WO2013121515A1 - 需要電力予測システム - Google Patents

需要電力予測システム Download PDF

Info

Publication number
WO2013121515A1
WO2013121515A1 PCT/JP2012/053328 JP2012053328W WO2013121515A1 WO 2013121515 A1 WO2013121515 A1 WO 2013121515A1 JP 2012053328 W JP2012053328 W JP 2012053328W WO 2013121515 A1 WO2013121515 A1 WO 2013121515A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
demand
industrial plant
prediction
future
Prior art date
Application number
PCT/JP2012/053328
Other languages
English (en)
French (fr)
Inventor
馨 久保田
宏幸 今成
Original Assignee
東芝三菱電機産業システム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東芝三菱電機産業システム株式会社 filed Critical 東芝三菱電機産業システム株式会社
Priority to PCT/JP2012/053328 priority Critical patent/WO2013121515A1/ja
Priority to KR1020147022089A priority patent/KR101631781B1/ko
Priority to JP2013558607A priority patent/JP5768903B2/ja
Priority to CN201280069695.8A priority patent/CN104137373B/zh
Priority to US14/374,986 priority patent/US9727931B2/en
Priority to TW101119085A priority patent/TWI463335B/zh
Publication of WO2013121515A1 publication Critical patent/WO2013121515A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
    • G06Q50/06Energy or water supply
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B13/00Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion
    • G05B13/02Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric
    • G05B13/04Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric involving the use of models or simulators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/003Load forecast, e.g. methods or systems for forecasting future load demand
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/004Generation forecast, e.g. methods or systems for forecasting future energy generation
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2310/00The network for supplying or distributing electric power characterised by its spatial reach or by the load
    • H02J2310/10The network having a local or delimited stationary reach
    • H02J2310/12The local stationary network supplying a household or a building
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02B90/20Smart grids as enabling technology in buildings sector
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P80/00Climate change mitigation technologies for sector-wide applications
    • Y02P80/10Efficient use of energy, e.g. using compressed air or pressurized fluid as energy carrier
    • Y02P80/14District level solutions, i.e. local energy networks
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S20/00Management or operation of end-user stationary applications or the last stages of power distribution; Controlling, monitoring or operating thereof

Definitions

  • the present invention relates to a power demand prediction system applied to an industrial plant equipped with a plurality of devices.
  • the entire power used in the plant is covered by both the power generated by the private power generation and the power purchased from the power company (contract power).
  • electric power (demand electric power) required in the future is predicted, and the amount of electric power generated by private power generation (the amount of private power generation) is adjusted based on the predicted value. That is, the total amount (that is, the total value of the private power generation amount and the contract power amount) is set so that the amount of power supplied to the plant does not fall below the predicted value.
  • Patent Document 1 describes a system for predicting power demand.
  • demand power is predicted based on the amount of power (actual value) used in the entire plant.
  • This invention was made in order to solve the above-mentioned subject, and the objective is to improve the prediction accuracy of the demand power in an industrial plant, and the demand which can reduce private power generation amount and contract power amount appropriately. It is to provide a power prediction system.
  • a demand power prediction system is a demand power prediction system applied to an industrial plant provided with a plurality of devices, and collects power usage data for each device and stores it in a first storage means. Based on the collection means, the second storage means storing the production schedule in the industrial plant, the used power data stored in the first storage means, and the past production schedule stored in the second storage means Based on the model creation means for creating the power amount calculation model for each product type for each device, the power amount calculation model created by the model creation means, and the future production schedule stored in the second storage means The first prediction means for calculating the future power demand is provided for each device.
  • the demand power prediction system can improve the prediction accuracy of demand power in an industrial plant, and can appropriately reduce the amount of private power generation and contract power.
  • FIG. 1 It is a figure which shows the structural example of an industrial plant. It is a block diagram which shows the demand power prediction system in Embodiment 1 of this invention. It is a figure for demonstrating the function of a model preparation means. It is a figure for demonstrating the function of a demand power prediction means. It is a figure which shows the outline of the hot rolling factory of a steelworks. It is a figure for demonstrating operation
  • FIG. 1 is a diagram illustrating a configuration example of an industrial plant.
  • FIG. 1 shows an example of an industrial plant to which the present power demand prediction system is applied.
  • 1 is an industrial plant for producing a predetermined product.
  • the products produced at the industrial plant 1 include semi-finished products.
  • the industrial plant 1 is provided with a plurality of facilities 2.
  • Each facility 2 includes a plurality of devices 3.
  • the industrial plant 1 has a private power generation facility 4.
  • the entire power used in the plant is covered by the power supplied from the private power generation facility 4 and the power purchased from the external power company 5.
  • FIG. 2 is a block diagram showing the demand power prediction system in Embodiment 1 of the present invention.
  • the demand power prediction system predicts power (demand power) that will be required in the future in the industrial plant 1.
  • the power demand prediction system includes power consumption data collection means 6 and 16, power consumption data storage means 7 and 17, production schedule storage means 8, model creation means 9, short-term demand power prediction means 10, operation information acquisition means 15, long-term demand.
  • a power prediction unit 18, a demand power prediction unit 19, and a display device 20 are provided.
  • the power usage data collection means 6 collects data of power used by the device 3 (power usage data: actual value) for each device 3. It is desirable that the used power data collecting means 6 collects used power data from all the devices 3 provided in the industrial plant 1. However, the industrial plant 1 is provided with a large number of devices 3. For this reason, it is not necessary to collect power consumption data for the device 3 with very low power consumption, the small device 3 and the like. The used power data collecting unit 6 does not need to collect used power data from all the devices 3 that consume power.
  • the used power data storage means 7 stores used power data for each device 3.
  • the power usage data collection unit 6 acquires the power usage data of the device 3
  • the power usage data storage unit 7 stores the acquired data.
  • the used power data storage means 7 stores the used power amount of each device 3 in association with time information.
  • the production schedule storage means 8 stores a production schedule in the industrial plant 1.
  • the production schedule is a schedule for producing products using each facility 2 (each device 3).
  • the production schedule includes predetermined type data related to products in time series.
  • the model creation means 9 has a function of creating a model (power amount calculation model) for calculating the amount of power used by the device 3.
  • the model creation means 9 creates the power amount calculation model for each device 3 and for each predetermined product type.
  • the model creating unit 9 creates an electric energy calculation model based on the used power data stored in the used power data storage unit 7 and the past production schedule stored in the production schedule storage unit 8.
  • FIG. 3 is a diagram for explaining the function of the model creating means.
  • the model creation means 9 creates, for example, a “product type-power intensity” management table as shown in FIG.
  • the power consumption data storage means 7 stores the power consumption (actual value) of the device a1 in association with the time information.
  • the production schedule storage means 8 stores data of the schedule actually performed by the device a1 (past data).
  • the past data includes, for example, data of product types ⁇ and ⁇ in time series.
  • the model creation means 9 Based on the storage contents of the power consumption data storage means 7 and the production schedule storage means 8, the model creation means 9 totals the power consumption of the device a1 for each product type and models it. That is, the model creating unit 9 creates a model that can lead to product type ⁇ ( ⁇ 1 ⁇ ⁇ n), ⁇ ( ⁇ 1 ⁇ ⁇ n) devices a1 by the identifying each unit power consumption E M N. The model creating means 9 creates similar models for the devices a2, a3..., The devices b1, b2, b3..., The devices c1, c2, c3.
  • the short-term demand power prediction means 10 has a function of calculating power (short-term demand power) required in the short-term future in the industrial plant 1. In order to realize such a function, the short-term demand power prediction means 10 is provided with calculation means 11 to 14.
  • the computing means 11 computes power (short-term demand power) that will be required in the future in the device 3.
  • the computing means 11 computes future demand power for each device 3.
  • the calculation means 11 calculates short-term demand power based on the electric energy calculation model created by the model creation means 9 and the future production schedule stored in the production schedule storage means 8.
  • the computing means 12 computes power (short-term demand power) that will be required in the future in the facility 2.
  • the computing means 12 computes future demand power for each facility 2.
  • the equipment 3 belonging to the predetermined facility 2 is determined in advance.
  • the facility A includes a device a1, a device a2, a device a3,.
  • equipment B includes equipment b1, equipment b2, equipment b3...
  • the computing means 12 computes the demand power of the equipment 2 by adding the demand power computed by the computing means 11 for the equipment 3 provided in the equipment 2.
  • the calculating means 12 derives the demand power of the facility A by adding together the demand power of the device a1, the demand power of the device a2, the demand power of the device a3 calculated by the computing means 11.
  • the computing means 13 computes power (short-term demand power) that will be required in the future in the industrial plant 1.
  • the calculation means 13 calculates the future demand power of the whole plant by adding the demand power of each facility 2 calculated by the calculation means 12.
  • the short-term demand power prediction means 10 calculates the demand power for each device 3 and then adds the power value of the device alone in a bottom-up manner to derive the short-term demand power for the entire plant.
  • the calculating means 14 calculates the power (used power) currently used in the device 3.
  • the calculating means 14 calculates the current power consumption for each device 3.
  • the operation information acquisition unit 15 has a function of acquiring current operation information in the industrial plant 1.
  • the calculation means 14 calculates the power consumption based on the current operation information acquired by the operation information acquisition means 15 and the power amount calculation model created by the model creation means 9.
  • the short-term demand power prediction means 10 may calculate the demand power for each device 3 in consideration of the current power consumption calculated by the calculation means 14. With this configuration, the current state of the plant can be reflected in the derived power demand of the entire plant.
  • the power consumption data collection means 16 collects power data (power consumption data: actual value) used by the industrial plant 1, that is, power consumption data of the entire plant. For example, the used power data collecting unit 16 acquires the power value at the power receiving point of the factory as the used power data.
  • the used power data storage means 17 stores used power data of the industrial plant 1.
  • the power usage data storage unit 17 stores the acquired data.
  • the used power data storage means 17 stores the used power amount of the entire plant in association with time information.
  • the long-term demand power prediction means 18 has a function of calculating power (long-term demand power) required for the long-term future in the industrial plant 1.
  • the long-term demand power prediction means 18 calculates the future demand power of the industrial plant 1 based on the use power data stored in the use power data storage means 17 by utilizing, for example, a data mining technique.
  • Demand power prediction means 19 calculates power (demand power) required in the future in the industrial plant 1.
  • the calculation result of the demand power prediction means 19 becomes the output (predicted value) of this system.
  • the demand power prediction means 19 is based on the demand power of the whole plant (short-term prediction) calculated by the short-term demand power prediction means 10 and the demand power of the whole plant (long-term prediction) calculated by the long-term demand power prediction means 18. Thus, the demand power is calculated.
  • the demand power prediction means 19 obtains a predicted value (G3) by superimposing a short-term prediction on the long-term prediction.
  • Equation 1 shows an example of a model used in the superposition.
  • G3 ⁇ 1 * G1 + ⁇ 2 * G2 (1)
  • G1 is a long-term predicted value of demand power (calculation result of the long-term demand power prediction means 18)
  • G2 is a short-term prediction value of demand power (calculation result of the short-term demand power prediction means 10).
  • ⁇ 1 and ⁇ 2 are correction terms.
  • FIG. 4 is a diagram for explaining the function of the demand power prediction means.
  • FIG. 4 shows the calculation result of the demand power prediction means 19 when the above equation 1 is used.
  • G1 is indicated by a broken line
  • G2 is indicated by a one-dot chain line
  • G3 is indicated by a solid line.
  • the period from time t1 to t2 is a transition period for preventing a sudden change in the predicted value G3.
  • the time t2 may be set to satisfy t1> t2, and the transition period may be included in the period up to the time t1.
  • the long-term predicted value G1 can be output as it is as the predicted value G3.
  • a value slightly larger than 1 may be adopted as ⁇ 1.
  • the future demand power (predicted value) of the industrial plant 1 calculated by the demand power prediction means 19 is displayed on the display device 20.
  • each unit shown in FIG. 1 may be configured by any device (including hardware, software, or both).
  • the demand power prediction system having the above configuration can greatly improve the power demand prediction accuracy. That is, in this demand power prediction system, short-term prediction of demand power is performed by adding the power values of individual devices in a bottom-up manner. And the demand power of the whole plant is calculated also considering the obtained short-term prediction. For this reason, in the case of the demand power prediction system, even when a change occurs in the production schedule or when an unexpected change occurs in the operation of the facility 2 (device 3), the predicted value is adjusted to those events. Can be easily accommodated. With this demand power prediction system, the difference between the predicted value and the actual value can be reduced, and the private power generation amount and the contract power amount can be greatly reduced.
  • FIG. 5 is a diagram showing an outline of a hot rolling factory of an ironworks.
  • FIG. 6 is a diagram for explaining the operation of the demand power prediction system according to Embodiment 1 of the present invention.
  • FIG. 6 shows an operation when the demand power prediction system is applied to the hot rolling factory shown in FIG.
  • a hot rolling mill has a heating furnace (RF: Reheating Furnace) 21, a rough rolling mill (RM) 22, a crop shear (CS) 23, a finish rolling mill (FM: A plurality of facilities 2 such as a finishing mills (24), a run-out table (ROT) 25, and a down coiler (DC) 26 are provided.
  • Each facility 2 includes a plurality of devices 3 such as a motor, a pump, and a drive device.
  • the used power data collecting means 6 collects each used power data from the motor, pump, and drive device provided in the hot rolling factory and stores them in the used power data storage means 7.
  • the production schedule storage means 8 stores a past production schedule performed at the hot rolling factory and a future production schedule performed at the hot rolling factory.
  • the production schedule includes, for example, data of length, width, thickness, and steel type as a type of rolled material (product) in time series.
  • the model creation means 9 creates a power amount calculation model for each device 3 and each product type from the power consumption data (actual value) of each device 3 and the past production schedule. For example, when creating the model, the model creating unit 9 classifies the power amount data with the product type as the material length, material width, material thickness, and steel type.
  • the short-term demand power prediction means 10 performs short-term prediction of demand power (calculation of future data of power amount) from the power amount calculation model, future production schedule, and operation information.
  • the operation information acquisition means 15 acquires, for example, position information on the rolled material line, motor speed information, and motor torque information as operation information.
  • the short-term demand power prediction means 10 first, current data (power used) of the power amount of each device 3 is calculated by the calculation means 14. Further, as shown in FIG. 6, the calculation means 11 calculates future data on the amount of power for each device 3. Based on the calculation result of the calculation means 11, the calculation means 12 calculates future data on the amount of power for each facility 2 (in the example shown in FIGS. 5 and 6, for each area). The calculation means 13 adds all the future data calculated by the calculation means 12 to calculate the future data of the electric energy of the entire plant.
  • the power usage data collection means 16 acquires the power value at the power receiving point of the hot rolling plant as the power usage data of the entire hot rolling plant.
  • the used power data collecting unit 16 stores the acquired power value in the used power data storage unit 17 in association with the time information.
  • the long-term demand power prediction means 18 performs long-term prediction of demand power (calculation of future data on the amount of power) based on the use power data stored in the use power data storage means 17.
  • the demand power prediction means 19 calculates the output value as a system from the short-term prediction and long-term prediction of the obtained demand power.
  • This power demand prediction system can be applied to, for example, a steel mill cold-rolled factory in addition to a steel mill hot-rolled factory. Moreover, this power demand prediction system can be applied to various industrial plants such as a paper mill, a beverage factory, and a food factory in addition to an iron mill.

Landscapes

  • Engineering & Computer Science (AREA)
  • Business, Economics & Management (AREA)
  • Health & Medical Sciences (AREA)
  • Economics (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Primary Health Care (AREA)
  • Tourism & Hospitality (AREA)
  • Theoretical Computer Science (AREA)
  • General Business, Economics & Management (AREA)
  • Strategic Management (AREA)
  • Marketing (AREA)
  • Public Health (AREA)
  • Water Supply & Treatment (AREA)
  • General Health & Medical Sciences (AREA)
  • Human Resources & Organizations (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Artificial Intelligence (AREA)
  • Evolutionary Computation (AREA)
  • Software Systems (AREA)
  • Automation & Control Theory (AREA)
  • Medical Informatics (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)
  • Supply And Distribution Of Alternating Current (AREA)

Abstract

 需要電力予測システムは、使用電力データ収集手段(6)、生産スケジュール記憶手段(8)、モデル作成手段(9)、短期需要電力予測手段(10)を備える。使用電力データ収集手段(6)は、機器(3)毎の使用電力データを収集し、使用電力データ記憶手段(7)に記憶させる。モデル作成手段(9)は、使用電力データ記憶手段(7)に記憶された使用電力データと、生産スケジュール記憶手段(8)に記憶された過去の生産スケジュールとに基づいて、所定の製品種別毎の電力量算出モデルを、機器(3)毎に作成する。短期需要電力予測手段(10)は、モデル作成手段(9)によって作成された電力量算出モデルと、生産スケジュール記憶手段(8)に記憶された将来の生産スケジュールとに基づいて、機器(3)毎に、将来の需要電力を演算する。

Description

需要電力予測システム
 この発明は、複数の機器が備えられた産業プラントに適用される需要電力予測システムに関するものである。
 自家発電設備を備えた産業プラントでは、自家発電による電力と、電力会社から購入する電力(契約電力)との双方によって、プラントで使用する全体の電力を賄っている。このような産業プラントでは、将来必要になる電力(需要電力)を予測し、その予測値に基づいて、自家発電によって発電する量(自家発電量)を調整している。即ち、プラントへの供給電力量が上記予測値を下回ることがないように、その総量(即ち、自家発電量と契約電力量との合計値)を設定している。
 下記特許文献1には、需要電力を予測するためのシステムが記載されている。特許文献1に記載のシステムでは、プラント全体で使用した電力量(実績値)に基づいて、需要電力の予測を行っている。
日本特開平8-308108号公報
 産業プラントでは、需要電力の予測精度が悪いと、予測値の誤差を考慮して、自家発電量や契約電力量を決定しなければならない。即ち、需要電力の予測精度が悪いと、予測値の誤差を考慮して、自家発電量や契約電力量を増やさなければならない。
 従来のシステムでは、プラント全体で使用した電力量に基づいて、需要電力の予測を行っていたため、生産スケジュールに変更が生じた場合や、設備の動作に突発的な変更が生じた場合に、予測値をそれらの事象に合わせて即座に対応させることができなかった。即ち、従来のシステムでは、予測値と実績値との乖離が大きく、予測値に基づいて自家発電量や契約電力量を効果的に削減することができなかった。
 この発明は、上述のような課題を解決するためになされたもので、その目的は、産業プラントにおける需要電力の予測精度を高め、自家発電量や契約電力量を適切に削減することができる需要電力予測システムを提供することである。
 この発明に係る需要電力予測システムは、複数の機器が備えられた産業プラントに適用される需要電力予測システムであって、機器毎の使用電力データを収集し、第1記憶手段に記憶させる第1収集手段と、産業プラントにおける生産スケジュールが記憶された第2記憶手段と、第1記憶手段に記憶された使用電力データ、及び、第2記憶手段に記憶された過去の生産スケジュールに基づいて、所定の製品種別毎の電力量算出モデルを、機器毎に作成するモデル作成手段と、モデル作成手段によって作成された電力量算出モデル、及び、第2記憶手段に記憶された将来の生産スケジュールに基づいて、機器毎に、将来の需要電力を演算する第1予測手段と、を備えたものである。
 この発明に係る需要電力予測システムであれば、産業プラントにおける需要電力の予測精度を高めることができ、自家発電量や契約電力量を適切に削減することができる。
産業プラントの構成例を示す図である。 この発明の実施の形態1における需要電力予測システムを示す構成図である。 モデル作成手段の機能を説明するための図である。 需要電力予測手段の機能を説明するための図である。 製鉄所の熱延工場の概略を示す図である。 この発明の実施の形態1における需要電力予測システムの動作を説明するための図である。
 添付の図面を参照して、本発明を詳細に説明する。各図において、同一又は相当する部分には、同一の符号を付している。重複する説明については、適宜簡略化或いは省略する。
実施の形態1.
 図1は産業プラントの構成例を示す図である。図1は、本需要電力予測システムが適用される産業プラントの一例を示している。
 図1において、1は所定の製品を生産するための産業プラントである。産業プラント1で生産される製品には、半製品のようなものも含まれる。産業プラント1には、複数の設備2が備えられている。各設備2には、複数の機器3が備えられている。
 産業プラント1は、自家発電設備4を備えている。産業プラント1では、自家発電設備4から供給される電力と、外部の電力会社5から購入する電力とによって、プラントで使用する全体の電力を賄っている。
 図2はこの発明の実施の形態1における需要電力予測システムを示す構成図である。
 需要電力予測システムは、産業プラント1において将来必要になる電力(需要電力)を予測する。需要電力予測システムは、使用電力データ収集手段6及び16、使用電力データ記憶手段7及び17、生産スケジュール記憶手段8、モデル作成手段9、短期需要電力予測手段10、操業情報取得手段15、長期需要電力予測手段18、需要電力予測手段19、表示装置20を備えている。
 使用電力データ収集手段6は、機器3が使用した電力のデータ(使用電力データ:実績値)を、機器3毎に収集する。使用電力データ収集手段6は、産業プラント1に備えられている全ての機器3から、使用電力データを収集することが望ましい。しかし、産業プラント1には、多数の機器3が備えられている。このため、消費電力が極めて小さい機器3や、小型の機器3等については、使用電力データの収集を行わなくても良い。使用電力データ収集手段6は、電力を消費する全ての機器3から、使用電力データを収集する必要はない。
 使用電力データ記憶手段7には、機器3毎の使用電力データが記憶される。使用電力データ収集手段6は、機器3の使用電力データを取得すると、その取得したデータを使用電力データ記憶手段7に記憶させる。使用電力データ記憶手段7には、各機器3の使用電力量が、時刻情報に紐付けて記憶されている。
 生産スケジュール記憶手段8には、産業プラント1における生産スケジュールが記憶される。生産スケジュールとは、各設備2(各機器3)を使用して、製品を生産するためのスケジュールである。生産スケジュールには、製品に関する所定の種別データが、時系列に含まれている。
 モデル作成手段9は、機器3が使用する電力量を算出するためのモデル(電力量算出モデル)を作成する機能を有している。モデル作成手段9は、機器3毎、及び、所定の製品種別毎に、上記電力量算出モデルを作成する。モデル作成手段9は、使用電力データ記憶手段7に記憶された使用電力データと、生産スケジュール記憶手段8に記憶された過去の生産スケジュールとに基づいて、電力量算出モデルの作成を行う。
 図3はモデル作成手段の機能を説明するための図である。
 モデル作成手段9は、電力量算出モデルとして、例えば、図3に示すような「製品種別-電力原単位」管理表を、製品3毎に作成する。
 例えば、使用電力データ記憶手段7には、機器a1の使用電力量(実績値)が、時刻情報に紐付けて記憶されている。生産スケジュール記憶手段8には、機器a1で実際に行われたスケジュールのデータ(過去データ)が記憶されている。この過去データには、例えば、製品種別α及びβのデータが、時系列に含まれている。
 モデル作成手段9は、使用電力データ記憶手段7及び生産スケジュール記憶手段8の各記憶内容に基づいて、製品種別毎の機器a1の使用電力量を集計し、モデル化する。即ち、モデル作成手段9は、製品種別α(α1~αn)、β(β1~βn)をそれぞれ特定することによって機器a1の電力原単位E を導くことができるモデルを作成する。
 モデル作成手段9は、機器a2、a3・・・、機器b1、b2、b3・・・、機器c1、c2、c3・・・についても、同様のモデルを作成する。
 短期需要電力予測手段10は、産業プラント1において、短期的な将来に必要となる電力(短期需要電力)を演算する機能を有している。このような機能を実現するため、短期需要電力予測手段10には、演算手段11乃至14が備えられている。
 演算手段11は、機器3において将来必要となる電力(短期需要電力)を演算する。演算手段11は、機器3毎に、将来の需要電力を演算する。演算手段11は、モデル作成手段9によって作成された電力量算出モデルと、生産スケジュール記憶手段8に記憶された将来の生産スケジュールとに基づいて、短期需要電力の演算を行う。
 演算手段12は、設備2において将来必要となる電力(短期需要電力)を演算する。演算手段12は、設備2毎に、将来の需要電力を演算する。
 所定の設備2に属する機器3は予め決まっている。例えば、設備Aには、機器a1、機器a2、機器a3・・・が備えられている。同様に、設備Bには、機器b1、機器b2、機器b3・・・が備えられている。演算手段12は、演算手段11によって演算された需要電力を、設備2に備えられた機器3について足し合わせることにより、その設備2の需要電力を演算する。例えば、演算手段12は、演算手段11によって演算された機器a1の需要電力、機器a2の需要電力、機器a3の需要電力・・・を全て足し合わせて、設備Aの需要電力を導き出す。
 演算手段13は、産業プラント1において将来必要となる電力(短期需要電力)を演算する。演算手段13は、演算手段12によって演算された各設備2の需要電力を足し合わせることにより、プラント全体の将来の需要電力を演算する。
 このように、短期需要電力予測手段10は、機器3毎の需要電力を演算した後、機器単体の電力値をボトムアップ式に加算していくことにより、プラント全体の短期需要電力を導き出す。
 演算手段14は、機器3において現在使用されている電力(使用電力)を演算する。演算手段14は、機器3毎に、現在の使用電力を演算する。
 操業情報取得手段15は、産業プラント1における現在の操業情報を取得する機能を有している。演算手段14は、操業情報取得手段15によって取得された現在の操業情報と、モデル作成手段9によって作成された電力量算出モデルとに基づいて、上記使用電力の演算を行う。
 短期需要電力予測手段10(演算手段11)は、演算手段14によって演算された現在の使用電力も考慮して、機器3毎の需要電力を演算しても良い。かかる構成であれば、導き出したプラント全体の需要電力に、プラントの現状を反映させることができる。
 使用電力データ収集手段16は、産業プラント1が使用した電力のデータ(使用電力データ:実績値)、即ち、プラント全体の使用電力データを収集する。例えば、使用電力データ収集手段16は、工場の受電点の電力値を、上記使用電力データとして取得する。
 使用電力データ記憶手段17には、産業プラント1の使用電力データが記憶される。使用電力データ収集手段16は、プラント全体の使用電力データを取得すると、その取得したデータを使用電力データ記憶手段17に記憶させる。使用電力データ記憶手段17には、プラント全体の使用電力量が、時刻情報に紐付けて記憶されている。
 長期需要電力予測手段18は、産業プラント1において、長期的な将来に必要となる電力(長期需要電力)を演算する機能を有している。長期需要電力予測手段18は、例えば、データマイニング手法を活用することにより、使用電力データ記憶手段17に記憶された使用電力データに基づいて、産業プラント1の将来の需要電力を演算する。
 需要電力予測手段19は、産業プラント1において将来必要となる電力(需要電力)を演算する。需要電力予測手段19の演算結果が、本システムの出力(予測値)となる。需要電力予測手段19は、短期需要電力予測手段10によって演算されたプラント全体の需要電力(短期予測)と、長期需要電力予測手段18によって演算されたプラント全体の需要電力(長期予測)とに基づいて、上記需要電力の演算を行う。
 例えば、需要電力予測手段19は、上記長期予測に短期予測を重ね合わせることにより、予測値(G3)を求める。下記式1は、上記重ね合わせの際に使用されるモデルの一例を示している。
 G3=γ1*G1+γ2*G2  ・・・(1)
 上記式1において、G1は需要電力の長期予測値(長期需要電力予測手段18の演算結果)、G2は需要電力の短期予測値(短期需要電力予測手段10の演算結果)である。γ1及びγ2は、補正項である。
 図4は需要電力予測手段の機能を説明するための図である。図4は、上記式1を使用した時の需要電力予測手段19の演算結果を示している。図4では、G1を破線で、G2を一点鎖線で、G3を実線で示している。
 需要電力の短期予測値G2は、現在(時刻t=0)から時刻t1までの所定期間しか得ることができない。このため、需要電力予測手段19は、例えば、時刻t2(例えば、t2>t1)までの期間に関しては、需要電力の長期予測値G1と需要電力の短期予測値G2との双方を用いて、予測値G3を演算する(γ1≠0、γ2≠0)。また、需要電力予測手段19は、時刻t2よりも先の所定期間(時刻t2からt3までの期間)に関しては、需要電力の短期予測値G2を使用せず、需要電力の長期予測値G1に基づいて、予測値G3を演算する(γ1≠0、γ2=0)。
 時刻t1からt2までの期間は、予測値G3の急激な変動を防止するための移行期間である。なお、時刻t2をt1>t2となるように設定して、上記移行期間を時刻t1までの期間に収めても良い。
 時刻t2からt3までの期間では、γ1=1であれば、長期予測値G1を予測値G3としてそのまま出力することができる。上記期間中、γ1として、1よりも僅かに大きな値等を採用しても良い。
 需要電力予測手段19によって演算された産業プラント1の将来の需要電力(予測値)は、表示装置20に表示される。
 なお、図1に示す各手段は、如何なる装置(ハードウェアによるもの、ソフトウェアによるもの、その双方によるものを含む)によって構成しても良い。
 上記構成を有する需要電力予測システムであれば、需要電力の予測精度を大幅に高めることができる。即ち、本需要電力予測システムでは、機器単体の電力値をボトムアップ式に加算していくことにより、需要電力の短期予測を行っている。そして、得られた短期予測も考慮して、プラント全体の需要電力を演算している。このため、本需要電力予測システムであれば、生産スケジュールに変更が生じた場合や、設備2(機器3)の動作に突発的な変更が生じた場合にも、予測値をそれらの事象に合わせて容易に対応させることができる。本需要電力予測システムであれば、予測値と実績値との乖離を小さくすることができ、自家発電量や契約電力量の大幅な削減が可能となる。
 次に、上記需要電力予測システムの具体的な適用例について説明する。
 図5は製鉄所の熱延工場の概略を示す図である。図6はこの発明の実施の形態1における需要電力予測システムの動作を説明するための図である。図6は、本需要電力予測システムを、図5に示す熱延工場に適用した時の動作を示している。
 図5に示すように、熱延工場には、加熱炉(RF:Reheating Furnace)21、粗圧延機(RM:Roughing Mills)22、クロップシャー(CS:Crop Shear)23、仕上圧延機(FM:Finishing Mills)24、ランアウトテーブル(ROT:Run Out Table)25、ダウンコイラー(DC:Down Coiler)26といった複数の設備2が備えられている。また、各設備2には、モータ、ポンプ、ドライブ装置といった複数の機器3が備えられている。
 使用電力データ収集手段6は、熱延工場に備えられたモータやポンプ、ドライブ装置から、それぞれの使用電力データを収集し、使用電力データ記憶手段7に記憶させる。生産スケジュール記憶手段8には、熱延工場で行われた過去の生産スケジュールと、この熱延工場でこれから行われる将来の生産スケジュールとが記憶されている。生産スケジュールには、例えば、圧延材(製品)の種別として、材長、材幅、材厚、鋼種の各データが、時系列に含まれる。
 モデル作成手段9は、各機器3の使用電力データ(実績値)と過去の生産スケジュールとから、機器3毎及び製品種別毎に、電力量算出モデルを作成する。例えば、モデル作成手段9は、上記モデル化を行う際に、製品種別を材長、材幅、材厚、鋼種として、電力量データを分類する。
 短期需要電力予測手段10は、電力量算出モデルと将来の生産スケジュールと操業情報とから、需要電力の短期予測(電力量の将来データの算出)を行う。操業情報取得手段15は、例えば、圧延材のライン上の位置情報やモータの速度情報、モータのトルク情報を操業情報として取得する。
 短期需要電力予測手段10では、先ず、演算手段14により、各機器3の電力量の現在データ(使用電力)が演算される。また、図6に示すように、演算手段11は、機器3毎の電力量の将来データを算出する。演算手段12は、演算手段11の算出結果に基づいて、設備2毎(図5及び図6に示す例では、エリア毎)の電力量の将来データを算出する。演算手段13は、演算手段12が算出した各将来データを全て加算して、プラント全体の電力量の将来データを算出する。
 使用電力データ収集手段16は、熱延工場の受電点の電力値を、熱延工場全体の使用電力データとして取得する。使用電力データ収集手段16は、取得した電力値を時刻情報に紐付けて使用電力データ記憶手段17に記憶させる。長期需要電力予測手段18は、使用電力データ記憶手段17に記憶されている使用電力データに基づいて、需要電力の長期予測(電力量の将来データの算出)を行う。そして、需要電力予測手段19は、得られた需要電力の短期予測と長期予測とから、システムとしての出力値を算出する。
 製鉄所の熱延工場では、生産スケジュールが変更されたり、オペレータによる手動操作が行われたりした際に、工場全体の使用電力が大きく変動する。このため、従来の予測手法では、予測値が、実績値から大きく外れてしまうことが度々あった。本需要電力予測システムであれば、秒単位で変化する生産プロセスの稼働状況に合わせて、電力予測を行うことができる。このため、本需要電力予測システムを採用することにより、熱延工場においても、電力予測の精度を大幅に向上させることが可能となる。
 本需要電力予測システムは、製鉄所の熱延工場の他にも、例えば、製鉄所の冷延工場に適用することができる。また、本需要電力予測システムは、製鉄所の他にも、例えば、製紙工場、飲料工場、食品工場といった各種産業プラントに適用することができる。
 1 産業プラント
 2 設備
 3 機器
 4 自家発電設備
 5 電力会社
 6、16 使用電力データ収集手段
 7、17 使用電力データ記憶手段
 8 生産スケジュール記憶手段
 9 モデル作成手段
 10 短期需要電力予測手段
 11、12、13、14 演算手段
 15 操業情報取得手段
 18 長期需要電力予測手段
 19 需要電力予測手段
 20 表示装置
 21 加熱炉
 22 粗圧延機
 23 クロップシャー
 24 仕上圧延機
 25 ランアウトテーブル
 26 ダウンコイラー

Claims (7)

  1.  複数の機器が備えられた産業プラントに適用される需要電力予測システムであって、
     前記機器毎の使用電力データを収集し、第1記憶手段に記憶させる第1収集手段と、
     前記産業プラントにおける生産スケジュールが記憶された第2記憶手段と、
     前記第1記憶手段に記憶された使用電力データ、及び、前記第2記憶手段に記憶された過去の生産スケジュールに基づいて、所定の製品種別毎の電力量算出モデルを、前記機器毎に作成するモデル作成手段と、
     前記モデル作成手段によって作成された電力量算出モデル、及び、前記第2記憶手段に記憶された将来の生産スケジュールに基づいて、前記機器毎に、将来の需要電力を演算する第1予測手段と、
    を備えた需要電力予測システム。
  2.  前記第1予測手段は、演算した前記機器毎の需要電力を足し合わせることにより、前記産業プラントの将来の需要電力を演算する請求項1に記載の需要電力予測システム。
  3.  前記産業プラントは、複数の設備を備え、
     前記各設備は、複数の前記機器を備え、
     前記第1予測手段は、
     前記モデル作成手段によって作成された電力量算出モデル、及び、前記第2記憶手段に記憶された将来の生産スケジュールに基づいて、前記機器毎に、将来の需要電力を演算する第1演算手段と、
     前記第1演算手段によって演算された需要電力を、前記設備に備えられた前記機器について足し合わせることにより、前記設備毎に、将来の需要電力を演算する第2演算手段と、
     前記第2演算手段によって演算された前記設備毎の需要電力を足し合わせることにより、前記産業プラントの将来の需要電力を演算する第3演算手段と、
    を備えた請求項1に記載の需要電力予測システム。
  4.  前記産業プラントの使用電力データを収集し、第3記憶手段に記憶させる第2収集手段と、
     前記第3記憶手段に記憶された使用電力データに基づいて、前記産業プラントの将来の需要電力を演算する第2予測手段と、
     前記第1予測手段によって演算された前記産業プラントの需要電力、及び、前記第2予測手段によって演算された前記産業プラントの需要電力に基づいて、前記産業プラントの将来の需要電力を演算する第3予測手段と、
    を備えた請求項2又は請求項3に記載の需要電力予測システム。
  5.  前記第3予測手段は、
     前記第1予測手段によって演算された前記産業プラントの需要電力、及び、前記第2予測手段によって演算された前記産業プラントの需要電力に基づいて、所定の第1期間における前記産業プラントの将来の需要電力を演算し、
     前記第1予測手段によって演算された前記産業プラントの需要電力を使用することなく、前記第2予測手段によって演算された前記産業プラントの需要電力に基づいて、前記第1期間よりも先の所定の第2期間における前記産業プラントの将来の需要電力を演算する
    請求項4に記載の需要電力予測システム。
  6.  前記第3予測手段によって演算された前記産業プラントの需要電力を表示する表示装置と、
    を備えた請求項4又は請求項5に記載の需要電力予測システム。
  7.  前記産業プラントにおける現在の操業情報を取得する操業情報取得手段と、
    を備え、
     前記第1予測手段は、前記操業情報取得手段によって取得された操業情報、及び、前記モデル作成手段によって作成された電力量算出モデルに基づいて、前記機器毎に、現在の使用電力を演算し、演算した現在の使用電力も考慮して、前記機器毎の需要電力を演算する請求項1から請求項6の何れかに記載の需要電力予測システム。
PCT/JP2012/053328 2012-02-14 2012-02-14 需要電力予測システム WO2013121515A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
PCT/JP2012/053328 WO2013121515A1 (ja) 2012-02-14 2012-02-14 需要電力予測システム
KR1020147022089A KR101631781B1 (ko) 2012-02-14 2012-02-14 수요전력 예측 시스템
JP2013558607A JP5768903B2 (ja) 2012-02-14 2012-02-14 需要電力予測システム
CN201280069695.8A CN104137373B (zh) 2012-02-14 2012-02-14 所需电力预测系统
US14/374,986 US9727931B2 (en) 2012-02-14 2012-02-14 Electricity demand prediction system
TW101119085A TWI463335B (zh) 2012-02-14 2012-05-29 需要電力預測系統

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/053328 WO2013121515A1 (ja) 2012-02-14 2012-02-14 需要電力予測システム

Publications (1)

Publication Number Publication Date
WO2013121515A1 true WO2013121515A1 (ja) 2013-08-22

Family

ID=48983679

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/053328 WO2013121515A1 (ja) 2012-02-14 2012-02-14 需要電力予測システム

Country Status (6)

Country Link
US (1) US9727931B2 (ja)
JP (1) JP5768903B2 (ja)
KR (1) KR101631781B1 (ja)
CN (1) CN104137373B (ja)
TW (1) TWI463335B (ja)
WO (1) WO2013121515A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015125555A (ja) * 2013-12-26 2015-07-06 東京瓦斯株式会社 行動予測システム、機器制御方法、行動支援方法およびプログラム
JP2016181195A (ja) * 2015-03-25 2016-10-13 アズビル株式会社 ピーク電力発現予測装置および予測方法
JP2019092323A (ja) * 2017-11-15 2019-06-13 株式会社東芝 電力制御装置、電力制御方法及び電力制御プログラム

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120053741A1 (en) * 2011-03-08 2012-03-01 General Electric Company Manage whole home appliances/loads to a peak energy consumption
KR101639402B1 (ko) * 2014-09-29 2016-07-13 한국전력공사 전력 수요 예측 장치 및 방법
JP6467216B2 (ja) * 2014-12-18 2019-02-06 株式会社日立製作所 熱源システム管理装置、熱源システム管理方法、及びプログラム
US10490999B2 (en) * 2014-12-22 2019-11-26 Battelle Memorial Institute Hierarchical operational control of aggregated load management resources
TWI580145B (zh) * 2015-10-27 2017-04-21 財團法人資訊工業策進會 適用於加工機台之用電量預估系統與用電量預估方法
US11605036B2 (en) * 2017-08-09 2023-03-14 Verdigris Technologies, Inc. System and methods for power system forecasting using deep neural networks
CN113469394A (zh) * 2020-03-30 2021-10-01 富士通株式会社 信息处理装置、信息处理方法和计算机可读存储介质
CN113837420A (zh) * 2020-06-23 2021-12-24 三菱电机(中国)有限公司 电力消耗预测方法、电力消耗预测系统及计算机可读存储介质
US20220399752A1 (en) * 2021-06-09 2022-12-15 General Electric Renovables Espana, S.L. Systems and methods for operating a power generating asset
CN114529072A (zh) * 2022-02-11 2022-05-24 杭州致成电子科技有限公司 一种基于时间序列的区域电量预测方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06284572A (ja) * 1993-03-31 1994-10-07 Nisshin Steel Co Ltd 電力デマンド制御方法
JP2002165362A (ja) * 2000-11-24 2002-06-07 Sumitomo Metal Ind Ltd 電力使用量の予測方法及び制御方法
JP2004112869A (ja) * 2002-09-13 2004-04-08 Toshiba Corp 電力需要予測システム
JP2004183007A (ja) * 2002-11-29 2004-07-02 Mitsubishi Electric Corp 熱間圧延プラントにおける抽出ピッチ制御方法
JP2011239528A (ja) * 2010-05-07 2011-11-24 Shimizu Corp 需要電力制御装置および需要電力制御方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08308108A (ja) 1995-04-27 1996-11-22 Hitachi Ltd 電力需要量予測方法およびその装置
JP2004129322A (ja) 2002-09-30 2004-04-22 Nippon Steel Corp 電力需要の予測制御システム
JP2004164388A (ja) 2002-11-14 2004-06-10 Yokogawa Electric Corp 需要予測システム
JP4369189B2 (ja) * 2003-09-22 2009-11-18 三菱電機株式会社 スケジューリングシステムおよびスケジューリングをコンピュータに実行させるためのプログラム
JP4111153B2 (ja) 2004-03-09 2008-07-02 三菱電機株式会社 運用計画システムおよび運用計画立案プログラム
CN101609517A (zh) * 2008-06-20 2009-12-23 上海申瑞电力科技股份有限公司 基于智能策略管理的电力系统短期负荷预测方法
CN101478157B (zh) * 2008-10-13 2011-05-04 宁波电业局 自动发电控制系统及其负荷预测自动综合的优化方法
TW201111971A (en) * 2009-09-16 2011-04-01 Ibm Method and apparatus for power-efficiency management in a virtualized cluster system
US9335748B2 (en) * 2010-07-09 2016-05-10 Emerson Process Management Power & Water Solutions, Inc. Energy management system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06284572A (ja) * 1993-03-31 1994-10-07 Nisshin Steel Co Ltd 電力デマンド制御方法
JP2002165362A (ja) * 2000-11-24 2002-06-07 Sumitomo Metal Ind Ltd 電力使用量の予測方法及び制御方法
JP2004112869A (ja) * 2002-09-13 2004-04-08 Toshiba Corp 電力需要予測システム
JP2004183007A (ja) * 2002-11-29 2004-07-02 Mitsubishi Electric Corp 熱間圧延プラントにおける抽出ピッチ制御方法
JP2011239528A (ja) * 2010-05-07 2011-11-24 Shimizu Corp 需要電力制御装置および需要電力制御方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015125555A (ja) * 2013-12-26 2015-07-06 東京瓦斯株式会社 行動予測システム、機器制御方法、行動支援方法およびプログラム
JP2016181195A (ja) * 2015-03-25 2016-10-13 アズビル株式会社 ピーク電力発現予測装置および予測方法
JP2019092323A (ja) * 2017-11-15 2019-06-13 株式会社東芝 電力制御装置、電力制御方法及び電力制御プログラム

Also Published As

Publication number Publication date
JPWO2013121515A1 (ja) 2015-05-11
JP5768903B2 (ja) 2015-08-26
KR20140110064A (ko) 2014-09-16
TW201333724A (zh) 2013-08-16
KR101631781B1 (ko) 2016-06-17
US20140371934A1 (en) 2014-12-18
TWI463335B (zh) 2014-12-01
CN104137373A (zh) 2014-11-05
CN104137373B (zh) 2016-12-14
US9727931B2 (en) 2017-08-08

Similar Documents

Publication Publication Date Title
WO2013121515A1 (ja) 需要電力予測システム
Zhang et al. Bidding strategy in energy and spinning reserve markets for aluminum smelters' demand response
EP2407256B1 (en) Optimizing apparatus
US20090326700A1 (en) Method for monitoring the physical state of a hot-rolled sheet or hot-rolled strip while controlling a plate rolling train for working a hot-rolled sheet or hot-rolled strip
CN102654749B (zh) 学习系数控制装置
Hendel et al. Small steps for workers, a giant leap for productivity
TWI483790B (zh) 能源消費量預測裝置
TW201334352A (zh) 電力平準化裝置
CN108213086B (zh) 一种实现热轧带钢微中浪轧制的方法
US20160327919A1 (en) Energy consumption predicting device for rolling line
Schlosser et al. Assessment of energy and resource consumption of processes and process chains within the automotive sector
KR101430316B1 (ko) 데이터 해석 장치
Kawalla et al. Material flow cost accounting analysis of twin-roll casting magnesium strips
CN102233357A (zh) 一种新型的轧辊配辊方法
CN107695107A (zh) 一种双机架粗轧机设定数据的跟踪管理方法
Biondi et al. Production optimization and scheduling in a steel plant: Hot rolling mill
JP2017074606A (ja) 連続冷間圧延における走間板厚変更時のパススケジュール決定方法
CN105451904A (zh) 节能作业推荐系统
Irawan et al. Analysis Of Production Capacity Planning and Control in PT. Krakatau Wajatama with Rought Cut Capacity Planning (RCCP)
KR102516612B1 (ko) 금속 피가공재 제조 방법
CN106463959A (zh) 电力供需指导装置及电力供需指导方法
Druzhinin et al. Preventing the development of emergency modes of interlocked electric drives of a rolling mill under the impact loads
CN107851999A (zh) 电力系统
Bante et al. Energy efficiency in a steel rolling mill by effective planning (case study)
JP5884185B2 (ja) 冷間タンデム圧延機におけるトラブルレス最高圧延速度算出方法および冷間タンデム圧延方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12868515

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013558607

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14374986

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20147022089

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12868515

Country of ref document: EP

Kind code of ref document: A1