WO2013035143A1 - Method for manufacturing organic electroluminescent panel - Google Patents

Method for manufacturing organic electroluminescent panel Download PDF

Info

Publication number
WO2013035143A1
WO2013035143A1 PCT/JP2011/070151 JP2011070151W WO2013035143A1 WO 2013035143 A1 WO2013035143 A1 WO 2013035143A1 JP 2011070151 W JP2011070151 W JP 2011070151W WO 2013035143 A1 WO2013035143 A1 WO 2013035143A1
Authority
WO
WIPO (PCT)
Prior art keywords
bank
organic
layer
manufacturing
organic layer
Prior art date
Application number
PCT/JP2011/070151
Other languages
French (fr)
Japanese (ja)
Inventor
田中 洋平
Original Assignee
パイオニア株式会社
三菱化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パイオニア株式会社, 三菱化学株式会社 filed Critical パイオニア株式会社
Priority to PCT/JP2011/070151 priority Critical patent/WO2013035143A1/en
Publication of WO2013035143A1 publication Critical patent/WO2013035143A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/17Passive-matrix OLED displays
    • H10K59/173Passive-matrix OLED displays comprising banks or shadow masks
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/12Deposition of organic active material using liquid deposition, e.g. spin coating
    • H10K71/13Deposition of organic active material using liquid deposition, e.g. spin coating using printing techniques, e.g. ink-jet printing or screen printing
    • H10K71/135Deposition of organic active material using liquid deposition, e.g. spin coating using printing techniques, e.g. ink-jet printing or screen printing using ink-jet printing
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/805Electrodes
    • H10K59/8051Anodes
    • H10K59/80516Anodes combined with auxiliary electrodes, e.g. ITO layer combined with metal lines

Definitions

  • the present invention relates to a method of manufacturing an organic EL panel including a plurality of organic electroluminescence (EL) elements arranged on a substrate and separated by a bank.
  • EL organic electroluminescence
  • Organic EL panels such as an organic EL display panel using a plurality of organic EL elements are widely known.
  • Each of the organic EL elements includes a plurality of organic layers (charge transport layers) made of an organic compound having a charge transport property between an anode and a cathode, and includes at least one light emitting layer in the organic layer. .
  • charge transport layers In the light emitting layer, holes and electrons increase the recombination probability, and the generated excitons emit light.
  • the use of forming a film by wet coating is increasing for the purpose of establishing a production method at a lower cost and improving the maintainability.
  • organic EL displays in the fields of organic EL lighting of organic EL panels using an array of a plurality of organic EL elements, organic TFTs using organic layers, and organic solar cells, a resist solution or the like on a transparent substrate such as glass
  • a coating process in which a coating liquid is applied and dried, and a desired pattern is formed by photolithography or the like.
  • the wet application method of the organic coating liquid for the organic layer include a spin method, a dip method, a roll method, and an ink jet method.
  • an insulating property is obtained by photolithography on a substrate 1 such as glass on which an anode 2 such as ITO and a bus line BU are formed.
  • the coating liquid containing various charge transporting organic compounds constituting the hole injection layer, the light emitting layer, and the like is applied to the openings defined by the bank BK, and dried and baked.
  • the organic layer that fulfills the above functions is sequentially formed, and after the film formation, the cathode metal film 9 is formed by vapor deposition or the like, and then an organic EL panel is obtained through a sealing process.
  • a hole transport layer for example, a hole injection layer material is formed as a uniform thin film on the anode on the substrate.
  • a bank is formed.
  • the bank is coated with an alkali development type fluorine-containing photosensitive resin solution on the hole injection layer in a predetermined film thickness, and after drying the solvent, only the portion where the bank is formed is exposed through a photomask. It is formed by developing using an alkaline developer.
  • This invention is made in view of such a situation, and provides the manufacturing method of the organic electroluminescent panel which can suppress the dry nonuniformity generation
  • the manufacturing method of the organic electroluminescent panel of Claim 1 is provided with the some organic electroluminescent element arrange
  • the bank is formed on the charge transport layer by an ink jet method instead of the photolithography process, the interface between the charge transport layer and the light emitting layer is cleaned, and the charge transport layer is formed on the anode or bus line on the substrate. Therefore, it is possible to sufficiently suppress the occurrence of drying unevenness in the finished organic layer of the organic EL panel and to improve the production yield.
  • each organic EL element of the organic EL panel according to the present embodiment As an example of each organic EL element of the organic EL panel according to the present embodiment, as shown in FIG. 2, on a transparent substrate 1 such as glass, a transparent anode 2, a hole injection layer 3, and a hole transport are sequentially arranged.
  • the layer 4, the light emitting layer 5, the hole blocking layer 6, the electron transport layer 7, the electron injection layer 8, and a cathode 9 made of a metal are stacked to obtain.
  • the hole injection layer 3, the hole transport layer 4, the light emitting layer 5, the hole blocking layer 6, and the electron transport layer 7 are organic layers.
  • a plurality of organic layers stacked between a pair of opposing anodes and cathodes are a hole injection layer, a hole transport layer, a light emitting layer, a hole blocking layer, an electron transport layer, an electron Includes an injection layer.
  • Components such as the organic layer will be described later.
  • the anode 2 / hole injection layer 3 / light emitting layer 5 / electron transport layer 7 / electron injection layer 8 / cathode 9 / hole transport layer 4 and hole blocking layer 6 are omitted, although not shown,
  • the anode 2 / hole transport layer 4 / light emitting layer 5 / electron transport layer 7 / electron injection layer 8 / cathode 9 / hole injection layer 3 and hole blocking layer 6 are omitted, and although not shown, the anode 2 A configuration in which the hole injection layer 3, the hole transport layer 4, and the hole blocking layer 6 of / light emitting layer 5 / electron transport layer 7 / electron injection layer 8 / cathode 9 / is omitted is also included in the present invention.
  • the present invention is not limited to these stacked structures, and includes a structure including at least a light-emitting layer or a charge transport layer that can also be used.
  • substrate As the substrate 1, a quartz or glass plate, a metal plate or a metal foil, a resin substrate to be bent, a plastic film, a sheet, or the like is used. In particular, a glass plate or a transparent synthetic resin plate such as polyester, polymethacrylate, polycarbonate, or polysulfone is preferable.
  • a synthetic resin substrate it is necessary to pay attention to gas barrier properties. If the gas barrier property of the substrate is too small, the organic EL element may be deteriorated by the outside air that has passed through the substrate. For this reason, a method of providing a gas barrier property by providing a dense silicon oxide film or the like on at least one surface of the synthetic resin substrate is also a preferable method.
  • the anode 2 for supplying holes to the layers up to the light emitting layer is usually a metal such as aluminum, gold, silver, nickel, palladium, platinum, or a metal such as indium and / or tin or zinc oxide (ITO or IZO). It is composed of an oxide, a metal halide such as copper iodide, carbon black, or a conductive polymer such as poly (3-methylthiophene), polypyrrole, or polyaniline.
  • the anode is usually formed by a sputtering method, a vacuum deposition method, or the like.
  • an appropriate binder resin solution is used.
  • the anode can also be formed by dispersing and coating the substrate.
  • a conductive polymer a thin film can be directly formed on the substrate by electrolytic polymerization, or the anode can be formed by applying a conductive polymer on the substrate.
  • the anode usually has a single-layer structure, but it can also have a laminated structure made of a plurality of materials if desired.
  • the thickness of the anode depends on the required transparency. When transparency is required, the visible light transmittance is usually 60% or more, preferably 80% or more. In this case, the thickness of the anode is usually 5 nm or more, preferably 10 nm or more, and is usually 1000 nm or less, preferably about 500 nm or less. If it may be opaque, the thickness of the anode is arbitrary, and the anode may be integrated with the substrate 1. Furthermore, different conductive materials may be laminated.
  • the anode surface is subjected to ultraviolet (UV) / ozone treatment or oxygen plasma or argon plasma surface treatment. That is preferred.
  • a material used for the cathode 9 for supplying electrons to the layers up to the light emitting layer a material used for the anode can be used.
  • a metal having a low work function is preferable.
  • a suitable metal such as tin, magnesium, indium, calcium, aluminum, silver, or an alloy thereof is used.
  • Specific examples include low work function alloy electrodes such as magnesium-silver alloy, magnesium-indium alloy, and aluminum-lithium alloy.
  • the material of the cathode 9 only 1 type may be used for the material of the cathode 9, and 2 or more types may be used together by arbitrary combinations and a ratio.
  • the thickness of the cathode is usually the same as that of the anode.
  • a metal layer having a high work function and stable to the atmosphere because the stability of the device is increased.
  • metals such as aluminum, silver, copper, nickel, chromium, gold, platinum are used.
  • these materials may be used only by 1 type and may use 2 or more types together by arbitrary combinations and a ratio.
  • the material and film thickness are selected so as to be transparent or translucent.
  • These electrodes may be patterned as necessary.
  • the hole injection layer 3 is preferably a layer containing an electron accepting compound.
  • the thickness of the hole injection layer is usually 5 nm or more, preferably 10 nm or more, and usually 1000 nm or less, preferably 500 nm or less.
  • the hole injection layer is preferably formed by a wet film formation method from the viewpoint of reducing dark spots.
  • a composition for film formation (holes) is usually mixed with a solvent (hole injection layer solvent) suitable for the material constituting the hole injection layer.
  • An injection layer forming composition) is prepared, and this hole injection layer forming composition is coated on the anode by an appropriate technique to form a film and dried to form a hole injection layer.
  • the drying is preferably vacuum drying.
  • Vacuum drying is a method in which a substrate coated with an organic layer is placed in a sealed container and evacuated with a vacuum pump to artificially increase the difference in vapor partial pressure, which is a drying condition.
  • vacuum drying is preferable because it can be dried in a shorter time than hot air drying. In vacuum drying, since the pressure is forcibly reduced to a narrow gap of solid content, the solvent in the gap evaporates more quickly, and uniform drying can be realized up to the inside of the layer.
  • the composition for forming a hole injection layer usually contains a hole transporting compound and a solvent as constituent materials of the hole injection layer.
  • a solvent include, but are not limited to, ether solvents, ester solvents, aromatic hydrocarbon solvents, amide solvents, and the like.
  • ether solvents include aliphatic ethers such as ethylene glycol dimethyl ether, ethylene glycol diethyl ether, propylene glycol monomethyl ether acetate (PGMEA), 1,2-dimethoxybenzene, 1,3-dimethoxybenzene, anisole, phenetole, 2 -Aromatic toluene such as methoxytoluene, 3-methoxytoluene, 4-methoxytoluene, 2,3-dimethylanisole, 2,4-dimethylanisole, and the like.
  • aliphatic ethers such as ethylene glycol dimethyl ether, ethylene glycol diethyl ether, propylene glycol monomethyl ether acetate (PGMEA), 1,2-dimethoxybenzene, 1,3-dimethoxybenzene, anisole, phenetole, 2 -Aromatic toluene such as methoxytoluene, 3-methoxytoluene
  • ester solvent examples include aromatic esters such as phenyl acetate, phenyl propionate, methyl benzoate, ethyl benzoate, propyl benzoate, and n-butyl benzoate.
  • aromatic hydrocarbon solvent examples include toluene, xylene, cyclohexylbenzene, 3-isopropylpropylphenyl, 1,2,3,4-tetramethylbenzene, 1,4-diisopropylbenzene, cyclohexylbenzene, and methylnaphthalene. Can be mentioned.
  • amide solvent examples include N, N-dimethylformamide, N, N-dimethylacetamide, and the like.
  • dimethyl sulfoxide and the like can also be used. These solvent may use only 1 type and may use 2 or more types by arbitrary combinations and a ratio.
  • the hole transporting compound is a compound having a hole transporting property that is usually used in a hole injection layer of an organic EL element
  • a polymer or the like may be a monomer or the like. Although it may be a low molecular compound, it is preferably a low molecular compound.
  • the hole transporting compound is preferably a compound having an ionization potential of 4.5 eV to 6.0 eV from the viewpoint of a charge injection barrier from the anode to the hole injection layer.
  • hole transporting compounds include aromatic amine derivatives, phthalocyanine derivatives typified by phthalocyanine copper (CuPc), porphyrin derivatives, oligothiophene derivatives, polythiophene derivatives, benzylphenyl derivatives, and tertiary amines linked by fluorene groups.
  • Examples thereof include compounds, hydrazone derivatives, silazane derivatives, silanamine derivatives, phosphamine derivatives, quinacridone derivatives, polyaniline derivatives, polypyrrole derivatives, polyphenylene vinylene derivatives, polythienylene vinylene derivatives, polyquinoline derivatives, polyquinoxaline derivatives, and carbon.
  • the derivative includes, for example, an aromatic amine derivative, and includes an aromatic amine itself and a compound having an aromatic amine as a main skeleton. It may be a body.
  • the hole transporting compound used as the material for the hole injection layer may contain any one of these compounds alone, or may contain two or more. When two or more hole transporting compounds are contained, the combination thereof is arbitrary, but one or more aromatic tertiary amine polymer compounds and one or two other hole transporting compounds are used. The above can also be used together. From the viewpoints of amorphousness and visible light transmittance, an aromatic amine compound is preferable for the hole injection layer, and an aromatic tertiary amine compound is particularly preferable.
  • the aromatic tertiary amine compound is a compound having an aromatic tertiary amine structure, and includes a compound having a group derived from an aromatic tertiary amine. Specific examples include those described in the pamphlet of International Publication No. 2005/089024.
  • a conductive polymer obtained by polymerizing 3,4-ethylenedioxythiophene, which is a derivative of polythiophene, in high molecular weight polystyrene sulfonic acid is also preferable. Moreover, the end of this polymer may be capped with methacrylate or the like.
  • the concentration of the hole transporting compound in the composition for forming a hole injection layer is usually 0.01% by weight or more, preferably 0.1% by weight or more, and more preferably 0.00% by weight in terms of film thickness uniformity. 5% by weight or more, usually 70% by weight or less, preferably 60% by weight or less, more preferably 50% by weight or less. If this concentration is too high, film thickness unevenness may occur, and if it is too low, defects may occur in the formed hole injection layer.
  • the composition for forming a hole injection layer preferably further contains an electron-accepting compound, and may further contain other components in addition to the hole-transporting compound and the electron-accepting compound.
  • examples of other components include various light emitting materials, electron transporting compounds, binder resins, and coating property improving agents.
  • only 1 type may be used for another component and it may use 2 or more types together by arbitrary combinations and a ratio.
  • the material of the hole transport layer 4 may be any material that has been conventionally used as a constituent material of the hole transport layer.
  • the hole transport layer is exemplified as the hole transport compound used in the above-described hole injection layer. Things.
  • polyvinylcarbazole derivatives polyarylamine derivatives, polyvinyltriphenylamine derivatives, polyfluorene derivatives, polyarylene derivatives, polyarylene ether sulfone derivatives containing tetraphenylbenzidine, polyarylene vinylene derivatives, polysiloxane derivatives, polythiophenes Derivatives, poly (p-phenylene vinylene) derivatives, and the like.
  • These may be any of an alternating copolymer, a random polymer, a block polymer, or a graft copolymer. Further, it may be a polymer having a branched main chain and three or more terminal portions, or a so-called dendrimer.
  • the material for the hole transport layer 4 include polyarylene derivatives described in JP-A-2008-98619.
  • a composition for forming a hole transport layer is prepared in the same manner as the formation of the hole injection layer, and then heated and dried after the wet film formation.
  • the composition for forming a hole transport layer contains a solvent in addition to the hole transport compound.
  • the solvent used is the same as that used for the composition for forming the hole injection layer.
  • the film forming conditions, heat drying conditions, and the like are the same as in the case of forming the hole injection layer.
  • the hole transport layer may contain various light emitting materials, electron transport compounds, binder resins, coatability improvers and the like in addition to the hole transport compound.
  • the film thickness of the hole transport layer is usually 5 nm or more, preferably 10 nm or more, and usually 300 nm or less, preferably 100 nm or less.
  • the hole transport layer may be formed by a vacuum deposition method or a wet film formation method, but is preferably formed by a wet film formation method from the viewpoint of reducing dark spots.
  • the hole transport layer 4 may be a layer containing a polymer obtained by crosslinking an amine-based crosslinking compound.
  • the light emitting layer 5 contains at least a material having a light emitting property (light emitting material) as a constituent material, and preferably a compound having a hole transporting property (hole transporting compound) or an electron transport.
  • a light emitting material may be used as a dopant material, and a hole transporting compound, an electron transporting compound, or the like may be used as a host material.
  • the light-emitting material There is no particular limitation on the light-emitting material, and a material that emits light at a desired light emission wavelength and has favorable light emission efficiency may be used.
  • a low molecular weight material in any case.
  • any known material can be applied as the light emitting material.
  • a fluorescent material or a phosphorescent material may be used, but a phosphorescent material is preferred from the viewpoint of internal quantum efficiency.
  • blue may be used in combination, such as using a fluorescent material, and green and red using a phosphorescent material.
  • fluorescent light emitting materials blue fluorescent dyes
  • examples of fluorescent light emitting materials that emit blue light include naphthalene, perylene, pyrene, chrysene, anthracene, coumarin, p-bis (2-phenylethenyl) benzene, and derivatives thereof.
  • fluorescent light-emitting material green fluorescent dye
  • examples of the fluorescent light-emitting material (green fluorescent dye) that emits green light include aluminum complexes such as quinacridone derivatives, coumarin derivatives, and Alq3 (tris (8-hydroxy-quinoline) aluminum).
  • Examples of the fluorescent light emitting material that emits yellow light include rubrene and perimidone derivatives.
  • red fluorescent dyes examples include DCM (4- (dicyanomethylene) -2-methyl-6- (p-dimethylaminostyryl) -4H-pyran) compounds, benzopyran derivatives, rhodamine derivatives, Examples include benzothioxanthene derivatives and azabenzothioxanthene.
  • a long-period type periodic table (hereinafter, unless otherwise specified, the term “periodic table” refers to a long-period type periodic table) selected from Group 7 to 11 And an organometallic complex containing a metal.
  • Preferred examples of the metal selected from Groups 7 to 11 of the periodic table include ruthenium, rhodium, palladium, silver, rhenium, osmium, iridium, platinum, and gold.
  • a ligand in which a (hetero) aryl group such as a (hetero) arylpyridine ligand or a (hetero) arylpyrazole ligand and a pyridine, pyrazole, phenanthroline, or the like is connected is preferable.
  • a pyridine ligand and a phenylpyrazole ligand are preferable.
  • (hetero) aryl represents an aryl group or a heteroaryl group.
  • phosphorescent materials include tris (2-phenylpyridine) iridium (Ir (ppy) 3), tris (2-phenylpyridine) ruthenium, tris (2-phenylpyridine) palladium, and bis (2-phenylpyridine).
  • the molecular weight of the compound used as the light emitting material is usually 10,000 or less, preferably 5000 or less, more preferably 4000 or less, still more preferably 3000 or less, and usually 100 or more, preferably 200 or more, more preferably 300 or more, still more preferably.
  • the range is 400 or more. If the molecular weight of the light-emitting material is too small, the heat resistance is significantly reduced, gas is generated, the film quality is deteriorated when the film is formed, or the morphology of the organic EL element is changed due to migration or the like. There is a case to do. On the other hand, if the molecular weight of the luminescent material is too large, it tends to be difficult to purify the organic compound, or it may take time to dissolve in the solvent.
  • any 1 type may be used for a luminescent material, and 2 or more types may be used together by arbitrary combinations and a ratio.
  • the ratio of the light emitting material in the light emitting layer is usually in the range of 0.05% by weight or more and usually 35% by weight or less. If the amount of the light emitting material is too small, uneven light emission may occur. If the amount is too large, the light emission efficiency may be reduced.
  • when using together 2 or more types of luminescent material it is made for the total content of these to be contained in the said range.
  • the component having the highest content in the light emitting layer is called a host material, and the component having a smaller content is called a guest material. Therefore, at least two kinds of solid contents (host material and guest material) to be the light emitting layer can be prepared by being dispersed or dissolved in a solvent as a solute in the light emitting layer coating liquid.
  • the light emitting layer may contain a hole transporting compound as a constituent material.
  • a hole transporting compound examples include various compounds exemplified as the hole transporting compound in the hole injection layer 3 described above, for example, Two or more condensed aromatic rings containing two or more tertiary amines represented by 4′-bis [N- (1-naphthyl) -N-phenylamino] biphenyl ( ⁇ -NPD) are attached to the nitrogen atom.
  • Aromatic amine compounds having a starburst structure such as substituted aromatic diamines (Japanese Patent Laid-open No. Hei 5-234681), 4,4 ′, 4 ′′ -tris (1-naphthylphenylamino) triphenylamine) 1997, Vol.72-74, pp.985), aromatic amine compounds consisting of tetramers of triphenylamine (Chemical Communications, 1996, pp.2175), 2,2 ′, 7,7′-tetrakis- ( Diphenylamino) Examples include spiro compounds such as -9,9'-spirobifluorene (Synthetic Metals, 1997, Vol. 91, pp. 209).
  • the light emitting layer only one type of hole transporting compound may be used, or two or more types may be used in any combination and ratio.
  • the ratio of the hole transporting compound in the light emitting layer is usually in the range of 0.1% by weight or more and usually 65% by weight or less. If the amount of the hole transporting compound is too small, it may be easily affected by a short circuit, and if it is too large, the film thickness may be uneven. In addition, when using together 2 or more types of hole transportable compounds, it is made for the total content of these to be contained in the said range.
  • the light emitting layer may contain an electron transporting compound as a constituent material.
  • examples of low molecular weight electron transporting compounds include 2,5-bis (1-naphthyl) -1,3,4-oxadiazole (BND), 2,5, -Bis (6 '-(2', 2 "-bipyridyl))-1,1-dimethyl-3,4-diphenylsilole (PyPySPyPy), bathophenanthroline (BPhen), 2,9-dimethyl-4,7 Diphenyl-1,10-phenanthroline (BCP, bathocuproin), 2- (4-biphenylyl) -5- (p-tertiarybutylphenyl) -1,3,4-oxadiazole (tBu-PBD), 4 , 4′-bis (9H-carbazol-9-yl) biphenyl (CBP), etc.
  • BND 2,5-bis (1-naphthyl) -1,3,4-
  • the ratio of the electron transporting compound in the light emitting layer is usually in the range of 0.1% by weight or more and usually 65% by weight or less. If the amount of the electron transporting compound is too small, it may be easily affected by a short circuit, and if it is too large, the film thickness may be uneven. In addition, when using together 2 or more types of electron transport compounds, it is made for the total content of these to be contained in the said range.
  • any solvent can be used as long as the light-emitting layer can be formed.
  • the suitable example of the solvent for light emitting layers is the same as that used for the composition for hole injection layer formation.
  • the ratio of the light emitting layer solvent to the light emitting layer forming composition for forming the light emitting layer is usually 0.01% by weight or more and usually 70% by weight or less.
  • the solid content concentration of the light emitting material, hole transporting compound, electron transporting compound, etc. in the composition for forming a light emitting layer is usually 0.01% by weight or more and usually 70% by weight or less. If this concentration is too large, film thickness unevenness may occur, and if it is too small, defects may occur in the film.
  • the obtained coating film is dried and the solvent is removed to form the light emitting layer.
  • the light emitting layer is preferably formed by an inkjet method from the viewpoint of reducing dark spots.
  • the film thickness of the light emitting layer is usually 3 nm or more, preferably 5 nm or more, and usually 200 nm or less, preferably 100 nm or less. If the light emitting layer is too thin, defects may occur in the film, and if it is too thick, the driving voltage may increase.
  • the hole blocking layer 6 is a layer laminated on the light emitting layer so as to be in contact with the cathode side interface of the light emitting layer.
  • the hole blocking layer has a role of blocking holes moving from the anode from reaching the cathode and a role of efficiently transporting electrons injected from the cathode toward the light emitting layer.
  • the physical properties required for the material constituting the hole blocking layer include high electron mobility, low hole mobility, large energy gap (difference between HOMO and LUMO), and excited triplet level (T1). It is expensive.
  • Examples of the material for the hole blocking layer satisfying such conditions include bis (2-methyl-8-quinolinolato) (phenolato) aluminum (PAlq) and bis (2-methyl-8-quinolinolato) (triphenylsilanol).
  • the material of a hole-blocking layer may use only 1 type, and may use 2 or more types together by arbitrary combinations and ratios.
  • a hole-blocking layer It is preferable to form by wet film-forming methods, such as an inkjet method, from a viewpoint of dark spot reduction.
  • the film thickness of the hole blocking layer is usually 0.3 nm or more, preferably 0.5 nm or more, and usually 100 nm or less, preferably 50 nm or less.
  • the electron transport layer 7 is provided for the purpose of further improving the light emission efficiency of the device, and can efficiently transport electrons injected from the cathode between the electrodes to which an electric field is applied in the direction of the light emitting layer. Formed from compounds.
  • the electron transporting compound used for the electron transport layer usually, the electron injection efficiency from the cathode 9 or the electron injection layer 8 is high, and the injected electrons having high electron mobility can be efficiently transported.
  • the compound satisfying such conditions include metal complexes such as aluminum complexes of 8-hydroxyquinoline such as Alq3 (Japanese Patent Laid-Open No.
  • quinoxaline Compound JP-A-6-207169
  • phenanthroline derivative JP-A-5-331459
  • n-type hydrogenated amorphous Silicon carbide n-type sulfur Zinc, such as n-type zinc selenide.
  • the formation method of the electron transport layer is not limited, but it is preferably formed by a wet film formation method such as an inkjet method from the viewpoint of reducing dark spots.
  • the film thickness of the electron transport layer is usually 1 nm or more, preferably 5 nm or more, and usually 300 nm or less, preferably 100 nm or less.
  • the electron injection layer 8 plays a role of efficiently injecting electrons injected from the cathode into the light emitting layer.
  • the material for forming the electron injection layer is preferably a metal having a low work function. Examples include alkali metals such as sodium and cesium, alkaline earth metals such as barium and calcium, and their compounds (CsF, Cs 2 CO 3 , Li 2 O, LiF) and the like. .1 nm or more and 5 nm or less are preferable.
  • an organic electron transport compound typified by a metal complex such as a nitrogen-containing heterocyclic compound such as bathophenanthroline or an aluminum complex of 8-hydroxyquinoline is doped with an alkali metal such as sodium, potassium, cesium, lithium or rubidium ( As described in JP-A-10-270171, JP-A-2002-1000047, JP-A-2002-1000048, and the like, it is possible to improve the electron injection / transport property and achieve excellent film quality.
  • the film thickness is usually 5 nm or more, preferably 10 nm or more, and is usually 200 nm or less, preferably 100 nm or less.
  • FIG. 3 An example of the manufacturing method of the organic EL panel according to the present embodiment will be summarized as follows.
  • the first electrode formation step (S1) sequentially performed as shown in FIG.
  • a second organic layer forming step (S4) and a second electrode forming step (S5) for forming at least one organic layer for each bank section.
  • coating, drying and baking are repeated for each organic layer to form a plurality of organic layers.
  • the manufacturing method of the organic EL panel includes the first electrode formation step (S1), the first organic layer formation step (S2), the bank formation step (S3), the second organic layer formation step (S4), and the second electrode.
  • Each forming step (S5) will be described.
  • a transparent substrate 1 such as washed glass is prepared, and a transparent anode 2 made of ITO or the like having a larger area than the opening of the planned bank section is formed in a predetermined pattern.
  • a bus line BU made of a metal such as aluminum is formed in advance in a predetermined pattern on a part of the anode 2 located under a predetermined bank.
  • the hole injection layer 3 and the hole transport layer 4 are sequentially stacked by a wet film formation method.
  • the materials constituting the hole injection layer and the hole transport layer are mixed with appropriate solvents (a solvent for the hole injection layer and a solvent for the hole transport layer), respectively, and a predetermined organic coating of the composition for film formation is performed.
  • Liquids (a composition for forming a hole injection layer and a composition for a hole transport layer), and coating each of the coating liquids on the anode by, for example, a spin method, a dip method, a roll method,
  • the hole transport layer 4 is formed by vacuum-drying and further coating on the vacuum-injected hole injection layer 3 to form a film, followed by drying.
  • a drying and baking method after film formation a method of drying using a hot plate, a clean oven, an IR oven, or a convection oven is preferable.
  • the first organic layer forming step (S2) at least one layer coated over the main surface of the substrate 1 and the electrode pattern thereon so as to cover and flatten the anode and the bus line on the substrate.
  • the charge transport layer is formed.
  • a partition bank BK is formed by a wet film-forming ink jet method. That is, as a drawing step, a bank coating liquid containing a solid content of the bank pattern material is drawn and drawn as droplets by the droplet discharge nozzle NZ on the hole transport layer 4, and then vacuum dried and solidified. A bank pattern is formed.
  • an organic coating liquid is prepared by mixing a bank constituent material (solid content) such as a resin, a liquid repellent, and an additive with an appropriate bank solvent.
  • a bank constituent material solid content
  • a bank solvent for example, propylene glycol monomethyl ether acetate (PGMEA) having wettability to the hole transport layer 4 of the charge transport layer is used.
  • PGMEA propylene glycol monomethyl ether acetate
  • acrylic, epoxy, etc. are used for resin of bank coating liquid.
  • the liquid repellent component liquid repellent
  • a fluorine-based monomer, a silicone-based monomer, or the like is used.
  • the contact angle of the bank coating solution with respect to the hole transport layer 4 may be 20 ° or more and less than 90 °, more preferably 20 ° or more and less than 50 °. If the contact angle of the bank coating solution is less than 20 °, the bank coating solution spreads out and the bank outline cannot be clearly formed. If the contact angle of the bank coating solution is 90 ° or more, the bank coating solution rolls. As a result, a bank cannot be formed.
  • the reason why the upper limit contact angle of the bank coating liquid is less than 50 ° is that, for example, the use of the solvent PGMEA can clearly form the bank outline.
  • the solid content concentration of the bank coating solution is preferably 25% by weight or more. Moreover, even if there is no solvent, it can also be set as a bank coating liquid with an acrylic resin, an epoxy resin, and a liquid repellent component (in this case, solid content concentration is 100 weight%).
  • the flattened hole transport layer 4 with less unevenness on the surface has uniform wettability with respect to the solvent for the bank and can suppress the occurrence of uneven drying in the finish of the organic layer to be formed next.
  • the forming method is preferably formed by an inkjet method.
  • a drying and baking method after bank pattern film-forming it can dry using a hot plate, clean oven, IR oven, or a convection oven.
  • Plate printing may be considered to pattern the bank coating liquid containing the liquid repellent material in a predetermined area, but it is difficult to print with a general organic material on the organic layer (hole transport layer 4). It is. Also, intaglio printing makes contact with the organic layer, so organic layer contamination cannot be avoided. Therefore, it is important to pattern the bank material by the ink jet method.
  • the bank pattern can be divided into a plurality of layers, and the bank can be formed by repeating the application of the bank coating liquid and vacuum drying for each layer to form a multilayer.
  • the amount of bank coating liquid applied is the total amount that results in a film thickness such that the height of the bank pattern is 0.01 ⁇ m to 0.5 ⁇ m as a dry film thickness.
  • the inkjet coating is applied uniformly so that the dry film thickness or the height of the finally formed bank is uniform over the entire area of the substrate.
  • the bank height is low.
  • the amount of droplets can be controlled by the ink jet method, the bank can be thinned.
  • bank coating liquid droplets are displaced while overlapping from the same position in the bank pattern formation planned area on the charge transport layer, and are sequentially applied, and bank application is performed. It is possible to suppress the boundary line of the bank coating liquid from being bent at the joint between the liquid droplets. This also forms an accurate bank pattern. Further, in the drawing step, the concentration of the solid content in the bank coating liquid droplets can be decreased as the coating is performed later, and the drying speed of the bank coating liquid film formed in each successive coating can be matched. Thereby, an accurate bank pattern is formed.
  • the liquid repellent component (liquid repellent) of the bank coating liquid can be adjusted to impart liquid repellency to the upper part of the formed bank.
  • Another lyophobic agent having a property of repelling the organic coating liquid of the organic coating film formed in the subsequent step can be contained in the area partitioned by the bank.
  • the bank coating liquid is selectively formed from the charge transport layer other than the formation region with respect to the formation region of the bank pattern on the hole transport layer 4 of the charge transport layer.
  • Affinity treatment step for carrying out treatment for increasing affinity for example, the hole transport layer 4 of the charge transport layer other than the region to be formed is partially covered with a mask, and the region to be formed is subjected to plasma surface treatment or UV (ultraviolet) light irradiation treatment. It is preferable to include. Thereby, an accurate bank pattern is formed.
  • the light emitting layer 5 is formed in the bank partition region, and is particularly preferably formed by an ink jet method.
  • the light emitting layer material is dissolved in an appropriate solvent to prepare a composition for forming a light emitting layer, and a film is formed using the composition. That is, after being discharged and supplied as droplets by a droplet discharge nozzle NZ by an ink jet method onto the hole transport layer 4 of the charge transport layer exposed from the opening of the bank pattern, vacuum drying and solidification are performed, and at least One light emitting layer 5 is formed (light emitting layer forming step).
  • the electron transport layer 7 is similarly formed on the light emitting layer 5 formed in the bank partition region by the inkjet method.
  • a predetermined solid containing a predetermined solid content to be each organic layer such as a light emitting layer, a hole blocking layer, an electron transport layer, an electron injection layer, and an appropriate solvent for dispersing the solid content.
  • a drying step of drying the coating liquid film and a baking step of baking the dried predetermined coating liquid film are repeated for each organic layer to form a plurality of organic layers.
  • the organic layer coating liquid containing the solid content of the organic layer material is ejected as droplets by the droplet ejection nozzle onto the charge transport layer partitioned by the banks of the bank pattern. After the supply, vacuum drying and solidification are performed to form at least one organic layer.
  • the solid content (remaining after drying) of each organic layer is removed with a solvent (after drying).
  • a coating solution dissolved or dispersed in the component to be evacuated is supplied into the bank partition region.
  • this coating liquid can be supplied into the bank partition region by an ink discharge type such as an ink jet method (droplet discharge method) or a nozzle print method (liquid flow discharge method).
  • an ink discharge type such as an ink jet method (droplet discharge method) or a nozzle print method (liquid flow discharge method).
  • a coating method is preferable, and an inkjet method is particularly preferable.
  • a solvent of the coating solution used in the ink jet method it is generally known to prevent nozzle drying and clogging by adding a relatively large amount of a high-boiling solvent component. It is preferable to select an optimal solvent in consideration.
  • the ink jet method the same applies to the bank formation step, but when the droplet is deposited on the surface to be coated with a droplet size of 20 pl, the droplet diameter after one minute has elapsed is 100 to 400 ⁇ m.
  • a solvent is preferable, and the droplet diameter is more preferably 150 to 300 ⁇ m. Thereby, the occurrence of film thickness unevenness and pinholes can be prevented.
  • the organic coating liquid at least two kinds of solid contents (for example, a low-molecular host material and a guest material to be a light emitting layer) may be dispersed and mixed as solid contents.
  • the solid concentration of the predetermined coating solution in the second organic layer forming step is preferably 3% by weight to 10% by weight. If the solid content is below this lower limit, the amount of solvent evaporation increases, which is inconvenient for vacuum drying. If the solid content exceeds the upper limit, nozzle drying and clogging are likely to occur. It is preferable that the solid content of the predetermined coating liquid in the second organic layer forming step is a low molecular compound having a molecular weight of 100 or more and 10,000 or less.
  • the standard boiling point of the solvent of the predetermined coating solution is preferably 200 ° C to 300 ° C. When the standard boiling point of the solvent is below this lower limit, nozzle drying and clogging are likely to occur, and when it exceeds the upper limit, it is inconvenient for vacuum drying.
  • the vapor pressure at room temperature of the solvent of the predetermined coating solution is preferably 1 Pa to 70 Pa. When the vapor pressure of the solvent deviates from the lower limit and the upper limit, it becomes inconvenient for vacuum drying.
  • a vacuum drying method is performed in which drying is performed in a vacuum chamber.
  • the organic layer can be baked, for example, by heating the dried substrate at a temperature of 200 ° C. for about 30 minutes using a hot plate, clean oven, IR furnace, or the like.
  • an electron injection layer material is loaded into a vapor deposition source boat of a vacuum vapor deposition apparatus (not shown), vapor deposition is performed, and electrons are deposited on the electron transport layer 7 on the loaded substrate 1.
  • An injection layer 8 is formed.
  • each layer is formed as a thin film regardless of whether the electron injection layer material is an organic or inorganic material.
  • the film can be formed by a wet film formation method such as an ink jet method similar to the above.
  • a cathode metal material is loaded into a vapor deposition source boat of a vacuum vapor deposition apparatus (not shown) to perform vapor deposition, and a cathode 9 is formed on the electron injection layer 8 on the loaded substrate 1.
  • a substrate after baking is held on a substrate holder provided on the inner surface of a semicircular dome processing chamber of a vacuum vapor deposition apparatus, and a predetermined organic or inorganic material is placed on a vapor deposition source boat at the center position of the semicircular dome.
  • the film formation start pressure is increased to a high vacuum of about 10 ⁇ 4 Pa to improve the adhesion and film quality of the deposited film.
  • the film forming temperature can be increased (300 ° C. to 400 ° C.), but plastic substrates and the like are deposited at a low temperature.
  • the evaporation source can be evaporated by resistance evaporation (the organic or inorganic material is melted and evaporated by heating the electric resistance of the boat) or by electron beam evaporation (the electron gun is used to dissolve the focused electron beam into the boat's organic or inorganic material). Evaporate).
  • the bank pattern is formed only in a portion necessary for the ink jet method, the organic EL element is not affected by the photolithography process, and there is no performance deterioration.
  • the bank is formed on the organic layer formed on the first lower electrode, the unevenness of the first electrode is smoothed by the organic layer, and the wettability of the charge transport layer is also uniform.
  • a good bank pattern can be formed by the ink jet method.
  • the organic EL panel manufacturing method of the present invention is not limited to an organic EL display that performs film formation by wet coating, organic EL illumination, an organic TFT using an organic layer, or an organic TFT. Needless to say, the present invention can also be applied to solar cells and color filters.
  • a substrate in which a transparent stripe anode of indium tin oxide (ITO) having a thickness of 400 ⁇ m and a thickness of 120 nm was formed on a glass substrate by photolithography was prepared to produce an organic electroluminescence panel.
  • An organic EL element having a film configuration of (thickness) / electron transport layer (Alq3, 20 nm thickness) / cathode (Al, 100 nm thickness) / was produced.
  • the inkjet head (droplet discharge nozzle) method for ejecting micro droplets from a thin nozzle tube onto an organic layer is an intermittent injection type (on-demand) so that droplets with uniform particle sizes can be generated continuously.
  • Type The head structure employs a piezo drive system in which the displacement of the drive unit is proportional to the voltage, and the size of the droplet is controlled by the nozzle tube diameter and the frequency when pressure (voltage) is applied.
  • the conditions of the ink jet apparatus were a pulse width of 5 ⁇ s, a frequency of 1 KHz, and an applied voltage of 10V.
  • an acrylic resin containing a fluorine monomer as a water repellent was mixed with a PGMEA bank solvent to prepare an organic coating liquid.
  • a plasma surface treatment or a UV ozone treatment was performed on the hole transport layer film as a treatment for increasing the affinity with the bank coating solution.
  • a bank coating liquid film substrate was loaded into a plasma surface treatment apparatus, and was treated with oxygen gas (500 sccm) plasma (power 500 W) for 30 seconds. Then, it formed into a film by 10 cm x 10 cm with the same application quantity of the bank coating liquid of each solid content concentration on the positive hole transport layer film
  • sequential application was performed. At that time, the second layer was formed by shifting the coating start position in the scanning direction by (coating pitch ⁇ 1/2) with respect to the first layer.
  • FIG. 11 shows a measurement result of the distribution of the film thickness of the bank coating liquid with respect to the distance from the center of the bank coating liquid film formed by spin coating.
  • the bank film thickness increases around the film (5 cm) when the solid concentration of the bank coating solution is 20% by weight. This is because when the solid content concentration is low, the number of rotations for forming a desired film thickness is slow, and the film thickness distribution becomes non-uniform. This is the same as in the case of ink jet, and there is a correlation between the film thickness distribution obtained by spin coating under a certain condition and the film stability when the film is formed by ink jet. It can be seen that a bank film having a substantially uniform film thickness can be obtained when it is at least%.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

[Problem] To provide a method for manufacturing an organic electroluminescent panel in which occurrences of variations in drying of a finish organic layer during the manufacture of the organic electroluminescent panel are suppressed and manufacturing yields are improved. [Solution] The manufacturing method is a method for manufacturing an organic electroluminescent panel, which is provided with a plurality of organic electroluminescent elements disposed on a substrate and divided by banks and which has a plurality of organic layers laminated between a pair of a first electrode and a second electrode each faced by the plurality of organic electroluminescent element. The method for manufacturing the organic electroluminescent panel includes an organic layer forming step that coats a surface of a substrate having an electrode pattern on a main surface with at least one organic layer and a bank forming step that forms a bank pattern by ejecting a bank application fluid containing a bank pattern material as droplets on the organic layer using a droplet ejection nozzle and drying the same.

Description

有機エレクトロルミネッセンスパネルの製造方法Method for manufacturing organic electroluminescence panel
 本発明は、基板上に配置されかつバンクにて区切られた複数の有機エレクトロルミネッセンス(EL)素子を備えた有機ELパネルの製造方法に関する。 The present invention relates to a method of manufacturing an organic EL panel including a plurality of organic electroluminescence (EL) elements arranged on a substrate and separated by a bank.
 複数の有機EL素子を利用した有機ELディスプレイパネルなどの有機ELパネルが広く知られている。有機EL素子の各々は陽極と陰極の間に電荷輸送性を有する有機化合物からなる複数の有機層(電荷輸送層)を備え、その有機層の内に少なくとも1層の発光層を含む素子である。発光層内で正孔と電子とが再結合確率を増やすようにして、生成した励起子によって発光する。 Organic EL panels such as an organic EL display panel using a plurality of organic EL elements are widely known. Each of the organic EL elements includes a plurality of organic layers (charge transport layers) made of an organic compound having a charge transport property between an anode and a cathode, and includes at least one light emitting layer in the organic layer. . In the light emitting layer, holes and electrons increase the recombination probability, and the generated excitons emit light.
 有機ELパネルの製造方法では、より低コスト化された生産方法の確立およびメンテナンス性の向上のために、湿式塗布により膜形成を実施する採用が増えてきている。また、有機ELディスプレイの他に、複数の有機EL素子のアレイを利用した有機ELパネルの有機EL照明や、有機層を用いる有機TFTや有機太陽電池の分野でも、ガラスなど透明基板にレジスト液などの塗布液を塗布して乾燥し、フォトリソグラフィなどにより所望のパターンの形成を行う塗布プロセスを用いることが増えてきている。有機層のための有機塗布液の湿式の塗布方式としては、たとえばスピン法、ディップ法、ロール法、インクジェット法などの方式がある。 In the manufacturing method of the organic EL panel, the use of forming a film by wet coating is increasing for the purpose of establishing a production method at a lower cost and improving the maintainability. In addition to organic EL displays, in the fields of organic EL lighting of organic EL panels using an array of a plurality of organic EL elements, organic TFTs using organic layers, and organic solar cells, a resist solution or the like on a transparent substrate such as glass There is an increasing use of a coating process in which a coating liquid is applied and dried, and a desired pattern is formed by photolithography or the like. Examples of the wet application method of the organic coating liquid for the organic layer include a spin method, a dip method, a roll method, and an ink jet method.
 塗布型の有機ELパネルの製造方法では、インクジェット法を用いて基板上にて有機EL素子ごとの発光層や有機層を塗り分けるため、有機EL素子ごとに区切るバンクを形成するプロセスが採用されている場合が多い。たとえば、バンクをフォトリソグラフィ技術や印刷技術により形成することが広く提案されている(特許文献1~12参照)。 In the manufacturing method of the coating type organic EL panel, a process of forming a bank for separating each organic EL element is adopted in order to coat the light emitting layer and the organic layer for each organic EL element on the substrate using the inkjet method. There are many cases. For example, it has been widely proposed that banks be formed by a photolithography technique or a printing technique (see Patent Documents 1 to 12).
特開2010-56012号公報JP 2010-56012 A 特開2010-33971公報JP 2010-33971 特開2010-33972号公報JP 2010-33972 A 特開2009-187957号公報JP 2009-187957 A 特開2004-111166号公報JP 2004-111166 A 特開2000-323276号公報JP 2000-323276 A 特開2006-171365号公報JP 2006-171365 A 特開2004-234901号公報JP 2004-234901 A 特開2004-235128号公報JP 2004-235128 A 特開2010-73598号公報JP 2010-73598 A 特開2010-103105号公報JP 2010-103105 A 特開2007-242272号公報JP 2007-242272 A
 従来の一般的な塗布型有機ELパネルの作製プロセスにおいては、図1に示すように、ITOなどの陽極2およびバスラインBUが形成されたガラスなどの基板1上に、フォトリソグラフィ工程によって絶縁性のバンクBKを形成して、バンクBKによって画定された開口部内に、正孔注入層や発光層などを構成する各種の電荷輸送性有機化合物を含む塗布液を、塗布し、乾燥後に焼成によりそれぞれの機能を果たす有機層を順次成膜し、成膜後、蒸着などにより陰極金属膜9を成膜し、その後、封止工程を経て有機ELパネルを得ている。 In a conventional process for producing a general coating type organic EL panel, as shown in FIG. 1, an insulating property is obtained by photolithography on a substrate 1 such as glass on which an anode 2 such as ITO and a bus line BU are formed. The coating liquid containing various charge transporting organic compounds constituting the hole injection layer, the light emitting layer, and the like is applied to the openings defined by the bank BK, and dried and baked. The organic layer that fulfills the above functions is sequentially formed, and after the film formation, the cathode metal film 9 is formed by vapor deposition or the like, and then an organic EL panel is obtained through a sealing process.
 従来のフォトリソグラフィプロセスでバンクをする塗布型有機ELパネルの作製プロセスにおいては、たとえば基板上の陽極上に、電荷輸送層たとえば正孔注入層の材料をその厚さが均一な薄膜として正孔注入層を形成した後、バンクを形成する。バンクは、たとえばアルカリ現像タイプの含フッ素感光性樹脂溶液を正孔注入層上に所定膜厚で塗布し、溶剤を乾燥させた後、バンクが形成される部分のみにフォトマスクを介して露光し、アルカリ現像液を用いて現像することで、形成される。 In the manufacturing process of a coating type organic EL panel which is banked by a conventional photolithography process, for example, a hole transport layer, for example, a hole injection layer material is formed as a uniform thin film on the anode on the substrate. After forming the layer, a bank is formed. For example, the bank is coated with an alkali development type fluorine-containing photosensitive resin solution on the hole injection layer in a predetermined film thickness, and after drying the solvent, only the portion where the bank is formed is exposed through a photomask. It is formed by developing using an alkaline developer.
 しかしながら、電荷輸送層上にフォトリソグラフィプロセスでバンクを形成すると、電荷輸送層の発光層との界面がフォトリソグラフィプロセスにて侵されるために、素子性能が劣化する問題がある。さらに、下地の濡れ性、凹凸に敏感なパターニング法であるインクジェット法により基板の陽極上にバンクを形成すると、バンクを形成したい領域には有機ELパネル基板下地にはSiO、ITO、バスラインが混在して形成されているので、表面の凹凸、濡れ性が異なり、インクジェット法で良好な有機層パターンを形成することは非常に困難である、など有機層の仕上がりの乾燥ムラ発生を充分抑制できないという問題もあった。 However, when a bank is formed on the charge transport layer by a photolithography process, the interface between the charge transport layer and the light emitting layer is eroded by the photolithography process, which causes a problem that the device performance is deteriorated. Furthermore, when a bank is formed on the anode of the substrate by an ink jet method which is a patterning method sensitive to substrate wettability and unevenness, SiO 2 , ITO, and bus lines are formed on the substrate of the organic EL panel substrate in the region where the bank is to be formed. Since it is formed in a mixed manner, unevenness of the surface and wettability are different, and it is very difficult to form a good organic layer pattern by the ink jet method. There was also a problem.
 本発明は、このような事情に鑑みてなされたものであり、有機ELパネル製造中の仕上がり有機層の乾燥ムラ発生を抑制でき、製造歩留まりを向上させ得る有機ELパネルの製造方法を提供することを目的とする。 This invention is made in view of such a situation, and provides the manufacturing method of the organic electroluminescent panel which can suppress the dry nonuniformity generation | occurrence | production of the finished organic layer during organic electroluminescent panel manufacture, and can improve a manufacture yield. With the goal.
 請求項1に記載の有機ELパネルの製造方法は、基板上に配置されかつバンクにて区切られた複数の有機エレクトロルミネッセンス素子を備え、前記複数の有機エレクトロルミネッセンス素子の各々が対向する1対の第1電極および第2電極の間に積層された複数の有機層を有する有機エレクトロルミネッセンスパネルの製造方法であって、
 主面に電極パターンを有する基板の表面を少なくとも1層の有機層で被覆する有機層形成ステップと、
 バンクパターン材料の固形分を含有するバンク塗布液を、前記有機層上に液滴吐出ノズルにより液滴として吐出し乾燥することによりバンクパターンを形成するバンク形成ステップと、を含むことを特徴とする。
The manufacturing method of the organic electroluminescent panel of Claim 1 is provided with the some organic electroluminescent element arrange | positioned on the board | substrate, and was divided | segmented by the bank, Each of these organic electroluminescent elements each faces a pair A method for producing an organic electroluminescence panel having a plurality of organic layers laminated between a first electrode and a second electrode,
An organic layer forming step of covering the surface of the substrate having an electrode pattern on the main surface with at least one organic layer;
And a bank forming step of forming a bank pattern by discharging a bank coating liquid containing a solid content of the bank pattern material as droplets by a droplet discharge nozzle onto the organic layer and drying it. .
 本発明によれば、電荷輸送層上にフォトリソグラフィプロセスに代えてインクジェット法によりバンクを形成するので、電荷輸送層の発光層との界面が清浄となり、電荷輸送層が基板上の陽極やバスラインを覆い平坦化するので、有機ELパネルの仕上がり有機層の乾燥ムラ発生を充分抑制でき、製造歩留まりを向上させることができる。 According to the present invention, since the bank is formed on the charge transport layer by an ink jet method instead of the photolithography process, the interface between the charge transport layer and the light emitting layer is cleaned, and the charge transport layer is formed on the anode or bus line on the substrate. Therefore, it is possible to sufficiently suppress the occurrence of drying unevenness in the finished organic layer of the organic EL panel and to improve the production yield.
有機ELパネルの積層構造を示す概略断面図である。It is a schematic sectional drawing which shows the laminated structure of an organic electroluminescent panel. 有機ELパネルにおける有機EL素子の積層構造を示す概略構成図である。It is a schematic block diagram which shows the laminated structure of the organic EL element in an organic EL panel. 本発明による実施形態の有機ELパネルの製造方法を説明するための基板を示す概略断面図である。It is a schematic sectional drawing which shows the board | substrate for demonstrating the manufacturing method of the organic electroluminescent panel of embodiment by this invention. 本発明による実施形態の有機ELパネルの製造方法を説明するための基板を示す概略断面図である。It is a schematic sectional drawing which shows the board | substrate for demonstrating the manufacturing method of the organic electroluminescent panel of embodiment by this invention. 本発明による実施形態の有機ELパネルの製造方法を説明するための基板を示す概略断面図である。It is a schematic sectional drawing which shows the board | substrate for demonstrating the manufacturing method of the organic electroluminescent panel of embodiment by this invention. 本発明による実施形態の有機ELパネルの製造方法を説明するための基板を示す概略断面図である。It is a schematic sectional drawing which shows the board | substrate for demonstrating the manufacturing method of the organic electroluminescent panel of embodiment by this invention. 本発明による実施形態の有機ELパネルの製造方法を説明するための基板を示す概略断面図である。It is a schematic sectional drawing which shows the board | substrate for demonstrating the manufacturing method of the organic electroluminescent panel of embodiment by this invention. 本発明による実施形態の有機ELパネルの製造方法を説明するための基板を示す概略断面図である。It is a schematic sectional drawing which shows the board | substrate for demonstrating the manufacturing method of the organic electroluminescent panel of embodiment by this invention. 本発明による実施形態の有機ELパネルの製造方法を説明するための基板を示す概略断面図である。It is a schematic sectional drawing which shows the board | substrate for demonstrating the manufacturing method of the organic electroluminescent panel of embodiment by this invention. 本発明による実施形態の有機ELパネルの製造方法を説明するための基板を示す概略断面図である。It is a schematic sectional drawing which shows the board | substrate for demonstrating the manufacturing method of the organic electroluminescent panel of embodiment by this invention. 本発明による実施形態に用いたバンク用の塗布液の固形分濃度と塗布液膜の膜厚と関係を示すグラフである。It is a graph which shows the solid content density | concentration of the coating liquid for banks used for embodiment by this invention, and the film thickness of a coating liquid film.
 以下、本発明による実施形態について、図面を参照しつつ説明する。 Hereinafter, embodiments according to the present invention will be described with reference to the drawings.
 [有機EL素子]
 本実施形態による有機ELパネルの各有機EL素子の一例としては、図2に示すように、ガラスなどの透明基板1上にて、順に、透明な陽極2、正孔注入層3、正孔輸送層4、発光層5、正孔阻止層6、電子輸送層7、電子注入層8および金属からなる陰極9が積層されて得られるものが挙げられる。正孔注入層3、正孔輸送層4、発光層5、正孔阻止層6、および電子輸送層7は有機層である。すなわち、有機EL素子において、対向する1対の陽極および陰極の間に積層配置された複数の有機層が正孔注入層、正孔輸送層、発光層、正孔阻止層、電子輸送層、電子注入層を包含する。これら有機層などの構成要素について後述する。
[Organic EL device]
As an example of each organic EL element of the organic EL panel according to the present embodiment, as shown in FIG. 2, on a transparent substrate 1 such as glass, a transparent anode 2, a hole injection layer 3, and a hole transport are sequentially arranged. The layer 4, the light emitting layer 5, the hole blocking layer 6, the electron transport layer 7, the electron injection layer 8, and a cathode 9 made of a metal are stacked to obtain. The hole injection layer 3, the hole transport layer 4, the light emitting layer 5, the hole blocking layer 6, and the electron transport layer 7 are organic layers. That is, in an organic EL device, a plurality of organic layers stacked between a pair of opposing anodes and cathodes are a hole injection layer, a hole transport layer, a light emitting layer, a hole blocking layer, an electron transport layer, an electron Includes an injection layer. Components such as the organic layer will be described later.
 図2に示す陽極2/正孔注入層3/正孔輸送層4/発光層5/正孔阻止層6/電子輸送層7/電子注入層8/陰極9/の構成の他に、図示しないが、陽極2/正孔注入層3/発光層5/電子輸送層7/電子注入層8/陰極9/の正孔輸送層4、正孔阻止層6を省いた構成や、図示しないが、陽極2/正孔輸送層4/発光層5/電子輸送層7/電子注入層8/陰極9/の正孔注入層3、正孔阻止層6を省いた構成や、図示しないが、陽極2/発光層5/電子輸送層7/電子注入層8/陰極9/の正孔注入層3、正孔輸送層4、正孔阻止層6を省いた構成も本発明に含まれる。また、以上説明した層構成において、基板以外の構成要素を逆の順に積層することも可能である。いずれにしても、これら積層構成に限定されることなく、少なくとも発光層を含み、或いは兼用できる電荷輸送層を含む構成は本発明に含まれる。 Other than the structure of anode 2 / hole injection layer 3 / hole transport layer 4 / light emitting layer 5 / hole blocking layer 6 / electron transport layer 7 / electron injection layer 8 / cathode 9 / shown in FIG. However, the anode 2 / hole injection layer 3 / light emitting layer 5 / electron transport layer 7 / electron injection layer 8 / cathode 9 / hole transport layer 4 and hole blocking layer 6 are omitted, although not shown, The anode 2 / hole transport layer 4 / light emitting layer 5 / electron transport layer 7 / electron injection layer 8 / cathode 9 / hole injection layer 3 and hole blocking layer 6 are omitted, and although not shown, the anode 2 A configuration in which the hole injection layer 3, the hole transport layer 4, and the hole blocking layer 6 of / light emitting layer 5 / electron transport layer 7 / electron injection layer 8 / cathode 9 / is omitted is also included in the present invention. Moreover, in the layer structure demonstrated above, it is also possible to laminate | stack components other than a board | substrate in reverse order. In any case, the present invention is not limited to these stacked structures, and includes a structure including at least a light-emitting layer or a charge transport layer that can also be used.
 [基板]
 基板1としては、石英やガラスの板、金属板や金属箔、曲げられる樹脂基板、プラスチックフィルムやシートなどが用いられる。特にガラス板や、ポリエステル、ポリメタクリレート、ポリカーボネート、ポリスルホンなどの透明な合成樹脂の板が好ましい。合成樹脂基板を使用する場合にはガスバリア性に留意する必要がある。基板のガスバリア性が小さすぎると、基板を通過した外気により有機EL素子が劣化することがあるので好ましくない。このため、合成樹脂基板の少なくとも片面に緻密なシリコン酸化膜などを設けてガスバリア性を確保する方法も好ましい方法の一つである。
[substrate]
As the substrate 1, a quartz or glass plate, a metal plate or a metal foil, a resin substrate to be bent, a plastic film, a sheet, or the like is used. In particular, a glass plate or a transparent synthetic resin plate such as polyester, polymethacrylate, polycarbonate, or polysulfone is preferable. When using a synthetic resin substrate, it is necessary to pay attention to gas barrier properties. If the gas barrier property of the substrate is too small, the organic EL element may be deteriorated by the outside air that has passed through the substrate. For this reason, a method of providing a gas barrier property by providing a dense silicon oxide film or the like on at least one surface of the synthetic resin substrate is also a preferable method.
 [陽極および陰極]
 発光層までの層に正孔を供給する陽極2は、通常、アルミニウム、金、銀、ニッケル、パラジウム、白金などの金属、インジウムおよび/またはスズ、亜鉛の酸化物(ITOやIZO)などの金属酸化物、ヨウ化銅などのハロゲン化金属、カーボンブラック、或いは、ポリ(3-メチルチオフェン)、ポリピロール、ポリアニリンなどの導電性高分子などにより構成される。
[Anode and cathode]
The anode 2 for supplying holes to the layers up to the light emitting layer is usually a metal such as aluminum, gold, silver, nickel, palladium, platinum, or a metal such as indium and / or tin or zinc oxide (ITO or IZO). It is composed of an oxide, a metal halide such as copper iodide, carbon black, or a conductive polymer such as poly (3-methylthiophene), polypyrrole, or polyaniline.
 陽極の形成は通常、スパッタリング法、真空蒸着法などにより行われることが多い。また、銀などの金属微粒子、ヨウ化銅などの微粒子、カーボンブラック、導電性の金属酸化物微粒子、導電性高分子微粉末などを用いて陽極を形成する場合には、適当なバインダー樹脂溶液に分散させて、基板上に塗布することにより陽極を形成することもできる。さらに、導電性高分子の場合は、電解重合により直接基板上に薄膜を形成したり、基板上に導電性高分子を塗布して陽極を形成することもできる。 The anode is usually formed by a sputtering method, a vacuum deposition method, or the like. In addition, when forming an anode using fine metal particles such as silver, fine particles such as copper iodide, carbon black, conductive metal oxide fine particles, or conductive polymer fine powder, an appropriate binder resin solution is used. The anode can also be formed by dispersing and coating the substrate. Further, in the case of a conductive polymer, a thin film can be directly formed on the substrate by electrolytic polymerization, or the anode can be formed by applying a conductive polymer on the substrate.
 陽極は通常は単層構造であるが、所望により複数の材料からなる積層構造とすることも可能である。 The anode usually has a single-layer structure, but it can also have a laminated structure made of a plurality of materials if desired.
 陽極の厚みは、必要とする透明性により異なる。透明性が必要とされる場合は、可視光の透過率を、通常60%以上、好ましくは80%以上とすることが好ましい。この場合、陽極の厚みは通常5nm以上、好ましくは10nm以上であり、また、通常1000nm以下、好ましくは500nm以下程度である。不透明でよい場合は陽極の厚みは任意であり、陽極は基板1と一体化されたものであってもよい。また、さらには、異なる導電材料が積層されたものであってもよい。 The thickness of the anode depends on the required transparency. When transparency is required, the visible light transmittance is usually 60% or more, preferably 80% or more. In this case, the thickness of the anode is usually 5 nm or more, preferably 10 nm or more, and is usually 1000 nm or less, preferably about 500 nm or less. If it may be opaque, the thickness of the anode is arbitrary, and the anode may be integrated with the substrate 1. Furthermore, different conductive materials may be laminated.
 陽極に付着した不純物を除去し、イオン化ポテンシャルを調整して正孔注入性を向上させることを目的に、陽極表面を紫外線(UV)/オゾン処理したり、酸素プラズマ、アルゴンプラズマ表面処理したりすることは好ましい。 For the purpose of removing impurities adhering to the anode and adjusting the ionization potential to improve the hole injection property, the anode surface is subjected to ultraviolet (UV) / ozone treatment or oxygen plasma or argon plasma surface treatment. That is preferred.
 発光層までの層に電子を供給する陰極9の材料としては、陽極に使用される材料を用いることが可能であるが、効率良く電子注入を行うには、仕事関数の低い金属が好ましく、たとえば、スズ、マグネシウム、インジウム、カルシウム、アルミニウム、銀などの適当な金属またはそれらの合金が用いられる。具体例としては、マグネシウム-銀合金、マグネシウム-インジウム合金、アルミニウム-リチウム合金などの低仕事関数合金電極が挙げられる。 As a material of the cathode 9 for supplying electrons to the layers up to the light emitting layer, a material used for the anode can be used. However, in order to perform electron injection efficiently, a metal having a low work function is preferable. A suitable metal such as tin, magnesium, indium, calcium, aluminum, silver, or an alloy thereof is used. Specific examples include low work function alloy electrodes such as magnesium-silver alloy, magnesium-indium alloy, and aluminum-lithium alloy.
 なお、陰極9の材料は、1種のみを用いてもよく、2種以上を任意の組み合わせおよび比率で併用してもよい。陰極の膜厚は、通常、陽極と同様である。 In addition, only 1 type may be used for the material of the cathode 9, and 2 or more types may be used together by arbitrary combinations and a ratio. The thickness of the cathode is usually the same as that of the anode.
 さらに、低仕事関数金属から成る陰極を保護する目的で、この上に更に、仕事関数が高く大気に対して安定な金属層を積層すると、素子の安定性が増すので好ましい。この目的のために、たとえば、アルミニウム、銀、銅、ニッケル、クロム、金、白金などの金属が使われる。なお、これらの材料は、1種のみで用いてもよく、2種以上を任意の組み合わせおよび比率で併用してもよい。 Further, for the purpose of protecting the cathode made of a low work function metal, it is preferable to further stack a metal layer having a high work function and stable to the atmosphere because the stability of the device is increased. For this purpose, for example, metals such as aluminum, silver, copper, nickel, chromium, gold, platinum are used. In addition, these materials may be used only by 1 type and may use 2 or more types together by arbitrary combinations and a ratio.
 さらに、陽極および陰極は、発光の取り出し側となる場合は、透明または半透明となるように材料、膜厚を選択する。特に陽極および陰極のうちどちらか、もしくはその両方が、有機発光材料から得られる発光波長において少なくとも10%以上の透過率を持つ材料を選択することが好ましい。これら電極は、必要に応じてパターニングしても良い。 Further, when the anode and the cathode are on the light emission extraction side, the material and film thickness are selected so as to be transparent or translucent. In particular, it is preferable to select a material in which either or both of the anode and the cathode have a transmittance of at least 10% at the emission wavelength obtained from the organic light emitting material. These electrodes may be patterned as necessary.
 [有機層]
 (正孔注入層)
 正孔注入層3は、電子受容性化合物を含有する層とすることが好ましい。正孔注入層の膜厚は、通常5nm以上、好ましくは10nm以上、また、通常1000nm以下、好ましくは500nm以下の範囲である。正孔注入層の形成方法はダークスポット低減の観点から湿式成膜法により形成することが好ましい。
[Organic layer]
(Hole injection layer)
The hole injection layer 3 is preferably a layer containing an electron accepting compound. The thickness of the hole injection layer is usually 5 nm or more, preferably 10 nm or more, and usually 1000 nm or less, preferably 500 nm or less. The hole injection layer is preferably formed by a wet film formation method from the viewpoint of reducing dark spots.
 湿式成膜法により正孔注入層を形成する場合、通常は、正孔注入層を構成する材料に適切な溶剤(正孔注入層用溶剤)と混合して成膜用の組成物(正孔注入層形成用組成物)を調製し、この正孔注入層形成用組成物を適切な手法により、陽極上に塗布して成膜し、乾燥することにより正孔注入層を形成する。乾燥は真空乾燥であることが好ましい。真空乾燥とは有機層を塗布した基板を密閉容器に入れ、乾燥の条件である蒸気分圧差を人工的に大きくするために真空ポンプで減圧排気する方法である。たとえば温風乾燥と比較すると真空乾燥の方が短時間で乾燥できるので好ましい。真空乾燥では固形分の狭い間隙まで強制的に減圧されるので、間隙内の溶剤がより早く蒸発し、層内部まで均一な乾燥を実現できる。 When a hole injection layer is formed by a wet film formation method, a composition for film formation (holes) is usually mixed with a solvent (hole injection layer solvent) suitable for the material constituting the hole injection layer. An injection layer forming composition) is prepared, and this hole injection layer forming composition is coated on the anode by an appropriate technique to form a film and dried to form a hole injection layer. The drying is preferably vacuum drying. Vacuum drying is a method in which a substrate coated with an organic layer is placed in a sealed container and evacuated with a vacuum pump to artificially increase the difference in vapor partial pressure, which is a drying condition. For example, vacuum drying is preferable because it can be dried in a shorter time than hot air drying. In vacuum drying, since the pressure is forcibly reduced to a narrow gap of solid content, the solvent in the gap evaporates more quickly, and uniform drying can be realized up to the inside of the layer.
 正孔注入層形成用組成物は通常、正孔注入層の構成材料として正孔輸送性化合物および溶剤を含有する。溶剤としては、限定されるものではないが、たとえば、エーテル系溶剤、エステル系溶剤、芳香族炭化水素系溶剤、アミド系溶剤などが挙げられる。
エーテル系溶剤としては、たとえば、エチレングリコールジメチルエーテル、エチレングリコールジエチルエーテル、プロピレングリコールモノメチルエーテルアセテート(PGMEA)などの脂肪族エーテル、1,2-ジメトキシベンゼン、1,3-ジメトキシベンゼン、アニソール、フェネトール、2-メトキシトルエン、3-メトキシトルエン、4-メトキシトルエン、2,3-ジメチルアニソール、2,4-ジメチルアニソールなどの芳香族エーテル、などが挙げられる。
The composition for forming a hole injection layer usually contains a hole transporting compound and a solvent as constituent materials of the hole injection layer. Examples of the solvent include, but are not limited to, ether solvents, ester solvents, aromatic hydrocarbon solvents, amide solvents, and the like.
Examples of ether solvents include aliphatic ethers such as ethylene glycol dimethyl ether, ethylene glycol diethyl ether, propylene glycol monomethyl ether acetate (PGMEA), 1,2-dimethoxybenzene, 1,3-dimethoxybenzene, anisole, phenetole, 2 -Aromatic toluene such as methoxytoluene, 3-methoxytoluene, 4-methoxytoluene, 2,3-dimethylanisole, 2,4-dimethylanisole, and the like.
 エステル系溶剤としては、たとえば、酢酸フェニル、プロピオン酸フェニル、安息香酸メチル、安息香酸エチル、安息香酸プロピル、安息香酸n-ブチルなどの芳香族エステル、などが挙げられる。 Examples of the ester solvent include aromatic esters such as phenyl acetate, phenyl propionate, methyl benzoate, ethyl benzoate, propyl benzoate, and n-butyl benzoate.
 芳香族炭化水素系溶剤としては、たとえば、トルエン、キシレン、シクロヘキシルベンゼン、3-イロプロピルビフェニル、1,2,3,4-テトラメチルベンゼン、1,4-ジイソプロピルベンゼン、シクロヘキシルベンゼン、メチルナフタレンなどが挙げられる。 Examples of the aromatic hydrocarbon solvent include toluene, xylene, cyclohexylbenzene, 3-isopropylpropylphenyl, 1,2,3,4-tetramethylbenzene, 1,4-diisopropylbenzene, cyclohexylbenzene, and methylnaphthalene. Can be mentioned.
 アミド系溶剤としては、たとえば、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、などが挙げられる。その他、ジメチルスルホキシド、なども用いることができる。これらの溶剤は1種のみを用いてもよく、2種以上を任意の組み合わせおよび比率で用いてもよい。 Examples of the amide solvent include N, N-dimethylformamide, N, N-dimethylacetamide, and the like. In addition, dimethyl sulfoxide and the like can also be used. These solvent may use only 1 type and may use 2 or more types by arbitrary combinations and a ratio.
 正孔輸送性化合物は、通常、有機EL素子の正孔注入層に使用される、正孔輸送性を有する化合物であれば、重合体などの高分子化合物であっても、単量体などの低分子化合物であってもよいが、低分子化合物であることが好ましい。 As long as the hole transporting compound is a compound having a hole transporting property that is usually used in a hole injection layer of an organic EL element, a polymer or the like may be a monomer or the like. Although it may be a low molecular compound, it is preferably a low molecular compound.
 正孔輸送性化合物としては、陽極から正孔注入層への電荷注入障壁の観点から4.5eV~6.0eVのイオン化ポテンシャルを有する化合物が好ましい。正孔輸送性化合物の例としては、芳香族アミン誘導体、フタロシアニン銅(CuPc)に代表されるフタロシアニン誘導体、ポルフィリン誘導体、オリゴチオフェン誘導体、ポリチオフェン誘導体、ベンジルフェニル誘導体、フルオレン基で3級アミンを連結した化合物、ヒドラゾン誘導体、シラザン誘導体、シラナミン誘導体、ホスファミン誘導体、キナクリドン誘導体、ポリアニリン誘導体、ポリピロール誘導体、ポリフェニレンビニレン誘導体、ポリチエニレンビニレン誘導体、ポリキノリン誘導体、ポリキノキサリン誘導体、カーボンなどが挙げられる。 The hole transporting compound is preferably a compound having an ionization potential of 4.5 eV to 6.0 eV from the viewpoint of a charge injection barrier from the anode to the hole injection layer. Examples of hole transporting compounds include aromatic amine derivatives, phthalocyanine derivatives typified by phthalocyanine copper (CuPc), porphyrin derivatives, oligothiophene derivatives, polythiophene derivatives, benzylphenyl derivatives, and tertiary amines linked by fluorene groups. Examples thereof include compounds, hydrazone derivatives, silazane derivatives, silanamine derivatives, phosphamine derivatives, quinacridone derivatives, polyaniline derivatives, polypyrrole derivatives, polyphenylene vinylene derivatives, polythienylene vinylene derivatives, polyquinoline derivatives, polyquinoxaline derivatives, and carbon.
 尚、ここで誘導体とは、たとえば、芳香族アミン誘導体を例にするならば、芳香族アミンそのものおよび芳香族アミンを主骨格とする化合物を含むものであり、重合体であっても、単量体であってもよい。 Here, the derivative includes, for example, an aromatic amine derivative, and includes an aromatic amine itself and a compound having an aromatic amine as a main skeleton. It may be a body.
 正孔注入層の材料として用いられる正孔輸送性化合物は、このような化合物のうち何れか1種を単独で含有していてもよく、2種以上を含有していてもよい。2種以上の正孔輸送性化合物を含有する場合、その組み合わせは任意であるが、芳香族三級アミン高分子化合物1種または2種以上と、その他の正孔輸送性化合物1種または2種以上とを併用することもできる。非晶質性、可視光の透過率の点から、正孔注入層には芳香族アミン化合物が好ましく、特に芳香族三級アミン化合物が好ましい。ここで、芳香族三級アミン化合物とは、芳香族三級アミン構造を有する化合物であって、芳香族三級アミン由来の基を有する化合物も含む。具体的には、国際公開第2005/089024号パンフレットに記載のものが挙げられる。 The hole transporting compound used as the material for the hole injection layer may contain any one of these compounds alone, or may contain two or more. When two or more hole transporting compounds are contained, the combination thereof is arbitrary, but one or more aromatic tertiary amine polymer compounds and one or two other hole transporting compounds are used. The above can also be used together. From the viewpoints of amorphousness and visible light transmittance, an aromatic amine compound is preferable for the hole injection layer, and an aromatic tertiary amine compound is particularly preferable. Here, the aromatic tertiary amine compound is a compound having an aromatic tertiary amine structure, and includes a compound having a group derived from an aromatic tertiary amine. Specific examples include those described in the pamphlet of International Publication No. 2005/089024.
 また、正孔輸送性化合物としては、ポリチオフェンの誘導体である3,4-エチレンジオキシチオフェンを高分子量ポリスチレンスルホン酸中で重合してなる導電性ポリマー(PEDOT/PSS)もまた好ましい。また、このポリマーの末端をメタクリレートなどでキャップしたものであってもよい。 As the hole transporting compound, a conductive polymer (PEDOT / PSS) obtained by polymerizing 3,4-ethylenedioxythiophene, which is a derivative of polythiophene, in high molecular weight polystyrene sulfonic acid is also preferable. Moreover, the end of this polymer may be capped with methacrylate or the like.
 正孔注入層形成用組成物中の、正孔輸送性化合物の濃度は、膜厚の均一性の点で通常0.01重量%以上、好ましくは0.1重量%以上、さらに好ましくは0.5重量%以上、また、通常70重量%以下、好ましくは60重量%以下、さらに好ましくは50重量%以下である。この濃度が大きすぎると膜厚ムラが生じる可能性があり、また、小さすぎると成膜された正孔注入層に欠陥が生じる可能性がある。 The concentration of the hole transporting compound in the composition for forming a hole injection layer is usually 0.01% by weight or more, preferably 0.1% by weight or more, and more preferably 0.00% by weight in terms of film thickness uniformity. 5% by weight or more, usually 70% by weight or less, preferably 60% by weight or less, more preferably 50% by weight or less. If this concentration is too high, film thickness unevenness may occur, and if it is too low, defects may occur in the formed hole injection layer.
 正孔注入層形成用組成物は、さらに電子受容性化合物を含有することが好ましく、また、正孔輸送性化合物や電子受容性化合物に加えて、さらに、その他の成分を含有させてもよい。その他の成分の例としては、各種の発光材料、電子輸送性化合物、バインダー樹脂、塗布性改良剤などが挙げられる。なお、その他の成分は、1種のみを用いてもよく、2種以上を任意の組み合わせおよび比率で併用してもよい。 The composition for forming a hole injection layer preferably further contains an electron-accepting compound, and may further contain other components in addition to the hole-transporting compound and the electron-accepting compound. Examples of other components include various light emitting materials, electron transporting compounds, binder resins, and coating property improving agents. In addition, only 1 type may be used for another component and it may use 2 or more types together by arbitrary combinations and a ratio.
 (正孔輸送層)
 正孔輸送層4の材料としては、従来、正孔輸送層の構成材料として用いられている材料であればよく、たとえば、前述の正孔注入層に使用される正孔輸送性化合物として例示したものが挙げられる。また、アリールアミン誘導体、フルオレン誘導体、スピロ誘導体、カルバゾール誘導体、ピリジン誘導体、ピラジン誘導体、ピリミジン誘導体、トリアジン誘導体、キノリン誘導体、フェナントロリン誘導体、フタロシアニン誘導体、ポルフィリン誘導体、シロール誘導体、オリゴチオフェン誘導体、縮合多環芳香族誘導体、金属錯体などが挙げられる。また、たとえば、ポリビニルカルバゾール誘導体、ポリアリールアミン誘導体、ポリビニルトリフェニルアミン誘導体、ポリフルオレン誘導体、ポリアリーレン誘導体、テトラフェニルベンジジンを含有するポリアリーレンエーテルサルホン誘導体、ポリアリーレンビニレン誘導体、ポリシロキサン誘導体、ポリチオフェン誘導体、ポリ(p-フェニレンビニレン)誘導体などが挙げられる。これらは、交互共重合体、ランダム重合体、ブロック重合体またはグラフト共重合体のいずれであってもよい。また、主鎖に枝分かれがあり末端部が3つ以上ある高分子や、所謂デンドリマーであってもよい。
(Hole transport layer)
The material of the hole transport layer 4 may be any material that has been conventionally used as a constituent material of the hole transport layer. For example, the hole transport layer is exemplified as the hole transport compound used in the above-described hole injection layer. Things. In addition, arylamine derivatives, fluorene derivatives, spiro derivatives, carbazole derivatives, pyridine derivatives, pyrazine derivatives, pyrimidine derivatives, triazine derivatives, quinoline derivatives, phenanthroline derivatives, phthalocyanine derivatives, porphyrin derivatives, silole derivatives, oligothiophene derivatives, condensed polycyclic aromatics Group derivatives, metal complexes and the like. Also, for example, polyvinylcarbazole derivatives, polyarylamine derivatives, polyvinyltriphenylamine derivatives, polyfluorene derivatives, polyarylene derivatives, polyarylene ether sulfone derivatives containing tetraphenylbenzidine, polyarylene vinylene derivatives, polysiloxane derivatives, polythiophenes Derivatives, poly (p-phenylene vinylene) derivatives, and the like. These may be any of an alternating copolymer, a random polymer, a block polymer, or a graft copolymer. Further, it may be a polymer having a branched main chain and three or more terminal portions, or a so-called dendrimer.
 正孔輸送層4の材料としては、特開2008-98619号公報に記載のポリアリーレン誘導体の具体例などが挙げられる。 Specific examples of the material for the hole transport layer 4 include polyarylene derivatives described in JP-A-2008-98619.
 湿式成膜法で正孔輸送層を形成する場合は、正孔注入層の形成と同様にして、正孔輸送層形成用組成物を調製した後、湿式成膜後、加熱乾燥させる。 In the case of forming the hole transport layer by a wet film formation method, a composition for forming a hole transport layer is prepared in the same manner as the formation of the hole injection layer, and then heated and dried after the wet film formation.
 正孔輸送層形成用組成物には、正孔輸送性化合物の他、溶剤を含有する。用いる溶剤は正孔注入層形成用組成物に用いたものと同様である。また、成膜条件、加熱乾燥条件なども正孔注入層の形成の場合と同様である。 The composition for forming a hole transport layer contains a solvent in addition to the hole transport compound. The solvent used is the same as that used for the composition for forming the hole injection layer. The film forming conditions, heat drying conditions, and the like are the same as in the case of forming the hole injection layer.
 正孔輸送層は、正孔輸送性化合物の他、各種の発光材料、電子輸送性化合物、バインダー樹脂、塗布性改良剤などを含有していてもよい。 The hole transport layer may contain various light emitting materials, electron transport compounds, binder resins, coatability improvers and the like in addition to the hole transport compound.
 正孔輸送層の膜厚は、通常5nm以上、好ましくは10nm以上であり、また通常300nm以下、好ましくは100nm以下である。 The film thickness of the hole transport layer is usually 5 nm or more, preferably 10 nm or more, and usually 300 nm or less, preferably 100 nm or less.
 正孔輸送層の形成方法は真空蒸着法でも、湿式成膜法でもよいが、ダークスポット低減の観点から湿式成膜法により形成することが好ましい。 The hole transport layer may be formed by a vacuum deposition method or a wet film formation method, but is preferably formed by a wet film formation method from the viewpoint of reducing dark spots.
 正孔輸送層4は、アミン系架橋性化合物を架橋して得られたポリマーを含有する層であってもよい。 The hole transport layer 4 may be a layer containing a polymer obtained by crosslinking an amine-based crosslinking compound.
 (発光層)
 発光層5は、その構成材料として、少なくとも、発光の性質を有する材料(発光材料)を含有するとともに、好ましくは、正孔輸送の性質を有する化合物(正孔輸送性化合物)、あるいは、電子輸送の性質を有する化合物(電子輸送性化合物)を含有する。発光材料をドーパント材料として使用し、正孔輸送性化合物や電子輸送性化合物などをホスト材料として使用してもよい。発光材料については特に限定はなく、所望の発光波長で発光し、発光効率が良好である物質を用いればよい。なお、インクジェット法などの湿式成膜法で発光層を形成する場合は、何れも低分子量の材料を使用することが好ましい。
(Light emitting layer)
The light emitting layer 5 contains at least a material having a light emitting property (light emitting material) as a constituent material, and preferably a compound having a hole transporting property (hole transporting compound) or an electron transport. A compound (electron transporting compound) having the following properties: A light emitting material may be used as a dopant material, and a hole transporting compound, an electron transporting compound, or the like may be used as a host material. There is no particular limitation on the light-emitting material, and a material that emits light at a desired light emission wavelength and has favorable light emission efficiency may be used. In addition, when forming a light emitting layer by wet film-forming methods, such as the inkjet method, it is preferable to use a low molecular weight material in any case.
 発光材料としては、任意の公知の材料を適用可能である。たとえば、蛍光発光材料であってもよく、燐光発光材料であってもよいが、内部量子効率の観点から、好ましくは燐光発光材料である。また、青色は蛍光発光材料を用い、緑色や赤色は燐光発光材料を用いるなど、組み合わせて用いてもよい。 Any known material can be applied as the light emitting material. For example, a fluorescent material or a phosphorescent material may be used, but a phosphorescent material is preferred from the viewpoint of internal quantum efficiency. Alternatively, blue may be used in combination, such as using a fluorescent material, and green and red using a phosphorescent material.
 なお、溶剤への溶解性を向上させる目的で、発光材料の分子の対称性や剛性を低下させたり、或いはアルキル基などの親油性置換基を導入したりすることが好ましい。 For the purpose of improving the solubility in a solvent, it is preferable to reduce the symmetry and rigidity of the molecule of the luminescent material or introduce a lipophilic substituent such as an alkyl group.
 青色発光を与える蛍光発光材料(青色蛍光色素)としては、たとえば、ナフタレン、ペリレン、ピレン、クリセン、アントラセン、クマリン、p-ビス(2-フェニルエテニル)ベンゼンおよびそれらの誘導体などが挙げられる。 Examples of fluorescent light emitting materials (blue fluorescent dyes) that emit blue light include naphthalene, perylene, pyrene, chrysene, anthracene, coumarin, p-bis (2-phenylethenyl) benzene, and derivatives thereof.
 緑色発光を与える蛍光発光材料(緑色蛍光色素)としては、たとえば、キナクリドン誘導体、クマリン誘導体、Alq3(tris (8-hydroxy-quinoline) aluminum) などのアルミニウム錯体などが挙げられる。 Examples of the fluorescent light-emitting material (green fluorescent dye) that emits green light include aluminum complexes such as quinacridone derivatives, coumarin derivatives, and Alq3 (tris (8-hydroxy-quinoline) aluminum).
 黄色発光を与える蛍光発光材料(黄色蛍光色素)としては、たとえば、ルブレン、ペリミドン誘導体などが挙げられる。 Examples of the fluorescent light emitting material (yellow fluorescent dye) that emits yellow light include rubrene and perimidone derivatives.
 赤色発光を与える蛍光発光材料(赤色蛍光色素)としては、たとえば、DCM(4-(dicyanomethylene)-2-methyl-6-(p-dimethylaminostyryl)-4H-pyran)系化合物、ベンゾピラン誘導体、ローダミン誘導体、ベンゾチオキサンテン誘導体、アザベンゾチオキサンテンなどが挙げられる。 Examples of fluorescent materials that emit red light (red fluorescent dyes) include DCM (4- (dicyanomethylene) -2-methyl-6- (p-dimethylaminostyryl) -4H-pyran) compounds, benzopyran derivatives, rhodamine derivatives, Examples include benzothioxanthene derivatives and azabenzothioxanthene.
 燐光発光材料としては、たとえば、長周期型周期表(以下、特に断り書きの無い限り「周期表」という場合には、長周期型周期表を指すものとする。)第7~11族から選ばれる金属を含む有機金属錯体が挙げられる。周期表第7~11族から選ばれる金属として、好ましくは、ルテニウム、ロジウム、パラジウム、銀、レニウム、オスミウム、イリジウム、白金、金などが挙げられる。錯体の配位子としては、(ヘテロ)アリールピリジン配位子、(ヘテロ)アリールピラゾール配位子などの(ヘテロ)アリール基とピリジン、ピラゾール、フェナントロリンなどが連結した配位子が好ましく、特にフェニルピリジン配位子、フェニルピラゾール配位子が好ましい。ここで、(ヘテロ)アリールとは、アリール基またはヘテロアリール基を表す。 As the phosphorescent material, for example, a long-period type periodic table (hereinafter, unless otherwise specified, the term “periodic table” refers to a long-period type periodic table) selected from Group 7 to 11 And an organometallic complex containing a metal. Preferred examples of the metal selected from Groups 7 to 11 of the periodic table include ruthenium, rhodium, palladium, silver, rhenium, osmium, iridium, platinum, and gold. As the ligand of the complex, a ligand in which a (hetero) aryl group such as a (hetero) arylpyridine ligand or a (hetero) arylpyrazole ligand and a pyridine, pyrazole, phenanthroline, or the like is connected is preferable. A pyridine ligand and a phenylpyrazole ligand are preferable. Here, (hetero) aryl represents an aryl group or a heteroaryl group.
 燐光発光材料として、具体的には、トリス(2-フェニルピリジン)イリジウム(Ir(ppy)3)、トリス(2-フェニルピリジン)ルテニウム、トリス(2-フェニルピリジン)パラジウム、ビス(2-フェニルピリジン)白金、トリス(2-フェニルピリジン)オスミウム、トリス(2-フェニルピリジン)レニウム、オクタエチル白金ポルフィリン、オクタフェニル白金ポルフィリン、オクタエチルパラジウムポルフィリン、オクタフェニルパラジウムポルフィリンなどが挙げられる。 Specific examples of phosphorescent materials include tris (2-phenylpyridine) iridium (Ir (ppy) 3), tris (2-phenylpyridine) ruthenium, tris (2-phenylpyridine) palladium, and bis (2-phenylpyridine). ) Platinum, tris (2-phenylpyridine) osmium, tris (2-phenylpyridine) rhenium, octaethylplatinum porphyrin, octaphenylplatinum porphyrin, octaethylpalladium porphyrin, octaphenylpalladium porphyrin, and the like.
 発光材料として用いる化合物の分子量は、通常10000以下、好ましくは5000以下、より好ましくは4000以下、更に好ましくは3000以下、また、通常100以上、好ましくは200以上、より好ましくは300以上、更に好ましくは400以上の範囲である。発光材料の分子量が小さ過ぎると、耐熱性が著しく低下したり、ガス発生の原因となったり、膜を形成した際の膜質の低下を招いたり、或いはマイグレーションなどによる有機EL素子のモルフォロジー変化を来したりする場合がある。一方、発光材料の分子量が大き過ぎると、有機化合物の精製が困難となってしまったり、溶剤に溶解させる際に時間を要したりする傾向がある。 The molecular weight of the compound used as the light emitting material is usually 10,000 or less, preferably 5000 or less, more preferably 4000 or less, still more preferably 3000 or less, and usually 100 or more, preferably 200 or more, more preferably 300 or more, still more preferably. The range is 400 or more. If the molecular weight of the light-emitting material is too small, the heat resistance is significantly reduced, gas is generated, the film quality is deteriorated when the film is formed, or the morphology of the organic EL element is changed due to migration or the like. There is a case to do. On the other hand, if the molecular weight of the luminescent material is too large, it tends to be difficult to purify the organic compound, or it may take time to dissolve in the solvent.
 なお、発光材料は、いずれか1種のみを用いてもよく、2種以上を任意の組み合わせおよび比率で併用してもよい。発光層における発光材料の割合は、通常0.05重量%以上、通常35重量%以下の範囲である。発光材料が少なすぎると発光ムラを生じる可能性があり、多すぎると発光効率が低下する可能性がある。なお、2種以上の発光材料を併用する場合には、これらの合計の含有量が上記範囲に含まれるようにする。発光層における含有量が最も多い成分をホスト材料とより少ない成分をゲスト材料と呼ぶ。よって、発光層塗布液には、発光層層となるべき少なくとも2種類の固形分(ホスト材料とゲスト材料)が溶質として溶媒に分散又は溶解されて、調製され得る。 In addition, any 1 type may be used for a luminescent material, and 2 or more types may be used together by arbitrary combinations and a ratio. The ratio of the light emitting material in the light emitting layer is usually in the range of 0.05% by weight or more and usually 35% by weight or less. If the amount of the light emitting material is too small, uneven light emission may occur. If the amount is too large, the light emission efficiency may be reduced. In addition, when using together 2 or more types of luminescent material, it is made for the total content of these to be contained in the said range. The component having the highest content in the light emitting layer is called a host material, and the component having a smaller content is called a guest material. Therefore, at least two kinds of solid contents (host material and guest material) to be the light emitting layer can be prepared by being dispersed or dissolved in a solvent as a solute in the light emitting layer coating liquid.
 発光層には、その構成材料として、正孔輸送性化合物を含有させてもよい。ここで、正孔輸送性化合物のうち、低分子量の正孔輸送性化合物の例としては、前述の正孔注入層3における正孔輸送性化合物として例示した各種の化合物のほか、たとえば、4,4’-ビス[N-(1-ナフチル)-N-フェニルアミノ]ビフェニル(α-NPD)に代表される、2個以上の3級アミンを含み2個以上の縮合芳香族環が窒素原子に置換した芳香族ジアミン(特開平5-234681号公報)、4,4’,4”-トリス(1-ナフチルフェニルアミノ)トリフェニルアミンなどのスターバースト構造を有する芳香族アミン化合物(Journal of Luminescence, 1997, Vol.72-74, pp.985)、トリフェニルアミンの四量体から成る芳香族アミン化合物(Chemical Communications, 1996, pp.2175)、2,2’,7,7’-テトラキス-(ジフェニルアミノ)-9,9’-スピロビフルオレンなどのスピロ化合物(Synthetic Metals, 1997, Vol.91, pp.209)などが挙げられる。 The light emitting layer may contain a hole transporting compound as a constituent material. Here, among the hole transporting compounds, examples of the low molecular weight hole transporting compound include various compounds exemplified as the hole transporting compound in the hole injection layer 3 described above, for example, Two or more condensed aromatic rings containing two or more tertiary amines represented by 4′-bis [N- (1-naphthyl) -N-phenylamino] biphenyl (α-NPD) are attached to the nitrogen atom. Aromatic amine compounds having a starburst structure (Journal ジ ア ミ ン of ジ ア ミ ン Luminescence, such as substituted aromatic diamines (Japanese Patent Laid-open No. Hei 5-234681), 4,4 ′, 4 ″ -tris (1-naphthylphenylamino) triphenylamine) 1997, Vol.72-74, pp.985), aromatic amine compounds consisting of tetramers of triphenylamine (Chemical Communications, 1996, pp.2175), 2,2 ′, 7,7′-tetrakis- ( Diphenylamino) Examples include spiro compounds such as -9,9'-spirobifluorene (Synthetic Metals, 1997, Vol. 91, pp. 209).
 なお、発光層において、正孔輸送性化合物は、1種のみを用いてもよく、2種以上を任意の組み合わせおよび比率で併用してもよい。
発光層における正孔輸送性化合物の割合は、通常0.1重量%以上、通常65重量%以下の範囲である。正孔輸送性化合物が少なすぎると短絡の影響を受けやすくなる可能性があり、多すぎると膜厚ムラを生じる可能性がある。なお、2種以上の正孔輸送性化合物を併用する場合には、これらの合計の含有量が上記範囲に含まれるようにする。
In the light emitting layer, only one type of hole transporting compound may be used, or two or more types may be used in any combination and ratio.
The ratio of the hole transporting compound in the light emitting layer is usually in the range of 0.1% by weight or more and usually 65% by weight or less. If the amount of the hole transporting compound is too small, it may be easily affected by a short circuit, and if it is too large, the film thickness may be uneven. In addition, when using together 2 or more types of hole transportable compounds, it is made for the total content of these to be contained in the said range.
 発光層には、その構成材料として、電子輸送性化合物を含有させてもよい。ここで、電子輸送性化合物のうち、低分子量の電子輸送性化合物の例としては、2,5-ビス(1-ナフチル)-1,3,4-オキサジアゾール(BND)や、2,5-ビス(6’-(2’,2”-ビピリジル))-1,1-ジメチル-3,4-ジフェニルシロール(PyPySPyPy)や、バソフェナントロリン(BPhen)や、2,9-ジメチル-4,7-ジフェニル-1,10-フェナントロリン(BCP、バソクプロイン)、2-(4-ビフェニリル)-5-(p-ターシャルブチルフェニル)-1,3,4-オキサジアゾール(tBu-PBD)や、4,4’-ビス(9H-カルバゾール-9-イル)ビフェニル(CBP)などが挙げられる。なお、発光層において、電子輸送性化合物は、1種のみを用いてもよく、2種以上を任意の組み合わせおよび比率で併用してもよい。 The light emitting layer may contain an electron transporting compound as a constituent material. Here, among the electron transporting compounds, examples of low molecular weight electron transporting compounds include 2,5-bis (1-naphthyl) -1,3,4-oxadiazole (BND), 2,5, -Bis (6 '-(2', 2 "-bipyridyl))-1,1-dimethyl-3,4-diphenylsilole (PyPySPyPy), bathophenanthroline (BPhen), 2,9-dimethyl-4,7 Diphenyl-1,10-phenanthroline (BCP, bathocuproin), 2- (4-biphenylyl) -5- (p-tertiarybutylphenyl) -1,3,4-oxadiazole (tBu-PBD), 4 , 4′-bis (9H-carbazol-9-yl) biphenyl (CBP), etc. In the light emitting layer, only one kind of electron transporting compound may be used, or two or more kinds. It may be used together in any combination and ratio.
 発光層における電子輸送性化合物の割合は、通常0.1重量%以上、通常65重量%以下の範囲である。電子輸送性化合物が少なすぎると短絡の影響を受けやすくなる可能性があり、多すぎると膜厚ムラを生じる可能性がある。なお、2種以上の電子輸送性化合物を併用する場合には、これらの合計の含有量が上記範囲に含まれるようにする。 The ratio of the electron transporting compound in the light emitting layer is usually in the range of 0.1% by weight or more and usually 65% by weight or less. If the amount of the electron transporting compound is too small, it may be easily affected by a short circuit, and if it is too large, the film thickness may be uneven. In addition, when using together 2 or more types of electron transport compounds, it is made for the total content of these to be contained in the said range.
 発光層を湿式成膜法で形成するための発光層形成用組成物に含有させる発光層用溶剤としては、発光層の形成が可能である限り任意のものを用いることができる。発光層用溶剤の好適な例は、正孔注入層形成用組成物に用いたものと同様である。 As the light-emitting layer solvent to be contained in the light-emitting layer forming composition for forming the light-emitting layer by a wet film forming method, any solvent can be used as long as the light-emitting layer can be formed. The suitable example of the solvent for light emitting layers is the same as that used for the composition for hole injection layer formation.
 発光層を形成するための発光層形成用組成物に対する発光層用溶剤の比率は、通常0.01重量%以上、通常70重量%以下、である。なお、発光層用溶剤として2種以上の溶剤を混合して用いる場合には、これらの溶剤の合計がこの範囲を満たすようにする。 The ratio of the light emitting layer solvent to the light emitting layer forming composition for forming the light emitting layer is usually 0.01% by weight or more and usually 70% by weight or less. In addition, when mixing and using 2 or more types of solvents as a solvent for light emitting layers, it is made for the sum total of these solvents to satisfy | fill this range.
 また、発光層形成用組成物中の発光材料、正孔輸送性化合物、電子輸送性化合物などの固形分濃度としては、通常0.01重量%以上、通常70重量%以下である。この濃度が大きすぎると膜厚ムラが生じる可能性があり、また、小さすぎると膜に欠陥が生じる可能性がある。 The solid content concentration of the light emitting material, hole transporting compound, electron transporting compound, etc. in the composition for forming a light emitting layer is usually 0.01% by weight or more and usually 70% by weight or less. If this concentration is too large, film thickness unevenness may occur, and if it is too small, defects may occur in the film.
 発光層形成用組成物をインクジェット法などの湿式成膜した後、得られた塗膜を乾燥し、溶剤を除去することにより、発光層が形成される。発光層は、ダークスポット低減の観点からインクジェット法により形成することが好ましい。 After forming the light emitting layer forming composition by wet film formation such as an ink jet method, the obtained coating film is dried and the solvent is removed to form the light emitting layer. The light emitting layer is preferably formed by an inkjet method from the viewpoint of reducing dark spots.
 発光層の膜厚は通常3nm以上、好ましくは5nm以上、また、通常200nm以下、好ましくは100nm以下の範囲である。発光層の膜厚が、薄すぎると膜に欠陥が生じる可能性があり、厚すぎると駆動電圧が上昇する可能性がある。 The film thickness of the light emitting layer is usually 3 nm or more, preferably 5 nm or more, and usually 200 nm or less, preferably 100 nm or less. If the light emitting layer is too thin, defects may occur in the film, and if it is too thick, the driving voltage may increase.
 (正孔阻止層)
 正孔阻止層6は、発光層の上に、発光層の陰極側の界面に接するように積層される層である。正孔阻止層は、陽極から移動してくる正孔を陰極に到達するのを阻止する役割と、陰極から注入された電子を効率よく発光層の方向に輸送する役割とを有する。
(Hole blocking layer)
The hole blocking layer 6 is a layer laminated on the light emitting layer so as to be in contact with the cathode side interface of the light emitting layer. The hole blocking layer has a role of blocking holes moving from the anode from reaching the cathode and a role of efficiently transporting electrons injected from the cathode toward the light emitting layer.
 正孔阻止層を構成する材料に求められる物性としては、電子移動度が高く正孔移動度が低いこと、エネルギーギャップ(HOMO、LUMOの差)が大きいこと、励起三重項準位(T1)が高いことが挙げられる。このような条件を満たす正孔阻止層の材料としては、たとえば、ビス(2-メチル-8-キノリノラト)(フェノラト)アルミニウム(PAlq)や、ビス(2-メチル-8-キノリノラト)(トリフェニルシラノラト)アルミニウム(SAlq)などの混合配位子錯体、ビス(2-メチル-8-キノラト)アルミニウム-μ-オキソ-ビス-(2-メチル-8-キノリラト)アルミニウム二核金属錯体などの金属錯体、ジスチリルビフェニル誘導体などのスチリル化合物(特開平11-242996号公報)、3-(4-ビフェニルイル)-4-フェニル-5(4-tert-ブチルフェニル)-1,2,4-トリアゾールなどのトリアゾール誘導体(特開平7-41759号公報)、バソクプロイン(BCP)などのフェナントロリン誘導体(特開平10-79297号公報)などが挙げられる。更に、国際公開第2005-022962号公報に記載の2,4,6位が置換されたピリジン環を少なくとも1個有する化合物も、正孔阻止層の材料として好ましい。 The physical properties required for the material constituting the hole blocking layer include high electron mobility, low hole mobility, large energy gap (difference between HOMO and LUMO), and excited triplet level (T1). It is expensive. Examples of the material for the hole blocking layer satisfying such conditions include bis (2-methyl-8-quinolinolato) (phenolato) aluminum (PAlq) and bis (2-methyl-8-quinolinolato) (triphenylsilanol). Mixed ligand complexes such as lato) aluminum (SAlq), metal complexes such as bis (2-methyl-8-quinolato) aluminum-μ-oxo-bis- (2-methyl-8-quinolinato) aluminum binuclear metal complexes Styryl compounds such as distyrylbiphenyl derivatives (Japanese Patent Laid-Open No. 11-242996), 3- (4-biphenylyl) -4-phenyl-5 (4-tert-butylphenyl) -1,2,4-triazole, etc. Phenanthroline derivatives such as triazole derivatives of JP-A-7-41759 and bathocuproin (BCP) Like body (Japanese Unexamined Patent Publication No. 10-79297). Furthermore, compounds having at least one pyridine ring substituted at the 2,4,6-positions described in International Publication No. 2005-022962 are also preferable as the material for the hole blocking layer.
 なお、正孔阻止層の材料は、1種のみを用いてもよく、2種以上を任意の組み合わせおよび比率で併用してもよい。正孔阻止層の形成方法に制限はないが、ダークスポット低減の観点からインクジェット法などの湿式成膜法により形成することが好ましい。 In addition, the material of a hole-blocking layer may use only 1 type, and may use 2 or more types together by arbitrary combinations and ratios. Although there is no restriction | limiting in the formation method of a hole-blocking layer, It is preferable to form by wet film-forming methods, such as an inkjet method, from a viewpoint of dark spot reduction.
 正孔阻止層の膜厚は、通常0.3nm以上、好ましくは0.5nm以上、また、通常100nm以下、好ましくは50nm以下である。 The film thickness of the hole blocking layer is usually 0.3 nm or more, preferably 0.5 nm or more, and usually 100 nm or less, preferably 50 nm or less.
 (電子輸送層)
 電子輸送層7は、素子の発光効率を更に向上させることを目的として設けられるもので、電界を与えられた電極間において陰極から注入された電子を効率よく発光層の方向に輸送することができる化合物より形成される。
(Electron transport layer)
The electron transport layer 7 is provided for the purpose of further improving the light emission efficiency of the device, and can efficiently transport electrons injected from the cathode between the electrodes to which an electric field is applied in the direction of the light emitting layer. Formed from compounds.
 電子輸送層に用いられる電子輸送性化合物としては、通常、陰極9または電子注入層8からの電子注入効率が高く、かつ、高い電子移動度を有し注入された電子を効率よく輸送することができる化合物を用いる。このような条件を満たす化合物としては、たとえば、Alq3など8-ヒドロキシキノリンのアルミニウム錯体などの金属錯体(特開昭59-194393号公報)、10-ヒドロキシベンゾ[h]キノリンの金属錯体、オキサジアゾール誘導体、ジスチリルビフェニル誘導体、シロール誘導体、3-ヒドロキシフラボン金属錯体、5-ヒドロキシフラボン金属錯体、ベンズオキサゾール金属錯体、ベンゾチアゾール金属錯体、トリスベンズイミダゾリルベンゼン(米国特許第5645948号明細書)、キノキサリン化合物(特開平6-207169号公報)、フェナントロリン誘導体(特開平5-331459号公報)、2-t-ブチル-9,10-N,N’-ジシアノアントラキノンジイミン、n型水素化非晶質炭化シリコン、n型硫化亜鉛、n型セレン化亜鉛などが挙げられる。 As the electron transporting compound used for the electron transport layer, usually, the electron injection efficiency from the cathode 9 or the electron injection layer 8 is high, and the injected electrons having high electron mobility can be efficiently transported. Use possible compounds. Examples of the compound satisfying such conditions include metal complexes such as aluminum complexes of 8-hydroxyquinoline such as Alq3 (Japanese Patent Laid-Open No. 59-194393), metal complexes of 10-hydroxybenzo [h] quinoline, oxadi Azole derivatives, distyrylbiphenyl derivatives, silole derivatives, 3-hydroxyflavone metal complexes, 5-hydroxyflavone metal complexes, benzoxazole metal complexes, benzothiazole metal complexes, trisbenzimidazolylbenzene (US Pat. No. 5,645,948), quinoxaline Compound (JP-A-6-207169), phenanthroline derivative (JP-A-5-331459), 2-t-butyl-9,10-N, N′-dicyanoanthraquinonediimine, n-type hydrogenated amorphous Silicon carbide, n-type sulfur Zinc, such as n-type zinc selenide.
 なお、電子輸送層の材料は、1種のみを用いてもよく、2種以上を任意の組み合わせおよび比率で併用してもよい。 In addition, only 1 type may be used for the material of an electron carrying layer, and 2 or more types may be used together by arbitrary combinations and a ratio.
 電子輸送層の形成方法に制限はないが、ダークスポット低減の観点からインクジェット法などの湿式成膜法により形成することが好ましい。 The formation method of the electron transport layer is not limited, but it is preferably formed by a wet film formation method such as an inkjet method from the viewpoint of reducing dark spots.
 電子輸送層の膜厚は、通常1nm以上、好ましくは5nm以上、また、通常300nm以下、好ましくは100nm以下の範囲である。 The film thickness of the electron transport layer is usually 1 nm or more, preferably 5 nm or more, and usually 300 nm or less, preferably 100 nm or less.
 (電子注入層)
 電子注入層8は、陰極から注入された電子を効率良く発光層へ注入する役割を果たす。電子注入を効率よく行うには、電子注入層を形成する材料は、仕事関数の低い金属が好ましい。例としては、ナトリウムやセシウムなどのアルカリ金属、バリウムやカルシウムなどのアルカリ土類金属、それらの化合物(CsF、CsCO、LiO、LiF)などが用いられ、その膜厚は通常0.1nm以上、5nm以下が好ましい。
(Electron injection layer)
The electron injection layer 8 plays a role of efficiently injecting electrons injected from the cathode into the light emitting layer. In order to perform electron injection efficiently, the material for forming the electron injection layer is preferably a metal having a low work function. Examples include alkali metals such as sodium and cesium, alkaline earth metals such as barium and calcium, and their compounds (CsF, Cs 2 CO 3 , Li 2 O, LiF) and the like. .1 nm or more and 5 nm or less are preferable.
 更に、バソフェナントロリンなどの含窒素複素環化合物や8-ヒドロキシキノリンのアルミニウム錯体などの金属錯体に代表される有機電子輸送化合物に、ナトリウム、カリウム、セシウム、リチウム、ルビジウムなどのアルカリ金属をドープする(特開平10-270171号公報、特開2002-100478号公報、特開2002-100482号公報などに記載)ことにより、電子注入・輸送性が向上し優れた膜質を両立させることが可能となるため好ましい。この場合の膜厚は、通常、5nm以上、中でも10nm以上が好ましく、また、通常200nm以下、中でも100nm以下が好ましい。 Furthermore, an organic electron transport compound typified by a metal complex such as a nitrogen-containing heterocyclic compound such as bathophenanthroline or an aluminum complex of 8-hydroxyquinoline is doped with an alkali metal such as sodium, potassium, cesium, lithium or rubidium ( As described in JP-A-10-270171, JP-A-2002-1000047, JP-A-2002-1000048, and the like, it is possible to improve the electron injection / transport property and achieve excellent film quality. preferable. In this case, the film thickness is usually 5 nm or more, preferably 10 nm or more, and is usually 200 nm or less, preferably 100 nm or less.
 なお、電子注入層の材料は、1種のみを用いてもよく、2種以上を任意の組み合わせおよび比率で併用してもよい。電子注入層の形成方法に制限はない。従って、湿式成膜法、蒸着法や、その他の方法で形成することができる。 In addition, only 1 type may be used for the material of an electron injection layer, and 2 or more types may be used together by arbitrary combinations and a ratio. There is no restriction | limiting in the formation method of an electron injection layer. Therefore, it can be formed by a wet film forming method, a vapor deposition method, or other methods.
[有機ELパネルの製造方法]
 本実施形態の有機ELパネルの製造方法の一例は、概要を示すと、図3に示すように、順次実行される、第1電極形成ステップ(S1)、複数の有機EL素子で同一の電荷輸送層を形成する第1有機層形成ステップ(S2)、当該電荷輸送層上にて個々の有機EL素子の発光エリアを規定するために絶縁層すなわちバンクパターンをインクジェット法によりパターニングするバンク形成ステップ(S3)、バンク区画ごとに少なくとも1層の有機層を形成する第2有機層形成ステップ(S4)および第2電極形成ステップ(S5)を含む。有機層形成ステップでは有機層毎に塗布と乾燥と焼成を繰り返して、複数の有機層を成膜する。
[Method for manufacturing organic EL panel]
An example of the manufacturing method of the organic EL panel according to the present embodiment will be summarized as follows. As shown in FIG. 3, the first electrode formation step (S1) sequentially performed as shown in FIG. A first organic layer forming step (S2) for forming a layer, and a bank forming step (S3) for patterning an insulating layer, that is, a bank pattern by an inkjet method in order to define a light emitting area of each organic EL element on the charge transport layer. ), A second organic layer forming step (S4) and a second electrode forming step (S5) for forming at least one organic layer for each bank section. In the organic layer forming step, coating, drying and baking are repeated for each organic layer to form a plurality of organic layers.
 以下に、有機ELパネルの製造方法を、第1電極形成ステップ(S1)、第1有機層形成ステップ(S2)、バンク形成ステップ(S3)、第2有機層形成ステップ(S4)および第2電極形成ステップ(S5)ごとに説明する。 Hereinafter, the manufacturing method of the organic EL panel includes the first electrode formation step (S1), the first organic layer formation step (S2), the bank formation step (S3), the second organic layer formation step (S4), and the second electrode. Each forming step (S5) will be described.
 (第1電極形成ステップ)
 図4に示すように、洗浄されたガラスなどの透明基板1を用意して、予定するバンク区画の開口部よりも広い面積を有するITOなどからなる透明な陽極2を所定パターンで形成し、さらに、予定するバンクの下に位置するような陽極2上の一部分にアルミニウムなどの金属からなるバスラインBUを予め所定パターンで形成する。
(First electrode forming step)
As shown in FIG. 4, a transparent substrate 1 such as washed glass is prepared, and a transparent anode 2 made of ITO or the like having a larger area than the opening of the planned bank section is formed in a predetermined pattern. A bus line BU made of a metal such as aluminum is formed in advance in a predetermined pattern on a part of the anode 2 located under a predetermined bank.
 (第1有機層形成ステップ)
 図5に示すように、たとえば、湿式成膜法により正孔注入層3および正孔輸送層4を順次積層して形成する。この場合、正孔注入層および正孔輸送層を構成する材料をそれぞれ適切な溶剤(正孔注入層用溶剤および正孔輸送層用溶剤)と混合して成膜用の組成物の所定有機塗布液(正孔注入層形成用組成物および正孔輸送層用組成物)を調製し、それぞれの塗布液をたとえばスピン法、ディップ法、ロール法などにより、陽極上に塗布して成膜し、真空乾燥し、さらに、真空乾燥した正孔注入層3上に塗布して成膜し、乾燥することにより正孔輸送層4を形成する。また、成膜後の乾燥および焼成方法としては、ホットプレート、クリーンオーブン、IRオーブン、またはコンベクションオーブンを使用して乾燥させる方法が好ましい。このように、第1有機層形成ステップ(S2)では、基板上の陽極やバスラインを覆い平坦化するように、基板1主面とその上の電極パターン上に亘って被覆された少なくとも1層の電荷輸送層を形成する。平坦化するためには、少なくとも電荷輸送層が順に成膜された正孔注入層および正孔輸送層の2層構造として形成されることが好ましい。
(First organic layer forming step)
As shown in FIG. 5, for example, the hole injection layer 3 and the hole transport layer 4 are sequentially stacked by a wet film formation method. In this case, the materials constituting the hole injection layer and the hole transport layer are mixed with appropriate solvents (a solvent for the hole injection layer and a solvent for the hole transport layer), respectively, and a predetermined organic coating of the composition for film formation is performed. Liquids (a composition for forming a hole injection layer and a composition for a hole transport layer), and coating each of the coating liquids on the anode by, for example, a spin method, a dip method, a roll method, The hole transport layer 4 is formed by vacuum-drying and further coating on the vacuum-injected hole injection layer 3 to form a film, followed by drying. Moreover, as a drying and baking method after film formation, a method of drying using a hot plate, a clean oven, an IR oven, or a convection oven is preferable. As described above, in the first organic layer forming step (S2), at least one layer coated over the main surface of the substrate 1 and the electrode pattern thereon so as to cover and flatten the anode and the bus line on the substrate. The charge transport layer is formed. In order to planarize, it is preferable to form a two-layer structure of a hole injection layer and a hole transport layer in which at least a charge transport layer is sequentially formed.
 (バンク形成ステップ)
 図6に示すように、基板1の陽極32のバスラインBUパターン上の電荷輸送層の正孔輸送層4上に、区画をなすバンクBKを、湿式成膜法のインクジェット法により、形成する。すなわち、描画ステップとして、バンクパターン材料の固形分を含有するバンク塗布液を、正孔輸送層4上に液滴吐出ノズルNZにより液滴として吐出して描画した後、真空乾燥し固化して、バンクパターンを形成する。
(Bank formation step)
As shown in FIG. 6, on the hole transport layer 4 of the charge transport layer on the bus line BU pattern of the anode 32 of the substrate 1, a partition bank BK is formed by a wet film-forming ink jet method. That is, as a drawing step, a bank coating liquid containing a solid content of the bank pattern material is drawn and drawn as droplets by the droplet discharge nozzle NZ on the hole transport layer 4, and then vacuum dried and solidified. A bank pattern is formed.
 バンク成膜用のバンク塗布液として、樹脂、撥液剤、添加剤などのバンクを構成する材料(固形分)を適切なバンク用溶剤に混合して有機塗布液を調製する。バンク用溶剤には電荷輸送層の正孔輸送層4に濡れ性がある、たとえば、プロピレングリコールモノメチルエーテルアセテート(PGMEA)が用いられる。また、バンク塗布液の樹脂はアクリル、エポキシなどが用いられる。撥液性成分(撥液剤)は、フッ素系モノマー、シリコーン系モノマーなどが用いられる。 As a bank coating liquid for bank film formation, an organic coating liquid is prepared by mixing a bank constituent material (solid content) such as a resin, a liquid repellent, and an additive with an appropriate bank solvent. As the bank solvent, for example, propylene glycol monomethyl ether acetate (PGMEA) having wettability to the hole transport layer 4 of the charge transport layer is used. Moreover, acrylic, epoxy, etc. are used for resin of bank coating liquid. As the liquid repellent component (liquid repellent), a fluorine-based monomer, a silicone-based monomer, or the like is used.
 撥液性成分により、バンク塗布液の正孔輸送層4に対する接触角が20°以上90°未満、より好ましくは20°以上50°未満とすることもできる。バンク塗布液の接触角が20°未満であるとバンク塗布液が濡れ拡がってしまい、バンクの輪郭線が明確に形成できなくなり、バンク塗布液の接触角が90°以上ではバンク塗布液が転がってしまい、バンクが形成できなくなる。バンク塗布液の上限接触角の50°未満であることは、たとえば、溶剤のPGMEAの使用ではバンクの輪郭線が明確に形成できるからである。膜厚安定性が得られるため溶剤PGMEAでは、バンク塗布液の固形分濃度は25重量%以上であることが好ましい。また、溶剤が無くともアクリル樹脂やエポキシ樹脂と撥液性成分などでバンク塗布液とすることもできる(この場合、固形分濃度100重量%である)。 Due to the liquid repellent component, the contact angle of the bank coating solution with respect to the hole transport layer 4 may be 20 ° or more and less than 90 °, more preferably 20 ° or more and less than 50 °. If the contact angle of the bank coating solution is less than 20 °, the bank coating solution spreads out and the bank outline cannot be clearly formed. If the contact angle of the bank coating solution is 90 ° or more, the bank coating solution rolls. As a result, a bank cannot be formed. The reason why the upper limit contact angle of the bank coating liquid is less than 50 ° is that, for example, the use of the solvent PGMEA can clearly form the bank outline. In order to obtain film thickness stability, in the solvent PGMEA, the solid content concentration of the bank coating solution is preferably 25% by weight or more. Moreover, even if there is no solvent, it can also be set as a bank coating liquid with an acrylic resin, an epoxy resin, and a liquid repellent component (in this case, solid content concentration is 100 weight%).
 表面の凹凸が少ない平坦化された正孔輸送層4ではバンク用溶剤に対して濡れ性が一様であり、次に成膜される有機層の仕上がりの乾燥ムラの発生を抑制できるので、バンクの形成方法はインクジェット法により形成されることが好ましい。なお、バンクパターン成膜後の乾燥および焼成方法としては、ホットプレート、クリーンオーブン、IRオーブン、またはコンベクションオーブンを使用して乾燥させることができる。 The flattened hole transport layer 4 with less unevenness on the surface has uniform wettability with respect to the solvent for the bank and can suppress the occurrence of uneven drying in the finish of the organic layer to be formed next. The forming method is preferably formed by an inkjet method. In addition, as a drying and baking method after bank pattern film-forming, it can dry using a hot plate, clean oven, IR oven, or a convection oven.
 撥液材料を含むバンク塗布液を所定領域にパターニングするために有版印刷も考えられるが、有機層(正孔輸送層4)に対して、一般的な有機物の有版で印刷することは困難である。また凹版印刷は版と有機層が接触するため、有機層汚染は回避できない。よってインクジェット法でバンク材料をパターニングすることが重要である。 Plate printing may be considered to pattern the bank coating liquid containing the liquid repellent material in a predetermined area, but it is difficult to print with a general organic material on the organic layer (hole transport layer 4). It is. Also, intaglio printing makes contact with the organic layer, so organic layer contamination cannot be avoided. Therefore, it is important to pattern the bank material by the ink jet method.
 さらに、バンクパターンを複数層に分けて各層毎にバンク塗布液の塗布と真空乾燥を繰り返して、多層を成膜してバンクを形成することもできる。 Furthermore, the bank pattern can be divided into a plurality of layers, and the bank can be formed by repeating the application of the bank coating liquid and vacuum drying for each layer to form a multilayer.
 多層成膜を行う場合、バンク塗布液の塗布量は、乾燥膜厚として、バンクパターンの高さが0.01μm~0.5μmのような膜厚となる合計量である。この際、乾燥膜厚あるいは最終的に形成されたバンクの高さが、基板全域に渡って均一となるようにまんべんなくインクジェット塗布を行う。発光層のメニスカスを低くするためにバンク高さは低いほうが好ましいが、インクジェット法ならば微量の液滴量制御が可能なため、バンク薄膜化も可能となる。 When performing multilayer film formation, the amount of bank coating liquid applied is the total amount that results in a film thickness such that the height of the bank pattern is 0.01 μm to 0.5 μm as a dry film thickness. At this time, the inkjet coating is applied uniformly so that the dry film thickness or the height of the finally formed bank is uniform over the entire area of the substrate. In order to reduce the meniscus of the light emitting layer, it is preferable that the bank height is low. However, since the amount of droplets can be controlled by the ink jet method, the bank can be thinned.
 またさらに、多層成膜を行う場合、かかる描画ステップにおいて、電荷輸送層上のバンクパターンの形成予定領域内にてバンク塗布液の液滴を同一位置から重なりつつ変位させて逐次塗布し、バンク塗布液の液滴同士のつなぎ目でバンク塗布液の境界線が曲折することを抑制することができる。これによっても、正確なバンクパターンが形成される。また、描画ステップにおいて、バンク塗布液の液滴における固形分の濃度を、後に塗布するほど濃度を低くして、逐次塗布の各回で形成したバンク塗布液膜の乾燥速度を合わせることができる。これにより、正確なバンクパターンが形成される。 Furthermore, when performing multi-layer film formation, in such a drawing step, bank coating liquid droplets are displaced while overlapping from the same position in the bank pattern formation planned area on the charge transport layer, and are sequentially applied, and bank application is performed. It is possible to suppress the boundary line of the bank coating liquid from being bent at the joint between the liquid droplets. This also forms an accurate bank pattern. Further, in the drawing step, the concentration of the solid content in the bank coating liquid droplets can be decreased as the coating is performed later, and the drying speed of the bank coating liquid film formed in each successive coating can be matched. Thereby, an accurate bank pattern is formed.
 多層成膜の場合、バンクパターンの後半の積層のために、バンク塗布液の撥液性成分(撥液剤)を調節して形成後のバンクの上部に撥液性を持たせることもできる。バンクで区画された領域内に後工程にて形成される有機塗布膜の有機塗布液をはじく性質を有する他の撥液剤を含有させることもできる。 In the case of multilayer film formation, for the lamination of the second half of the bank pattern, the liquid repellent component (liquid repellent) of the bank coating liquid can be adjusted to impart liquid repellency to the upper part of the formed bank. Another lyophobic agent having a property of repelling the organic coating liquid of the organic coating film formed in the subsequent step can be contained in the area partitioned by the bank.
 また、インクジェット法による描画ステップの前に、電荷輸送層の正孔輸送層4上のバンクパターンの形成予定領域に対して、選択的に、形成予定領域以外の電荷輸送層よりバンク塗布液との親和性を高める処理を実施する親和処理ステップたとえば形成予定領域以外の電荷輸送層の正孔輸送層4を部分的にマスクで覆い、形成予定領域をプラズマ表面処理またはUV(紫外線)光照射処理を含むことが好ましい。これにより、正確なバンクパターンが形成される。 In addition, prior to the drawing step by the ink jet method, the bank coating liquid is selectively formed from the charge transport layer other than the formation region with respect to the formation region of the bank pattern on the hole transport layer 4 of the charge transport layer. Affinity treatment step for carrying out treatment for increasing affinity, for example, the hole transport layer 4 of the charge transport layer other than the region to be formed is partially covered with a mask, and the region to be formed is subjected to plasma surface treatment or UV (ultraviolet) light irradiation treatment. It is preferable to include. Thereby, an accurate bank pattern is formed.
 (第2有機層形成ステップ)
 図7に示すように、発光層5はバンク区画領域内に形成され、特にインクジェット法により形成されることが好ましい。この場合、発光層材料を適切な溶剤に溶解させて発光層形成用組成物を調製し、それを用いて成膜することにより形成する。すなわち、バンクパターンの開口部から露出する電荷輸送層の正孔輸送層4上に、インクジェット法により、液滴吐出ノズルNZにより液滴として吐出して供給した後、真空乾燥および固化して、少なくとも1層の発光層5を形成する(発光層形成ステップ)。
(Second organic layer forming step)
As shown in FIG. 7, the light emitting layer 5 is formed in the bank partition region, and is particularly preferably formed by an ink jet method. In this case, the light emitting layer material is dissolved in an appropriate solvent to prepare a composition for forming a light emitting layer, and a film is formed using the composition. That is, after being discharged and supplied as droplets by a droplet discharge nozzle NZ by an ink jet method onto the hole transport layer 4 of the charge transport layer exposed from the opening of the bank pattern, vacuum drying and solidification are performed, and at least One light emitting layer 5 is formed (light emitting layer forming step).
 次に、図8に示すように、電子輸送層7はバンク区画領域内に形成された発光層5上に、同様にインクジェット法により形成される。 Next, as shown in FIG. 8, the electron transport layer 7 is similarly formed on the light emitting layer 5 formed in the bank partition region by the inkjet method.
 第2有機層形成ステップでは、発光層や正孔阻止層や電子輸送層や電子注入層などの各々の有機層となる所定の固形分と当該固形分を分散させる適切な溶剤とを含有する所定有機塗布液から、上記同様にインクジェット法により、それぞれ、所定塗布液膜を形成した後、かかる塗布液膜を乾燥する乾燥ステップと、乾燥した所定塗布液膜を焼成する焼成ステップと、を経て、有機層毎にこれらステップを繰り返して、複数の有機層を成膜する。すなわち、第2有機層形成ステップでは、有機層材料の固形分を含有する有機層塗布液を、バンクパターンのバンクにて区切られた電荷輸送層上に液滴吐出ノズルにより液滴として吐出して供給した後、真空乾燥および固化して、少なくとも1層の有機層を形成する。 In the second organic layer forming step, a predetermined solid containing a predetermined solid content to be each organic layer such as a light emitting layer, a hole blocking layer, an electron transport layer, an electron injection layer, and an appropriate solvent for dispersing the solid content. After forming a predetermined coating liquid film from the organic coating liquid by the inkjet method in the same manner as described above, a drying step of drying the coating liquid film and a baking step of baking the dried predetermined coating liquid film, These steps are repeated for each organic layer to form a plurality of organic layers. That is, in the second organic layer forming step, the organic layer coating liquid containing the solid content of the organic layer material is ejected as droplets by the droplet ejection nozzle onto the charge transport layer partitioned by the banks of the bank pattern. After the supply, vacuum drying and solidification are performed to form at least one organic layer.
 なお、第2有機層形成ステップにおいては、基板上のバンクで区画された電荷輸送層上に有機塗布膜を形成するために、それぞれの有機層の固形分(乾燥後に残る)を溶剤(乾燥後に排気される成分)に溶解または分散させた塗布液をバンク区画領域内に供給する。 In the second organic layer forming step, in order to form an organic coating film on the charge transport layer partitioned by banks on the substrate, the solid content (remaining after drying) of each organic layer is removed with a solvent (after drying). A coating solution dissolved or dispersed in the component to be evacuated is supplied into the bank partition region.
 この塗布液をバンク区画領域内への供給方法は、凸版印刷法、ディスペンサー法、スリットコート法の他、インクジェット法(液滴吐出法)やノズルプリント法(液流吐出法)といったインク吐出型の塗布法が好ましく、特にインクジェット法が好ましい。 In addition to the relief printing method, the dispenser method, and the slit coating method, this coating liquid can be supplied into the bank partition region by an ink discharge type such as an ink jet method (droplet discharge method) or a nozzle print method (liquid flow discharge method). A coating method is preferable, and an inkjet method is particularly preferable.
 インクジェット法に用いられる塗布液の溶剤としては、高沸点溶剤成分を比較的多く添加することにより、ノズル乾燥、目詰まりを防止することが一般的に知られており、溶剤の選定にはこれらを考慮した上で最適な溶剤を選定することが好ましい。また、特に、インクジェット法の場合、バンク形成ステップでも同様だが、20plの液滴サイズで被塗布面に着滴させたとき、着滴後1分経過後の液滴径が100~400μmのような溶剤であることが好ましく、さらに好ましくはこの液滴径は150~300μmである。これにより、膜厚ムラやピンホールの発生を防止することができる。 As a solvent of the coating solution used in the ink jet method, it is generally known to prevent nozzle drying and clogging by adding a relatively large amount of a high-boiling solvent component. It is preferable to select an optimal solvent in consideration. In particular, in the case of the ink jet method, the same applies to the bank formation step, but when the droplet is deposited on the surface to be coated with a droplet size of 20 pl, the droplet diameter after one minute has elapsed is 100 to 400 μm. A solvent is preferable, and the droplet diameter is more preferably 150 to 300 μm. Thereby, the occurrence of film thickness unevenness and pinholes can be prevented.
 有機塗布液には、少なくとも2種類の固形分(たとえば、発光層となるべき低分子のホスト材料とゲスト材料)が固形分として分散、混合されていてもよい。第2有機層形成ステップにおける所定塗布液の固形分の濃度が3重量%~10重量%であることが好ましい。固形分の濃度がこの下限を下回ると溶剤の蒸発量が増え真空乾燥に不都合となり、上限を上回るとノズル乾燥、目詰まりが発生しやすくなる。第2有機層形成ステップにおける所定塗布液の固形分が100以上10000以下の分子量の低分子化合物であることが好ましい。当該低分子化合物の分子量がこの下限を下回ると溶剤の蒸発量が増え真空乾燥に不都合となり、上限を上回るとノズル乾燥、目詰まりが発生しやすくなる。所定塗布液の溶剤の標準沸点が200℃~300℃であることが好ましい。溶剤の標準沸点がこの下限を下回るとノズル乾燥、目詰まりが発生しやすくなり、上限を上回ると真空乾燥に不都合となる。所定塗布液の溶剤の室温の蒸気圧が1Pa~70Paであることが好ましい。溶剤の蒸気圧がこの下限および上限を離れると真空乾燥に不都合となる。 In the organic coating liquid, at least two kinds of solid contents (for example, a low-molecular host material and a guest material to be a light emitting layer) may be dispersed and mixed as solid contents. The solid concentration of the predetermined coating solution in the second organic layer forming step is preferably 3% by weight to 10% by weight. If the solid content is below this lower limit, the amount of solvent evaporation increases, which is inconvenient for vacuum drying. If the solid content exceeds the upper limit, nozzle drying and clogging are likely to occur. It is preferable that the solid content of the predetermined coating liquid in the second organic layer forming step is a low molecular compound having a molecular weight of 100 or more and 10,000 or less. When the molecular weight of the low molecular weight compound is below this lower limit, the amount of solvent evaporation increases, which is inconvenient for vacuum drying. When the molecular weight exceeds the upper limit, nozzle drying and clogging tend to occur. The standard boiling point of the solvent of the predetermined coating solution is preferably 200 ° C to 300 ° C. When the standard boiling point of the solvent is below this lower limit, nozzle drying and clogging are likely to occur, and when it exceeds the upper limit, it is inconvenient for vacuum drying. The vapor pressure at room temperature of the solvent of the predetermined coating solution is preferably 1 Pa to 70 Pa. When the vapor pressure of the solvent deviates from the lower limit and the upper limit, it becomes inconvenient for vacuum drying.
 バンク区画領域内に塗布液を供給した後は、たとえば、真空チャンバ内で乾燥を行う、真空乾燥法を実行する。 After supplying the coating liquid into the bank partition region, for example, a vacuum drying method is performed in which drying is performed in a vacuum chamber.
 真空乾燥した後は、有機層の焼成は、たとえば、乾燥後の基板を200℃の温度で、30分程度で、ホットプレート、クリーンオーブン、IR炉などを用いて加熱して行うことができる。 After the vacuum drying, the organic layer can be baked, for example, by heating the dried substrate at a temperature of 200 ° C. for about 30 minutes using a hot plate, clean oven, IR furnace, or the like.
 次に、図9に示すように、真空蒸着装置(図示せず)の蒸着源ボートに電子注入層材料を装填して蒸着を実行して、装填した基板1上の電子輸送層7上に電子注入層8を形成する。真空蒸着装法によれば電子注入層材料が有機または無機の材料を問わず薄膜として各層が形成される。電子注入層材料が有機材料の場合は、上記同様のインクジェット法などの湿式成膜法により成膜できる。 Next, as shown in FIG. 9, an electron injection layer material is loaded into a vapor deposition source boat of a vacuum vapor deposition apparatus (not shown), vapor deposition is performed, and electrons are deposited on the electron transport layer 7 on the loaded substrate 1. An injection layer 8 is formed. According to the vacuum deposition method, each layer is formed as a thin film regardless of whether the electron injection layer material is an organic or inorganic material. When the electron injection layer material is an organic material, the film can be formed by a wet film formation method such as an ink jet method similar to the above.
 (第2電極形成ステップ)
 図10に示すように、真空蒸着装置(図示せず)の蒸着源ボートに陰極金属材料を装填して蒸着を実行して、装填した基板1上の電子注入層8上に陰極9を形成する。一般に、真空蒸着装置のたとえば半円形ドーム処理室の内面に設けられた基板ホルダーに焼成後の基板を保持し、半円形ドームの中心位置にある蒸着源ボートに予定の有機材料または無機材料を置いて、かかるドームを成膜中にゆっくりと中心回りに回転させて、たとえば成膜開始到達圧力を、10-4Pa程度まで高真空にし、蒸着膜の密着性や膜質を向上させる。また、無機材料の蒸着では成膜温度を高温(300℃~400℃)にできるが、プラスチック基板などは低温で蒸着を行う。蒸着源の蒸発方法は抵抗蒸着(ボートの電気抵抗加熱により有機材料または無機材料を溶かして蒸発させる)方法や、電子ビーム蒸着(電子銃を用い収束電子ビームをボートの有機材料または無機材料を溶かして蒸発させる)などがある。
(Second electrode formation step)
As shown in FIG. 10, a cathode metal material is loaded into a vapor deposition source boat of a vacuum vapor deposition apparatus (not shown) to perform vapor deposition, and a cathode 9 is formed on the electron injection layer 8 on the loaded substrate 1. . Generally, a substrate after baking is held on a substrate holder provided on the inner surface of a semicircular dome processing chamber of a vacuum vapor deposition apparatus, and a predetermined organic or inorganic material is placed on a vapor deposition source boat at the center position of the semicircular dome. Then, such a dome is slowly rotated around the center during film formation, for example, the film formation start pressure is increased to a high vacuum of about 10 −4 Pa to improve the adhesion and film quality of the deposited film. In the vapor deposition of inorganic materials, the film forming temperature can be increased (300 ° C. to 400 ° C.), but plastic substrates and the like are deposited at a low temperature. The evaporation source can be evaporated by resistance evaporation (the organic or inorganic material is melted and evaporated by heating the electric resistance of the boat) or by electron beam evaporation (the electron gun is used to dissolve the focused electron beam into the boat's organic or inorganic material). Evaporate).
 本発明を採用することにより第1に、バンクパターンはインクジェット法に必要な部分にだけ形成されるため、有機EL素子がフォトリソグラフィプロセスに侵されることがなく、性能劣化のない、有機EL素子が得られ、第2に、第1の下部の電極上に形成した有機層上にバンクを形成するため、第1電極の凹凸は有機層で平滑化され、電荷輸送層の濡れ性も均一になり、インクジェット法で良好なバンクパターン形成が可能になる。 By adopting the present invention, first, since the bank pattern is formed only in a portion necessary for the ink jet method, the organic EL element is not affected by the photolithography process, and there is no performance deterioration. Second, because the bank is formed on the organic layer formed on the first lower electrode, the unevenness of the first electrode is smoothed by the organic layer, and the wettability of the charge transport layer is also uniform. A good bank pattern can be formed by the ink jet method.
 本実施形態では有機EL素子を説明したが、本発明の有機ELパネルの製造方法は、湿式塗布により膜形成を実施する有機ELディスプレイ、有機EL照明の他に、有機層を用いる有機TFTや有機太陽電池やカラーフィルタの場合でも適用することができることは言うまでもない。 Although the organic EL element has been described in the present embodiment, the organic EL panel manufacturing method of the present invention is not limited to an organic EL display that performs film formation by wet coating, organic EL illumination, an organic TFT using an organic layer, or an organic TFT. Needless to say, the present invention can also be applied to solar cells and color filters.
 フォトリソグラフィーにより、ガラス基板上に400μm幅で120nm厚のインジウムスズ酸化物(ITO)の透明ストライプの陽極を形成した基板を用意して、有機エレクトロルミネッセンスパネルを作製した。具体的に実験において、前述の実施形態のインクジェットプロセスにより、ガラス基板上に陽極(ITO)/正孔注入層(30nm厚)/正孔輸送層(15~60nm厚)/発光層(40~60nm厚)/電子輸送層(Alq3、20nm厚)/陰極(Al、100nm厚)/の膜構成の有機EL素子を作製した。ここで、正孔輸送層上に積層バンクBK(幅60μm)を平行(450μmピッチ)のバンク区画(5cm)を作製し、バンク間の凹部に、発光層のインクジェットによる成膜を施した。 A substrate in which a transparent stripe anode of indium tin oxide (ITO) having a thickness of 400 μm and a thickness of 120 nm was formed on a glass substrate by photolithography was prepared to produce an organic electroluminescence panel. Specifically, in the experiment, the anode (ITO) / hole injection layer (30 nm thickness) / hole transport layer (15 to 60 nm thickness) / light emitting layer (40 to 60 nm) on the glass substrate by the inkjet process of the above-described embodiment. An organic EL element having a film configuration of (thickness) / electron transport layer (Alq3, 20 nm thickness) / cathode (Al, 100 nm thickness) / was produced. Here, a bank section (5 cm) in which the stacked bank BK (width 60 μm) was parallel (450 μm pitch) was formed on the hole transport layer, and the light emitting layer was formed into a film by an ink jet in the recess between the banks.
 細いノズル管から微小液滴を有機層に噴射させるインクジェット装置のインクジェットヘッド(液滴吐出ノズル)の方式は、粒径の揃った液滴を連続的に生成できるように、断続噴射型(オンデマンド型)とした。ヘッド構造には駆動部の変位が電圧に比例するピエゾ駆動方式を採用し、液滴の大きさをノズル管の口径や圧力(電圧)をかけた時の周波数によって制御した。インクジェット装置の条件は、パルス幅5μ秒、周波数1KHz、印加電圧10Vであった。 The inkjet head (droplet discharge nozzle) method for ejecting micro droplets from a thin nozzle tube onto an organic layer is an intermittent injection type (on-demand) so that droplets with uniform particle sizes can be generated continuously. Type). The head structure employs a piezo drive system in which the displacement of the drive unit is proportional to the voltage, and the size of the droplet is controlled by the nozzle tube diameter and the frequency when pressure (voltage) is applied. The conditions of the ink jet apparatus were a pulse width of 5 μs, a frequency of 1 KHz, and an applied voltage of 10V.
 バンク成膜用のバンク塗布液として、撥水剤としてフッ素系モノマーを含有するアクリル系樹脂をPGMEA系のバンク用溶剤に混合して有機塗布液を調製した。 As a bank coating liquid for forming a bank film, an acrylic resin containing a fluorine monomer as a water repellent was mixed with a PGMEA bank solvent to prepare an organic coating liquid.
 なお、バンク塗布液の成膜の前に、正孔輸送層膜に対して、バンク塗布液との親和性を高める処理として、プラズマ表面処理、またはUVオゾン処理を施した。プラズマ処理はバンク塗布液膜の基板をプラズマ表面処理装置に装填して、酸素ガス(500sccm)のプラズマ(電力500W)で30秒の状態で処理を施した。その後、正孔輸送層膜上にそれぞれの固形分濃度のバンク塗布液の同一塗布量で10cm×10cmで成膜して真空乾燥した。また、バンクエッジの直線性を良化するため、逐次塗布を実施した。その際2層目は1層目に対して(塗布ピッチ×1/2)だけ塗布開始位置をスキャン方向にずらして成膜した。 In addition, before the film formation of the bank coating solution, a plasma surface treatment or a UV ozone treatment was performed on the hole transport layer film as a treatment for increasing the affinity with the bank coating solution. In the plasma treatment, a bank coating liquid film substrate was loaded into a plasma surface treatment apparatus, and was treated with oxygen gas (500 sccm) plasma (power 500 W) for 30 seconds. Then, it formed into a film by 10 cm x 10 cm with the same application quantity of the bank coating liquid of each solid content concentration on the positive hole transport layer film | membrane, and vacuum-dried. Moreover, in order to improve the linearity of the bank edge, sequential application was performed. At that time, the second layer was formed by shifting the coating start position in the scanning direction by (coating pitch × 1/2) with respect to the first layer.
 一方、図11にスピンコートにより成膜したバンク塗布液膜の中心からの距離に対するバンク塗布液の膜厚の分布の測定結果を示す。 On the other hand, FIG. 11 shows a measurement result of the distribution of the film thickness of the bank coating liquid with respect to the distance from the center of the bank coating liquid film formed by spin coating.
 上記測定結果から明らかなように、バンク塗布液の固形分濃度20重量%の場合は膜周囲(5cm)でバンク膜厚が増加している。これは固形分濃度が低い場合、所望の膜厚に形成するための回転数が遅く、膜厚分布が不均一になったものである。この事はインクジェットの時も同様で、ある条件の下でスピンコートで得られた膜厚分布とインクジェットで成膜した時の膜安定性に相関があるため、図11から固形分濃度が25重量%以上の時に略均一な膜厚のバンク膜が得られることが分かる。 As is clear from the above measurement results, the bank film thickness increases around the film (5 cm) when the solid concentration of the bank coating solution is 20% by weight. This is because when the solid content concentration is low, the number of rotations for forming a desired film thickness is slow, and the film thickness distribution becomes non-uniform. This is the same as in the case of ink jet, and there is a correlation between the film thickness distribution obtained by spin coating under a certain condition and the film stability when the film is formed by ink jet. It can be seen that a bank film having a substantially uniform film thickness can be obtained when it is at least%.
 1 基板
 2 陽極
 3 正孔注入層
 4 正孔輸送層
 5 発光層
 6 正孔阻止層
 7 電子輸送層
 8 電子注入層
 9 陰極
DESCRIPTION OF SYMBOLS 1 Substrate 2 Anode 3 Hole injection layer 4 Hole transport layer 5 Light emitting layer 6 Hole blocking layer 7 Electron transport layer 8 Electron injection layer 9 Cathode

Claims (11)

  1.  基板上に配置されかつバンクにて区切られた複数の有機エレクトロルミネッセンス素子を備え、前記複数の有機エレクトロルミネッセンス素子の各々が対向する1対の第1電極および第2電極の間に積層された複数の有機層を有する有機エレクトロルミネッセンスパネルの製造方法であって、
     主面に電極パターンを有する基板の表面を少なくとも1層の有機層で被覆する有機層形成ステップと、
     バンクパターン材料を含有するバンク塗布液を、前記有機層上の所定領域に液滴吐出ノズルにより液滴として吐出し乾燥することによりバンクパターンを形成するバンク形成ステップと、を含むことを特徴とする有機エレクトロルミネッセンスパネルの製造方法。
    A plurality of organic electroluminescence elements arranged on a substrate and partitioned by a bank, each of the plurality of organic electroluminescence elements being stacked between a pair of first and second electrodes facing each other A method for producing an organic electroluminescence panel having an organic layer of
    An organic layer forming step of covering the surface of the substrate having an electrode pattern on the main surface with at least one organic layer;
    A bank forming step of forming a bank pattern by discharging a bank coating liquid containing a bank pattern material into a predetermined region on the organic layer as a droplet by a droplet discharge nozzle and drying it. Manufacturing method of organic electroluminescence panel.
  2.  前記バンクパターン材料は撥液特性を有する固形分であることを特徴とする請求項1に記載の有機エレクトロルミネッセンスパネルの製造方法。 2. The method of manufacturing an organic electroluminescence panel according to claim 1, wherein the bank pattern material has a solid content having liquid repellency.
  3.  前記バンク塗布液の固形分濃度は25重量%以上100重量%以下であることを特徴とする請求項2に記載の有機エレクトロルミネッセンスパネルの製造方法。 3. The method of manufacturing an organic electroluminescence panel according to claim 2, wherein the solid content concentration of the bank coating liquid is 25 wt% or more and 100 wt% or less.
  4.  前記乾燥は真空乾燥であることを特徴とする請求項1に記載の有機エレクトロルミネッセンスパネルの製造方法。 The method for producing an organic electroluminescence panel according to claim 1, wherein the drying is vacuum drying.
  5.  発光層材料を含有する発光層塗布液を、前記バンクパターンのバンクにて区切られた前記有機層上に液滴吐出ノズルにより液滴として吐出して発光層を形成する発光層形成ステップと、を更に含むことを特徴とする請求項4に記載の有機エレクトロルミネッセンスパネルの製造方法。 A light-emitting layer forming step of forming a light-emitting layer by discharging a light-emitting layer coating liquid containing a light-emitting layer material as droplets by a droplet discharge nozzle onto the organic layer partitioned by the bank of the bank pattern; Furthermore, the manufacturing method of the organic electroluminescent panel of Claim 4 characterized by the above-mentioned.
  6.  前記バンク形成ステップの前に、前記有機層上の前記所定領域に対して、前記バンク塗布液との親和性を前記所定領域以外の前記有機層より高める処理を施す親和処理ステップを含むことを特徴とする請求項1乃至5のいずれか1項に記載の有機エレクトロルミネッセンスパネルの製造方法。 Before the bank forming step, an affinity processing step is provided for applying a process for increasing the affinity with the bank coating solution over the organic layer other than the predetermined area with respect to the predetermined area on the organic layer. The manufacturing method of the organic electroluminescent panel of any one of Claim 1 thru | or 5.
  7.  前記親和処理ステップはプラズマ表面処理を含むことを特徴とする請求項6に記載の有機エレクトロルミネッセンスパネルの製造方法。 The method of manufacturing an organic electroluminescence panel according to claim 6, wherein the affinity treatment step includes plasma surface treatment.
  8.  前記親和処理ステップはUV光照射処理を含むことを特徴とする請求項6に記載の有機エレクトロルミネッセンスパネルの製造方法。 The method of manufacturing an organic electroluminescence panel according to claim 6, wherein the affinity treatment step includes a UV light irradiation treatment.
  9.  前記バンク形成ステップにおいて、前記有機層上の前記バンクパターンの形成予定領域内にて前記バンク塗布液の液滴を同一位置から重なりつつ変位させて逐次塗布し、前記バンク塗布液の液滴同士のつなぎ目で前記バンク塗布液の境界線が曲折することを抑制することを特徴とする請求項1乃至8のいずれか1項に記載の有機エレクトロルミネッセンスパネルの製造方法。 In the bank formation step, the bank coating liquid droplets are sequentially applied while being displaced from the same position while overlapping in the bank pattern formation region on the organic layer. 9. The method of manufacturing an organic electroluminescence panel according to claim 1, wherein a boundary line of the bank coating solution is suppressed from being bent at a joint.
  10.  前記バンク形成ステップにおいて、前記バンク塗布液の液滴における固形分の濃度を、後に塗布するほど濃度を低くして、前記バンク塗布液を塗布することを特徴とする請求項9に記載の有機エレクトロルミネッセンスパネルの製造方法。 10. The organic electrophoretic device according to claim 9, wherein in the bank forming step, the bank coating liquid is applied such that the solid content in the droplets of the bank coating liquid is lowered as the concentration is later applied. Manufacturing method of luminescence panel.
  11.  前記有機層形成ステップにおいて前記有機層が順に成膜された正孔注入層および正孔輸送層の2層構造として形成されることを特徴とする請求項1乃至10のいずれか1項に記載の有機エレクトロルミネッセンスパネルの製造方法。 11. The organic layer forming step according to claim 1, wherein the organic layer is formed as a two-layer structure of a hole injection layer and a hole transport layer that are sequentially formed. Manufacturing method of organic electroluminescence panel.
PCT/JP2011/070151 2011-09-05 2011-09-05 Method for manufacturing organic electroluminescent panel WO2013035143A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/070151 WO2013035143A1 (en) 2011-09-05 2011-09-05 Method for manufacturing organic electroluminescent panel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/070151 WO2013035143A1 (en) 2011-09-05 2011-09-05 Method for manufacturing organic electroluminescent panel

Publications (1)

Publication Number Publication Date
WO2013035143A1 true WO2013035143A1 (en) 2013-03-14

Family

ID=47831631

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/070151 WO2013035143A1 (en) 2011-09-05 2011-09-05 Method for manufacturing organic electroluminescent panel

Country Status (1)

Country Link
WO (1) WO2013035143A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015230809A (en) * 2014-06-04 2015-12-21 パイオニア株式会社 Light-emitting device
WO2017163374A1 (en) * 2016-03-24 2017-09-28 パイオニア株式会社 Method for manufacturing light emitting device, and light emitting device
JP2019087503A (en) * 2017-11-10 2019-06-06 コニカミノルタ株式会社 Organic electroluminescence device, method for manufacturing the same and image display

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000223270A (en) * 1999-02-02 2000-08-11 Dainippon Printing Co Ltd Electroluminescent element and its manufacture
JP2004235128A (en) * 2002-12-04 2004-08-19 Dainippon Printing Co Ltd Organic el element and its manufacturing method
JP2004234901A (en) * 2003-01-28 2004-08-19 Seiko Epson Corp Display substrate, organic el display device, manufacturing method of display substrate and electronic apparatus
JP2006171365A (en) * 2004-12-16 2006-06-29 Seiko Epson Corp Bank generation method, and methods of manufacturing color filter, liquid crystal panel, organic el device and display panel
JP2010033971A (en) * 2008-07-30 2010-02-12 Sumitomo Chemical Co Ltd Organic electroluminescent element and its manufacturing method
JP2010056012A (en) * 2008-08-29 2010-03-11 Sumitomo Chemical Co Ltd Method of manufacturing organic electroluminescent element
JP2010103105A (en) * 2008-09-29 2010-05-06 Mitsubishi Chemicals Corp Method for manufacturing organic field light-emitting element, organic field light-emitting element, organic el display, and organic el illumination

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000223270A (en) * 1999-02-02 2000-08-11 Dainippon Printing Co Ltd Electroluminescent element and its manufacture
JP2004235128A (en) * 2002-12-04 2004-08-19 Dainippon Printing Co Ltd Organic el element and its manufacturing method
JP2004234901A (en) * 2003-01-28 2004-08-19 Seiko Epson Corp Display substrate, organic el display device, manufacturing method of display substrate and electronic apparatus
JP2006171365A (en) * 2004-12-16 2006-06-29 Seiko Epson Corp Bank generation method, and methods of manufacturing color filter, liquid crystal panel, organic el device and display panel
JP2010033971A (en) * 2008-07-30 2010-02-12 Sumitomo Chemical Co Ltd Organic electroluminescent element and its manufacturing method
JP2010056012A (en) * 2008-08-29 2010-03-11 Sumitomo Chemical Co Ltd Method of manufacturing organic electroluminescent element
JP2010103105A (en) * 2008-09-29 2010-05-06 Mitsubishi Chemicals Corp Method for manufacturing organic field light-emitting element, organic field light-emitting element, organic el display, and organic el illumination

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015230809A (en) * 2014-06-04 2015-12-21 パイオニア株式会社 Light-emitting device
WO2017163374A1 (en) * 2016-03-24 2017-09-28 パイオニア株式会社 Method for manufacturing light emitting device, and light emitting device
JP2019087503A (en) * 2017-11-10 2019-06-06 コニカミノルタ株式会社 Organic electroluminescence device, method for manufacturing the same and image display

Similar Documents

Publication Publication Date Title
CN104946006B (en) Functional layer forming ink, method for manufacturing light-emitting element, light-emitting device, and electronic device
CN102106017B (en) Organic electroluminescent element, organic el display device and organic EL illuminating device
US20130234121A1 (en) Method of manufacturing organic el apparatus, organic el apparatus, and electronic equipment
JP5259139B2 (en) Composition for organic electroluminescent device, organic electroluminescent device, and method for producing organic electroluminescent device
KR101953592B1 (en) Functional layer forming composition, method for manufacturing functional layer forming composition, method for manufacturing organic el element, organic el device, and electronic equipment
WO2013015198A1 (en) Method for producing organic semiconductor element and vacuum drying device
JP2011129275A (en) Method for manufacturing organic electroluminescent element, organic electroluminescent element, organic el display device and organic el illumination
WO2010104183A1 (en) Composition for organic electroluminescent element, organic electroluminescent element, organic el display, and organic el lighting
JP2009212510A (en) Organic electroluminescent element, organic el display, and organic el illumination
JP2010212676A (en) Organic light emitting device
JP6375600B2 (en) Manufacturing method of organic EL element, organic EL element, organic EL device, electronic device
JP6286872B2 (en) Iridium complex compound, organic electroluminescent element, display device and lighting device
JP5912174B2 (en) Organic electroluminescence panel and manufacturing method thereof
JP2009252407A (en) Method of manufacturing organic electroluminescent element
WO2013035143A1 (en) Method for manufacturing organic electroluminescent panel
KR101899914B1 (en) Film-forming ink, film-forming method, liquid droplet discharging device, method for preparing light-emitting element, light-emitting element, light-emitting device and electronic apparatus
WO2012090560A1 (en) Organic electroluminescent element and manufacturing method thereof
JP2009231278A (en) Method for manufacturing organic el element, organic el display, and organic el lighting
JP5402703B2 (en) Organic electroluminescence device, organic EL display, organic EL lighting, and organic EL signal device
WO2013150593A1 (en) Organic electroluminescent panel and method for producing same
JP2010192121A (en) Composition for organic electroluminescent element, organic electroluminescent element, organic el display, and organic el lighting
JP6185109B2 (en) Organic electroluminescence panel and manufacturing method thereof
JP5456282B2 (en) Organic electroluminescence device
JPWO2013035143A1 (en) Method for manufacturing organic electroluminescence panel
WO2012176276A1 (en) Organic electric field light emitting element

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11872090

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013532333

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11872090

Country of ref document: EP

Kind code of ref document: A1