合成樹脂製のプレートで構成され、前記プレートに、前記処理槽ならびに前記入力通路と前記出力通路を構成する穴または凹部が形成されており、
     複数のプレートは、接合表面どうしが接着剤を用いることなく密着して接合されているとともに、前記被覆層とプレートとが接着剤を用いることなく密着して接合されている請求項1ないし5のいずれかに記載のマイクロ流路装置。
    The main body is composed of a plurality of synthetic resin plates, and the plate is formed with holes or recesses that constitute the processing tank and the input passage and the output passage.
    The plurality of plates are bonded in close contact with each other without using an adhesive, and the cover layer and the plate are bonded in close contact without using an adhesive. The microchannel device according to any one of the above.
  8.  本体部を構成する複数の合成樹脂製の本体プレートに、処理槽と、前記処理槽に至る入力通路と、前記処理槽から延びる出力通路とを構成する穴または凹部を形成する工程と、
     本体プレートの接合表面に光エネルギーを与えて接合表面を改質する工程と、
     多孔質体が合成樹脂製の被覆層で覆われるとともに、前記多孔質体に通じる浸入口と浸出口とが形成された処理体を前記処理槽の内部に設置する工程と、
     本体プレートの改質された接合表面どうしを接触させ加熱し且つ加圧して、前記接合表面どうしを接着剤を用いることなく密着させて接合するとともに、前記被覆層の表面をそれぞれの本体パネルに接着剤を用いることなく密着させて接合し、
     前記入力通路を前記浸入口に連通させ、前記出力通路を前記浸出口に連通させることを特徴とするマイクロ流路装置の製造方法。
    Forming a hole or a recess constituting a treatment tank, an input passage leading to the treatment tank, and an output passage extending from the treatment tank in a plurality of synthetic resin body plates constituting the main body;
    A step of applying light energy to the bonding surface of the main body plate to modify the bonding surface;
    A step in which a porous body is covered with a synthetic resin coating layer, and a treatment body in which an inlet and an outlet leading to the porous body are formed is installed inside the treatment tank;
    The modified bonding surfaces of the main body plate are brought into contact with each other, heated and pressurized, and the bonding surfaces are bonded to each other without using an adhesive, and the surface of the covering layer is bonded to each main body panel. Adhering and bonding without using agents,
    A method of manufacturing a microchannel device, wherein the input passage is communicated with the immersion inlet and the output passage is communicated with the immersion outlet.
  9.  前記処理体を、加熱し且つ加圧して成形した後に、前記処理槽の内部に設置する請求項8記載のマイクロ流路装置の製造方法。 The method for manufacturing a microchannel device according to claim 8, wherein the processing body is placed in the processing tank after being heated and pressed to be molded.
  10.  本体プレートの改質された接合表面どうしを接触させ加熱し且つ加圧する工程で、前記処理体に圧縮力を与えて、前記被覆層の表面とそれぞれの本体パネルとを接着剤を用いることなく密着させて接合する請求項8または9記載のマイクロ流路装置の製造方法。 In the process of contacting and heating and pressurizing the modified bonding surfaces of the main body plate, a compressive force is applied to the treatment body, and the surface of the coating layer and each main body panel are brought into close contact without using an adhesive. The method for manufacturing a microchannel device according to claim 8 or 9, wherein the microchannel device is joined.
PCT/JP2013/052148 2012-02-17 2013-01-31 Microchannel device and manufacturing device therefor WO2013121889A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2014500162A JP5819513B2 (en) 2012-02-17 2013-01-31 Micro-channel device and manufacturing apparatus thereof
CN201380009414.4A CN104114272B (en) 2012-02-17 2013-01-31 Miniature flow circuit device and manufacturing installation thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-033305 2012-02-17
JP2012033305 2012-02-17

Publications (1)

Publication Number Publication Date
WO2013121889A1 true WO2013121889A1 (en) 2013-08-22

Family

ID=48984004

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/052148 WO2013121889A1 (en) 2012-02-17 2013-01-31 Microchannel device and manufacturing device therefor

Country Status (3)

Country Link
JP (1) JP5819513B2 (en)
CN (1) CN104114272B (en)
WO (1) WO2013121889A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016199542A1 (en) * 2015-06-10 2016-12-15 アルプス電気株式会社 Flow passage unit
JP2017003562A (en) * 2015-06-10 2017-01-05 アルプス電気株式会社 Channel unit
WO2018155086A1 (en) 2017-02-22 2018-08-30 アルプス電気株式会社 Flow channel chip and method for manufacturing flow channel chip
WO2019013087A1 (en) * 2017-07-12 2019-01-17 アルプス電気株式会社 Flow path chip

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004097978A (en) * 2002-09-11 2004-04-02 Takashi Inaga Chemical microdevice
JP2004188258A (en) * 2002-12-09 2004-07-08 Nok Corp Microreactor
JP2006175361A (en) * 2004-12-22 2006-07-06 Matsushita Electric Works Ltd Micro reactor
WO2008001737A1 (en) * 2006-06-26 2008-01-03 Nippon Telegraph And Telephone Corporation Flow cell and process for manufacturing the same
JP2009142784A (en) * 2007-12-17 2009-07-02 Fuji Xerox Co Ltd Flow passage structure and method for manufacturing the same
JP2011506957A (en) * 2007-12-14 2011-03-03 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Microfluidic device, method of manufacturing microfluidic device, and sensor including microfluidic device

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6984485B2 (en) * 2002-04-23 2006-01-10 Beckman Coulter, Inc. Polymer-coated substrates for immobilization of biomolecules and cells
US9150494B2 (en) * 2004-11-12 2015-10-06 Velocys, Inc. Process using microchannel technology for conducting alkylation or acylation reaction

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004097978A (en) * 2002-09-11 2004-04-02 Takashi Inaga Chemical microdevice
JP2004188258A (en) * 2002-12-09 2004-07-08 Nok Corp Microreactor
JP2006175361A (en) * 2004-12-22 2006-07-06 Matsushita Electric Works Ltd Micro reactor
WO2008001737A1 (en) * 2006-06-26 2008-01-03 Nippon Telegraph And Telephone Corporation Flow cell and process for manufacturing the same
JP2011506957A (en) * 2007-12-14 2011-03-03 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Microfluidic device, method of manufacturing microfluidic device, and sensor including microfluidic device
JP2009142784A (en) * 2007-12-17 2009-07-02 Fuji Xerox Co Ltd Flow passage structure and method for manufacturing the same

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016199542A1 (en) * 2015-06-10 2016-12-15 アルプス電気株式会社 Flow passage unit
JP2017003562A (en) * 2015-06-10 2017-01-05 アルプス電気株式会社 Channel unit
EP3309545A4 (en) * 2015-06-10 2019-03-06 Alps Electric Co., Ltd. Flow passage unit
WO2018155086A1 (en) 2017-02-22 2018-08-30 アルプス電気株式会社 Flow channel chip and method for manufacturing flow channel chip
WO2019013087A1 (en) * 2017-07-12 2019-01-17 アルプス電気株式会社 Flow path chip
JP2019020155A (en) * 2017-07-12 2019-02-07 アルプス電気株式会社 Flow channel chip

Also Published As

Publication number Publication date
CN104114272A (en) 2014-10-22
JP5819513B2 (en) 2015-11-24
JPWO2013121889A1 (en) 2015-05-11
CN104114272B (en) 2015-09-23

Similar Documents

Publication Publication Date Title
EP1708806B1 (en) Porous membrane microstructure device
JP5819513B2 (en) Micro-channel device and manufacturing apparatus thereof
JP4656149B2 (en) Flow cell and manufacturing method thereof
US6536477B1 (en) Fluidic couplers and modular microfluidic systems
US6935772B2 (en) Fluidic mixer in microfluidic system
US20020187557A1 (en) Systems and methods for introducing samples into microfluidic devices
KR100763907B1 (en) A method of fabricating a microfluidic device and a microfluidic device fabricated by the same
US20030159742A1 (en) Microfluidic multi-splitter
US10384153B2 (en) Filter unit for a cartridge
US7901527B2 (en) Microchip manufacturing method
US20170144150A1 (en) Method for manufacturing and/or packaging a chip
KR20080090410A (en) Fine line bonding and/or sealing system and method
CN102422164A (en) Microchip
JP4500544B2 (en) Microfluidic device and its manufacture
KR101151221B1 (en) The method of manufacturing a structure with micro-channels and the structure using the same
KR101053772B1 (en) Forming module for manufacturing microfluidic chip mold, method for manufacturing microfluidic chip mold using the same and microfluidic chip mold manufactured by the same
JP5251983B2 (en) Microchip manufacturing method
WO2013136970A1 (en) Flow path chip
WO2010016371A1 (en) Microchip, microchip manufacturing method and microchip manufacturing device
WO2009101850A1 (en) Method for manufacturing microchip and microchip
CN211754501U (en) Laminated passive micro mixer
WO2010138077A1 (en) A microfluidic device
CN110732275A (en) laminated passive micromixer and its making method
Sáez Castaño et al. Low‑cost origami fabrication of 3D self‑aligned hybrid microfluidic structures
TW201940202A (en) Whole blood filtering devices and methods for manufacturing the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13749311

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014500162

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13749311

Country of ref document: EP

Kind code of ref document: A1