WO2013118847A1 - 芳香族アミン誘導体、有機エレクトロルミネッセンス素子及び電子機器 - Google Patents

芳香族アミン誘導体、有機エレクトロルミネッセンス素子及び電子機器 Download PDF

Info

Publication number
WO2013118847A1
WO2013118847A1 PCT/JP2013/052952 JP2013052952W WO2013118847A1 WO 2013118847 A1 WO2013118847 A1 WO 2013118847A1 JP 2013052952 W JP2013052952 W JP 2013052952W WO 2013118847 A1 WO2013118847 A1 WO 2013118847A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
carbon atoms
ring
substituted
hole transport
Prior art date
Application number
PCT/JP2013/052952
Other languages
English (en)
French (fr)
Inventor
加藤 朋希
貴康 佐土
藤山 高広
Original Assignee
出光興産株式会社
三井化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 出光興産株式会社, 三井化学株式会社 filed Critical 出光興産株式会社
Publication of WO2013118847A1 publication Critical patent/WO2013118847A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C211/00Compounds containing amino groups bound to a carbon skeleton
    • C07C211/43Compounds containing amino groups bound to a carbon skeleton having amino groups bound to carbon atoms of six-membered aromatic rings of the carbon skeleton
    • C07C211/57Compounds containing amino groups bound to a carbon skeleton having amino groups bound to carbon atoms of six-membered aromatic rings of the carbon skeleton having amino groups bound to carbon atoms of six-membered aromatic rings being part of condensed ring systems of the carbon skeleton
    • C07C211/61Compounds containing amino groups bound to a carbon skeleton having amino groups bound to carbon atoms of six-membered aromatic rings of the carbon skeleton having amino groups bound to carbon atoms of six-membered aromatic rings being part of condensed ring systems of the carbon skeleton with at least one of the condensed ring systems formed by three or more rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D307/00Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom
    • C07D307/77Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom ortho- or peri-condensed with carbocyclic rings or ring systems
    • C07D307/91Dibenzofurans; Hydrogenated dibenzofurans
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D333/00Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom
    • C07D333/02Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom not condensed with other rings
    • C07D333/04Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom not condensed with other rings not substituted on the ring sulphur atom
    • C07D333/06Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom not condensed with other rings not substituted on the ring sulphur atom with only hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, directly attached to the ring carbon atoms
    • C07D333/14Radicals substituted by singly bound hetero atoms other than halogen
    • C07D333/20Radicals substituted by singly bound hetero atoms other than halogen by nitrogen atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D333/00Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom
    • C07D333/50Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom condensed with carbocyclic rings or ring systems
    • C07D333/52Benzo[b]thiophenes; Hydrogenated benzo[b]thiophenes
    • C07D333/54Benzo[b]thiophenes; Hydrogenated benzo[b]thiophenes with only hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, directly attached to carbon atoms of the hetero ring
    • C07D333/58Radicals substituted by nitrogen atoms
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/631Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
    • H10K85/633Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine comprising polycyclic condensed aromatic hydrocarbons as substituents on the nitrogen atom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/653Aromatic compounds comprising a hetero atom comprising only oxygen as heteroatom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/655Aromatic compounds comprising a hetero atom comprising only sulfur as heteroatom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6572Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ring system, e.g. phenanthroline or carbazole
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6574Polycyclic condensed heteroaromatic hydrocarbons comprising only oxygen in the heteroaromatic polycondensed ring system, e.g. cumarine dyes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6576Polycyclic condensed heteroaromatic hydrocarbons comprising only sulfur in the heteroaromatic polycondensed ring system, e.g. benzothiophene
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2603/00Systems containing at least three condensed rings
    • C07C2603/02Ortho- or ortho- and peri-condensed systems
    • C07C2603/04Ortho- or ortho- and peri-condensed systems containing three rings
    • C07C2603/06Ortho- or ortho- and peri-condensed systems containing three rings containing at least one ring with less than six ring members
    • C07C2603/10Ortho- or ortho- and peri-condensed systems containing three rings containing at least one ring with less than six ring members containing five-membered rings
    • C07C2603/12Ortho- or ortho- and peri-condensed systems containing three rings containing at least one ring with less than six ring members containing five-membered rings only one five-membered ring
    • C07C2603/18Fluorenes; Hydrogenated fluorenes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/15Hole transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/17Carrier injection layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/341Transition metal complexes, e.g. Ru(II)polypyridine complexes
    • H10K85/342Transition metal complexes, e.g. Ru(II)polypyridine complexes comprising iridium

Definitions

  • the present invention relates to an aromatic amine derivative and an organic electroluminescence device (organic EL device) using the same.
  • the present invention further relates to an electronic device equipped with the organic EL element.
  • An organic EL element is a self-luminous element utilizing the principle that a fluorescent substance emits light by recombination energy of holes injected from an anode and electrons injected from a cathode by applying an electric field.
  • Eastman Kodak's C.I. W. Organic materials have been constructed since Tang et al.'S report on low-voltage driven organic EL devices using stacked devices (CW Tang, SA Vanslyke, Applied Physics) Letters, 51, 913, 1987, etc.) Research on organic EL elements as materials has been actively conducted.
  • Patent Documents 1 to 4 disclose a central fluorene diamine compound, which is used as a hole transport layer adjacent to a light emitting layer, thereby improving stability and durability compared to a terminal phenyl group diamine compound.
  • an organic EL device Disclosed is an organic EL device.
  • Patent Document 5 uses a compound having a specific diamine structure as a first hole transport material, and uses an aromatic amine derivative having a dibenzofuran structure and a carbazole structure as a second hole transport material to reduce the driving voltage.
  • an organic EL element having a long lifetime can be manufactured.
  • Patent Document 6 employs a specific diphenyl-centered diamine compound in the first hole transport layer, and employs an amine compound having a specific heteroaryl structure in the second hole transport layer in the phosphorescent organic EL device.
  • Patent Document 7 provides an organic EL device having high light emission efficiency and low driving voltage by employing a compound having a carbazole ring structure in a hole transport layer adjacent to the light emitting layer. That is, in an organic EL element, particularly a phosphorescent element, the hole transport layer is composed of a first hole transport layer and a second hole transport layer, and a high-functional material is applied to the second hole transport layer. The device performance is improved.
  • the performance required for the second hole transport layer is high triplet energy (preferably 2.6 eV or more) to prevent diffusion of excitation energy of the phosphorescent light emitting layer, and electron resistance, light emitting layer because it is adjacent to the light emitting layer.
  • the organic layer has a low affinity (preferably 2.4 eV or less), and a large ionization potential (5.5 eV or more is preferable) in order to promote hole injection into the light emitting layer. ) It is required to be an organic layer.
  • a molecular skeleton having high electron resistance in which a heteroaryl ring such as carbazole or dibenzofuran is bonded to a triphenylamine skeleton is preferred.
  • the first hole transport layer is generally required to have excellent hole injectability into the second hole transport layer. Further, from the viewpoint of improving the hole injection property, it has been studied to contain a compound having p-type semiconductor properties (also referred to as an acceptor material or an electron accepting compound in the present invention) as the hole injection layer ( (See Patent Documents 8 to 9).
  • the present invention has been made to solve the above-described problems, and provides an organic EL element with high efficiency and a long lifetime, an electronic device equipped with the organic EL element, and such an organic EL element. It is an object of the present invention to provide such a compound.
  • one embodiment of the present invention provides a compound represented by the following general formula (1).
  • L 1 and L 2 are each independently a single bond, a substituted or unsubstituted arylene group having 6 to 10 ring carbon atoms.
  • R 1 and R 2 are each independently a hydrogen atom, an alkyl group having 1 to 10 carbon atoms, or an aryl group having 6 to 30 ring carbon atoms.
  • Ar 1 to Ar 4 are at least one group represented by the following general formula (2), and the others are each independently a substituted or unsubstituted aryl group having 6 to 30 ring carbon atoms. .
  • R 3 to R 5 each independently represents an alkyl group having 1 to 10 carbon atoms, a cycloalkyl group having 3 to 10 ring carbon atoms, an alkoxy group having 1 to 10 carbon atoms, or an aralkyl group having 7 to 30 carbon atoms.
  • An aryloxy group having 6 to 30 carbon atoms, an aryl group having 6 to 30 ring carbon atoms, a halogen atom or a cyano group, R 3 to R 5 may be bonded to each other to form a hydrocarbon ring.
  • a and b are each independently an integer of 0 to 4.
  • c is an integer of 0 to 5. When a, b or c is 2 or more, adjacent R 3 s , adjacent R 4 s or adjacent R 5 s may be bonded to each other to form a hydrocarbon ring.
  • an organic EL device in which a single organic layer or a plurality of organic thin film layers containing at least a light emitting layer is sandwiched between a cathode and an anode, at least one of the organic thin film layers is An organic EL device containing the compound represented by the general formula (1) alone or as a component of a mixture is provided. Furthermore, another aspect of the present invention provides an electronic device equipped with the organic EL element.
  • the compound of the present invention is a high mobility hole transport material in which the driving voltage does not increase even when the hole transport layer of the organic EL element is thickened, and the optical path length of the organic EL element can be adjusted. It is possible to provide an organic EL element capable of improving the efficiency and extending the life.
  • the compatibility with the acceptor material is excellent, so that the amount of holes injected from the acceptor layer to the hole transport layer increases, The effect can be further enhanced.
  • the compound of the present invention is represented by the following general formula (1).
  • L 1 and L 2 are each independently a single bond, a substituted or unsubstituted arylene group having 6 to 10 ring carbon atoms.
  • the arylene group include a phenylene group and a naphthylene group.
  • the arylene group may have a substituent. Examples of the substituent include a methyl group, an ethyl group, various propyl groups (“various” indicates that all linear and branched groups are included, and the same shall apply hereinafter), and various butyl groups.
  • alkyl group having 1 to 10 carbon atoms preferably 1 to 5 carbon atoms
  • 1 to 10 carbon atoms preferably 1 to 5 carbon atoms
  • L 1 and L 2 are each preferably a single bond or an arylene group having 6 to 10 ring carbon atoms, one of which is a single bond and the other is substituted or unsubstituted.
  • R 1 and R 2 are each independently a hydrogen atom, an alkyl group having 1 to 10 carbon atoms, or an aryl group having 6 to 30 ring carbon atoms.
  • the alkyl group include a methyl group, an ethyl group, various propyl groups, various butyl groups, various octyl groups, and various decyl groups.
  • the alkyl group preferably has 1 to 5 carbon atoms.
  • the aryl group include a phenyl group, a biphenylyl group, a terphenylyl group, a naphthyl group, and an anthryl group.
  • the aryl group preferably has 6 to 20, more preferably 6 to 12, more preferably 6 to 12, and more preferably Preferably, it is 6-10.
  • R 1 and R 2 are preferably a hydrogen atom, a methyl group or a phenyl group, and more preferably a methyl group.
  • Ar 1 to Ar 4 are at least one group represented by the following general formula (2) (preferably a group represented by the following general formula (3) or (4)), The others are each independently a substituted or unsubstituted aryl group having 6 to 30 ring carbon atoms (excluding a terphenylyl group).
  • R 3 to R 5 each independently represents an alkyl group having 1 to 10 carbon atoms, a cycloalkyl group having 3 to 10 ring carbon atoms, or an alkoxy group having 1 to 10 carbon atoms.
  • R 3 to R 5 may combine with each other to form a hydrocarbon ring. Examples of the alkyl group and aryl group are the same as those for R 1 and R 2 , and preferred ones are also the same.
  • Examples of the alkoxy group include a methoxy group, an ethoxy group, and a propoxy group, and an alkoxy group having 1 to 5 carbon atoms is preferable.
  • Examples of the cycloalkyl group include a cyclopropyl group, a cyclopentyl group, a cyclohexyl group, a cyclooctyl group, and the like.
  • the ring-forming carbon number of the cycloalkyl group is preferably 5-8.
  • the aralkyl group is preferably an alkylene group having 1 to 3 carbon atoms substituted with the aryl group, more preferably a methylene group substituted with the aryl group.
  • the carbon number of the aralkyl group (total carbon number) is preferably 7 to 15, more preferably 7 to 11.
  • the aryl group in the aralkyl group is preferably a phenyl group.
  • Examples of the aryl group in the aryloxy group are the same as those for R 1 and R 2 , and preferred ones are also the same.
  • the number of carbon atoms forming the aryloxy group is preferably 6 to 20, more preferably 6 to 12, and still more preferably 6 to 10.
  • the halogen atom include a fluorine atom, and a fluorine atom is preferable.
  • R 3 to R 5 are bonded to each other to form a hydrocarbon ring, for example, R 3 and R 4 , or R 4 and R 5 are bonded to each other to form a hydrocarbon ring
  • the carbon Examples of the hydrogen ring include a fluorene ring.
  • R 3 to R 5 are preferably not bonded to each other.
  • a and b are each independently an integer of 0 to 4, preferably an integer of 0 to 2, more preferably 0 or 1, and still more preferably 0.
  • c is an integer of 0 to 5, preferably an integer of 0 to 3, more preferably an integer of 0 to 2, still more preferably 0 or 1, and particularly preferably 0.
  • adjacent R 3 s , adjacent R 4 s or adjacent R 5 s may be bonded to each other to form a hydrocarbon ring. Examples of the hydrocarbon ring thus formed include a naphthalene ring.
  • Ar 1 to Ar 4 which are not groups represented by the general formula (2) (also not groups represented by the general formulas (3) and (4)) are substituted or absent.
  • a substituted aryl group having 6 to 30 ring carbon atoms (excluding terphenylyl group).
  • the aryl group include a phenyl group, a biphenylyl group, a naphthyl group, and an anthryl group.
  • An aryl group having 6 to 20 ring carbon atoms is preferable, and an aryl group having 6 to 12 ring carbon atoms is more preferable.
  • a biphenylyl group are more preferred.
  • Examples of the substituent that the aryl group may have include, for example, a carbazolyl group (eg, 9-carbazolyl group, 9-phenyl-1-carbazolyl group, 9-phenyl-2-carbazolyl group, 9-phenyl-3 -Carbazolyl group, 9-phenyl-4-carbazolyl group, etc.), thiophenyl group, phenylthiophenyl group, benzothiophenyl group, dibenzothiophenyl group, furanyl group, phenylfuranyl group, benzofuranyl group, dibenzofuranyl group, etc. Examples thereof include heterocyclic groups having 5 to 30 ring atoms (preferably 5 to 20).
  • a carbazolyl group eg, 9-carbazolyl group, 9-phenyl-1-carbazolyl group, 9-phenyl-2-carbazolyl group, 9-phenyl-3 -Carbazolyl group,
  • [I] A compound in which Ar 1 and Ar 2 are a group represented by the general formula (2).
  • [Ii] A compound in which Ar 1 and Ar 3 are a group represented by the general formula (2).
  • [Iii] Compounds in which three or more of Ar 1 to Ar 4 are different from each other.
  • [Iv] A compound in which three or more of Ar 1 to Ar 4 are the same.
  • the thin film stability is particularly important from the viewpoint of suppressing crystallization of the thin film.
  • the compound of the present invention is often used in a thick hole transport layer for optical adjustment of an organic EL device, and an asymmetric structure is preferred from the viewpoint of thin film stability.
  • limiting in particular in the manufacturing method of the compound of this invention With reference to an Example, it can manufacture by a well-known method.
  • the organic EL device of the present invention is an organic electroluminescence device having an organic thin film layer between an anode and a cathode facing each other, and includes one organic thin film layer containing the compound represented by the general formula (1). It has the above.
  • the organic EL device of the present invention is an organic EL device having at least two or more hole transport layers and a light emitting layer in sequence between an opposing anode and cathode, and among the hole transport layers, One of them contains the compound represented by the general formula (1), and is not adjacent to the light emitting layer.
  • the at least two or more hole transport layers include a first hole transport layer on the anode side and a second hole transport layer on the light-emitting layer side, and the first hole transport layer has the general formula (1). It is preferable to contain the compound represented by these.
  • the present invention provides a hole transport material comprising a plurality of hole transport layers, wherein the hole transport layer not adjacent to the light emitting layer is a compound having a high mobility represented by the general formula (1).
  • the driving voltage does not increase even if the hole transport layer is made thicker, the optical path length of the organic EL element can be adjusted, and the efficiency and life of the element can be increased.
  • it is compatible with acceptor materials with excellent hole-injecting properties, and by increasing the amount of carriers generated, more holes can be transported and injected into the light-emitting layer, leading to higher device efficiency. .
  • the organic EL element of the present invention may be a fluorescent or phosphorescent monochromatic light emitting element, a fluorescent / phosphorescent hybrid white light emitting element, or a simple type having a single light emitting unit.
  • a tandem type having a plurality of light emitting units may be used.
  • the “light emitting unit” refers to a minimum unit that includes one or more organic layers, one of which is a light emitting layer, and can emit light by recombination of injected holes and electrons.
  • the element structure of the organic EL element of the present invention will be described.
  • (1) Structure of organic EL element As a typical element structure of the organic EL element of the present invention, (1) Anode / acceptor material-containing layer (acceptor layer) / first hole transport layer / second hole transport layer / light emitting layer / cathode (2) Anode / acceptor material-containing layer (acceptor layer) / first hole transport layer / second hole transport layer / light emitting layer / electron injection layer / cathode (3) Anode / acceptor material-containing layer (acceptor layer) / first hole transport layer / second hole transport layer / light emitting layer / electron transport layer / electron injection layer / cathode (4) Anode / first hole transport layer / second hole transport layer / light emitting layer / electron injection layer / cathode (5) Structures such as anode / first hole transport layer / second hole transport layer / light emitting layer / electron transport layer / electron injection layer / cathode can be mentioned.
  • the second hole transport layer and the light emitting layer there may be further third, fourth,... Hole transport layers.
  • an electron barrier layer or an exciton barrier layer may be provided between the light emitting layer and the hole transport layer, and the hole transport layer in contact with the light emitting layer may be an electron barrier layer or an exciton barrier layer.
  • the first hole transport layer adjacent to the acceptor layer is the acceptor layer adjacent hole transport layer. Sometimes called.
  • the organic EL device of the present invention preferably has an acceptor layer containing an acceptor material between the anode and the at least two or more hole transport layers.
  • the positive hole transport layer containing the compound represented by the said General formula (1) may contain acceptor material.
  • the acceptor material since the bonding property with the hole transport layer containing the compound represented by the general formula (1) is improved and the device performance can be further improved, the following general formulas (A), ( A compound having a highly planar skeleton such as a compound represented by B) or (C) is preferable.
  • R 11 to R 16 are each independently a cyano group, —CONH 2 , carboxyl group, or —COOR 17 (R 17 is an alkyl group having 1 to 20 carbon atoms).
  • R 11 and R 12 , R 13 and R 14 , or R 15 and R 16 are bonded to each other to represent a group represented by —CO—O—CO—.
  • Examples of the alkyl group for R 17 include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, an isobutyl group, a tert-butyl group, a cyclopentyl group, and a cyclohexyl group.
  • R 21 to R 24 may be the same or different from each other, and are a hydrogen atom, a substituted or unsubstituted alkyl group having 1 to 20 carbon atoms, a substituted or unsubstituted ring forming carbon number.
  • An alkoxy group having ⁇ 20, a substituted or unsubstituted aryloxy group having 6 to 50 ring carbon atoms, or a cyano group; R 21 to R 24 that are adjacent to each other may be bonded to each other to form a ring.
  • Y 1 to Y 4 may be the same or different from each other, and are —N ⁇ , —CH ⁇ , or C (R 25 ) ⁇ , and R 25 is a substituted or unsubstituted alkyl group having 1 to 20 carbon atoms.
  • R 25 is a substituted or unsubstituted alkyl group having 1 to 20 carbon atoms.
  • Ar 10 is a condensed ring having 6 to 24 ring carbon atoms or a heterocyclic ring having 6 to 24 ring atoms.
  • ar 1 and ar 2 each independently represent a ring of the following general formula (i) or (ii). ⁇ Wherein X 1 and X 2 may be the same or different from each other, and are any of the divalent groups shown in the following (a) to (g).
  • R 31 to R 34 may be the same as or different from each other, and may be a hydrogen atom, a substituted or unsubstituted alkyl group having 1 to 20 carbon atoms, a substituted or unsubstituted ring forming carbon number of 6 to 50). Or a substituted or unsubstituted heterocyclic group having 5 to 50 ring atoms, and R 32 and R 33 may be bonded to each other to form a ring.) ⁇
  • Examples of each group of R 21 to R 24 and R 31 to R 34 are as follows.
  • Examples of the alkyl group include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, an isobutyl group, a tert-butyl group, a cyclopentyl group, and a cyclohexyl group.
  • the aryl group include a phenyl group, a biphenyl group, and a naphthyl group.
  • Examples of the heterocyclic group include residues such as pyridine, pyrazine, furan, imidazole, benzimidazole, and thiophene.
  • halogen atom examples include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom.
  • alkoxy group examples include a methoxy group and an ethoxy group.
  • aryloxy group examples include a phenyloxy group. These may have a substituent, and the substituted aryl group includes an aryl group substituted with a halogen atom such as a monofluorophenyl group and a trifluoromethylphenyl group; a tolyl group, a 4-t-butylphenyl group And an aryl group substituted with an alkyl group having 1 to 10 carbon atoms (preferably 1 to 5 carbon atoms).
  • substituted alkyl group examples include alkyl groups substituted with a halogen atom, such as a trifluoromethyl group, a pentafluoroethyl group, a perfluorocyclohexyl group, and a perfluoroadamantyl group.
  • a halogen atom such as a trifluoromethyl group, a pentafluoroethyl group, a perfluorocyclohexyl group, and a perfluoroadamantyl group.
  • the substituted aryloxy group includes an aryloxy group substituted with a halogen atom or substituted with a halogen atom-containing alkyl group (having 1 to 5 carbon atoms), such as 4-trifluoromethylphenyloxy group and pentafluorophenyloxy; And an aryloxy group substituted with an alkyl group having 1 to 10 carbon atoms (preferably 1 to 5 carbon atoms) such as a 4-t-butylphenoxy group.
  • R 21 to R 24 that are adjacent to each other may be bonded to each other to form a ring. Examples of the ring include a benzene ring, naphthalene ring, pyrazine ring, pyridine ring, furan ring and the like.
  • Z 1 to Z 3 are each independently a divalent group represented by the following general formula (h).
  • Ar 31 is a substituted or unsubstituted aryl group having 6 to 50 ring carbon atoms or a substituted or unsubstituted heteroaryl group having 5 to 50 ring atoms.
  • the aryl group include a phenyl group and a naphthyl group.
  • the heteroaryl group include pyridine, pyrazine, pyrimidine, quinoline, isoquinoline and the like.
  • substituents include electron withdrawing groups such as a cyano group, a fluoro group, a trifluoromethyl group, a chloro group, and a bromo group.
  • the organic EL element of this invention is produced on a translucent board
  • the translucent substrate referred to here is a substrate that supports the organic EL element, and is preferably a smooth substrate having a light transmittance in the visible region of 400 to 700 nm of 50% or more.
  • a glass plate, a polymer plate, etc. are mentioned.
  • the glass plate include soda lime glass, barium / strontium-containing glass, lead glass, aluminosilicate glass, borosilicate glass, barium borosilicate glass, and quartz.
  • the polymer plate include polycarbonate, acrylic, polyethylene terephthalate, polyether sulfide, and polysulfone.
  • Anode of the organic EL device of the present invention has a function of injecting holes into the hole transport layer or the light emitting layer, and it is effective to have a work function of 4.5 eV or more.
  • Specific examples of the anode material used in the present invention include indium tin oxide alloy (ITO), tin oxide (NESA), indium-zinc oxide (IZO), gold, silver, platinum, copper and the like.
  • the anode can be produced by forming a thin film from these electrode materials by a method such as vapor deposition or sputtering. Thus, when light emission from the light emitting layer is taken out from the anode, it is preferable that the transmittance of the anode for light emission is greater than 10%.
  • the sheet resistance of the anode is preferably several hundred ⁇ / ⁇ or less.
  • the film thickness of the anode depends on the material, it is usually selected in the range of 10 nm to 1 ⁇ m, preferably 10 to 200 nm.
  • Hole transport layer As described above, at least two or more hole transport layers are used in the organic EL element in a more preferred embodiment of the organic EL element of the present invention.
  • the hole transport layer not adjacent to the light emitting layer is often used in a thick film for optical adjustment of the organic EL element, and is required to have a high hole mobility from the viewpoint of lowering the voltage.
  • the amount of carriers generated is large because of generally excellent interaction with an acceptor material having high planarity, more holes can be transported and injected into the light emitting layer. That is, it satisfies the characteristics required for a hole transport layer that is not adjacent to the light emitting layer (in the case where there are two hole transport layers, it corresponds to the first hole transport layer).
  • the characteristics required for the hole transport layer adjacent to the light-emitting layer include diffusion of excitation energy of the light-emitting layer.
  • An organic layer having a high triplet energy (preferably 2.6 eV or more), an electron resistance because it is adjacent to the light emitting layer, and a low affinity (preferably 2.4 eV or less) to prevent electrons from leaking from the light emitting layer.
  • an organic layer having a high ionization potential (preferably 5.5 eV or more) is required to promote hole injection into the light emitting layer. Examples of the material satisfying such characteristics include compounds represented by the following general formulas (4) to (8).
  • L 1 to L 3 each independently represents a single bond or a substituted or unsubstituted arylene group having 6 to 50 ring carbon atoms, and the substituents that L 1 to L 3 may have are A linear or branched alkyl group having 1 to 10 carbon atoms, a cycloalkyl group having 3 to 10 ring carbon atoms, a trialkylsilyl group having 3 to 10 carbon atoms, a triarylsilyl group having 6 to 30 ring carbon atoms, An alkylarylsilyl group having 8 to 15 carbon atoms (wherein the aryl moiety has 6 to 14 ring carbon atoms), an aryl group having 6 to 50 ring carbon atoms, a halogen atom, or a cyano group.
  • Ar 14 represents a substituted or unsubstituted aryl group having 6 to 50 ring carbon atoms, and Ar 14 may have a linear or branched alkyl group having 1 to 10 carbon atoms, A cycloalkyl group having 3 to 10 ring carbon atoms, a trialkylsilyl group having 3 to 10 carbon atoms, a triarylsilyl group having 6 to 30 ring carbon atoms, an alkylarylsilyl group having 8 to 15 carbon atoms (of the aryl moiety).
  • the ring-forming carbon number is 6 to 14), and the aryl group, halogen atom or cyano group having 6 to 50 ring carbon atoms.
  • R 51 to R 56 are each independently a substituted or unsubstituted linear or branched alkyl group having 1 to 10 carbon atoms, a substituted or unsubstituted cycloalkyl group having 3 to 10 ring carbon atoms, substituted Or an unsubstituted trialkylsilyl group having 3 to 10 carbon atoms, a substituted or unsubstituted triarylsilyl group having 6 to 30 ring carbon atoms, or a substituted or unsubstituted alkylarylsilyl group having 8 to 15 carbon atoms (aryl The number of ring-forming carbon atoms of the moiety is 6 to 14), and represents a substituted or unsubstituted aryl group, halogen atom or cyano group having 6 to 50 ring carbon atoms.
  • a plurality of adjacent R 51 to R 56 may combine with each other to form a saturated or unsaturated divalent group forming a ring.
  • b and f each independently represents an integer of 0 to 3
  • a, c, d and e each independently represents an integer of 0 to 4.
  • L 1 in the formula (4-2) and L 3 in the formula (4-4) are an arylene group
  • an increase in the electron density of the compound represented by the formula (4) is suppressed, and Ip is large. Therefore, since the injection of holes into the light emitting layer is promoted, the voltage of the device is likely to be low, which is preferable.
  • the amine is hardly oxidized, the compound is often stabilized, and the lifetime of the device is likely to be increased.
  • L 3 in the formula (4-4) is an arylene group, the compound is stable, and thus synthesis is easy.
  • R 61 to R 64 each independently represents a linear or branched alkyl group having 1 to 10 carbon atoms, a cycloalkyl group having 3 to 10 ring carbon atoms, or a tricyclic group having 3 to 10 carbon atoms.
  • a plurality of adjacent R 61 to R 64 may combine to form a saturated or unsaturated ring.
  • k, l, m, and n are each independently an integer of 0 to 4. ]
  • Ar 15 to Ar 21 each independently represents a substituted or unsubstituted aryl group having 6 to 50 ring carbon atoms, or a substituted or unsubstituted ring group having 5 to 50 ring carbon atoms.
  • Ar 16 and Ar 17 , Ar 18 and Ar 19 , Ar 20 and Ar 21 may be bonded to each other to form a ring.
  • L 4 represents a single bond or a substituted or unsubstituted arylene group having 6 to 50 ring carbon atoms, and L 4 may have a linear or branched group having 1 to 10 carbon atoms.
  • R 67 to R 77 are each independently a halogen atom, a substituted or unsubstituted alkyl group having 1 to 40 carbon atoms, a substituted or unsubstituted heteroaryl group having 5 to 20 ring atoms, a substituted or unsubstituted group.
  • R 78 and R 79 each independently represents a substituted or unsubstituted alkyl group having 1 to 40 carbon atoms, a substituted or unsubstituted heteroaryl group having 5 to 20 ring atoms, a substituted or unsubstituted ring forming carbon;
  • g, i, p, q, r, s, w, and x are each independently an integer of 0 to 4.
  • h, y, and z are each independently an integer of 0 to 3. ]
  • a 1 and A 2 are each independently a substituted or unsubstituted aryl group having 6 to 30 ring carbon atoms, or a substituted or unsubstituted heteroaryl group having 2 to 30 ring carbon atoms.
  • Y 11 to Y 26 each independently represent C (R) or a nitrogen atom, and each R independently represents a bond bonded to a hydrogen atom, a substituent or a carbazole skeleton.
  • L 11 and L 12 each independently represent a single bond or a substituted or unsubstituted arylene group having 6 to 50 ring carbon atoms, and the arylene group may have a substituent having 1 to 10 carbon atoms
  • a well-known material can be used as a material of a phosphorescent light emitting layer.
  • a well-known material can be used as a material of a phosphorescent light emitting layer.
  • the phosphorescent material include ortho-metalated complexes of iridium (Ir), osmium (Os), or platinum (Pt) metal.
  • the organic EL element of the present invention may have a fluorescent light emitting layer.
  • a known material can be used for the fluorescent light emitting layer. Specifically, suitable materials described in WO2010 / 134350 and WO2010 / 134352 are selected.
  • the light emitting layer may be a double host (also referred to as a host / cohost). Specifically, the carrier balance in the light emitting layer may be adjusted by combining an electron transporting host and a hole transporting host in the light emitting layer. Moreover, it is good also as a double dopant.
  • each dopant emits light by adding two or more dopant materials having a high quantum yield. For example, a yellow light emitting layer may be realized by co-evaporating a host, a red dopant, and a green dopant.
  • a light emitting layer may contain a hole transport material, an electron transport material, and a polymer binder as needed.
  • the thickness of the light emitting layer is preferably 5 to 50 nm, more preferably 7 to 50 nm, and most preferably 10 to 50 nm. If the thickness is less than 5 nm, it is difficult to form a light emitting layer, and it may be difficult to adjust the chromaticity. If the thickness exceeds 50 nm, the driving voltage may increase.
  • the electron injection / transport layer is a layer that assists the injection of electrons into the light emitting layer and transports it to the light emitting region, and has a high electron mobility.
  • these electron injecting / transporting layers it is a layer made of a material having particularly good adhesion to the cathode.
  • an electrode in this case, a cathode
  • the electron injecting / transporting layer is appropriately selected with a film thickness of several nm to several ⁇ m.
  • the electron mobility is preferably at least 10 ⁇ 5 cm 2 / Vs or more when an electric field of V / cm is applied.
  • 8-hydroxyquinoline or a metal complex of its derivative or an oxadiazole derivative is preferable.
  • a metal chelate oxinoid compound containing a chelate of oxine (generally 8-quinolinol or 8-hydroxyquinoline), for example, tris (8-quinolinol) aluminum is injected. It can be used as a material.
  • the electron injection material include compounds represented by any of the following general formulas (31) to (36).
  • Z 1 , Z 2 and Z 3 are each independently a nitrogen atom or a carbon atom.
  • R 1 and R 2 each independently represents a substituted or unsubstituted aryl group having 6 to 50 ring carbon atoms, a substituted or unsubstituted heteroaryl group having 5 to 50 ring atoms, or 1 to 20 carbon atoms.
  • R 1 may be substituted with either a 5-membered ring or a 6-membered ring, but is preferably substituted with a 6-membered ring.
  • R 1 in formula (33) is substituted with a 6-membered ring.
  • n is an integer of 0 to 5, and when n is an integer of 2 or more, the plurality of R 1 may be the same or different from each other. Further, a plurality of adjacent R 1 may be bonded to each other to form a substituted or unsubstituted aromatic hydrocarbon ring.
  • Ar 1 is a substituted or unsubstituted aryl group having 6 to 50 ring carbon atoms or a substituted or unsubstituted heteroaryl group having 5 to 50 ring atoms.
  • Ar 2 is a hydrogen atom, an alkyl group having 1 to 20 carbon atoms, an alkyl group having 1 to 20 carbon atoms substituted by a halogen atom, an alkoxy group having 1 to 20 carbon atoms, a substituted or unsubstituted ring forming carbon atom having 6 to 6 carbon atoms. 50 aryl groups or substituted or unsubstituted heteroaryl groups having 5 to 50 ring atoms.
  • Ar 1 or Ar 2 is a substituted or unsubstituted condensed ring group having 10 to 50 ring carbon atoms or a substituted or unsubstituted hetero condensed ring group having 9 to 50 ring atoms.
  • Ar 3 is a substituted or unsubstituted arylene group having 6 to 50 ring carbon atoms or a substituted or unsubstituted heteroarylene group having 5 to 50 ring atoms.
  • L 1 , L 2 and L 3 are each independently a single bond, a substituted or unsubstituted arylene group having 6 to 50 ring carbon atoms, a substituted or unsubstituted hetero condensed ring group having 9 to 50 ring atoms.
  • L 2, L 3 in the formula (32) in the formula (31) may be substituted at any of the 5-membered ring and 6-membered ring, respectively, but that is substituted in 5-membered ring preferable.
  • aryl group and alkyl group represented by R 1 , R 2 , Ar 1 , Ar 2 include the same examples as R 1 and R 2 in formula (1), and the alkoxy group includes its alkyl group.
  • An example in which an oxygen atom is bonded to is given.
  • heteroaryl groups represented by R 1 , R 2 , Ar 1 and Ar 2 include pyrrolyl, pyridinyl, pyrazinyl, pyrimidinyl, indolyl, isoindolyl, furyl, benzofuranyl, isobenzofuranyl, A quinolinyl group, an isoquinolinyl group, a quinoxanyl group, a carbazolyl group, a phenanthridinyl group, an acridinyl group, and the like can be given.
  • Examples of the arylene group represented by Ar 3 , L 1 , L 2 and L 3 include a divalent example of the aryl group, and examples of the hetero condensed ring group include a condensed ring group in which the number of carbon atoms forming the heteroaryl group is suitable. It is done.
  • X is a condensed ring containing a nitrogen atom or a sulfur atom
  • Y is a single bond, alkyl chain, alkylene chain, cycloalkyl chain, aryl chain, heterocyclic chain, silyl chain, ether chain, or thioether chain.
  • q is a natural number of 2 or more.
  • the molecular weight of the compound represented by General formula (34) is 480 or more.
  • A is a substituent having a phenanthroline skeleton or a benzoquinoline skeleton.
  • B is a p-valent organic group having a structure represented by the following formula (35A). P is a natural number of 2 or more.
  • R 4 and R 5 are each independently an alkyl group or an aryl group (including an aryl group condensed to a phenyl group).
  • L and m are each independently a natural number from 0 to 5.
  • Z is at least one selected from the following formula (35B).
  • R 6 and R 7 may be the same or different and are each a hydrogen atom, an alkyl group, a cycloalkyl group, a heterocyclic group, an alkenyl group, a cycloalkenyl group, an alkynyl group, an alkoxy group, an alkylthio group, Aryl ether group, aryl thioether group, aryl group, heteroaryl group, cyano group, carbonyl group, ester group, carbamoyl group, amino group, silyl group, and a condensed ring formed between adjacent substituents Ar 4 represents an aryl group or a heteroaryl group.
  • the organic EL device of the present invention has at least one of an electron donating dopant and an organometallic complex in the interface region between the cathode and the organic thin film layer. According to such a configuration, it is possible to improve the light emission luminance and extend the life of the organic EL element.
  • the electron donating dopant include at least one selected from alkali metals, alkali metal compounds, alkaline earth metals, alkaline earth metal compounds, rare earth metals, rare earth metal compounds, and the like.
  • the organometallic complex include at least one selected from an organometallic complex containing an alkali metal, an organometallic complex containing an alkaline earth metal, an organometallic complex containing a rare earth metal, and the like.
  • alkali metal examples include lithium (Li) (work function: 2.93 eV), sodium (Na) (work function: 2.36 eV), potassium (K) (work function: 2.28 eV), rubidium (Rb) (work Function: 2.16 eV), cesium (Cs) (work function: 1.95 eV), and the like, and those having a work function of 2.9 eV or less are preferable.
  • K, Rb, and Cs are preferred, Rb and Cs are more preferred, and Cs is most preferred.
  • alkaline earth metal examples include calcium (Ca) (work function: 2.9 eV), strontium (Sr) (work function: 2.0 eV to 2.5 eV), barium (Ba) (work function: 2.52 eV).
  • a work function of 2.9 eV or less is particularly preferable.
  • the rare earth metal examples include scandium (Sc), yttrium (Y), cerium (Ce), terbium (Tb), ytterbium (Yb) and the like, and those having a work function of 2.9 eV or less are particularly preferable.
  • preferred metals are particularly high in reducing ability, and by adding a relatively small amount to the electron injection region, it is possible to improve the light emission luminance and extend the life of the organic EL element.
  • alkali metal compound examples include lithium oxide (Li 2 O), cesium oxide (Cs 2 O), alkali oxides such as potassium oxide (K 2 O), lithium fluoride (LiF), sodium fluoride (NaF), fluorine.
  • alkali halides such as cesium fluoride (CsF) and potassium fluoride (KF), and lithium fluoride (LiF), lithium oxide (Li 2 O), and sodium fluoride (NaF) are preferable.
  • alkaline earth metal compound examples include barium oxide (BaO), strontium oxide (SrO), calcium oxide (CaO), and barium strontium oxide (Ba x Sr 1-x O) (0 ⁇ x ⁇ 1), Examples thereof include barium calcium oxide (Ba x Ca 1-x O) (0 ⁇ x ⁇ 1), and BaO, SrO, and CaO are preferable.
  • the rare earth metal compound ytterbium fluoride (YbF 3), scandium fluoride (ScF 3), scandium oxide (ScO 3), yttrium oxide (Y 2 O 3), cerium oxide (Ce 2 O 3), gadolinium fluoride (GdF 3), include such terbium fluoride (TbF 3) is, YbF 3, ScF 3, TbF 3 are preferable.
  • the organometallic complex is not particularly limited as long as it contains at least one of an alkali metal ion, an alkaline earth metal ion, and a rare earth metal ion as a metal ion as described above.
  • the ligand includes quinolinol, benzoquinolinol, acridinol, phenanthridinol, hydroxyphenyl oxazole, hydroxyphenyl thiazole, hydroxydiaryl oxadiazole, hydroxydiaryl thiadiazole, hydroxyphenyl pyridine, hydroxyphenyl benzimidazole, hydroxybenzotriazole, Hydroxyfulborane, bipyridyl, phenanthroline, phthalocyanine, porphyrin, cyclopentadiene, ⁇ -diketones, azomethines, and derivatives thereof are preferred, but not limited thereto.
  • the addition form of the electron donating dopant and the organometallic complex is preferably formed in a layered or island shape in the interface region.
  • a forming method while depositing at least one of an electron donating dopant and an organometallic complex by a resistance heating vapor deposition method, an organic material that is a light-emitting material or an electron injection material that forms an interface region is vapor-deposited at the same time.
  • a method of dispersing at least one of the donor dopant and the organometallic complex is preferable.
  • the dispersion concentration is usually organic substance: electron donating dopant and / or organometallic complex in a molar ratio of 100: 1 to 1: 100, preferably 5: 1 to 1: 5.
  • At least one of the electron donating dopant and the organometallic complex is formed in a layered form
  • at least one of the electron donating dopant and the organometallic complex is formed.
  • These are vapor-deposited by a resistance heating vapor deposition method alone, preferably with a layer thickness of 0.1 nm to 15 nm.
  • an electron donating dopant and an organometallic complex In the case where at least one of an electron donating dopant and an organometallic complex is formed in an island shape, a light emitting material or an electron injecting material which is an organic layer at the interface is formed in an island shape, and then the electron donating dopant and the organometallic complex are formed. At least one of them is vapor-deposited by a resistance heating vapor deposition method, preferably with an island thickness of 0.05 nm to 1 nm.
  • Electrode in order to inject electrons into the electron injecting / transporting layer or the light emitting layer, a material having a small work function (4 eV or less), an alloy, an electrically conductive compound and a mixture thereof are used as electrode materials. Used. Specific examples of such electrode materials include sodium, sodium / potassium alloy, magnesium, lithium, magnesium / silver alloy, aluminum / aluminum oxide, aluminum / lithium alloy, indium, and rare earth metals.
  • the cathode can be produced by forming a thin film of these electrode materials by a method such as vapor deposition or sputtering.
  • the transmittance with respect to the light emitted from the cathode is larger than 10%.
  • the sheet resistance as the cathode is preferably several hundred ⁇ / ⁇ or less, and the film thickness is usually 10 nm to 1 ⁇ m, preferably 50 to 200 nm.
  • Insulating layer Since an organic EL element applies an electric field to an ultrathin film, pixel defects due to leakage or short-circuiting are likely to occur. In order to prevent this, it is preferable to insert an insulating thin film layer between the pair of electrodes.
  • the material used for the insulating layer include aluminum oxide, lithium fluoride, lithium oxide, cesium fluoride, cesium oxide, magnesium oxide, magnesium fluoride, calcium oxide, calcium fluoride, aluminum nitride, titanium oxide, silicon oxide, Examples thereof include germanium oxide, silicon nitride, boron nitride, molybdenum oxide, ruthenium oxide, vanadium oxide, and a mixture or a laminate thereof may be used.
  • An organic EL device is formed by forming an anode, a light emitting layer, a hole transport layer, and an electron injection / transport layer as required, and further forming a cathode by the materials and formation methods exemplified above.
  • An element can be manufactured.
  • an organic EL element can also be produced from the cathode to the anode in the reverse order.
  • an example of manufacturing an organic EL device having a structure in which an anode / hole transport layer / light emitting layer / electron injection / transport layer / cathode are sequentially provided on a translucent substrate will be described.
  • a thin film made of an anode material is formed on a suitable light-transmitting substrate by a method such as vapor deposition or sputtering so as to have a film thickness of 1 ⁇ m or less, preferably in the range of 10 to 200 nm, to produce an anode.
  • a method such as vapor deposition or sputtering so as to have a film thickness of 1 ⁇ m or less, preferably in the range of 10 to 200 nm, to produce an anode.
  • at least two or more hole transport layers are sequentially provided on the anode.
  • the hole transport layer can be formed by a method such as a vacuum deposition method, a spin coating method, a casting method, or an LB method. However, it is easy to obtain a uniform film and pinholes are not easily generated. It is preferable to form by a vacuum evaporation method.
  • the deposition conditions vary depending on the compound used (the material of the hole transport layer), the crystal structure and recombination structure of the target hole transport layer, etc.
  • the source temperature is preferably selected from the range of 50 to 450 ° C., the degree of vacuum of 10 ⁇ 7 to 10 ⁇ 3 Torr, the deposition rate of 0.01 to 50 nm / second, the substrate temperature of ⁇ 50 to 300 ° C., and the thickness of 5 nm to 5 ⁇ m. .
  • a light emitting layer in which a light emitting layer is provided on the hole transport layer is also performed by thinning the organic light emitting material using a desired organic light emitting material by a method such as vacuum deposition, sputtering, spin coating, or casting.
  • a vacuum deposition method from the viewpoint that a homogeneous film is easily obtained and pinholes are hardly generated.
  • the vapor deposition conditions vary depending on the compound used, but can generally be selected from the same condition range as that of the hole transport layer.
  • an electron injection / transport layer is provided on the light emitting layer.
  • an organic EL element can be obtained by laminating a cathode.
  • the cathode is made of metal, and vapor deposition or sputtering can be used.
  • vacuum deposition is preferred to protect the underlying organic layer from damage during film formation.
  • the organic EL element is preferably manufactured from the anode to the cathode consistently by a single vacuum.
  • the organic EL device obtained by using the compound of the present invention can increase the thickness of the hole transport layer, can adjust the optical film thickness of the organic EL device, and can improve the light emission efficiency and life of the device.
  • the mixture was extracted with ethyl acetate and water, and the organic layer was washed with water. It dried with the anhydrous sodium sulfate and the solvent was distilled off. By washing with hexane, 359 g of white powder was obtained.
  • Synthesis Example 3 (Production of compound (H3)) In Synthesis Example 2, the reaction was conducted in the same manner except that 4.9 g of N- (4-biphenyl) -N-phenylamine was used instead of N- (1-naphthyl) -N-phenylamine. Obtained 2 g of white crystals. The following compound (H3) was identified by analysis of FD-MS. (Yield 65%)
  • Synthesis Example 4 (Production of compound (H4)) In Synthesis Example 2, the reaction was performed in the same manner except that 6.4 g of N, N-bis (4-biphenyl) amine was used instead of N- (1-naphthyl) -N-phenylamine. Of white crystals were obtained. The following compound (H4) was identified by analysis of FD-MS. (Yield 60%)
  • Synthesis Example 5 (Production of compound (H5)) A reaction was conducted in the same manner as in Synthesis Example 2 except that 7.2 g of Intermediate 4 was used instead of N- (1-naphthyl) -N-phenylamine, whereby 10.0 g of white crystals were obtained. The following compound (H5) was identified by analysis of FD-MS. (Yield 52%)
  • Synthesis Example 6 (Production of compound (H6)) A reaction was conducted in the same manner as in Synthesis Example 2 except that 6.7 g of intermediate 6 was used instead of N- (1-naphthyl) -N-phenylamine, to obtain 8.0 g of white crystals. The following compound (H6) was identified by analysis of FD-MS. (Yield 45%)
  • Synthesis Example 7 (Production of compound (H7)) A reaction was conducted in the same manner as in Synthesis Example 2 except that 6.0 g of Intermediate 8 was used instead of N- (1-naphthyl) -N-phenylamine, to obtain 10.6 g of white crystals. The following compound (H7) was identified by analysis of FD-MS. (Yield 65%)
  • Synthesis Example 8 (Production of compound (H8)) A reaction was conducted in the same manner as in Synthesis Example 2 except that 6.5 g of intermediate 11 was used instead of N- (1-naphthyl) -N-phenylamine, to obtain 6.7 g of white crystals. The following compound (H8) was identified by analysis of FD-MS. (Yield 40%)
  • Example 1 (Production of organic EL element) A 25 mm ⁇ 75 mm ⁇ 1.1 mm glass substrate with an ITO transparent electrode line (manufactured by Geomatic) was ultrasonically cleaned in isopropyl alcohol for 5 minutes, and further UV (Ultraviolet) ozone cleaned for 30 minutes. A glass substrate with a transparent electrode line after cleaning is attached to a substrate holder of a vacuum deposition apparatus, and the following acceptor material (A) is vapor-deposited so as to cover the transparent electrode on the surface where the transparent electrode line is formed, An acceptor layer having a thickness of 5 nm was formed.
  • ITO transparent electrode line manufactured by Geomatic
  • the compound (H1) obtained in Synthesis Example 1 was vapor-deposited as a first hole transport material to form a first hole transport layer having a thickness of 65 nm.
  • the following aromatic amine derivative (X1) was deposited as a second hole transport material to form a second hole transport layer having a thickness of 10 nm.
  • the phosphorescent host compound (B) and the phosphorescent dopant Ir (ppy) 3 were co-evaporated at a thickness of 25 nm to obtain a phosphorescent light emitting layer.
  • the concentration of Ir (ppy) 3 was 10% by mass.
  • a compound (C) having a thickness of 35 nm, LiF having a thickness of 1 nm, and metal Al having a thickness of 80 nm were sequentially laminated on the phosphorescent light emitting layer to form a cathode.
  • LiF which is an electron injecting electrode, was formed at a deposition rate of 1 ⁇ / min.
  • the obtained organic EL device was caused to emit light by direct current driving, and the luminance (L) and current density were measured, and the current efficiency (L / J) and driving voltage (V) at a current density of 10 mA / cm 2 were obtained. Furthermore, the lifetime of the element at a current density of 50 mA / cm 2 (the time during which the luminance is reduced to 80%) was determined. The results are shown in Table 1.
  • Example 1 an organic EL device was produced in the same manner as in Example 1 except that the compound shown in Table 1 was used instead of the compound (H1) as the first hole transport material.
  • the obtained organic EL device was caused to emit light by direct current driving, and the luminance (L) and current density were measured, and the current efficiency (L / J) and driving voltage (V) at a current density of 10 mA / cm 2 were obtained. Furthermore, the lifetime of the element at a current density of 50 mA / cm 2 (the time during which the luminance is reduced to 80%) was determined. The results are shown in Table 1.
  • Example 1 an organic EL device was produced in the same manner as in Example 1 except that the following comparative compounds 1 to 4 were used instead of the compound (H1) as the first hole transport material.
  • the obtained organic EL device was caused to emit light by direct current driving, and the luminance (L) and current density were measured, and the current efficiency (L / J) and driving voltage (V) at a current density of 10 mA / cm 2 were obtained. Furthermore, the lifetime of the element at a current density of 50 mA / cm 2 (the time during which the luminance is reduced to 80%) was determined. The results are shown in Table 1.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Electroluminescent Light Sources (AREA)
  • Furan Compounds (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Heterocyclic Compounds Containing Sulfur Atoms (AREA)

Abstract

 高効率化、長寿命化された有機EL素子及び該素子を搭載した電子機器、並びにそのような有機EL素子を提供し得る化合物を提供する。該化合物としては、具体的には下記一般式(1)で表される化合物である。 [式(1)中、L1及びL2は、単結合、置換もしくは無置換のアリーレン基である。R1及びR2は、水素原子、アルキル基又はアリール基である。Ar1~Ar4は、少なくとも1つが下記一般式(2)で表される基であり、そうでないものは、それぞれ独立に、置換もしくは無置換のアリール基である。(R3~R5は、アルキル基、のシクロアルキル基、のアルコキシ基、アラルキル基、アリールオキシ基、アリール基、ハロゲン原子又はシアノ基である。R3~R5は、互いに結合して炭化水素環を形成してもよい。a及びbは、それぞれ独立に、0~4の整数である。cは、0~5の整数である。また、a、b又はcが2以上である場合、隣接するR3同士、隣接するR4同士又は隣接するR5同士は、互いに結合して炭化水素環を形成してもよい。)]

Description

芳香族アミン誘導体、有機エレクトロルミネッセンス素子及び電子機器
 本発明は芳香族アミン誘導体及びそれを用いた有機エレクトロルミネッセンス素子(有機EL素子)に関する。本発明はさらに、前記有機EL素子を搭載した電子機器に関する。
 有機EL素子は、電界を印加することより、陽極より注入された正孔と陰極より注入された電子の再結合エネルギーにより蛍光性物質が発光する原理を利用した自発光素子である。イーストマン・コダック社のC.W.Tangらによる積層型素子による低電圧駆動有機EL素子の報告(C.W. Tang, S.A. Vanslyke, アプライドフィジックスレターズ(Applied Physics Letters),51巻、913頁、1987年等)がなされて以来、有機材料を構成材料とする有機EL素子に関する研究が盛んに行われている。
 例えば、特許文献1~4には、中心フルオレンのジアミン化合物を開示し、発光層に隣接する正孔輸送層として使用することで、末端フェニル基のジアミン化合物と比べて安定性、耐久性の改良された有機EL素子を開示する。
 また、特許文献5は、特定のジアミン構造を有する化合物を第一正孔輸送材料として用い、ジベンゾフラン構造及びカルバゾール構造を有する芳香族アミン誘導体を第二正孔輸送材料として用いることによって駆動電圧が低く、寿命の長い有機EL素子を製造することできることを開示する。特許文献6は、第一正孔輸送層に特定のジフェニル中心のジアミン化合物を採用し、第二正孔輸送層に特定のヘテロアリール構造を有するアミン化合物を燐光発光性の有機EL素子において採用することで、電子ブロック性、電子耐性および正孔輸送性を兼ね備えた正孔輸送層の課題を解決することを開示する。特許文献7は発光層に隣接する正孔輸送層に、カルバゾール環構造を有する化合物を採用することで、素子の発光効率が高く、駆動電圧が低い有機EL素子を提供する。
 すなわち、有機EL素子、特に燐光素子では正孔輸送層を第一正孔輸送層と第二正孔輸送層の2層構成として、第二正孔輸送層により高機能な材料を適用することで素子性能が向上している。
 第二正孔輸送層に求められる性能としては、燐光発光層の励起エネルギーの拡散を防ぐため、高い三重項エネルギー(2.6eV以上が好ましい。)、発光層と隣接するため電子耐性、発光層から電子が漏れることを防ぐためにアフィニティの小さい(2.4eV以下が好ましい。)有機層であること、発光層への正孔注入を促進させるためにイオン化ポテンシャルの大きい(5.5eV以上が好ましい。)有機層であることが必要とされている。このような特性を満たす材料として、トリフェニルアミン骨格にカルバゾールやジベンゾフラン等のヘテロアリール環が結合した電子耐性の高い分子骨格が好まれている。
 一方の第一正孔輸送層については、一般的に第二正孔輸送層への正孔注入性に優れることが求められている。
 また、正孔注入性を向上する観点から、正孔注入層としてp型半導体的性質を有する化合物(本発明では、アクセプター材料又は電子受容性化合物ともいう)を含有させることが検討されている(特許文献8~9参照)。
特許第3813003号公報 特許第3801330号公報 特許第3792029号公報 特許第3835917号公報 国際公開第2010/114017号公報 国際公開第2009/041635号公報 国際公開第2011/024451号公報 国際公開第01/49806号公報(特表2003-519432号公報) 国際公開第2011/090149号公報
 上記のような有機EL素子の研究開発が進むなか、商用デバイスにおいては有機EL素子のそれぞれの発光色ごとに、内部で発光した光をデバイス外部に効率よく取り出すことが不可欠である。そこで、キャリア輸送性が他の有機層と比べて高い正孔輸送層の膜厚を制御することで、素子全体の光路長を調整する必要がある。このとき、正孔輸送層を厚膜化しても駆動電圧が高くならない程に高い移動度の正孔輸送材料が求められており、かつ、アクセプター材料との相互作用によって、キャリア生成量が大きな正孔輸送材料を第一正孔輸送層に適用することが求められている。
 本発明は、前記の課題を解決するためになされたものであり、高効率化、長寿命化された有機EL素子及び該有機EL素子を搭載した電子機器、並びにそのような有機EL素子を提供し得る化合物を提供することを目的とする。
 本発明者らは、前記の好ましい性質を有する芳香族アミン誘導体及びそれを用いた有機EL素子を開発すべく鋭意研究を重ねた結果、一般式(1)で表される化合物を利用することによりその課題を解決し得ることを見出した。本発明は、かかる知見に基づいて完成したものである。
 すなわち、本発明の一態様は、下記一般式(1)で表される化合物を提供するものである。
Figure JPOXMLDOC01-appb-C000011
[式中、L1及びL2は、それぞれ独立に、単結合、置換もしくは無置換の環形成炭素数6~10のアリーレン基である。
 R1及びR2は、それぞれ独立に、水素原子、炭素数1~10のアルキル基又は環形成炭素数6~30のアリール基である。
 Ar1~Ar4は、少なくとも1つが下記一般式(2)で表される基であり、そうでないものは、それぞれ独立に、置換もしくは無置換の環形成炭素数6~30のアリール基である。
Figure JPOXMLDOC01-appb-C000012
(R3~R5は、それぞれ独立に、炭素数1~10のアルキル基、環形成炭素数3~10のシクロアルキル基、炭素数1~10のアルコキシ基、炭素数7~30のアラルキル基、炭素数6~30のアリールオキシ基、環形成炭素数6~30のアリール基、ハロゲン原子又はシアノ基である。R3~R5は、互いに結合して炭化水素環を形成してもよい。
 a及びbは、それぞれ独立に、0~4の整数である。cは、0~5の整数である。また、a、b又はcが2以上である場合、隣接するR3同士、隣接するR4同士又は隣接するR5同士は、互いに結合して炭化水素環を形成してもよい。)]
 また、本発明の別の態様は、陰極と陽極との間に少なくとも発光層を含有する一層又は複数層からなる有機薄膜層が挟持されている有機EL素子において、該有機薄膜層の少なくとも一層が、前記一般式(1)で表される化合物を単独又は混合物の成分として含有する有機EL素子を提供するものである。
 さらに、本発明の別の態様は、前記有機EL素子を搭載した電子機器を提供するものである。
 本発明の化合物は、有機EL素子の正孔輸送層を厚膜化しても駆動電圧が高くならない高い移動度の正孔輸送材料であって、有機EL素子の光路長を調整可能であり、素子の高効率化と長寿命化が図れる有機EL素子を提供できる。
 特に、陽極にアクセプター層が接合された有機EL素子の正孔輸送材料として用いた場合、アクセプター材料との相性が優れるため、アクセプター層から正孔輸送層への正孔注入量が増大し、前記効果をより一層高めることができる。
 本明細書中、好ましいとする規定は任意に選択することができ、また、好ましいとする規定の組み合わせはより好ましいと言える。
 本発明の化合物は、下記一般式(1)で表される。
Figure JPOXMLDOC01-appb-C000013
 式(1)中、L1及びL2は、それぞれ独立に、単結合、置換もしくは無置換の環形成炭素数6~10のアリーレン基である。
 該アリーレン基としては、フェニレン基、ナフチレン基が挙げられる。該アリーレン基は置換基を有していてもよい。該置換基としては、例えば、メチル基、エチル基、各種プロピル基(「各種」とは、直鎖状及び分岐鎖状のあらゆる基を含むことを示し、以下同様である。)、各種ブチル基等の炭素数1~10(好ましくは炭素数1~5)のアルキル基;メトキシ基、エトキシ基、各種プロポキシ基、各種ブトキシ基等の炭素数1~10(好ましくは炭素数1~5)のアルコキシ基;フッ素原子等が挙げられる。
 L1及びL2は、好ましくは、いずれも単結合、又は一方が単結合で他方が置換もしくは無置換の環形成炭素数6~10のアリーレン基である。
 式(1)中、R1及びR2は、それぞれ独立に、水素原子、炭素数1~10のアルキル基又は環形成炭素数6~30のアリール基である。
 該アルキル基としては、例えば、メチル基、エチル基、各種プロピル基、各種ブチル基、各種オクチル基、各種デシル基等が挙げられる。アルキル基の炭素数は、好ましくは1~5である。
 該アリール基としては、例えば、フェニル基、ビフェニリル基、ターフェニリル基、ナフチル基、アントリル基等が挙げられる、アリール基の環形成炭素数は、好ましくは6~20、より好ましくは6~12、さらに好ましくは6~10である。
 R1及びR2は、水素原子、メチル基又はフェニル基であることが好ましく、いずれもメチル基であることがより好ましい。
 式(1)中、Ar1~Ar4は、少なくとも1つが下記一般式(2)で表される基(好ましくは、下記一般式(3)又は(4)で表される基)であり、そうでないものは、それぞれ独立に、置換もしくは無置換の環形成炭素数6~30のアリール基(但し、ターフェニリル基を除く。)である。
Figure JPOXMLDOC01-appb-C000014
 式(2)~(4)中、R3~R5は、それぞれ独立に、炭素数1~10のアルキル基、環形成炭素数3~10のシクロアルキル基、炭素数1~10のアルコキシ基、炭素数7~30のアラルキル基、環形成炭素数6~30のアリールオキシ基、環形成炭素数6~30のアリール基、ハロゲン原子又はシアノ基である。R3~R5は、互いに結合して炭化水素環を形成してもよい。
 該アルキル基及びアリール基は、R1及びR2の場合と同じものが挙げられ、好ましいものも同じである。該アルコキシ基としては、メトキシ基、エトキシ基、プロポキシ基等があげられ、好ましくは炭素数1~5のアルコキシ基である。
 該シクロアルキル基としては、例えば、シクロプロピル基、シクロペンチル基、シクロヘキシル基、シクロオクチル基等が挙げられる。シクロアルキル基の環形成炭素数は、好ましくは5~8である。
 該アラルキル基は、好ましくは炭素数1~3のアルキレン基に前記アリール基が置換したものが挙げられ、より好ましくはメチレン基に前記アリール基が置換してものが挙げられる。ここでいう前記アリール基は、R1及びR2の場合と同じものが挙げられる。アラルキル基の炭素数(全体の炭素数)は、好ましくは7~15、より好ましくは7~11である。また、アラルキル基中のアリール基は、好ましくはフェニル基である。
 該アリールオキシ基中のアリール基は、R1及びR2の場合と同じものが挙げられ、好ましいものも同じである。アリールオキシ基の環形成炭素数は、好ましくは6~20、より好ましくは6~12、さらに好ましくは6~10である。
 該ハロゲン原子としては、フッ素原子などが挙げられ、フッ素原子が好ましい。
 R3~R5が互いに結合して炭化水素環を形成している場合、例えばR3及びR4、もしくはR4及びR5が互いに結合して炭化水素環を形成している場合、該炭化水素環としては、フルオレン環等が挙げられる。なお、R3~R5は、互いに結合していないことが好ましい。
 式(2)~(4)中、a及びbは、それぞれ独立に、0~4の整数であり、好ましくは0~2の整数、より好ましくは0又は1、さらに好ましくは0である。cは、0~5の整数であり、好ましくは0~3の整数、より好ましくは0~2の整数、さらに好ましくは0又は1、特に好ましくは0である。
 また、a、b又はcが2以上である場合、隣接するR3同士、隣接するR4同士又は隣接するR5同士は、互いに結合して炭化水素環を形成してもよい。このようにして形成される炭化水素環としては、例えばナフタレン環等が挙げられる。
 前記の通り、Ar1~Ar4のうち、一般式(2)で表される基ではないもの(同じく、一般式(3)や(4)で表される基ではないもの)は置換もしくは無置換の環形成炭素数6~30のアリール基(但し、ターフェニリル基を除く。)である。該アリール基としては、フェニル基、ビフェニリル基、ナフチル基、アントリル基等が挙げられ、環形成炭素数6~20のアリール基が好ましく、環形成炭素数6~12のアリール基がより好ましく、フェニル基、ビフェニリル基がさらに好ましい。
 該アリール基が有していてもよい置換基としては、例えば、カルバゾリル基(例えば、9-カルバゾリル基、9-フェニル-1-カルバゾリル基、9-フェニル-2-カルバゾリル基、9-フェニル-3-カルバゾリル基、9-フェニル-4-カルバゾリル基等)、チオフェニル基、フェニルチオフェニル基、ベンゾチオフェニル基、ジベンゾチオフェニル基、フラニル基、フェニルフラニル基、ベンゾフラニル基、ジベンゾフラニル基等の環形成原子数5~30(好ましくは5~20)の複素環基が挙げられる。
 前記一般式(1)で表される化合物としては、以下のものが好ましい。
[i]Ar1及びAr2が前記一般式(2)で表される基である化合物。
[ii]Ar1及びAr3が前記一般式(2)で表される基である化合物。
[iii]Ar1~Ar4のうち3つ以上が互いに異なっている化合物。
[iv]Ar1~Ar4のうち3つ以上が互いに同一である化合物。
 一般式(1)で表される化合物の分子構造が非対称な場合、薄膜中においてアモルファス性が増し、薄膜の結晶化が抑制され、薄膜安定性が向上するものと推測する。該薄膜安定性は、有機EL素子材料が厚膜層に用いられる場合、薄膜の結晶化を抑制する観点から特に重要となる。本発明の化合物は、有機EL素子の光学調整のために厚膜の正孔輸送層に用いられる場合が多く、非対称構造の場合は薄膜安定性の点で好ましい。
 なお、本発明の化合物の製造方法に特に制限はなく、実施例を参照し、公知の方法で製造することができる。
 本発明の一般式(1)で表される化合物の具体例を以下に示すが、これら例示化合物に限定されるものではない。
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000023
[有機エレクトロルミネッセンス素子]
 次に、本発明の有機エレクトロルミネッセンス素子(有機EL素子)の実施の形態について説明する。
 本発明の有機EL素子は、対向する陽極と陰極との間に有機薄膜層を有する有機エレクトロルミネッセンス素子であって、前記一般式(1)で表される化合物を含有する有機薄膜層を1層以上有するものである。
 その中でも、特に本発明の有機EL素子は、対向する陽極と陰極の間に、少なくとも2以上の正孔輸送層と、発光層を順次有する有機EL素子であって、該正孔輸送層のうちの一つが前記一般式(1)で表される化合物を含有し、かつ、発光層とは隣接しないことを特徴とする。
 例えば、前記少なくとも2以上の正孔輸送層が陽極側の第一正孔輸送層と発光層側の第二正孔輸送層とからなり、該第一正孔輸送層が前記一般式(1)で表される化合物を含有すると好ましい。
 このように、本発明は、正孔輸送層を複数層として、そのうちの発光層とは隣接しない正孔輸送層が前記一般式(1)で表される移動度の高い化合物を正孔輸送材料として含むことにより、その正孔輸送層を厚膜化しても駆動電圧が高くならず、有機EL素子の光路長を調整可能であり、素子の高効率化と長寿命化が図れる。また、正孔注入性に優れるアクセプター材料との相性が良く、キャリア生成量が増えることでより多くの正孔を発光層へ輸送し注入することができ、素子の高効率化に繋がると考えられる。
 本発明の有機EL素子は、蛍光又は燐光発光型の単色発光素子であっても、蛍光/燐光ハイブリッド型の白色発光素子であってもよいし、単独の発光ユニットを有するシンプル型であっても、複数の発光ユニットを有するタンデム型であってもよい。ここで、「発光ユニット」とは、一層以上の有機層を含み、そのうちの一層が発光層であり、注入された正孔と電子が再結合することにより発光することができる最小単位をいう。
 以下、本発明の有機EL素子の素子構成について説明する。
(1)有機EL素子の構成
 本発明の有機EL素子の代表的な素子構成としては、
(1) 陽極/アクセプター材料含有層(アクセプター層)/第一正孔輸送層/第二正孔輸送層/発光層/陰極
(2) 陽極/アクセプター材料含有層(アクセプター層)/第一正孔輸送層/第二正孔輸送層/発光層/電子注入層/陰極
(3) 陽極/アクセプター材料含有層(アクセプター層)/第一正孔輸送層/第二正孔輸送層/発光層/電子輸送層/電子注入層/陰極
(4)陽極/第一正孔輸送層/第二正孔輸送層/発光層/電子注入層/陰極
(5)陽極/第一正孔輸送層/第二正孔輸送層/発光層/電子輸送層/電子注入層/陰極
などの構造を挙げることができる。
 前記第二正孔輸送層と発光層の間に、さらに、第三、第四・・の正孔輸送層があってもよい。また、発光層と正孔輸送層との間に電子障壁層や励起子障壁層があっても良く、発光層と接する正孔輸送層が、電子障壁層や励起子障壁層であってもよい。
 なお、前記アクセプター層に隣接する正孔輸送層、例えば前記(1)~(3)に記載される素子構成において、アクセプター層に隣接する第一正孔輸送層をアクセプター層隣接正孔輸送層と称することがある。
 本発明の有機EL素子は、前記陽極と前記少なくとも2以上の正孔輸送層との間に、アクセプター材料を含有するアクセプター層を有すると好ましい。
 また、前記一般式(1)で表される化合物を含有する正孔輸送層がアクセプター材料を含有していてもよい。
 前記アクセプター材料としては、一般式(1)で表される化合物を含有する正孔輸送層との接合性が良好になり、より素子性能の向上が期待できることから、下記一般式(A)、(B)又は(C)で表される化合物等の平面性の高い骨格を有するものが好ましい。
Figure JPOXMLDOC01-appb-C000024
(式(A)中、R11~R16は、それぞれ独立に、シアノ基、-CONH2、カルボキシル基、もしくは-COOR17(R17は、炭素数1~20のアルキル基である。)を表すか、又は、R11及びR12、R13及びR14、もしくはR15及びR16が互いに結合して-CO-O-CO-で示される基を表す。)
 R17のアルキル基としては、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、tert-ブチル基、シクロペンチル基、シクロヘキシル基等が挙げられる。
Figure JPOXMLDOC01-appb-C000025
 上記式(B)中、R21~R24は、それぞれ互いに同一でも異なっていてもよく、水素原子、置換もしくは無置換の炭素数1~20のアルキル基、置換もしくは無置換の環形成炭素数6~50のアリール基、置換もしくは無置換の環形成原子数5~50の複素環基、ハロゲン原子、置換もしくは無置換の炭素数1~20のフルオロアルキル基、置換もしくは無置換の炭素数1~20のアルコキシ基、置換もしくは無置換の環形成炭素数6~50のアリールオキシ基、又はシアノ基である。R21~R24のうち互いに隣接するものは互いに結合して環を形成してもよい。
 Y1~Y4は互いに同一でも異なっていてもよく、-N=、-CH=、又はC(R25)=であり、R25は、置換もしくは無置換の炭素数1~20のアルキル基、置換もしくは無置換の環形成炭素数6~50のアリール基、置換もしくは無置換の環形成原子数5~50の複素環基、ハロゲン原子、置換もしくは無置換の炭素数1~20のアルコキシ基、置換もしくは無置換の環形成炭素数6~50のアリールオキシ基、又はシアノ基である。
 Ar10は、環形成炭素数6~24の縮合環又は環形成原子数6~24の複素環である。ar1及びar2は、それぞれ独立に、下記一般式(i)又は(ii)の環を表す。
Figure JPOXMLDOC01-appb-C000026
{式中、X1及びX2は互いに同一でも異なっていてもよく、下記(a)~(g)に示す二価の基のいずれかである。
Figure JPOXMLDOC01-appb-C000027
(式中、R31~R34は、それぞれ互いに同一でも異なっていてもよく、水素原子、置換もしくは無置換の炭素数1~20のアルキル基、置換もしくは無置換の環形成炭素数6~50のアリール基又は置換もしくは無置換の環形成原子数5~50の複素環基であり、R32とR33は互いに結合して環を形成してもよい。)}
 R21~R24及びR31~R34の各基の例としては以下の通りである。
 アルキル基としては、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、tert-ブチル基、シクロペンチル基、シクロヘキシル基等が挙げられる。
 アリール基としては、フェニル基、ビフェニル基、ナフチル基等が挙げられる。
 複素環基としては、ピリジン、ピラジン、フラン、イミダゾール、ベンズイミダゾール、チオフェン等の残基が挙げられる。
 ハロゲン原子としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子が挙げられる。
 アルコキシ基としては、メトキシ基、エトキシ基等が挙げられる。
 アリールオキシ基の例としては、フェニルオキシ基等が挙げられる。
 これらは置換基を有していてもよく、置換されたアリール基としては、モノフルオロフェニル基、トリフルオロメチルフェニル基などのハロゲン原子が置換したアリール基;トリル基、4-t-ブチルフェニル基等の、炭素数1~10(好ましくは1~5)のアルキル基が置換したアリール基等が挙げられる。置換されたアルキル基としては、トリフルオロメチル基、ペンタフルオロエチル基、パーフルオロシクロヘキシル基、パーフルオロアダマンチル基等の、ハロゲン原子が置換したアルキル基が挙げられる。置換されたアリールオキシ基としては、4-トリフルオロメチルフェニルオキシ基、ペンタフルオロフェニルオキシ等の、ハロゲン原子が置換したもしくはハロゲン原子含有アルキル基(炭素数1~5)が置換したアリールオキシ基;4-t-ブチルフェノキシ基等の、炭素数1~10(好ましくは1~5)のアルキル基が置換したアリールオキシ基等が挙げられる。
 R21~R24のうち互いに隣接するものは、互いに結合して環を形成していてもよい。該環の例としては、ベンゼン環、ナフタレン環、ピラジン環、ピリジン環、フラン環等が挙げられる。
Figure JPOXMLDOC01-appb-C000028
 式(C)中、Z1~Z3は、それぞれ独立に、下記一般式(h)で示される二価の基である。
Figure JPOXMLDOC01-appb-C000029
 式(h)中、Ar31は、置換もしくは無置換の環形成炭素数6~50のアリール基、又は置換もしくは無置換の環形成原子数5~50のヘテロアリール基である。
 アリール基としては、フェニル基、ナフチル基等が挙げられる。
 ヘテロアリール基としては、ピリジン、ピラジン、ピリミジン、キノリン、イソキノリン等が挙げられる。
 また、これらの置換基の例としては、シアノ基、フルオロ基、トリフルオロメチル基、クロロ基およびブロモ基等の電子吸引性の基が挙げられる。
(2)透光性基板
 本発明の有機EL素子は、透光性の基板上に作製する。ここでいう透光性基板は有機EL素子を支持する基板であり、400~700nmの可視領域の光の透過率が50%以上で平滑な基板が好ましい。
 具体的には、ガラス板、ポリマー板等が挙げられる。ガラス板としては、特にソーダ石灰ガラス、バリウム・ストロンチウム含有ガラス、鉛ガラス、アルミノケイ酸ガラス、ホウケイ酸ガラス、バリウムホウケイ酸ガラス、石英等が挙げられる。またポリマー板としては、ポリカーボネート、アクリル、ポリエチレンテレフタレート、ポリエーテルサルファイド、ポリサルフォン等を挙げることができる。
(3)陽極
 本発明の有機EL素子の陽極は、正孔を正孔輸送層又は発光層に注入する機能を有するものであり、4.5eV以上の仕事関数を有することが効果的である。本発明に用いられる陽極材料の具体例としては、酸化インジウム錫合金(ITO)、酸化錫(NESA)、インジウム-亜鉛酸化物(IZO)、金、銀、白金、銅等が挙げられる。
 陽極は、これらの電極物質を蒸着法やスパッタリング法等の方法で薄膜を形成させることにより作製することができる。
 このように発光層からの発光を陽極から取り出す場合、陽極の発光に対する透過率が10%より大きくすることが好ましい。また、陽極のシート抵抗は、数百Ω/□以下が好ましい。陽極の膜厚は材料にもよるが、通常10nm~1μm、好ましくは10~200nmの範囲で選択される。
(4)正孔輸送層
 上記した通り、本発明の有機EL素子のより好ましい実施態様における有機EL素子には、少なくとも2層以上の正孔輸送層が用いられる。
 発光層に隣接しない正孔輸送層は、有機EL素子の光学調整のために厚膜で用いられる場合が多く、低電圧化の観点から正孔移動度が高いことが求められる。更に、効率よくキャリアを生成するためアクセプター層と積層される場合が多く、アクセプター層との相互作用が高いことが必要とされている。
 一般式(1)で表わされる化合物は、フルオレン構造を有することからビフェニル構造と比べて分子の平面性が高いため、正孔移動度が高い。さらに、一般的に平面性の高いアクセプター材料との相互作用に優れることからキャリアの発生量も大きいため、発光層へより多くの正孔を輸送し注入することができる。つまり、発光層に隣接しない正孔輸送層(正孔輸送層が2層である場合には、第一正孔輸送層に相当する。)に求められる特性を満たす。
 一方、発光層に隣接する正孔輸送層(正孔輸送層が2層である場合には、第二正孔輸送層に相当する。)に求められる特性としては、発光層の励起エネルギーの拡散を防ぐため、高い三重項エネルギー(2.6eV以上が好ましい)、発光層と隣接するため電子耐性、発光層から電子が漏れることを防ぐためにアフィニティの小さい(2.4eV以下が好ましい)有機層であること、発光層への正孔注入を促進させるためにイオン化ポテンシャルの大きい(5.5eV以上が好ましい)有機層であることが必要とされている。このような特性を満たす材料としては、下記一般式(4)~(8)で表される化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000030
(式(4)中、Ar11~Ar13中、少なくとも1つは下記一般式(4-2)で表される基であり、Ar11~Ar13中、一般式(4-2)でない基は下記一般式(4-3)又は(4-4)で表される基、あるいは置換もしくは無置換の環形成炭素数6~40のアリール基である。)
Figure JPOXMLDOC01-appb-C000031
(式中、X11は、酸素原子、または硫黄原子である。
 L1~L3は、それぞれ独立に、単結合、または置換もしくは無置換の環形成炭素数6~50のアリーレン基を表し、L1~L3が有してもよい置換基は、炭素数1~10の直鎖状もしくは分岐状のアルキル基、環形成炭素数3~10のシクロアルキル基、炭素数3~10のトリアルキルシリル基、環形成炭素数6~30のトリアリールシリル基、炭素数8~15のアルキルアリールシリル基(アリール部分の環形成炭素数は6~14)、環形成炭素数6~50のアリール基、ハロゲン原子又はシアノ基である。
 Ar14は、置換もしくは無置換の環形成炭素数6~50のアリール基を表し、Ar14が有してもよい置換基は、炭素数1~10の直鎖状もしくは分岐状のアルキル基、環形成炭素数3~10のシクロアルキル基、炭素数3~10のトリアルキルシリル基、環形成炭素数6~30のトリアリールシリル基、炭素数8~15のアルキルアリールシリル基(アリール部分の環形成炭素数は6~14)、環形成炭素数6~50のアリール基、ハロゲン原子又はシアノ基である。
 R51~R56は、それぞれ独立に、置換もしくは無置換の炭素数1~10の直鎖状もしくは分岐状のアルキル基、置換もしくは無置換の環形成炭素数3~10のシクロアルキル基、置換もしくは無置換の炭素数3~10のトリアルキルシリル基、置換もしくは無置換の環形成炭素数6~30のトリアリールシリル基、置換もしくは無置換の炭素数8~15のアルキルアリールシリル基(アリール部分の環形成炭素数は6~14)、置換もしくは無置換の環形成炭素数6~50のアリール基、ハロゲン原子又はシアノ基を表す。隣接した複数のR51~R56は、互いに結合して、環を形成する飽和もしくは不飽和の2価の基を形成してもよい。
 b、fは、それぞれ独立に、0~3の整数を表し、a、c、d、eは、それぞれ独立に、0~4の整数を表す。)
 前記式(4-2)におけるL1、前記式(4-4)におけるL3がアリーレン基である場合、前記式(4)で表される化合物の電子密度の上昇を抑制し、Ipが大きくなり、発光層への正孔注入が促進されるため、素子の電圧が低くなりやすいため好ましい。さらに、ジベンゾフラン構造やカルバゾール構造がアリーレン基を介して窒素原子と結合すると、アミンが酸化されにくくなり、化合物が安定となる場合が多く、素子の寿命が長くなりやすい。また、前記式(4-4)におけるL3がアリーレン基である場合、化合物が安定となるため合成が容易である。
 また、前記式(4)において、Ar11~Ar13の中、式(4-2)で表わされる基を除く他の基が、式(4-2)~(4-4)で表される基のいずれでもない場合、それぞれ独立に、下記式(4-5)~(4-7)で表されることが好ましい。
Figure JPOXMLDOC01-appb-C000032
 [式中、R61~R64は、それぞれ独立に、炭素数1~10の直鎖状もしくは分岐状のアルキル基、環形成炭素数3~10のシクロアルキル基、炭素数3~10のトリアルキルシリル基、環形成炭素数6~30のトリアリールシリル基、炭素数8~15のアルキルアリールシリル基(アリール部分の環形成炭素数は6~14)、環形成炭素数6~50のアリール基、ハロゲン原子又はシアノ基である。隣接した複数のR61~R64は結合し、飽和もしくは不飽和の環を形成してもよい。
 k、l、m、及びnは、それぞれ独立に、0~4の整数である。]
Figure JPOXMLDOC01-appb-C000033



[式(5)~(7)中、Ar15~Ar21は、それぞれ独立に、置換もしくは無置換の環形成炭素数6~50のアリール基、置換もしくは無置換の環形成炭素数5~50の芳香族複素環基、芳香族アミノ基が結合した置換もしくは無置換の環形成炭素数8~50のアリール基、又は芳香族複素環基が結合した置換もしくは無置換の環形成炭素数8~50のアリール基である。
 Ar16とAr17、Ar18とAr19、Ar20とAr21は互いに結合し、環を形成してもよい。
 L4は、単結合または置換もしくは無置換の環形成炭素数6~50のアリーレン基を表し、L4が有してもよい置換基は、炭素数1~10の直鎖状もしくは分岐状のアルキル基、環形成炭素数3~10のシクロアルキル基、炭素数3~10のトリアルキルシリル基、環形成炭素数6~30のトリアリールシリル基、炭素数8~15のアルキルアリールシリル基(アリール部分の環形成炭素数は6~14)、環形成炭素数6~50のアリール基、ハロゲン原子又はシアノ基である。
 R67~R77は、それぞれ独立に、ハロゲン原子、置換もしくは無置換の炭素数1~40のアルキル基、置換もしくは無置換の環形成原子数5~20のヘテロアリール基、置換もしくは無置換の環形成炭素数6~40の非縮合アリール基、置換もしくは無置換の環形成炭素数6~12の縮合アリール基、置換もしくは無置換の炭素数7~20のアラルキル基、置換もしくは無置換の炭素数2~40のアルケニル基、置換もしくは無置換の炭素数1~40のアルキルアミノ基、置換もしくは無置換の炭素数7~60のアラルキルアミノ基、置換もしくは無置換の炭素数3~20のアルキルシリル基、置換もしくは無置換の環形成炭素数8~40アリールシリル基、置換もしくは無置換の炭素数8~40アラルキルシリル基、置換もしくは無置換の炭素数1~40のハロゲン化アルキル基を表す。
 R78、R79は、それぞれ独立に、置換もしくは無置換の炭素数1~40のアルキル基、置換もしくは無置換の環形成原子数5~20のヘテロアリール基、置換もしくは無置換の環形成炭素数6~40の非縮合アリール基、置換もしくは無置換の環形成炭素数6~12の縮合アリール基、置換もしくは無置換の炭素数7~20のアラルキル基を表す。
 g、i、p、q、r、s、w及びxは、それぞれ独立に、0~4の整数である。
 h、y及びzは、それぞれ独立に、0~3の整数である。]
Figure JPOXMLDOC01-appb-C000034
(式(8)において、A1及びA2は互いに独立して環形成炭素数6~30の置換もしくは無置換のアリール基、又は環形成炭素数2~30の置換もしくは無置換のヘテロアリール基を表す。
 Y11~Y26は互いに独立してC(R)または窒素原子を表し、Rはそれぞれ独立に水素原子、置換基又はカルバゾール骨格に結合する結合手を表す。
 L11及びL12は互いに独立して単結合、または置換もしくは無置換の環形成炭素数6~50のアリーレン基を表し、該アリーレン基が有してもよい置換基は、炭素数1~10の直鎖状もしくは分岐状のアルキル基、環形成炭素数3~10のシクロアルキル基、炭素数3~10のトリアルキルシリル基、環形成炭素数6~30のトリアリールシリル基、炭素数8~15のアルキルアリールシリル基(アリール部分の環形成炭素数は6~14)、環形成炭素数6~50のアリール基、ハロゲン原子又はシアノ基である。)
(5)発光層
 本発明の有機EL素子層材料以外の材料で燐光発光層を形成する場合、燐光発光層の材料として公知の材料が使用できる。具体的には、特願2005-517938等を参照すればよい。燐光発光材料としては、イリジウム(Ir),オスミウム(Os)又は白金(Pt)金属のオルトメタル化錯体等が好ましく挙げられる。
 本発明の有機EL素子は、蛍光発光層を有していてもよい。蛍光発光層としては、公知の材料が使用できる。具体的には、WO2010/134350やWO2010/134352に記載する好適な材料が選択される。
 発光層は、ダブルホスト(ホスト・コホストともいう)としてもよい。具体的に、発光層において電子輸送性のホストと正孔輸送性のホストを組み合わせることで、発光層内のキャリアバランスを調整してもよい。
 また、ダブルドーパントとしてもよい。発光層において、量子収率の高いドーパント材料を2種類以上入れることによって、それぞれのドーパントが発光する。例えば、ホストと赤色ドーパント、緑色のドーパントを共蒸着することによって、黄色の発光層を実現することがある。
 また、発光層は、必要に応じて正孔輸送材、電子輸送材、ポリマーバインダーを含有してもよい。
 さらに、発光層の膜厚は、好ましくは5~50nm、より好ましくは7~50nm、最も好ましくは10~50nmである。5nm未満では発光層形成が困難となり、色度の調整が困難となる恐れがあり、50nmを超えると駆動電圧が上昇する恐れがある。
(6)電子注入・輸送層
 次に、電子注入・輸送層は、発光層への電子の注入を助け、発光領域まで輸送する層であって、電子移動度が大きく、また付着改善層は、この電子注入・輸送層の中で特に陰極との付着が良い材料からなる層である。
 また、有機EL素子は発光した光が電極(この場合は陰極)により反射するため、直接陽極から取り出される発光と、電極による反射を経由して取り出される発光とが干渉することが知られている。この干渉効果を効率的に利用するため、電子注入・輸送層は数nm~数μmの膜厚で適宜選ばれるが、特に膜厚が厚いとき、電圧上昇を避けるために、104~106V/cmの電界印加時に電子移動度が少なくとも10-5cm2/Vs以上であることが好ましい。
 電子注入・輸送層に用いられる材料としては、8-ヒドロキシキノリン又はその誘導体の金属錯体やオキサジアゾール誘導体が好適である。上記8-ヒドロキシキノリン又はその誘導体の金属錯体の具体例としては、オキシン(一般に8-キノリノール又は8-ヒドロキシキノリン)のキレートを含む金属キレートオキシノイド化合物、例えばトリス(8-キノリノール)アルミニウムを電子注入材料として用いることができる。
 電子注入材料としては、下記一般式(31)~(36)のいずれかで表される化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000035
 式(31)~(33)中、Z1、Z2及びZ3は、それぞれ独立に、窒素原子又は炭素原子である。
 R1及びR2は、それぞれ独立に、置換もしくは無置換の環形成炭素数6~50のアリール基、置換もしくは無置換の環形成原子数5~50のヘテロアリール基、炭素数1~20のアルキル基、ハロゲン原子が置換した炭素数1~20のアルキル基又は炭素数1~20のアルコキシ基である。なお、式(31)~(32)中のR1は、5員環と6員環のいずれに置換していてもよいが、6員環に置換していることが好ましい。一方、式(33)中のR1は、6員環に置換している。
 nは、0~5の整数であり、nが2以上の整数であるとき、複数のR1は互いに同一でも異なっていてもよい。また、隣接する複数のR1同士が互いに結合して、置換もしくは無置換の芳香族炭化水素環を形成していてもよい。
 Ar1は、置換もしくは無置換の環形成炭素数6~50のアリール基又は置換もしくは無置換の環形成原子数5~50のヘテロアリール基である。
 Ar2は、水素原子、炭素数1~20のアルキル基、ハロゲン原子が置換した炭素数1~20のアルキル基、炭素数1~20のアルコキシ基、置換もしくは無置換の環形成炭素数6~50のアリール基又は置換もしくは無置換の環形成原子数5~50のヘテロアリール基である。
 但し、Ar1、Ar2のいずれか一方は、置換もしくは無置換の環形成炭素数10~50の縮合環基又は置換もしくは無置換の環形成原子数9~50のヘテロ縮合環基である。
 Ar3は、置換もしくは無置換の環形成炭素数6~50のアリーレン基又は置換もしくは無置換の環形成原子数5~50のヘテロアリーレン基である。
 L1、L2及びL3は、それぞれ独立に、単結合、置換もしくは無置換の環形成炭素数6~50のアリーレン基、置換もしくは無置換の環形成原子数9~50のヘテロ縮合環基又は置換もしくは無置換のフルオレニレン基である。なお、式(31)中のL2、式(32)中のL3は、それぞれ5員環と6員環のいずれに置換していてもよいが、5員環に置換していることが好ましい。
 R1、R2、Ar1、Ar2の示すアリール基、アルキル基の具体例としては、式(1)のR1及びR2と同様の例が挙げられ、アルコキシ基としては、そのアルキル基に酸素原子が結合した例が挙げられる。R1、R2、Ar1、Ar2の示すヘテロアリール基としては、例えばピロリル基、ピリジニル基、ピラジニル基、ピリミジニル基、インドリル基、イソインドリル基、フリル基、ベンゾフラニル基、イソベンゾフラニル基、キノリニル基、イソキノリニル基、キノキサニル基、カルバゾリル基、フェナントリジニル基、アクリジニル基などが挙げられる。Ar3、L1、L2及びL3の示すアリーレン基としては、そのアリール基の2価の例、ヘテロ縮合環基としてはヘテロアリール基のうち環形成炭素数が適合する縮合環基が挙げられる。
Figure JPOXMLDOC01-appb-C000036
(式中、Xは窒素原子あるいは硫黄原子を含んだ縮合環であり、Yは単結合、アルキル鎖、アルキレン鎖、シクロアルキル鎖、アリール鎖、複素環鎖、シリル鎖、エーテル鎖、あるいはチオエーテル鎖のいずれかより単独又は組み合わせたものより選ばれる。qは2以上の自然数である。
 また、一般式(34)で表される化合物の分子量は480以上である。)
Figure JPOXMLDOC01-appb-C000037
(式中、Aはフェナントロリン骨格又はベンゾキノリン骨格を有する置換基である。Bは下記式(35A)で表される構造を有するp価の有機基である。pは2以上の自然数である。)
Figure JPOXMLDOC01-appb-C000038
(式中、R4とR5はそれぞれ独立にアルキル基又はアリール基(フェニル基に縮合したアリール基を含む)のいずれかである。lとmはそれぞれ独立に0~5までの自然数である。Zは下記式(35B)から選ばれた少なくとも1種である。)
Figure JPOXMLDOC01-appb-C000039
Figure JPOXMLDOC01-appb-C000040
(式中、R6及びR7は同じでも異なっていてもよく、それぞれ、水素原子、アルキル基、シクロアルキル基、複素環基、アルケニル基、シクロアルケニル基、アルキニル基、アルコキシ基、アルキルチオ基、アリールエーテル基、アリールチオエーテル基、アリール基、ヘテロアリール基、シアノ基、カルボニル基、エステル基、カルバモイル基、アミノ基、シリル基、並びに隣接置換基との間に形成される縮合環の中から選ばれる。Ar4はアリール基又はヘテロアリール基を表す。)
 本発明の有機EL素子の好ましい形態に、陰極と有機薄膜層との界面領域に電子供与性ドーパント及び有機金属錯体の少なくともいずれかを有することも好ましい。
 このような構成によれば、有機EL素子における発光輝度の向上や長寿命化が図られる。
 電子供与性ドーパントとしては、アルカリ金属、アルカリ金属化合物、アルカリ土類金属、アルカリ土類金属化合物、希土類金属、及び希土類金属化合物等から選ばれた少なくとも1種類が挙げられる。
 有機金属錯体としては、アルカリ金属を含む有機金属錯体、アルカリ土類金属を含む有機金属錯体、及び希土類金属を含む有機金属錯体等から選ばれた少なくとも1種類が挙げられる。
 アルカリ金属としては、リチウム(Li)(仕事関数:2.93eV)、ナトリウム(Na)(仕事関数:2.36eV)、カリウム(K)(仕事関数:2.28eV)、ルビジウム(Rb)(仕事関数:2.16eV)、セシウム(Cs)(仕事関数:1.95eV)等が挙げられ、仕事関数が2.9eV以下のものが好ましい。これらのうち好ましくはK、Rb、Cs、さらに好ましくはRb又はCsであり、最も好ましくはCsである。
 アルカリ土類金属としては、カルシウム(Ca)(仕事関数:2.9eV)、ストロンチウム(Sr)(仕事関数:2.0eV以上2.5eV以下)、バリウム(Ba)(仕事関数:2.52eV)等が挙げられ、仕事関数が2.9eV以下のものが特に好ましい。
 希土類金属としては、スカンジウム(Sc)、イットリウム(Y)、セリウム(Ce)、テルビウム(Tb)、イッテルビウム(Yb)等が挙げられ、仕事関数が2.9eV以下のものが特に好ましい。
 以上の金属のうち好ましい金属は、特に還元能力が高く、電子注入域への比較的少量の添加により、有機EL素子における発光輝度の向上や長寿命化が可能である。
 アルカリ金属化合物としては、酸化リチウム(Li2O)、酸化セシウム(Cs2O)、酸化カリウム(K2O)等のアルカリ酸化物、フッ化リチウム(LiF)、フッ化ナトリウム(NaF)、フッ化セシウム(CsF)、フッ化カリウム(KF)等のアルカリハロゲン化物等が挙げられ、フッ化リチウム(LiF)、酸化リチウム(Li2O)、フッ化ナトリウム(NaF)が好ましい。
 アルカリ土類金属化合物としては、酸化バリウム(BaO)、酸化ストロンチウム(SrO)、酸化カルシウム(CaO)及びこれらを混合したストロンチウム酸バリウム(BaxSr1-xO)(0<x<1)、カルシウム酸バリウム(BaxCa1-xO)(0<x<1)等が挙げられ、BaO、SrO、CaOが好ましい。
 希土類金属化合物としては、フッ化イッテルビウム(YbF3)、フッ化スカンジウム(ScF3)、酸化スカンジウム(ScO3)、酸化イットリウム(Y23)、酸化セリウム(Ce23)、フッ化ガドリニウム(GdF3)、フッ化テルビウム(TbF3)等が挙げられ、YbF3、ScF3、TbF3が好ましい。
 有機金属錯体としては、上記の通り、それぞれ金属イオンとしてアルカリ金属イオン、アルカリ土類金属イオン、希土類金属イオンの少なくとも1つ含有するものであれば特に限定はない。また、配位子にはキノリノール、ベンゾキノリノール、アクリジノール、フェナントリジノール、ヒドロキシフェニルオキサゾール、ヒドロキシフェニルチアゾール、ヒドロキシジアリールオキサジアゾール、ヒドロキシジアリールチアジアゾール、ヒドロキシフェニルピリジン、ヒドロキシフェニルベンゾイミダゾール、ヒドロキシベンゾトリアゾール、ヒドロキシフルボラン、ビピリジル、フェナントロリン、フタロシアニン、ポルフィリン、シクロペンタジエン、β-ジケトン類、アゾメチン類、及びそれらの誘導体等が好ましいが、これらに限定されるものではない。
 電子供与性ドーパント及び有機金属錯体の添加形態としては、界面領域に層状又は島状に形成することが好ましい。形成方法としては、抵抗加熱蒸着法により電子供与性ドーパント及び有機金属錯体の少なくともいずれかを蒸着しながら、界面領域を形成する発光材料や電子注入材料である有機物を同時に蒸着させ、有機物中に電子供与性ドーパント及び有機金属錯体の少なくともいずれかを分散する方法が好ましい。分散濃度は通常、モル比で有機物:電子供与性ドーパント及び/又は有機金属錯体=100:1~1:100であり、好ましくは5:1~1:5である。
 電子供与性ドーパント及び有機金属錯体の少なくともいずれかを層状に形成する場合は、界面の有機層である発光材料や電子注入材料を層状に形成した後に、電子供与性ドーパント及び有機金属錯体の少なくともいずれかを単独で抵抗加熱蒸着法により蒸着し、好ましくは層の厚み0.1nm以上15nm以下で形成する。
 電子供与性ドーパント及び有機金属錯体の少なくともいずれかを島状に形成する場合は、界面の有機層である発光材料や電子注入材料を島状に形成した後に、電子供与性ドーパント及び有機金属錯体の少なくともいずれかを単独で抵抗加熱蒸着法により蒸着し、好ましくは島の厚み0.05nm以上1nm以下で形成する。
 また、本発明の有機EL素子における、主成分と、電子供与性ドーパント及び有機金属錯体の少なくともいずれかの割合としては、モル比で、主成分:電子供与性ドーパント及び/又は有機金属錯体=5:1~1:5であると好ましく、2:1~1:2であるとさらに好ましい。
(7)陰極
 陰極としては、電子注入・輸送層又は発光層に電子を注入するため、仕事関数の小さい(4eV以下)金属、合金、電気伝導性化合物及びこれらの混合物を電極物質とするものが用いられる。このような電極物質の具体例としては、ナトリウム、ナトリウム・カリウム合金、マグネシウム、リチウム、マグネシウム・銀合金、アルミニウム/酸化アルミニウム、アルミニウム・リチウム合金、インジウム、希土類金属などが挙げられる。
 この陰極はこれらの電極物質を蒸着やスパッタリング等の方法により薄膜を形成させることにより、作製することができる。
 ここで発光層からの発光を陰極から取り出す場合、陰極の発光に対する透過率は10%より大きくすることが好ましい。
 また、陰極としてのシート抵抗は数百Ω/□以下が好ましく、膜厚は通常10nm~1μm、好ましくは50~200nmである。
(8)絶縁層
 有機EL素子は超薄膜に電界を印可するために、リークやショートによる画素欠陥が生じやすい。これを防止するために、一対の電極間に絶縁性の薄膜層を挿入することが好ましい。
 絶縁層に用いられる材料としては例えば酸化アルミニウム、弗化リチウム、酸化リチウム、弗化セ  シウム、酸化セシウム、酸化マグネシウム、弗化マグネシウム、酸化カルシウム、弗化カルシウム、窒化アルミニウム、酸化チタン、酸化珪素、酸化ゲルマニウム、窒化珪素、窒化ホウ素、酸化モリブデン、酸化ルテニウム、酸化バナジウム等が挙げられ、これらの混合物や積層物を用いてもよい。
(9)有機EL素子の製造方法
 以上例示した材料及び形成方法により陽極、発光層、正孔輸送層、及び必要に応じて電子注入・輸送層を形成し、さらに陰極を形成することにより有機EL素子を作製することができる。また陰極から陽極へ、前記と逆の順序で有機EL素子を作製することもできる。
 以下、透光性基板上に陽極/正孔輸送層/発光層/電子注入・輸送層/陰極が順次設けられた構成の有機EL素子の作製例を記載する。
 まず、適当な透光性基板上に陽極材料からなる薄膜を1μm以下、好ましくは10~200nmの範囲の膜厚になるように蒸着やスパッタリング等の方法により形成して陽極を作製する。次に、この陽極上に少なくとも2以上の正孔輸送層を順次設ける。正孔輸送層の形成は、真空蒸着法、スピンコート法、キャスト法、LB法等の方法により行うことができるが、均質な膜が得られやすく、かつピンホールが発生しにくい等の点から真空蒸着法により形成することが好ましい。真空蒸着法により正孔輸送層を形成する場合、その蒸着条件は使用する化合物(正孔輸送層の材料)、目的とする正孔輸送層の結晶構造や再結合構造等により異なるが、一般に蒸着源温度50~450℃、真空度10-7~10-3Torr、蒸着速度0.01~50nm/秒、基板温度-50~300℃、膜厚5nm~5μmの範囲で適宜選択することが好ましい。
 次に、正孔輸送層上に発光層を設ける発光層の形成も、所望の有機発光材料を用いて真空蒸着法、スパッタリング、スピンコート法、キャスト法等の方法により有機発光材料を薄膜化することにより形成できるが、均質な膜が得られやすく、かつピンホールが発生しにくい等の点から真空蒸着法により形成することが好ましい。真空蒸着法により発光層を形成する場合、その蒸着条件は使用する化合物により異なるが、一般的に正孔輸送層と同じような条件範囲の中から選択することができる。
 次に、この発光層上に電子注入・輸送層を設ける。正孔輸送層、発光層と同様、均質な膜を得る必要から真空蒸着法により形成することが好ましい。蒸着条件は正孔輸送層、発光層と同様の条件範囲から選択することができる。
 最後に陰極を積層して有機EL素子を得ることができる。
 陰極は金属から構成されるもので、蒸着法、スパッタリングを用いることができる。しかし下地の有機物層を製膜時の損傷から守るためには真空蒸着法が好ましい。
 この有機EL素子の作製は一回の真空引きで一貫して陽極から陰極まで作製することが好ましい。
 なお、有機EL素子に直流電圧を印加する場合、陽極を+、陰極を-の極性にして、5~40Vの電圧を印加すると発光が観測できる。また、逆の極性で電圧を印加しても電流は流れず、発光は全く生じない。さらに交流電圧を印加した場合には陽極が+、陰極が-の極性になった時のみ均一な発光が観測される。印加する交流の波形は任意でよい。
 本発明の化合物を用いて得られる有機EL素子は、正孔輸送層を厚膜化でき、有機EL素子の光学膜厚調整を可能にし、素子の発光効率・寿命を向上できる。このため、有機ELパネルモジュール等の表示部品;テレビ、携帯電話、パーソナルコンピュータ等の表示装置;照明、車両用灯具の発光装置、などの電子機器に使用できる。特に、平面発光体やディスプレイのバックライトとして有用である。
 次に、本発明を実施例によりさらに詳細に説明するが、本発明はこれらの例によって何ら限定されるものではない。
中間体合成例1(中間体1の合成)
 アルゴン雰囲気下、2-ブロモ-9,9-ジメチルフルオレン55g(201.3mmol)にヨウ素23g(90.6mmol)、過ヨウ素酸2水和物9.4g(41.2mmol)、水42ml、酢酸360ml、及び硫酸11mlを加え、65℃で30分撹拌した後、90℃で6時間撹拌した。
 反応終了後に反応物を氷水に注入し、析出した結晶を濾取した。水で洗浄後、メタノールで洗浄することにより、61gの白色固体を得た。FD-MSの分析により、下記中間体1と同定した。(収率76%)
Figure JPOXMLDOC01-appb-C000041
中間体合成例2(中間体2の合成)
 アルゴン雰囲気下、4-ブロモ-p-ターフェニル30.9g(100.0mmol)、アニリン9.3g(100.0mmol)、t-ブトキシナトリウム13.0g(135.3mmol)、トリス(ジベンジリデンアセトン)ジパラジウム(0)460mg(0.5mmol)、トリ-t-ブチルホスフィン210mg(1.04mmol)に、脱水トルエン500mlを加え、80℃にて8時間反応した。
 冷却後、水2.5lを加え、混合物をセライト濾過し、濾液をトルエンで抽出し、無水硫酸マグネシウムで乾燥させた。これを減圧下で濃縮し、得られた残渣をシリカゲルカラムクロマトグラフィーで精製し、トルエンで再結晶し、それを濾取した後、乾燥し、15.7gの淡黄色固体を得た。FD-MSの分析により、下記中間体2と同定した。(収率49%)
Figure JPOXMLDOC01-appb-C000042
中間体合成例3(中間体3の合成)
 合成例2において、4-ブロモ-p-ターフェニルの代わりに中間体1を39.9g、アニリンの代わりに中間体2を32.1g用いた以外は同様に反応を行ったところ、38.5gの白色固体を得た。FD-MSの分析により、下記中間体3と同定した。(収率65%)
Figure JPOXMLDOC01-appb-C000043
中間体合成例4(中間体4の合成)
 合成例2において、4-ブロモ-p-ターフェニルの代わりに4-ブロモビフェニルを23.3g、アニリンの代わりに9,9-ジメチル-2-アミノフルオレンを20.9g用いた以外は同様に反応を行ったところ、20.6gの淡黄色固体を得た。FD-MSの分析により、下記中間体4と同定した。(収率57%)
Figure JPOXMLDOC01-appb-C000044
中間体合成例5(中間体5の合成)
 アルゴン雰囲気下、4-ヨードブロモベンゼン28.3g(100.0mmol)、ジベンゾフラン-4-ボロン酸22.3g(105.0mmol)、Pd[PPh3]4 2.31g(2.00mmol)にトルエン150ml、ジメトキシエタン150ml、2M Na2CO3水溶液150ml(300.0mmol)を加え、10時間加熱還流攪拌した。
 反応終了後、試料を分液ロートに移しジクロロメタンにて抽出した。有機層をMgSO4で乾燥後、ろ過、濃縮した。濃縮残渣をシリカゲルカラムクロマトグラフィーにて精製し、26.2gの白色固体を得た。FD-MSの分析により、下記中間体5と同定した。(収率81%)
Figure JPOXMLDOC01-appb-C000045
中間体合成例6(中間体6の合成)
 合成例2において、4-ブロモ-p-ターフェニルの代わりに中間体5を32.3g用いた以外は同様に反応を行ったところ、23.5gの淡黄色固体を得た。FD-MSの分析により、下記中間体6と同定した。(収率70%)
Figure JPOXMLDOC01-appb-C000046
中間体合成例7(中間体7の合成)
 アルゴン雰囲気下、4-ヨードブロモベンゼン28.3g(100.0mmol)、ベンゾ[b]チオフェン-2-イルボロン酸18.7g(105.0mmol)、Pd[PPh3]4 2.31g(2.00mmol)にトルエン150ml、ジメトキシエタン150ml、2M Na2CO3水溶液150ml(300.0mmol)を加え、10時間加熱還流攪拌した。
 反応液をトルエン/水で抽出し、無水硫酸ナトリウムで 乾燥した。これを減圧下で濃縮し、得られた粗生成物をカラム精製することで11.3gの白色粉末を得た。FD-MSの分析により、下記中間体7と同定した。(収率39%)
Figure JPOXMLDOC01-appb-C000047
中間体合成例8(中間体8の合成)
 合成例2において、4-ブロモ-p-ターフェニルの代わりに中間体7を28.9g用いた以外は同様に反応を行ったところ、19.9gの淡黄色固体を得た。FD-MSの分析により、下記中間体8と同定した。(収率66%)
Figure JPOXMLDOC01-appb-C000048
中間体合成例9(中間体9の合成)
 アルゴン気流下、フェニルボロン酸750g(6.15mol)、2-ブロモチオフェン1000g( 6.13mol)、Pd[PPh3]4 142g(123mmol)にトルエン9L、ジメトキシエタン9L、2M Na2CO3水溶液9L(18mol)を加え、80℃で8時間加熱攪拌した。
 反応液をトルエン/水で抽出し、無水硫酸ナトリウムで乾燥した。これを減圧下で濃縮し、得られた粗生成物をカラム精製することで786gの白色粉末を得た。
 アルゴン気流下、上記で得られた化合物786gにDMF(ジメチ ルホルムアミド)8Lを加え、続いてNBS(N-ブロモスクシンイミド)960gを徐々に添加し、室温で12時間反応した。
 へキサン/水で抽出し、無水硫酸ナトリウムで乾燥した 。これを減圧下で濃縮し、得られた粗生成物をカラム精製することで703gの白色粉 末を得た。FD-MSの分析により、下記中間体9と同定した。(収率48%)
Figure JPOXMLDOC01-appb-C000049
中間体合成例10(中間体10の合成)
 アルゴン気流下、中間体9 703g(2.94mol)に脱水 THF(テトラヒドロフラン)7Lを加え、 -30°Cに冷却した。 n-ブチルリチウム(1.6Mへキサン溶 液)2.3L(3.68mol)を徐々に加え、-30°Cで1時間撹拌した。-70°Cに冷却した後、ホウ酸トリイソプロピル1658g(8.82mol)を加えた。その後、徐々に昇温し、室温で1時間撹拌した。
 10%塩酸溶液1.7Lを加え撹拌した。酢酸エチルと水で抽出し、有機層を水で洗浄した。無水硫 酸ナトリウムで乾燥し、溶媒を留去した。へキサンで洗浄することにより白色粉末359gを得た。
 アルゴン気流下、上記で得られた 5-フェニル-2-チオフェンボロン酸359g(1.76mol)、4-ヨードブロモベンゼン492g(1.74mol)、Pd[PPh3]4 402g(348mmol)にトルエン2.6L、ジメトキシエタン2.6L、2M Na2CO3水溶液2.6L(5.2mol)を加え、80℃で8時間加熱攪拌した。
 反応液をトルエン/水で抽 出し、無水硫酸ナトリウムで乾燥した。これを減圧下で濃縮し、得られた粗生成物を力 ラム精製することで277gの白色粉末を得た。FD-MSの分析により、下記中間体10と同定した。(収率30%)
Figure JPOXMLDOC01-appb-C000050
中間体合成例11(中間体11の合成)
 合成例2において、4-ブロモ-p-ターフェニルの代わりに中間体10を31.5g用いた以外は同様に反応を行ったところ、18.3gの淡黄色固体を得た。FD-MSの分析により、下記中間体11と同定した。(収率56%)
Figure JPOXMLDOC01-appb-C000051
合成実施例1(化合物(H1)の製造)
 アルゴン気流下、2,7-ジブロモ-9,9-ジメチルフルオレン7.1g、中間体2 12.8g、t-ブトキシナトリウム2.6g、トリス(ジベンジリデンアセトン)ジパラジウム(0)92mg、トリ-t-ブチルホスフィン42mg及び脱水トルエン100mLを入れ、80℃にて8時間反応した。
 冷却後、水500mLを加え、混合物をセライト濾過し、濾液をトルエンで抽出し、無水硫酸マグネシウムで乾燥させた。これを減圧下で濃縮し、得られた粗生成物をカラム精製し、トルエンで再結晶し、それを濾取した後、乾燥したところ、8.3gの淡黄色粉末を得た。FD-MSの分析により、下記化合物(H1)と同定した。(収率50%)
Figure JPOXMLDOC01-appb-C000052
合成実施例2(化合物(H2)の製造)
 アルゴン気流下、中間体3 11.9g、N-(1-ナフチル)-N-フェニルアミン4.4g、t-ブトキシナトリウム2.6g、トリス(ジベンジリデンアセトン)ジパラジウム(0)92mg、トリ-t-ブチルホスフィン42mg及び脱水トルエン100mLを入れ、80℃にて8時間反応した。
 冷却後、水500mLを加え、混合物をセライト濾過し、濾液をトルエンで抽出し、無水硫酸マグネシウムで乾燥させた。これを減圧下で濃縮し、得られた粗生成物をカラム精製し、トルエンで再結晶し、それを濾取した後、乾燥したところ、8.5gの淡黄色粉末を得た。FD-MSの分析により、下記化合物(H2)と同定した。(収率62%)
Figure JPOXMLDOC01-appb-C000053
合成実施例3(化合物(H3)の製造)
 合成実施例2において、N-(1-ナフチル)-N-フェニルアミンの代わりにN-(4-ビフェニル)-N-フェニルアミンを4.9g用いた以外は同様に反応を行ったところ、6.2gの白色結晶を得た。FD-MSの分析により、下記化合物(H3)と同定した。(収率65%)
Figure JPOXMLDOC01-appb-C000054
合成実施例4(化合物(H4)の製造)
 合成実施例2において、N-(1-ナフチル)-N-フェニルアミンの代わりにN,N-ビス(4-ビフェニル)アミン6.4g用いた以外は同様に反応を行ったところ、10.0gの白色結晶を得た。FD-MSの分析により、下記化合物(H4)と同定した。(収率60%)
Figure JPOXMLDOC01-appb-C000055
合成実施例5(化合物(H5)の製造)
 合成実施例2において、N-(1-ナフチル)-N-フェニルアミンの代わりに中間体4を7.2g用いた以外は同様に反応を行ったところ、10.0gの白色結晶を得た。FD-MSの分析により、下記化合物(H5)と同定した。(収率52%)
Figure JPOXMLDOC01-appb-C000056
合成実施例6(化合物(H6)の製造)
 合成実施例2において、N-(1-ナフチル)-N-フェニルアミンの代わりに中間体6を6.7g用いた以外は同様に反応を行ったところ、8.0gの白色結晶を得た。FD-MSの分析により、下記化合物(H6)と同定した。(収率45%)
Figure JPOXMLDOC01-appb-C000057
合成実施例7(化合物(H7)の製造)
 合成実施例2において、N-(1-ナフチル)-N-フェニルアミンの代わりに中間体8を6.0g用いた以外は同様に反応を行ったところ、10.6gの白色結晶を得た。FD-MSの分析により、下記化合物(H7)と同定した。(収率65%)
Figure JPOXMLDOC01-appb-C000058
合成実施例8(化合物(H8)の製造)
 合成実施例2において、N-(1-ナフチル)-N-フェニルアミンの代わりに中間体11を6.5g用いた以外は同様に反応を行ったところ、6.7gの白色結晶を得た。FD-MSの分析により、下記化合物(H8)と同定した。(収率40%)
Figure JPOXMLDOC01-appb-C000059
 なお、前記中間体1~中間体11の製造方法及び前記中間体2-1~中間体2-3の製造方法、並びに化合物(H1)~(H8)の製造方法を参照すれば、請求の範囲に含まれる種々の化合物も、目的に合わせた原料を用いることによって製造することができる。
実施例1
(有機EL素子の作製)
 25mm×75mm×1.1mmのITO透明電極ライン付きガラス基板(ジオマティック社製)をイソプロピルアルコール中で5分間超音波洗浄し、さらに、30分間UV(Ultraviolet)オゾン洗浄した。
 洗浄後の透明電極ライン付きガラス基板を真空蒸着装置の基板ホルダーに装着し、まず透明電極ラインが形成されている面上に前記透明電極を覆うようにして下記アクセプター材料(A)を蒸着し、膜厚5nmのアクセプター層を成膜した。このアクセプター層上に、第一正孔輸送材料として前記合成実施例1で得た化合物(H1)を蒸着し、膜厚65nmの第一正孔輸送層を成膜した。第一正孔輸送層の成膜に続けて、第二正孔輸送材料として下記芳香族アミン誘導体(X1)を蒸着し、膜厚10nmの第二正孔輸送層を成膜した。
 この第二正孔輸送層上に、燐光用ホストである化合物(B)と燐光用ドーパントであるIr(ppy)3とを厚さ25nmで共蒸着し、燐光発光層を得た。Ir(ppy)3の濃度は10質量%であった。
 続いて、この燐光発光層上に、厚さ35nmの化合物(C)、厚さ1nmのLiF、厚さ80nmの金属Alを順次積層し、陰極を形成した。なお、電子注入性電極であるLiFは、1Å/minの成膜速度で形成した。得られた有機EL素子を直流電流駆動により発光させ、輝度(L)、電流密度を測定し、電流密度10mA/cm2における電流効率(L/J)、駆動電圧(V)を求めた。さらに電流密度50mA/cm2における素子寿命(輝度が80%にまで低減する時間)を求めた。結果を表1に示す。
Figure JPOXMLDOC01-appb-C000060
実施例2~8
 実施例1において、第1正孔輸送材料として化合物(H1)の代わりに、表1に記載の化合物を用いた以外は、実施例1と同様にして有機EL素子を作製した。得られた有機EL素子を直流電流駆動により発光させ、輝度(L)、電流密度を測定し、電流密度10mA/cm2における電流効率(L/J)、駆動電圧(V)を求めた。さらに電流密度50mA/cm2における素子寿命(輝度が80%にまで低減する時間)を求めた。結果を表1に示す。
比較例1~4
 実施例1において、第1正孔輸送材料として化合物(H1)の代わりに、下記比較化合物1~4を用いた以外は、実施例1と同様にして有機EL素子を作製した。得られた有機EL素子を直流電流駆動により発光させ、輝度(L)、電流密度を測定し、電流密度10mA/cm2における電流効率(L/J)、駆動電圧(V)を求めた。さらに電流密度50mA/cm2における素子寿命(輝度が80%にまで低減する時間)を求めた。結果を表1に示す。
Figure JPOXMLDOC01-appb-C000061
      
Figure JPOXMLDOC01-appb-T000062

Claims (17)

  1.  下記一般式(1)で表される化合物。
    Figure JPOXMLDOC01-appb-C000001
    [式中、L1及びL2は、それぞれ独立に、単結合、置換もしくは無置換の環形成炭素数6~10のアリーレン基である。
     R1及びR2は、それぞれ独立に、水素原子、炭素数1~10のアルキル基又は環形成炭素数6~30のアリール基である。
     Ar1~Ar4は、少なくとも1つが下記一般式(2)で表される基であり、そうでないものは、それぞれ独立に、置換もしくは無置換の環形成炭素数6~30のアリール基である。
    Figure JPOXMLDOC01-appb-C000002
    (R3~R5は、それぞれ独立に、炭素数1~10のアルキル基、環形成炭素数3~10のシクロアルキル基、炭素数1~10のアルコキシ基、炭素数7~30のアラルキル基、環形成炭素数6~30のアリールオキシ基、環形成炭素数6~30のアリール基、ハロゲン原子又はシアノ基である。R3~R5は、互いに結合して炭化水素環を形成してもよい。
     a及びbは、それぞれ独立に、0~4の整数である。cは、0~5の整数である。また、a、b又はcが2以上である場合、隣接するR3同士、隣接するR4同士又は隣接するR5同士は、互いに結合して炭化水素環を形成してもよい。)]
  2.  前記一般式(2)で表される基が、下記一般式(3)又は(4)で表される、請求項1に記載の化合物。
    Figure JPOXMLDOC01-appb-C000003
    (式中、R3~R5及びa~cは、前記定義の通りである。)
  3.  Ar1及びAr2が前記一般式(2)で表される基である、請求項1又は2に記載の化合物。
  4.  Ar1及びAr3が前記一般式(2)で表される基である、請求項1又は2に記載の化合物。
  5.  Ar1~Ar4のうち3つ以上が互いに異なっている、請求項1又は2に記載の化合物。
  6.  Ar1~Ar4のうち3つが同一である、請求項1又は2に記載の化合物。
  7.  L1及びL2がいずれも単結合である、請求項1~6のいずれかに記載の化合物。
  8.  L1が単結合であり、かつL2がフェニレン基である、請求項1~6のいずれかに記載の化合物。
  9.  下記の化合物群から選択される、請求項1に記載の化合物。
    Figure JPOXMLDOC01-appb-C000004


  10.  請求項1~9のいずれかに記載の化合物からなる、アクセプター層隣接正孔輸送層を有する有機エレクトロルミネッセンス素子用正孔輸送材料。
  11.  対向する陽極と陰極との間に有機薄膜層を有する有機エレクトロルミネッセンス素子であって、請求項1~9のいずれかに記載の化合物を含有する有機薄膜層を1層以上有することを特徴とする、有機エレクトロルミネッセンス素子。
  12.  対向する陽極と陰極の間に、少なくとも2以上の正孔輸送層と、発光層を順次有する有機エレクトロルミネッセンス素子であって、該正孔輸送層のうちの一つが請求項1~9のいずれかに記載の化合物を含有し、かつ、発光層とは隣接しないことを特徴とする、有機エレクトロルミネッセンス素子。
  13.  前記少なくとも2以上の正孔輸送層が陽極側の第一正孔輸送層と発光層側の第二正孔輸送層とからなり、該第一正孔輸送層が請求項1~8のいずれかに記載の化合物を含有するものである、請求項12に記載の有機エレクトロルミネッセンス素子。
  14.  前記陽極と前記少なくとも2以上の正孔輸送層との間に、アクセプター材料を含有するアクセプター層を有する請求項12又は13に記載の有機エレクトロルミネッセンス素子。
  15.  前記少なくとも2以上の正孔輸送層が陽極側の第一正孔輸送層と発光層側の第二正孔輸送層とからなり、該第一正孔輸送層がアクセプター材料を含有する請求項12又は13に記載の有機エレクトロルミネッセンス素子。
  16.  前記アクセプター材料が、下記一般式(A)~(C)のいずれかで表される請求項14又は15に記載の有機エレクトロルミネッセンス素子。
    Figure JPOXMLDOC01-appb-C000005
    (式(A)中、R11~R16は、それぞれ独立に、シアノ基、-CONH2、カルボキシル基、もしくは-COOR17(R17は、炭素数1~20のアルキル基である。)を表すか、又は、R11及びR12、R13及びR14、もしくはR15及びR16が互いに結合して-CO-O-CO-で示される基を表す。)

    Figure JPOXMLDOC01-appb-C000006
    [[式(B)中、R21~R24は、それぞれ独立に、水素原子、置換もしくは無置換の炭素数1~20のアルキル基、置換もしくは無置換の環形成炭素数6~50のアリール基、置換もしくは無置換の環形成原子数5~50の複素環基、ハロゲン原子、置換もしくは無置換の炭素数1~20のアルコキシ基、置換もしくは無置換の環形成炭素数6~50のアリールオキシ基又はシアノ基である。R21とR22、及びR23とR24は、互いに結合して環を形成してもよい。
     Y1~Y4は、それぞれ独立に、-N=、-CH=、又は-C(R25)=である。該R25は、置換もしくは無置換の炭素数1~20のアルキル基、置換もしくは無置換の環形成炭素数6~50のアリール基、置換もしくは無置換の環形成原子数5~50の複素環基、ハロゲン原子、置換もしくは無置換の炭素数1~20のアルコキシ基、置換もしくは無置換の環形成炭素数6~50のアリールオキシ基又はシアノ基である。
     Ar10は、環形成炭素数6~24の縮合環又は環形成原子数6~24の複素環を表す。ar1及びar2は、それぞれ独立に、下記一般式(i)又は(ii)の環を表す。
    Figure JPOXMLDOC01-appb-C000007
     上記式中、X1及びX2は、それぞれ独立に、下記(a)~(g)のいずれかの2価の基を表す。
    Figure JPOXMLDOC01-appb-C000008
    (式中、R31~R34は、それぞれ互いに同一でも異なっていてもよく、水素原子、置換もしくは無置換の炭素数1~20のアルキル基、置換もしくは無置換の環形成炭素数6~50のアリール基又は置換もしくは無置換の環形成原子数5~50の複素環基であり、R32とR33は互いに結合して環を形成してもよい。)]]
    Figure JPOXMLDOC01-appb-C000009
    (式中、Z1~Z3は、それぞれ独立に、下記一般式(h)で示される二価の基である。)
    (式中、Ar31は、置換もしくは無置換の環形成炭素数6~50のアリール基、又は置換もしくは無置換の環形成原子数5~50のヘテロアリール基である。)
  17.  請求項11~16のいずれかに記載の有機エレクトロルミネッセンス素子を搭載した電子機器。
PCT/JP2013/052952 2012-02-10 2013-02-07 芳香族アミン誘導体、有機エレクトロルミネッセンス素子及び電子機器 WO2013118847A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012027830 2012-02-10
JP2012-027830 2012-02-10

Publications (1)

Publication Number Publication Date
WO2013118847A1 true WO2013118847A1 (ja) 2013-08-15

Family

ID=48947602

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/052952 WO2013118847A1 (ja) 2012-02-10 2013-02-07 芳香族アミン誘導体、有機エレクトロルミネッセンス素子及び電子機器

Country Status (3)

Country Link
JP (1) JP2013177386A (ja)
TW (1) TW201336809A (ja)
WO (1) WO2013118847A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10014477B2 (en) 2012-08-31 2018-07-03 Idemitsu Kosan Co., Ltd. Aromatic amine derivative, and organic electroluminescent element using same
WO2019216411A1 (ja) * 2018-05-10 2019-11-14 出光興産株式会社 化合物、有機エレクトロルミネッセンス素子用材料、有機エレクトロルミネッセンス素子、及び電子機器
CN111848562A (zh) * 2019-04-25 2020-10-30 上海钥熠电子科技有限公司 有机电致发光材料及其应用

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6788335B2 (ja) 2014-08-11 2020-11-25 三星ディスプレイ株式會社Samsung Display Co.,Ltd. 有機エレクトロルミネッセンス素子用モノアミン材料及びそれを用いた有機エレクトロルミネッセンス素子
KR102624166B1 (ko) 2015-06-15 2024-01-12 삼성디스플레이 주식회사 유기 전계 발광 소자

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006077130A1 (de) * 2005-01-21 2006-07-27 Sensient Imaging Technologies Gmbh Triarylamin-derivate mit raumfüllenden seitengruppen und deren verwendung
WO2010106806A1 (ja) * 2009-03-19 2010-09-23 三井化学株式会社 芳香族アミン誘導体及びそれを用いた有機エレクトロルミネッセンス素子
WO2012039534A1 (ko) * 2010-09-20 2012-03-29 제일모직 주식회사 유기광전소자용 화합물 및 이를 포함하는 유기광전소자

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006077130A1 (de) * 2005-01-21 2006-07-27 Sensient Imaging Technologies Gmbh Triarylamin-derivate mit raumfüllenden seitengruppen und deren verwendung
WO2010106806A1 (ja) * 2009-03-19 2010-09-23 三井化学株式会社 芳香族アミン誘導体及びそれを用いた有機エレクトロルミネッセンス素子
WO2012039534A1 (ko) * 2010-09-20 2012-03-29 제일모직 주식회사 유기광전소자용 화합물 및 이를 포함하는 유기광전소자

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10014477B2 (en) 2012-08-31 2018-07-03 Idemitsu Kosan Co., Ltd. Aromatic amine derivative, and organic electroluminescent element using same
US11362279B2 (en) 2012-08-31 2022-06-14 Idemitsu Kosan Co., Ltd. Aromatic amine derivative, and organic electroluminescent element using same
US11444246B2 (en) 2012-08-31 2022-09-13 Idemitsu Kosan Co., Ltd. Aromatic amine derivative, and organic electroluminescent element using same
WO2019216411A1 (ja) * 2018-05-10 2019-11-14 出光興産株式会社 化合物、有機エレクトロルミネッセンス素子用材料、有機エレクトロルミネッセンス素子、及び電子機器
CN111848562A (zh) * 2019-04-25 2020-10-30 上海钥熠电子科技有限公司 有机电致发光材料及其应用

Also Published As

Publication number Publication date
JP2013177386A (ja) 2013-09-09
TW201336809A (zh) 2013-09-16

Similar Documents

Publication Publication Date Title
JP5988887B2 (ja) 芳香族アミン誘導体、有機エレクトロルミネッセンス素子及び電子機器
JP5215481B2 (ja) 有機電界発光素子
JP4870245B2 (ja) 燐光発光素子用材料及びこれを用いた有機電界発光素子
EP2757608B1 (en) Organic electroluminescent element
KR101720444B1 (ko) 비스카바졸 유도체 및 그것을 이용한 유기 전기발광 소자
JP6270735B2 (ja) 芳香族アミン誘導体及び有機エレクトロルミネッセンス素子
JP5399418B2 (ja) 有機電界発光素子
JP5914500B2 (ja) 有機電界発光素子
WO2011105161A1 (ja) 有機電界発光素子
WO2014069602A1 (ja) 有機エレクトロルミネッセンス素子
WO2013118812A1 (ja) 有機エレクトロルミネッセンス素子
TW201245150A (en) Organic electroluminescent element
WO2011108707A1 (ja) 有機エレクトロルミネッセンス素子用材料及びそれを用いた有機エレクトロルミネッセンス素子
JP6446362B2 (ja) アミン化合物及び有機エレクトロルミネッセンス素子
WO2015053403A1 (ja) 芳香族アミン化合物、有機エレクトロルミネッセンス素子及び電子機器
JPWO2012124412A1 (ja) 含窒素芳香族化合物及び有機電界発光素子
WO2013118847A1 (ja) 芳香族アミン誘導体、有機エレクトロルミネッセンス素子及び電子機器
CN114773323A (zh) 有机化合物、有机电致发光器件和电子装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13746768

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13746768

Country of ref document: EP

Kind code of ref document: A1