WO2013121505A1 - Organic electroluminescent panel and method for manufacturing same - Google Patents

Organic electroluminescent panel and method for manufacturing same Download PDF

Info

Publication number
WO2013121505A1
WO2013121505A1 PCT/JP2012/053283 JP2012053283W WO2013121505A1 WO 2013121505 A1 WO2013121505 A1 WO 2013121505A1 JP 2012053283 W JP2012053283 W JP 2012053283W WO 2013121505 A1 WO2013121505 A1 WO 2013121505A1
Authority
WO
WIPO (PCT)
Prior art keywords
organic
layer
substrate
panel
light emitting
Prior art date
Application number
PCT/JP2012/053283
Other languages
French (fr)
Japanese (ja)
Inventor
直井 太郎
Original Assignee
パイオニア株式会社
三菱化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パイオニア株式会社, 三菱化学株式会社 filed Critical パイオニア株式会社
Priority to PCT/JP2012/053283 priority Critical patent/WO2013121505A1/en
Publication of WO2013121505A1 publication Critical patent/WO2013121505A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/10Apparatus or processes specially adapted to the manufacture of electroluminescent light sources
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/26Light sources with substantially two-dimensional radiating surfaces characterised by the composition or arrangement of the conductive material used as an electrode
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/805Electrodes
    • H10K59/8051Anodes
    • H10K59/80516Anodes combined with auxiliary electrodes, e.g. ITO layer combined with metal lines
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/12Deposition of organic active material using liquid deposition, e.g. spin coating
    • H10K71/13Deposition of organic active material using liquid deposition, e.g. spin coating using printing techniques, e.g. ink-jet printing or screen printing

Definitions

  • the present invention relates to an organic EL panel having an organic electroluminescence (hereinafter referred to as organic EL) material as a light emitting layer and a method for manufacturing the same.
  • organic EL organic electroluminescence
  • An organic EL panel is a surface light emitter in which a plurality of organic functional layers made of an organic compound having a charge transport property are sandwiched between an anode and a cathode, and at least one light emitting layer is included in the organic functional layer.
  • Organic EL panels have been put into practical use as display devices such as mobile phones, and are being applied to lighting fixtures as thin surface light sources.
  • a coating method by scanning a droplet discharge nozzle is known.
  • ink jet method a liquid containing an organic material is ejected through a nozzle in the form of a micro flow (jet flow or drop flow) to deposit droplets on the anode, and then dried to obtain a hole injection layer, a positive Organic functional layers such as a hole transport layer, a light emitting layer, an electron transport layer, and an electron injection layer are formed and stacked.
  • the present invention has been made in view of the above points, and provides an organic EL panel in which nonuniformity of a light emitting surface due to light emission unevenness of a joint of a coating layer generated by an ink jet method is suppressed, and a method for manufacturing the same.
  • An example of the problem is described in detail below.
  • the organic EL panel of the present invention at least one organic functional layer disposed on the substrate and between the first electrode layer and the second electrode layer facing each other in the normal direction of the substrate is scanned by the droplet discharge nozzle.
  • the organic functional layer is composed of a plurality of band-like organic layers juxtaposed in parallel with each other between the auxiliary electrodes in the longitudinal direction of the auxiliary electrodes, and edges are joined to each other, and the edge of the band-like organic layer is the auxiliary It lies in the normal plane of the substrate including the electrodes.
  • At least one organic functional layer disposed on the substrate and between the first electrode layer and the second electrode layer facing each other in the normal direction of the substrate is a liquid.
  • a method of manufacturing an organic EL panel formed by scanning a droplet discharge nozzle, Juxtaposing a plurality of auxiliary electrodes on the first electrode layer; The first electrode between the auxiliary electrodes is scanned over the first electrode layer by a droplet discharge nozzle that moves parallel to the extension direction of the auxiliary electrode along the surface of the first electrode layer between the auxiliary electrodes.
  • a scanning step of applying a strip organic layer on the electrode layer In the scanning step, the droplet discharge nozzle is formed so that the edges of the adjacent strip organic layers applied to each other are bonded to each other and the edges of the strip organic layer are within the normal plane of the substrate including the auxiliary electrode. As described above, the position is controlled relative to the substrate.
  • the organic EL panel is provided with an auxiliary electrode that supplies a current to the first electrode layer using a transparent electrode material on the first electrode layer on the light extraction side, and the joint and auxiliary of the coating layer by scanning by the ink jet method.
  • an auxiliary electrode that supplies a current to the first electrode layer using a transparent electrode material on the first electrode layer on the light extraction side, and the joint and auxiliary of the coating layer by scanning by the ink jet method.
  • FIG. 2 is a partial cross-sectional view taken along line AA in FIG. 1. It is sectional drawing which shows the board
  • FIG. 1 is a perspective view of a portion of an organic EL panel according to an embodiment of the present invention as viewed from the upper surface on the cathode side
  • FIG. 2 is a partial cross-sectional view showing a cross section of the organic EL panel taken along line AA in FIG. It is.
  • a transparent anode 2 (first electrode layer) formed on a flat substrate 1 or a film-like transparent substrate 1 made of glass, resin, or the like, and laminated thereon.
  • This is an organic EL panel having an organic EL laminate OEL including a light emitting layer 5 and a cathode 9 (second electrode layer) laminated thereon.
  • the organic EL laminated body OEL is formed by laminating an organic functional layer composed of a plurality of band-like organic layers OG formed and connected by an ink jet method, and the hole injection layer 3 / the hole transport layer 4 are used as the organic functional layer.
  • a transparent anode 2 extending in the XY direction on the panel plane is formed on a substrate 1.
  • a solid film-like cathode 9 is formed on the electron injection layer 8 of the organic EL laminate OEL. Note that it is not necessary to form all the organic functional layers of the organic EL panel by the ink jet method, and the film can be formed by another wet method or a vapor deposition method.
  • the hole injection layer and the hole transport layer may be uniformly formed as a solid film by a spray method or the like.
  • the hole blocking layer, the electron transport layer, and the electron injection layer cathode may be uniformly and sequentially formed as a solid film by an evaporation method or the like. Film formation by an ink jet method is preferable for at least a light emitting layer having a large influence on light emission unevenness.
  • a plurality of auxiliary electrodes BL are formed in stripes parallel to the X direction.
  • the organic EL stacked body OEL is formed on the substrate 1 on the anode 2 between the adjacent auxiliary electrodes BL so as to straddle the auxiliary electrodes BL.
  • the auxiliary electrode BL is covered with an insulating film SF made of an insulating material (however, only the auxiliary electrode BL is shown in FIG. 1 and the insulating film is not shown).
  • the auxiliary electrode BL is formed to supply power to the anode 2.
  • the organic EL panel uses a transparent electrode for the first electrode layer such as the anode 2 on the light extraction side.
  • the transparent electrode has a high resistivity, in an organic EL panel for a surface light source that requires a certain area, an auxiliary electrode made of a metal material having a low resistivity is juxtaposed in a stripe shape on the transparent electrode. In addition, the resistance of the transparent anode 2 as a whole is reduced.
  • each organic functional layer of the organic EL laminate OEL includes a plurality of strip-like organic layers OG that are juxtaposed in parallel to the longitudinal direction (X direction) of the auxiliary electrodes BL and joined to each other between the auxiliary electrodes BL.
  • Consists of An edge portion where adjacent ones of the band-shaped organic layers OG are joined to each other is a joint SM that is in contact with and connected on the auxiliary electrode BL. That is, the edges of the strip-shaped organic layer OG are in the normal plane of the substrate 1 including the auxiliary electrode BL.
  • belt-shaped organic layer OG means the edge part extended
  • the joint SM portion by scanning of the inkjet head and the auxiliary electrode BL of the transparent anode 2 are arranged at the same position, that is, the joint SM portion of the plurality of coated strip-like organic layers OG is organic EL laminated.
  • a parallel plate substrate 1 such as cleaned glass is prepared, on which an anode 2 such as ITO and an auxiliary electrode BL such as aluminum are formed by sputtering or photolithography.
  • An anode 2 such as ITO and an auxiliary electrode BL such as aluminum are formed by sputtering or photolithography.
  • a plurality of strip-like auxiliary electrodes BL extending in parallel with the X direction on the surface of the anode 2 are formed at a constant pitch PBL .
  • the auxiliary electrode BL is formed such that its width W BL is considerably smaller than the juxtaposed pitch P BL (W BL ⁇ P BL ).
  • an insulating insulating film SF is formed for each auxiliary electrode BL so as to expose only the auxiliary electrode BL while exposing the anode 2 by a photolithography process.
  • the insulating film SF is made of a material that can be patterned by exposure and development using, for example, photosensitive polyimide or novolac resin.
  • the insulating film SF usually contains an ethylenically unsaturated compound, a photopolymerization initiator, and a solvent, and may further contain a binder resin, a crosslinking agent, a surface modifier, a liquid repellent component, and the like.
  • droplets of a solution of the material constituting the hole injection layer of the organic functional layer are formed on the insulating film SF and the anode 2 from a droplet discharge nozzle (not shown) of the inkjet head 12.
  • Lq is supplied.
  • the inkjet head 12 moves on the anode 2 between the auxiliary electrodes BL while moving in parallel with the extension direction of the auxiliary electrode BL (X direction: scanning direction) between adjacent auxiliary electrodes BL and scanning the surface.
  • the strip organic layer OG is applied to After the scanning application between one auxiliary electrode BL, the inkjet head is moved in the Y direction at the end of the substrate 1 and sequentially applied by scanning between adjacent auxiliary electrodes BL. Edges (extending in the scanning direction) of the adjacent strip-shaped organic layers OG applied are connected in contact with each other and joined together to form a joint SM on each auxiliary electrode BL.
  • the organic layer is subjected to a drying process, and as shown in FIG. 6, the hole injection layer 3 in which the edges of the band-shaped organic layer OG are connected by the joint SM is formed.
  • a combination of an inkjet coating process and a drying process is sequentially repeated for each organic functional layer that performs each function, and as shown in FIG. 7, a multilayer organic EL in which the edges of each strip-shaped organic layer are connected by a joint SM.
  • a laminated body OEL hole injection layer 3 / hole transport layer 4 / light emitting layer 5 / hole blocking layer 6 / electron transport layer 7 / electron injection layer 8) is formed.
  • a metal film cathode 9 is formed by vapor deposition or the like. A portion where the anode 2 and the cathode 9 overlap with each other sandwiching the organic EL laminate OEL defines a light emitting area of the organic EL panel.
  • FIG. 9 is a schematic perspective view showing a configuration of an ink jet coating apparatus that coats a band-shaped organic layer in an ink jet coating process.
  • the inkjet coating apparatus includes a stage 10 that fixes the substrate 1, a stage moving mechanism 11 that moves the stage 10 in the Y direction, an inkjet head 12, and the inkjet head 12 in the X direction orthogonal to the Y direction.
  • a head moving mechanism 13 for moving is provided.
  • the ink jet coating apparatus also includes a control unit (not shown) that drives the stage moving mechanism 11, the ink jet head 12, and the head moving mechanism 13.
  • the inkjet head 12 is provided with a plurality of droplet discharge nozzles (not shown) for discharging droplets containing an organic material as a raw material such as the hole injection layer 3 toward the surface of the substrate 1. .
  • the control unit controls the movement of the stage moving mechanism 11 and the head moving mechanism 13 to move the inkjet head 12 in the Y direction and the X direction in the space above the substrate 1 fixed to the stage 10. Further, the control unit controls the ejection of droplets with respect to the inkjet head 12.
  • the viscosity of the droplet containing the organic material ejected by the inkjet head 12 is 2 to 5 cp, and the surface tension is 30 to 40 mN / m. Moreover, the boiling point of this organic material is larger than 200 degreeC.
  • the droplet discharge speed by the inkjet head 12 is, for example, about 4 m / sec, the discharge amount is about 15 ml, and the drive frequency is about 5 to 12 kHz.
  • the moving speed of the inkjet head 12 is about 100 mm / sec.
  • each solution tank (not shown) corresponding to each organic functional layer is connected to the inkjet head.
  • each of a plurality of droplet discharge nozzles in an inkjet head is formed with a piezo element having a solution chamber having a piezoelectric ceramic wall communicating with the nozzle. Pressure is applied to the solution by expansion and contraction of the solution chamber in accordance with the applied voltage to each piezo element, and the solution filled in each solution chamber is discharged from a plurality of nozzles (not shown) of the piezo element. As shown in FIG.
  • the inkjet head 12 provided with several hundreds of nozzles arranged in parallel in the Y direction, a plurality of droplets Lq of the solution are provided for the number of nozzles arranged in the Y direction.
  • the strip-shaped organic layer OG can be applied on the anode 2 with a width (W OG ).
  • the ink jet head 12 controlled by the control unit is moved to one end Q1 of the substrate 1 shown in FIG. 10 and moved from the position toward the other end Q2 of the substrate 1 in the X direction.
  • the ejection of droplets by the head 12 is executed.
  • droplets of the organic material discharged from the inkjet head 12 adhere to the area scanned by the inkjet head 12.
  • the pitch P BL auxiliary electrodes BL which coincides with the pitch P OG of the strip-shaped organic layer OG is previously formed so as to extend parallel to the X direction, the anode therebetween and adjacent auxiliary electrodes BL to each other Only the area above 2 (under the path Q1-Q2) is coated with organic material droplets.
  • substrate 1 means the edge part extended
  • the inkjet head 12 When the inkjet head 12 reaches a position outside the end portion Q2 of the substrate 1 shown in FIG. 10, the ejection of the liquid droplets is stopped and moves relative to the substrate 1 in the Y direction toward the end portion Q3 of the substrate 1. The position Q3 shown in FIG. 10 is reached. Then, the inkjet head 12 again causes the inkjet head 12 to discharge the droplet Lq while moving from the position of the end Q3 of the substrate 1 toward the end Q4 of the substrate 1 in the X direction. As a result, organic material droplets are deposited only in the region on the anode 2 (under the Q3-Q4 path) between the auxiliary electrodes BL adjacent to each other.
  • the inkjet head 12 is moved along the longitudinal direction (X direction) between the auxiliary electrodes BL while discharging the droplets by the inkjet head 12.
  • a seam SM is formed in which the edges of the regions between the adjacent auxiliary electrodes BL (applied adjacent band-like organic layers OG) are in contact with each other.
  • the method for manufacturing the organic EL panel according to the embodiment includes a step of forming a plurality of auxiliary electrodes BL juxtaposed in a stripe shape on the anode 2, as shown in FIG.
  • the method includes a scanning process in which the band-shaped organic layer OG is applied on the anode 2 between the auxiliary electrodes BL while the inkjet head 12 is scanned in parallel with the extension direction of the auxiliary electrode BL between the auxiliary electrodes BL.
  • the ink jet head 12 droplet discharge nozzle
  • the organic functional layer (hole injection layer 3 / hole transport layer 4 / light emitting layer 5 / hole blocking layer 6 / electron transport layer 7) corresponding to the step of applying the strip organic layer OG is applied.
  • the inkjet head 12 droplet discharge nozzle
  • the inkjet head 12 is present in the normal plane including the auxiliary electrode BL of the substrate 1 in each of the scanning steps shown in FIG. In this way, the position is controlled relative to the substrate 1.
  • the organic electroluminescent panel of monochromatic light emission such as white, red, green, blue
  • it consists of a multilayer light emitting layer.
  • An organic EL panel can be produced.
  • a light-emitting layer that emits red light, a light-emitting layer that emits green light, and a light-emitting layer that emits blue light can be sequentially stacked to produce a white light-emitting organic EL panel including three light-emitting layers.
  • a light-emitting layer that emits yellow-orange light and a light-emitting layer that emits blue light can be sequentially stacked to produce a white light-emitting organic EL panel including two light-emitting layers.
  • the joint position by scanning of the inkjet head for applying the organic EL material the same as the auxiliary electrode position of the transparent electrode, the joint part can be hidden by the auxiliary electrode, At least, it can reduce the deterioration factor of “look”.
  • the number of heads mounted on the ink jet coating apparatus can be reduced, apparatus cost and apparatus size can be reduced.
  • an ink jet head that can be obtained at present can be used, and it is possible to provide an organic EL panel that can suppress an unnecessary cost increase such as a custom head.
  • An example of the organic EL panel of the present embodiment is, as shown in FIG. 2, an anode 2 / hole injection layer 3 / hole transport layer 4 / light emitting layer that are sequentially laminated on a transparent substrate 1 such as glass. 5 / hole blocking layer 6 / electron transport layer 7 / electron injection layer 8 / cathode 9 /.
  • a transparent substrate 1 such as glass.
  • 5 / hole blocking layer 6 / electron transport layer 7 / electron injection layer 8 / cathode 9 / In addition to this laminated structure, although not shown, an anode 2 / hole injection layer 3 / light emitting layer 5 / electron transport layer 7 / electron injection layer 8 / cathode 9 / hole transport layer 4 and hole blocking layer 6 are provided.
  • the anode 2 / hole transport layer 4 / light emitting layer 5 / electron transport layer 7 / electron injection layer 8 / cathode 9 / hole injection layer 3 and hole blocking layer 6 are omitted.
  • the anode 2, the light emitting layer 5, the electron transport layer 7, the electron injection layer 8, the cathode 9 / the hole injection layer 3, the hole transport layer 4, and the hole blocking layer 6 may be omitted. It is included in the present invention.
  • substrate As the substrate 1, a quartz or glass plate, a metal plate or a metal foil, a resin substrate to be bent, a plastic film, a sheet, or the like is used. In particular, a glass plate or a transparent synthetic resin plate such as polyester, polymethacrylate, polycarbonate, or polysulfone is preferable.
  • a synthetic resin substrate it is necessary to pay attention to gas barrier properties. If the gas barrier property of the substrate is too small, the organic EL panel may be deteriorated by the outside air that has passed through the substrate, which is not preferable. For this reason, a method of providing a gas barrier property by providing a dense silicon oxide film or the like on at least one surface of the synthetic resin substrate is also a preferable method.
  • the anode 2 that supplies holes to the layers up to the light emitting layer is usually a metal such as aluminum, gold, silver, nickel, palladium, platinum, or a metal such as indium and / or tin or zinc oxide (ITO or IZO). It is composed of an oxide, a metal halide such as copper iodide, carbon black, or a conductive polymer such as poly (3-methylthiophene), polypyrrole, or polyaniline.
  • a metal such as aluminum, gold, silver, nickel, palladium, platinum, or a metal such as indium and / or tin or zinc oxide (ITO or IZO). It is composed of an oxide, a metal halide such as copper iodide, carbon black, or a conductive polymer such as poly (3-methylthiophene), polypyrrole, or polyaniline.
  • the anode is usually formed by a sputtering method, a vacuum deposition method, or the like.
  • an appropriate binder resin solution is used.
  • the anode can also be formed by dispersing and coating the substrate.
  • a conductive polymer a thin film can be directly formed on the substrate by electrolytic polymerization, or the anode can be formed by applying a conductive polymer on the substrate.
  • the anode usually has a single-layer structure, but it can also have a laminated structure made of a plurality of materials if desired.
  • the thickness of the anode depends on the required transparency. When transparency is required, the visible light transmittance is usually 60% or more, preferably 80% or more. In this case, the thickness of the anode is usually 5 nm or more, preferably 10 nm or more, and is usually 1000 nm or less, preferably about 500 nm or less. If it may be opaque, the thickness of the anode is arbitrary, and the anode may be integrated with the substrate 1. Furthermore, different conductive materials may be laminated.
  • the surface of the anode is treated with ultraviolet (UV) / ozone, oxygen plasma, or argon plasma for the purpose of removing impurities adhering to the anode and adjusting the ionization potential to improve hole injection. Is preferred.
  • a material used for the cathode 9 for supplying electrons to the layers up to the light emitting layer a material used for the anode can be used.
  • a metal having a low work function is preferable.
  • a suitable metal such as tin, magnesium, indium, calcium, aluminum, silver, or an alloy thereof is used.
  • Specific examples include low work function alloy electrodes such as magnesium-silver alloy, magnesium-indium alloy, and aluminum-lithium alloy.
  • the material of the cathode 9 only 1 type may be used for the material of the cathode 9, and 2 or more types may be used together by arbitrary combinations and a ratio.
  • the thickness of the cathode is usually the same as that of the anode.
  • a metal layer having a high work function and stable to the atmosphere because the stability of the organic EL panel is increased.
  • metals such as aluminum, silver, copper, nickel, chromium, gold, platinum are used.
  • these materials may be used only by 1 type and may use 2 or more types together by arbitrary combinations and a ratio.
  • the material and film thickness are selected so as to be transparent or translucent.
  • the hole injection layer 3 is preferably a layer containing an electron accepting compound.
  • the film thickness of the hole injection layer is usually 5 nm or more, preferably 10 nm or more, and usually 1000 nm or less, preferably 500 nm or less.
  • the hole injection layer is preferably formed by a wet film formation method such as an inkjet method from the viewpoint of reducing dark spots.
  • the material for forming the hole injection layer is usually mixed with an appropriate solvent (a solvent for the hole injection layer) to form a composition for film formation (hole An injection layer forming composition) is prepared, and this hole injection layer forming composition is coated on the anode by an appropriate technique to form a film and dried to form a hole injection layer.
  • an appropriate solvent a solvent for the hole injection layer
  • the composition for forming a hole injection layer usually contains a hole transporting compound and a solvent as a constituent material of the hole injection layer.
  • a solvent include, but are not limited to, ether solvents, ester solvents, aromatic hydrocarbon solvents, amide solvents, and the like.
  • ether solvents include aliphatic ethers such as ethylene glycol dimethyl ether, ethylene glycol diethyl ether, propylene glycol monomethyl ether acetate (PGMEA), 1,2-dimethoxybenzene, 1,3-dimethoxybenzene, anisole, phenetole, 2 -Aromatic toluene such as methoxytoluene, 3-methoxytoluene, 4-methoxytoluene, 2,3-dimethylanisole, 2,4-dimethylanisole, and the like.
  • aliphatic ethers such as ethylene glycol dimethyl ether, ethylene glycol diethyl ether, propylene glycol monomethyl ether acetate (PGMEA), 1,2-dimethoxybenzene, 1,3-dimethoxybenzene, anisole, phenetole, 2 -Aromatic toluene such as methoxytoluene, 3-methoxytoluene
  • ester solvents include aromatic esters such as phenyl acetate, phenyl propionate, methyl benzoate, ethyl benzoate, propyl benzoate, and n-butyl benzoate.
  • aromatic hydrocarbon solvent examples include toluene, xylene, cyclohexylbenzene, 3-isopropylpropylphenyl, 1,2,3,4-tetramethylbenzene, 1,4-diisopropylbenzene, cyclohexylbenzene, and methylnaphthalene. Can be mentioned.
  • amide solvent examples include N, N-dimethylformamide and N, N-dimethylacetamide.
  • dimethyl sulfoxide and the like can also be used. These solvent may use only 1 type and may use 2 or more types by arbitrary combinations and a ratio.
  • a polymer or the like may be a monomer or the like. Although it may be a low molecular compound, it is preferably a low molecular compound.
  • the hole transporting compound is preferably a compound having an ionization potential of 4.5 eV to 6.0 eV from the viewpoint of a charge injection barrier from the anode to the hole injection layer.
  • hole transporting compounds include aromatic amine derivatives, phthalocyanine derivatives typified by phthalocyanine copper (CuPc), porphyrin derivatives, oligothiophene derivatives, polythiophene derivatives, benzylphenyl derivatives, and tertiary amines linked by fluorene groups.
  • Examples thereof include compounds, hydrazone derivatives, silazane derivatives, silanamine derivatives, phosphamine derivatives, quinacridone derivatives, polyaniline derivatives, polypyrrole derivatives, polyphenylene vinylene derivatives, polythienylene vinylene derivatives, polyquinoline derivatives, polyquinoxaline derivatives, and carbon.
  • the derivative includes, for example, an aromatic amine derivative, and includes an aromatic amine itself and a compound having an aromatic amine as a main skeleton. It may be a body.
  • the hole transporting compound used as the material for the hole injection layer may contain any one of these compounds alone, or may contain two or more.
  • the combination is arbitrary, but one or more kinds of aromatic tertiary amine polymer compounds and one or two kinds of other hole transporting compounds.
  • an aromatic amine compound is preferable for the hole injection layer, and an aromatic tertiary amine compound is particularly preferable.
  • the aromatic tertiary amine compound is a compound having an aromatic tertiary amine structure, and includes a compound having a group derived from an aromatic tertiary amine. Specific examples include those described in the pamphlet of International Publication No. 2005/089024.
  • a conductive polymer obtained by polymerizing 3,4-ethylenedioxythiophene, which is a derivative of polythiophene, in high molecular weight polystyrene sulfonic acid is also preferable. Moreover, the end of this polymer may be capped with methacrylate or the like.
  • the concentration of the hole transporting compound in the composition for forming a hole injection layer is usually 0.01% by weight or more, preferably 0.1% by weight or more, and more preferably 0.00% by weight in terms of film thickness uniformity. 5% by weight or more, usually 70% by weight or less, preferably 60% by weight or less, more preferably 50% by weight or less. If this concentration is too high, film thickness unevenness may occur, and if it is too low, defects may occur in the formed hole injection layer.
  • the composition for forming a hole injection layer preferably contains an electron-accepting compound, and may further contain other components in addition to the hole-transporting compound and the electron-accepting compound.
  • other components include various light emitting materials, electron transporting compounds, binder resins, and coating property improving agents.
  • only 1 type may be used for another component and it may use 2 or more types together by arbitrary combinations and ratios.
  • the material of the hole transport layer 4 may be any material that has been conventionally used as a constituent material of the hole transport layer.
  • the hole transport layer is exemplified as the hole transport compound used in the above-described hole injection layer. Things.
  • polyvinylcarbazole derivatives polyarylamine derivatives, polyvinyltriphenylamine derivatives, polyfluorene derivatives, polyarylene derivatives, polyarylene ether sulfone derivatives containing tetraphenylbenzidine, polyarylene vinylene derivatives, polysiloxane derivatives, polythiophenes Derivatives, poly (p-phenylene vinylene) derivatives, and the like.
  • These may be any of an alternating copolymer, a random polymer, a block polymer, or a graft copolymer. Further, it may be a polymer having a branched main chain and three or more terminal portions, or a so-called dendrimer.
  • the material for the hole transport layer 4 include polyarylene derivatives described in JP-A-2008-98619.
  • a composition for forming a hole transport layer is prepared in the same manner as the formation of the hole injection layer, followed by drying after the wet film formation.
  • the hole transporting layer forming composition contains a solvent.
  • the solvent used is the same as that used for the composition for forming the hole injection layer.
  • the film forming conditions, the drying conditions, and the like are the same as in the case of forming the hole injection layer.
  • the hole transport layer may contain various light emitting materials, electron transport compounds, binder resins, coatability improvers and the like in addition to the hole transport compound.
  • the film thickness of the hole transport layer is usually 5 nm or more, preferably 10 nm or more, and usually 300 nm or less, preferably 100 nm or less.
  • the hole transport layer may be formed by a vacuum deposition method or a wet film formation method, but is preferably formed by a wet film formation method from the viewpoint of reducing dark spots.
  • the hole transport layer 4 may be a layer containing a polymer obtained by crosslinking an amine-based crosslinking compound.
  • the light emitting layer 5 contains at least a material having a light emitting property (light emitting material) as a constituent material, and preferably a compound having a hole transporting property (hole transporting compound) or an electron transport.
  • a light emitting material may be used as a dopant material, and a hole transporting compound, an electron transporting compound, or the like may be used as a host material.
  • the light-emitting material There is no particular limitation on the light-emitting material, and a material that emits light at a desired light emission wavelength and has favorable light emission efficiency may be used.
  • any known material can be applied as the light emitting material.
  • a fluorescent material or a phosphorescent material may be used, but a phosphorescent material is preferred from the viewpoint of internal quantum efficiency.
  • blue may be used in combination, such as using a fluorescent material, and green and red using a phosphorescent material.
  • fluorescent light emitting materials blue fluorescent dyes
  • examples of fluorescent light emitting materials that emit blue light include naphthalene, perylene, pyrene, chrysene, anthracene, coumarin, p-bis (2-phenylethenyl) benzene, and derivatives thereof.
  • fluorescent light-emitting material green fluorescent dye
  • examples of the fluorescent light-emitting material (green fluorescent dye) that emits green light include aluminum complexes such as quinacridone derivatives, coumarin derivatives, and Alq3 (tris (8-hydroxy-quinoline) aluminum).
  • Examples of the fluorescent light emitting material that emits yellow light include rubrene and perimidone derivatives.
  • red fluorescent dyes examples include DCM (4- (dicyanomethylene) -2-methyl-6- (p-dimethylaminostyryl) -4H-pyran) compounds, benzopyran derivatives, rhodamine derivatives, Examples include benzothioxanthene derivatives and azabenzothioxanthene.
  • a long-period type periodic table (hereinafter, unless otherwise specified, the term “periodic table” refers to a long-period type periodic table) selected from Group 7 to 11 And an organometallic complex containing a metal.
  • Preferred examples of the metal selected from Groups 7 to 11 of the periodic table include ruthenium, rhodium, palladium, silver, rhenium, osmium, iridium, platinum, and gold.
  • a ligand in which a (hetero) aryl group such as a (hetero) arylpyridine ligand or a (hetero) arylpyrazole ligand and a pyridine, pyrazole, phenanthroline, or the like is connected is preferable.
  • a pyridine ligand and a phenylpyrazole ligand are preferable.
  • (hetero) aryl represents an aryl group or a heteroaryl group.
  • phosphorescent materials include tris (2-phenylpyridine) iridium (Ir (ppy) 3), tris (2-phenylpyridine) ruthenium, tris (2-phenylpyridine) palladium, and bis (2-phenylpyridine).
  • the molecular weight of the compound used as the light emitting material is usually 10,000 or less, preferably 5000 or less, more preferably 4000 or less, still more preferably 3000 or less, and usually 100 or more, preferably 200 or more, more preferably 300 or more, still more preferably.
  • the range is 400 or more. If the molecular weight of the luminescent material is too small, the heat resistance will be significantly reduced, gas generation will be caused, the film quality will be reduced when the film is formed, or the morphology of the organic functional layer will be changed due to migration, etc. There is a case. On the other hand, if the molecular weight of the luminescent material is too large, it tends to be difficult to purify the organic compound, or it may take time to dissolve in the solvent.
  • any 1 type may be used for a luminescent material, and 2 or more types may be used together by arbitrary combinations and a ratio.
  • the ratio of the light emitting material in the light emitting layer is usually 0.05% by weight or more and usually 35% by weight or less. If the amount of the light emitting material is too small, uneven light emission may occur. If the amount is too large, the light emission efficiency may be reduced.
  • when using together 2 or more types of luminescent material it is made for the total content of these to be contained in the said range.
  • the component having the highest content in the light emitting layer is called a host material, and the component having a smaller content is called a guest material. Therefore, at least two kinds of solid contents (host material and guest material) to be the light emitting layer can be prepared by being dispersed or dissolved in a solvent as a solute in the light emitting layer coating liquid.
  • the light emitting layer may contain a hole transporting compound as a constituent material.
  • examples of the low molecular weight hole transporting compound include various compounds exemplified as the hole transporting compound in the hole injection layer 3 described above, for example, Two or more condensed aromatic rings containing two or more tertiary amines represented by 4′-bis [N- (1-naphthyl) -N-phenylamino] biphenyl ( ⁇ -NPD) are attached to the nitrogen atom.
  • Aromatic amine compounds having a starburst structure Journal ⁇ of ⁇ ⁇ ⁇ ⁇ Luminescence, such as substituted aromatic diamines (Japanese Patent Laid-open No.
  • a hole transportable compound in a light emitting layer, only 1 type may be used for a hole transportable compound, and it may use 2 or more types together by arbitrary combinations and a ratio.
  • the proportion of the hole transporting compound in the light emitting layer is usually 0.1% by weight or more and usually 65% by weight or less. If the amount of the hole transporting compound is too small, it may be easily affected by a short circuit, and if it is too large, the film thickness may be uneven. In addition, when using together 2 or more types of hole transportable compounds, it is made for the total content of these to be contained in the said range.
  • the light emitting layer may contain an electron transporting compound as a constituent material.
  • examples of low molecular weight electron transporting compounds include 2,5-bis (1-naphthyl) -1,3,4-oxadiazole (BND), 2,5, -Bis (6 '-(2', 2 "-bipyridyl))-1,1-dimethyl-3,4-diphenylsilole (PyPySPyPy), bathophenanthroline (BPhen), 2,9-dimethyl-4,7 Diphenyl-1,10-phenanthroline (BCP, bathocuproin), 2- (4-biphenylyl) -5- (p-tertiarybutylphenyl) -1,3,4-oxadiazole (tBu-PBD), 4 , 4′-bis (9H-carbazol-9-yl) biphenyl (CBP), etc.
  • BND 2,5-bis (1-naphthyl) -1,3,4-
  • the proportion of the electron transporting compound in the light emitting layer is usually 0.1% by weight or more and usually 65% by weight or less. If the amount of the electron transporting compound is too small, it may be easily affected by a short circuit, and if it is too large, the film thickness may be uneven. In addition, when using together 2 or more types of electron transport compounds, it is made for the total content of these to be contained in the said range.
  • the light emitting layer is formed by preparing a composition for forming a light emitting layer by dissolving the above light emitting layer material in an appropriate solvent and forming a film using the composition.
  • any solvent can be used as long as the light emitting layer can be formed.
  • Suitable examples of the solvent for the light emitting layer are the same as those described for the composition for forming a hole injection layer.
  • the ratio of the light emitting layer solvent to the light emitting layer forming composition for forming the light emitting layer is usually 0.01% by weight or more and usually 70% by weight or less.
  • the obtained coating film is dried and the solvent is removed to form a light emitting layer.
  • the light emitting layer is similar to the coating method described in the formation of the hole injection layer, but is preferably formed by a wet film forming method from the viewpoint of reducing dark spots.
  • the film thickness of the light emitting layer is usually 3 nm or more, preferably 5 nm or more, and usually 200 nm or less, preferably 100 nm or less. If the light emitting layer is too thin, defects may occur in the film, and if it is too thick, the driving voltage may increase.
  • the hole blocking layer 6 is a layer laminated on the light emitting layer so as to be in contact with the cathode side interface of the light emitting layer.
  • the hole blocking layer has a role of blocking holes moving from the anode from reaching the cathode and a role of efficiently transporting electrons injected from the cathode toward the light emitting layer.
  • the physical properties required for the material constituting the hole blocking layer include high electron mobility, low hole mobility, large energy gap (difference between HOMO and LUMO), and excited triplet level (T1). It is expensive.
  • Examples of the material of the hole blocking layer satisfying such conditions include bis (2-methyl-8-quinolinolato) (4-phenolato) aluminum (PAlq) and bis (2-methyl-8-quinolinolato) (tri Mixed ligand complexes such as phenylsilanolato) aluminum (SAlq), bis (2-methyl-8-quinolato) aluminum- ⁇ -oxo-bis- (2-methyl-8-quinolinato) aluminum binuclear metal complexes, etc.
  • Stylyl compounds such as metal complexes and distyrylbiphenyl derivatives (Japanese Patent Laid-Open No. 11-242996), 3- (4-biphenylyl) -4-phenyl-5 (4-tert-butylphenyl) -1,2,4- Triazole derivatives such as triazole (JP-A-7-41759), phenanthroyl such as bathocuproine (BCP) And the like derivatives (JP-A-10-79297). Furthermore, compounds having at least one pyridine ring substituted at the 2,4,6-positions described in International Publication No. 2005-022962 are also preferable as the material for the hole blocking layer.
  • the film thickness of the hole blocking layer is usually 0.3 nm or more, preferably 0.5 nm or more, and usually 100 nm or less, preferably 50 nm or less.
  • Electron transport layer * The electron transport layer 7 is provided for the purpose of further improving the light emission efficiency of the organic EL panel, and efficiently transports electrons injected from the cathode between the electrodes to which an electric field is applied in the direction of the light emitting layer. Formed from a compound capable of
  • the electron transporting compound used for the electron transport layer usually, the electron injection efficiency from the cathode 9 or the electron injection layer 8 is high, and the injected electrons having high electron mobility can be efficiently transported.
  • the compound satisfying such conditions include metal complexes such as aluminum complexes of 8-hydroxyquinoline such as Alq3 (Japanese Patent Laid-Open No.
  • quinoxaline Compound JP-A-6-207169
  • phenanthroline derivative JP-A-5-331459
  • n-type hydrogenated amorphous Silicon carbide n-type sulfide Examples thereof include zinc and n-type zinc selenide.
  • the formation method of the electron transport layer is not limited, but it is preferably formed by a wet film formation method from the viewpoint of reducing dark spots.
  • the film thickness of the electron transport layer is usually 1 nm or more, preferably 5 nm or more, and usually 300 nm or less, preferably 100 nm or less.
  • the electron injection layer 8 plays a role of efficiently injecting electrons injected from the cathode into the light emitting layer.
  • the material for forming the electron injection layer is preferably a metal having a low work function. Examples include alkali metals such as sodium and cesium, alkaline earth metals such as barium and calcium, and their compounds (CsF, Cs 2 CO 3 , Li 2 O, LiF) and the like. .1 nm or more and 5 nm or less are preferable.
  • an organic electron transport compound typified by a metal complex such as a nitrogen-containing heterocyclic compound such as bathophenanthroline or an aluminum complex of 8-hydroxyquinoline is doped with an alkali metal such as sodium, potassium, cesium, lithium or rubidium ( As described in JP-A-10-270171, JP-A-2002-1000047, JP-A-2002-1000048, and the like, it is possible to improve the electron injection / transport property and achieve excellent film quality.
  • the film thickness is usually 5 nm or more, preferably 10 nm or more, and is usually 200 nm or less, preferably 100 nm or less.
  • Example 1 an anode (ITO) / hole injection layer / hole transport layer / light emitting layer / hole blocking layer / electron transport layer / electron injection on the glass substrate by the process described above with reference to FIGS.

Abstract

This organic EL panel has a substrate, and on the substrate, at least one organic functional layer is formed by scanning performed by a droplet jetting nozzle, said organic functional layer being disposed between a first electrode layer and a second electrode layer facing each other, and demarcating a light emitting area. The organic EL panel has a plurality of auxiliary electrodes that are disposed in parallel in stripes on the first electrode layer. The organic functional layer is configured of a plurality of strip-like organic layers, which are disposed among the auxiliary electrodes in parallel to the longitudinal direction of the auxiliary electrodes, and which have end portions thereof bonded to each other. The end portions of the strip-like organic layers are within a normal plane of the substrate, said normal plane including the auxiliary electrodes.

Description

有機エレクトロルミネッセンスパネル及びその製造方法Organic electroluminescence panel and manufacturing method thereof
 本発明は、有機エレクトロルミネッセンス(以下、有機ELという)材料を発光層とする有機ELパネル及びその製造方法に関する。 The present invention relates to an organic EL panel having an organic electroluminescence (hereinafter referred to as organic EL) material as a light emitting layer and a method for manufacturing the same.
 有機ELパネルは陽極と陰極の間に電荷輸送性を有する有機化合物からなる複数の有機機能層を挟持させて、その有機機能層の内に少なくとも1層の発光層を含む面発光体である。 An organic EL panel is a surface light emitter in which a plurality of organic functional layers made of an organic compound having a charge transport property are sandwiched between an anode and a cathode, and at least one light emitting layer is included in the organic functional layer.
 有機ELパネルは携帯電話などの表示装置として実用化され、さらに、薄型面光源として照明器具への応用が進められている。 Organic EL panels have been put into practical use as display devices such as mobile phones, and are being applied to lighting fixtures as thin surface light sources.
 有機ELパネルを製造する際の有機機能層の成膜手法の1つとして、液滴吐出ノズルの走査による塗布法(インクジェット法)が知られている。インクジェット法では、ノズルを介して有機材料を含む液体を微小フロー(噴流又は滴下流)の形態で吐出して液滴を陽極上に堆積させ、その後、乾燥させることにより、正孔注入層、正孔輸送層、発光層、電子輸送層、及び電子注入層などの有機機能層を成膜して積層する。 As a method for forming an organic functional layer when manufacturing an organic EL panel, a coating method (inkjet method) by scanning a droplet discharge nozzle is known. In the ink jet method, a liquid containing an organic material is ejected through a nozzle in the form of a micro flow (jet flow or drop flow) to deposit droplets on the anode, and then dried to obtain a hole injection layer, a positive Organic functional layers such as a hole transport layer, a light emitting layer, an electron transport layer, and an electron injection layer are formed and stacked.
 従来、インクジェット法を用いて作製された有機EL表示装置では、その画像表示エリア内の複数走査により塗布された有機EL材料の塗布層間の境界部分に発光ムラが生じていた。境界部分の発光ムラは、観察者が凝視する有機EL表示装置の画面の「見た目」を悪化させてしまう。そこで、目障りとなる境界部分すなわち塗布層の継ぎ目部分を均一化して発光ムラを視認し難くするインクジェット法が種々提案されている(特許文献1~6、参照)。 Conventionally, in an organic EL display device manufactured using an ink jet method, light emission unevenness has occurred at a boundary portion between coating layers of an organic EL material applied by a plurality of scans in the image display area. The uneven light emission at the boundary part deteriorates the “look” of the screen of the organic EL display device that the observer gazes at. In view of this, various ink jet methods have been proposed in which the boundary portion that is an obstacle, that is, the joint portion of the coating layer, is made uniform to make it difficult to visually recognize light emission unevenness (see Patent Documents 1 to 6).
 従来の有機EL表示装置の製造に用いられているインクジェット法を面光源用の有機ELパネルの製造へ応用する場合においても、複数のインクジェットヘッドを並べて一斉に走査すれば当該境界部分が目立たなくなる。しかし、インクジェットヘッドの複数化により製造装置設備のコスト上昇や大型化を招来する。また、インクジェットヘッドを大型化してその幅を広くする方法もあるが、現在入手可能なインクジェットヘッドは3~7cm幅のものが多く、さらに幅広の大型ヘッドは特注となるので当該ヘッドが高価となり製造コストが増加する。従来のインクジェット法でも完全に継ぎ目部分をなくすことは難しく、面光源用の有機ELパネルの製造コストの上昇を抑えて継ぎ目の発光ムラによる発光面の不均一度を抑制することが困難であった。 Even when the inkjet method used in the manufacture of a conventional organic EL display device is applied to the manufacture of an organic EL panel for a surface light source, the boundary portion becomes inconspicuous if a plurality of inkjet heads are arranged and scanned simultaneously. However, the use of a plurality of ink jet heads causes an increase in cost and size of manufacturing equipment. There is also a method to increase the width of the inkjet head by increasing the size, but currently there are many 3 to 7 cm wide inkjet heads available, and the wide and large heads are custom-made, making the head expensive and manufactured. Cost increases. Even with the conventional ink jet method, it is difficult to completely eliminate the seam portion, and it is difficult to suppress the non-uniformity of the light emitting surface due to uneven light emission of the seam by suppressing the increase in the manufacturing cost of the organic EL panel for the surface light source. .
特開2004-327241号公報JP 2004-327241 A 特開2006-68598号公報JP 2006-68598 A 特開2008-249781号公報JP 2008-249781 A 特開2009-66526号公報JP 2009-66526 A 特開2011-54386号公報JP 2011-54386 A 特開2006-7079号公報JP 2006-7079 A
 本発明は上記した点に鑑みて為されたものであり、インクジェット法により生じる塗布層の継ぎ目の発光ムラによる発光面の不均一度を抑制させた有機ELパネル及びその製造方法を提供することが課題の一例としてあげられる。 The present invention has been made in view of the above points, and provides an organic EL panel in which nonuniformity of a light emitting surface due to light emission unevenness of a joint of a coating layer generated by an ink jet method is suppressed, and a method for manufacturing the same. An example of the problem.
 本発明の有機ELパネルは、基板上かつ前記基板の法線方向において互いに対向する第一電極層及び第二電極層の間に配置される少なくとも1層の有機機能層が液滴吐出ノズルの走査により形成された有機ELパネルであって、
 前記第一電極層上に並置された複数の補助電極を有し、
 前記有機機能層は、前記補助電極間ごとに前記補助電極の長手方向に平行にそれぞれ並置されかつ縁部同士が互いに接合した複数の帯状有機層からなり、前記帯状有機層の縁部が前記補助電極を含む前記基板の法平面内にあることを特徴とする。
In the organic EL panel of the present invention, at least one organic functional layer disposed on the substrate and between the first electrode layer and the second electrode layer facing each other in the normal direction of the substrate is scanned by the droplet discharge nozzle. An organic EL panel formed by
A plurality of auxiliary electrodes juxtaposed on the first electrode layer;
The organic functional layer is composed of a plurality of band-like organic layers juxtaposed in parallel with each other between the auxiliary electrodes in the longitudinal direction of the auxiliary electrodes, and edges are joined to each other, and the edge of the band-like organic layer is the auxiliary It lies in the normal plane of the substrate including the electrodes.
 また、本発明の有機ELパネルの製造方法は、基板上かつ前記基板の法線方向において互いに対向する第一電極層及び第二電極層の間に配置される少なくとも1層の有機機能層が液滴吐出ノズルの走査により形成された有機ELパネルの製造方法であって、
 前記第一電極層上に複数の補助電極を並置する工程と、
 前記補助電極間ごとの前記第一電極層の表面に沿って前記補助電極の伸長方向に平行に移動する液滴吐出ノズルにより前記第一電極層上を走査させつつ前記補助電極間の前記第一電極層上に帯状有機層をそれぞれ塗布する走査工程と、を含み、
 前記走査工程において、前記液滴吐出ノズルは、塗布された隣接する前記帯状有機層の縁部同士が互いに接合しかつ前記帯状有機層の縁部が前記補助電極を含む前記基板の法平面内にあるように、前記基板に対し相対的に位置制御されることを特徴とする。
Further, in the method for producing an organic EL panel of the present invention, at least one organic functional layer disposed on the substrate and between the first electrode layer and the second electrode layer facing each other in the normal direction of the substrate is a liquid. A method of manufacturing an organic EL panel formed by scanning a droplet discharge nozzle,
Juxtaposing a plurality of auxiliary electrodes on the first electrode layer;
The first electrode between the auxiliary electrodes is scanned over the first electrode layer by a droplet discharge nozzle that moves parallel to the extension direction of the auxiliary electrode along the surface of the first electrode layer between the auxiliary electrodes. And a scanning step of applying a strip organic layer on the electrode layer,
In the scanning step, the droplet discharge nozzle is formed so that the edges of the adjacent strip organic layers applied to each other are bonded to each other and the edges of the strip organic layer are within the normal plane of the substrate including the auxiliary electrode. As described above, the position is controlled relative to the substrate.
 本発明によれば、有機ELパネルは光取り出し側の第一電極層には透明電極材料を用い第一電極層に電流を供給する補助電極を設け、インクジェット法の走査による塗布層の継ぎ目と補助電極との両者を重ねることによって、当該継ぎ目が目立たなくなる。 According to the present invention, the organic EL panel is provided with an auxiliary electrode that supplies a current to the first electrode layer using a transparent electrode material on the first electrode layer on the light extraction side, and the joint and auxiliary of the coating layer by scanning by the ink jet method. By overlapping both electrodes, the seam becomes inconspicuous.
本発明の実施形態の有機ELパネルの構造を示す上面透視図である。It is a top perspective view which shows the structure of the organic electroluminescent panel of embodiment of this invention. 図1のA-A線に沿って切り取った部分的断面図である。FIG. 2 is a partial cross-sectional view taken along line AA in FIG. 1. 有機ELパネルの製造過程における基板とその上に形成された構造物を示す断面図である。It is sectional drawing which shows the board | substrate in the manufacture process of an organic electroluminescent panel, and the structure formed on it. 有機ELパネルの製造過程における基板とその上に形成された構造物を示す断面図である。It is sectional drawing which shows the board | substrate in the manufacture process of an organic electroluminescent panel, and the structure formed on it. 有機ELパネルの製造過程における基板とその上に形成された構造物を示す断面図である。It is sectional drawing which shows the board | substrate in the manufacture process of an organic electroluminescent panel, and the structure formed on it. 有機ELパネルの製造過程における基板とその上に形成された構造物を示す断面図である。It is sectional drawing which shows the board | substrate in the manufacture process of an organic electroluminescent panel, and the structure formed on it. 有機ELパネルの製造過程における基板とその上に形成された構造物を示す断面図である。It is sectional drawing which shows the board | substrate in the manufacture process of an organic electroluminescent panel, and the structure formed on it. 有機ELパネルの製造過程における基板とその上に形成された構造物を示す断面図である。It is sectional drawing which shows the board | substrate in the manufacture process of an organic electroluminescent panel, and the structure formed on it. インクジェット法によって帯状有機層を形成する際に用いられるインクジェット塗布装置の構成を示す概略斜視図である。It is a schematic perspective view which shows the structure of the inkjet coating device used when forming a strip | belt-shaped organic layer with the inkjet method. 補助電極が形成されている基板の表面上を移動するインクジェットヘッドの移動形態の一例を示す斜視図である。It is a perspective view which shows an example of the movement form of the inkjet head which moves on the surface of the board | substrate with which the auxiliary electrode is formed.
 以下、本発明の実施の形態について、図面を参照しつつ説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.
 図1は、本発明の実施形態の有機ELパネルの一部分を陰極側上面から眺めた透視図であり、図2は、図1のA-A線における有機ELパネルの断面を示す部分的断面図である。 FIG. 1 is a perspective view of a portion of an organic EL panel according to an embodiment of the present invention as viewed from the upper surface on the cathode side, and FIG. 2 is a partial cross-sectional view showing a cross section of the organic EL panel taken along line AA in FIG. It is.
 本実施形態は、図2に示すように、ガラスや樹脂等からなる平板又はフィルム状の透明な基板1上に形成された透明な陽極2(第一電極層)と、この上に積層された発光層5を含む有機EL積層体OELと、この上に積層された陰極9(第二電極層)とを有する有機ELパネルである。有機EL積層体OELは、インクジェット法によりそれぞれ成膜され繋がった複数の帯状有機層OGからなる有機機能層が積層されたものであり、有機機能層として正孔注入層3/正孔輸送層4/発光層5/正孔阻止層6/電子輸送層7/電子注入層8を有する。図1及び図2において、基板1上には、パネル平面におけるXY方向に拡がる透明な陽極2が形成されている。有機EL積層体OELの電子注入層8上にはベタ膜状の陰極9が形成されている。なお、有機ELパネルのすべての有機機能層をインクジェット法により成膜する必要はなく、他の湿式法により成膜したり、蒸着法により成膜することができる。例えば、正孔注入層、正孔輸送層をスプレイ法などでベタ膜として一様に成膜してもよく。例えば、正孔阻止層、電子輸送層及び電子注入層陰極を、それぞれ蒸着法などでベタ膜として一様に順次成膜してもよい。少なくとも発光ムラに影響の大きい発光層についてインクジェット法による成膜が好ましい。 In the present embodiment, as shown in FIG. 2, a transparent anode 2 (first electrode layer) formed on a flat substrate 1 or a film-like transparent substrate 1 made of glass, resin, or the like, and laminated thereon. This is an organic EL panel having an organic EL laminate OEL including a light emitting layer 5 and a cathode 9 (second electrode layer) laminated thereon. The organic EL laminated body OEL is formed by laminating an organic functional layer composed of a plurality of band-like organic layers OG formed and connected by an ink jet method, and the hole injection layer 3 / the hole transport layer 4 are used as the organic functional layer. / Light emitting layer 5 / hole blocking layer 6 / electron transport layer 7 / electron injection layer 8 1 and 2, a transparent anode 2 extending in the XY direction on the panel plane is formed on a substrate 1. A solid film-like cathode 9 is formed on the electron injection layer 8 of the organic EL laminate OEL. Note that it is not necessary to form all the organic functional layers of the organic EL panel by the ink jet method, and the film can be formed by another wet method or a vapor deposition method. For example, the hole injection layer and the hole transport layer may be uniformly formed as a solid film by a spray method or the like. For example, the hole blocking layer, the electron transport layer, and the electron injection layer cathode may be uniformly and sequentially formed as a solid film by an evaporation method or the like. Film formation by an ink jet method is preferable for at least a light emitting layer having a large influence on light emission unevenness.
 図2に示すように、陽極2上には、複数の補助電極BLがX方向に平行にストライプ状に形成されている。すなわち、基板1上において有機EL積層体OELは、互いに隣接する補助電極BLの間の陽極2上に、補助電極BLを跨ぐ形態で形成されている。補助電極BLは絶縁材料からなる絶縁膜SFに覆われている(ただし図1では補助電極BLのみ示し絶縁膜を図示していない)。補助電極BLは、陽極2に電源電力を供給する為に形成されている。有機ELパネルは光取り出し側の陽極2等の第一電極層には透明電極を用いている。透明電極は抵抗率が高いので、ある程度の面積を必要とする面光源用の有機ELパネルにおいては、抵抗率の低い金属材料からなる補助電極を透明電極上にストライプ状に並置して補助電極BL及び透明陽極2を全体として低抵抗化を施している。 As shown in FIG. 2, on the anode 2, a plurality of auxiliary electrodes BL are formed in stripes parallel to the X direction. In other words, the organic EL stacked body OEL is formed on the substrate 1 on the anode 2 between the adjacent auxiliary electrodes BL so as to straddle the auxiliary electrodes BL. The auxiliary electrode BL is covered with an insulating film SF made of an insulating material (however, only the auxiliary electrode BL is shown in FIG. 1 and the insulating film is not shown). The auxiliary electrode BL is formed to supply power to the anode 2. The organic EL panel uses a transparent electrode for the first electrode layer such as the anode 2 on the light extraction side. Since the transparent electrode has a high resistivity, in an organic EL panel for a surface light source that requires a certain area, an auxiliary electrode made of a metal material having a low resistivity is juxtaposed in a stripe shape on the transparent electrode. In addition, the resistance of the transparent anode 2 as a whole is reduced.
 図2に示すように、有機EL積層体OELの各有機機能層は、補助電極BL間ごとに補助電極BLの長手方向(X方向)に平行に並置されかつ互いに接合した帯状有機層OGの複数から構成される。帯状有機層OGの隣接するもの同士の接合した縁部が補助電極BL上又は真上にて接触して繋がった継ぎ目SMとなる。すなわち、帯状有機層OGの縁部同士が補助電極BLを含む基板1の法平面内にある。なお、帯状有機層OGの縁部は長手方向(X方向)に伸長する縁部を意味する。 As shown in FIG. 2, each organic functional layer of the organic EL laminate OEL includes a plurality of strip-like organic layers OG that are juxtaposed in parallel to the longitudinal direction (X direction) of the auxiliary electrodes BL and joined to each other between the auxiliary electrodes BL. Consists of An edge portion where adjacent ones of the band-shaped organic layers OG are joined to each other is a joint SM that is in contact with and connected on the auxiliary electrode BL. That is, the edges of the strip-shaped organic layer OG are in the normal plane of the substrate 1 including the auxiliary electrode BL. In addition, the edge part of the strip | belt-shaped organic layer OG means the edge part extended | stretched in a longitudinal direction (X direction).
 本実施形態によれば、インクジェットヘッドの走査による継ぎ目SM部分と透明陽極2の補助電極BLを同じ位置に配置すること、すなわち、複数の塗布された帯状有機層OGの継ぎ目SM部分を有機EL積層体OELにおいて補助電極BLを含む基板1の法平面内に配置することにより、上記継ぎ目SM部分を補助電極BLで隠すことができるので、有機ELパネルの「見た目」の悪化要因を減らすことができる。 According to the present embodiment, the joint SM portion by scanning of the inkjet head and the auxiliary electrode BL of the transparent anode 2 are arranged at the same position, that is, the joint SM portion of the plurality of coated strip-like organic layers OG is organic EL laminated. By disposing the joint SM in the normal plane of the substrate 1 including the auxiliary electrode BL in the body OEL, the above-mentioned joint SM portion can be hidden by the auxiliary electrode BL, thereby reducing the deterioration factor of the “look” of the organic EL panel. .
 図3~図8を参照しつつ、有機ELパネルの作製プロセスを説明する。 The organic EL panel manufacturing process will be described with reference to FIGS.
 図3に示すように、洗浄されたガラスなどの平行平板の基板1が用意され、その上に、スパッタ法やフォトリソグラフィ法によってITOなどの陽極2及びアルミニウムなどの補助電極BLが形成される。陽極2の表面上においてX方向に平行に伸長する複数の帯状の補助電極BLが一定ピッチPBLで形成される。補助電極BLは、その幅WBLがその並置されるピッチPBLでよりもかなり小さくなるように形成される(WBL≪PBL)。 As shown in FIG. 3, a parallel plate substrate 1 such as cleaned glass is prepared, on which an anode 2 such as ITO and an auxiliary electrode BL such as aluminum are formed by sputtering or photolithography. A plurality of strip-like auxiliary electrodes BL extending in parallel with the X direction on the surface of the anode 2 are formed at a constant pitch PBL . The auxiliary electrode BL is formed such that its width W BL is considerably smaller than the juxtaposed pitch P BL (W BL << P BL ).
 そして、図4に示すように、フォトリソグラフィ工程によって補助電極BLごとに絶縁性の絶縁膜SFが各々の補助電極BLのみを覆いつつ、陽極2を露出させるように形成される。絶縁膜SFは、たとえば感光性のポリイミドやノボラック系樹脂などを使用し、露光、現像によりパターニングできる材料から構成される。絶縁膜SFには、通常、エチレン性不飽和化合物、光重合開始剤及び溶媒を含有し、さらに、バインダー樹脂、架橋剤、表面改質剤、撥液性成分などを含有させてもよい。 Then, as shown in FIG. 4, an insulating insulating film SF is formed for each auxiliary electrode BL so as to expose only the auxiliary electrode BL while exposing the anode 2 by a photolithography process. The insulating film SF is made of a material that can be patterned by exposure and development using, for example, photosensitive polyimide or novolac resin. The insulating film SF usually contains an ethylenically unsaturated compound, a photopolymerization initiator, and a solvent, and may further contain a binder resin, a crosslinking agent, a surface modifier, a liquid repellent component, and the like.
 そして、図5に示すように、インクジェットヘッド12の液滴吐出ノズル(図示せず)から、絶縁膜SF及び陽極2上に、有機機能層の正孔注入層を構成する材料の溶液の液滴Lqが供給される。インクジェット塗布工程においては、インクジェットヘッド12は、隣接する補助電極BL間ごとに補助電極BLの伸長方向(X方向:走査方向)に平行に移動し表面を走査しつつ補助電極BL間の陽極2上に帯状有機層OGを塗布する。1つの補助電極BL間ごとの走査塗布の後、インクジェットヘッドを基板1の端にてY方向に移送して隣接する補助電極BL間にて逐次、走査塗布する。塗布された隣接する帯状有機層OGの縁部同士(走査方向に伸長する)が接触して繋がり、互いに接合して継ぎ目SMが補助電極BL上ごとに形成される。 Then, as shown in FIG. 5, droplets of a solution of the material constituting the hole injection layer of the organic functional layer are formed on the insulating film SF and the anode 2 from a droplet discharge nozzle (not shown) of the inkjet head 12. Lq is supplied. In the inkjet coating process, the inkjet head 12 moves on the anode 2 between the auxiliary electrodes BL while moving in parallel with the extension direction of the auxiliary electrode BL (X direction: scanning direction) between adjacent auxiliary electrodes BL and scanning the surface. The strip organic layer OG is applied to After the scanning application between one auxiliary electrode BL, the inkjet head is moved in the Y direction at the end of the substrate 1 and sequentially applied by scanning between adjacent auxiliary electrodes BL. Edges (extending in the scanning direction) of the adjacent strip-shaped organic layers OG applied are connected in contact with each other and joined together to form a joint SM on each auxiliary electrode BL.
 その後、有機層の乾燥処理が施され、図6に示すように、帯状有機層OGの縁部同士が継ぎ目SMで繋がった正孔注入層3が成膜される。 Thereafter, the organic layer is subjected to a drying process, and as shown in FIG. 6, the hole injection layer 3 in which the edges of the band-shaped organic layer OG are connected by the joint SM is formed.
 そして、インクジェット塗布工程と乾燥工程の組がそれぞれの機能を果たす有機機能層ごとに順次繰り返され、図7に示すように、各帯状有機層の縁部同士が継ぎ目SMで繋がった多層の有機EL積層体OEL(正孔注入層3/正孔輸送層4/発光層5/正孔阻止層6/電子輸送層7/電子注入層8)が形成される。 Then, a combination of an inkjet coating process and a drying process is sequentially repeated for each organic functional layer that performs each function, and as shown in FIG. 7, a multilayer organic EL in which the edges of each strip-shaped organic layer are connected by a joint SM. A laminated body OEL (hole injection layer 3 / hole transport layer 4 / light emitting layer 5 / hole blocking layer 6 / electron transport layer 7 / electron injection layer 8) is formed.
 そして、図8に示すように、有機EL積層体OELの成膜後、蒸着などにより金属膜の陰極9が成膜される。有機EL積層体OELを挟む陽極2と陰極9が重なる部分は有機ELパネルの発光エリアを画定する。 Then, as shown in FIG. 8, after the organic EL laminate OEL is formed, a metal film cathode 9 is formed by vapor deposition or the like. A portion where the anode 2 and the cathode 9 overlap with each other sandwiching the organic EL laminate OEL defines a light emitting area of the organic EL panel.
 その後、封止工程を経て、封止された有機ELパネルを得ることができる。 Thereafter, a sealed organic EL panel can be obtained through a sealing process.
 図9は、インクジェット塗布工程にて帯状有機層を塗布するインクジェット塗布装置の構成を示す概略斜視図である。 FIG. 9 is a schematic perspective view showing a configuration of an ink jet coating apparatus that coats a band-shaped organic layer in an ink jet coating process.
 図9に示すように、インクジェット塗布装置は、基板1を固定するステージ10、ステージ10をY方向に移動させるステージ移動機構11、インクジェットヘッド12、及びインクジェットヘッド12をY方向に直交するX方向に移動させるヘッド移動機構13を備える。インクジェット塗布装置は、ステージ移動機構11、インクジェットヘッド12及びヘッド移動機構13を駆動する制御部(図示しない)をも備えている。インクジェットヘッド12には、正孔注入層3などの原料となる有機材料を含む液滴を基板1の表面に向けて吐出する為の複数の液滴吐出ノズル(図示せず)が設けられている。制御部は、ステージ移動機構11及びヘッド移動機構13各々に対する移動制御を行うことにより、インクジェットヘッド12を、ステージ10に固定されている基板1の上方の空間でY方向及びX方向に移動させる。更に、制御部は、インクジェットヘッド12に対して液滴の吐出制御を行う。なお、インクジェットヘッド12によって吐出される有機材料を含む液滴の粘度は2~5cpであり、その表面張力は30~40mN/mである。また、この有機材料の沸点は200℃より大である。更に、インクジェットヘッド12による液滴の吐出速度は例えば約4m/secであり、その吐出量は約15mlであり、駆動周波数は5~12kHz程度である。また、インクジェットヘッド12の移動速度は約100mm/secである。 As shown in FIG. 9, the inkjet coating apparatus includes a stage 10 that fixes the substrate 1, a stage moving mechanism 11 that moves the stage 10 in the Y direction, an inkjet head 12, and the inkjet head 12 in the X direction orthogonal to the Y direction. A head moving mechanism 13 for moving is provided. The ink jet coating apparatus also includes a control unit (not shown) that drives the stage moving mechanism 11, the ink jet head 12, and the head moving mechanism 13. The inkjet head 12 is provided with a plurality of droplet discharge nozzles (not shown) for discharging droplets containing an organic material as a raw material such as the hole injection layer 3 toward the surface of the substrate 1. . The control unit controls the movement of the stage moving mechanism 11 and the head moving mechanism 13 to move the inkjet head 12 in the Y direction and the X direction in the space above the substrate 1 fixed to the stage 10. Further, the control unit controls the ejection of droplets with respect to the inkjet head 12. The viscosity of the droplet containing the organic material ejected by the inkjet head 12 is 2 to 5 cp, and the surface tension is 30 to 40 mN / m. Moreover, the boiling point of this organic material is larger than 200 degreeC. Furthermore, the droplet discharge speed by the inkjet head 12 is, for example, about 4 m / sec, the discharge amount is about 15 ml, and the drive frequency is about 5 to 12 kHz. The moving speed of the inkjet head 12 is about 100 mm / sec.
 インクジェットヘッド12には、複数のピエゾ素子からなるオンデマンドピエゾ方式のものが使用できる。インクジェットヘッドには各有機機能層に対応する各溶液タンク(図示せず)が接続されている。例えばインクジェットヘッドにおける複数の液滴吐出ノズルの各々には、これに連通する圧電セラミックスの壁を有する溶液室を備えたピエゾ素子が作り込まれている。各ピエゾ素子への印可電圧に応じた溶液室内部の膨張、収縮により溶液に圧力がかかり、ピエゾ素子の複数ノズル(図示せず)から各溶液室中に充填させた溶液が吐出される。図10に示すように、例えば、Y方向に並べた数百個のノズルを平行に数列備えたインクジェットヘッド12によれば、溶液の複数の液滴Lqを、Y方向に並べたノズル数分の幅(WOG)で帯状有機層OGを陽極2上に塗布することができる。 As the inkjet head 12, an on-demand piezo type composed of a plurality of piezo elements can be used. Each solution tank (not shown) corresponding to each organic functional layer is connected to the inkjet head. For example, each of a plurality of droplet discharge nozzles in an inkjet head is formed with a piezo element having a solution chamber having a piezoelectric ceramic wall communicating with the nozzle. Pressure is applied to the solution by expansion and contraction of the solution chamber in accordance with the applied voltage to each piezo element, and the solution filled in each solution chamber is discharged from a plurality of nozzles (not shown) of the piezo element. As shown in FIG. 10, for example, according to the inkjet head 12 provided with several hundreds of nozzles arranged in parallel in the Y direction, a plurality of droplets Lq of the solution are provided for the number of nozzles arranged in the Y direction. The strip-shaped organic layer OG can be applied on the anode 2 with a width (W OG ).
 制御部により制御されたインクジェットヘッド12は、図10に示す基板1の一方の端部Q1に移動させられ、その位置から基板1の他方の端部Q2に向けてX方向に移動しつつ、インクジェットヘッド12による液滴の吐出を実行する。これにより、インクジェットヘッド12が走査した領域には、インクジェットヘッド12から吐出された有機材料の液滴が付着する。この際、帯状有機層OGのピッチPOGに一致したピッチPBLで補助電極BLがX方向に平行に伸長するように予め形成されているので、互いに隣接する補助電極BLとそれらの間の陽極2上の領域(Q1-Q2経路の下)のみに有機材料の液滴が塗布される。なお、基板1の端部はY方向に伸長する端部を意味する。 The ink jet head 12 controlled by the control unit is moved to one end Q1 of the substrate 1 shown in FIG. 10 and moved from the position toward the other end Q2 of the substrate 1 in the X direction. The ejection of droplets by the head 12 is executed. As a result, droplets of the organic material discharged from the inkjet head 12 adhere to the area scanned by the inkjet head 12. In this case, the pitch P BL auxiliary electrodes BL which coincides with the pitch P OG of the strip-shaped organic layer OG is previously formed so as to extend parallel to the X direction, the anode therebetween and adjacent auxiliary electrodes BL to each other Only the area above 2 (under the path Q1-Q2) is coated with organic material droplets. In addition, the edge part of the board | substrate 1 means the edge part extended | stretched in a Y direction.
 インクジェットヘッド12は図10に示す基板1の端部Q2の外側の位置に到達すると液滴の吐出を停止され、基板1の端部Q3に向けてY方向に基板1に対して相対的に移動させられ、図10に示す位置Q3に到らせる。そして、基板1の端部Q3の位置から再びインクジェットヘッド12は、基板1の端部Q4に向けてX方向に移動させつつ、インクジェットヘッド12による液滴Lqの吐出を実行させる。これにより、互いに隣接する補助電極BL間の陽極2上の領域(Q3-Q4経路の下)のみに有機材料の液滴が堆積する。 When the inkjet head 12 reaches a position outside the end portion Q2 of the substrate 1 shown in FIG. 10, the ejection of the liquid droplets is stopped and moves relative to the substrate 1 in the Y direction toward the end portion Q3 of the substrate 1. The position Q3 shown in FIG. 10 is reached. Then, the inkjet head 12 again causes the inkjet head 12 to discharge the droplet Lq while moving from the position of the end Q3 of the substrate 1 toward the end Q4 of the substrate 1 in the X direction. As a result, organic material droplets are deposited only in the region on the anode 2 (under the Q3-Q4 path) between the auxiliary electrodes BL adjacent to each other.
 このように、インクジェットヘッド12によって液滴を吐出させつつ、このインクジェットヘッド12を補助電極BL間毎その長手方向(X方向)に沿って移動させることにより、図5及び図6に示したように、互いに隣接する補助電極BL間の領域(塗布された隣接する帯状有機層OG)の縁部同士が接触して繋がる継ぎ目SMが形成される。 As shown in FIG. 5 and FIG. 6, the inkjet head 12 is moved along the longitudinal direction (X direction) between the auxiliary electrodes BL while discharging the droplets by the inkjet head 12. A seam SM is formed in which the edges of the regions between the adjacent auxiliary electrodes BL (applied adjacent band-like organic layers OG) are in contact with each other.
 このように、実施形態の有機ELパネルの製造方法は、図3に示すように、陽極2上にストライプ状に並置された複数の補助電極BLを形成する工程を含み、さらに、インクジェット法により、図5に示すように、補助電極BL間ごとにインクジェットヘッド12を補助電極BLの伸長方向に平行に走査させつつ補助電極BL間の陽極2上に帯状有機層OGを塗布する走査工程を含む。走査工程において、インクジェットヘッド12(液滴吐出ノズル)は、塗布された隣接する帯状有機層OGの縁部同士が補助電極BL上又は真上にて接触して繋がる継ぎ目SMを形成するように、基板1に対し相対的に位置制御される。 As described above, the method for manufacturing the organic EL panel according to the embodiment includes a step of forming a plurality of auxiliary electrodes BL juxtaposed in a stripe shape on the anode 2, as shown in FIG. As shown in FIG. 5, the method includes a scanning process in which the band-shaped organic layer OG is applied on the anode 2 between the auxiliary electrodes BL while the inkjet head 12 is scanned in parallel with the extension direction of the auxiliary electrode BL between the auxiliary electrodes BL. In the scanning process, the ink jet head 12 (droplet discharge nozzle) forms a joint SM in which the edges of the applied adjacent strip organic layers OG are in contact with each other on or just above the auxiliary electrode BL. The position is controlled relative to the substrate 1.
 さらに、図7に示すように、帯状有機層OGを塗布する工程を対応する有機機能層(正孔注入層3/正孔輸送層4/発光層5/正孔阻止層6/電子輸送層7/電子注入層8)ごとに繰り返し、図5に示す走査工程の各々において、インクジェットヘッド12(液滴吐出ノズル)は、継ぎ目SMのすべてが基板1の補助電極BLを含む法平面内に存在するように、基板1に対し相対的に位置制御される。 Furthermore, as shown in FIG. 7, the organic functional layer (hole injection layer 3 / hole transport layer 4 / light emitting layer 5 / hole blocking layer 6 / electron transport layer 7) corresponding to the step of applying the strip organic layer OG is applied. In each of the scanning steps shown in FIG. 5, the inkjet head 12 (droplet discharge nozzle) is present in the normal plane including the auxiliary electrode BL of the substrate 1 in each of the scanning steps shown in FIG. In this way, the position is controlled relative to the substrate 1.
 また、上記実施形態では、混合した有機EL材料からなる発光層5を一層として、白色、赤色、緑色、青色などの単色発光の有機ELパネルを作製できるが、これに加え、多層発光層からなる有機ELパネルを作製できる。例えば、赤色発光を行う発光層、緑色発光を行う発光層、青色発光を行う発光層を順次積層して、三層の発光層を含む白色発光の有機ELパネルを作製できる。また、黄色橙色発光を行う発光層と青色発光を行う発光層を順次積層して、二層の発光層を含む白色発光の有機ELパネルも作製できる。 Moreover, in the said embodiment, although the light emitting layer 5 which consists of the mixed organic EL material can be made into one layer, the organic electroluminescent panel of monochromatic light emission, such as white, red, green, blue, can be produced, In addition to this, it consists of a multilayer light emitting layer. An organic EL panel can be produced. For example, a light-emitting layer that emits red light, a light-emitting layer that emits green light, and a light-emitting layer that emits blue light can be sequentially stacked to produce a white light-emitting organic EL panel including three light-emitting layers. In addition, a light-emitting layer that emits yellow-orange light and a light-emitting layer that emits blue light can be sequentially stacked to produce a white light-emitting organic EL panel including two light-emitting layers.
 よって、本実施形態によれば、有機EL材料を塗布するためのインクジェットヘッドの走査による継ぎ目位置と透明電極の補助電極位置を同じにすることで、上記継ぎ目部分を補助電極で隠すことができ、少なくとも、「見た目」の悪化要因を減らすことができる。また、インクジェット塗布装置に搭載するヘッドの数を減らすことができるため、装置コストや装置サイズを軽減することができる。加えて、現状入手可能なインクジェットヘッドを用いることができ、ヘッド特注などの不要なコスト増を抑制できる有機ELパネルを提供することが可能となる。 Therefore, according to the present embodiment, by making the joint position by scanning of the inkjet head for applying the organic EL material the same as the auxiliary electrode position of the transparent electrode, the joint part can be hidden by the auxiliary electrode, At least, it can reduce the deterioration factor of “look”. In addition, since the number of heads mounted on the ink jet coating apparatus can be reduced, apparatus cost and apparatus size can be reduced. In addition, an ink jet head that can be obtained at present can be used, and it is possible to provide an organic EL panel that can suppress an unnecessary cost increase such as a custom head.
 本実施形態の有機ELパネルの一例は、図2に示すように、ガラスなどの透明基板1上にて、順に、積層された陽極2/正孔注入層3/正孔輸送層4/発光層5/正孔阻止層6/電子輸送層7/電子注入層8/陰極9/の構成である。この積層構成の他に、図示しないが、陽極2/正孔注入層3/発光層5/電子輸送層7/電子注入層8/陰極9/の正孔輸送層4、正孔阻止層6を省いた構成や、図示しないが、陽極2/正孔輸送層4/発光層5/電子輸送層7/電子注入層8/陰極9/の正孔注入層3、正孔阻止層6を省いた構成や、図示しないが、陽極2/発光層5/電子輸送層7/電子注入層8/陰極9/の正孔注入層3、正孔輸送層4、正孔阻止層6を省いた構成も本発明に含まれる。また、以上説明した層構成において、基板以外の構成要素を逆の順に積層することも可能である。いずれにしても、これら積層構成に限定されることなく、少なくとも発光層を含み、或いは兼用できる電荷輸送層を含む積層構成も本発明に含まれる。 An example of the organic EL panel of the present embodiment is, as shown in FIG. 2, an anode 2 / hole injection layer 3 / hole transport layer 4 / light emitting layer that are sequentially laminated on a transparent substrate 1 such as glass. 5 / hole blocking layer 6 / electron transport layer 7 / electron injection layer 8 / cathode 9 /. In addition to this laminated structure, although not shown, an anode 2 / hole injection layer 3 / light emitting layer 5 / electron transport layer 7 / electron injection layer 8 / cathode 9 / hole transport layer 4 and hole blocking layer 6 are provided. Although omitted, and not shown, the anode 2 / hole transport layer 4 / light emitting layer 5 / electron transport layer 7 / electron injection layer 8 / cathode 9 / hole injection layer 3 and hole blocking layer 6 are omitted. Although not shown in the figure, the anode 2, the light emitting layer 5, the electron transport layer 7, the electron injection layer 8, the cathode 9 / the hole injection layer 3, the hole transport layer 4, and the hole blocking layer 6 may be omitted. It is included in the present invention. Moreover, in the layer structure demonstrated above, it is also possible to laminate | stack components other than a board | substrate in reverse order. In any case, the present invention is not limited to these laminated structures, and a laminated structure including at least a light-emitting layer or a charge transport layer that can also be used is also included in the invention.
 [基板]
 基板1としては、石英やガラスの板、金属板や金属箔、曲げられる樹脂基板、プラスチックフィルムやシートなどが用いられる。特にガラス板や、ポリエステル、ポリメタクリレート、ポリカーボネート、ポリスルホンなどの透明な合成樹脂の板が好ましい。合成樹脂基板を使用する場合にはガスバリア性に留意する必要がある。基板のガスバリア性が小さすぎると、基板を通過した外気により有機ELパネルが劣化することがあるので好ましくない。このため、合成樹脂基板の少なくとも片面に緻密なシリコン酸化膜などを設けてガスバリア性を確保する方法も好ましい方法の一つである。
[substrate]
As the substrate 1, a quartz or glass plate, a metal plate or a metal foil, a resin substrate to be bent, a plastic film, a sheet, or the like is used. In particular, a glass plate or a transparent synthetic resin plate such as polyester, polymethacrylate, polycarbonate, or polysulfone is preferable. When using a synthetic resin substrate, it is necessary to pay attention to gas barrier properties. If the gas barrier property of the substrate is too small, the organic EL panel may be deteriorated by the outside air that has passed through the substrate, which is not preferable. For this reason, a method of providing a gas barrier property by providing a dense silicon oxide film or the like on at least one surface of the synthetic resin substrate is also a preferable method.
 [陽極及び陰極]
 発光層までの層に正孔を供給する陽極2は、通常、アルミニウム、金、銀、ニッケル、パラジウム、白金などの金属、インジウム及び/又はスズ、亜鉛の酸化物(ITOやIZO)などの金属酸化物、ヨウ化銅などのハロゲン化金属、カーボンブラック、或いは、ポリ(3-メチルチオフェン)、ポリピロール、ポリアニリンなどの導電性高分子などにより構成される。
[Anode and cathode]
The anode 2 that supplies holes to the layers up to the light emitting layer is usually a metal such as aluminum, gold, silver, nickel, palladium, platinum, or a metal such as indium and / or tin or zinc oxide (ITO or IZO). It is composed of an oxide, a metal halide such as copper iodide, carbon black, or a conductive polymer such as poly (3-methylthiophene), polypyrrole, or polyaniline.
 陽極の形成は通常、スパッタリング法、真空蒸着法などにより行われることが多い。また、銀などの金属微粒子、ヨウ化銅などの微粒子、カーボンブラック、導電性の金属酸化物微粒子、導電性高分子微粉末などを用いて陽極を形成する場合には、適当なバインダー樹脂溶液に分散させて、基板上に塗布することにより陽極を形成することもできる。さらに、導電性高分子の場合は、電解重合により直接基板上に薄膜を形成したり、基板上に導電性高分子を塗布して陽極を形成することもできる。 The anode is usually formed by a sputtering method, a vacuum deposition method, or the like. In addition, when forming an anode using fine metal particles such as silver, fine particles such as copper iodide, carbon black, conductive metal oxide fine particles, or conductive polymer fine powder, an appropriate binder resin solution is used. The anode can also be formed by dispersing and coating the substrate. Further, in the case of a conductive polymer, a thin film can be directly formed on the substrate by electrolytic polymerization, or the anode can be formed by applying a conductive polymer on the substrate.
 陽極は通常は単層構造であるが、所望により複数の材料からなる積層構造とすることも可能である。 The anode usually has a single-layer structure, but it can also have a laminated structure made of a plurality of materials if desired.
 陽極の厚みは、必要とする透明性により異なる。透明性が必要とされる場合は、可視光の透過率を、通常60%以上、好ましくは80%以上とすることが好ましい。この場合、陽極の厚みは通常5nm以上、好ましくは10nm以上であり、また、通常1000nm以下、好ましくは500nm以下程度である。不透明でよい場合は陽極の厚みは任意であり、陽極は基板1と一体化されたものであってもよい。また、さらには、異なる導電材料が積層されたものであってもよい。 The thickness of the anode depends on the required transparency. When transparency is required, the visible light transmittance is usually 60% or more, preferably 80% or more. In this case, the thickness of the anode is usually 5 nm or more, preferably 10 nm or more, and is usually 1000 nm or less, preferably about 500 nm or less. If it may be opaque, the thickness of the anode is arbitrary, and the anode may be integrated with the substrate 1. Furthermore, different conductive materials may be laminated.
 陽極に付着した不純物を除去し、イオン化ポテンシャルを調整して正孔注入性を向上させることを目的に、陽極表面を紫外線(UV)/オゾン処理したり、酸素プラズマ、アルゴンプラズマ処理したりすることが好ましい。 The surface of the anode is treated with ultraviolet (UV) / ozone, oxygen plasma, or argon plasma for the purpose of removing impurities adhering to the anode and adjusting the ionization potential to improve hole injection. Is preferred.
 発光層までの層に電子を供給する陰極9の材料としては、陽極に使用される材料を用いることが可能であるが、効率良く電子注入を行うには、仕事関数の低い金属が好ましく、たとえば、スズ、マグネシウム、インジウム、カルシウム、アルミニウム、銀などの適当な金属又はそれらの合金が用いられる。具体例としては、マグネシウム-銀合金、マグネシウム-インジウム合金、アルミニウム-リチウム合金などの低仕事関数合金電極が挙げられる。 As a material of the cathode 9 for supplying electrons to the layers up to the light emitting layer, a material used for the anode can be used. However, in order to perform electron injection efficiently, a metal having a low work function is preferable. A suitable metal such as tin, magnesium, indium, calcium, aluminum, silver, or an alloy thereof is used. Specific examples include low work function alloy electrodes such as magnesium-silver alloy, magnesium-indium alloy, and aluminum-lithium alloy.
 なお、陰極9の材料は、1種のみを用いてもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。陰極の膜厚は、通常、陽極と同様である。 In addition, only 1 type may be used for the material of the cathode 9, and 2 or more types may be used together by arbitrary combinations and a ratio. The thickness of the cathode is usually the same as that of the anode.
 さらに、低仕事関数金属から成る陰極を保護する目的で、この上に更に、仕事関数が高く大気に対して安定な金属層を積層すると、有機ELパネルの安定性が増すので好ましい。この目的のために、たとえば、アルミニウム、銀、銅、ニッケル、クロム、金、白金などの金属が使われる。なお、これらの材料は、1種のみで用いてもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。 Further, for the purpose of protecting the cathode made of a low work function metal, it is preferable to further laminate a metal layer having a high work function and stable to the atmosphere because the stability of the organic EL panel is increased. For this purpose, for example, metals such as aluminum, silver, copper, nickel, chromium, gold, platinum are used. In addition, these materials may be used only by 1 type and may use 2 or more types together by arbitrary combinations and a ratio.
 さらに、陽極及び陰極は、発光の取り出し側となる場合(第一電極層)は、透明又は半透明となるように材料、膜厚を選択する。特に陽極及び陰極のうちどちらか、もしくはその両方が、有機発光材料から得られる発光波長において少なくとも10%以上の透過率を持つ材料を選択することが好ましい。 Furthermore, when the anode and cathode are on the light emission extraction side (first electrode layer), the material and film thickness are selected so as to be transparent or translucent. In particular, it is preferable to select a material in which either one or both of the anode and the cathode has a transmittance of at least 10% at the emission wavelength obtained from the organic light emitting material.
 [有機機能層]
 *正孔注入層*
 正孔注入層3は、電子受容性化合物を含有する層とすることが好ましい。
[Organic functional layer]
* Hole injection layer *
The hole injection layer 3 is preferably a layer containing an electron accepting compound.
 正孔注入層の膜厚は、通常5nm以上、好ましくは10nm以上、また、通常1000nm以下、好ましくは500nm以下の範囲である。正孔注入層の形成方法はダークスポット低減の観点からインクジェット法など湿式成膜法により形成することが好ましい。 The film thickness of the hole injection layer is usually 5 nm or more, preferably 10 nm or more, and usually 1000 nm or less, preferably 500 nm or less. The hole injection layer is preferably formed by a wet film formation method such as an inkjet method from the viewpoint of reducing dark spots.
 湿式成膜法により正孔注入層を形成する場合、通常は、正孔注入層を構成する材料を適切な溶媒(正孔注入層用溶媒)と混合して成膜用の組成物(正孔注入層形成用組成物)を調製し、この正孔注入層形成用組成物を適切な手法により、陽極上に塗布して成膜し、乾燥することにより正孔注入層を形成する。 When forming a hole injection layer by a wet film formation method, the material for forming the hole injection layer is usually mixed with an appropriate solvent (a solvent for the hole injection layer) to form a composition for film formation (hole An injection layer forming composition) is prepared, and this hole injection layer forming composition is coated on the anode by an appropriate technique to form a film and dried to form a hole injection layer.
 正孔注入層形成用組成物は通常、正孔注入層の構成材料として正孔輸送性化合物及び溶媒を含有する。溶媒としては、限定されるものではないが、たとえば、エーテル系溶媒、エステル系溶媒、芳香族炭化水素系溶媒、アミド系溶媒などが挙げられる。
エーテル系溶媒としては、たとえば、エチレングリコールジメチルエーテル、エチレングリコールジエチルエーテル、プロピレングリコールモノメチルエーテルアセテート(PGMEA)などの脂肪族エーテル、1,2-ジメトキシベンゼン、1,3-ジメトキシベンゼン、アニソール、フェネトール、2-メトキシトルエン、3-メトキシトルエン、4-メトキシトルエン、2,3-ジメチルアニソール、2,4-ジメチルアニソールなどの芳香族エーテル、などが挙げられる。
The composition for forming a hole injection layer usually contains a hole transporting compound and a solvent as a constituent material of the hole injection layer. Examples of the solvent include, but are not limited to, ether solvents, ester solvents, aromatic hydrocarbon solvents, amide solvents, and the like.
Examples of ether solvents include aliphatic ethers such as ethylene glycol dimethyl ether, ethylene glycol diethyl ether, propylene glycol monomethyl ether acetate (PGMEA), 1,2-dimethoxybenzene, 1,3-dimethoxybenzene, anisole, phenetole, 2 -Aromatic toluene such as methoxytoluene, 3-methoxytoluene, 4-methoxytoluene, 2,3-dimethylanisole, 2,4-dimethylanisole, and the like.
 エステル系溶媒としては、たとえば、酢酸フェニル、プロピオン酸フェニル、安息香酸メチル、安息香酸エチル、安息香酸プロピル、安息香酸n-ブチルなどの芳香族エステル、などが挙げられる。 Examples of ester solvents include aromatic esters such as phenyl acetate, phenyl propionate, methyl benzoate, ethyl benzoate, propyl benzoate, and n-butyl benzoate.
 芳香族炭化水素系溶媒としては、たとえば、トルエン、キシレン、シクロヘキシルベンゼン、3-イロプロピルビフェニル、1,2,3,4-テトラメチルベンゼン、1,4-ジイソプロピルベンゼン、シクロヘキシルベンゼン、メチルナフタレンなどが挙げられる。 Examples of the aromatic hydrocarbon solvent include toluene, xylene, cyclohexylbenzene, 3-isopropylpropylphenyl, 1,2,3,4-tetramethylbenzene, 1,4-diisopropylbenzene, cyclohexylbenzene, and methylnaphthalene. Can be mentioned.
 アミド系溶媒としては、たとえば、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、などが挙げられる。その他、ジメチルスルホキシド、なども用いることができる。これらの溶媒は1種のみを用いてもよく、2種以上を任意の組み合わせ及び比率で用いてもよい。 Examples of the amide solvent include N, N-dimethylformamide and N, N-dimethylacetamide. In addition, dimethyl sulfoxide and the like can also be used. These solvent may use only 1 type and may use 2 or more types by arbitrary combinations and a ratio.
 正孔輸送性化合物は、通常、有機ELパネルの正孔注入層に使用される、正孔輸送性を有する化合物であれば、重合体などの高分子化合物であっても、単量体などの低分子化合物であってもよいが、低分子化合物であることが好ましい。 As long as the hole transporting compound is a compound having a hole transporting property that is usually used in a hole injection layer of an organic EL panel, a polymer or the like may be a monomer or the like. Although it may be a low molecular compound, it is preferably a low molecular compound.
 正孔輸送性化合物としては、陽極から正孔注入層への電荷注入障壁の観点から4.5eV~6.0eVのイオン化ポテンシャルを有する化合物が好ましい。正孔輸送性化合物の例としては、芳香族アミン誘導体、フタロシアニン銅(CuPc)に代表されるフタロシアニン誘導体、ポルフィリン誘導体、オリゴチオフェン誘導体、ポリチオフェン誘導体、ベンジルフェニル誘導体、フルオレン基で3級アミンを連結した化合物、ヒドラゾン誘導体、シラザン誘導体、シラナミン誘導体、ホスファミン誘導体、キナクリドン誘導体、ポリアニリン誘導体、ポリピロール誘導体、ポリフェニレンビニレン誘導体、ポリチエニレンビニレン誘導体、ポリキノリン誘導体、ポリキノキサリン誘導体、カーボンなどが挙げられる。 The hole transporting compound is preferably a compound having an ionization potential of 4.5 eV to 6.0 eV from the viewpoint of a charge injection barrier from the anode to the hole injection layer. Examples of hole transporting compounds include aromatic amine derivatives, phthalocyanine derivatives typified by phthalocyanine copper (CuPc), porphyrin derivatives, oligothiophene derivatives, polythiophene derivatives, benzylphenyl derivatives, and tertiary amines linked by fluorene groups. Examples thereof include compounds, hydrazone derivatives, silazane derivatives, silanamine derivatives, phosphamine derivatives, quinacridone derivatives, polyaniline derivatives, polypyrrole derivatives, polyphenylene vinylene derivatives, polythienylene vinylene derivatives, polyquinoline derivatives, polyquinoxaline derivatives, and carbon.
 尚、ここで誘導体とは、たとえば、芳香族アミン誘導体を例にするならば、芳香族アミンそのもの及び芳香族アミンを主骨格とする化合物を含むものであり、重合体であっても、単量体であってもよい。 Here, the derivative includes, for example, an aromatic amine derivative, and includes an aromatic amine itself and a compound having an aromatic amine as a main skeleton. It may be a body.
 正孔注入層の材料として用いられる正孔輸送性化合物は、このような化合物のうち何れか1種を単独で含有していてもよく、2種以上を含有していてもよい。2種以上の正孔輸送性化合物を含有する場合、その組み合わせは任意であるが、芳香族三級アミン高分子化合物1種又は2種以上と、その他の正孔輸送性化合物1種又は2種以上とを併用することもできる。非晶質性、可視光の透過率の点から、正孔注入層には芳香族アミン化合物が好ましく、特に芳香族三級アミン化合物が好ましい。ここで、芳香族三級アミン化合物とは、芳香族三級アミン構造を有する化合物であって、芳香族三級アミン由来の基を有する化合物も含む。具体的には、国際公開第2005/089024号パンフレットに記載のものが挙げられる。 The hole transporting compound used as the material for the hole injection layer may contain any one of these compounds alone, or may contain two or more. In the case of containing two or more kinds of hole transporting compounds, the combination is arbitrary, but one or more kinds of aromatic tertiary amine polymer compounds and one or two kinds of other hole transporting compounds. The above can also be used together. From the viewpoints of amorphousness and visible light transmittance, an aromatic amine compound is preferable for the hole injection layer, and an aromatic tertiary amine compound is particularly preferable. Here, the aromatic tertiary amine compound is a compound having an aromatic tertiary amine structure, and includes a compound having a group derived from an aromatic tertiary amine. Specific examples include those described in the pamphlet of International Publication No. 2005/089024.
 また、正孔輸送性化合物としては、ポリチオフェンの誘導体である3,4-エチレンジオキシチオフェンを高分子量ポリスチレンスルホン酸中で重合してなる導電性ポリマー(PEDOT/PSS)もまた好ましい。また、このポリマーの末端をメタクリレートなどでキャップしたものであってもよい。 As the hole transporting compound, a conductive polymer (PEDOT / PSS) obtained by polymerizing 3,4-ethylenedioxythiophene, which is a derivative of polythiophene, in high molecular weight polystyrene sulfonic acid is also preferable. Moreover, the end of this polymer may be capped with methacrylate or the like.
 正孔注入層形成用組成物中の、正孔輸送性化合物の濃度は、膜厚の均一性の点で通常0.01重量%以上、好ましくは0.1重量%以上、さらに好ましくは0.5重量%以上、また、通常70重量%以下、好ましくは60重量%以下、さらに好ましくは50重量%以下である。この濃度が大きすぎると膜厚ムラが生じる可能性があり、また、小さすぎると成膜された正孔注入層に欠陥が生じる可能性がある。 The concentration of the hole transporting compound in the composition for forming a hole injection layer is usually 0.01% by weight or more, preferably 0.1% by weight or more, and more preferably 0.00% by weight in terms of film thickness uniformity. 5% by weight or more, usually 70% by weight or less, preferably 60% by weight or less, more preferably 50% by weight or less. If this concentration is too high, film thickness unevenness may occur, and if it is too low, defects may occur in the formed hole injection layer.
 正孔注入層形成用組成物は電子受容性化合物を含有することが好ましく、また、正孔輸送性化合物や電子受容性化合物に加えて、さらに、その他の成分を含有させてもよい。その他の成分の例としては、各種の発光材料、電子輸送性化合物、バインダー樹脂、塗布性改良剤などが挙げられる。なお、その他の成分は、1種のみを用いてもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。 The composition for forming a hole injection layer preferably contains an electron-accepting compound, and may further contain other components in addition to the hole-transporting compound and the electron-accepting compound. Examples of other components include various light emitting materials, electron transporting compounds, binder resins, and coating property improving agents. In addition, only 1 type may be used for another component and it may use 2 or more types together by arbitrary combinations and ratios.
 *正孔輸送層*
 正孔輸送層4の材料としては、従来、正孔輸送層の構成材料として用いられている材料であればよく、たとえば、前述の正孔注入層に使用される正孔輸送性化合物として例示したものが挙げられる。また、アリールアミン誘導体、フルオレン誘導体、スピロ誘導体、カルバゾール誘導体、ピリジン誘導体、ピラジン誘導体、ピリミジン誘導体、トリアジン誘導体、キノリン誘導体、フェナントロリン誘導体、フタロシアニン誘導体、ポルフィリン誘導体、シロール誘導体、オリゴチオフェン誘導体、縮合多環芳香族誘導体、金属錯体などが挙げられる。また、たとえば、ポリビニルカルバゾール誘導体、ポリアリールアミン誘導体、ポリビニルトリフェニルアミン誘導体、ポリフルオレン誘導体、ポリアリーレン誘導体、テトラフェニルベンジジンを含有するポリアリーレンエーテルサルホン誘導体、ポリアリーレンビニレン誘導体、ポリシロキサン誘導体、ポリチオフェン誘導体、ポリ(p-フェニレンビニレン)誘導体などが挙げられる。これらは、交互共重合体、ランダム重合体、ブロック重合体又はグラフト共重合体のいずれであってもよい。また、主鎖に枝分かれがあり末端部が3つ以上ある高分子や、所謂デンドリマーであってもよい。
* Hole transport layer *
The material of the hole transport layer 4 may be any material that has been conventionally used as a constituent material of the hole transport layer. For example, the hole transport layer is exemplified as the hole transport compound used in the above-described hole injection layer. Things. In addition, arylamine derivatives, fluorene derivatives, spiro derivatives, carbazole derivatives, pyridine derivatives, pyrazine derivatives, pyrimidine derivatives, triazine derivatives, quinoline derivatives, phenanthroline derivatives, phthalocyanine derivatives, porphyrin derivatives, silole derivatives, oligothiophene derivatives, condensed polycyclic aromatics Group derivatives, metal complexes and the like. Also, for example, polyvinylcarbazole derivatives, polyarylamine derivatives, polyvinyltriphenylamine derivatives, polyfluorene derivatives, polyarylene derivatives, polyarylene ether sulfone derivatives containing tetraphenylbenzidine, polyarylene vinylene derivatives, polysiloxane derivatives, polythiophenes Derivatives, poly (p-phenylene vinylene) derivatives, and the like. These may be any of an alternating copolymer, a random polymer, a block polymer, or a graft copolymer. Further, it may be a polymer having a branched main chain and three or more terminal portions, or a so-called dendrimer.
 正孔輸送層4の材料としては、特開2008-98619号公報に記載のポリアリーレン誘導体の具体例などが挙げられる。 Specific examples of the material for the hole transport layer 4 include polyarylene derivatives described in JP-A-2008-98619.
 湿式成膜法で正孔輸送層を形成する場合は、正孔注入層の形成と同様にして、正孔輸送層形成用組成物を調製した後、湿式成膜後、乾燥させる。 When the hole transport layer is formed by a wet film formation method, a composition for forming a hole transport layer is prepared in the same manner as the formation of the hole injection layer, followed by drying after the wet film formation.
 正孔輸送層形成用組成物に、正孔輸送性化合物の他、溶媒を含有する。用いる溶媒は正孔注入層形成用組成物に用いたものと同様である。また、成膜条件、乾燥条件なども正孔注入層の形成の場合と同様である。 In addition to the hole transporting compound, the hole transporting layer forming composition contains a solvent. The solvent used is the same as that used for the composition for forming the hole injection layer. The film forming conditions, the drying conditions, and the like are the same as in the case of forming the hole injection layer.
 正孔輸送層は、正孔輸送性化合物の他、各種の発光材料、電子輸送性化合物、バインダー樹脂、塗布性改良剤などを含有していてもよい。 The hole transport layer may contain various light emitting materials, electron transport compounds, binder resins, coatability improvers and the like in addition to the hole transport compound.
 正孔輸送層の膜厚は、通常5nm以上、好ましくは10nm以上であり、また通常300nm以下、好ましくは100nm以下である。 The film thickness of the hole transport layer is usually 5 nm or more, preferably 10 nm or more, and usually 300 nm or less, preferably 100 nm or less.
 正孔輸送層の形成方法は真空蒸着法でも、湿式成膜法でもよいが、ダークスポット低減の観点から湿式成膜法により形成することが好ましい。 The hole transport layer may be formed by a vacuum deposition method or a wet film formation method, but is preferably formed by a wet film formation method from the viewpoint of reducing dark spots.
 正孔輸送層4は、アミン系架橋性化合物を架橋して得られたポリマーを含有する層であってもよい。 The hole transport layer 4 may be a layer containing a polymer obtained by crosslinking an amine-based crosslinking compound.
 *発光層*
 発光層5は、その構成材料として、少なくとも、発光の性質を有する材料(発光材料)を含有するとともに、好ましくは、正孔輸送の性質を有する化合物(正孔輸送性化合物)、あるいは、電子輸送の性質を有する化合物(電子輸送性化合物)を含有する。発光材料をドーパント材料として使用し、正孔輸送性化合物や電子輸送性化合物などをホスト材料として使用してもよい。発光材料については特に限定はなく、所望の発光波長で発光し、発光効率が良好である物質を用いればよい。なお、湿式成膜法で発光層を形成する場合は、何れも低分子量の材料を使用することが好ましい。
* Light emitting layer *
The light emitting layer 5 contains at least a material having a light emitting property (light emitting material) as a constituent material, and preferably a compound having a hole transporting property (hole transporting compound) or an electron transport. A compound (electron transporting compound) having the following properties: A light emitting material may be used as a dopant material, and a hole transporting compound, an electron transporting compound, or the like may be used as a host material. There is no particular limitation on the light-emitting material, and a material that emits light at a desired light emission wavelength and has favorable light emission efficiency may be used. In addition, when forming a light emitting layer with a wet film-forming method, it is preferable to use a low molecular weight material in any case.
 発光材料としては、任意の公知の材料を適用可能である。たとえば、蛍光発光材料であってもよく、燐光発光材料であってもよいが、内部量子効率の観点から、好ましくは燐光発光材料である。また、青色は蛍光発光材料を用い、緑色や赤色は燐光発光材料を用いるなど、組み合わせて用いてもよい。 Any known material can be applied as the light emitting material. For example, a fluorescent material or a phosphorescent material may be used, but a phosphorescent material is preferred from the viewpoint of internal quantum efficiency. Alternatively, blue may be used in combination, such as using a fluorescent material, and green and red using a phosphorescent material.
 なお、溶媒への溶解性を向上させる目的で、発光材料の分子の対称性や剛性を低下させたり、或いはアルキル基などの親油性置換基を導入したりすることが好ましい。 For the purpose of improving the solubility in a solvent, it is preferable to reduce the symmetry and rigidity of the molecule of the luminescent material, or to introduce a lipophilic substituent such as an alkyl group.
 青色発光を与える蛍光発光材料(青色蛍光色素)としては、たとえば、ナフタレン、ペリレン、ピレン、クリセン、アントラセン、クマリン、p-ビス(2-フェニルエテニル)ベンゼン及びそれらの誘導体などが挙げられる。 Examples of fluorescent light emitting materials (blue fluorescent dyes) that emit blue light include naphthalene, perylene, pyrene, chrysene, anthracene, coumarin, p-bis (2-phenylethenyl) benzene, and derivatives thereof.
 緑色発光を与える蛍光発光材料(緑色蛍光色素)としては、たとえば、キナクリドン誘導体、クマリン誘導体、Alq3(tris (8-hydroxy-quinoline) aluminum) などのアルミニウム錯体などが挙げられる。 Examples of the fluorescent light-emitting material (green fluorescent dye) that emits green light include aluminum complexes such as quinacridone derivatives, coumarin derivatives, and Alq3 (tris (8-hydroxy-quinoline) aluminum).
 黄色発光を与える蛍光発光材料(黄色蛍光色素)としては、たとえば、ルブレン、ペリミドン誘導体などが挙げられる。 Examples of the fluorescent light emitting material (yellow fluorescent dye) that emits yellow light include rubrene and perimidone derivatives.
 赤色発光を与える蛍光発光材料(赤色蛍光色素)としては、たとえば、DCM(4-(dicyanomethylene)-2-methyl-6-(p-dimethylaminostyryl)-4H-pyran)系化合物、ベンゾピラン誘導体、ローダミン誘導体、ベンゾチオキサンテン誘導体、アザベンゾチオキサンテンなどが挙げられる。 Examples of fluorescent materials that emit red light (red fluorescent dyes) include DCM (4- (dicyanomethylene) -2-methyl-6- (p-dimethylaminostyryl) -4H-pyran) compounds, benzopyran derivatives, rhodamine derivatives, Examples include benzothioxanthene derivatives and azabenzothioxanthene.
 燐光発光材料としては、たとえば、長周期型周期表(以下、特に断り書きの無い限り「周期表」という場合には、長周期型周期表を指すものとする。)第7~11族から選ばれる金属を含む有機金属錯体が挙げられる。周期表第7~11族から選ばれる金属として、好ましくは、ルテニウム、ロジウム、パラジウム、銀、レニウム、オスミウム、イリジウム、白金、金などが挙げられる。錯体の配位子としては、(ヘテロ)アリールピリジン配位子、(ヘテロ)アリールピラゾール配位子などの(ヘテロ)アリール基とピリジン、ピラゾール、フェナントロリンなどが連結した配位子が好ましく、特にフェニルピリジン配位子、フェニルピラゾール配位子が好ましい。ここで、(ヘテロ)アリールとは、アリール基又はヘテロアリール基を表す。 As the phosphorescent material, for example, a long-period type periodic table (hereinafter, unless otherwise specified, the term “periodic table” refers to a long-period type periodic table) selected from Group 7 to 11 And an organometallic complex containing a metal. Preferred examples of the metal selected from Groups 7 to 11 of the periodic table include ruthenium, rhodium, palladium, silver, rhenium, osmium, iridium, platinum, and gold. As the ligand of the complex, a ligand in which a (hetero) aryl group such as a (hetero) arylpyridine ligand or a (hetero) arylpyrazole ligand and a pyridine, pyrazole, phenanthroline, or the like is connected is preferable. A pyridine ligand and a phenylpyrazole ligand are preferable. Here, (hetero) aryl represents an aryl group or a heteroaryl group.
 燐光発光材料として、具体的には、トリス(2-フェニルピリジン)イリジウム(Ir(ppy)3)、トリス(2-フェニルピリジン)ルテニウム、トリス(2-フェニルピリジン)パラジウム、ビス(2-フェニルピリジン)白金、トリス(2-フェニルピリジン)オスミウム、トリス(2-フェニルピリジン)レニウム、オクタエチル白金ポルフィリン、オクタフェニル白金ポルフィリン、オクタエチルパラジウムポルフィリン、オクタフェニルパラジウムポルフィリンなどが挙げられる。 Specific examples of phosphorescent materials include tris (2-phenylpyridine) iridium (Ir (ppy) 3), tris (2-phenylpyridine) ruthenium, tris (2-phenylpyridine) palladium, and bis (2-phenylpyridine). ) Platinum, tris (2-phenylpyridine) osmium, tris (2-phenylpyridine) rhenium, octaethylplatinum porphyrin, octaphenylplatinum porphyrin, octaethylpalladium porphyrin, octaphenylpalladium porphyrin, and the like.
 発光材料として用いる化合物の分子量は、通常10000以下、好ましくは5000以下、より好ましくは4000以下、更に好ましくは3000以下、また、通常100以上、好ましくは200以上、より好ましくは300以上、更に好ましくは400以上の範囲である。発光材料の分子量が小さ過ぎると、耐熱性が著しく低下したり、ガス発生の原因となったり、膜を形成した際の膜質の低下を招いたり、或いはマイグレーションなどによる有機機能層のモルフォロジー変化を招来する場合がある。一方、発光材料の分子量が大き過ぎると、有機化合物の精製が困難となってしまったり、溶媒に溶解させる際に時間を要したりする傾向がある。 The molecular weight of the compound used as the light emitting material is usually 10,000 or less, preferably 5000 or less, more preferably 4000 or less, still more preferably 3000 or less, and usually 100 or more, preferably 200 or more, more preferably 300 or more, still more preferably. The range is 400 or more. If the molecular weight of the luminescent material is too small, the heat resistance will be significantly reduced, gas generation will be caused, the film quality will be reduced when the film is formed, or the morphology of the organic functional layer will be changed due to migration, etc. There is a case. On the other hand, if the molecular weight of the luminescent material is too large, it tends to be difficult to purify the organic compound, or it may take time to dissolve in the solvent.
 なお、発光材料は、いずれか1種のみを用いてもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。発光層における発光材料の割合は、通常0.05重量%以上、通常35重量%以下である。発光材料が少なすぎると発光ムラを生じる可能性があり、多すぎると発光効率が低下する可能性がある。なお、2種以上の発光材料を併用する場合には、これらの合計の含有量が上記範囲に含まれるようにする。発光層における含有量が最も多い成分をホスト材料とより少ない成分をゲスト材料と呼ぶ。よって、発光層塗布液には、発光層層となるべき少なくとも2種類の固形分(ホスト材料とゲスト材料)が溶質として溶媒に分散又は溶解されて、調製され得る。 In addition, any 1 type may be used for a luminescent material, and 2 or more types may be used together by arbitrary combinations and a ratio. The ratio of the light emitting material in the light emitting layer is usually 0.05% by weight or more and usually 35% by weight or less. If the amount of the light emitting material is too small, uneven light emission may occur. If the amount is too large, the light emission efficiency may be reduced. In addition, when using together 2 or more types of luminescent material, it is made for the total content of these to be contained in the said range. The component having the highest content in the light emitting layer is called a host material, and the component having a smaller content is called a guest material. Therefore, at least two kinds of solid contents (host material and guest material) to be the light emitting layer can be prepared by being dispersed or dissolved in a solvent as a solute in the light emitting layer coating liquid.
 発光層には、その構成材料として、正孔輸送性化合物を含有させてもよい。ここで、正孔輸送性化合物のうち、低分子量の正孔輸送性化合物の例としては、前述の正孔注入層3における正孔輸送性化合物として例示した各種の化合物のほか、たとえば、4,4'-ビス[N-(1-ナフチル)-N-フェニルアミノ]ビフェニル(α-NPD)に代表される、2個以上の3級アミンを含み2個以上の縮合芳香族環が窒素原子に置換した芳香族ジアミン(特開平5-234681号公報)、4,4',4"-トリス(1-ナフチルフェニルアミノ)トリフェニルアミンなどのスターバースト構造を有する芳香族アミン化合物(Journal of Luminescence, 1997, Vol.72-74, pp.985)、トリフェニルアミンの四量体から成る芳香族アミン化合物(Chemical Communications, 1996, pp.2175)、2,2',7,7'-テトラキス-(ジフェニルアミノ)-9,9'-スピロビフルオレンなどのスピロ化合物(Synthetic Metals, 1997, Vol.91, pp.209)などが挙げられる。 The light emitting layer may contain a hole transporting compound as a constituent material. Here, among the hole transporting compounds, examples of the low molecular weight hole transporting compound include various compounds exemplified as the hole transporting compound in the hole injection layer 3 described above, for example, Two or more condensed aromatic rings containing two or more tertiary amines represented by 4′-bis [N- (1-naphthyl) -N-phenylamino] biphenyl (α-NPD) are attached to the nitrogen atom. Aromatic amine compounds having a starburst structure (Journal 芳香 of ジ ア ミ ン Luminescence, such as substituted aromatic diamines (Japanese Patent Laid-open No. Hei 5-234681), 4,4 ', 4 "-tris (1-naphthylphenylamino) triphenylamine) 1997, Vol.72-74, pp.985), aromatic amine compounds consisting of tetramers of triphenylamine (Chemical Communications, 1996, pp.2175), 2,2 ′, 7,7′-tetrakis- ( Diphenylamino) -9, '- spiro compounds such spirobifluorene (Synthetic Metals, 1997, Vol.91, pp.209) and the like.
 なお、発光層において、正孔輸送性化合物は、1種のみを用いてもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。 In addition, in a light emitting layer, only 1 type may be used for a hole transportable compound, and it may use 2 or more types together by arbitrary combinations and a ratio.
 発光層における正孔輸送性化合物の割合は、通常0.1重量%以上、通常65重量%以下である。正孔輸送性化合物が少なすぎると短絡の影響を受けやすくなる可能性があり、多すぎると膜厚ムラを生じる可能性がある。なお、2種以上の正孔輸送性化合物を併用する場合には、これらの合計の含有量が上記範囲に含まれるようにする。 The proportion of the hole transporting compound in the light emitting layer is usually 0.1% by weight or more and usually 65% by weight or less. If the amount of the hole transporting compound is too small, it may be easily affected by a short circuit, and if it is too large, the film thickness may be uneven. In addition, when using together 2 or more types of hole transportable compounds, it is made for the total content of these to be contained in the said range.
 発光層には、その構成材料として、電子輸送性化合物を含有させてもよい。ここで、電子輸送性化合物のうち、低分子量の電子輸送性化合物の例としては、2,5-ビス(1-ナフチル)-1,3,4-オキサジアゾール(BND)や、2,5-ビス(6'-(2',2"-ビピリジル))-1,1-ジメチル-3,4-ジフェニルシロール(PyPySPyPy)や、バソフェナントロリン(BPhen)や、2,9-ジメチル-4,7-ジフェニル-1,10-フェナントロリン(BCP、バソクプロイン)、2-(4-ビフェニリル)-5-(p-ターシャルブチルフェニル)-1,3,4-オキサジアゾール(tBu-PBD)や、4,4’-ビス(9H-カルバゾール-9-イル)ビフェニル(CBP)などが挙げられる。なお、発光層において、電子輸送性化合物は、1種のみを用いてもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。 The light emitting layer may contain an electron transporting compound as a constituent material. Here, among the electron transporting compounds, examples of low molecular weight electron transporting compounds include 2,5-bis (1-naphthyl) -1,3,4-oxadiazole (BND), 2,5, -Bis (6 '-(2', 2 "-bipyridyl))-1,1-dimethyl-3,4-diphenylsilole (PyPySPyPy), bathophenanthroline (BPhen), 2,9-dimethyl-4,7 Diphenyl-1,10-phenanthroline (BCP, bathocuproin), 2- (4-biphenylyl) -5- (p-tertiarybutylphenyl) -1,3,4-oxadiazole (tBu-PBD), 4 , 4′-bis (9H-carbazol-9-yl) biphenyl (CBP), etc. In the light emitting layer, only one kind of electron transporting compound may be used, or two or more kinds may be used. It may be used in combination with combination and ratio.
 発光層における電子輸送性化合物の割合は、通常0.1重量%以上、通常65重量%以下である。電子輸送性化合物が少なすぎると短絡の影響を受けやすくなる可能性があり、多すぎると膜厚ムラを生じる可能性がある。なお、2種以上の電子輸送性化合物を併用する場合には、これらの合計の含有量が上記範囲に含まれるようにする。 The proportion of the electron transporting compound in the light emitting layer is usually 0.1% by weight or more and usually 65% by weight or less. If the amount of the electron transporting compound is too small, it may be easily affected by a short circuit, and if it is too large, the film thickness may be uneven. In addition, when using together 2 or more types of electron transport compounds, it is made for the total content of these to be contained in the said range.
 発光層は、上記発光層材料を適切な溶媒に溶解させて発光層形成用組成物を調製し、それを用いて成膜することにより形成する。 The light emitting layer is formed by preparing a composition for forming a light emitting layer by dissolving the above light emitting layer material in an appropriate solvent and forming a film using the composition.
 発光層を湿式成膜法で形成するための発光層形成用組成物に含有させる発光層用溶媒としては、発光層の形成が可能である限り任意のものを用いることができる。発光層用溶媒の好適な例は、正孔注入層形成用組成物で説明した溶媒と同様である。 As the solvent for the light emitting layer to be contained in the composition for forming a light emitting layer for forming the light emitting layer by a wet film forming method, any solvent can be used as long as the light emitting layer can be formed. Suitable examples of the solvent for the light emitting layer are the same as those described for the composition for forming a hole injection layer.
 発光層を形成するための発光層形成用組成物に対する発光層用溶媒の比率は、通常0.01重量%以上、通常70重量%以下、である。なお、発光層用溶媒として2種以上の溶媒を混合して用いる場合には、これらの溶媒の合計がこの範囲を満たすようにする。 The ratio of the light emitting layer solvent to the light emitting layer forming composition for forming the light emitting layer is usually 0.01% by weight or more and usually 70% by weight or less. In addition, when using 2 or more types of solvents mixed as a solvent for light emitting layers, it is made for the sum total of these solvents to satisfy | fill this range.
 発光層形成用組成物を湿式成膜後、得られた塗膜を乾燥し、溶媒を除去することにより、発光層が形成される。発光層は、上記正孔注入層の形成において記載した塗布方法と同様であるが、ダークスポット低減の観点から湿式成膜法により形成することが好ましい。 After forming the light emitting layer forming composition into a wet film, the obtained coating film is dried and the solvent is removed to form a light emitting layer. The light emitting layer is similar to the coating method described in the formation of the hole injection layer, but is preferably formed by a wet film forming method from the viewpoint of reducing dark spots.
 発光層の膜厚は通常3nm以上、好ましくは5nm以上、また、通常200nm以下、好ましくは100nm以下の範囲である。発光層の膜厚が、薄すぎると膜に欠陥が生じる可能性があり、厚すぎると駆動電圧が上昇する可能性がある。 The film thickness of the light emitting layer is usually 3 nm or more, preferably 5 nm or more, and usually 200 nm or less, preferably 100 nm or less. If the light emitting layer is too thin, defects may occur in the film, and if it is too thick, the driving voltage may increase.
 *正孔阻止層*
 正孔阻止層6は、発光層の上に、発光層の陰極側の界面に接するように積層される層である。正孔阻止層は、陽極から移動してくる正孔を陰極に到達するのを阻止する役割と、陰極から注入された電子を効率よく発光層の方向に輸送する役割とを有する。
* Hole blocking layer *
The hole blocking layer 6 is a layer laminated on the light emitting layer so as to be in contact with the cathode side interface of the light emitting layer. The hole blocking layer has a role of blocking holes moving from the anode from reaching the cathode and a role of efficiently transporting electrons injected from the cathode toward the light emitting layer.
 正孔阻止層を構成する材料に求められる物性としては、電子移動度が高く正孔移動度が低いこと、エネルギーギャップ(HOMO、LUMOの差)が大きいこと、励起三重項準位(T1)が高いことが挙げられる。このような条件を満たす正孔阻止層の材料としては、たとえば、ビス(2-メチル-8-キノリノラト)(4-フェノラト)アルミニウム(PAlq)や、ビス(2-メチル-8-キノリノラト)(トリフェニルシラノラト)アルミニウム(SAlq)などの混合配位子錯体、ビス(2-メチル-8-キノラト)アルミニウム-μ-オキソ-ビス-(2-メチル-8-キノリラト)アルミニウム二核金属錯体などの金属錯体、ジスチリルビフェニル誘導体などのスチリル化合物(特開平11-242996号公報)、3-(4-ビフェニルイル)-4-フェニル-5(4-tert-ブチルフェニル)-1,2,4-トリアゾールなどのトリアゾール誘導体(特開平7-41759号公報)、バソクプロイン(BCP)などのフェナントロリン誘導体(特開平10-79297号公報)などが挙げられる。更に、国際公開第2005-022962号公報に記載の2,4,6位が置換されたピリジン環を少なくとも1個有する化合物も、正孔阻止層の材料として好ましい。 The physical properties required for the material constituting the hole blocking layer include high electron mobility, low hole mobility, large energy gap (difference between HOMO and LUMO), and excited triplet level (T1). It is expensive. Examples of the material of the hole blocking layer satisfying such conditions include bis (2-methyl-8-quinolinolato) (4-phenolato) aluminum (PAlq) and bis (2-methyl-8-quinolinolato) (tri Mixed ligand complexes such as phenylsilanolato) aluminum (SAlq), bis (2-methyl-8-quinolato) aluminum-μ-oxo-bis- (2-methyl-8-quinolinato) aluminum binuclear metal complexes, etc. Stylyl compounds such as metal complexes and distyrylbiphenyl derivatives (Japanese Patent Laid-Open No. 11-242996), 3- (4-biphenylyl) -4-phenyl-5 (4-tert-butylphenyl) -1,2,4- Triazole derivatives such as triazole (JP-A-7-41759), phenanthroyl such as bathocuproine (BCP) And the like derivatives (JP-A-10-79297). Furthermore, compounds having at least one pyridine ring substituted at the 2,4,6-positions described in International Publication No. 2005-022962 are also preferable as the material for the hole blocking layer.
 なお、正孔阻止層の材料は、1種のみを用いてもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。正孔阻止層の形成方法に制限はないが、ダークスポット低減の観点から湿式成膜法により形成することが好ましい。 In addition, only 1 type may be used for the material of a hole-blocking layer, and 2 or more types may be used together by arbitrary combinations and a ratio. Although there is no restriction | limiting in the formation method of a hole-blocking layer, It is preferable to form by the wet film-forming method from a viewpoint of dark spot reduction.
 正孔阻止層の膜厚は、通常0.3nm以上、好ましくは0.5nm以上、また、通常100nm以下、好ましくは50nm以下である。 The film thickness of the hole blocking layer is usually 0.3 nm or more, preferably 0.5 nm or more, and usually 100 nm or less, preferably 50 nm or less.
 *電子輸送層*
 電子輸送層7は、有機ELパネルの発光効率を更に向上させることを目的として設けられるもので、電界を与えられた電極間において陰極から注入された電子を効率よく発光層の方向に輸送することができる化合物より形成される。
* Electron transport layer *
The electron transport layer 7 is provided for the purpose of further improving the light emission efficiency of the organic EL panel, and efficiently transports electrons injected from the cathode between the electrodes to which an electric field is applied in the direction of the light emitting layer. Formed from a compound capable of
 電子輸送層に用いられる電子輸送性化合物としては、通常、陰極9又は電子注入層8からの電子注入効率が高く、かつ、高い電子移動度を有し注入された電子を効率よく輸送することができる化合物を用いる。このような条件を満たす化合物としては、たとえば、Alq3など8-ヒドロキシキノリンのアルミニウム錯体などの金属錯体(特開昭59-194393号公報)、10-ヒドロキシベンゾ[h]キノリンの金属錯体、オキサジアゾール誘導体、ジスチリルビフェニル誘導体、シロール誘導体、3-ヒドロキシフラボン金属錯体、5-ヒドロキシフラボン金属錯体、ベンズオキサゾール金属錯体、ベンゾチアゾール金属錯体、トリスベンズイミダゾリルベンゼン(米国特許第5645948号明細書)、キノキサリン化合物(特開平6-207169号公報)、フェナントロリン誘導体(特開平5-331459号公報)、2-t-ブチル-9,10-N,N'-ジシアノアントラキノンジイミン、n型水素化非晶質炭化シリコン、n型硫化亜鉛、n型セレン化亜鉛などが挙げられる。 As the electron transporting compound used for the electron transport layer, usually, the electron injection efficiency from the cathode 9 or the electron injection layer 8 is high, and the injected electrons having high electron mobility can be efficiently transported. Use possible compounds. Examples of the compound satisfying such conditions include metal complexes such as aluminum complexes of 8-hydroxyquinoline such as Alq3 (Japanese Patent Laid-Open No. 59-194393), metal complexes of 10-hydroxybenzo [h] quinoline, oxadi Azole derivatives, distyrylbiphenyl derivatives, silole derivatives, 3-hydroxyflavone metal complexes, 5-hydroxyflavone metal complexes, benzoxazole metal complexes, benzothiazole metal complexes, trisbenzimidazolylbenzene (US Pat. No. 5,645,948), quinoxaline Compound (JP-A-6-207169), phenanthroline derivative (JP-A-5-331459), 2-t-butyl-9,10-N, N'-dicyanoanthraquinonediimine, n-type hydrogenated amorphous Silicon carbide, n-type sulfide Examples thereof include zinc and n-type zinc selenide.
 なお、電子輸送層の材料は、1種のみを用いてもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。 In addition, only 1 type may be used for the material of an electron carrying layer, and 2 or more types may be used together by arbitrary combinations and a ratio.
 電子輸送層の形成方法に制限はないが、ダークスポット低減の観点から湿式成膜法により形成することが好ましい。 The formation method of the electron transport layer is not limited, but it is preferably formed by a wet film formation method from the viewpoint of reducing dark spots.
 電子輸送層の膜厚は、通常1nm以上、好ましくは5nm以上、また、通常300nm以下、好ましくは100nm以下の範囲である。 The film thickness of the electron transport layer is usually 1 nm or more, preferably 5 nm or more, and usually 300 nm or less, preferably 100 nm or less.
 *電子注入層*
 電子注入層8は、陰極から注入された電子を効率良く発光層へ注入する役割を果たす。電子注入を効率よく行うには、電子注入層を形成する材料は、仕事関数の低い金属が好ましい。例としては、ナトリウムやセシウムなどのアルカリ金属、バリウムやカルシウムなどのアルカリ土類金属、それらの化合物(CsF、CsCO、LiO、LiF)などが用いられ、その膜厚は通常0.1nm以上、5nm以下が好ましい。
* Electron injection layer *
The electron injection layer 8 plays a role of efficiently injecting electrons injected from the cathode into the light emitting layer. In order to perform electron injection efficiently, the material for forming the electron injection layer is preferably a metal having a low work function. Examples include alkali metals such as sodium and cesium, alkaline earth metals such as barium and calcium, and their compounds (CsF, Cs 2 CO 3 , Li 2 O, LiF) and the like. .1 nm or more and 5 nm or less are preferable.
 更に、バソフェナントロリンなどの含窒素複素環化合物や8-ヒドロキシキノリンのアルミニウム錯体などの金属錯体に代表される有機電子輸送化合物に、ナトリウム、カリウム、セシウム、リチウム、ルビジウムなどのアルカリ金属をドープする(特開平10-270171号公報、特開2002-100478号公報、特開2002-100482号公報などに記載)ことにより、電子注入・輸送性が向上し優れた膜質を両立させることが可能となるため好ましい。この場合の膜厚は、通常、5nm以上、中でも10nm以上が好ましく、また、通常200nm以下、中でも100nm以下が好ましい。 Furthermore, an organic electron transport compound typified by a metal complex such as a nitrogen-containing heterocyclic compound such as bathophenanthroline or an aluminum complex of 8-hydroxyquinoline is doped with an alkali metal such as sodium, potassium, cesium, lithium or rubidium ( As described in JP-A-10-270171, JP-A-2002-1000047, JP-A-2002-1000048, and the like, it is possible to improve the electron injection / transport property and achieve excellent film quality. preferable. In this case, the film thickness is usually 5 nm or more, preferably 10 nm or more, and is usually 200 nm or less, preferably 100 nm or less.
 なお、電子注入層の材料は、1種のみを用いてもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。電子注入層の形成方法に制限はない。従って、湿式成膜法、蒸着法や、その他の方法で形成することができる。 In addition, only 1 type may be used for the material of an electron injection layer, and 2 or more types may be used together by arbitrary combinations and a ratio. There is no restriction | limiting in the formation method of an electron injection layer. Therefore, it can be formed by a wet film forming method, a vapor deposition method, or other methods.
 [実験例1] 
 具体的に実験において、図3~図8の前述のプロセスにより、ガラス基板上に陽極(ITO)/正孔注入層/正孔輸送層/発光層/正孔阻止層/電子輸送層/電子注入層(LiF)/陰極(Al)/の膜構成の有機EL素子を作製し、評価した。なお、正孔阻止層、電子輸送層、電子注入層及び陰極を蒸着法により成膜した。
[Experimental Example 1]
Specifically, in the experiment, an anode (ITO) / hole injection layer / hole transport layer / light emitting layer / hole blocking layer / electron transport layer / electron injection on the glass substrate by the process described above with reference to FIGS. An organic EL element having a layer structure (LiF) / cathode (Al) / was prepared and evaluated. Note that a hole blocking layer, an electron transport layer, an electron injection layer, and a cathode were formed by an evaporation method.
 実験結果から、有機機能層のすべての継ぎ目部分が基板の補助電極を含む基板の法平面内に配置されることにより、上記継ぎ目部分を補助電極で隠すことができ継ぎ目の解消が確認された。 From the experimental results, it was confirmed that all the seam portions of the organic functional layer are arranged in the normal plane of the substrate including the auxiliary electrode of the substrate, so that the seam portion can be hidden by the auxiliary electrode and the seam is eliminated.
 1 基板
 2 陽極
 3 正孔注入層
 4 正孔輸送層
 5 発光層
 6 正孔阻止層
 7 電子輸送層
 8 電子注入層
 9 陰極
 BL 補助電極
 10 ステージ
 11 ステージ移動機構
 12 インクジェットヘッド
 13ヘッド移動機構
DESCRIPTION OF SYMBOLS 1 Substrate 2 Anode 3 Hole injection layer 4 Hole transport layer 5 Light emitting layer 6 Hole blocking layer 7 Electron transport layer 8 Electron injection layer 9 Cathode BL Auxiliary electrode 10 Stage 11 Stage moving mechanism 12 Inkjet head 13 Head moving mechanism

Claims (4)

  1.  基板上かつ前記基板の法線方向において互いに対向する第一電極層及び第二電極層の間に配置される少なくとも1層の有機機能層が液滴吐出ノズルの走査により形成された有機ELパネルであって、
     前記第一電極層上に並置された複数の補助電極を有し、
     前記有機機能層は、前記補助電極間ごとに前記補助電極の長手方向に平行にそれぞれ並置されかつ縁部同士が互いに接合した複数の帯状有機層からなり、前記帯状有機層の縁部が前記補助電極を含む前記基板の法平面内にあることを特徴とする有機ELパネル。
    An organic EL panel in which at least one organic functional layer disposed between a first electrode layer and a second electrode layer facing each other in the normal direction of the substrate is formed by scanning a droplet discharge nozzle. There,
    A plurality of auxiliary electrodes juxtaposed on the first electrode layer;
    The organic functional layer is composed of a plurality of band-like organic layers juxtaposed in parallel with each other between the auxiliary electrodes in the longitudinal direction of the auxiliary electrodes, and edges are joined to each other, and the edge of the band-like organic layer is the auxiliary An organic EL panel, which is in a normal plane of the substrate including electrodes.
  2.  前記有機機能層が複数ある場合、前記帯状有機層の縁部のすべては前記基板の法平面内にあることを特徴とする請求項1記載の有機ELパネル。 2. The organic EL panel according to claim 1, wherein when there are a plurality of the organic functional layers, all of the edges of the band-shaped organic layer are in a normal plane of the substrate.
  3.  基板上かつ前記基板の法線方向において互いに対向する第一電極層及び第二電極層の間に配置される少なくとも1層の有機機能層が液滴吐出ノズルの走査により形成された有機ELパネルの製造方法であって、
     前記第一電極層上に複数の補助電極を並置する工程と、
     前記補助電極間ごとの前記第一電極層の表面に沿って前記補助電極の伸長方向に平行に移動する液滴吐出ノズルにより前記第一電極層上を走査させつつ前記補助電極間の前記第一電極層上に帯状有機層をそれぞれ塗布する走査工程と、を含み、
     前記走査工程において、前記液滴吐出ノズルは、塗布された隣接する前記帯状有機層の縁部同士が互いに接合しかつ前記帯状有機層の縁部が前記補助電極を含む前記基板の法平面内にあるように、前記基板に対し相対的に位置制御されることを特徴とする有機ELパネルの製造方法。
    An organic EL panel in which at least one organic functional layer disposed between a first electrode layer and a second electrode layer facing each other in the normal direction of the substrate is formed by scanning a droplet discharge nozzle. A manufacturing method,
    Juxtaposing a plurality of auxiliary electrodes on the first electrode layer;
    The first electrode between the auxiliary electrodes is scanned over the first electrode layer by a droplet discharge nozzle that moves parallel to the extension direction of the auxiliary electrode along the surface of the first electrode layer between the auxiliary electrodes. And a scanning step of applying a strip organic layer on the electrode layer,
    In the scanning step, the droplet discharge nozzle is formed so that the edges of the adjacent strip organic layers applied to each other are bonded to each other and the edges of the strip organic layer are within the normal plane of the substrate including the auxiliary electrode. A method for manufacturing an organic EL panel, wherein the position is controlled relative to the substrate.
  4.  前記走査工程を複数回実行して前記有機機能層を複数形成する場合、前記走査工程の各々において、前記液滴吐出ノズルは、前記帯状有機層の縁部のすべてが前記基板の法平面内にあるように、前記基板に対し相対的に位置制御されることを特徴とする請求項3に記載の有機ELパネルの製造方法。 In the case where a plurality of the organic functional layers are formed by executing the scanning step a plurality of times, in each of the scanning steps, the droplet discharge nozzle is such that all the edges of the band-shaped organic layer are within the normal plane of the substrate. The method of manufacturing an organic EL panel according to claim 3, wherein the position is controlled relative to the substrate.
PCT/JP2012/053283 2012-02-13 2012-02-13 Organic electroluminescent panel and method for manufacturing same WO2013121505A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/053283 WO2013121505A1 (en) 2012-02-13 2012-02-13 Organic electroluminescent panel and method for manufacturing same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/053283 WO2013121505A1 (en) 2012-02-13 2012-02-13 Organic electroluminescent panel and method for manufacturing same

Publications (1)

Publication Number Publication Date
WO2013121505A1 true WO2013121505A1 (en) 2013-08-22

Family

ID=48983669

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/053283 WO2013121505A1 (en) 2012-02-13 2012-02-13 Organic electroluminescent panel and method for manufacturing same

Country Status (1)

Country Link
WO (1) WO2013121505A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004335389A (en) * 2003-05-12 2004-11-25 Sony Corp Evaporation mask, manufacturing method of display device using the same, and display device
JP2006068598A (en) * 2004-08-31 2006-03-16 Sharp Corp Method of manufacturing functional film, coating liquid for formation of functional film, functional element, electronic device and display device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004335389A (en) * 2003-05-12 2004-11-25 Sony Corp Evaporation mask, manufacturing method of display device using the same, and display device
JP2006068598A (en) * 2004-08-31 2006-03-16 Sharp Corp Method of manufacturing functional film, coating liquid for formation of functional film, functional element, electronic device and display device

Similar Documents

Publication Publication Date Title
JP6201538B2 (en) Method for producing functional layer forming ink, method for producing organic EL element
KR102122188B1 (en) Organic electroluminescent element and organic electroluminescent device
JP5577685B2 (en) Organic electroluminescent device manufacturing method, organic electroluminescent device, organic EL display device, and organic EL illumination
CN107431137B (en) Composition for forming functional layer, method for producing same, method for producing organic EL element, organic EL device, and electronic apparatus
KR20130071376A (en) Film-forming ink, film-forming method, method of manufacturing light emitting element, light emitting element, light emitting device, and electronic apparatus
JP6264766B2 (en) Iridium complex compound, organic electroluminescent element, display device and lighting device
JP5912174B2 (en) Organic electroluminescence panel and manufacturing method thereof
JP6375600B2 (en) Manufacturing method of organic EL element, organic EL element, organic EL device, electronic device
JP6286872B2 (en) Iridium complex compound, organic electroluminescent element, display device and lighting device
JP2017022068A (en) Method for manufacturing organic el element, apparatus for manufacturing organic el element, electro-optical device, and electronic apparatus
KR101899914B1 (en) Film-forming ink, film-forming method, liquid droplet discharging device, method for preparing light-emitting element, light-emitting element, light-emitting device and electronic apparatus
WO2012090560A1 (en) Organic electroluminescent element and manufacturing method thereof
WO2013035143A1 (en) Method for manufacturing organic electroluminescent panel
JP6078947B2 (en) Film forming ink, film forming method, and light emitting element manufacturing method
JP5402703B2 (en) Organic electroluminescence device, organic EL display, organic EL lighting, and organic EL signal device
WO2013150593A1 (en) Organic electroluminescent panel and method for producing same
JP6185109B2 (en) Organic electroluminescence panel and manufacturing method thereof
WO2013121505A1 (en) Organic electroluminescent panel and method for manufacturing same
JP5456282B2 (en) Organic electroluminescence device
WO2013114552A1 (en) Organic electroluminescence panel and method for manufacturing same
WO2012176276A1 (en) Organic electric field light emitting element
JP2014033134A (en) Composition for organic electroluminescent element, organic film, organic electroluminescent element, organic el display device and organic el lighting
JP2010192474A (en) Organic electroluminescent element, organic el display, and organic el lighting
JPWO2013035143A1 (en) Method for manufacturing organic electroluminescence panel
JP2015005396A (en) Organic el element manufacturing method, organic el element, display device and illumination device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12868560

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12868560

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP