WO2013120264A1 - 支撑海上风机、桥梁、海洋建筑物的浮力支撑固定平台 - Google Patents

支撑海上风机、桥梁、海洋建筑物的浮力支撑固定平台 Download PDF

Info

Publication number
WO2013120264A1
WO2013120264A1 PCT/CN2012/071224 CN2012071224W WO2013120264A1 WO 2013120264 A1 WO2013120264 A1 WO 2013120264A1 CN 2012071224 W CN2012071224 W CN 2012071224W WO 2013120264 A1 WO2013120264 A1 WO 2013120264A1
Authority
WO
WIPO (PCT)
Prior art keywords
platform
buoyancy
satellite
concrete
cylinder
Prior art date
Application number
PCT/CN2012/071224
Other languages
English (en)
French (fr)
Inventor
黄灿光
陈立强
Original Assignee
Wong Calos
Chen Liqiang
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wong Calos, Chen Liqiang filed Critical Wong Calos
Priority to PCT/CN2012/071224 priority Critical patent/WO2013120264A1/zh
Publication of WO2013120264A1 publication Critical patent/WO2013120264A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B35/00Vessels or similar floating structures specially adapted for specific purposes and not otherwise provided for
    • B63B35/44Floating buildings, stores, drilling platforms, or workshops, e.g. carrying water-oil separating devices
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02BHYDRAULIC ENGINEERING
    • E02B17/00Artificial islands mounted on piles or like supports, e.g. platforms on raisable legs or offshore constructions; Construction methods therefor
    • E02B17/02Artificial islands mounted on piles or like supports, e.g. platforms on raisable legs or offshore constructions; Construction methods therefor placed by lowering the supporting construction to the bottom, e.g. with subsequent fixing thereto
    • E02B17/027Artificial islands mounted on piles or like supports, e.g. platforms on raisable legs or offshore constructions; Construction methods therefor placed by lowering the supporting construction to the bottom, e.g. with subsequent fixing thereto steel structures
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B35/00Vessels or similar floating structures specially adapted for specific purposes and not otherwise provided for
    • B63B35/44Floating buildings, stores, drilling platforms, or workshops, e.g. carrying water-oil separating devices
    • B63B2035/4433Floating structures carrying electric power plants
    • B63B2035/446Floating structures carrying electric power plants for converting wind energy into electric energy
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02BHYDRAULIC ENGINEERING
    • E02B17/00Artificial islands mounted on piles or like supports, e.g. platforms on raisable legs or offshore constructions; Construction methods therefor
    • E02B2017/0039Methods for placing the offshore structure
    • E02B2017/0043Placing the offshore structure on a pre-installed foundation structure
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02BHYDRAULIC ENGINEERING
    • E02B17/00Artificial islands mounted on piles or like supports, e.g. platforms on raisable legs or offshore constructions; Construction methods therefor
    • E02B2017/0056Platforms with supporting legs
    • E02B2017/0073Details of sea bottom engaging footing
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02BHYDRAULIC ENGINEERING
    • E02B17/00Artificial islands mounted on piles or like supports, e.g. platforms on raisable legs or offshore constructions; Construction methods therefor
    • E02B2017/0056Platforms with supporting legs
    • E02B2017/0073Details of sea bottom engaging footing
    • E02B2017/0082Spudcans, skirts or extended feet
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02BHYDRAULIC ENGINEERING
    • E02B17/00Artificial islands mounted on piles or like supports, e.g. platforms on raisable legs or offshore constructions; Construction methods therefor
    • E02B2017/0091Offshore structures for wind turbines
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/727Offshore wind turbines

Definitions

  • the invention relates to a marine buoyancy platform and a construction and installation method thereof, in particular to a buoyancy support fixed platform supporting a buoyancy support fixed platform of an offshore wind turbine, a bridge and a marine building, and a construction and installation method thereof.
  • the geological conditions of the buildings in the water, the wind and wave loads and the water depth determine the basic form of the buildings in the water.
  • the foundation of large-scale water buildings accounts for 25% to 40% of the total cost. 30 meters has been moderately deep to deep water foundation,
  • the load forces generated by the marine environment, such as the large horizontal forces generated by typhoons, huge waves, and large tides, should be considered as important control conditions that must be considered in the design and construction.
  • the basic types of offshore wind turbines in deep water areas are mostly floating platforms.
  • the shallow water areas are mainly pile foundations or gravity foundation pile foundations, and the medium deep water areas are truss type jacket foundations.
  • the mainstream basic type of the bridge from the deep deep water area to the deep water area is the pile group foundation or the steel sheet pile cofferdam column foundation. Drilling and production offshore fixed platforms for water depths from 10 to 200 meters, and marine semi-submersible platforms for drilling and oil recovery for water depths from 100 meters to several kilometers.
  • the application of the present invention absorbs the advantages of another invention, "a prestressed concrete floating platform supporting an offshore wind turbine and a marine energy generator", which is convenient and feasible in construction from a moderate water depth to a deep water area, and the support foundation of the present invention is buoyant.
  • the buoyancy of the cylinder offsets the weight of some hydraulic structures, and the foundation at the bottom of the fixed platform also bears the weight of some hydraulic structures.
  • the buoyancy cylinder is embedded in the seabed to improve the horizontal resistance and stability of the platform, and the unique embedding of the present invention.
  • the installation method of the buoyancy support fixed platform to the seabed solves the problem of high cost of the foundation of a hydraulic structure with a water depth of about 10 meters to 30 meters or a part of the sea to 50 meters.
  • the invention is economically applicable in the water depth of 30 meters to 50 meters, and should be selected according to geological conditions and wind and wave loads.
  • the technical problem to be solved by the present invention is to provide a support for the high cost of the marine (water) building such as the existing offshore wind power with a water depth of 10 meters to 30 meters or a part of the sea to 50 meters, and the difficulty of construction.
  • the technical solution adopted by the present invention to solve the technical problem thereof is to provide a buoyancy supporting fixed platform for supporting offshore wind turbines, bridges and marine buildings, and the buoyancy supporting fixed platform comprises:
  • At least three satellite buoyancy cylinders arranged vertically and having a conical bottom are fixedly supported on the seabed by concrete, wherein the satellite buoyancy cylinder is a hollow cylinder;
  • Offshore wind turbines and/or bridges and/or marine structures are supported on the platform.
  • the plane of the buoyancy supporting fixed platform is a triangle or a quadrangle or a polygon and includes a triangular dividing unit, wherein
  • the satellite buoyancy cylinders are respectively disposed at the nodes of the polygon, and at least one of the satellite buoyancy cylinders supports an offshore wind turbine;
  • the connecting structure is a steel cable or a hollow rod for connecting the satellite buoyancy cylinders to each other.
  • the platform further includes a central support bar member and a frame structure for connecting the satellite buoyancy cylinder and the central support bar member; the central support bar member is located at a plane of gravity of the platform and supported There are offshore wind turbines.
  • the central supporting bar member is a vertically arranged semi-submersible suspended central buoy or fixedly supported on the seabed by underwater concrete.
  • the frame structure includes a lower connecting beam connecting the satellite buoyancy cylinder and the central supporting rod member from a lower portion, and a diagonal Connecting the satellite buoyancy cylinder to the bracing of the central support bar.
  • the satellite buoyancy cylinders are symmetrically arranged, and the satellite buoyancy cylinders jointly support a pile cap, the pile cap The pier that supports the bridge.
  • the platform is a grid structure, and the satellite buoyancy cylinders are respectively disposed on grid points of the grid;
  • the platform supports the ocean buildings.
  • the platform includes a plurality of square sub-platforms, and each square sub-platform is connected by a connecting structure, and the satellite buoyancy cylinders are respectively set At the node of the square sub-platform; the platform supports an artificial dock building dedicated to passengers loading and unloading, cargo loading and unloading.
  • the platform is divided into one or more platforms, and each platform is connected by a frame structure, and the satellite buoyancy is Cylinders are respectively disposed on the nodes of the one or more platforms; the platforms support artificially constructed artificial islands and buildings thereon.
  • the satellite buoyancy cylinder and/or the connecting structure and/or the frame structure are made of steel or prestressed concrete or prestressed lightweight concrete. Or prestressed fiber concrete or prestressed steel tube concrete or steel-concrete composite material.
  • a pumping system is disposed in the satellite buoyancy cylinder, and the pumping system includes a water pump, a pressure tube, and an externally disposed a concrete pump and a cement mortar pump; wherein the pressure tube has one end opening connected to the water pump or concrete pump, and the other end opening is communicated with the outside through a bottommost point of the conical bottom of the satellite buoyancy barrel for The water or concrete output from the water pump and the concrete pump is respectively extruded to the outside; the cement mortar is extruded to the outside through another set of pressure pipes.
  • the satellite buoyancy cylinder is filled with sand or water to increase the self-weight of the platform, thereby resisting the wind load. Pulling force.
  • the invention also provides a construction and installation method for a marine buoyancy support fixed platform, wherein the construction installation method is used for the above-mentioned buoyancy support fixed platform for supporting offshore wind turbines, bridges and marine buildings, comprising the following steps:
  • Grouting fills the slit, and the platform is slightly lowered until the platform starts to be supported on the concrete layer, and the platform is completely supported on the concrete layer after the paddle reaches a preset strength, thereby the satellite a buoyancy cylinder and the platform are fixed to the seabed;
  • An offshore fan and/or bridge and/or marine building is mounted on the platform center support bar.
  • the invention also provides a construction and installation method for a marine buoyancy support fixed platform, the method being used for the above platform, comprising the following steps:
  • the construction mounting method further includes disposing a steel plate ring on an inner wall of the groove, and providing a steel bar inside the steel plate ring, thereby Forming a concrete layer of a predetermined thickness between the bottommost point of the tapered bottom of the satellite buoyancy cylinder and the bearing layer in the groove to prevent the soft soil of the groove side seabed Collapsed.
  • the construction and installation method further comprises: preparing the prestressed concrete or prestressed lightweight concrete or prestressed fiber concrete platform by using a segment prefabrication construction method, include:
  • connection structure connecting the satellite buoyancy cylinders is divided into connection structure segments
  • At least one guiding pile is arranged on the sea side of the port side, and each of the satellite buoyancy cylinders is correspondingly provided with at least three guiding piles, so that the steel truss can be supported on the sea side of the port side for installation of the satellite buoyancy cylinder;
  • the entire prefabricated assembly connection structure is lowered to a joint position corresponding to each satellite buoyancy cylinder, and the joint is fixed and fixed by prestressing and anchoring;
  • the locking device is removed and the positioning steel truss is removed. After the platform is free, it can be towed to the offshore installation sea area for the basic engineering construction installation of the platform.
  • the construction and installation method further comprises: integrally forming the steel platform by using a factory prefabricated construction site, comprising:
  • the steel platform supporting the offshore wind turbine and/or the bridge and/or the marine building structure is prefabricated by the factory, and is spliced into the entire steel platform at the construction site near the port.
  • the completed steel platform is suspended into the water by the floating crane, or the sliding is completed.
  • the platform descended to the sea and the suspended steel platform was towed to the offshore installation area for the basic construction of the buoyancy cylinders of the steel platform.
  • the invention has the beneficial effects that since the buoyancy supporting fixed platform according to the embodiment of the invention fixes the satellite buoyancy cylinder on the seabed, the water of the buoyancy cylinder is under the action of the wind force compared to the semi-submersible suspension platform. Or the weight of sand can offset some of the rising pull caused by the wind, making the platform more stable. In addition, the buoyancy of the buoyancy cylinder offsets the weight of some hydraulic structures to improve the foundation load capacity.
  • the buoyancy cylinder is embedded in the seabed to improve the horizontal resistance and stability of the platform. Therefore, the size of the buoyancy support fixed platform will be greatly larger than that of the floating platform. Reducing the moderate water depth in the water depth of 10 to 30 meters can greatly save construction costs, save marine space resources, and promote scientific use of sea areas.
  • the construction and installation of the buoyancy support fixed platform is all artificial water work.
  • the platform rods are all prefabricated, and the site occupation time is short.
  • the buoyancy cylinder foundation and the seabed foundation treatment are used by the water remote control to solve the complex heavy construction equipment and dangers of the underwater foundation such as the sinking well.
  • Construction equipment is inexpensive to produce and can be reused. Increased work efficiency, safe construction methods, low risk and low cost, suitable for basic engineering of offshore wind turbines and / or bridges and / or marine buildings.
  • FIG. 1 is a schematic structural view of a buoyancy supporting fixed platform mounted with a horizontal axis fan according to an embodiment of the present invention
  • Figure 2 is a plan view showing the plane at 1-1 in Figure 1;
  • FIG. 3 is a schematic structural view of an offshore wind power support platform provided with a pumping system in a satellite buoyancy cylinder according to an embodiment of the present invention
  • FIG. 4 is a schematic structural view of a buoyancy supporting fixed platform supporting an offshore wind turbine according to an exemplary embodiment of the present invention
  • FIG. 5 is a schematic structural view of a buoyancy supporting fixed platform for supporting a bridge according to an exemplary embodiment of the present invention
  • FIG. 6 is a schematic structural view of a buoyancy supporting fixed platform for supporting an offshore building according to an exemplary embodiment of the present invention
  • FIG. 7 is a schematic diagram of a construction and installation method of an offshore wind power support platform according to an exemplary embodiment of the present invention.
  • FIG. 8 is a schematic diagram of a construction and installation method of an offshore wind power support platform according to an exemplary embodiment of the present invention.
  • FIG. 9 is a schematic diagram of a construction and installation method of an offshore wind power support platform according to an exemplary embodiment of the present invention.
  • FIG. 10 is a schematic diagram of a construction and installation method of an offshore wind power support platform according to an exemplary embodiment of the present invention
  • 11A is a schematic view showing a construction and installation method of an offshore wind power support platform according to an exemplary embodiment of the present invention
  • Figure 11B is an enlarged schematic view of the area A of Figure 11A;
  • FIG. 12A is a schematic diagram of a construction and installation method of an offshore wind power support platform according to an exemplary embodiment of the present invention
  • Figure 12B is an enlarged schematic view of a region B of Figure 12A;
  • Figure 13 shows the construction method and sequence of the three buoyancy buoyancy support fixed platform
  • Figure 14 shows the construction method and sequence of the three-buoy buoyancy support fixed platform
  • Figure 15 shows the construction method and sequence of the three-buoy buoyancy support fixed platform
  • Figure 16 shows a construction method and sequence of a three-buoy buoyancy support fixed platform
  • Figure 17 shows the construction method and sequence of the three pontoon buoyancy support fixed platform.
  • the buoyant support fixed platform 10 (hereinafter simply referred to as the platform 10) according to the embodiment of the present invention, at least three satellite buoyancy cylinders 1 vertically arranged and having a tapered bottom portion 14 are supported by concrete on the seabed, wherein the satellite
  • the buoyancy cylinder 1 is a hollow cylinder (for example, a cylinder, a four-sided cylinder, a six-sided cylinder, etc.); and a connection structure for interconnecting the satellite buoyancy cylinder 1; wherein the platform supports an offshore wind turbine and/or Or bridges and / or marine buildings.
  • the plane of the platform 10 is polygonal and includes a triangular dividing unit.
  • the platform 10 comprises at least three satellite buoyancy cylinders 1 arranged vertically and having a conical bottom 14, a central support bar, a frame structure and a steel cable 13.
  • the connection structure is a steel cable 13
  • the center support bar and the frame structure are optional structural arrangements.
  • the satellite buoyancy cylinder 1 is fixedly supported on the seabed by concrete and located at the node of the platform 10 (i.e., the node of the polygon of the platform 10).
  • the center support bar is located at the center of gravity of the platform 10.
  • the frame structure is used to connect the satellite buoyancy cylinder 1 and the central support rod member, respectively, and the steel cable 13 (connection structure) is used to interconnect the above-mentioned respective satellite buoyancy cylinders 1.
  • a fan horizontal axis fan or vertical axis fan is supported on at least one of the center support bar and the satellite buoyancy cylinder 1.
  • the plane of the platform 10 shown in Figures 1 and 2 is a triangle containing a plurality of triangular dividing units.
  • a triangular division unit composed of three satellite buoyancy cylinders 1 and a triangular division unit composed of two satellite buoyancy cylinders 1 and a central support rod member.
  • the structure of the platform 10 is relatively stable because it has a plurality of triangular dividing units. 1 and 2 are only used as an example, and are not limited to the platform 10 in the embodiment of the present invention.
  • the plane of the platform 10 according to the embodiment of the present invention may also be square, and the satellite buoyancy cylinder 1 is respectively disposed at four nodes, and A central support bar is provided at the center of gravity of the quadrilateral plane.
  • the platform 10 can also be a polygon such as a pentagon or a hexagon.
  • sea level 8 is shown as a reference in the figure.
  • the three satellite buoyancy cylinders 1 have a diameter of 12 meters and a height of 9 meters, and are respectively disposed at the nodes of the platform 10 having an equilateral triangle of 40 meters.
  • the wall thickness of the satellite buoyancy cylinder 1 is 0.35 meters to 0.4 meters at the bottom.
  • the top plate has a thickness of 0.35 m to 0.5 m and the bottom plate is 0.35 m to 0.6 m.
  • the center pontoon 9 has a diameter of 10 meters, a height of 12 meters, a wall thickness of 0.35 meters to 0.4 meters, and a ceiling of 0.5 meters and a bottom plate of 0.4 meters to 0.60 meters.
  • the satellite buoyancy cylinder 1 in the platform 10 is a hollow cylinder, such as a cylinder, a tetrahedral cylinder, a six-sided cylinder, and the like.
  • the bottom of the satellite buoyancy cylinder 1 is provided with a conical bottom 14 whose bottommost point points towards the seabed.
  • the diameter of the bottom surface of the tapered bottom portion 14 may preferably be larger than the cross-sectional diameter of the satellite buoyancy cylinder 1.
  • the satellite buoyancy cylinder 1 can be a steel buoy or a hollow cylinder made of concrete.
  • the satellite buoyancy cylinder 1 can be made of one of prestressed concrete and prestressed lightweight concrete and prestressed fiber concrete and prestressed steel tube concrete and steel-concrete composite materials.
  • a vertical axis fan can be installed on the satellite buoyancy cylinder 1.
  • a pumping system is provided in the satellite buoyancy cylinder 1, and the pumping system includes a water pump 70 and a pressure tube 16. Concrete pumps and cement mortar pumps are external. Wherein, one end of the pressure pipe 16 is connected to one of the water pump and the concrete pump, and the other end is open to communicate with the outside through the bottommost point of the conical bottom portion 14 of the satellite buoyancy cylinder 1 for outputting from the water pump and the concrete pump respectively. The water or concrete is pressed to the outside. The cement mortar is pumped out of the conical bottom 14 by another set of pressure tubes 65.
  • Pipe 66 is used to inspect concrete.
  • a coupling prestressed anchoring end 13 a pontoon inlet 38, a pontoon stiffening ring 27, a plenum 28, a water pump 41, another pressure tube 42, a detection tube 43, and a gas tube 44 are also shown.
  • the satellite buoyancy cylinder 1 may be filled with water or sand.
  • the filler is not limited to water or sand, and may be any material having a large specific gravity, so that the platform 10 can be pressed.
  • the center support bar is disposed at the center of gravity of the platform 10, and a horizontal axis fan can be mounted on the center support bar.
  • the central support bar member can be set as the center pontoon 9.
  • the vertically arranged central pontoon 9 has a structure similar to that of the satellite buoyancy cylinder 1, and is a hollow cylinder such as a cylinder, a tetrahedral cylinder, a hexahedral cylinder or the like.
  • the central pontoon 9 can be a steel pontoon or a hollow cylinder made of concrete.
  • the center pontoon 9 can be made of one of prestressed concrete and prestressed lightweight concrete and prestressed fiber concrete and prestressed steel tube concrete and steel-concrete composite materials.
  • the cross section of the central pontoon 9 can be set larger than the cross section of the satellite buoyancy cylinder 1.
  • the central pontoon 9 is not fixedly supported on the seabed, but is semi-submersible suspended on the sea surface.
  • the central support bar can be set as a central support plate.
  • the support plate is a flat plate structure to which a horizontal axis fan can be mounted.
  • the central support plate may be made of one of prestressed concrete and prestressed lightweight concrete and prestressed fiber concrete and prestressed steel tube concrete and steel-concrete composite materials. Because the weight of the fan is relatively light, the center float 9 is suspended at sea. When the buoyancy support fixed platform supports a relatively heavy weight bridge, the central support bar is a central buoyancy cylinder, and the central buoyancy cylinder is fixedly supported on the seabed by concrete. Or as shown in Figure 5, the pier 31 distributes the load through the platform 32 to the satellite buoyancy cylinder.
  • the frame structure is used for connecting the satellite buoyancy cylinder 1 and the central support rod member.
  • the frame structure when the buoyancy support fixed platform supports the wind turbine, the frame structure includes a lower connecting beam 2 connecting the satellite buoyancy cylinder 1 and the central support rod member from the lower portion, and
  • the diagonally connected satellite buoyancy cylinder 1 and the diagonal bracing 4 of the central support bar member may also optionally include an upper connecting beam 3 connecting the satellite buoyancy cylinder 1 and the central support bar member from the upper portion.
  • the frame structure comprises an upper connecting beam 3 connecting the satellite buoyancy cylinder 1 and the central supporting rod member from the upper portion, and a lower connecting beam 2 connecting the satellite buoyancy cylinder 1 and the central supporting rod member from the lower portion.
  • At least a portion of the upper connecting beam 3, the lower connecting beam 2, and the bracible 4 may be made of one of prestressed concrete and prestressed lightweight concrete and prestressed fiber concrete and prestressed steel tube concrete and steel-concrete composite materials.
  • the upper connecting beam 3 and/or the lower connecting beam 2 may be provided as hollow beams so that maintenance personnel can walk in the upper connecting beam.
  • adjacent satellite buoyancy cartridges 1 are attached from the sides of the polygonal platform 10 using steel cables 13.
  • FIG. 4 illustrates a platform 10 in accordance with an exemplary embodiment of the present invention.
  • the plane of the platform 10 is quadrilateral (square), comprising a central buoy 9 (central support rod) and four satellite buoyancy cylinders, four frame structures respectively connecting the central buoy 9 and four satellite buoyancy cylinders 1 and connecting each two The steel cable 13 of the adjacent satellite buoyancy cylinder 1.
  • four satellite buoyancy cylinders 1 are fixedly supported on the seabed by concrete, and the central buoy 9 is semi-submerged and suspended on the sea surface.
  • the platform 10 is used in a water depth of 30 meters.
  • the center pontoon 9 has a diameter of 10 meters, a height of 25 meters, a wall thickness of 0.35 meters to 0.4 meters, and a ceiling of 0.5 meters and a bottom plate of 0.4 meters to 0.60 meters.
  • a 10 m high concrete tower 20 is cast on the center pontoon 9 for connection to the fan tower 5 of the fan through the anchor 23 to stably support the fan.
  • the fan tower 5 of the fan For a 5 MW horizontal axis fan 5 (mounted on the center pontoon 9), it weighs more than 200 tons and the rotor has a diameter of 120 meters, at which point the height of the steel tower is 90 meters. Together with the steel tower, the total weight of the fan will be between 700 and 1000 tons.
  • the four satellite buoyancy cylinders 1 have a diameter of 12 meters and a height of 14 meters and are respectively arranged at a rectangular node of 38 meters by 38 meters.
  • the wall thickness of the satellite buoyancy cylinder 1 is 0.35 to 0.4 meters at the bottom.
  • the top plate has a thickness of 0.35 m to 0.5 m and the bottom plate is 0.35 m to 0.6 m.
  • the diagonal length between the center buoy 9 and the satellite buoyancy cylinder 1 is 26.5 meters.
  • a pre-stressed (lightweight) concrete frame is used to connect the central buoy 9 to the satellite buoyancy cylinder 1.
  • the diagonal bracing 4, the upper connecting beam 3 and the lower connecting beam 2 are 3.5 m x 3 m hollow members, so that maintenance personnel can move in the hollow region of the upper connecting beam hollow member.
  • the hollow section of the hollow member can contain air to provide additional buoyancy when the platform 10 needs to provide additional buoyancy during floating at sea.
  • the hollow member may be filled with a relatively large specific gravity such as water and/or sand and/or concrete to increase its own weight.
  • the offshore wind power platform 10 is designed to raise the pulling force generated by the bending moment generated by the wind against the base of the platform 10.
  • the size is 38 meters x 38 meters.
  • the satellite buoyancy cylinder 1 of the fixed platform 10 is filled with a substance with a large specific gravity, such as concrete, to counteract the upward pulling force generated by the wind.
  • the pedestal cone 14 is capable of transmitting horizontal loads to the concrete bed 17 and then to the seabed by the frictional resistance between the bed 17 and the seabed 6. If used at a water depth of 50 meters, its size is increased to 50 meters x 50 meters.
  • the quadrilateral platform 10 described above may also support a marine building structure or a water building structure.
  • the center buoy 9 has a diameter of 10 meters, a height of 20 meters, a wall thickness of 0.35 meters to 0.4 meters, and a ceiling of 0.5 meters and a bottom plate of 0.4 meters to 0.60 meters.
  • the four satellite buoyancy cylinders 1 have a diameter of 10 meters and a height of 20 meters and are respectively disposed at rectangular nodes of 50 meters by 50 meters.
  • the wall thickness of the buoyancy cylinder is 0.35 m to 0.4 m at the bottom, the thickness of the top plate is 0.35 m to 0.5 m, and the bottom plate is 0.35 m to 0.6 m.
  • the platform 10 can also support the bridge.
  • the satellite buoyancy cylinder 1 is symmetrically arranged, and can be either axisymmetric or mirror symmetrical.
  • the six satellite buoyancy cylinders 1 are arranged in a mirror-symmetric manner.
  • three or six satellite buoyancy cylinders can also be arranged symmetrically in an axis, so that the force is uniform.
  • a plurality of satellite buoyancy cylinders 1 jointly support a pile cap 32, and the pile cap 32 supports a bridge pier so that the platform 10 can support the bridge.
  • the satellite buoyancy cylinder 1 has a diameter of 5 meters, a height of 30 meters, a wall thickness of 0.4 meters and a water depth of 25 meters.
  • the platform 10 can also support the marine structure.
  • the platform 10 is a grid structure, and the satellite buoyancy cylinders 1 are respectively disposed on the lattice points of the grid; There are marine buildings.
  • the secondary beam 35 can be further disposed between the connection structures connecting the satellite buoyancy cartridges 1.
  • a prestressed (lightweight) concrete buoyancy support fixed platform supporting a marine structure or a waterborne building structure The basic module is four buoyancy cylinders and a lattice beam frame structure connecting four buoyancy cylinders, and the lattice beam is 30 m ⁇ 30 m. , can increase the buoyancy cylinder and the lattice beam connecting the buoyancy cylinder,
  • the buoyancy cylinder has a diameter of 8 meters, a height of 30 meters, a hollow cylinder wall thickness of 0.4 to 0.5 meters, and a top plate of 0.5 meters and a bottom plate of 0.4 meters to 0.60 meters.
  • the bottom of the buoyancy cylinder has a diameter of 10 meters and a height of 4 meters.
  • the hollow top beam and the hollow bottom beam of the lattice beam are both 3 meters wide by 4 meters high and the wall thickness is 0.35 meters to 0.5 meters.
  • the hollow lattice secondary beam supporting the floor is 1.5 meters wide by 2 meters high and the wall thickness 0.25 meters.
  • the marine structure or the underwater structure has eight floors, each with a net height of 3 meters.
  • the above-described offshore wind power support platform 10 according to an embodiment of the present invention is first produced at a dock or a port, for example, by a section prefabrication "wet method”. Therefore, this novel method is called “wet method” for the construction of prestressed (lightweight) concrete buoyancy fixed platform sections.
  • buoyancy cylinder foundation engineering construction and installation The construction method of the buoyancy cylinder foundation engineering and the construction of the pre-stress (lightweight) concrete buoyancy fixed platform section "wet method" will be described below.
  • a dredger is used to separately excavate the seabed soft soil to the bearing layer 6 of the seabed to form a size.
  • the groove 15 is larger than the tapered bottom portion 14 of the satellite buoyancy barrel 1. It is preferred to detect the seabed in advance prior to excavation to determine the thickness of the soft soil layer 7. Alternatively, it may be judged whether or not the support layer 6 has been excavated based on the excavated material.
  • a steel plate ring 18 may be provided on the inner wall of the groove 15. Rebar can be placed inside the ring.
  • the sinking platform 10 is near the seabed surface, and is preset in the groove 15 between the bottommost point of the conical bottom portion 14 of the satellite buoyancy cylinder 1 and the bearing layer 6. Concrete layer 17 of thickness. If the steel plate ring 18 is provided in the groove 15 at this time, a concrete layer 17 of a predetermined thickness is cast between the steel plate ring 18 and the bottommost point of the tapered bottom portion 14 of the satellite buoyancy cylinder 1 and the bearing layer 6.
  • the platform 10 is further lowered so that the conical bottom portion 14 is completely immersed in the concrete layer 17, maintaining the level and position until the concrete solidifies and then rises the platform 10 to disengage. Concrete layer 17. After the concrete layer 17 is completely solidified, a tapered groove corresponding to the tapered bottom portion 14 will be formed in the concrete layer 17, and the tapered groove can better fit the tapered bottom portion 14.
  • the platform 10 is again sunk after the concrete layer 17 reaches a predetermined strength to form a slit 11 between the tapered bottom portion 14 and the tapered groove.
  • the slit 11 is filled by grouting to form a filled slit 12, and the platform 10 is slightly lowered until the platform 10 starts to be supported on the concrete layer 17, and the paddle is to be pressed. After reaching the preset strength, the platform 10 is fully supported on the concrete layer 17, thereby fixing the satellite buoyancy cylinder 1 to the seabed, that is, the platform 10 is fixed on the seabed. So far, the installation of the platform 10 has been completed.
  • the method of constructing the platform 10 includes the following steps:
  • the seabed may be preferably detected in advance to determine its softness.
  • the satellite buoyancy cylinder 1 may be filled with water or sand or concrete to press the satellite buoyancy cylinder 1 after the satellite buoyancy cylinder 1 is fixed on the seabed.
  • the construction installation method further includes fabricating the platform 10 using a segmental prefabrication method.
  • the construction begins with the casting of these pre-stressed (lightweight) concrete platforms 10. Casting can be carried out in a conventional manner on land conditions on a dry dock. Instead of completing it in a dry dock, the platform is built in a dock or port side segment prefabrication method, so this novel method is called a “wet method” for prestressed (lightweight) concrete platform segment construction.
  • a pre-stressed concrete or pre-stressed lightweight concrete or prestressed fiber concrete platform 10 can be produced by a segmental prefabrication method in a construction and installation method, including:
  • connection structure connecting the satellite buoyancy cylinders 1 is divided into the connection structure segments 56;
  • the segment prefabrication method is used to match the casting connection structure segments, and the prestressing connection structure segments are used to assemble the connection structure segments, thereby completing the entire prefabricated assembly connection structure 57;
  • the guide pile 51 is inserted at the sea side of the port side, and each of the satellite buoyancy cylinders 1 is correspondingly provided with at least three guide piles 51, so that the steel truss 52 can be positioned and supported on the sea side of the port side for installation of the satellite buoyancy cylinder 1;
  • the pre-stressed assembly of the satellite buoyancy cylinder segment 53 is used to complete the prefabrication assembly of the entire satellite buoyancy cylinder 1 (the reference numeral 58 in Fig. 17 represents the satellite buoyancy cylinder after the assembly is completed);
  • the completed prefabricated assembled satellite buoyancy cylinder is suspended to the position of the guiding pile 51 by a floating crane (for example, using a sling 55), and the positioning steel truss 52 is lowered to be fixed on the guiding pile 51;
  • the entire prefabricated assembly connection structure 57 is lowered to a joint position corresponding to each satellite buoyancy cylinder 1, and the joint is fixed and fixed by prestressing and anchoring;
  • the locking device is removed and the positioning steel truss 52 is removed. After the platform is free, it can be towed to the offshore installation area for the basic construction and installation of the platform.
  • the steel platform 10 can be integrally spliced by the factory prefabricated construction site, including: the steel platform supporting the offshore wind turbine and/or the bridge and/or the marine building structure is prefabricated by the factory, The construction site near the port is spliced into the entire steel platform, and the entire steel platform completed by the floating crane is hoisted into the water as a whole, or the platform is slid down to the sea by using the slide. The suspended steel platform is towed to the sea to install the sea area for the basic construction of each buoyancy cylinder of the steel platform.
  • the risks are classified according to the results of the accident. Taking offshore wind farms as an example, the first level of risk is that the buoyancy support fixed platform collides with the ship. The second level of risk is that the blades and towers are damaged in inclement weather. Other risks are the impact on navigation, shipping and fisheries, which can be handled in the usual way. For the first level of risk, there are enough warning reminders around the fan that the fan should be painted in a bright color to alert the vessel. A similar accident may also be caused by a floating vessel that loses power, so the buoyancy support fixed platform needs to be designed to withstand the impact of the vessel so that it can only cause local damage.
  • buoyancy support fixed platform technology water depth of about 10 to 50 meters
  • our offshore wind and ocean energy prestressed lightweight concrete floating platform technology water depth of about 20 meters to 500 meters
  • solar energy at sea ocean energy
  • marine bioenergy and other marine green energy marine pastures
  • marine life desalination and other marine resources
  • marine agriculture, marine cities, marine tourism, island real estate this technology has significant economic benefits for the development of marine green energy and resources and the island economy. Strategic significance.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Architecture (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Ocean & Marine Engineering (AREA)
  • Wind Motors (AREA)

Abstract

一种海上风电、桥梁、海洋建筑物的浮力支撑固定平台(10)及其施工安装方法。该浮力支撑固定平台包括至少三个空心圆柱体浮力筒(1)和一个可选择空心浮筒(9),通过横向框架结构连接各浮力筒(1)和浮筒(9)以形成平面为三角形或四边形或多边形的浮力支撑结构,以及由海床水底混凝土支撑的浮力筒底部基础。浮力筒的浮力抵消部分水工建筑物的重量,提高了基础承载能力,浮力筒嵌入到海床提高了平台(10)的水平抗力和稳定性,并对很深的软土可选择软土加固。嵌入到海床的浮力支撑固定平台(10)是独特的和重点所在,可应用于水深约10米至30米部分海域可达50米的海上风电等海洋绿色能源和桥梁及海洋建筑结构,具有潜在经济效益。

Description

支撑海上风机、桥梁、海洋建筑物的浮力支撑固定平台 技术领域
本发明涉及海上浮力平台及其施工安装方法,尤其涉及一种浮力支撑固定平台支撑海上风机、桥梁、海洋建筑物的浮力支撑固定平台及其施工安装方法。
背景技术
水中建筑物的地质条件和风浪荷载及水深决定了水中建筑物的基础形式,一般大型水中建筑物的基础占总体造价的25%~40%。30米已上的中度水深至深水基础, 应考虑海洋环境产生的荷载力,如台风、巨浪、大潮产生的巨大水平力,成为其设计和施工中必须考虑的重要控制条件。
海上风机深水区基础型式多为浮式平台,浅水区主要为桩基础或重力式基础的桩基础,中度深水区为桁架型导管架基础。桥梁中度深水区至深水区主流基础型式为钻孔群桩基础或钢板桩围堰管柱基础。钻井和采油的海洋固定式平台用于水深10米至200米,钻井和采油的海洋半潜式平台用于水深100米至数千米。
我们另一个发明(申请号为CN2012100302587的中国专利申请)“支撑海上风机和海洋能发电机的预应力混凝土浮式平台”水深30米至100米比钢浮式平台节省30%至50%或更多。
本发明申请吸收了我们另一个发明“支撑海上风机和海洋能发电机的预应力混凝土浮式平台”在中度水深至深水区施工方便可行和造价低等优点,而本发明的支承基础按浮力筒浮力抵消部分水工建筑物的重量,加上固定平台底部的基础也承受部分水工建筑物的重量,浮力筒嵌入到海床提高了平台水平抗力和稳定性,及本发明独有的嵌入到海床的浮力支撑固定平台安装方法,解决了水深约10米至30米或部分海域至50米的水工建筑物基础造价较高的难题。
本发明在水深30米至50米海域均为经济适用,应按地质条件和风浪荷载等比选。
发明内容
本发明要解决的技术问题在于针对水深10米至30米或部分海域至50米的现有海上风电等海洋(水工)建筑物基础造价较高和施工难度较大的难题,提供一种支撑海上风机和/或桥梁和/或海洋建筑结构的浮力支撑固定平台及其施工方法。
本发明解决其技术问题所采用的技术方案是:提供一种支撑海上风机、桥梁、海洋建筑物的浮力支撑固定平台,所述浮力支撑固定平台包括:
至少三个垂直布置的且具有锥形底部的卫星浮力筒,通过混凝土固定支撑在海床上,其中所述卫星浮力筒为空心柱体;以及
连接结构,用以相互连接所述卫星浮力筒;其中,
平台上支撑有海上风机和/或桥梁和/或海洋建筑物。
在依据本发明实施例的支撑海上风机、桥梁、海洋建筑物的浮力支撑固定平台中,所述浮力支撑固定平台的平面为三角形或四边形或多边形且包含三角形划分单元,其中,
所述卫星浮力筒分别设于所述多边形的节点处,且至少一个所述卫星浮力筒上支撑有海上风机;
所述连接结构为钢拉索或空心杆件,用以相互连接所述卫星浮力筒。
在依据本发明实施例的支撑海上风机、桥梁、海洋建筑物的浮力支撑固定平台中,
所述平台进一步包括中心支撑杆件和框架结构,所述框架结构用以连接所述卫星浮力筒与所述中心支撑杆件;所述中心支撑杆件位于所述平台的平面重心处,且支撑有海上风机。
在依据本发明实施例的支撑海上风机、桥梁、海洋建筑物的浮力支撑固定平台中,所述中心支撑杆件为垂直布置的半潜式悬浮的中心浮筒或通过水下混凝土固定支撑在海床上的中心浮力筒;其中,所述中心浮筒或中心浮力筒均为空心柱体。
在依据本发明实施例的支撑海上风机、桥梁、海洋建筑物的浮力支撑固定平台中,所述框架结构包括从下部连接所述卫星浮力筒与所述中心支撑杆件的下连接梁以及对角连接所述卫星浮力筒与所述中心支撑杆件的斜撑。
在依据本发明实施例的支撑海上风机、桥梁、海洋建筑物的浮力支撑固定平台中,所述卫星浮力筒对称布置,且所述卫星浮力筒上共同支撑有桩承台,所述桩承台上支撑桥梁的桥墩。
在依据本发明实施例的支撑海上风机、桥梁、海洋建筑物的浮力支撑固定平台中,所述平台为网格结构,所述卫星浮力筒分别设置在所述网格的格点上;所述平台上支撑海洋建筑物。
在依据本发明实施例的支撑海上风机、桥梁、海洋建筑物的浮力支撑固定平台中,所述平台包括多个正方形子平台,各正方形子平台由连接结构连接,所述卫星浮力圆筒分别设置在所述正方形子平台的节点上;所述平台上支撑专供乘客上下、货物装卸的人工码头建筑物。
在依据本发明实施例的支撑海上风机、桥梁、海洋建筑物的浮力支撑固定平台中,所述平台分为为一个或多个平台,多个平台时各平台由框架结构连接,所述卫星浮力圆筒分别设置在所述一个至多个平台的节点上;所述平台上支撑人工建造的人工岛及其岛上建筑物。
在依据本发明实施例的支撑海上风机、桥梁、海洋建筑物的浮力支撑固定平台中,所述卫星浮力筒和/或连接结构和/或框架结构由钢或预应力混凝土或预应力轻质混凝土或预应力纤维混凝土或预应力钢管混凝土或钢-混凝土组合材料制成。
在依据本发明实施例的支撑海上风机、桥梁、海洋建筑物的浮力支撑固定平台中,所述卫星浮力筒内设有泵压系统,所述泵压系统包括水泵、压力管以及设置在外部的混凝土泵和水泥沙浆泵;其中,所述压力管的一端开口与所述水泵或混凝土泵连接,另一端开口穿过所述卫星浮力筒的锥形底部的最底点与外界相通,用以将分别从所述水泵、混凝土泵输出的水或混凝土挤压至外界;所述水泥沙浆经另外的一套压力管道挤压至外界。
在依据本发明实施例的支撑海上风机、桥梁、海洋建筑物的浮力支撑固定平台中,所述卫星浮力筒内灌沙或灌水,用以增加所述平台的自重,从而抵抗风荷载引起的上拔力。
本发明还提供了一种海上浮力支撑固定平台的施工安装方法,所述施工安装方法用于上述的支撑海上风机、桥梁、海洋建筑物的浮力支撑固定平台,包括以下步骤:
在安装点与所述平台的卫星浮力筒对应的位置处分别开挖海床软土至所述海床的持力层,用以形成尺寸大于所述卫星浮力筒的锥形底部的凹槽;
拖运所述海上风电支撑平台至所述安装点处,调节所述平台以使所述卫星浮力筒与所述凹槽一一对应;
下沉所述平台,并在所述凹槽内、所述卫星浮力筒的锥形底部的最底点与所述持力层之间浇注形成预设厚度的混凝土层;
在所述混凝土层完全凝固之前继续下沉所述平台,以使所述锥形底部完全嵌入所述混凝土层,保持水平及位置至所述混凝土层中形成与所述锥形底部对应的锥形凹槽,最后上升所述平台;
在所述混凝土层达到预设强度之后下沉所述平台,以在所述锥形底部与所述锥形凹槽之间形成狭缝;以及
压浆填满所述狭缝,并将平台略为下降至所述平台开始支撑在混凝土层上,待压桨达至预设强度后将所述平台完全支撑在混凝土层上,从而将所述卫星浮力筒以及所述平台固定在所述海床上;
在所述平台中心支撑杆件上安装海上风机和/或桥梁和/或海洋建筑物。
本发明还提供了一种海上浮力支撑固定平台的施工安装方法,所述方法用于上述的平台,包括以下步骤:
拖运所述平台至安装点处;
下沉所述平台至海床上方,并启动卫星浮力筒中的水泵,以通过压力管位于卫星浮力筒的锥形底部的最底点处的开口泵压出水,从而在所述锥形底部的下方冲刷海床软土至所述海床的持力层,用以形成尺寸大于所述锥形底部的凹槽;
启动外置混凝土泵,以通过压力管位于卫星浮力筒的锥形底部的最底点处的开口泵压出混凝土,从而在所述凹槽内、所述卫星浮力筒的锥形底部的最底点与所述持力层之间浇注形成预设厚度的混凝土层;
在所述混凝土层完全凝固之前继续下沉所述平台,以使所述锥形底部完全嵌入所述混凝土层,保持预设时间后上升所述平台以在所述混凝土层中形成所述锥形底部对应的锥形凹槽;
在所述混凝土层达到预设强度之后下沉所述平台,以在所述锥形底部与所述锥形凹槽之间形成狭缝;以及
启动外置水泥砂浆泵,以通过另一套压力管位于卫星浮力筒的锥形底部的最底点处的开口泵压出水泥砂浆来压浆填满所述狭缝,从而将所述卫星浮力筒以及所述平台固定在所述海床上;
在所述平台上安装海上风机和/或桥梁和/或海洋建筑物。
在依据本发明实施例的海上浮力支撑固定平台的施工安装方法中,
在所述卫星浮力筒固定在所述海床上之后,在所述卫星浮力筒中填充水或沙以压重所述卫星浮力筒。
在依据本发明实施例的海上浮力支撑固定平台的施工安装方法中,所述施工安装方法进一步包括在紧贴所述凹槽的内壁上设置钢板环,并在所述钢板环内部设置钢筋,从而在所述凹槽内、所述卫星浮力筒的锥形底部的最底点与所述持力层之间浇注形成预设厚度的混凝土层,用以防止所述凹槽侧海床软土的坍塌。
在依据本发明实施例的海上浮力支撑固定平台的施工安装方法中,所述施工安装方法进一步包括采用节段预制施工法制作所述预应力混凝土或预应力轻质混凝土或预应力纤维混凝土平台,包括:
在预制场或工厂内使用节段预制方法匹配浇注组成卫星浮力筒的卫星浮力筒节段;
连接各卫星浮力筒的连接结构分成连接结构节段;
在预制场或工厂内使用节段预制方法匹配浇注所述连接结构节段,使用预应力逐个连接结构节段以拼装连接结构节段,从而完成整个预制拼装连接结构;
在港口侧的海上插打引导桩,每个所述卫星浮力筒对应设置至少三根引导桩,从而能够在港口侧的海上支撑定位钢桁架以进行卫星浮力筒的安装;
将所述预制卫星浮力筒节段运输至所述港口侧;
使用预应力拼装卫星浮力筒节段,以完成整个卫星浮力筒的预制拼装;
通过浮吊将所述完成的整个预制拼装卫星浮力筒吊至引导桩的位置处,并下降所述定位钢桁架以固定在所述引导桩上;
调节所述卫星浮力筒的水平和位置,并采用所述定位钢桁架进行固定,使连接结构能在陆上条件安装;
将所述整个预制拼装连接结构运输至所述港口侧;
采用浮吊,将所述整个预制拼装连接结构下降到与各卫星浮力筒对应的接头位置处,以及通过预应力和锚具连接和固定接头;
重复以上步骤到完成平台的节段施工法;
移除锁定设备并移除所述定位钢桁架,平台自由后即可拖至海上安装海域进行平台的基础工程施工安装。
在依据本发明实施例的海上浮力支撑固定平台的施工安装方法中,所述施工安装方法进一步包括采用工厂预制工地整体拼接制作所述钢平台,包括:
支撑海上风机和/或桥梁和/或海洋建筑结构的钢平台施工采用工厂预制,在港口附近工地拼接成整个钢平台,通过浮吊将所述完成的整个钢平台整体吊至水中,或利用滑道将平台下滑至海上,将悬浮钢平台拖至海上安装海域进行钢平台各浮力筒的基础工程施工。
本发明产生的有益效果是:由于依据本发明实施例的浮力支撑固定平台通过将卫星浮力筒固定在海床上,因此相比于半潜式的悬浮平台,在风力的作用下,浮力筒的水或沙等压重能抵消一部分由风力产生的上升拔力,从而使得平台更加稳定。另外,浮力筒的浮力抵消部分水工建筑物的重量提高了基础承载能力,浮力筒嵌入到海床提高了平台水平抗力和稳定性,因此浮力支撑固定平台的尺寸与浮式平台相比将大大减少,在水深10米至30米中度水深可大幅节约建设成本,也节约海洋空间资源,促进海域科学利用。从而提高了船运行时的安全性能。浮力支撑固定平台施工安装全部为人工水上作业,平台杆件全部预制,现场占用时间短,采用水上遥控建设浮力筒基础和海底地基处理,解决了沉井等水下基础需要复杂重型施工设备和危险的水下人工安装作业等最难的问题。施工设备制作成本低廉,可重复利用, 提高了工作效率, 施工方法安全,低风险和低成本,适用于海上风机和/或桥梁和/或海洋建筑物的基础工程。
附图说明
下面将结合附图及实施例对本发明作进一步说明,附图中:
图1是本发明实施例的安装有水平轴风机的浮力支撑固定平台的结构示意图;
图2是图1中1-1处的平面示意图;
图3是本发明实施例的卫星浮力筒中设有泵压系统的海上风电支撑平台的结构示意图;
图4是本发明示范实施例的支撑有海上风机的浮力支撑固定平台的结构示意图;
图5是本发明示范实施例的用于支撑桥梁的浮力支撑固定平台的结构示意图;
图6是本发明示范实施例的用于支撑海上建筑物的浮力支撑固定平台的结构示意图;
图7是本发明示范实施例的海上风电支撑平台的施工安装方法的示意图;
图8是本发明示范实施例的海上风电支撑平台的施工安装方法的示意图;
图9是本发明示范实施例的海上风电支撑平台的施工安装方法的示意图;
图10是本发明示范实施例的海上风电支撑平台的施工安装方法的示意图;
图11A是本发明示范实施例的海上风电支撑平台的施工安装方法的示意图;
图11B是图11A中A区的放大示意图;
图12A是本发明示范实施例的海上风电支撑平台的施工安装方法的示意图;
图12B是图12A中B区的放大示意图;
图13示出了三浮筒浮力支撑固定平台的建造方法和顺序;
图14示出了三浮筒浮力支撑固定平台的建造方法和顺序;图15示出了三浮筒浮力支撑固定平台的建造方法和顺序;
图16示出了三浮筒浮力支撑固定平台的建造方法和顺序;
图17示出了三浮筒浮力支撑固定平台的建造方法和顺序。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅用以解释本发明,并不用于限定本发明。
在依据本发明实施例的浮力支撑固定平台10(以下简称为平台10)中,包括至少三个垂直布置的且具有锥形底部14的卫星浮力筒1,通过混凝土固定支撑在海床上,其中卫星浮力筒1为空心柱体(例如圆柱体、四面柱体、六面柱体等等。);以及还包括连接结构,用以相互连接卫星浮力筒1;其中,平台上支撑有海上风机和/或桥梁和/或海洋建筑物。
当平台10上支撑有海上风机时,依据本发明实施例的平台10的平面为多边形且包含三角形划分单元。该平台10包括至少三个垂直布置的且具有锥形底部14的卫星浮力筒1、一个中心支撑杆件、框架结构以及钢拉索13。具体而言,连接结构为钢拉索13,中心支撑杆件和框架结构为可选结构设置。其中,卫星浮力筒1通过混凝土固定支撑在海床上,并位于平台10的节点(即平台10的多边形的节点)处。中心支撑杆件位于平台10的平面重心处。框架结构用于分别连接卫星浮力筒1与中心支撑杆件,而钢拉索13(连接结构)用于相互连接上述各个卫星浮力筒1。中心支撑杆件和卫星浮力筒1的至少一个上支撑有风机(水平轴风机或垂直轴风机)。
具体而言,图1和2中示出的平台10的平面为三角形,包含多个三角形划分单元。例如,三个卫星浮力筒1构成的三角形划分单元,以及两个卫星浮力筒1和一个中心支撑杆件构成的三角形划分单元。因为具有多个三角形划分单元,因此平台10的结构相对稳定。图1和2仅用作举例,并不是对本发明实施例中的平台10的限制,依据本发明实施例的平台10的平面还可以正方形,其四个节点处分别设有卫星浮力筒1,并在该四边形的平面重心处设有一个中心支撑杆件。当然,平台10也可以是五边形、六边形等多边形。另外,图中示出了海平面8作为参考。
具体而言,三个卫星浮力筒1的直径为12米,高度为9米,分别设置在边长为40米等边三角形的平台10的节点处。卫星浮力筒1的壁厚在底部为0.35米到0.4米。顶板厚度为0.35米到0.5米,以及底板为0.35米到0.6米。中心浮筒9的直径为10米、高度为12米、壁厚为0.35米到0.4米、以及顶板为0.5米和底板为0.4米到0.60米。
平台10中的卫星浮力筒1为空心柱体,例如圆柱体、四面柱体、六面柱体等等。卫星浮力筒1的底部设有锥形底部14,该锥形底部14的最底点指向海床。为了更加稳定地支撑卫星浮力筒1,该锥形底部14的底面直径可优选大于卫星浮力筒1的截面直径。卫星浮力筒1可为钢浮筒,也可以为混凝土制成的空心柱体。例如,卫星浮力筒1可由预应力混凝土和预应力轻质混凝土和预应力纤维混凝土和预应力钢管混凝土和钢-混凝土组合材料中的一种制成。可在卫星浮力筒1上可安装垂直轴风机。
在本发明的实施例中,如图3所示,卫星浮力筒1内设有泵压系统,该泵压系统包括水泵70、以及压力管16。混凝土泵和水泥沙浆泵则为外置。其中,压力管16的一端开口与水泵、混凝土泵中的一个连接,另一端开口穿过卫星浮力筒1的锥形底部14的最底点与外界相通,用以将分别从水泵、混凝土泵输出的水或混凝土压至外界。水泥沙浆则由另外一套压力管65泵压出锥形底部14。具体而言,工作中,当压力管16与水泵连接时,从水泵压出的高压水将通过压力管16并从压力管16位于锥形底部14的最底点处的开口泵压到外界(海中)。管道66用作检测混凝土。其中,图中还示出了连梁预应力锚固端13、浮筒出入口38、浮筒加劲环27、气室28、水泵41、另一压力管42、检测管43以及气管44。为了进一步增加稳定性,卫星浮力筒1内还可充有水或沙,当然,填充物不仅限于水或沙,可以是任意的比重较大的物质,从而可以压重平台10。
中心支撑杆件设置在平台10的平面重心处,可在中心支撑杆件上安装水平轴风机。在本发明的一实施例中,可将中心支撑杆件设为中心浮筒9。垂直布置的中心浮筒9的结构与卫星浮力筒1的结构类似,为空心柱体,例如圆柱体、四面柱体、六面柱体等等。中心浮筒9可为钢浮筒,也可以为混凝土制成的空心柱体。例如,中心浮筒9可由预应力混凝土和预应力轻质混凝土和预应力纤维混凝土和预应力钢管混凝土和钢-混凝土组合材料中的一种制成。通常,可设置中心浮筒9的横截面大于卫星浮力筒1的横截面。如图1和2所示,中心浮筒9不是固定支撑在海床上,而是半潜悬浮在海面上。在本发明的另一实施例中,可将中心支撑杆件设为中心支撑板。该支撑板为平板结构,水平轴风机可安装到该支撑板上。优选地,该中心支撑板可由预应力混凝土和预应力轻质混凝土和预应力纤维混凝土和预应力钢管混凝土和钢-混凝土组合材料中的一种制成。因为风机的重量相对较轻,中心浮筒9悬浮在海上。当浮力支撑固定平台上支撑的是重量相对较重的桥梁时,中心支撑杆件为中心浮力筒,该中心浮力筒通过混凝土固定支撑在海床上。或如图5所示,桥墩31通过承台32将荷载分配到卫星浮力筒。
框架结构用于连接卫星浮力筒1和中心支撑杆件,例如,当浮力支撑固定平台上支撑的是风机时,框架结构包括从下部连接卫星浮力筒1与中心支撑杆件的下连接梁2以及对角连接卫星浮力筒1与中心支撑杆件的斜撑4,也可选择地包括从上部连接卫星浮力筒1与中心支撑杆件的上连接梁3。当浮力支撑固定平台上支撑的是桥梁时,框架结构包括从上部连接卫星浮力筒1与中心支撑杆件的上连接梁3、从下部连接卫星浮力筒1与中心支撑杆件的下连接梁2以及对角连接卫星浮力筒1与中心支撑杆件的斜撑4。上连接梁3、下连接梁2和斜撑4中的至少一部分可由预应力混凝土和预应力轻质混凝土和预应力纤维混凝土和预应力钢管混凝土和钢-混凝土组合材料中的一种制成。可设置上连接梁3和/或下连接梁2为空心梁,使得维修人员可在上连接梁中行走。在本发明的实施例中,采用钢拉索13从多边形平台10的侧面连接相邻的卫星浮力筒1。
图4示出依据本发明示范实施例的平台10。该平台10的平面为四边形(正方形),包括一个中心浮筒9(中心支撑杆件)和四个卫星浮力筒、分别连接中心浮筒9和四个卫星浮力筒1的四个框架结构以及连接每两个相邻卫星浮力筒1的钢拉索13。其中,四个卫星浮力筒1通过混凝土固定支撑在海床上,中心浮筒9半潜悬浮在海面上。该平台10用于水深30米的海域。
在本示范实施例中,中心浮筒9的直径为10米、高度为25米、壁厚为0.35米到0.4米、以及顶板为0.5米和底板为0.4米到0.60米。另有10米高的混凝土塔20浇注在中心浮筒9上,用于通过锚杆23与风机的风机塔5连接,从而稳定地支撑风机。对于5MW的水平轴风机5(安装在中心浮筒9上),其重量超过200吨以及转子的直径为120米,此时钢塔的高度为90米。与钢塔一起,风机的总重量将在700吨到1000吨之间。
四个卫星浮力筒1的直径为12米,高度为14米,分别设置在38米×38米的矩形的节点处。卫星浮力筒1的壁厚在其底部为0.35米到0.4米。顶板厚度为0.35米到0.5米,以及底板为0.35米到0.6米。
中心浮筒9与卫星浮力筒1之间的对角长度为26.5米。预应力(轻质)混凝土框架用于连接中心浮筒9与卫星浮力筒1。斜撑4、上连接梁3和下连接梁2为3.5米×3米的空心部件,使得维修人员可在上连接梁空心部件的空心区域内活动。另外,当平台10在海上浮运需要提供额外浮力时,空心部件的空心区间可以容纳空气以提供额外的浮力。而平台10固定安装好后,为了抵抗风力产生的向上拔力,可在空心部件中填充比重较大的物质,例如水和/或沙和/或混凝土等以增加自重。
从以上可以看出,依据本发明实施例的海上风电平台10的设计是针对风力产生的弯矩对平台10基座所产生的上升拔力。对用于安装5MW水平轴风机的四边形平台10,如果在水深30米处使用,其尺寸为38米×38米。其中,为了防止在风力的作用下发生倾覆或松动,在固定好的平台10的卫星浮力筒1中填充比重较大的物质,例如混凝土,来抵消风力作用下所产生的向上拔力。另外基座锥体14能传递水平荷载至混凝土基床17再以基床17与海床6之间的摩阻力传至海床。如果在水深50米处使用,其尺寸增加到50米×50米。
在该示范实施例中,上述的四边形平台10还可支撑海洋建筑结构或水中建筑结构。其中,中心浮筒9的直径为10米、高度为20米、壁厚为0.35米到0.4米、以及顶板为0.5米和底板为0.4米到0.60米。四个卫星浮力筒1的直径为10米,高度为20米,分别设置在50米×50米的矩形的节点处。浮力筒的壁厚在底部为0.35米到0.4米,顶板厚度为0.35米到0.5米,以及底板为0.35米到0.6米。
在本发明的实施例中,平台10上还可支撑桥梁,例如如图5所示,卫星浮力筒1对称布置,既可以轴对称,也可以是镜面对称。例如,图5中6个卫星浮力筒1镜面对称排布,当然,也可以3个或6个卫星浮力筒1轴对称排布,使得受力均匀。多个卫星浮力筒1上共同支撑有桩承台32,该桩承台32上支撑有桥梁的桥墩,从而平台10可以支撑桥梁, 卫星浮力筒1直径为5米、高度为30米、壁厚为0.4米, 水深25米。
在本发明的实施例中,平台10上还可支撑海洋建筑物,例如如图6所示,平台10为网格结构,卫星浮力筒1分别设置在网格的格点上;平台10上支撑有海洋建筑物。为了使平台10更加稳固,可在连接卫星浮力筒1的连接结构之间进一步设置次梁35。
支撑海洋建筑结构或水中建筑结构的预应力(轻质)混凝土浮力支撑固定平台,基本模块为四个浮力圆筒和连接四个浮力圆筒的格子梁框架结构,格子梁为30米×30米,可增加浮力圆筒和连接浮力圆筒的格子梁, 形成2个或多个30米×30米浮力圆筒格子梁体系的海洋建筑结构或水中建筑结构的浮力支撑固定平台。水深30米。
浮力圆筒直径为8米、高度为30米、空心圆筒壁厚为0.4米到0.5米、以及顶板为0.5米和底板为0.4米到0.60米。浮力圆筒底部的锥体基础直径为10米、高度为4米,格子梁的空心顶梁和空心底梁均为3米宽×4米高及壁厚 0.35米至0.5米。支承楼板的空心格子次梁为1.5米宽×2米高及壁厚 0.25米。海洋建筑结构或水中建筑结构共有八层,每层净高3米。其它建筑结构杆件(支承楼板的空心格子次梁等)按相关规范设计。可选择的连接浮力圆筒顶部和水上建筑结构的多密封空心箱体作为水下建筑结构,能提供额外的浮力。海洋建筑结构或水中建筑结构及浮力支撑结构和基础的设计和施工及安装中应用标准化模块化建设,从而有效降低成本。
在对依据本发明实施例的海上风电支撑平台10进行施工安装时,首先在船坞或港口例如以节段预制“湿法”制作上述依据本发明实施例的海上风电支撑平台10。因此这种新颖的方法称为预应力(轻质)混凝土浮力固定平台节段施工“湿法”。
随后对制作完成的海上风电支撑平台10进行浮力筒基础工程施工安装,下面将按步骤描述该浮力筒基础工程施工安装方法和预应力(轻质)混凝土浮力固定平台节段施工“湿法”。
S101、如图5所示,在安装点处与上述平台10的卫星浮力筒1对应的位置处,采用挖泥船分别开挖海床软土至海床的持力层6,用以形成尺寸大于卫星浮力筒1的锥形底部14的凹槽15。在开挖之前优选预先对海床进行探测,确定其软土层7的厚度。或者可根据开挖出的物质判断是否已经开挖到持力层6。为了防止软土坍塌,还可在紧贴所述凹槽15的内壁上设置钢板环18。环内可设置钢筋。
S102、从海上拖运海上风电支撑平台10至安装点处,调节平台10以使所述卫星浮力筒1与所述凹槽15上下一一对应。
S103、如图6所示,下沉平台10到海床面上访附近,并在凹槽15内、卫星浮力筒1的锥形底部14的最底点与持力层6之间浇注形成预设厚度的混凝土层17。如果此时凹槽15内设有钢板环18,则在钢板环18内、卫星浮力筒1的锥形底部14的最底点与持力层6之间浇注形成预设厚度的混凝土层17。
S104、如图7和8所示,在该混凝土层17完全凝固之前,继续下沉平台10,以使锥形底部14完全陷入混凝土层17,保持水平与位置到混凝土凝固再上升平台10以脱离混凝土层17。当该混凝土层17完全凝固之后,混凝土层17中将形成与锥形底部14对应的锥形凹槽,而且该锥形凹槽能与锥形底部14较好地契合。
S105、如图9A和9B所示,在混凝土层17达到预设强度之后再次下沉所述平台10,以在锥形底部14与锥形凹槽之间形成狭缝11。
S106、如图10A和10B所示,通过压浆填满上述狭缝11,形成填满的狭缝12,并将平台10略为下降至所述平台10开始支撑在混凝土层17上,待压桨达至预设强度后将所述平台10完全支撑在混凝土层17上,从而将卫星浮力筒1固定在海床上,即将平台10固定在海床上。至此,已经完成了平台10的安装。
S107、在平台10的中心支撑杆件上安装水平轴风机,以及在至少一个卫星浮力筒1上安装垂直轴风机。
在本发明的另一实施例中,平台10的施工安装方法包括以下步骤:
S201、浮运海上风电支撑平台10至安装点处;
S202、下沉平台10至海床上方,并启动卫星浮力筒1中的水泵,以通过压力管16位于卫星浮力筒1的锥形底部14的最底点处的开口泵压出水,从而在锥形底部14的下方冲刷海床软土至海床的持力层6,用以形成尺寸大于锥形底部14的凹槽15;在该步骤中,可优选预先对海床进行探测,确定其软土层7的厚度;或者可根据开挖出的物质判断是否已经开挖到持力层6;
S203、启动外置的混凝土泵,以通过压力管16位于卫星浮力筒1的锥形底部14的最底点处的开口泵压出混凝土,从而在卫星浮力筒1的锥形底部14的最底点与持力层6之间浇注形成预设高度的混凝土层17;
S204、在混凝土层17完全凝固之前继续下沉平台10,以使锥形底部14完全陷入混凝土层17,保持水平与位置到混凝土凝固再上升平台10以在混凝土层17中形成锥形凹槽;
S205、在混凝土层17达到预设硬度之后下沉平台10,以在锥形底部14与锥形凹槽之间形成狭缝11;以及
S206、启动卫星浮力筒1中的水泥砂浆泵,以通过压力管16位于卫星浮力筒1的锥形底部14的最底点处的开口泵压出水泥砂浆来压浆填满狭缝11,形成填满的狭缝12,并将平台10略为下降至所述平台10开始支撑在混凝土层17上,待压桨达至预设强度后将所述平台10完全支撑在混凝土层17上,从而将卫星浮力筒1以及平台10固定在海床上;
S207、在平台10的中心支撑杆件上安装水平轴风机,以及在至少一个卫星浮力筒1上安装垂海上风机和/或桥梁和/或海上建筑物。
在上述两种施工安装方法中,可在卫星浮力筒1固定在海床上之后,在卫星浮力筒1中填充水或沙或混凝土以压重卫星浮力筒1。
在本发明的优选实施例中,施工安装方法进一步包括采用节段预制施工法制作平台10。构建的开始为浇注这些预应力(轻质)混凝土平台10。可以常规方式在干坞上的陆上条件下实施浇注。不是在干坞完成,而是在船坞或港口侧节段预制方法建造该平台,因此这种新颖的方法称为预应力(轻质)混凝土平台节段施工“湿法”。
具体而言,如图13-17所示,施工安装方法中可采用节段预制施工法制作预应力混凝土或预应力轻质混凝土或预应力纤维混凝土平台10,包括:
在预制场或工厂内使用节段预制方法匹配浇注组成卫星浮力筒1的卫星浮力筒节段53;
连接各卫星浮力筒1的连接结构分成连接结构节段56;
在预制场或工厂内使用节段预制方法匹配浇注连接结构节段,使用预应力逐个连接结构节段以拼装连接结构节段,从而完成整个预制拼装连接结构57;
在港口侧的海上插打引导桩51,每个卫星浮力筒1对应设置至少三根引导桩51,从而能够在港口侧的海上支撑定位钢桁架52以进行卫星浮力筒1的安装;
将预制卫星浮力筒节段53运输至港口侧;
使用预应力拼装卫星浮力筒节段53,以完成整个卫星浮力筒1的预制拼装(图17中标号58代表拼装完成后的卫星浮力筒);
通过浮吊(例如采用吊索55)将完成的整个预制拼装卫星浮力筒吊至引导桩51的位置处,并下降定位钢桁架52以固定在引导桩51上;
调节卫星浮力筒1的水平和位置,并采用定位钢桁架进行固定,使连接结构能在陆上条件安装;
将整个预制拼装连接结构57运输至港口侧;
采用浮吊,将整个预制拼装连接结构57下降到与各卫星浮力筒1对应的接头位置处,以及通过预应力和锚具连接和固定接头;
重复以上步骤到完成平台的节段施工法;
移除锁定设备并移除定位钢桁架52,平台自由后即可拖至海上安装海域进行平台的基础工程施工安装。
另外,在海上浮力支撑固定平台的施工安装方法中,可采用工厂预制工地整体拼接制作钢平台10,包括:支撑海上风机和/或桥梁和/或海洋建筑结构的钢平台施工采用工厂预制,在港口附近工地拼接成整个钢平台,通过浮吊将完成的整个钢平台整体吊至水中,或利用滑道将平台下滑至海上。将悬浮钢平台拖至海上安装海域进行钢平台各浮力筒的基础工程施工。
风险评估
依据事故的结果对风险进行分类。以海上风电场为例,第一级风险是浮力支撑固定平台与船发生撞击。第二级风险是在恶劣天气下,风机叶片和塔被损坏。其它的风险是对航海、航运以及渔业的影响,后二者可采用常规方法进行处理。对于第一级风险,可在风机周围设置足够多的警告提醒,应当将风机刷成明亮的颜色来警示船只。类似的事故还可能由失去动力的漂浮的船只所导致,因此需要将浮力支撑固定平台设计成能抵御船只的撞击,使其只能产生局部损害。
社会效益和经济效益
本浮力支撑固定平台技术(水深约10米至50米)和我们的海上风电和海洋能预应力轻质混凝土浮式平台技术(水深约20米至500米)能扩展应用在海上太阳能,海洋能,海洋生物能等海上绿色能源,海洋牧场,海洋生物,海水淡化等海洋资源,海洋农业,海洋城市,海洋旅游,海岛房地产,该技术对开发海洋绿色能源和资源及海岛经济具有重大经济效益和战略意义。
应当理解的是,对本领域普通技术人员来说,可以根据上述说明加以改进或变换,而所有这些改进和变换都应属于本发明所附权利要求的保护范围。

Claims (18)

  1. 一种支撑海上风机、桥梁、海洋建筑物的浮力支撑固定平台,其特征在于,所述浮力支撑固定平台(10)包括:
    至少三个垂直布置的且具有锥形底部(14)的卫星浮力筒(1),通过混凝土固定支撑在海床上,其中所述卫星浮力筒(1)为空心柱体;以及
    连接结构,用以相互连接所述卫星浮力筒(1);其中,
    所述平台(10)上支撑有海上风机和/或桥梁和/或海洋建筑物。
  2. 根据权利要求1所述的支撑海上风机、桥梁、海洋建筑物的浮力支撑固定平台,其特征在于,所述浮力支撑固定平台(10)的平面为三角形或四边形或多边形且包含三角形划分单元,其中,
    所述卫星浮力筒(1)分别设于所述平面为三角形或四边形或多边形的节点处,且至少一个所述卫星浮力筒(1)上支撑海上风机;
    所述连接结构为钢拉索(13)或空心杆件,用以相互连接所述卫星浮力筒(1)。
  3. 根据权利要求2所述的支撑海上风机、桥梁、海洋建筑物的浮力支撑固定平台,其特征在于,
    所述平台(10)进一步包括中心支撑杆件(9)和框架结构,所述框架结构用以连接所述卫星浮力筒(1)与所述中心支撑杆件(9);所述中心支撑杆件(9)位于所述平台(10)的平面重心处,且支撑海上风机。
  4. 根据权利要求2所述的支撑海上风机、桥梁、海洋建筑物的浮力支撑固定平台,其特征在于,所述中心支撑杆件为垂直布置的半潜式悬浮的中心浮筒(9)或通过水下混凝土固定支撑在海床上的中心浮力筒;其中,所述中心浮筒(9)或中心浮力筒均为空心柱体。
  5. 根据权利要求2所述的支撑海上风机、桥梁、海洋建筑物的浮力支撑固定平台,其特征在于,所述框架结构包括从下部连接所述卫星浮力筒(1)与所述中心支撑杆件的下连接梁(2)以及对角连接所述卫星浮力筒(1)与所述中心支撑杆件的斜撑(4)。
  6. 根据权利要求1所述的支撑海上风机、桥梁、海洋建筑物的浮力支撑固定平台,其特征在于,所述卫星浮力筒(1)对称布置,且所述卫星浮力筒(1)上共同支撑有桩承台(32),所述桩承台(32)上支撑桥梁的桥墩。
  7. 根据权利要求1所述的支撑海上风机、桥梁、海洋建筑物的浮力支撑固定平台,其特征在于,所述平台(10)为网格结构,所述卫星浮力筒(1)分别设置在所述网格的格点上;所述平台(10)上支撑海洋建筑物。
  8. 根据权利要求1所述的支撑海上风机、桥梁、海洋建筑物的浮力支撑固定平台,其特征在于,所述平台(10)包括多个正方形子平台,各正方形子平台由连接结构连接,所述卫星浮力筒(1)分别设置在所述正方形子平台的节点上;所述平台(10)上支撑专供乘客上下、货物装卸的人工码头建筑物。
  9. 根据权利要求1所述的支撑海上风机、桥梁、海洋建筑物的浮力支撑固定平台,其特征在于,所述平台(10)分为为一个或多个平台,多个平台时各平台由框架结构连接,所述卫星浮力圆筒(1)分别设置在所述一个至多个平台的节点上;所述平台(10)上支撑人工建造的人工岛及其岛上建筑物。
  10. 根据权利要求1所述的支撑海上风机、桥梁、海洋建筑物的浮力支撑固定平台,其特征在于,所述卫星浮力筒(1)和/或连接结构和/或框架结构由钢或预应力混凝土或预应力轻质混凝土或预应力纤维混凝土或预应力钢管混凝土或钢-混凝土组合材料制成。
  11. 根据权利要求1所述的支撑海上风机、桥梁、海洋建筑物的浮力支撑固定平台,其特征在于,所述卫星浮力筒(1)内设有泵压系统,所述泵压系统包括设置在所述卫星浮力筒(1)内部的水泵和多根压力管(16)以及设置在外部的混凝土泵和水泥沙浆泵;其中,所述多根压力管(16)各自的一端开口分别与所述水泵、混凝土泵和所述水泥沙浆泵连接,另一端开口穿过所述卫星浮力筒(1)的锥形底部(14)的最底点与外界相通,用以将分别从所述水泵、混凝土泵或水泥沙浆泵输出的水、混凝土或水泥沙浆挤压至外界。
  12. 根据权利要求1所述的支撑海上风机、桥梁、海洋建筑物的浮力支撑固定平台,其特征在于,所述卫星浮力筒(1)内灌沙或灌水,用以增加所述平台(10)的自重,从而抵抗风荷载引起的上拔力。
  13. 一种海上浮力支撑固定平台的施工安装方法,其特征在于,所述施工安装方法用于权利要求1至10中任一项所述的支撑海上风机、桥梁、海洋建筑物的浮力支撑固定平台,包括以下步骤:
    在安装点与所述平台(10)的卫星浮力筒(1)对应的位置处分别开挖海床软土(7)至所述海床的持力层(6),用以形成尺寸大于所述卫星浮力筒(1)的锥形底部(14)的凹槽(15);
    拖运所述平台(10)至所述安装点处,调节所述平台(10)以使所述卫星浮力筒(1)与所述凹槽(15)一一对应;
    下沉所述平台(10),并在所述凹槽(15)内、所述卫星浮力筒(1)的锥形底部(14)的最底点与所述持力层(6)之间浇注形成预设厚度的混凝土层(17);
    在所述混凝土层(17)完全凝固之前继续下沉所述平台(10),以使所述锥形底部(14)完全嵌入所述混凝土层(17),保持水平及至所述混凝土层(17)中形成与所述锥形底部(14)对应的锥形凹槽,最后上升所述平台(10);
    在所述混凝土层(17)达到预设强度之后下沉所述平台(10),以在所述锥形底部(14)与所述锥形凹槽之间形成狭缝(11);以及
    压浆填满所述狭缝(11),并将平台略为下降至所述平台(10)开始支撑在混凝土层(17)上,待压桨达至预设强度后将所述平台(10)完全支撑在混凝土层(17)上,从而将所述卫星浮力筒(1)以及所述平台(10)固定在所述海床上;
    在所述平台(10)上安装海上风机和/或桥梁和/或海洋建筑物。
  14. 一种海上浮力支撑固定平台的施工安装方法,其特征在于,所述方法用于权利要求11所述的平台(10),包括以下步骤:
    拖运所述平台(10)至安装点处;
    下沉所述平台(10)至海床上方,并启动卫星浮力筒(1)中的水泵,以通过压力管(16)位于卫星浮力筒(1)的锥形底部(14)的最底点处的开口泵压出水,从而在所述锥形底部(14)的下方冲刷海床软土(7)至所述海床的持力层(6),用以形成尺寸大于所述锥形底部(14)的凹槽(15);启动外置的混凝土泵,以通过压力管(16)位于卫星浮力筒(1)的锥形底部(14)的最底点处的开口泵压出混凝土,从而在所述凹槽(15)内、所述卫星浮力筒(1)的锥形底部(14)的最底点与所述持力层(6)之间浇注形成预设厚度的混凝土层(17);
    在所述混凝土层(17)完全凝固之前继续下沉所述平台(10),以使所述锥形底部(14)完全嵌入所述混凝土层(17),保持水平及至所述混凝土层(17)中形成与所述锥形底部(14)对应的锥形凹槽,最后上升所述平台(10);
    在所述混凝土层(17)达到预设强度之后下沉所述平台(10),以在所述锥形底部(14)与所述锥形凹槽之间形成狭缝(11);以及(cw: strength)
    压浆填满所述狭缝(11),并将平台略为下降至所述平台(10)开始支撑在混凝土层(17)上,待压桨达至预设强度后将所述平台(10)完全支撑在混凝土层(17)上,从而将所述卫星浮力筒(1)以及所述平台(10)固定在所述海床上;
    在所述平台(10)上安装海上风机和/或桥梁和/或海洋建筑物。
  15. 一种海上浮力支撑固定平台的施工安装方法,其特征在于,所述施工安装方法用于权利要求11所述的支撑海上风机、桥梁、海洋建筑物的浮力支撑固定平台,包括以下步骤:
    在安装点与所述平台(10)的卫星浮力筒(1)对应的位置处分别开挖海床软土(7)至所述海床的持力层(6),用以形成尺寸大于所述卫星浮力筒(1)的锥形底部(14)的凹槽(15);
    拖运所述平台(10)至所述安装点处,调节所述平台(10)以使所述卫星浮力筒(1)与所述凹槽(15)一一对应;
    启动外置的混凝土泵,以通过压力管(16)位于卫星浮力筒(1)的锥形底部(14)的最底点处的开口泵压出混凝土,从而在所述凹槽(15)内、所述卫星浮力筒(1)的锥形底部(14)的最底点与所述持力层(6)之间浇注形成预设厚度的混凝土层(17);
    在所述混凝土层(17)完全凝固之前继续下沉所述平台(10),以使所述锥形底部(14)完全嵌入所述混凝土层(17),保持水平及至所述混凝土层(17)中形成与所述锥形底部(14)对应的锥形凹槽,最后上升所述平台(10);
    在所述混凝土层(17)达到预设强度之后下沉所述平台(10),以在所述锥形底部(14)与所述锥形凹槽之间形成狭缝(11);以及压浆填满所述狭缝(11),并将平台略为下降至所述平台(10)开始支撑在混凝土层(17)上,待压桨达至预设强度后将所述平台(10)完全支撑在混凝土层(17)上,从而将所述卫星浮力筒(1)以及所述平台(10)固定在所述海床上;
    在所述平台(10)上安装海上风机和/或桥梁和/或海洋建筑物。
  16. 根据权利要求13-15任一项所述的海上浮力支撑固定平台的施工安装方法,其特征在于,
    在所述卫星浮力筒(1)固定在所述海床上之后,在所述卫星浮力筒(1)中填充水或沙以压重所述卫星浮力筒(1)。
  17. 根据权利要求13-15任一项所述的海上浮力支撑平台的施工安装方法,其特征在于,所述施工安装方法进一步包括在紧贴所述凹槽(15)的内壁上设置钢板环(18),并在所述钢板环(18)内部设置钢筋,从而在所述凹槽(15)内、所述卫星浮力筒(1)的锥形底部(14)的最底点与所述持力层(6)之间浇注形成预设厚度的混凝土层(17),用以防止所述凹槽(15)侧海床软土(7)的坍塌。
  18. 根据权利要求13-15任一项所述的海上浮力支撑固定平台的施工安装方法,其特征在于,所述施工安装方法进一步包括采用节段预制施工法制作所述预应力混凝土或预应力轻质混凝土或预应力纤维混凝土平台(10),包括:
    在预制场或工厂内使用节段预制方法匹配浇注组成卫星浮力筒(1)的卫星浮力筒节段(53);
    连接各卫星浮力筒(1)的连接结构分成连接结构节段(56);
    在预制场或工厂内使用节段预制方法匹配浇注所述连接结构节段,使用预应力逐个连接结构节段以拼装连接结构节段,从而完成整个预制拼装连接结构(57);
    在港口侧的海上插打引导桩(51),每个所述卫星浮力筒(1)对应设置至少三根引导桩(51),从而能够在港口侧的海上支撑定位钢桁架(52)以进行卫星浮力筒(1)的安装;
    将所述预制卫星浮力筒节段(53)运输至所述港口侧;
    使用预应力拼装卫星浮力筒节段(53),以完成整个卫星浮力筒(1)的预制拼装;
    通过浮吊将所述完成的整个预制拼装卫星浮力筒吊至引导桩(51)的位置处,并下降所述定位钢桁架(52)以固定在所述引导桩(51)上;
    调节所述卫星浮力筒(1)的水平和位置,并采用所述定位钢桁架进行固定,使连接结构能在陆上条件安装;
    将所述整个预制拼装连接结构(57)运输至所述港口侧;
    采用浮吊,将所述整个预制拼装连接结构(57)下降到与各卫星浮力筒(1)对应的接头位置处,以及通过预应力和锚具连接和固定接头;
    重复以上步骤到完成平台的节段施工法;
    移除锁定设备并移除所述定位钢桁架(52),平台自由后即可拖至海上安装海域进行平台的基础工程施工安装。
PCT/CN2012/071224 2012-02-16 2012-02-16 支撑海上风机、桥梁、海洋建筑物的浮力支撑固定平台 WO2013120264A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2012/071224 WO2013120264A1 (zh) 2012-02-16 2012-02-16 支撑海上风机、桥梁、海洋建筑物的浮力支撑固定平台

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2012/071224 WO2013120264A1 (zh) 2012-02-16 2012-02-16 支撑海上风机、桥梁、海洋建筑物的浮力支撑固定平台

Publications (1)

Publication Number Publication Date
WO2013120264A1 true WO2013120264A1 (zh) 2013-08-22

Family

ID=48983535

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/071224 WO2013120264A1 (zh) 2012-02-16 2012-02-16 支撑海上风机、桥梁、海洋建筑物的浮力支撑固定平台

Country Status (1)

Country Link
WO (1) WO2013120264A1 (zh)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016109962A1 (en) * 2015-01-08 2016-07-14 Cbj (Hong Kong) Ocean Engineering Limited Construction method for fixing offshore marine platform to a seabed having layers of a soil/clay nature
CN107142954A (zh) * 2017-06-26 2017-09-08 中交二航局第四工程有限公司 一种整体吊装的钢吊箱吊装系统及其吊装方法
CN107972827A (zh) * 2017-12-11 2018-05-01 深圳市海斯比浮岛科技开发有限公司 浮式码头及其浮体结构
CN109296502A (zh) * 2018-11-06 2019-02-01 重庆大学 一种预应力中空夹层钢管混凝土风电塔筒及其组合式基础
CN109930576A (zh) * 2019-04-19 2019-06-25 中交第一航务工程勘察设计院有限公司 一种装配式筒型基础海上地质勘探平台结构
CN110106909A (zh) * 2019-06-13 2019-08-09 中交上海港湾工程设计研究院有限公司 一种锚杆重力式海上风电基础及其施工方法
CN110481724A (zh) * 2019-08-28 2019-11-22 福州森百德机电科技有限公司 海上大型工作平台及其装配方法
CN110685291A (zh) * 2019-10-22 2020-01-14 中交一公局第四工程有限公司 一种用于深水区内混凝土围堰的支撑装置及其施工工艺
CN112818480A (zh) * 2021-01-18 2021-05-18 浙江工业大学 压扭组合作用下横撑极限强度计算方法
CN113136888A (zh) * 2021-03-30 2021-07-20 中国铁路设计集团有限公司 一种海上预制承台结构
CN113152505A (zh) * 2021-02-19 2021-07-23 中交第二公路工程局有限公司 局部封底的水中超大规模承台组合套箱围护结构施工方法
CN113565124A (zh) * 2021-08-20 2021-10-29 龙源电力集团股份有限公司 一种吸力筒式海上风电和光伏的基础结构及装配方法
CN113882422A (zh) * 2021-10-15 2022-01-04 福建省水利水电勘测设计研究院 海上风电导管架基础过渡段结构及其制作方法
CN114275110A (zh) * 2021-12-28 2022-04-05 谢沛鸿 一种水母冰山式的海中建筑结构
CN115230893A (zh) * 2022-05-13 2022-10-25 重庆大学 一种钢管支撑-预应力混凝土的浮式基础结构
CN115450820A (zh) * 2022-10-13 2022-12-09 上海能源科技发展有限公司 一种考虑尾流效应的海上风电桩基础防冲刷装置及方法
CN116001999A (zh) * 2022-12-12 2023-04-25 上海勘测设计研究院有限公司 一种海上浮式平台装置以及施工方法和工作方法
CN116873119A (zh) * 2023-09-07 2023-10-13 中交第一航务工程局有限公司 钢圆筒海上运输方法及海上人工岛围堰建造方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2704486A1 (de) * 1977-02-03 1978-08-10 Babcock Ag Kuenstliche insel
US4540314A (en) * 1982-03-25 1985-09-10 Fluor Subsea Services, Inc. Tension leg means and method of installing same for a marine platform
US4821804A (en) * 1985-03-27 1989-04-18 Pierce Robert H Composite support column assembly for offshore drilling and production platforms
FR2676764A1 (fr) * 1991-05-23 1992-11-27 Balick Claude Procede de construction au-dessus d'eaux profondes, et pieux de fondation utilises a cet effet.
GB2365905A (en) * 2000-08-19 2002-02-27 Ocean Technologies Ltd Offshore structure with a telescopically extendable column
GB2378679A (en) * 2001-08-16 2003-02-19 Technologies Ltd Ocean Floating offshore wind turbine
US20110155038A1 (en) * 2008-01-09 2011-06-30 Jaehnig Jens Floating foundation supporting framework with buoyancy components, having an open-relief design

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2704486A1 (de) * 1977-02-03 1978-08-10 Babcock Ag Kuenstliche insel
US4540314A (en) * 1982-03-25 1985-09-10 Fluor Subsea Services, Inc. Tension leg means and method of installing same for a marine platform
US4821804A (en) * 1985-03-27 1989-04-18 Pierce Robert H Composite support column assembly for offshore drilling and production platforms
FR2676764A1 (fr) * 1991-05-23 1992-11-27 Balick Claude Procede de construction au-dessus d'eaux profondes, et pieux de fondation utilises a cet effet.
GB2365905A (en) * 2000-08-19 2002-02-27 Ocean Technologies Ltd Offshore structure with a telescopically extendable column
GB2378679A (en) * 2001-08-16 2003-02-19 Technologies Ltd Ocean Floating offshore wind turbine
US20110155038A1 (en) * 2008-01-09 2011-06-30 Jaehnig Jens Floating foundation supporting framework with buoyancy components, having an open-relief design

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016109962A1 (en) * 2015-01-08 2016-07-14 Cbj (Hong Kong) Ocean Engineering Limited Construction method for fixing offshore marine platform to a seabed having layers of a soil/clay nature
CN107142954B (zh) * 2017-06-26 2023-09-01 中交二航局第四工程有限公司 一种整体吊装的钢吊箱吊装系统及其吊装方法
CN107142954A (zh) * 2017-06-26 2017-09-08 中交二航局第四工程有限公司 一种整体吊装的钢吊箱吊装系统及其吊装方法
CN107972827A (zh) * 2017-12-11 2018-05-01 深圳市海斯比浮岛科技开发有限公司 浮式码头及其浮体结构
CN109296502A (zh) * 2018-11-06 2019-02-01 重庆大学 一种预应力中空夹层钢管混凝土风电塔筒及其组合式基础
CN109930576A (zh) * 2019-04-19 2019-06-25 中交第一航务工程勘察设计院有限公司 一种装配式筒型基础海上地质勘探平台结构
CN110106909A (zh) * 2019-06-13 2019-08-09 中交上海港湾工程设计研究院有限公司 一种锚杆重力式海上风电基础及其施工方法
CN110106909B (zh) * 2019-06-13 2024-03-12 中交上海港湾工程设计研究院有限公司 一种锚杆重力式海上风电基础及其施工方法
CN110481724A (zh) * 2019-08-28 2019-11-22 福州森百德机电科技有限公司 海上大型工作平台及其装配方法
CN110685291B (zh) * 2019-10-22 2024-05-10 中交一公局第四工程有限公司 一种用于深水区内混凝土围堰的支撑装置及其施工工艺
CN110685291A (zh) * 2019-10-22 2020-01-14 中交一公局第四工程有限公司 一种用于深水区内混凝土围堰的支撑装置及其施工工艺
CN112818480A (zh) * 2021-01-18 2021-05-18 浙江工业大学 压扭组合作用下横撑极限强度计算方法
CN113152505A (zh) * 2021-02-19 2021-07-23 中交第二公路工程局有限公司 局部封底的水中超大规模承台组合套箱围护结构施工方法
CN113136888A (zh) * 2021-03-30 2021-07-20 中国铁路设计集团有限公司 一种海上预制承台结构
CN113565124A (zh) * 2021-08-20 2021-10-29 龙源电力集团股份有限公司 一种吸力筒式海上风电和光伏的基础结构及装配方法
CN113882422A (zh) * 2021-10-15 2022-01-04 福建省水利水电勘测设计研究院 海上风电导管架基础过渡段结构及其制作方法
CN113882422B (zh) * 2021-10-15 2023-03-07 福建省水利水电勘测设计研究院 海上风电导管架基础过渡段结构及其制作方法
CN114275110A (zh) * 2021-12-28 2022-04-05 谢沛鸿 一种水母冰山式的海中建筑结构
CN115230893B (zh) * 2022-05-13 2024-02-02 重庆大学 一种钢管支撑-预应力混凝土的浮式基础结构
CN115230893A (zh) * 2022-05-13 2022-10-25 重庆大学 一种钢管支撑-预应力混凝土的浮式基础结构
CN115450820A (zh) * 2022-10-13 2022-12-09 上海能源科技发展有限公司 一种考虑尾流效应的海上风电桩基础防冲刷装置及方法
CN116001999A (zh) * 2022-12-12 2023-04-25 上海勘测设计研究院有限公司 一种海上浮式平台装置以及施工方法和工作方法
CN116001999B (zh) * 2022-12-12 2024-03-01 上海勘测设计研究院有限公司 一种海上浮式平台装置以及施工方法和工作方法
CN116873119A (zh) * 2023-09-07 2023-10-13 中交第一航务工程局有限公司 钢圆筒海上运输方法及海上人工岛围堰建造方法
CN116873119B (zh) * 2023-09-07 2023-11-07 中交第一航务工程局有限公司 海上人工岛围堰建造方法

Similar Documents

Publication Publication Date Title
WO2013120264A1 (zh) 支撑海上风机、桥梁、海洋建筑物的浮力支撑固定平台
WO2013040871A1 (zh) 支撑海上风机和海洋能发电机的预应力混凝土浮式平台
WO2013040890A1 (zh) 海上风电、桥梁和海洋建筑物局部浮力海洋平台及施工方法
EP3584373B1 (en) Maritime structure for laying the foundations of buildings and its method of installation
JP6163492B2 (ja) 洋上タワーの据え付け方法
CN103741657B (zh) 大型多功能水上施工平台的施工方法
US20200277936A1 (en) Off shore wind energy installation foundation system
JP6619204B2 (ja) 締切工法および止水壁構造体
CN103228909A (zh) 用于安装海上塔的方法
GB2365905A (en) Offshore structure with a telescopically extendable column
CN107882055A (zh) 一种风机承台的施工方法
CN114855865B (zh) 一种锚固于岩基海床的张紧式风机基础及布置方法
CN106522263B (zh) 一种四个筒型基础与混凝土支撑结构的风电整机施工方法
CN203654196U (zh) 大型多功能水上施工平台的导向装置
NL2028088A (en) Concrete connector body for an offshore wind turbine.
JP6105044B2 (ja) 海上風力、橋および海上建造物用部分浮体式海上プラットホーム、および施工方法
GB2493023A (en) Wind turbine foundation with pontoons
JP2011006945A (ja) 橋梁架設工法
JP2017160701A (ja) 重力式構造物の水底への設置方法
CN109024523A (zh) 一种可移动式海上测风装置的安装及测风方法
CN211368353U (zh) 钢栈桥钢管桩混凝土桥台
DK2634424T3 (en) Method of building a foundation for tower-like structure
Antonina et al. Construction of low-rise buildings in the coastland and water areas
CN216515710U (zh) 适合于浅覆盖层岩基海床区域的海上风机基础结构
US12000375B1 (en) Mobile modular platforms and method for near-shore assembly of floating offshore wind turbines

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12868613

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12868613

Country of ref document: EP

Kind code of ref document: A1