WO2013121774A1 - Optical scanning element and image display device - Google Patents

Optical scanning element and image display device Download PDF

Info

Publication number
WO2013121774A1
WO2013121774A1 PCT/JP2013/000751 JP2013000751W WO2013121774A1 WO 2013121774 A1 WO2013121774 A1 WO 2013121774A1 JP 2013000751 W JP2013000751 W JP 2013000751W WO 2013121774 A1 WO2013121774 A1 WO 2013121774A1
Authority
WO
WIPO (PCT)
Prior art keywords
scanning element
magnet
movable
optical scanning
movable plate
Prior art date
Application number
PCT/JP2013/000751
Other languages
French (fr)
Japanese (ja)
Inventor
本田 雄士
石橋 修
賢司 田上
Original Assignee
日本電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社 filed Critical 日本電気株式会社
Publication of WO2013121774A1 publication Critical patent/WO2013121774A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • G02B26/10Scanning systems
    • G02B26/101Scanning systems with both horizontal and vertical deflecting means, e.g. raster or XY scanners
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • G02B26/0816Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light by means of one or more reflecting elements
    • G02B26/0833Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light by means of one or more reflecting elements the reflecting element being a micromechanical device, e.g. a MEMS mirror, DMD
    • G02B26/085Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light by means of one or more reflecting elements the reflecting element being a micromechanical device, e.g. a MEMS mirror, DMD the reflecting means being moved or deformed by electromagnetic means

Definitions

  • the present invention relates to an optical scanning element and an image display device that drive a movable part having a reflection surface for light and scan the reflected light by changing an angle between incident light and the reflection surface.
  • Optical scanning devices that scan light are widely used in digital copying machines, laser printers, barcode readers, scanners, projectors, and the like.
  • a polygon mirror using a motor, a galvano mirror, and the like have been widely used.
  • MEMS Micro-Electro-Mechanical Systems
  • the optical scanning mirror formed by the MEMS technology has a simple structure and can be integrally formed by a semiconductor process as compared with an optical scanning device that rotates a polygon mirror using a motor. Therefore, there are advantages such as easy miniaturization and cost reduction and easy increase in speed due to the miniaturization.
  • optical scanning mirrors based on MEMS technology are generally resonant mirrors in which the drive frequency and the resonant frequency of the structure are matched in order to increase the deflection angle.
  • the resonance frequency f r of the mirror, the moment of inertia of the torsion spring coefficient k and the mirror of the beam portion and a I m, is given by the following equation 1. Further, when the driving force applied to the mirror is T, the deflection angle ⁇ of the mirror is given by Equation 2.
  • Q is the quality factor of the system.
  • a typical Q value is about 100 in air and about 1000 in vacuum.
  • T / k r (3) Since the quality factor Q cannot be used, the deflection angle becomes small unless the driving force can be increased greatly. In order to secure a certain deflection angle ⁇ , it is necessary to increase the driving force. However, if the torsion spring constant kr is decreased, ⁇ increases in Equation 3, but the resonance frequency is also reduced by Equation 1, and the frequency is cut off in the non-resonant mode (usually 60 Hz). Since it approaches, the resonance mode is on the drive waveform. In order to avoid this, for example, when the cutoff frequency is about 300 Hz, the torsional resonance frequency needs to be set to about 1 kHz or more. Therefore, not be unduly small torsion spring constant k r.
  • an optical scanning element capable of obtaining a two-dimensional image can be provided.
  • the above combination method causes problems such as an increase in the total volume and an increase in the size of the vertical scanning element as the distance between the horizontal scanning element and the vertical scanning element increases. Therefore, it is desired to realize an optical scanning element (hereinafter sometimes referred to as a biaxial scanning element) that can realize the horizontal scanning element and the vertical scanning element on the same structure.
  • a biaxial scanning element optical scanning element
  • Patent Document 1 and Patent Document 2 are examples in which piezoelectric driving is adopted for both horizontal and vertical driving.
  • the piezoelectric element can be reduced in size and has a large driving force per unit volume.
  • the driveable range is small (about 0.1% of the element size). Therefore, this is a method that is often adopted as a resonance driving method. Therefore, it is promising as a driving method for a horizontal scanning element that requires high-speed driving.
  • non-resonant driving such as linear driving is necessary for the vertical scanning element, and since the driving range is small as described above, it is difficult to realize it within the normally required size.
  • Patent Document 3 is a system using magnetic drive for both horizontal and vertical drive. This is a system in which a magnet is arranged in a movable part, and a magnetic field is induced by energizing an air-core coil installed outside of the movable part to drive the magnet and the movable part connected thereto. The interference with can be reduced.
  • the driving coil is an air-core coil, there is a limit to the driving force, and it is difficult to meet a certain requirement such as a scanning angle and high-speed driving.
  • Patent Document 3 assumes that the low-speed moving angle is expanded by lowering the synthesis of the material of the low-speed movable part with respect to the material of the high-speed movable part. However, if the synthesis on the low speed side is lowered, the resonance frequency such as torsional resonance is also lowered, so that there is a possibility that resonance noise or the like that appears when linear driving is performed becomes a problem.
  • Patent Document 4 employs a magnetic drive system (movable magnet type in which a magnet is attached to a movable plate) for a horizontal scanning element that is driven at high speed.
  • a magnetic drive system movable magnet type in which a magnet is attached to a movable plate
  • an air-core coil is disposed in the vicinity of an optical scanning element having a small magnet, and the optical scanning element is driven to resonate by using a magnetic force generated when a current is passed through the coil.
  • Patent Document 4 electrostatic driving is used for a vertical scanning element that is driven at low speed, and the shape of the comb is applied to the end of the movable part, and linear driving is performed by applying voltage.
  • Patent Document 5 is a system that uses piezoelectric driving for the horizontal scanning element and electromagnetic driving for the vertical scanning element. Unlike the above-mentioned movable magnet method, this electromagnetic drive method installs a coil in the movable part and generates a static magnetic field by a permanent magnet outside thereof. Since the Lorentz force generated differs depending on the direction and value of the current flowing through the coil, the movable part is driven using this. By using a piezoelectric drive for a horizontal scanning element that requires high-speed driving, the element can be downsized and interference with other members can be reduced.
  • the movable magnet type optical scanning element described in Patent Document 5 has a configuration in which the movable portion includes a heavy magnet, the center of gravity shifts from the center of rotation, so that a vibration mode other than torsional resonance is induced, and scanning characteristics are obtained. There was a problem of deteriorating the material.
  • An object of the present invention is to solve the above-mentioned problems, and the center of gravity of the composite system including the first movable plate, the second movable portion, and the magnet is the rotation axis of the first movable portion. It is to provide an optical scanning element that realizes optical scanning stability by being disposed on the cross-sectional central axis of the first beam portion.
  • An optical scanning element includes a first frame supported by a coil that is magnetized by applying a current, a pair of first beam portions provided inside the first frame, A first movable portion having a first movable plate rotatably connected to the first frame plate by a beam portion; and a magnet provided in a part of the first movable plate; A second frame coupled to the movable plate, a pair of second beam portions provided on the inner side of the second frame, and the second beam portion so that the second frame can be rotated.
  • a second movable part having a second movable plate coupled to and including a light reflecting surface on at least one surface, the first movable plate, the second movable part, and the magnet from The center of gravity of the composite system is set on the central axis of the cross section of the first beam portion.
  • an optical scanning element having a large optical scanning angle, a small size, and excellent optical scanning stability.
  • Embodiment 1 of this invention It is a graph for demonstrating the relationship between the magnet size and scanning angle in Embodiment 1 of this invention. It is a schematic diagram of the whole structure of the image drawing apparatus in Embodiment 1 of this invention. It is a schematic diagram of the biaxial scanning element in Embodiment 2 of this invention. It is a schematic diagram of the biaxial scanning element in Embodiment 3 of this invention. It is a schematic diagram for demonstrating the drive method of the 1st movable part in Embodiment 3 of this invention. It is a schematic diagram for demonstrating the drive method of the 1st movable part in Embodiment 3 of this invention. It is a schematic diagram of the biaxial scanning element in Embodiment 4 of this invention.
  • Embodiment 5 of this invention It is a schematic diagram of the uniaxial scanning element in Embodiment 5 of this invention. It is a graph for demonstrating the movable part drive signal (linear drive) in Embodiment 5 of this invention. It is a graph for demonstrating the movable part drive signal (linear drive) in Embodiment 5 of this invention. It is a graph for demonstrating the movable part drive signal (resonance drive) in Embodiment 5 of this invention. It is a graph for demonstrating the movable part drive signal (resonance drive) in Embodiment 5 of this invention.
  • FIG. 1 is a view of the biaxial scanning element 1 as viewed from the front (light reflecting surface), and the lower figure of FIG. 1 is a cross-sectional view taken along the line A-A ′ of the biaxial scanning element 1.
  • some of the components that are not on the A-A ′ cross section are indicated by dotted lines.
  • arrows shown on the surface of the mirror 25 schematically indicate light incident on the surface of the mirror 25 and light emitted.
  • the biaxial scanning element 1 includes a second frame body 21 and a second frame body 21 separately formed integrally above a first movable portion 10 including a first frame body 11 and a first movable plate 12 formed integrally.
  • the second movable part 20 composed of two movable plates 22 is fixed.
  • a magnet 15, which is a small permanent magnet, is fixed to the back surface of the first movable plate 12.
  • the center of gravity of the composite system including the first movable plate 12, the second movable portion 20, and the magnet 15 is the first torsion beam 13A that supports the first movable plate 12. , 13B on the central axis of the cross section. That is, the center of gravity of the above-described synthesis system is on the a-a ′ axis in the lower diagram of FIG. As described above, the center of gravity of the composite system including the first movable plate 12, the second movable portion 20, and the magnet 15 is on the cross-sectional central axis (rotation axis) of the first torsion beams 13A and 13B. , Unnecessary resonance modes during rotation can be suppressed, and stable rotation can be obtained. In the present invention, the periodic motion around the rotation axis is also called rotation, and the rotation axis is also called rotation axis.
  • the first (second) movable plate 12 (22) is connected to the first (second) frame 11 (21) supported from the outside by two connected beam portions. Yes.
  • These are integrally formed of a material having an appropriate rigidity, and single crystal silicon, spring material stainless steel, and the like are suitable.
  • the second movable plate 22 has a mirror surface on the surface opposite to the magnet 15 described above, and has a sufficiently high reflectance with respect to the light used.
  • the mirror surface of the second movable plate 22 may be formed of a sufficiently flat metal thin film, or may be formed by connecting a separately prepared mirror surface material on the second movable plate 22. .
  • the shape and size of the two first torsion beams 13A and 13B are determined according to the shape, size and material of the first movable part 10.
  • the first movable part 10 is designed to have a torsional resonance frequency of about 1 kHz with the two first torsion beams 13 as axes.
  • the shape and size of the two second torsion beams 23A and 23B are determined according to the shape, size and material of the second movable part 20.
  • the second movable part 20 is designed to have a torsional resonance frequency of about 27 kHz around the two second torsion beams 23 described above.
  • the in-plane size of the second movable plate 22 is 1 ⁇ 1 square millimeters and the thickness is 100 ⁇ m.
  • the second movable portion 20 is a rectangle having an in-plane size of 3 ⁇ 3 square millimeters and a thickness of 100 ⁇ m, and is fixed to the upper surface of the first movable plate 12 having substantially the same size.
  • the first movable plate 12 is a first frame 11 integrally formed with the above-described first movable plate 12 via two first torsion beams 13 (with an in-plane size of 8 ⁇ 8 square millimeters). It is connected to the.
  • the first movable plate 12 is provided with a magnet loading hole.
  • a permanent magnet having a size of 1 ⁇ 1 ⁇ 0.5 cubic millimeters can be loaded.
  • the center of gravity determined by the first movable plate 12, the second movable portion 20, and the magnet 15 is arranged near the rotation center axis (rotation axis) of the first torsion beam 13. Decide to do so.
  • the first movable plate 12 and the frame 11 are disposed on the coil 30 as shown in the lower diagram of FIG.
  • the coil 30 includes a yoke portion 31 and a winding portion 32, and a magnet fixed to the first movable portion 10 is disposed in a gap between the yoke portions 31.
  • the size of the gap is about 3 mm.
  • the yoke part 31 is magnetized by the current flowing through the coil 30.
  • the first movable portion 10 is formed by integrally molding a first movable plate 12, two first torsion beams 13, and a first frame 11, and the dimensions are a length L1, a width W1, and a thickness. It is t1.
  • a second movable plate 22 In the second movable portion 20, a second movable plate 22, two second torsion beams 23A and 23B, and a second frame 21 are integrally molded, and the dimensions are a length L2, a width W2, and a thickness t2. It is.
  • a piezoelectric element 26 for driving the second movable plate 22 is disposed on the second frame body 21.
  • the length of the magnet 15 is Lm, the width is Wm, and the thickness is tm.
  • the magnet 15 is fixed on the first movable plate 12 on the side opposite to the second movable portion 20. In FIG. 2, it is assumed that a hole for the magnet 15 is made in the first movable plate 12, and the moment of inertia at the time of rotation of the first movable plate 12 is reduced by inserting the magnet 15 into this hole.
  • FIG. 3A is a diagram showing the wiring of the first movable part 10 and the second movable part 20.
  • the electrodes 42 A and 42 B are drawn from the lower electrode 41 A and the upper electrode 41 B sandwiching the piezoelectric element 26, and the electrodes 43 A and 43 B arranged on the first frame 11 are energized by the bonding wire 45. To do.
  • the electrodes 43A and 43B arranged on the first frame 11 are connected to the extraction pads 44A and 44B.
  • the piezoelectric elements 26B, 26C and 26D are also wired to the respective drawer pads as in the piezoelectric element 26A.
  • FIG. 3B shows a cross-sectional view of the piezoelectric element 26. It consists of a lower electrode 41A, a piezoelectric element 26, and an upper electrode 41B in the thickness direction.
  • the piezoelectric element 26 polarized in the film thickness height direction is assumed, and the upper electrode 41B applies Gnd and the lower electrode 41A applies a signal voltage V1 (t) or V2 (t).
  • FIG. 4A is a cross-sectional view of the driving state of the biaxial scanning element 1.
  • FIG. 4A shows a state in which a magnetic field on the right side of the drawing is generated in the yoke gap (referred to as g [m]) by passing the current I through the N-turn coil 30.
  • the magnet 15 having upward magnetization with respect to the substrate is attracted to the left side of the magnet and to the right side of the magnet, and generates torque in the depth direction of the drawing. That is, the first movable plate 12 receives a clockwise moment in the drawing and rotates.
  • N 200
  • the current is 200 mA
  • the gap between the yokes is 3 mm is 13000 [A / m] ( ⁇ 150 [Oe]).
  • the size can be easily generated as a magnetic field.
  • the second movable plate 22 and the second torsion beam 23 are formed using a Si active layer 29 having a thickness of about 30 to 100 ⁇ m, and a BOX layer 28 (buried oxide film layer) hollowed in the center at the bottom. Since the thickness of the Si support layer 27 via is about 200 ⁇ m, even if the mirror 25 rotates about ⁇ 10 degrees, the second movable plate 22 and the upper surface of the first movable part 10 do not come into contact with each other. Therefore, the escape hole of the mirror 25 becomes unnecessary, and the magnet position can be set freely.
  • the waveform in FIG. 5A shows a current signal that flows through the coil 30 in order to drive the first movable plate 12. Since the laser light to be projected is driven at a frame rate of 60 Hz so as to have a constant speed in the vertical direction, the drive current also becomes a sawtooth wave.
  • two 1.0 ⁇ 1.0 ⁇ 0.5 cubic millimeter neodymium magnets are used as described below.
  • the resonance frequency of the first movable plate 12 is 1.0 [kHz]
  • the drive current is 200 [mA]
  • the movable part realizes a rotation angle of ⁇ 11 degrees, and the light is scanned in a range of ⁇ 22 degrees. It became possible to do.
  • FIG. 5B shows a voltage signal applied to the piezoelectric element 26 for driving the second movable plate 22.
  • a voltage V1 (t) in the figure is applied to the piezoelectric elements 26A and 26B
  • a voltage V2 (t) in the figure is applied to the piezoelectric elements 26C and 26D.
  • FIG. 6 shows that the first movable part 10 (assuming the SUS material of the same size as the second movable part 20) is used for the second movable part 20 (assuming the Si material) having a width and length of about 3 mm. It is the result of calculating the size of the magnet 15 required for linear driving.
  • the torsional resonance frequency in the first movable part 10 is preferably about 1.0 [kHz] so that it can be efficiently cut off by a filter during linear drive.
  • the size is estimated under this condition, the size As a result, an optical scanning angle of ⁇ 20 degrees or more was obtained by using a small magnet.
  • the first movable part 10 is mounted on the second movable plate 22 by driving the second movable part 20 at high speed (27 kHz in the example of the first embodiment) while linearly driving the first movable part 10 at 60 Hz.
  • the mirror surface draws a locus in which these two rotations are combined.
  • the image drawn on the screen after the laser beam incident on the mirror surface is reflected becomes a two-dimensional image.
  • FIG. 7 shows an overall conceptual diagram of the image display apparatus according to Embodiment 1 of the present invention.
  • the image display device includes a light beam generation device that generates a light beam modulated according to the video signal 55 supplied from the outside.
  • the light beam generation device includes an optical system 53 and a scanning system 54.
  • the optical system includes a collimating optical system 53a for collimating the light generated by the light beam generating device, a dichroic mirror 53b that selectively reflects and transmits the wavelength, and a combining optical system 53c for combining the light beams.
  • the scanning system 54 includes a horizontal scanning unit 58 that scans in the horizontal direction in order to display an image of the light combined by the combining optical system 53c on the screen 59, and a light beam that has been scanned in the horizontal direction by the horizontal scanning unit 58 in the vertical direction. And a vertical scanning unit 57 for scanning.
  • the horizontal scanning unit 58 and the vertical scanning unit 57 are combined into one member as a biaxial mirror 50, and the combined light is incident on a single mirror, whereby the two-dimensionally scanned light is screened. 59 is emitted. Further, an optical system for correcting the emitted light may be provided.
  • the luminous flux generation apparatus is provided with a control circuit system 51 having a signal processing circuit 56 for generating a signal that is an element for constructing an image based on the input video signal 55.
  • a signal processing circuit 56 red (R), green (G), and blue (B) video signals 55 are generated and output to the light source system 52.
  • the signal processing circuit 56 outputs a horizontal synchronization signal used by the horizontal scanning unit 58 and a vertical synchronization signal used by the vertical scanning unit 57, respectively.
  • the light flux generation device includes a light source system 52 for making three video signals (R, G, B) output from the signal processing circuit into light fluxes.
  • the light source system 52 includes a laser drive system 52a having a red laser drive unit (RED Drive), a green laser drive unit (GREEN Drive), and a blue laser drive unit (BLUE Drive).
  • the red laser driving unit includes a red laser that generates a red luminous flux and a red laser driving circuit for driving the red laser.
  • the green laser driving unit includes a green laser that generates a green light beam and a green laser driving circuit for driving the green laser.
  • the blue laser driving unit includes a blue laser that generates a blue light flux and a blue laser driving circuit for driving the blue laser.
  • a semiconductor laser or a fixed laser with a harmonic generation mechanism (SHG) is assumed.
  • Each light beam emitted from each laser drive unit is collimated by the collimating optical system 53a and then enters the dichroic mirror 53b.
  • These dichroic mirrors 53b selectively reflect and transmit each laser beam with respect to wavelength.
  • the red, green, and blue light beams incident on these three dichroic mirrors 53b are reflected or transmitted in a wavelength-selective manner and are incident / condensed to the combining optical system 53c. Incident.
  • the horizontal scanning unit 58 includes a horizontal scanning element for scanning the light beam in the horizontal direction, a horizontal scanning driving circuit for driving the horizontal scanning element, and a resonance frequency adjusting circuit for adjusting the resonance frequency of the horizontal scanning element. is doing.
  • the horizontal scanning unit 58 is for scanning the light beam incident from the combining optical system 53c in the horizontal direction.
  • the horizontal scanning unit 58 and the signal processing circuit 56 function as a horizontal light scanning device.
  • the vertical scanning unit 57 includes a vertical scanning element for scanning the light beam in the vertical direction and a vertical scanning driving circuit for driving the vertical scanning element.
  • the vertical scanning unit 57 and the signal processing circuit 56 function as a vertical light scanning device.
  • a two-dimensional image is formed by combining the operations of the horizontal scanning unit 58 and the vertical scanning unit 57 described above.
  • the horizontal scanning driving circuit and the vertical scanning driving circuit are driven based on the horizontal synchronizing signal and the vertical synchronizing signal output from the signal processing circuit, respectively.
  • the center of gravity of the composite system including the first movable plate, the second movable portion, and the magnet supports the first movable plate. Since it is on the central axis of the cross section of the torsion beam, an unnecessary resonance mode can be suppressed during rotation, and stable rotation is possible.
  • the mirror portion and the movable magnet in the biaxial scanning element overlap each other in the plane, so that miniaturization and maximization of driving performance can be realized. As a result, it is possible to provide a biaxial scanning element that realizes high image quality.
  • FIG. 8 shows the configuration of the biaxial scanning element 2 in the second embodiment of the present invention. 8 is a view of the biaxial scanning element 2 of the second embodiment as viewed from the front (light reflecting surface), and the lower figure of FIG. 8 is a cross-sectional view of the biaxial scanning element 2 along BB ′. . In FIG. 2B, some of the components that are not on the BB ′ cross section are shown by dotted lines. In FIG. 8, the same reference numerals are used for the same configurations as those in the first embodiment.
  • the magnetization direction of the drive system such as the yoke portion 31 and the first movable portion 10 and the magnet 15 is the same as that of the first embodiment.
  • the center of gravity of the composite system including the first movable plate 12, the second movable portion 220, and the magnet 15 is on the cross-sectional central axis of the first torsion beams 13A and 13B. That is, the center of gravity of the above-described synthesis system is on the b-b 'axis in the lower diagram of FIG.
  • the shapes of the second frame 221 and the piezoelectric element 226 in the second movable portion 220 are annular.
  • the shape of the piezoelectric element of the second embodiment has an advantage that the driving force for the second movable plate 22 can be increased.
  • the lower and upper electrodes 41A and 41B are drawn from the end of the piezoelectric element and can be directly wired to the electrode pad of the first movable portion 10 by wire bonding or the like, the electrodes 42A and 42B in the first embodiment are omitted.
  • FIG. 9 shows the configuration of the biaxial scanning element 3 according to Embodiment 3 of the present invention.
  • 9 is a view of the biaxial scanning element 3 as viewed from the front (light reflecting surface), and the lower figure of FIG. 9 is a cross-sectional view taken along the line C-C ′ of the biaxial scanning element 3.
  • the lower diagram of FIG. 9 some of the components that are not on the C-C ′ cross section are indicated by dotted lines.
  • the same reference numerals are used for the same configurations as those in the first or second embodiment.
  • the second movable part 20 is the same as the second movable part 20 in the first embodiment, but the magnetization direction of the magnet 315 attached to the back surface of the first movable plate 12 is different from that in the first embodiment.
  • the first movable plate 12 is parallel to the in-plane direction and is perpendicular to the first and second torsion beams 13 and 23.
  • the structure of the yoke portion 31 for driving the magnet 315 is as shown in FIG.
  • the yoke portion 31 is described as being separated into yokes A33, B34, C35, and D36.
  • the magnet 315 fixed to the first movable plate 12 is sandwiched between the yoke A33, the yoke C35, and the yoke D36.
  • the center of gravity of the composite system including the first movable plate 12, the second movable portion 20, and the magnet 315 is on the cross-sectional central axis of the first torsion beams 13A and 13B. That is, the center of gravity of the above-described synthesis system is on the c-c ′ axis in the lower diagram of FIG. 9.
  • an in-plane magnetized magnet that can be easily reduced in thickness can be used as the magnet 315. Therefore, the moment of inertia in the first movable part 10 can be reduced.
  • FIG. 10 shows the state of the magnetic force lines of the third embodiment in the direction of the arrow.
  • the first movable part 10 is shown by the S pole appearing in the yoke A33 and the N pole appearing in the yoke C35 and the yoke D36.
  • the magnet 315 fixed to is rotated.
  • the magnetic poles appearing in the yoke portion 31 are reversed as shown in FIG. 10B. Therefore, the direction in which the first movable part is rotated is reversed.
  • the magnetization direction of the magnet is parallel to the in-plane of the first movable plate 12, the first and second torsion beams 13, Even if it is arranged so as to be perpendicular to 23, the same effect as in the first and second embodiments can be obtained. Further, according to the third embodiment, since the magnet can be made thinner than in the first and second embodiments, the structure of the biaxial scanning element can be simplified.
  • FIG. 11 shows the configuration of the biaxial scanning element 4 in the fourth embodiment.
  • 11A is a view of the biaxial scanning element 4 as viewed from the front (light reflecting surface)
  • FIG. 11B is a cross-sectional view of the biaxial scanning element 4 along D-D ′.
  • FIG. 11B some of the components that are not on the D-D ′ cross section are indicated by dotted lines.
  • the same reference numerals are used for the same configurations as in the first to third embodiments.
  • the drive system such as the yoke part 31 and the position of the first movable part 10 and the magnetization direction of the magnet 415 are the same as those in the third embodiment. However, a thinner thin magnet is assumed as the magnet 415. Further, unlike Embodiments 1 to 3, the second embodiment is characterized in that the second movable section 20 is embedded in the first movable section 10.
  • the center of gravity of the composite system composed of the first movable plate 12, the second movable portion 20, and the magnet 415 is on the cross-sectional central axis of the first torsion beams 13A and 13B. That is, the center of gravity of the above-described synthesis system is on the d-d ′ axis in FIG. 11B.
  • the spring constant of the first torsion beam 13 can be lowered.
  • the scanning angle can be improved.
  • the arrangement of the fourth embodiment is advantageous in terms of scanning performance when the center of gravity of the movable part 1 can be arranged on the center of rotation by using a sufficiently thin magnet.
  • the weight distribution of the biaxial scanning element is composed of the first movable plate, the second movable portion, and the magnet.
  • the size can be reduced toward the center of gravity of the synthesis system, and more stable scanning is possible.
  • FIG. 12 shows the configuration of the uniaxial scanning element 5 according to the fifth embodiment of the present invention.
  • 12A is a view of the biaxial scanning element 5 as viewed from the front (light reflecting surface)
  • FIG. 12B is a cross-sectional view of the biaxial scanning element 5 at E-E ′.
  • FIG. 12B some of the components that are not on the E-E ′ cross section are shown by dotted lines.
  • the same reference numerals are used for the same configurations as in the first to fourth embodiments.
  • the drive system such as a yoke, the position of the first movable unit 10, and the magnetization direction of the magnet 15 are the same as those in the first embodiment.
  • the in-plane direction of the second movable part 520 is an arrangement obtained by rotating the arrangements of the first to fourth embodiments 90 degrees in the plane.
  • the first torsion beam 13 in the first movable plate 12 and the second torsion beam 23 in the second movable plate 22 face the same direction. Therefore, the fifth embodiment performs only uniaxial optical scanning. That is, the purpose of the fifth embodiment is not the two-dimensional optical scanning but the scanning angle expansion of the uniaxial optical scanning.
  • the center of gravity of the composite system composed of the first movable plate 12, the second movable portion 520, and the magnet 15 is on the cross-sectional central axis of the first torsion beams 13A and 13B. That is, the center of gravity of the above-described synthesis system is on the e-e 'axis in FIG. 12B.
  • the scanned range is expanded. This is because the final scanning angle ⁇ Fin (t) at a certain time t is equal to the scanning angle ⁇ 1 (t) by the first movable plate 12 and the scanning angle by the second movable plate 22 as shown in Equation 5. This is because it is represented by the sum of ⁇ 2 (t).
  • ⁇ Fin (t) ⁇ 1 (t) + ⁇ 2 (t) (5)
  • 13A and 13B show an input signal for synchronizing ⁇ 1 (t) and ⁇ 2 (t) when both the first and second movable plates 12 and 22 are non-resonant (particularly linear drive). Show. A 60 Hz linear current signal is applied to the drive circuit for the first movable unit 10, and a 60 Hz linear voltage signal is applied to the drive circuit for the second movable unit 520. However, since the signals for the piezoelectric elements 526A and 526B and the signals for the piezoelectric elements 526C and 526D are in reverse phase, the angle at which the second movable portion 520 rotates is only V1 (t) (or only V2 (t)). ) Increase compared to
  • FIGS. 14A and 14B show input signals for synchronizing ⁇ 1 (t) and ⁇ 2 (t) when both the first and second movable plates 12 and 22 are resonantly driven.
  • a sinusoidal current signal of 27 [kHz] is applied to the driving circuit for the first movable part 10
  • a sinous voltage signal of 27 [kHz] is applied to the driving circuit for the second movable part 520.
  • the signals for the piezoelectric elements 526A and 526B and the signals for the piezoelectric elements 526C and 526D are out of phase.
  • the angle at which the second movable portion 520 rotates is increased as compared with the case of only V1 (t) (or only V2 (t)).
  • the scanning angle when the uniaxial optical scanning element is used is larger than when only the first scanning element or only the second scanning element is present.
  • the fifth embodiment of the present invention it is possible to provide a uniaxial scanning element having a greatly expanded scanning angle by providing a signal synchronized with the first movable part and the second movable part.
  • a part or all of the above-described embodiment can be described as in the following supplementary notes, but is not limited thereto.
  • (Appendix 1) A first frame supported by a coil that is magnetized by applying an electric current; A pair of first beam portions provided inside the first frame, A first movable plate rotatably connected to the first frame plate by the first beam portion; A first movable part having a magnet provided on the first movable plate; A second frame coupled to the first movable plate; A pair of second beam portions provided inside the second frame, A second movable part having a second movable plate rotatably connected to the second frame body by the second beam part and including a light reflecting surface on at least one surface thereof.
  • An optical scanning element characterized in that a center of gravity of a composite system composed of the first movable plate, the second movable portion, and the magnet is set on the central axis of the cross section of the first beam portion.
  • the second frame body is provided with a piezoelectric element that drives the second movable part, The first movable part is driven by magnetic drive means; 2.
  • the coil is Winding part, A yoke portion having a first yoke end and a second yoke end that are magnetized by a current passed through the winding portion, and The first frame is supported by the first and second yoke ends; 2.
  • the optical scanning element according to appendix 2 wherein the piezoelectric element is provided on at least one surface of the second frame.
  • the yoke portion further includes a third yoke end facing the magnet, The magnetic pole at the first yoke end and the magnetic pole at the second yoke end are the same pole, The magnetic pole of the third yoke end is a pole different from the first yoke end and the second yoke end, 4.
  • the optical scanning element according to appendix 3 wherein the magnetization direction of the magnet is a direction parallel to the main surface of the first movable plate.
  • Appendix 8 The optical scanning element according to appendix 1, wherein the rotation axis of the first beam portion, the second beam portion, and the rotation axis are parallel to each other.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Electromagnetism (AREA)
  • Mechanical Optical Scanning Systems (AREA)
  • Micromachines (AREA)

Abstract

This optical scanning element is provided with: a first movable part having a first frame body supported by a coil magnetized by application of an electric current, a pair of first girder parts provided on the inside of the first frame body, a first movable plate connected by the first girder parts to a first frame plate so as to be able to rotate, an a magnet provided to a portion of the first movable plate; and a second movable part having a second frame body connected to the first movable plate, a pair of second girder parts provided on the inside of the second frame body, and a second movable plate including a light-reflecting surface on at least one side thereof and connected by the second girder parts to the second frame body so as to be able to rotate; the optical scanning element being characterized in that the center of gravity of the system comprising the synthesis of the first movable plate, the second movable part, and the magnet is set so as to be on the central axis of a cross-section of the first girder parts.

Description

光走査素子および画像表示装置Optical scanning element and image display device
 本発明は、光に対する反射面を有する可動部を駆動させ、入射した光と反射面との角度を変化させることにより、その反射光の走査を行う光走査素子および画像表示装置に関する。 The present invention relates to an optical scanning element and an image display device that drive a movable part having a reflection surface for light and scan the reflected light by changing an angle between incident light and the reflection surface.
 光を走査する光走査装置は、デジタル複写機、レーザープリンタ、バーコードリーダー、スキャナー、プロジェクタ等で広く用いられている。この光走査装置として、モーターを用いたポリゴンミラーやガルバノミラーなどが一般的に広く用いられてきた。 Optical scanning devices that scan light are widely used in digital copying machines, laser printers, barcode readers, scanners, projectors, and the like. As this optical scanning device, a polygon mirror using a motor, a galvano mirror, and the like have been widely used.
 一方で、近年の微細加工技術によって、MEMS(Micro-Electro-Mechanical Systems)技術を応用した光走査装置が大きな発展を遂げている。中でも、梁部を回転軸として光走査ミラーを往復振動させることにより光を走査させる、MEMSによる光走査装置が注目を集めている。 On the other hand, an optical scanning apparatus using MEMS (Micro-Electro-Mechanical Systems) technology has been greatly developed by recent microfabrication technology. Among them, a MEMS optical scanning device that scans light by reciprocally vibrating an optical scanning mirror about a beam portion as a rotation axis has attracted attention.
 MEMS技術によって形成されるこの光走査ミラーは、モーターを用いたポリゴンミラー等の回転による光走査装置と比較して、構造が簡単であり、また、半導体プロセスによる一体成形が可能である。そのため、小型化や低コスト化が容易であること、小型化により高速化が容易である等の利点がある。 The optical scanning mirror formed by the MEMS technology has a simple structure and can be integrally formed by a semiconductor process as compared with an optical scanning device that rotates a polygon mirror using a motor. Therefore, there are advantages such as easy miniaturization and cost reduction and easy increase in speed due to the miniaturization.
 これらのMEMS技術による光走査ミラーは、振れ角を大きくとるために、駆動周波数と構造体の共振周波数を一致させた共振ミラーが一般的である。 These optical scanning mirrors based on MEMS technology are generally resonant mirrors in which the drive frequency and the resonant frequency of the structure are matched in order to increase the deflection angle.
 ミラーの共振周波数frは、梁部のねじり弾性係数kとミラーの慣性モーメントをImとから、次の式1で与えられる。
Figure JPOXMLDOC01-appb-I000001
 また、ミラーに加わる駆動力をTとすると、ミラーの振れ角θは式2で与えられる。
The resonance frequency f r of the mirror, the moment of inertia of the torsion spring coefficient k and the mirror of the beam portion and a I m, is given by the following equation 1.
Figure JPOXMLDOC01-appb-I000001
Further, when the driving force applied to the mirror is T, the deflection angle θ of the mirror is given by Equation 2.
 θ=QT/k(2)
 Qは系の品質係数である。典型的なQの値は、空気中では100程度であり、真空中では1000程度である。これにより共振駆動におけるミラーは、小さな駆動力であっても大きく振れることが可能である。
θ = QT / k (2)
Q is the quality factor of the system. A typical Q value is about 100 in air and about 1000 in vacuum. As a result, the mirror in resonance driving can swing greatly even with a small driving force.
 一方、ある種の光走査ミラーは、非共振で用いられる。この場合、ミラーの振れ角θは式3で与えられる。 On the other hand, a certain kind of optical scanning mirror is used non-resonantly. In this case, the deflection angle θ of the mirror is given by Equation 3.
 θ=T/kr(3)
 品質係数Qを援用できないため、駆動力を大きく増加できない限り、振れ角が小さくなる。ある程度の振れ角θを確保するためには、駆動力を増大させる必要がある。しかしながら、ねじりばね定数krを小さくすると、式3の上ではθは拡大するが、式1によって共振周波数も低下してしまい、非共振モード(通常60Hz)で高周波をカットオフするための周波数に接近するため、駆動波形に共振モードが乗ってしまう。これを避けるため、例えばカットオフ周波数が300Hz程度とすると、ねじり共振周波数は、1kHz程度以上に設定する必要がある。このため、ねじりばね定数krをむやみに小さく出来ない。
θ = T / k r (3)
Since the quality factor Q cannot be used, the deflection angle becomes small unless the driving force can be increased greatly. In order to secure a certain deflection angle θ, it is necessary to increase the driving force. However, if the torsion spring constant kr is decreased, θ increases in Equation 3, but the resonance frequency is also reduced by Equation 1, and the frequency is cut off in the non-resonant mode (usually 60 Hz). Since it approaches, the resonance mode is on the drive waveform. In order to avoid this, for example, when the cutoff frequency is about 300 Hz, the torsional resonance frequency needs to be set to about 1 kHz or more. Therefore, not be unduly small torsion spring constant k r.
 以上で述べた共振タイプの光走査素子と、非共振タイプの光走査素子を組み合わせることで、2次元画像が得られる光走査素子を提供できる。 By combining the resonance type optical scanning element described above and the non-resonance type optical scanning element, an optical scanning element capable of obtaining a two-dimensional image can be provided.
 一般に、水平走査素子を共振駆動方式で、垂直走査素子を非共振方式で駆動させ、光学システムとして近接して組み合わせることで、2次元画像表示素子として用いる方式が、画像表示装置において用いられてきた。 In general, a method of using a horizontal scanning element as a two-dimensional image display element by driving a horizontal scanning element by a resonance driving method and a vertical scanning element by a non-resonance method and combining them closely as an optical system has been used in an image display apparatus. .
 一方、上記の組み合わせ法によると、合計の体積が大きくなることや、水平走査素子と垂直走査素子の間隔の増大とともに、垂直走査素子のサイズが増大するなどの問題点が生じる。このため、上記水平走査素子と垂直走査素子を同一構造上で実現できる光走査素子(以下、2軸走査素子と記載する場合がある)の実現が望まれている。
以下では、既に開示されている2軸走査素子の例を挙げる。
On the other hand, the above combination method causes problems such as an increase in the total volume and an increase in the size of the vertical scanning element as the distance between the horizontal scanning element and the vertical scanning element increases. Therefore, it is desired to realize an optical scanning element (hereinafter sometimes referred to as a biaxial scanning element) that can realize the horizontal scanning element and the vertical scanning element on the same structure.
Below, the example of the biaxial scanning element already disclosed is given.
 1.同種駆動方式
 2軸走査素子のそれぞれの軸を、同種の駆動原理で駆動させる方法の一部として、例えば下記の方法が開示されている。
1. Homogeneous driving method As a part of the method of driving the respective axes of the biaxial scanning element by the same type of driving principle, for example, the following method is disclosed.
 特許文献1及び特許文献2は、水平・垂直駆動の両方に圧電駆動を採用した例である。圧電素子はサイズを小さく出来、単位体積あたりの駆動力も大きい。しかし、駆動できる範囲が小さい(素子サイズの0.1%程度)という課題がある。そのため、共振駆動方式として良く採用される方式である。従って、高速駆動が要求される水平走査素子の駆動方式としては有望である。しかし、垂直走査素子においては線形駆動などの非共振駆動が必要であり、上記のように駆動範囲が小さいことから、通常要求されるサイズ内での実現が難しい。 Patent Document 1 and Patent Document 2 are examples in which piezoelectric driving is adopted for both horizontal and vertical driving. The piezoelectric element can be reduced in size and has a large driving force per unit volume. However, there is a problem that the driveable range is small (about 0.1% of the element size). Therefore, this is a method that is often adopted as a resonance driving method. Therefore, it is promising as a driving method for a horizontal scanning element that requires high-speed driving. However, non-resonant driving such as linear driving is necessary for the vertical scanning element, and since the driving range is small as described above, it is difficult to realize it within the normally required size.
 特許文献3は、水平・垂直駆動の両方に磁気駆動を用いた方式である。可動部に磁石を配置し、その外部に設置した空芯コイルに通電することで磁場を誘起し、上記磁石およびそれに連結された可動部を駆動する方式であり、素子の小型化や他の部材への干渉を小さくできている。 Patent Document 3 is a system using magnetic drive for both horizontal and vertical drive. This is a system in which a magnet is arranged in a movable part, and a magnetic field is induced by energizing an air-core coil installed outside of the movable part to drive the magnet and the movable part connected thereto. The interference with can be reduced.
 しかしながら、駆動コイルが空芯コイルであるため、駆動力に限界があり、走査角や高速駆動等の一定以上の要求に応えることは困難である。 However, since the driving coil is an air-core coil, there is a limit to the driving force, and it is difficult to meet a certain requirement such as a scanning angle and high-speed driving.
 また、特許文献3は、高速可動部の材料に対し、低速可動部の材料の合成を低くすることで、低速走査角の拡大を想定している。しかしながら、低速側の合成を低下させると、ねじり共振などの共振周波数も低下するため、線形駆動させたときに現れる共振ノイズ等が問題となる可能性がある。 Further, Patent Document 3 assumes that the low-speed moving angle is expanded by lowering the synthesis of the material of the low-speed movable part with respect to the material of the high-speed movable part. However, if the synthesis on the low speed side is lowered, the resonance frequency such as torsional resonance is also lowered, so that there is a possibility that resonance noise or the like that appears when linear driving is performed becomes a problem.
 2.異種駆動方式
 一方、以下の文献に記されるように、2軸それぞれの駆動方式として、別の原理を用いた例が開示されている。
2. On the other hand, as described in the following document, an example using another principle is disclosed as a driving method for each of the two axes.
 特許文献4は、高速駆動させる水平走査素子に磁気駆動方式(可動板に磁石を貼り付ける可動磁石型)を採用している。特許文献4の磁気駆動方式では、小型磁石を備えた光走査素子の近傍に空芯コイルを配置し、コイルに電流を流した時に発生する磁気力を利用して、光走査素子を共振駆動させる。 Patent Document 4 employs a magnetic drive system (movable magnet type in which a magnet is attached to a movable plate) for a horizontal scanning element that is driven at high speed. In the magnetic drive system of Patent Document 4, an air-core coil is disposed in the vicinity of an optical scanning element having a small magnet, and the optical scanning element is driven to resonate by using a magnetic force generated when a current is passed through the coil. .
 しかしながら、高速駆動素子に重い磁石を搭載すると、走査性能に限界があるという問題がある。また、本方式ではコイルを中央に配置することになり、他の部材と干渉するなど、素子の小型化が困難になるという課題があった。 However, when a heavy magnet is mounted on a high-speed drive element, there is a problem that scanning performance is limited. Further, in this method, the coil is arranged at the center, and there is a problem that it is difficult to reduce the size of the element, such as interference with other members.
 一方、特許文献4では低速駆動させる垂直走査素子に対して静電駆動を用いており、可動部の端に櫛上の形状加工を施し、電圧印加により線形駆動させる。 On the other hand, in Patent Document 4, electrostatic driving is used for a vertical scanning element that is driven at low speed, and the shape of the comb is applied to the end of the movable part, and linear driving is performed by applying voltage.
 しかしながら、十分大きな駆動力を発生させるためには、安全性に問題のあるレベルの大きな電圧を加える必要があるという問題があった。 However, in order to generate a sufficiently large driving force, there is a problem that it is necessary to apply a large voltage at a level that is problematic in terms of safety.
 特許文献5は、水平走査素子に圧電駆動、垂直走査素子に電磁駆動を用いた方式である。本電磁駆動方式は、上記可動磁石方式とは異なり、可動部にコイルを設置し、その外部には永久磁石による静磁界を発生させる。コイルに流れる電流の方向と値によって発生するローレンツ力が異なるため、これを利用して可動部を駆動させる。高速駆動が要求される水平走査素子を圧電駆動とすることで、素子の小型化や他の部材への干渉を小さくできている。 Patent Document 5 is a system that uses piezoelectric driving for the horizontal scanning element and electromagnetic driving for the vertical scanning element. Unlike the above-mentioned movable magnet method, this electromagnetic drive method installs a coil in the movable part and generates a static magnetic field by a permanent magnet outside thereof. Since the Lorentz force generated differs depending on the direction and value of the current flowing through the coil, the movable part is driven using this. By using a piezoelectric drive for a horizontal scanning element that requires high-speed driving, the element can be downsized and interference with other members can be reduced.
 しかしながら、低速側を可動コイルによる電磁駆動とすることで、走査性能に限界があるという問題がある。例えば、駆動力を増加させるためには、コイルの巻き数を増やすことも一つの方法であるが、巻き数の増加には限界があり、一方で駆動電流の増加も、発熱の面から避ける必要がある。 However, there is a problem that the scanning performance is limited by making the low speed side electromagnetically driven by a moving coil. For example, increasing the number of turns of the coil is one way to increase the driving force, but there is a limit to the increase in the number of turns, while an increase in driving current must also be avoided from the viewpoint of heat generation. There is.
特開2008-310295号公報JP 2008-310295 A 特開2005-148459号公報JP 2005-148459 A 特開2004-148459号公報JP 2004-148459 A 特開2005-173411号公報Japanese Patent Laid-Open No. 2005-173411 特開2011-64928号公報JP 2011-64928 A
 特許文献5に記載された可動磁石型の光走査素子は、可動部が重い磁石を備える構成上、重心が回転中心からずれてしまうため、ねじり共振以外の振動モードを誘発してしまい、走査特性を劣化させるという課題があった。 Since the movable magnet type optical scanning element described in Patent Document 5 has a configuration in which the movable portion includes a heavy magnet, the center of gravity shifts from the center of rotation, so that a vibration mode other than torsional resonance is induced, and scanning characteristics are obtained. There was a problem of deteriorating the material.
 本発明の目的は、上記課題を解決するためになされたものであり、第1の可動板、第2の可動部および磁石から成る合成系の重心を、第1の可動部の回転軸である第1の梁部の断面中心軸上に配置させることによって、光走査安定性を実現した光走査素子を提供することである。 An object of the present invention is to solve the above-mentioned problems, and the center of gravity of the composite system including the first movable plate, the second movable portion, and the magnet is the rotation axis of the first movable portion. It is to provide an optical scanning element that realizes optical scanning stability by being disposed on the cross-sectional central axis of the first beam portion.
 本発明における光走査素子は、電流を印加することによって磁化するコイルによって支持された第1の枠体と、第1の枠体の内側に設けられた一対の第1の梁部と、第1の梁部によって第1の枠板に回動可能に連結された第1の可動板と、第1の可動板の一部に設けられた磁石と、を有する第1の可動部と、第1の可動板に連結された第2の枠体と、第2の枠体の内側に設けられた一対の第2の梁部と、第2の梁部によって第2の枠体に回動可能に連結され、少なくとも一方の面に光の反射面を含む第2の可動板と、を有する第2の可動部と、を備え、第1の可動板と前記第2の可動部と前記磁石とから成る合成系の重心が、前記第1の梁部の断面中心軸上に設定されていることを特徴とする。 An optical scanning element according to the present invention includes a first frame supported by a coil that is magnetized by applying a current, a pair of first beam portions provided inside the first frame, A first movable portion having a first movable plate rotatably connected to the first frame plate by a beam portion; and a magnet provided in a part of the first movable plate; A second frame coupled to the movable plate, a pair of second beam portions provided on the inner side of the second frame, and the second beam portion so that the second frame can be rotated. A second movable part having a second movable plate coupled to and including a light reflecting surface on at least one surface, the first movable plate, the second movable part, and the magnet from The center of gravity of the composite system is set on the central axis of the cross section of the first beam portion.
 本発明によれば、光走査角が大きく、かつ小型であり、光走査安定性に優れた光走査素子を提供できる。 According to the present invention, it is possible to provide an optical scanning element having a large optical scanning angle, a small size, and excellent optical scanning stability.
本発明の実施形態1における2軸走査素子の模式図である。It is a schematic diagram of the biaxial scanning element in Embodiment 1 of this invention. 本発明の実施形態1における2軸走査素子の構成図である。It is a block diagram of the biaxial scanning element in Embodiment 1 of this invention. 本発明の実施形態1における配線詳細図である。It is wiring detailed drawing in Embodiment 1 of this invention. 本発明の実施形態1における圧電素子の断面図である。It is sectional drawing of the piezoelectric element in Embodiment 1 of this invention. 発明の実施形態1における第1の可動部の駆動方法を説明するための模式図である。It is a schematic diagram for demonstrating the drive method of the 1st movable part in Embodiment 1 of invention. 発明の実施形態1における第1の可動部の駆動方法を説明するための模式図である。It is a schematic diagram for demonstrating the drive method of the 1st movable part in Embodiment 1 of invention. 本発明の実施形態1における可動部駆動信号を説明するためのグラフである。It is a graph for demonstrating the movable part drive signal in Embodiment 1 of this invention. 本発明の実施形態1における可動部駆動信号を説明するためのグラフである。It is a graph for demonstrating the movable part drive signal in Embodiment 1 of this invention. 本発明の実施形態1における磁石サイズと走査角の関係を説明するためのグラフである。It is a graph for demonstrating the relationship between the magnet size and scanning angle in Embodiment 1 of this invention. 本発明の実施形態1における画像描画装置の全体構成の模式図である。It is a schematic diagram of the whole structure of the image drawing apparatus in Embodiment 1 of this invention. 本発明の実施形態2における2軸走査素子の模式図である。It is a schematic diagram of the biaxial scanning element in Embodiment 2 of this invention. 本発明の実施形態3における2軸走査素子の模式図である。It is a schematic diagram of the biaxial scanning element in Embodiment 3 of this invention. 本発明の実施形態3における第1の可動部の駆動方法を説明するための模式図である。It is a schematic diagram for demonstrating the drive method of the 1st movable part in Embodiment 3 of this invention. 本発明の実施形態3における第1の可動部の駆動方法を説明するための模式図である。It is a schematic diagram for demonstrating the drive method of the 1st movable part in Embodiment 3 of this invention. 本発明の実施形態4における2軸走査素子の模式図である。It is a schematic diagram of the biaxial scanning element in Embodiment 4 of this invention. 本発明の実施形態5における1軸走査素子の模式図である。It is a schematic diagram of the uniaxial scanning element in Embodiment 5 of this invention. 本発明の実施形態5における可動部駆動信号(線形駆動)を説明するためのグラフである。It is a graph for demonstrating the movable part drive signal (linear drive) in Embodiment 5 of this invention. 本発明の実施形態5における可動部駆動信号(線形駆動)を説明するためのグラフである。It is a graph for demonstrating the movable part drive signal (linear drive) in Embodiment 5 of this invention. 本発明の実施形態5における可動部駆動信号(共振駆動)を説明するためのグラフである。It is a graph for demonstrating the movable part drive signal (resonance drive) in Embodiment 5 of this invention. 本発明の実施形態5における可動部駆動信号(共振駆動)を説明するためのグラフである。It is a graph for demonstrating the movable part drive signal (resonance drive) in Embodiment 5 of this invention.
 以下に、本発明を実施するための好ましい形態について図面を用いて説明する。但し、以下に述べる実施形態には、本発明を実施するために技術的に好ましい限定がされているが、発明の範囲を以下に限定するものではない。 Hereinafter, preferred embodiments for carrying out the present invention will be described with reference to the drawings. However, the preferred embodiments described below are technically preferable for carrying out the present invention, but the scope of the invention is not limited to the following.
 なお、本発明の実施形態の図面においては、それぞれの構成要素や構成要素の位置関係を明確にするため、形状や位置関係などが正確な寸法で図示されていない箇所もある。そのため、文中に記載した重心の位置は、必ずしも正確には図示されていない。また、図面中の符号に関して、各実施形態において特徴的な部分のみを別の符号で記し、その他の共通する箇所については同じ符号で記した。 In the drawings of the embodiments of the present invention, there are some portions where the shape and the positional relationship are not illustrated with accurate dimensions in order to clarify the positional relationship between the respective components and the structural elements. For this reason, the position of the center of gravity described in the sentence is not necessarily shown accurately. In addition, regarding the reference numerals in the drawings, only characteristic portions in each embodiment are indicated by different reference numerals, and other common parts are indicated by the same reference numerals.
 〔第1の実施形態〕本実施形態1における2軸走査素子1について説明する。 [First Embodiment] The biaxial scanning element 1 according to the first embodiment will be described.
 〔構造の説明〕図1は、本発明の実施形態1における2軸走査素子1の構成を示している。本実施形態1における2軸走査素子1は、水平走査素子と垂直走査素子を組み合わせた機能を有する。さらに、光を反射・走査するための鏡面を搭載した可動部と、可動部を支持するための枠体、およびそれぞれを駆動するための、駆動部とから成る。 [Description of Structure] FIG. 1 shows a configuration of a biaxial scanning element 1 according to Embodiment 1 of the present invention. The biaxial scanning element 1 in Embodiment 1 has a function of combining a horizontal scanning element and a vertical scanning element. Furthermore, it comprises a movable part on which a mirror surface for reflecting / scanning light is mounted, a frame for supporting the movable part, and a drive part for driving each.
 可動部の具体的な構成を図1の上図と下図に示す。 The specific structure of the movable part is shown in the upper and lower figures of FIG.
 図1の上図は、2軸走査素子1を正面(光反射面)から見た図であり、図1の下図は2軸走査素子1のA-A’における断面図である。なお、図1の下図において、A-A’断面上にはない構成要素のいくつかは点線で示した。また、図1の下図において、ミラー25の面に示した矢印は、ミラー25の面に入射する光と、出射する光を模式的に示したものである。 1 is a view of the biaxial scanning element 1 as viewed from the front (light reflecting surface), and the lower figure of FIG. 1 is a cross-sectional view taken along the line A-A ′ of the biaxial scanning element 1. In the lower diagram of FIG. 1, some of the components that are not on the A-A ′ cross section are indicated by dotted lines. Further, in the lower diagram of FIG. 1, arrows shown on the surface of the mirror 25 schematically indicate light incident on the surface of the mirror 25 and light emitted.
 本2軸走査素子1は、一体形成された第1の枠体11と第1の可動板12からなる第1の可動部10の上方に、別途一体形成された第2の枠体21と第2の可動板22から成る第2の可動部20が固定された構成をしている。また、第1の可動板12の裏面には、小型の永久磁石である磁石15が固定されている。 The biaxial scanning element 1 includes a second frame body 21 and a second frame body 21 separately formed integrally above a first movable portion 10 including a first frame body 11 and a first movable plate 12 formed integrally. The second movable part 20 composed of two movable plates 22 is fixed. A magnet 15, which is a small permanent magnet, is fixed to the back surface of the first movable plate 12.
 なお、本発明の実施形態1においては、第1の可動板12、第2の可動部20および磁石15から成る合成系の重心は、第1の可動板12を支持する第1のねじり梁13A、13Bの断面中心軸上にあることに特徴がある。すなわち、前述の合成系の重心は、図1の下図においてはa-a’軸上にある。このように、第1の可動板12、第2の可動部20および磁石15から成る合成系の重心が、第1のねじり梁13A、13Bの断面中心軸(回動軸)上にあることによって、回転時に不要な共振モードを抑制でき、安定した回転が得られる。なお、本発明においては、回転軸を中心とした周期運動を回動ともよび、その回転軸を回動軸とも呼ぶ。 In the first embodiment of the present invention, the center of gravity of the composite system including the first movable plate 12, the second movable portion 20, and the magnet 15 is the first torsion beam 13A that supports the first movable plate 12. , 13B on the central axis of the cross section. That is, the center of gravity of the above-described synthesis system is on the a-a ′ axis in the lower diagram of FIG. As described above, the center of gravity of the composite system including the first movable plate 12, the second movable portion 20, and the magnet 15 is on the cross-sectional central axis (rotation axis) of the first torsion beams 13A and 13B. , Unnecessary resonance modes during rotation can be suppressed, and stable rotation can be obtained. In the present invention, the periodic motion around the rotation axis is also called rotation, and the rotation axis is also called rotation axis.
 第1(第2)の可動板12(22)は、連結された2本の梁部によって、その外側から支持している第1(第2の)の枠体11(21)と連結されている。これらは適度な剛性を持つ材料で一体成形されており、単結晶シリコンやバネ材ステンレス鋼などが好適である。 The first (second) movable plate 12 (22) is connected to the first (second) frame 11 (21) supported from the outside by two connected beam portions. Yes. These are integrally formed of a material having an appropriate rigidity, and single crystal silicon, spring material stainless steel, and the like are suitable.
 第1の可動板12の一方の面には磁石15が搭載されているが、その磁化方向は本実施形態1の場合、光反射面に垂直な方向である。なお、光反射面と平行方向に磁化した磁石の搭載も可能であり、実施形態3、4において説明する。また本実施形態1の場合、磁石のN極とS極は区別する必要がない。 The magnet 15 is mounted on one surface of the first movable plate 12, and in the case of the first embodiment, the magnetization direction is a direction perpendicular to the light reflecting surface. A magnet magnetized in a direction parallel to the light reflecting surface can be mounted, which will be described in the third and fourth embodiments. In the case of the first embodiment, it is not necessary to distinguish the N pole and the S pole of the magnet.
 また、第2の可動板22は、前述の磁石15と反対側の面に鏡面を配置しており、使用する光に対して十分に高い反射率を持つ。第2の可動板22の鏡面の表面は、十分平坦な金属薄膜で形成されていても良く、或いは、別途作製した鏡面材を第2の可動板22上に接続することで形成しても良い。 Also, the second movable plate 22 has a mirror surface on the surface opposite to the magnet 15 described above, and has a sufficiently high reflectance with respect to the light used. The mirror surface of the second movable plate 22 may be formed of a sufficiently flat metal thin film, or may be formed by connecting a separately prepared mirror surface material on the second movable plate 22. .
 第1の可動部10の形状・サイズや材質に従って、2本の第1のねじり梁13A、13Bの形状とサイズは決定される。第1の可動部10の場合、前述の2本の第1のねじり梁13を軸として、第1の可動部10が1kHz程度のねじり共振周波数を持つように設計されている。 The shape and size of the two first torsion beams 13A and 13B are determined according to the shape, size and material of the first movable part 10. In the case of the first movable part 10, the first movable part 10 is designed to have a torsional resonance frequency of about 1 kHz with the two first torsion beams 13 as axes.
 また、第2の可動部20の形状・サイズや材質に従って、2本の第2のねじり梁23A、23Bの形状とサイズは決定される。第2の可動部20の場合、前述の2本の第2のねじり梁23を軸として、第2の可動部20が27kHz程度のねじり共振周波数を持つように設計されている。 Further, the shape and size of the two second torsion beams 23A and 23B are determined according to the shape, size and material of the second movable part 20. In the case of the second movable part 20, the second movable part 20 is designed to have a torsional resonance frequency of about 27 kHz around the two second torsion beams 23 described above.
 本実施形態1の場合、第2の可動板22の面内サイズは1x1平方ミリメートルとし、厚さは100μmとする。第2の可動部20は、面内サイズ3x3平方ミリメートル、厚さ100μmの矩形であり、ほぼ同サイズの第1の可動板12の上面に固定される。 In the case of the first embodiment, the in-plane size of the second movable plate 22 is 1 × 1 square millimeters and the thickness is 100 μm. The second movable portion 20 is a rectangle having an in-plane size of 3 × 3 square millimeters and a thickness of 100 μm, and is fixed to the upper surface of the first movable plate 12 having substantially the same size.
 第1の可動板12は、2本の第1のねじり梁13を介して、前述の第1の可動板12と一体成型された第1の枠体11(面内サイズ8x8平方ミリメートルとする)に接続されている。第1の可動板12には、磁石装填用の孔が空けられており、本実施形態1においては、サイズ1x1x0.5立方ミリメートルの永久磁石を装填することが出来る。 The first movable plate 12 is a first frame 11 integrally formed with the above-described first movable plate 12 via two first torsion beams 13 (with an in-plane size of 8 × 8 square millimeters). It is connected to the. The first movable plate 12 is provided with a magnet loading hole. In the first embodiment, a permanent magnet having a size of 1 × 1 × 0.5 cubic millimeters can be loaded.
 装填する磁石15の厚さについては、第1の可動板12、第2の可動部20、磁石15によって定まる重心が、第1のねじり梁13の回転中心軸(回動軸)付近に配置されるように決定する。 Regarding the thickness of the magnet 15 to be loaded, the center of gravity determined by the first movable plate 12, the second movable portion 20, and the magnet 15 is arranged near the rotation center axis (rotation axis) of the first torsion beam 13. Decide to do so.
 本実施形態1において、第1の可動板12および枠体11は、図1の下図が示すように、コイル30上に配置される。コイル30はヨーク部31と巻き線部32から成るが、ヨーク部31が持つギャップの隙間に、第1の可動部10に固定された磁石が配置される。ギャップのサイズは、3mm程度とする。ヨーク部31は、コイル30に流れる電流によって磁化する。 In the first embodiment, the first movable plate 12 and the frame 11 are disposed on the coil 30 as shown in the lower diagram of FIG. The coil 30 includes a yoke portion 31 and a winding portion 32, and a magnet fixed to the first movable portion 10 is disposed in a gap between the yoke portions 31. The size of the gap is about 3 mm. The yoke part 31 is magnetized by the current flowing through the coil 30.
 図2に、本実施形態1の2軸走査素子1を分解した模式図を示す。 FIG. 2 shows an exploded schematic view of the biaxial scanning element 1 of the first embodiment.
 第1の可動部10は、第1の可動板12、2本の第1のねじり梁13、第1の枠体11が一体成型されたものであり、寸法は長さL1、幅W1、厚さt1である。 The first movable portion 10 is formed by integrally molding a first movable plate 12, two first torsion beams 13, and a first frame 11, and the dimensions are a length L1, a width W1, and a thickness. It is t1.
 第2の可動部20は、第2の可動板22、2本の第2のねじり梁23A、23B、第2の枠体21が一体成型され、寸法は長さL2、幅W2、厚さt2である。第2の枠体21上には、第2の可動板22を駆動させるための圧電素子26が配置される。 In the second movable portion 20, a second movable plate 22, two second torsion beams 23A and 23B, and a second frame 21 are integrally molded, and the dimensions are a length L2, a width W2, and a thickness t2. It is. A piezoelectric element 26 for driving the second movable plate 22 is disposed on the second frame body 21.
 磁石15の長さは、Lm、幅はWm、厚さはtmである。磁石15は、第1の可動板12上に、第2の可動部20と反対側に固定される。図2では、第1の可動板12に磁石15用の孔を空けることを前提としており、この孔に磁石15を差し込むことで、第1の可動板12の回転時の慣性モーメントを低減させる。 The length of the magnet 15 is Lm, the width is Wm, and the thickness is tm. The magnet 15 is fixed on the first movable plate 12 on the side opposite to the second movable portion 20. In FIG. 2, it is assumed that a hole for the magnet 15 is made in the first movable plate 12, and the moment of inertia at the time of rotation of the first movable plate 12 is reduced by inserting the magnet 15 into this hole.
 図3Aは、第1の可動部10と第2の可動部20の配線を示した図である。第2の可動部20においては、圧電素子26を挟む下部電極41Aと上部電極41Bから電極42A、42Bを引き出し、第1の枠体11上に配置した電極43A、43Bへ、ボンディングワイヤ45によって通電する。さらに、第1の枠体11上に配置した電極43A、43Bは、引き出しパット44A、44Bと接続される。なお、ここでは圧電素子26Aから引き出しパット44A、44Bへの接続を示したが、圧電素子26B、26C、26Dについても、圧電素子26Aと同様に各引き出しパットへの配線が施される。 FIG. 3A is a diagram showing the wiring of the first movable part 10 and the second movable part 20. In the second movable portion 20, the electrodes 42 A and 42 B are drawn from the lower electrode 41 A and the upper electrode 41 B sandwiching the piezoelectric element 26, and the electrodes 43 A and 43 B arranged on the first frame 11 are energized by the bonding wire 45. To do. Furthermore, the electrodes 43A and 43B arranged on the first frame 11 are connected to the extraction pads 44A and 44B. Although the connection from the piezoelectric element 26A to the drawer pads 44A and 44B is shown here, the piezoelectric elements 26B, 26C and 26D are also wired to the respective drawer pads as in the piezoelectric element 26A.
 図3Bには、圧電素子26の断面図を記している。厚さ方向に下部電極41A、圧電素子26、上部電極41Bから構成される。本実施形態1では、膜厚高さ方向に分極した圧電素子26を仮定しており、上部電極41BがGnd、下部電極41Aに信号電圧V1(t)またはV2(t)を印加する。 FIG. 3B shows a cross-sectional view of the piezoelectric element 26. It consists of a lower electrode 41A, a piezoelectric element 26, and an upper electrode 41B in the thickness direction. In the first embodiment, the piezoelectric element 26 polarized in the film thickness height direction is assumed, and the upper electrode 41B applies Gnd and the lower electrode 41A applies a signal voltage V1 (t) or V2 (t).
 図4Aは、本2軸走査素子1の駆動状態の断面図である。 FIG. 4A is a cross-sectional view of the driving state of the biaxial scanning element 1.
 図4Aは、N回巻きのコイル30に電流Iを流すことによって、ヨークギャップ(g[m]とする)内で、図面右側の磁場が発生した状態を示す。このとき、基板に対して上向き磁化を持つ磁石15は、磁石下部が左側に、磁石上部が右側に吸引されることになり、図面奥行き方向のトルクが発生する。つまり、第1の可動板12は、図面で時計回りのモーメントを受け、回転する。この回転角θmechは、発生するトルクTq=NI/g、1本のねじり梁のばね定数kθ、を用いて式4のように記述できる。 FIG. 4A shows a state in which a magnetic field on the right side of the drawing is generated in the yoke gap (referred to as g [m]) by passing the current I through the N-turn coil 30. At this time, the magnet 15 having upward magnetization with respect to the substrate is attracted to the left side of the magnet and to the right side of the magnet, and generates torque in the depth direction of the drawing. That is, the first movable plate 12 receives a clockwise moment in the drawing and rotates. This rotation angle θ mech can be described as in Equation 4 using the torque T q = NI / g to be generated and the spring constant k θ of one torsion beam.
 θmech=Tq/kθ=NI/(gkθ)(4)
 例えば、コイル200回巻き(N=200)、電流が200mA、ヨーク間のギャップが3mmの時に可動板上の永久磁石が受ける磁場Hは、13000[A/m](≒150[Oe])となり、磁場として容易に生成可能な大きさである。
θ mech = T q / k θ = NI / (gk θ ) (4)
For example, the magnetic field H received by the permanent magnet on the movable plate when the coil has 200 turns (N = 200), the current is 200 mA, and the gap between the yokes is 3 mm is 13000 [A / m] (≈150 [Oe]). The size can be easily generated as a magnetic field.
 さらに、図4Bをもとに、第2の可動部20にSOI基板を用いて構成した例について示す。第2の可動板22および第2のねじり梁23は、厚さ30~100μm程度のSi活性層29を用いて作製されるが、下部に中央をくりぬかれたBOX層28(埋め込み酸化膜層)を介したSi支持層27の厚さが200μm程度あるため、ミラー25が±10度程度回転しても、第2の可動板22と第1の可動部10上面が接触することはない。そのため、ミラー25の逃げ孔は不要となり、磁石位置を自由に設定することが出来る。 Further, an example in which the second movable unit 20 is configured using an SOI substrate will be described with reference to FIG. 4B. The second movable plate 22 and the second torsion beam 23 are formed using a Si active layer 29 having a thickness of about 30 to 100 μm, and a BOX layer 28 (buried oxide film layer) hollowed in the center at the bottom. Since the thickness of the Si support layer 27 via is about 200 μm, even if the mirror 25 rotates about ± 10 degrees, the second movable plate 22 and the upper surface of the first movable part 10 do not come into contact with each other. Therefore, the escape hole of the mirror 25 becomes unnecessary, and the magnet position can be set freely.
 〔駆動方法の説明〕次に、実施形態1における2軸走査素子1の駆動方法について、例をあげて説明する。 [Description of Driving Method] Next, a driving method of the biaxial scanning element 1 in the first embodiment will be described with an example.
 図5Aの波形は、第1の可動板12を駆動させるために、コイル30に流す電流信号を示している。投影するレーザー光は、60Hzのフレームレートで垂直方向に等速になるよう駆動させるため、駆動電流も鋸波となる。本実施形態1においては、以下でも述べるように、1.0x1.0x0.5立方ミリメートルのネオジム磁石を2個用いる。この結果、第1の可動板12の共振周波数を1.0[kHz]、駆動電流を200[mA]、可動部は±11度の回転角を実現し、±22度の範囲に光を走査することが可能となった。 The waveform in FIG. 5A shows a current signal that flows through the coil 30 in order to drive the first movable plate 12. Since the laser light to be projected is driven at a frame rate of 60 Hz so as to have a constant speed in the vertical direction, the drive current also becomes a sawtooth wave. In the first embodiment, two 1.0 × 1.0 × 0.5 cubic millimeter neodymium magnets are used as described below. As a result, the resonance frequency of the first movable plate 12 is 1.0 [kHz], the drive current is 200 [mA], the movable part realizes a rotation angle of ± 11 degrees, and the light is scanned in a range of ± 22 degrees. It became possible to do.
 図5Bの波形は、第2の可動板22を駆動させるための、圧電素子26に印加する電圧信号を示している。例えば、圧電素子26A、26Bに対しては図内V1(t)を、圧電素子26C、26Dに対しては図内V2(t)の電圧を印加する。圧電素子26A、26Bと圧電素子26C、26Dそれぞれに対して、相補の電圧を印加することで、圧電素子26が発生する応力を効率的にねじり梁のねじり応力に活用できる。 5B shows a voltage signal applied to the piezoelectric element 26 for driving the second movable plate 22. For example, a voltage V1 (t) in the figure is applied to the piezoelectric elements 26A and 26B, and a voltage V2 (t) in the figure is applied to the piezoelectric elements 26C and 26D. By applying complementary voltages to the piezoelectric elements 26A and 26B and the piezoelectric elements 26C and 26D, the stress generated by the piezoelectric element 26 can be efficiently utilized for the torsional stress of the torsion beam.
 図6は、幅・長さとも3mm程度の第2の可動部20(Si材を仮定)に対し、第1の可動部10(第2の可動部20と同サイズのSUS材を仮定)を線形駆動するのに必要な磁石15のサイズを計算した結果である。第1の可動部10におけるねじり共振周波数は、線形駆動時にフィルタで効率的にカットオフできるように1.0[kHz]程度が望ましいが、この条件のもとで上記サイズを見積もると、上記サイズの小型磁石を使うことで±20度以上の光走査角が得られるという結果になった。 FIG. 6 shows that the first movable part 10 (assuming the SUS material of the same size as the second movable part 20) is used for the second movable part 20 (assuming the Si material) having a width and length of about 3 mm. It is the result of calculating the size of the magnet 15 required for linear driving. The torsional resonance frequency in the first movable part 10 is preferably about 1.0 [kHz] so that it can be efficiently cut off by a filter during linear drive. However, when the size is estimated under this condition, the size As a result, an optical scanning angle of ± 20 degrees or more was obtained by using a small magnet.
 以上から、第1の可動部10を60Hzで線形駆動させつつ、第2の可動部20を高速(本実施形態1の例では27kHz)で駆動させることで、第2の可動板22に搭載された鏡面は、これら2つの回転が合成された軌跡を描く。その結果、鏡面に入射したレーザー光が反射した後スクリーン上に描く映像は、2次元画像となる。 From the above, the first movable part 10 is mounted on the second movable plate 22 by driving the second movable part 20 at high speed (27 kHz in the example of the first embodiment) while linearly driving the first movable part 10 at 60 Hz. The mirror surface draws a locus in which these two rotations are combined. As a result, the image drawn on the screen after the laser beam incident on the mirror surface is reflected becomes a two-dimensional image.
 〔画像表示装置の構造の説明〕最後に、本発明の実施形態1の2軸走査装置が組み込まれる画像表示装置全体の構成および動作について説明する。 [Description of Structure of Image Display Device] Finally, the configuration and operation of the entire image display device incorporating the biaxial scanning device according to the first embodiment of the present invention will be described.
 図7に、本発明の実施形態1における画像表示装置の全体の概念図を示す。 FIG. 7 shows an overall conceptual diagram of the image display apparatus according to Embodiment 1 of the present invention.
 画像表示装置は、外部から供給される映像信号55に応じて変調された光束を生成する光束生成装置を備える。 The image display device includes a light beam generation device that generates a light beam modulated according to the video signal 55 supplied from the outside.
 光束生成装置は、光学系53と走査系54とを備える。光学系は、光束生成装置で生成された光を平行光化するためのコリメート光学系53aと、波長に関して選択的に反射・透過するダイクロイックミラー53bと、光束を合成するための合成光学系53cとを備える。走査系54は、この合成光学系53cで合成された光をスクリーン59に画像表示するために水平方向に走査する水平走査部58と、水平走査部58で水平方向に走査された光束を垂直方向に走査する垂直走査部57とから成る。この水平走査部58と垂直走査部57は、2軸ミラー50として1つの部材にまとめられており、1枚のミラーに上記合成された光を入射することによって、2次元走査された光をスクリーン59上に出射する。また、この出射光を補正するための光学系が備えられることもある。 The light beam generation device includes an optical system 53 and a scanning system 54. The optical system includes a collimating optical system 53a for collimating the light generated by the light beam generating device, a dichroic mirror 53b that selectively reflects and transmits the wavelength, and a combining optical system 53c for combining the light beams. Is provided. The scanning system 54 includes a horizontal scanning unit 58 that scans in the horizontal direction in order to display an image of the light combined by the combining optical system 53c on the screen 59, and a light beam that has been scanned in the horizontal direction by the horizontal scanning unit 58 in the vertical direction. And a vertical scanning unit 57 for scanning. The horizontal scanning unit 58 and the vertical scanning unit 57 are combined into one member as a biaxial mirror 50, and the combined light is incident on a single mirror, whereby the two-dimensionally scanned light is screened. 59 is emitted. Further, an optical system for correcting the emitted light may be provided.
 光束生成装置には映像信号55が入力され、その入力信号に基づいて画像を構成するための要素となる信号を発生させるための信号処理回路56を有する制御回路系51が設けられる。信号処理回路56において、赤(R)、緑(G)、青(B)の各映像信号55が生成され、光源系52に出力される。また、信号処理回路56は、水平走査部58で使用される水平同期信号と、垂直走査部57で使用される垂直同期信号をそれぞれ出力する。 The luminous flux generation apparatus is provided with a control circuit system 51 having a signal processing circuit 56 for generating a signal that is an element for constructing an image based on the input video signal 55. In the signal processing circuit 56, red (R), green (G), and blue (B) video signals 55 are generated and output to the light source system 52. The signal processing circuit 56 outputs a horizontal synchronization signal used by the horizontal scanning unit 58 and a vertical synchronization signal used by the vertical scanning unit 57, respectively.
 さらに光束生成装置は、信号処理回路から出力される3つの映像信号(R、G、B)をそれぞれ光束にするための光源系52を備えている。 Further, the light flux generation device includes a light source system 52 for making three video signals (R, G, B) output from the signal processing circuit into light fluxes.
 光源系52は、赤色レーザー駆動部(RED Drive)と、緑色レーザー駆動部(GREEN Drive)と、青色レーザー駆動部(BLUE Drive)とを有するレーザー駆動系52aを備える。赤色レーザー駆動部は、赤色の光束を発生させる赤色レーザーおよびそれを駆動するための赤色レーザー駆動回路とを備えている。緑色レーザー駆動部は、緑色の光束を発生させる緑色レーザーおよびそれを駆動するための緑色レーザー駆動回路とを備えている。青色レーザー駆動部は、青色の光束を発生させる青色レーザーおよびそれを駆動するための青色レーザー駆動回路とを備えている。なお、各レーザーとしては、半導体レーザーあるいは高調波発生機構(SHG)付き固定レーザーが想定される。 The light source system 52 includes a laser drive system 52a having a red laser drive unit (RED Drive), a green laser drive unit (GREEN Drive), and a blue laser drive unit (BLUE Drive). The red laser driving unit includes a red laser that generates a red luminous flux and a red laser driving circuit for driving the red laser. The green laser driving unit includes a green laser that generates a green light beam and a green laser driving circuit for driving the green laser. The blue laser driving unit includes a blue laser that generates a blue light flux and a blue laser driving circuit for driving the blue laser. As each laser, a semiconductor laser or a fixed laser with a harmonic generation mechanism (SHG) is assumed.
 各レーザー駆動部から出射したそれぞれの光束は、コリメート光学系53aによってそれぞれ平行光化された後、ダイクロイックミラー53bに入射される。これらのダイクロイックミラー53bにより、各レーザー光が波長に関して選択的に反射・透過される。 Each light beam emitted from each laser drive unit is collimated by the collimating optical system 53a and then enters the dichroic mirror 53b. These dichroic mirrors 53b selectively reflect and transmit each laser beam with respect to wavelength.
 これらの3つのダイクロイックミラー53bに入射した赤、緑、青の光束は、波長選択的に反射または透過して合成光学系53cに入射・集光され、集光された光が2軸ミラー50に入射される。 The red, green, and blue light beams incident on these three dichroic mirrors 53b are reflected or transmitted in a wavelength-selective manner and are incident / condensed to the combining optical system 53c. Incident.
 水平走査部58は、光束を水平方向に走査するための水平走査素子と、水平走査素子を駆動させる水平走査駆動回路と、水平走査素子の共振周波数を調整するための共振周波数調整回路とを有している。水平走査部58は、合成光学系53cから入射された光束を水平方向に走査するためのものである。この水平走査部58と信号処理回路56とは、水平光走査装置として機能する。 The horizontal scanning unit 58 includes a horizontal scanning element for scanning the light beam in the horizontal direction, a horizontal scanning driving circuit for driving the horizontal scanning element, and a resonance frequency adjusting circuit for adjusting the resonance frequency of the horizontal scanning element. is doing. The horizontal scanning unit 58 is for scanning the light beam incident from the combining optical system 53c in the horizontal direction. The horizontal scanning unit 58 and the signal processing circuit 56 function as a horizontal light scanning device.
 また、垂直走査部57は、光束を垂直方向に走査するための垂直走査素子と、垂直走査素子を駆動させるための垂直走査駆動回路とを備えている。垂直走査部57と信号処理回路56とは、垂直光走査装置として機能する。 The vertical scanning unit 57 includes a vertical scanning element for scanning the light beam in the vertical direction and a vertical scanning driving circuit for driving the vertical scanning element. The vertical scanning unit 57 and the signal processing circuit 56 function as a vertical light scanning device.
 以上の水平走査部58と垂直走査部57の動作が合成されることで2次元画像が形成される。 A two-dimensional image is formed by combining the operations of the horizontal scanning unit 58 and the vertical scanning unit 57 described above.
 なお、水平走査駆動回路と垂直走査駆動回路は、信号処理回路から出力される水平同期信号と垂直同期信号に基づいてそれぞれ駆動する。 The horizontal scanning driving circuit and the vertical scanning driving circuit are driven based on the horizontal synchronizing signal and the vertical synchronizing signal output from the signal processing circuit, respectively.
 〔効果の説明〕このように、本実施形態1によれば、第1の可動板、第2の可動部、および磁石から成る合成系の重心が、第1の可動板を支持する第1のねじり梁の断面中心軸上にあるため、回動時に不要な共振モードを抑制でき、安定した回動が可能となる。また、本実施形態1によれば、2軸走査素子におけるミラー部と可動磁石等が面内において重なる構造とすることで、小型化および駆動性能の最大化を実現することが出来る。この結果、高画質を実現した2軸走査素子の提供が可能となる。 [Description of Effects] As described above, according to the first embodiment, the center of gravity of the composite system including the first movable plate, the second movable portion, and the magnet supports the first movable plate. Since it is on the central axis of the cross section of the torsion beam, an unnecessary resonance mode can be suppressed during rotation, and stable rotation is possible. In addition, according to the first embodiment, the mirror portion and the movable magnet in the biaxial scanning element overlap each other in the plane, so that miniaturization and maximization of driving performance can be realized. As a result, it is possible to provide a biaxial scanning element that realizes high image quality.
 〔第2の実施形態〕実施形態2における2軸走査素子2について説明する
 〔構造の説明〕図8は、本発明の実施形態2における2軸走査素子2の構成を示している。図8の上図は、実施形態2の2軸走査素子2を正面(光反射面)から見た図であり、図8の下図は2軸走査素子2のB-B’における断面図である。また、図2(B)において、B-B’断面上にはない構成要素のいくつかを点線で示した。なお、図8において、実施形態1と同様の構成については、同じ符号を用いる。
[Second Embodiment] The biaxial scanning element 2 in the second embodiment will be described. [Description of Structure] FIG. 8 shows the configuration of the biaxial scanning element 2 in the second embodiment of the present invention. 8 is a view of the biaxial scanning element 2 of the second embodiment as viewed from the front (light reflecting surface), and the lower figure of FIG. 8 is a cross-sectional view of the biaxial scanning element 2 along BB ′. . In FIG. 2B, some of the components that are not on the BB ′ cross section are shown by dotted lines. In FIG. 8, the same reference numerals are used for the same configurations as those in the first embodiment.
 実施形態2において、ヨーク部31などの駆動系と第1の可動部10、および磁石15の磁化方向は、実施形態1と同一である。 In the second embodiment, the magnetization direction of the drive system such as the yoke portion 31 and the first movable portion 10 and the magnet 15 is the same as that of the first embodiment.
 また、第1の可動板12、第2の可動部220および磁石15から成る合成系の重心は、第1のねじり梁13A、13Bの断面中心軸上にある。すなわち、前述の合成系の重心は、図8の下図においてはb-b’軸上にある。 Further, the center of gravity of the composite system including the first movable plate 12, the second movable portion 220, and the magnet 15 is on the cross-sectional central axis of the first torsion beams 13A and 13B. That is, the center of gravity of the above-described synthesis system is on the b-b 'axis in the lower diagram of FIG.
 一方、第2の可動部220における第2の枠体221および圧電素子226の形状は、実施形態1とは異なり、円環状である。 On the other hand, unlike the first embodiment, the shapes of the second frame 221 and the piezoelectric element 226 in the second movable portion 220 are annular.
 本実施形態2の圧電素子形状により、第2の可動板22に対する駆動力を高めることが出来るという利点がある。また、圧電素子端から下部、上部電極41A、41Bを引き出した後、直接第1の可動部10の電極パッドにワイヤボンディング等で配線することができるため、実施形態1における電極42A、42Bを省略でき、第2の可動部220での配線やプロセスが簡単になるという利点がある。 The shape of the piezoelectric element of the second embodiment has an advantage that the driving force for the second movable plate 22 can be increased. In addition, since the lower and upper electrodes 41A and 41B are drawn from the end of the piezoelectric element and can be directly wired to the electrode pad of the first movable portion 10 by wire bonding or the like, the electrodes 42A and 42B in the first embodiment are omitted. In addition, there is an advantage that the wiring and the process in the second movable part 220 are simplified.
 駆動方法等は実施形態1と同一であるため、省略する。 Since the driving method and the like are the same as those in the first embodiment, they are omitted.
 〔効果の説明〕
 本実施形態2によれば、実施形態1と同様の効果を得ることができるのみならず、第2の可動部での配線やプロセスを簡略化することができる。そのため、素子構造をより簡略化することができる。また、第2の可動部および圧電素子が円環状であるため、第2の可動板の駆動力を高めることが可能となる。
[Explanation of effects]
According to the second embodiment, not only the same effect as in the first embodiment can be obtained, but also the wiring and the process in the second movable part can be simplified. Therefore, the element structure can be further simplified. In addition, since the second movable part and the piezoelectric element are annular, the driving force of the second movable plate can be increased.
 〔第3の実施形態〕実施形態3における2軸走査素子3について説明する。 [Third Embodiment] The biaxial scanning element 3 in the third embodiment will be described.
 〔構造の説明〕図9は、本発明の実施形態3における2軸走査素子3の構成を示している。図9の上図は、2軸走査素子3を正面(光反射面)から見た図であり、図9の下図は2軸走査素子3のC-C’における断面図である。また、図9の下図において、C-C’断面上にはない構成要素のいくつかを点線で示した。なお、図9において、実施形態1または2と同様の構成については、同じ符号を用いる。 [Description of Structure] FIG. 9 shows the configuration of the biaxial scanning element 3 according to Embodiment 3 of the present invention. 9 is a view of the biaxial scanning element 3 as viewed from the front (light reflecting surface), and the lower figure of FIG. 9 is a cross-sectional view taken along the line C-C ′ of the biaxial scanning element 3. In the lower diagram of FIG. 9, some of the components that are not on the C-C ′ cross section are indicated by dotted lines. In FIG. 9, the same reference numerals are used for the same configurations as those in the first or second embodiment.
 第2の可動部20は、実施形態1における第2の可動部20と同一であるが、第1の可動板12の裏面に貼り付けられた磁石315の磁化方向が実施形態1と異なり、第1の可動板12の面内と平行方向、第1および第2のねじり梁13、23に対して垂直方向となる。これに応じて、磁石315を駆動させるためのヨーク部31の構造は図9のようになる。本実施形態3では、ヨーク部31をヨークA33、B34、C35、D36に分離して記載する。また、ヨークA33とヨークC35、ヨークD36で、第1の可動板12に固定された磁石315を挟む配置とする。 The second movable part 20 is the same as the second movable part 20 in the first embodiment, but the magnetization direction of the magnet 315 attached to the back surface of the first movable plate 12 is different from that in the first embodiment. The first movable plate 12 is parallel to the in-plane direction and is perpendicular to the first and second torsion beams 13 and 23. In response to this, the structure of the yoke portion 31 for driving the magnet 315 is as shown in FIG. In the third embodiment, the yoke portion 31 is described as being separated into yokes A33, B34, C35, and D36. In addition, the magnet 315 fixed to the first movable plate 12 is sandwiched between the yoke A33, the yoke C35, and the yoke D36.
 また、第1の可動板12、第2の可動部20および磁石315から成る合成系の重心は、第1のねじり梁13A、13Bの断面中心軸上にある。すなわち、前述の合成系の重心は、図9の下図においてはc-c’軸上にある。 Further, the center of gravity of the composite system including the first movable plate 12, the second movable portion 20, and the magnet 315 is on the cross-sectional central axis of the first torsion beams 13A and 13B. That is, the center of gravity of the above-described synthesis system is on the c-c ′ axis in the lower diagram of FIG. 9.
 本実施形態3によると、薄型化が容易な面内磁化磁石を磁石315として利用することができる。そのため、第1の可動部10における慣性モーメントを低減することが出来る。 According to the third embodiment, an in-plane magnetized magnet that can be easily reduced in thickness can be used as the magnet 315. Therefore, the moment of inertia in the first movable part 10 can be reduced.
 ヨーク部31の構造の違いにより、ヨーク部31に現れる磁力線方向も、実施形態1、2とは異なる。図10は、本実施形態3の磁力線の様子を矢印の方向で示しており、図10Aでは、ヨークA33にS極、ヨークC35とヨークD36にN極が現れることによって、第1の可動部10に固定された磁石315を回転させる。コイル30に流す電流の向きを逆にすると、図10Bに示すように、ヨーク部31に現れる磁極が逆になる。従って第1の可動部を回転させる方向も逆になる。 Due to the difference in the structure of the yoke part 31, the direction of the lines of magnetic force appearing in the yoke part 31 is also different from the first and second embodiments. FIG. 10 shows the state of the magnetic force lines of the third embodiment in the direction of the arrow. In FIG. 10A, the first movable part 10 is shown by the S pole appearing in the yoke A33 and the N pole appearing in the yoke C35 and the yoke D36. The magnet 315 fixed to is rotated. When the direction of the current flowing through the coil 30 is reversed, the magnetic poles appearing in the yoke portion 31 are reversed as shown in FIG. 10B. Therefore, the direction in which the first movable part is rotated is reversed.
 なお、第2の可動部20の駆動方法などは実施形態1と同一であるため、省略する。 In addition, since the driving method of the 2nd movable part 20 is the same as Embodiment 1, it abbreviate | omits.
 〔効果の説明〕本実施形態3によれば、実施形態1および2とは異なり、磁石の磁化方向を第1の可動板12の面内と平行方向、第1および第2のねじり梁13、23に対して垂直方向となるように配置しても、実施形態1および2と同様の効果を得ることができる。また、本実施形態3によれば、実施形態1および2よりも磁石を薄型化できるため、2軸走査素子の構造を簡略化することができる。 [Explanation of Effects] According to the third embodiment, unlike the first and second embodiments, the magnetization direction of the magnet is parallel to the in-plane of the first movable plate 12, the first and second torsion beams 13, Even if it is arranged so as to be perpendicular to 23, the same effect as in the first and second embodiments can be obtained. Further, according to the third embodiment, since the magnet can be made thinner than in the first and second embodiments, the structure of the biaxial scanning element can be simplified.
 〔第4の実施形態〕実施形態4における2軸光走査装置4について説明する。 [Fourth Embodiment] The biaxial optical scanning device 4 in the fourth embodiment will be described.
 〔構造の説明〕図11は、実施形態4における2軸走査素子4の構成を示している。図11Aは、2軸走査素子4を正面(光反射面)から見た図であり、図11Bは2軸走査素子4のD-D’における断面図である。また、図11Bにおいて、D-D’断面上にはない構成要素のいくつかを点線で示した。なお、図11において、実施形態1~3と同様の構成については、同じ符号を用いる。 [Description of Structure] FIG. 11 shows the configuration of the biaxial scanning element 4 in the fourth embodiment. 11A is a view of the biaxial scanning element 4 as viewed from the front (light reflecting surface), and FIG. 11B is a cross-sectional view of the biaxial scanning element 4 along D-D ′. In FIG. 11B, some of the components that are not on the D-D ′ cross section are indicated by dotted lines. In FIG. 11, the same reference numerals are used for the same configurations as in the first to third embodiments.
 ヨーク部31などの駆動系と第1の可動部10の位置、および磁石415の磁化方向は、実施形態3と同一である。ただし、磁石415として、さらに薄型の小型磁石を想定している。また、実施形態1~3とは異なり、第2の可動部20が、第1の可動部10内に埋め込まれた配置を取ることが本実施形態4の特徴となる。 The drive system such as the yoke part 31 and the position of the first movable part 10 and the magnetization direction of the magnet 415 are the same as those in the third embodiment. However, a thinner thin magnet is assumed as the magnet 415. Further, unlike Embodiments 1 to 3, the second embodiment is characterized in that the second movable section 20 is embedded in the first movable section 10.
 また、第1の可動板12、第2の可動部20および磁石415から成る合成系の重心は、第1のねじり梁13A、13Bの断面中心軸上にある。すなわち、前述の合成系の重心は、図11Bにおいてはd-d’軸上にある。 Also, the center of gravity of the composite system composed of the first movable plate 12, the second movable portion 20, and the magnet 415 is on the cross-sectional central axis of the first torsion beams 13A and 13B. That is, the center of gravity of the above-described synthesis system is on the d-d ′ axis in FIG. 11B.
 本実施形態4のような配置により、第1の可動部10における慣性モーメントを低減させることが出来るため、第1のねじり梁13のばね定数を下げることができる結果、第1の可動板12の走査角を向上することが出来る。 Since the moment of inertia in the first movable part 10 can be reduced by the arrangement as in the fourth embodiment, the spring constant of the first torsion beam 13 can be lowered. The scanning angle can be improved.
 実施形態4の配置を取ることによって走査性能上有利に働くのは、充分に薄い磁石を用いることで可動部1の重心を回転中心上に配置することができる場合である。 The arrangement of the fourth embodiment is advantageous in terms of scanning performance when the center of gravity of the movable part 1 can be arranged on the center of rotation by using a sufficiently thin magnet.
 なお、駆動方法等は実施形態3と同一であるため、省略する。 Note that the driving method and the like are the same as those in the third embodiment, and thus will be omitted.
 〔効果の説明〕本実施形態4によれば、実施形態3よりもさらに薄い磁石を用いるため、2軸走査素子の重量分布を、第1の可動板、第2の可動部、および磁石から成る合成系の重心に向けて小さくすることができ、より安定した走査が可能となる。 [Explanation of Effects] According to the fourth embodiment, since a magnet thinner than that of the third embodiment is used, the weight distribution of the biaxial scanning element is composed of the first movable plate, the second movable portion, and the magnet. The size can be reduced toward the center of gravity of the synthesis system, and more stable scanning is possible.
 〔第5の実施形態〕実施形態5における2軸走査装置5について説明する。 [Fifth Embodiment] The biaxial scanning device 5 in the fifth embodiment will be described.
 〔構造の説明〕図12は、本発明の実施形態5における1軸走査素子5の構成を示している。図12Aは、2軸走査素子5を正面(光反射面)から見た図であり、図12Bは2軸走査素子5のE-E’における断面図である。また、図12Bにおいて、E-E’断面上にはない構成要素のいくつかを点線で示した。なお、図12において、実施形態1~4と同様の構成については、同じ符号を用いる。 [Description of Structure] FIG. 12 shows the configuration of the uniaxial scanning element 5 according to the fifth embodiment of the present invention. 12A is a view of the biaxial scanning element 5 as viewed from the front (light reflecting surface), and FIG. 12B is a cross-sectional view of the biaxial scanning element 5 at E-E ′. In FIG. 12B, some of the components that are not on the E-E ′ cross section are shown by dotted lines. In FIG. 12, the same reference numerals are used for the same configurations as in the first to fourth embodiments.
 ヨークなどの駆動系と第1の可動部10の位置、および磁石15の磁化方向は、実施形態1と同一である。 The drive system such as a yoke, the position of the first movable unit 10, and the magnetization direction of the magnet 15 are the same as those in the first embodiment.
 一方、第2の可動部520の面内方向が、実施形態1~4の配置を90度面内で回転させた配置になっている。このため、第1の可動板12における第1のねじり梁13と、第2の可動板22における第2のねじり梁23が、同一方向を向いている。従って本実施形態5は、1軸の光走査しか行わない。つまり、本実施形態5の目的は2次元光走査ではなく、1軸光走査の走査角拡大である。 On the other hand, the in-plane direction of the second movable part 520 is an arrangement obtained by rotating the arrangements of the first to fourth embodiments 90 degrees in the plane. For this reason, the first torsion beam 13 in the first movable plate 12 and the second torsion beam 23 in the second movable plate 22 face the same direction. Therefore, the fifth embodiment performs only uniaxial optical scanning. That is, the purpose of the fifth embodiment is not the two-dimensional optical scanning but the scanning angle expansion of the uniaxial optical scanning.
 また、第1の可動板12、第2の可動部520および磁石15から成る合成系の重心は、第1のねじり梁13A、13Bの断面中心軸上にある。すなわち、前述の合成系の重心は、図12Bにおいてはe-e’軸上にある。 Also, the center of gravity of the composite system composed of the first movable plate 12, the second movable portion 520, and the magnet 15 is on the cross-sectional central axis of the first torsion beams 13A and 13B. That is, the center of gravity of the above-described synthesis system is on the e-e 'axis in FIG. 12B.
 第1の可動部10の動作タイミングと第2の可動部520の動作タイミングを同期させることによって、走査される範囲が拡大される。これは、ある時刻tにおける最終的な走査角θFin(t)が、式5のように、第1の可動板12による走査角θ1(t)と、第2の可動板22による走査角θ2(t)の和で表されるためである。 By synchronizing the operation timing of the first movable unit 10 and the operation timing of the second movable unit 520, the scanned range is expanded. This is because the final scanning angle θ Fin (t) at a certain time t is equal to the scanning angle θ 1 (t) by the first movable plate 12 and the scanning angle by the second movable plate 22 as shown in Equation 5. This is because it is represented by the sum of θ 2 (t).
 θFin(t)=θ1 (t)+θ2 (t)(5)
 図13A及び図13Bは、第1および第2の可動板12、22をともに非共振(特に線形駆動)する時に、θ1 (t)とθ2 (t)の同期を取るための入力信号を示している。第1の可動部10に対する駆動回路には60Hzの線形電流信号を、第2の可動部520に対する駆動回路には60Hzの線形電圧信号を与える。ただし、圧電素子526Aおよび526Bに対する信号と、圧電素子526Cおよび526Dに対する信号は逆相とすることで、第2の可動部520が回転する角度は、V1(t)のみ(またはV2(t)のみ)の時と比べて増大する。
θ Fin (t) = θ 1 (t) + θ 2 (t) (5)
13A and 13B show an input signal for synchronizing θ 1 (t) and θ 2 (t) when both the first and second movable plates 12 and 22 are non-resonant (particularly linear drive). Show. A 60 Hz linear current signal is applied to the drive circuit for the first movable unit 10, and a 60 Hz linear voltage signal is applied to the drive circuit for the second movable unit 520. However, since the signals for the piezoelectric elements 526A and 526B and the signals for the piezoelectric elements 526C and 526D are in reverse phase, the angle at which the second movable portion 520 rotates is only V1 (t) (or only V2 (t)). ) Increase compared to
 図14A及び図14Bは、第1および第2の可動板12、22をともに共振駆動する時に、θ1 (t)とθ2 (t)の同期を取るための入力信号を示している。第1の可動部10に対する駆動回路には27[kHz]のsin的電流信号を、第2の可動部520に対する駆動回路には27[kHz]のsin的電圧信号を与える。ただし、圧電素子526Aと526Bに対する信号と、圧電素子526Cと526Dに対する信号は逆相とする。第2の可動部520が回転する角度は、V1(t)のみ(またはV2(t)のみ)の時と比べて増大する。 FIGS. 14A and 14B show input signals for synchronizing θ 1 (t) and θ 2 (t) when both the first and second movable plates 12 and 22 are resonantly driven. A sinusoidal current signal of 27 [kHz] is applied to the driving circuit for the first movable part 10, and a sinous voltage signal of 27 [kHz] is applied to the driving circuit for the second movable part 520. However, the signals for the piezoelectric elements 526A and 526B and the signals for the piezoelectric elements 526C and 526D are out of phase. The angle at which the second movable portion 520 rotates is increased as compared with the case of only V1 (t) (or only V2 (t)).
 上記の非共振駆動、共振駆動いずれの場合でも、1軸光走査素子としたときの走査角は、第1の走査素子のみ、または第2の走査素子のみ存在するときより増大する。 In either case of the non-resonance driving or the resonance driving, the scanning angle when the uniaxial optical scanning element is used is larger than when only the first scanning element or only the second scanning element is present.
 本発明の実施形態5によれば、第1の可動部と第2の可動部に同期した信号を与えることで、走査角を大幅に拡大した1軸走査素子を提供することができる。 According to the fifth embodiment of the present invention, it is possible to provide a uniaxial scanning element having a greatly expanded scanning angle by providing a signal synchronized with the first movable part and the second movable part.
 以上、本発明について実施形態を用いて説明してきたが、本発明は上記各実施形態に限定されず、本発明の技術思想の範囲内において、各実施形態は適宜変更され得ることは明らかである。 As mentioned above, although this invention was demonstrated using embodiment, this invention is not limited to said each embodiment, It is clear that each embodiment can be suitably changed within the range of the technical idea of this invention. .
 上記の実施形態の一部又は全部は、以下の付記のようにも記載されうるが、以下には限られない。
(付記1)
電流を印加することによって磁化するコイルによって支持された第1の枠体と、
前記第1の枠体の内側に設けられた一対の第1の梁部と、
前記第1の梁部によって前記第1の枠板に回動可能に連結された第1の可動板と、
前記第1の可動板に設けられた磁石と、を有する第1の可動部と、
前記第1の可動板に連結された第2の枠体と、
前記第2の枠体の内側に設けられた一対の第2の梁部と、
前記第2の梁部によって前記第2の枠体に回動可能に連結され、少なくとも一方の面に光の反射面を含む第2の可動板と、を有する第2の可動部と、を備え、
前記第1の可動板と前記第2の可動部と前記磁石とから成る合成系の重心が、前記第1の梁部の断面中心軸上に設定されていることを特徴とする光走査素子。
(付記2)
前記第2の枠体には前記第2の可動部を駆動する圧電素子が設けられ、
前記第1の可動部は磁気駆動手段で駆動され、
前記第2の可動部は圧電駆動手段で駆動されることを特徴とする付記1に記載の光走査素子。
(付記3)
前記コイルは、
巻き線部と、
前記巻き線部に流した電流によって磁化する第1のヨーク端及び第2のヨーク端を有するヨーク部と、を備え、
前記第1の枠体は前記第1及び第2のヨーク端によって支持され、
前記磁石は前記第1のヨーク端と前記第2のヨーク端とを結ぶ概直線上に配置されることを特徴とする付記1に記載の光走査素子。
(付記4)
前記第2の枠体の少なくとも一方の面上に前記圧電素子を備えることを特徴とする付記2に記載の光走査素子。
(付記5)
前記第1の梁部の回動軸と、前記第2の梁部と回動軸とが直交することを特徴とする付記1に記載の光走査素子。
(付記6)
前記第1のヨーク端の磁極と前記第2のヨーク端の磁極とは異なる極であり、
前記磁石の磁化方向は、前記第1の可動板の主面に対して垂直な方向であることを特徴とする付記3に記載の光走査素子。
(付記7)
前記ヨーク部は、さらに前記磁石と対面する第3のヨーク端を含み、
前記第1のヨーク端の磁極と前記第2のヨーク端の磁極とは同じ極であり、
前記第3のヨーク端の磁極は、前記第1のヨーク端及び前記第2のヨーク端とは異なる極であり、
前記磁石の磁化方向は、前記第1の可動板の主面に対して平行な方向であることを特徴とする付記3に記載の光走査素子。
(付記8)
前記第1の梁部の回動軸と、前記第2の梁部と回動軸とが平行であることを特徴とする付記1に記載の光走査素子。
(付記9)
前記圧電素子の両主面にはそれぞれ上部電極及び下部電極が設けられ、
前記上部電極および前記下部電極は、前記第1の枠体上に設けられた複数の電極パッドとワイヤボンディングによって配線されていることを特徴とする付記4に記載の光走査素子。
(付記10)
付記1乃至9のいずれか一項に記載した光走査素子を備えることを特徴とする画像表示装置。
A part or all of the above-described embodiment can be described as in the following supplementary notes, but is not limited thereto.
(Appendix 1)
A first frame supported by a coil that is magnetized by applying an electric current;
A pair of first beam portions provided inside the first frame,
A first movable plate rotatably connected to the first frame plate by the first beam portion;
A first movable part having a magnet provided on the first movable plate;
A second frame coupled to the first movable plate;
A pair of second beam portions provided inside the second frame,
A second movable part having a second movable plate rotatably connected to the second frame body by the second beam part and including a light reflecting surface on at least one surface thereof. ,
An optical scanning element characterized in that a center of gravity of a composite system composed of the first movable plate, the second movable portion, and the magnet is set on the central axis of the cross section of the first beam portion.
(Appendix 2)
The second frame body is provided with a piezoelectric element that drives the second movable part,
The first movable part is driven by magnetic drive means;
2. The optical scanning element according to appendix 1, wherein the second movable part is driven by a piezoelectric driving unit.
(Appendix 3)
The coil is
Winding part,
A yoke portion having a first yoke end and a second yoke end that are magnetized by a current passed through the winding portion, and
The first frame is supported by the first and second yoke ends;
2. The optical scanning element according to appendix 1, wherein the magnet is disposed on a substantially straight line connecting the first yoke end and the second yoke end.
(Appendix 4)
The optical scanning element according to appendix 2, wherein the piezoelectric element is provided on at least one surface of the second frame.
(Appendix 5)
The optical scanning element according to appendix 1, wherein the rotation axis of the first beam portion, the second beam portion, and the rotation axis are orthogonal to each other.
(Appendix 6)
The magnetic pole at the first yoke end and the magnetic pole at the second yoke end are different poles,
The optical scanning element according to appendix 3, wherein the magnetization direction of the magnet is a direction perpendicular to a main surface of the first movable plate.
(Appendix 7)
The yoke portion further includes a third yoke end facing the magnet,
The magnetic pole at the first yoke end and the magnetic pole at the second yoke end are the same pole,
The magnetic pole of the third yoke end is a pole different from the first yoke end and the second yoke end,
4. The optical scanning element according to appendix 3, wherein the magnetization direction of the magnet is a direction parallel to the main surface of the first movable plate.
(Appendix 8)
The optical scanning element according to appendix 1, wherein the rotation axis of the first beam portion, the second beam portion, and the rotation axis are parallel to each other.
(Appendix 9)
An upper electrode and a lower electrode are provided on both main surfaces of the piezoelectric element,
The optical scanning element according to appendix 4, wherein the upper electrode and the lower electrode are wired to a plurality of electrode pads provided on the first frame by wire bonding.
(Appendix 10)
An image display device comprising the optical scanning element according to any one of appendices 1 to 9.
 以上、実施形態を参照して本願発明を説明してきたが、本願発明は上記実施形態に限定されるものではない。本願発明の構成や詳細には、本願発明のスコープ内で当業者が理解し得る様々な変更をすることができる。 Although the present invention has been described above with reference to the embodiments, the present invention is not limited to the above embodiments. Various changes that can be understood by those skilled in the art can be made to the configuration and details of the present invention within the scope of the present invention.
 この出願は、2012年2月17日に出願された日本出願特願2012-32744を基礎とする優先権を主張し、その開示の全てをここに取り込む。 This application claims priority based on Japanese Patent Application No. 2012-32744 filed on February 17, 2012, the entire disclosure of which is incorporated herein.
 1,2,3,4  2軸走査素子
 5  1軸走査素子
 10  第1の可動部
 11  第1の枠体
 12  第1の可動板
 13,13A,13B  第1のねじり梁
 15,315,415  磁石
 20,220,520  第2の可動部
 21,221  第2の枠体
 22  第2の可動板
 23,23A,23B  第2のねじり梁
 25  ミラー
 26,26A,26B,26C,26D  圧電素子
 27  Si支持層
 28  BOX層
 29  Si活性層
 30  コイル
 31  ヨーク部
 32  巻き線部
 33,34,35,36  ヨークA,ヨークB,ヨークC,ヨークD
 41A  下部電極
 41B  上部電極
 42A,42B,43A,43B  電極
 44A,44B  引き出しパット
 45  ボンディングワイヤ
 50  2軸ミラー
 51  制御回路系
 52  光源系
 52a  レーザー駆動系
 53  光学系
 53a  コリメート光学系
 53b  ダイクロイックミラー
 53c  合成光学系
 54  走査系
 55  映像信号
 56  信号処理回路
 57  垂直走査部
 58  水平走査部
 59  スクリーン
 226,526,526A,526B,526C,526D  圧電素子
1, 2, 3, 4 Biaxial scanning element 5 Uniaxial scanning element 10 First movable part 11 First frame 12 First movable plate 13, 13A, 13B First torsion beam 15, 315, 415 Magnet 20, 220, 520 Second movable part 21, 221 Second frame 22 Second movable plate 23, 23A, 23B Second torsion beam 25 Mirror 26, 26A, 26B, 26C, 26D Piezoelectric element 27 Si support Layer 28 BOX layer 29 Si active layer 30 Coil 31 Yoke part 32 Winding part 33, 34, 35, 36 Yoke A, yoke B, yoke C, yoke D
41A Lower electrode 41B Upper electrode 42A, 42B, 43A, 43B Electrode 44A, 44B Lead pad 45 Bonding wire 50 Biaxial mirror 51 Control circuit system 52 Light source system 52a Laser drive system 53 Optical system 53a Collimating optical system 53b Dichroic mirror 53c Synthetic optics System 54 Scanning System 55 Video Signal 56 Signal Processing Circuit 57 Vertical Scanning Unit 58 Horizontal Scanning Unit 59 Screen 226, 526, 526A, 526B, 526C, 526D Piezoelectric Element

Claims (10)

  1.  電流を印加することによって磁化するコイルによって支持された第1の枠体と、
     前記第1の枠体の内側に設けられた一対の第1の梁部と、
     前記第1の梁部によって前記第1の枠板に回動可能に連結された第1の可動板と、
     前記第1の可動板に設けられた磁石と、を有する第1の可動部と、
     前記第1の可動板に連結された第2の枠体と、
     前記第2の枠体の内側に設けられた一対の第2の梁部と、
     前記第2の梁部によって前記第2の枠体に回動可能に連結され、少なくとも一方の面に光の反射面を含む第2の可動板と、を有する第2の可動部と、を備え、
     前記第1の可動板と前記第2の可動部と前記磁石とから成る合成系の重心が、前記第1の梁部の断面中心軸上に設定されていることを特徴とする光走査素子。
    A first frame supported by a coil that is magnetized by applying an electric current;
    A pair of first beam portions provided inside the first frame,
    A first movable plate rotatably connected to the first frame plate by the first beam portion;
    A first movable part having a magnet provided on the first movable plate;
    A second frame coupled to the first movable plate;
    A pair of second beam portions provided inside the second frame,
    A second movable part having a second movable plate rotatably connected to the second frame by the second beam part and including a light reflecting surface on at least one surface thereof. ,
    An optical scanning element, wherein a center of gravity of a composite system including the first movable plate, the second movable portion, and the magnet is set on a central axis of a cross section of the first beam portion.
  2.  前記第2の枠体には前記第2の可動部を駆動する圧電素子が設けられ、
     前記第1の可動部は磁気駆動手段で駆動され、
     前記第2の可動部は圧電駆動手段で駆動されることを特徴とする請求項1に記載の光走査素子。
    The second frame body is provided with a piezoelectric element that drives the second movable part,
    The first movable part is driven by magnetic drive means;
    The optical scanning element according to claim 1, wherein the second movable portion is driven by piezoelectric driving means.
  3.  前記コイルは、
     巻き線部と、
     前記巻き線部に流した電流によって磁化する第1のヨーク端及び第2のヨーク端を有するヨーク部と、を備え、
     前記第1の枠体は前記第1及び第2のヨーク端によって支持され、
     前記磁石は前記第1のヨーク端と前記第2のヨーク端とを結ぶ概直線上に配置されることを特徴とする請求項1に記載の光走査素子。
    The coil is
    Winding part,
    A yoke portion having a first yoke end and a second yoke end that are magnetized by a current passed through the winding portion, and
    The first frame is supported by the first and second yoke ends;
    The optical scanning element according to claim 1, wherein the magnet is arranged on a substantially straight line connecting the first yoke end and the second yoke end.
  4.  前記第2の枠体の少なくとも一方の面上に前記圧電素子を備えることを特徴とする請求項2に記載の光走査素子。 3. The optical scanning element according to claim 2, wherein the piezoelectric element is provided on at least one surface of the second frame.
  5.  前記第1の梁部の回動軸と、前記第2の梁部と回動軸とが直交することを特徴とする請求項1に記載の光走査素子。 2. The optical scanning element according to claim 1, wherein the rotation axis of the first beam portion is orthogonal to the second beam portion and the rotation axis.
  6.  前記第1のヨーク端の磁極と前記第2のヨーク端の磁極とは異なる極であり、
     前記磁石の磁化方向は、前記第1の可動板の主面に対して垂直な方向であることを特徴とする請求項3に記載の光走査素子。
    The magnetic pole at the first yoke end and the magnetic pole at the second yoke end are different poles,
    The optical scanning element according to claim 3, wherein the magnetization direction of the magnet is a direction perpendicular to a main surface of the first movable plate.
  7.  前記ヨーク部は、さらに前記磁石と対面する第3のヨーク端を含み、
     前記第1のヨーク端の磁極と前記第2のヨーク端の磁極とは同じ極であり、
     前記第3のヨーク端の磁極は、前記第1のヨーク端及び前記第2のヨーク端とは異なる極であり、
     前記磁石の磁化方向は、前記第1の可動板の主面に対して平行な方向であることを特徴とする請求項3に記載の光走査素子。
    The yoke portion further includes a third yoke end facing the magnet,
    The magnetic pole at the first yoke end and the magnetic pole at the second yoke end are the same pole,
    The magnetic pole of the third yoke end is a pole different from the first yoke end and the second yoke end,
    The optical scanning element according to claim 3, wherein the magnetization direction of the magnet is a direction parallel to a main surface of the first movable plate.
  8.  前記第1の梁部の回動軸と、前記第2の梁部と回動軸とが平行であることを特徴とする請求項1に記載の光走査素子。 2. The optical scanning element according to claim 1, wherein the rotation axis of the first beam portion is parallel to the second beam portion and the rotation axis.
  9.  前記圧電素子の両主面にはそれぞれ上部電極及び下部電極が設けられ、
     前記上部電極および前記下部電極は、前記第1の枠体上に設けられた複数の電極パッドとワイヤボンディングによって配線されていることを特徴とする請求項4に記載の光走査素子。
    An upper electrode and a lower electrode are provided on both main surfaces of the piezoelectric element,
    5. The optical scanning element according to claim 4, wherein the upper electrode and the lower electrode are wired by wire bonding to a plurality of electrode pads provided on the first frame.
  10.  請求項1乃至9のいずれか一項に記載した光走査素子を備えることを特徴とする画像表示装置。 An image display device comprising the optical scanning element according to any one of claims 1 to 9.
PCT/JP2013/000751 2012-02-17 2013-02-13 Optical scanning element and image display device WO2013121774A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012032744 2012-02-17
JP2012-032744 2012-02-17

Publications (1)

Publication Number Publication Date
WO2013121774A1 true WO2013121774A1 (en) 2013-08-22

Family

ID=48983907

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/000751 WO2013121774A1 (en) 2012-02-17 2013-02-13 Optical scanning element and image display device

Country Status (1)

Country Link
WO (1) WO2013121774A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3012679A1 (en) * 2014-10-23 2016-04-27 Stanley Electric Co., Ltd. Piezoelectric and electromagnetic type two-dimensional optical deflector and its manufacturing method
US20210302687A1 (en) * 2018-08-02 2021-09-30 Lg Innotek Co., Ltd. A lens actuator and a camera module including the same

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0360311U (en) * 1989-10-19 1991-06-13
JP2004240140A (en) * 2003-02-05 2004-08-26 Olympus Corp Optical element supporting mechanism
JP2007094146A (en) * 2005-09-29 2007-04-12 Brother Ind Ltd Optical scanner and method of manufacturing the same
JP2008040353A (en) * 2006-08-09 2008-02-21 Seiko Epson Corp Optical device, optical scanner and image forming apparatus
JP2008058752A (en) * 2006-09-01 2008-03-13 Canon Inc Light deflector and image forming apparatus using same
JP2008216597A (en) * 2007-03-02 2008-09-18 Seiko Epson Corp Actuator, optical scanner and image forming apparatus
JP2008292741A (en) * 2007-05-24 2008-12-04 Canon Inc Optical deflector and image forming apparatus with the same, and scanning type display device
JP2010286589A (en) * 2009-06-10 2010-12-24 Victor Co Of Japan Ltd Optical deflector and image display device using the same
WO2011118296A1 (en) * 2010-03-24 2011-09-29 日本電気株式会社 Magnetic force drive device, optical scanning device, and image display device

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0360311U (en) * 1989-10-19 1991-06-13
JP2004240140A (en) * 2003-02-05 2004-08-26 Olympus Corp Optical element supporting mechanism
JP2007094146A (en) * 2005-09-29 2007-04-12 Brother Ind Ltd Optical scanner and method of manufacturing the same
JP2008040353A (en) * 2006-08-09 2008-02-21 Seiko Epson Corp Optical device, optical scanner and image forming apparatus
JP2008058752A (en) * 2006-09-01 2008-03-13 Canon Inc Light deflector and image forming apparatus using same
JP2008216597A (en) * 2007-03-02 2008-09-18 Seiko Epson Corp Actuator, optical scanner and image forming apparatus
JP2008292741A (en) * 2007-05-24 2008-12-04 Canon Inc Optical deflector and image forming apparatus with the same, and scanning type display device
JP2010286589A (en) * 2009-06-10 2010-12-24 Victor Co Of Japan Ltd Optical deflector and image display device using the same
WO2011118296A1 (en) * 2010-03-24 2011-09-29 日本電気株式会社 Magnetic force drive device, optical scanning device, and image display device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3012679A1 (en) * 2014-10-23 2016-04-27 Stanley Electric Co., Ltd. Piezoelectric and electromagnetic type two-dimensional optical deflector and its manufacturing method
JP2016085299A (en) * 2014-10-23 2016-05-19 スタンレー電気株式会社 Two-axis optical deflector and method of manufacturing the same
US9632309B2 (en) 2014-10-23 2017-04-25 Stanley Electric Co., Ltd. Piezoelectric and electromagnetic type two-dimensional optical deflector and its manufacturing method
US20210302687A1 (en) * 2018-08-02 2021-09-30 Lg Innotek Co., Ltd. A lens actuator and a camera module including the same

Similar Documents

Publication Publication Date Title
US9122059B2 (en) Optical scanning device
JP4232835B2 (en) Actuator, optical scanner and image forming apparatus
JP6056179B2 (en) Optical scanner and image forming apparatus
JP5720673B2 (en) Magnetic force type driving device, optical scanning device, and image display device
JP5983056B2 (en) Image display device and head mounted display
JP5983055B2 (en) Image display device and head mounted display
WO2012115264A1 (en) Light scanning device
KR20140145074A (en) Optical device, optical scanner, and image display apparatus
JP6028400B2 (en) Image display device and head mounted display
JP5991024B2 (en) Mirror device, optical scanner and image forming apparatus
WO2013005527A1 (en) Optical scanning apparatus, image display apparatus, and optical scanning method
US8027072B2 (en) Optical device, optical scanner, and image forming apparatus
JP6098198B2 (en) Optical scanner, image display device, head-mounted display, and optical scanner manufacturing method
JP2009109778A (en) Mirror device
JP4984987B2 (en) Actuator, optical scanner and image forming apparatus
WO2013121774A1 (en) Optical scanning element and image display device
JP5991001B2 (en) Optical device, optical scanner, and image display device
JP5923933B2 (en) Mirror device, optical scanner and image forming apparatus
JP5803586B2 (en) Mirror device, optical scanner and image forming apparatus
WO2014013761A1 (en) Optical scanning element and optical scanning device
JP2011100074A (en) Optical device, optical scanner and image forming apparatus
JP2016147360A (en) Actuator, optical scanner and image display device
JP2017026730A (en) Optical scanner, image forming apparatus and head-mounted display
WO2014013760A1 (en) Optical beam scanning element and optical beam scanning device
JP2013231871A (en) Optical scanner and image forming apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13749950

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13749950

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP