WO2013118783A1 - 高分子化ニトロキシド化合物と無機粒子の有機-無機ハイブリッド複合体 - Google Patents
高分子化ニトロキシド化合物と無機粒子の有機-無機ハイブリッド複合体 Download PDFInfo
- Publication number
- WO2013118783A1 WO2013118783A1 PCT/JP2013/052769 JP2013052769W WO2013118783A1 WO 2013118783 A1 WO2013118783 A1 WO 2013118783A1 JP 2013052769 W JP2013052769 W JP 2013052769W WO 2013118783 A1 WO2013118783 A1 WO 2013118783A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- particles
- oxyl
- group
- alkylene
- silica
- Prior art date
Links
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K47/00—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
- A61K47/30—Macromolecular organic or inorganic compounds, e.g. inorganic polyphosphates
- A61K47/34—Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyesters, polyamino acids, polysiloxanes, polyphosphazines, copolymers of polyalkylene glycol or poloxamers
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/74—Synthetic polymeric materials
- A61K31/765—Polymers containing oxygen
- A61K31/77—Polymers containing oxygen of oxiranes
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/74—Synthetic polymeric materials
- A61K31/785—Polymers containing nitrogen
- A61K31/787—Polymers containing nitrogen containing heterocyclic rings having nitrogen as a ring hetero atom
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K47/00—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
- A61K47/50—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
- A61K47/69—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit
- A61K47/6921—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit the form being a particulate, a powder, an adsorbate, a bead or a sphere
- A61K47/6923—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit the form being a particulate, a powder, an adsorbate, a bead or a sphere the form being an inorganic particle, e.g. ceramic particles, silica particles, ferrite or synsorb
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/0002—Galenical forms characterised by the drug release technique; Application systems commanded by energy
- A61K9/0009—Galenical forms characterised by the drug release technique; Application systems commanded by energy involving or responsive to electricity, magnetism or acoustic waves; Galenical aspects of sonophoresis, iontophoresis, electroporation or electroosmosis
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/48—Preparations in capsules, e.g. of gelatin, of chocolate
- A61K9/50—Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals
- A61K9/51—Nanocapsules; Nanoparticles
- A61K9/5107—Excipients; Inactive ingredients
- A61K9/5115—Inorganic compounds
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/48—Preparations in capsules, e.g. of gelatin, of chocolate
- A61K9/50—Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals
- A61K9/51—Nanocapsules; Nanoparticles
- A61K9/5107—Excipients; Inactive ingredients
- A61K9/513—Organic macromolecular compounds; Dendrimers
- A61K9/5146—Organic macromolecular compounds; Dendrimers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyethylene glycol, polyamines, polyanhydrides
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P1/00—Drugs for disorders of the alimentary tract or the digestive system
- A61P1/04—Drugs for disorders of the alimentary tract or the digestive system for ulcers, gastritis or reflux esophagitis, e.g. antacids, inhibitors of acid secretion, mucosal protectants
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P13/00—Drugs for disorders of the urinary system
- A61P13/12—Drugs for disorders of the urinary system of the kidneys
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P29/00—Non-central analgesic, antipyretic or antiinflammatory agents, e.g. antirheumatic agents; Non-steroidal antiinflammatory drugs [NSAID]
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P39/00—General protective or antinoxious agents
- A61P39/06—Free radical scavengers or antioxidants
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P43/00—Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P7/00—Drugs for disorders of the blood or the extracellular fluid
- A61P7/08—Plasma substitutes; Perfusion solutions; Dialytics or haemodialytics; Drugs for electrolytic or acid-base disorders, e.g. hypovolemic shock
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B33/00—Silicon; Compounds thereof
- C01B33/113—Silicon oxides; Hydrates thereof
- C01B33/12—Silica; Hydrates thereof, e.g. lepidoic silicic acid
- C01B33/18—Preparation of finely divided silica neither in sol nor in gel form; After-treatment thereof
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G65/00—Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
- C08G65/02—Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring
- C08G65/32—Polymers modified by chemical after-treatment
- C08G65/329—Polymers modified by chemical after-treatment with organic compounds
- C08G65/333—Polymers modified by chemical after-treatment with organic compounds containing nitrogen
- C08G65/33379—Polymers modified by chemical after-treatment with organic compounds containing nitrogen containing nitro group
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G65/00—Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
- C08G65/02—Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring
- C08G65/32—Polymers modified by chemical after-treatment
- C08G65/329—Polymers modified by chemical after-treatment with organic compounds
- C08G65/333—Polymers modified by chemical after-treatment with organic compounds containing nitrogen
- C08G65/33379—Polymers modified by chemical after-treatment with organic compounds containing nitrogen containing nitro group
- C08G65/33386—Polymers modified by chemical after-treatment with organic compounds containing nitrogen containing nitro group cyclic
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G65/00—Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
- C08G65/02—Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring
- C08G65/32—Polymers modified by chemical after-treatment
- C08G65/329—Polymers modified by chemical after-treatment with organic compounds
- C08G65/333—Polymers modified by chemical after-treatment with organic compounds containing nitrogen
- C08G65/33379—Polymers modified by chemical after-treatment with organic compounds containing nitrogen containing nitro group
- C08G65/33386—Polymers modified by chemical after-treatment with organic compounds containing nitrogen containing nitro group cyclic
- C08G65/33389—Polymers modified by chemical after-treatment with organic compounds containing nitrogen containing nitro group cyclic aromatic
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G65/00—Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
- C08G65/02—Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring
- C08G65/32—Polymers modified by chemical after-treatment
- C08G65/329—Polymers modified by chemical after-treatment with organic compounds
- C08G65/333—Polymers modified by chemical after-treatment with organic compounds containing nitrogen
- C08G65/33379—Polymers modified by chemical after-treatment with organic compounds containing nitrogen containing nitro group
- C08G65/33393—Polymers modified by chemical after-treatment with organic compounds containing nitrogen containing nitro group heterocyclic
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L53/00—Compositions of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L71/00—Compositions of polyethers obtained by reactions forming an ether link in the main chain; Compositions of derivatives of such polymers
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/02—Elements
- C08K3/08—Metals
- C08K2003/0856—Iron
Definitions
- the present invention relates to an organic-inorganic hybrid complex of a polymerized cyclic nitroxide radical compound and silica or magnetic particles and use thereof.
- ROS reactive oxygen species
- the present inventors use a self-assembled nanoparticle (Nitroxide radical-containing nanoparticulate: RNP) in which a nitroxide radical, which is a catalytically functioning ROS scavenger, is encapsulated with a polymer chain, and eliminates ROS where necessary.
- RNP Nonide radical-containing nanoparticulate
- Nanotherapy has been developed (Patent Document 1). After that, the present inventors, after intravenous administration of such RNP, the blood vessel stays for a long time while forming nanoparticles, and collapses in the tissue where oxidative stress occurs, so that cerebral infarction, myocardial infarction, It has been confirmed that it has a high therapeutic effect on acute renal failure, and is disclosed in the patent application specification, although it has not been disclosed yet.
- the present inventors use a self-organized nanoparticle (RNP) encapsulating a catalytically functioning ROS scavenger nitroxide radical, and erase the ROS where necessary.
- RNP self-organized nanoparticle
- a new nanotherapy has been developed (Patent Document 1).
- medical agents including such RNP and a low molecular antioxidant was also provided (patent document 2). This document also describes that the composition can be used as a pharmaceutical preparation for oral administration, but does not disclose any results of actual oral administration.
- a cation-charged RNP itself or a conjugate in which an anionic drug is encapsulated in the RNP using cation chargeability forms a polymer micelle in an aqueous medium
- cation chargeability forms a polymer micelle in an aqueous medium
- It stays in the blood vessel for a long time with nanoparticles formed, but it is high for cerebral infarction, myocardial infarction / acute renal failure, and other diseases due to the collapse of micelles or particles in tissues where oxidative stress occurs
- the present inventors have also confirmed that it has a therapeutic effect (see Patent Document 1 for a part, and a patent application that is currently unpublished for a part).
- a material or complex as described above can be provided, for example, the construction of a system capable of efficiently delivering a drug to the intestine without the drug being stably present in the RNP in the stomach in an acidic environment and not being digested. It will be possible.
- peritoneal dialysis is one of the methods for treating patients with renal insufficiency, which has been in an aging society and whose renal function is reduced due to various diseases.
- This method is used together with hemodialysis that uses a dialyzer to purify blood by extracorporeal circulation.
- the former is easy to return to society and protects the residual kidney function, but it does not solve the problems of complicated dialysate replacement and peritoneal sclerosis.
- the utilization rate is still lower than the latter.
- RNP in which magnetic nanoparticles are effectively encapsulated does not adversely affect the antioxidant action of the polymerized cyclic nitroxide radical compound, which is another constituent element of RNP.
- it may be used in magnetic hyperthermia, and may be a base for isolation (screening) and cell separation of specific biomolecules.
- silica or magnetic particles can be efficiently encapsulated in RNP or polymer micelles, or silica or magnetic particles can be made of a polymerized cyclic nitroxide radical compound. It has been found that it can be coated. Furthermore, RNP or polymer micelles that contain such inorganic particles are more physiological than those that do not contain inorganic particles, especially in certain RNPs, even in an acidic environment at pH 3, for example. The micelle state or particle state is stably maintained. Moreover, it has also been found that particles in such a state that a drug is further contained in RNP are stable in a physiological environment. In addition, it was also confirmed that RNP encapsulating silica significantly suppressed peritoneal deterioration when administered to the peritoneum of a peritoneal inflammation model rat.
- organic-inorganic hybrid composite wherein the organic component is a block copolymer represented by the following general formula (I), and the inorganic component is selected from the group consisting of silica and magnetic nanoparticles.
- a composite is provided that is a particle.
- PEG-CNR (I) Where PEG is a segment containing poly (ethylene glycol); A CNR is a repeating comprising as part of a pendant group a cyclic nitroxide radical attached to the polymer backbone via a linking group, preferably a linking group having at least one imino (—NH—) or oxy (—O—). A polymer segment containing units.
- the average particle size is generally 3 nm to Preferred examples include those present as particles of 1 mm, preferably 5 nm to 500 nm, more preferably 5 nm to 100 nm, and even more preferably 10 nm to 50 nm.
- Such composites are not limited, but are suitable for use in vivo when referred to as so-called nanoparticles with a size in the nm range, while inorganic particles are particularly suitable.
- the composite of the present invention is not nanoparticles but has an average particle size of 500 nm to 1 mm, preferably 1 ⁇ m to 500 ⁇ m. More preferably, the particles may be 1 ⁇ m to 100 ⁇ m, and even more preferably 1 ⁇ m to 50 ⁇ m.
- a peritoneal dialysis solution containing at least the complex and a pharmaceutically acceptable diluent or carrier as an active ingredient is provided.
- the complex further including an anionic drug is provided.
- the RNP formed from the organic-inorganic composite can disperse and hold the particles uniformly in the body fluid by encapsulating the inorganic particles in the RNP, and the action of the encapsulated inorganic particles.
- the block copolymer represented by the above general formula (I) contains at least one imino as a linking group and the inorganic nanoparticles are silica, even in the body fluid exhibiting acidity for a certain period of time.
- the shape of the RNP particles can be stably maintained, and further, other drugs can be stably encapsulated in the RNP at a high concentration.
- the size and shape of the inorganic particles may vary depending on the intended use of the organic-inorganic composite to be provided, but the size is intended to be a particle having an average diameter in the range of several nanometers to several millimeters. .
- silica particles are commercially available as SNOWTEX O or MEK-ST or methanol silica sol from the supplier, Nissan Chemical, and can be used as they are or after purification if necessary. Can be included in the complex.
- the shape of such inorganic particles is not limited, but may be a sphere, a cube, a rectangular parallelepiped, an 8-16 polyhedron, or the like. The particle size of such particles is displayed as a value when converted to a sphere.
- the magnetic nanoparticles are not limited, but are preferably used or proposed to be used in the art for bio-medical magnetic nanoparticles or bio-separation, Further, magnetite (Fe 3 O 4 ), magnethemite ( ⁇ -Fe 2 O 3 ), or an intermediate thereof, which is available from the supplier, JSR Life Science Co., Ltd., can be used. Furthermore, the magnetic nanoparticles can be specifically FePt (the average content of Fe is preferably 35 atoms or more) nanoparticles (see, for example, JP 2009-57609 A).
- the early composite can include one or more magnetic particles selected from the group consisting of Fe 3 O 4 , ⁇ -Fe 2 O 3 , and FePt.
- the cyclic nitroxide radical is a linking group such as o- or p-phenylene-C 1-6 alkylene-NH— (C 1-6 alkylene) q — or o- or p-phenylene-C 1-6 alkylene-O— (C 1-6 alkylene) q — (where q is an integer 0 or 1, preferably 0) to the polymer backbone.
- the cyclic nitroxide radical is 2,2,6,6-tetramethylpiperidin-1-oxyl-4-yl, 2,2,5,5-tetramethylpyrrolidine-1-oxyl-3- Yl, 2,2,5,5-tetramethylpyrrolin-1-oxyl-3-yl and 2,4,4-trimethyl-1,3-oxazolidine-3-oxyl-2-yl, 2,4 4-trimethyl-1,3-thiazolidin-3-oxyl-2-yl and 2,4,4-trimethyl - selected from the group consisting of imidazoline-3-oxyl-2-yl.
- the polymer main chain is derived from a polymerizable unsaturated double bond, and the unbonded end of phenylene is bonded to the main chain. With respect to the structure of such a polymer main chain, the description of Patent Document 1 can be referred to (Patent Document 1 is incorporated by reference into the contents of this specification).
- block copolymer represented by the general formula (I) include those represented by the general formula (II)
- A represents unsubstituted or substituted C 1 -C 12 alkoxy, and when substituted, the substituent is a formyl group
- the formula R 1 R 2 CH— (wherein R 1 and R 2 are independently C 1 -C 4 alkoxy or R 1 and R 2 are -OCH 2 CH 2 O together -, - O (CH 2) 3 O- or a group of -O (CH 2) represents a 4 O-).
- L 1 is selected from the group consisting of a single bond, — (CH 2 ) c S—, —CO (CH 2 ) c S—, wherein c is an integer of 1 to 5, L 2 is —C 1-6 alkylene-NH— (C 1-6 alkylene) q — or —C 1-6 alkylene-O— (C 1-6 alkylene) q —, where q is 0 or
- R is 2,2,6,6-tetramethylpiperidin-1-oxyl-4-yl, 2,2,5,5-tetramethylpyrrolidin-1-oxyl-3-yl, 2, 2,5,5-tetramethylpyrrolin-1-oxyl-3-yl and 2,4,4-trimethyl-1,3-oxazolidine-3-oxyl-2-yl, 2,4,4-trimethyl-1, Represents a residue of a cyclic nitroxide radical compound selected from the group consisting of 3-thiazolidine-3-oxyl-2-yl and 2,4,4-trimethyl
- R ′ is a methyl group.
- the group represented by these can be mentioned.
- the organic-inorganic hybrid composite may be formed by simply mixing inorganic particles and the above block copolymer in a powdered state at room temperature to 90 ° C.
- the complex is buffered or unbuffered, and if necessary, a water-soluble organic solvent such as dimethylformamide (DMF), dimethyl sulfoxide (DMSO), dimethylacetamide, methanol, ethanol. It can produce
- Such composites can also be provided as particles or polymeric micelles formed through self-assembly during their preparation. Also, the particles or polymer micelles thus formed can be provided as a dried product, preferably a lyophilized product.
- the particle size of the particles depends on the size of the inorganic particles used as the starting material, but in general, the starting inorganic particles can have an average diameter in the range of several nanometers to several millimeters. Is in the range of 3 nm to 1 mm, generally 3 nm to 500 ⁇ m, preferably 5 nm to 100 nm, more preferably 5 nm to 80 nm, particularly preferably 10 nm to 50 nm.
- the inorganic particles are magnetic particles
- particles having an average particle diameter of 500 nm to 1 mm, preferably 1 ⁇ m to 500 nm, more preferably 1 ⁇ m to 100 ⁇ m, and still more preferably 1 ⁇ m to 50 ⁇ m can be used.
- the particle size means a value that can be confirmed by performing dynamic light scattering (DLS) measurement of composite particles dissolved or dispersed in an aqueous medium.
- DLS dynamic light scattering
- the content ratio of the composite inorganic particles and the block copolymer is not limited as long as the composite particles can be observed in the aqueous medium as having the above particle diameter. Therefore, a person skilled in the art will select the above-mentioned content ratio according to the method for producing composite particles described below, try to form composite particles, and measure their dynamic light scattering. A suitable content ratio can be selected.
- the present invention is not limited thereto, and the poly (ethylene glycol) segment represented by the general formula (II) is 20 to 5,000 and n is 3 to 1,000.
- the weight ratio (polymer: silica particles) is 100: 5 to 100: 300, preferably 100: 10 to 100: 200, more preferably Can be between 100: 20 and 100: 100.
- the content ratio of the inorganic nanoparticles to the block copolymer in the composite is: It can be 1: 10000, preferably 1: 1000, more preferably 1; 100.
- the self-assembly of the block copolymer and the inorganic particles contained in the aqueous medium is conveniently performed by using a block copolymer (PEG-b-PMNT) as necessary, as shown in the conceptual diagram of the method for preparing silica-encapsulated RNP in FIG. After dissolving in an aqueous medium adjusted to acidic (pH 1 to 5), if necessary, it can be deprotonated by adjusting to weakly acidic-alkaline (pH 6 to 10) and stirred, and then allowed to proceed.
- a block copolymer PEG-b-PMNT
- the block copolymer is dissolved in a water-soluble organic solvent (for example, DMF), inorganic particles are added, and the mixture thus produced is dialyzed against distilled water through a dialysis membrane. Can be made.
- a water-soluble organic solvent for example, DMF
- inorganic particles are added, and the mixture thus produced is dialyzed against distilled water through a dialysis membrane.
- the composite particles formed in this way are those in which the inorganic particles are encapsulated in RNP or polymer micelles or coated with a block copolymer.
- DMF water-soluble organic solvent
- the organic-inorganic hybrid composite (or inorganic particle-encapsulating RNP) provided in this way can be uniformly dispersed in the body fluid and can stably maintain the particle form.
- the RNP particularly when the inorganic particles are silica and the linking group of the block copolymer contains imino (-NH-), the RNP is at least several tens of minutes even in a low pH acidic environment such as gastric juice. Maintains particle morphology stably.
- terms such as body fluid, in vivo, physiological, and physiological as used herein are intended for use with mammals such as humans.
- silica-encapsulated RNP When such a silica-encapsulated RNP is produced by using the latter dialysis method of the above-described method, it is possible to further contain various agents, preferably anionic or hydrophobic agents, in the solution before dialysis.
- the drug can be contained or encapsulated in the encapsulated RNP.
- medical agent can be included or included in silica inclusion RNP by adding them to the solution or dispersion liquid in the aqueous medium of silica inclusion RNP prepared beforehand, and stirring and mixing.
- the silica and drug-encapsulating RNP formed in this way also stably maintain the particle form for at least several tens of minutes in a low pH acidic environment such as gastric juice.
- RNP when the inorganic nanoparticles are magnetic particles and the linking group of the block copolymer contains imino (-NH-) is stable for a certain period of time even in an in vivo acidic environment, like the silica-encapsulated RNP. Retain form.
- silica encapsulated RNP contains glucose, sodium, magnesium, calcium, lactic acid, etc., which are commonly used in the art, and stably forms particles even in peritoneal dialysis fluids at low pH (acidic). Hold.
- the dialysate bag into two chambers and mixing them immediately before use, even in physiologically friendly peritoneal dialysate with a neutral pH (6.3 to 7.3), the silica-encapsulated RNP is stable. It is possible to maintain the form (sometimes referred to as Si-RNP).
- silica-encapsulated RNPs improve the dialysis efficiency so that it can be understood that the wastes that have exuded outside the body through the peritoneum are adsorbed to the silica. Therefore, degradation of the peritoneum, which has been a problem in the past, can be suppressed by including silica-encapsulated RNP in the conventionally used peritoneal dialysis fluid.
- the peritoneal dialysis solution has been proposed more recently (for example, an icodextrin-containing peritoneum containing icosadextrin instead of glucose). Dialysate and the like) are also included in the peritoneal dialysate referred to in the present invention.
- silica and drug-encapsulating RNP also stably maintain the particle form for at least several tens of minutes in a low pH acidic environment such as gastric juice. Therefore, the silica and drug-encapsulating RNP can be conveniently used in order to efficiently deliver the drug to the intestine after passing through the stomach after oral administration.
- rebamipide which is a gastrointestinal drug
- the particle form of RNP in the stomach can be maintained stably for a certain time, so that the sustained release of the drug in the gastrointestinal tract is improved. Can be achieved.
- an RNP which is an anionic drug and is encapsulated with silica for delivery to the intestine by oral administration.
- drugs include, but are not limited to, degafur uracil, krestin, leucovorin, acetaminophen, cyclophosphamide, melphalan, cytarabine ocphosphat, tegafur uracil, tegafur guineastat and otastat potassium , Doxyfluridine, hydroxycarbamide, methotrexate, mercaptopurine, etoposide, anastrozole, tamoxifen citrate, toremifene citrate, bicalutamide, flutamide, estramustine phosphate, meloxicam, etodolac, piroxicam, ampiroxicam, lornoxicam, mofezosil farnesil , Indomethacin, clinda, fenbufen, di
- the RNP may exist in the form of self-assembled particles as described above, for example, in an aqueous medium.
- the solid preparation may contain the RNP in any state, but it is preferable to include a self-assembled particle once formed in an aqueous medium and then dried by lyophilization or the like.
- Such pharmaceutical preparations may contain diluents, excipients (or carriers) and additives well known in the art as long as the purpose of the present invention is met, but should be the lyophilizate itself. You can also.
- the pharmaceutical preparation is, for example, a preparation for oral administration and is a solid, the polymer cyclic nitroxide radical compound is converted into sucrose, lactose, mannitol, cellulose, trehalose, maltitol, dextran, starch, agar, gelatin, casein, It can be included in one or more combinations selected from albumin, glycerides and the like.
- inert diluents such as magnesium stearate, parabens, sorbic acid, preservatives such as ⁇ -tocopherol, antioxidants such as cysteine, disintegrants, binders, buffers, Sweeteners and the like can also be included.
- lubricants such as magnesium stearate, parabens, sorbic acid, preservatives such as ⁇ -tocopherol, antioxidants such as cysteine, disintegrants, binders, buffers, Sweeteners and the like can also be included.
- Liquid preparations for oral administration include physiologically acceptable emulsions, syrups, elixirs, suspensions and solution preparations. These formulations may contain a commonly used inert diluent such as water. Such an aqueous solution may contain the above-mentioned sugars and polyethylene glycol having a molecular weight of about 200 to 100,000.
- the above preparation can be liquid or semi-liquid at the time of use or from the beginning.
- a physiological saline, buffered physiological saline, sterile water, etc. as a diluent
- parenterally It can also be a formulation.
- the conceptual diagram of silica inclusion RNP preparation of this invention The graph showing the DLS measurement result of the nanoparticle obtained in manufacture example 1.
- FIG. The graph showing the uptake
- FIG. SiO 2 —RNP1 is the result for particles made using TEOS
- SiO 2 —RNP 2 is the result for particles made using commercially available silica particles.
- FIG. The graph showing the result of having analyzed the repamipide content of the repamipide inclusion particle produced in manufacture example 4 by test 1.
- the black triangle curve is the result of the silica content of 8.5 wt% per polymer weight
- the black circle curve is the result of the silica content of 0 wt% per polymer weight.
- FIG. 10 is a graph showing the results of a blood uptake inhibition test after intraperitoneal administration of Si-RNP according to Test Example 5.
- the graph which shows the therapeutic effect of RNP using the peritoneal sclerosis model animal by the test example 6.
- FIG. 6 is a graph showing the amount of PEG-b-PMNT in which the magnetic particles obtained in Production Example 5 are modified.
- the polymerized nitroxide radical compound was prepared according to Production Examples 2 and 4 of the above-mentioned Patent Document 1 (the contents of which are incorporated herein by reference).
- An example using nanoparticles from PEG-b-PCMS-N-TEMPO or PEG-b-PMNT (hereinafter also referred to as nRNP) will be described.
- the values of m and n related to the molecular weight and the values of nm and ⁇ m related to the particle diameter described in the examples are average values.
- Production Example 1 Method for preparing silica-containing nitroxide radical-containing nanoparticles (Si-nRNP) (Part 1) Amphiphilic block polymer: PEG-b-PMNT (corresponding to m in the formula below being about 100 and n being about 20. M part Mn is 4600, PCMS Mn from 3,300 Silica nanoparticles (10 nm, 0.5 mg) were added to an aqueous solution (converted) (5 mg / mL, 1 mL, pH 3) and stirred at room temperature. Next, silica-encapsulated nitroxide radical-containing nanoparticles (Si-nRNP) were prepared by adding sodium hydroxide to adjust the pH to 9 (see FIG. 1).
- Amphiphilic block polymer PEG-b-PMNT (corresponding to m in the formula below being about 100 and n being about 20. M part Mn is 4600, PCMS Mn from 3,300 Silica nanoparticles (10 nm, 0.5 mg) were added to an aque
- Production Example 2 Preparation method of silica-containing nitroxide radical-containing nanoparticles (Si-nRNP) (Part 2) 2 mL of DMF passed through a 0.2 ⁇ m syringe filter and 10 mg of amphiphilic block polymer polymer: PEG-b-PMNT were put into a screw, and heat was applied using a drier to completely dissolve the polymer. Further, a predetermined amount of silica nanoparticles (Nissan Chemical, MEK-ST, 10-15 nm, 2.1-15.5 mg) was added to the screw tube.
- Si-nRNP silica-containing nitroxide radical-containing nanoparticles
- the DMF solution of the polymer was transferred with a Pasteur pipette to a dialysis membrane having a molecular weight cut off of 3500, which had been soaked and swollen in advance, and dialyzed against 2 L of distilled water. Distilled water was exchanged every few hours and dialyzed for 24 hours. Distilled water was added to the collected solution to make a total volume of 6.5 mL. Sodium chloride was added to this solution at a concentration of 10 mg / ml, and then passed through a 0.2 ⁇ m syringe filter to remove unencapsulated silica particles. The amount of silica encapsulated was determined by silicon (Si) using a plasma emission spectrometer. The results are shown in Table 1 below.
- TEOS tetraethoxysilane
- nRNP nRNP (20 mg / mL) aqueous solution
- Production Example 4 Encapsulation of rebamipide, a drug with anti-inflammatory action on silica-encapsulated nanoparticles
- silica-encapsulated nanoparticles with different silica contents (silica content 0 wt%, 11 wt%, 14 wt%, 36 wt%, 88 wt% / polymer weight) 1 mL of each was transferred to a microtube, 3 mg of rebamipide was added, and the mixture was stirred at room temperature at 500 rpm with a stirrer for 24 hours. After stirring, a 0.2 ⁇ m syringe filter was passed to remove unencapsulated rebamipide.
- silica content and particle size before and after the rebamipide encapsulation operation are summarized in Table 2 below.
- PDI represents the particle size polydispersity
- Test Example 1 Analyzing the rebamipide content of the prepared repamipide-encapsulated particles The remamipide content of the produced repamipide-encapsulated particles was analyzed by measuring an absorption spectrum at 330 nm, which is the absorption maximum wavelength of rebamipide. The result is shown in FIG.
- FIG. 5 confirms that nanoparticles containing silica can contain more rebamipide than nanoparticles not containing silica.
- Test Example 2 Stability of Nanoparticles Encapsulating Drug under Acidic Conditions
- Nanoparticles encapsulating rebamipide of Production Example 4 above (containing 8.5 wt% silica per polymer weight) as a drug under acidic conditions
- the change in scattering intensity at pH 3 was measured.
- 350 ⁇ L of deionized water and 40 ⁇ L of buffer solution (pH 3) were added and stirred by pipetting, and then 10 ⁇ L of the sample was added and the scattering intensity was measured.
- the measurement was set to the conditions of measuring once per minute, the measurement was started 4 minutes after adjusting to pH 3, and the scattering intensity was measured continuously for 15 minutes. The results are shown in FIG.
- Test example 3 Release behavior of encapsulated drug when the nanoparticles are left under acidic conditions
- Encapsulation when nanoparticles (same as Test 2 above) are left for 20 minutes under acidic conditions at pH 3
- the release behavior of the drug rebamipide was evaluated. If the nanoparticles disintegrate under acidic conditions and rebamipide is released, it can be removed by passing through a 0.2 ⁇ m syringe filter.
- the amount of rebamipide released was measured by measuring the amount of rebamipide contained in the acid particles under the condition of pH 7 and measuring the absorption as the standard of rebamipide inclusion amount (100%). Asked. The result is shown in FIG.
- nanoparticles containing silica can stably encapsulate drugs under acidic conditions compared to nanoparticles not containing silica.
- Test Example 4 Testing of urea adsorption ability of silica-encapsulated nanoparticles As a peritoneal dialysis model, commercially available dialysate (Die annealing-NPD4, Baxter, component (w / v%) glucose 1.36 calcium chloride 0.
- Test Example 5 Blood uptake suppression test after intraperitoneal administration of Si-nRNP Usually, a low molecular weight compound is taken into the blood after being administered intraperitoneally, and there is a concern that it may diffuse throughout the body.
- FIG. 9 shows the results of measuring the electron spin resonance (ESR) signal in the blood after actually administering the low molecular compound TEMPO intraperitoneally. From FIG. 9, it is clear that the drug is present in the blood for over an hour.
- Administration of high concentrations of low molecular weight TEMPO compounds causes side effects such as lowering blood pressure and inhibiting the mitochondrial energy transfer system.
- silica-encapsulated RNP (Si-nRNP) does not permeate from the peritoneum at all, it was confirmed that there was no migration into blood. This is data that is expected to be an extremely safe peritoneal dialysis solution without concern for systemic toxicity.
- Test Example 6 Therapeutic effect of Si-nRNP using a peritoneal sclerosis model animal
- Peritoneal sclerosis model rats were treated with 0.1% (v / v) glucone chlorohexidine (Chlorhexidine gluconate) intraperitoneally every day for one week. Prepared by administration.
- physiological saline (Saline), Si-nRNP, or low-molecular compound TEMPOL was simultaneously administered daily for one week, and its peritoneal deterioration inhibitory effect was examined by quantifying the amount of superoxide produced by peritoneal inflammation. The results are shown in FIG.
- PEG-b-PMNT was dissolved by adding 10 ⁇ L of 0.1 M HCl to PEG-b-PMNT, and 3 ⁇ L (90 ⁇ g, 22. 5 mol carboxyl group) and pH 7.4 phosphate buffer (240 mL) was added, and the pH was measured. The pH was adjusted to 7.4 using 0.1 M NaOH and 0.1 M HCl and stirred for about 24 hours, after which unadsorbed PEG-b-PMNT not adsorbed on the magnetic particle surface was removed.
- PEG-b-PMNT-modified magnetic particles Fe-nRNP
- Fe-nRNP PEG-b-PMNT-modified magnetic particles
- the organic-inorganic hybrid complex of the present invention can improve the properties of peritoneal dialysis fluid per se, and further contains other drugs and is a carrier for delivering the drug to the intestine by oral administration.
Landscapes
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Medicinal Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Organic Chemistry (AREA)
- General Health & Medical Sciences (AREA)
- Pharmacology & Pharmacy (AREA)
- Animal Behavior & Ethology (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Epidemiology (AREA)
- General Chemical & Material Sciences (AREA)
- Polymers & Plastics (AREA)
- Inorganic Chemistry (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Nanotechnology (AREA)
- Optics & Photonics (AREA)
- Biomedical Technology (AREA)
- Physics & Mathematics (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Ceramic Engineering (AREA)
- Urology & Nephrology (AREA)
- Rheumatology (AREA)
- Toxicology (AREA)
- Pain & Pain Management (AREA)
- Biochemistry (AREA)
- Hematology (AREA)
- Diabetes (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
- Medicinal Preparation (AREA)
- Compositions Of Macromolecular Compounds (AREA)
Abstract
Description
式中、PEGはポリ(エチレングリコール)を含むセグメントであり、
CNRは、連結基、好ましくは、少なくとも1つのイミノ(-NH-)またはオキシ(-O-)を有する連結基を介してポリマー主鎖に結合した環状ニトロキシドラジカルをペンダント基の一部として含む反復単位を含むポリマーセグメントである。
ここで、ポリマー主鎖は重合性不飽和二重結合に由来し、当該主鎖にフェニレンの未結合末端が結合している。このようなポリマー主鎖の構造について、特許文献1の記載を参照できる(特許文献1は引用することにより本明細書の内容に組み込まれる)。
Aは、非置換または置換C1-C12アルコキシを表し、置換されている場合の置換基は、ホルミル基、式R1R2CH-(ここで、R1及びR2は独立して、C1-C4アルコキシまたはR1とR2は一緒になって-OCH2CH2O-、-O(CH2)3O-もしくは-O(CH2)4O-を表す。)の基を表し、
L1は、単結合、-(CH2)cS-、-CO(CH2)cS-、からなる群より選ばれ、ここでcは1ないし5の整数であり、
L2は、-C1-6アルキレン-NH-(C1-6アルキレン)q-または-C1-6アルキレン-O-(C1-6アルキレン)q-であり、ここでqは0または1であり、そして
Rは、2,2,6,6-テトラメチルピペリジン-1-オキシル-4-イル、2,2,5,5-テトラメチルピロリジン-1-オキシル-3-イル、2,2,5,5-テトラメチルピロリン-1-オキシル-3-イル及び2,4,4-トリメチル-1,3-オキサゾリジン-3-オキシル-2-イル、2,4,4-トリメチル-1,3-チアゾリジン-3-オキシル-2-イル及び2,4,4-トリメチル-イミダゾリンジン-3-オキシル-2-イルからなる群より選ばれる環状ニトロキシドラジカル化合物の残基を表し、
L2-Rは、nの総数の少なくとも、50%、好ましくは70%、より好ましくは80%、特により好ましくは95%が存在することができ、存在しない場合、残りのL2-R部は、メチル、ハロ(例えば、クロロ、ブロモ、ヨード)メチルまたはヒドロキシメチル基であることができ、
mは、20~5,000、好ましくは、20~1,000、より好ましくは20~500の整数であり、そして
nは、独立して、3~1,000、好ましくは、3~500、より好ましくは3~100、特に好ましくは5~50の整数である。
Rとしては、より好ましいものとして、次式
で表される基を挙げることができる。
シリカ内包ニトロキシドラジカル含有ナノ粒子(Si-nRNP)の調製方法(その1)
両親媒性ブロックポリマー:PEG-b-PMNT(下記式におけるmが約100であり、nが約20のものに相当する。それぞれ、m部のMnが4600で、PCMSのMnが3,300から換算した)の水溶液(5mg/mL,1mL,pH3)に、シリカナノ粒子(10nm,0.5mg)を加え、室温で撹拌した。次に、水酸化ナトリウムを加えて、pH9に調整することによってシリカ内包ニトロキシドラジカル含有ナノ粒子(Si-nRNP)を作製した(図1参照)。
シリカ内包ニトロキシドラジカル含有ナノ粒子(Si-nRNP)の調製方法(その2)
スクリューに0.2μmのシリンジフィルターを通したDMF 2mLと両親媒性ブロックポリマーポリマー:PEG-b-PMNT 10mgを入れ、ドライヤーを用いて熱を与え、ポリマーを完全に溶解した。このスクリュー管にさらに、シリカナノ粒子(日産化学、MEK-ST、10-15nm、2.1-15.5mg)を所定量加えた。あらかじめ水に浸し膨潤させておいた分画分子量3500の透析膜にポリマーのDMF溶液をパスツールピペットで移し、2Lの蒸留水に対して透析を行った。数時間おきに外液の蒸留水を交換し、24時間透析を行った。回収した溶液に蒸留水を加え全量を6.5mLとした。この溶液に塩化ナトリウムを10mg/mlの濃度で加えた後、0.2μmのシリンジフィルターを通し、内包されていないシリカ粒子を除去した。シリカの内包量はプラズマ発光分光分析装置によりケイ素(Si)の定量を行った。結果を下記表1に示す。
シリカ内包ニトロキシドラジカル含有ナノ粒子(Si-nRNP)の調製方法(その3)
(1)調製方法:
nRNP(20mg/mL)水溶液1mLにテトラエトキシシラン(TEOS)または市販のシリカ粒子(日産化学、スノーテックス)を所定量加え80℃で24時間撹拌した。撹拌後水を用いて透析(MWCO=1,000,000)を行い精製し、シリカ内包ニトロキシドラジカル含有ナノ粒子(Si-nRNP)を得た。内包されたシリカの量はプラズマ発光分光分析装置により定量した。結果を図3に示す。
(2)上記で得られたSi-nRNPの水溶液中での安定性
上記の方法で作成したSi-nRNPまたはSi不含nRNPを、それぞれ指定するpH水溶液で室温下、15分間インキュベートした際の粒子の安定性を光散乱強度で評価した。結果を図4に示す。
シリカ内包ナノ粒子に抗炎症作用を有する薬剤であるレパミピドの内包
シリカ含有量が異なるシリカ内包ナノ粒子4種類(シリカ含有量0wt%,11wt%,14wt%,36wt%,88wt%/ポリマー重量)を、各1mLをマイクロチューブに移し、レバミピド3mgを加え、室温下、撹拌機により24時間rpm500で撹拌を行った。撹拌後、内包されていないレバミピドを除去するために0.2μmのシリンジフィルターを通した。
作製したレパミピド内包粒子のレパミピド含有量は、レバミピドの吸収極大波長である330nmの吸収スペクトルを測定することで解析した。その結果を図5に示す。
薬剤として、上記の製造実施例4のレバミピドを内包したナノ粒子(ポリマー重量当りシリカ8.5wt含有)の酸性条件下での安定性を評価する為にpH3での散乱強度変化を測定した。ディスポーザブル・ロウ・サイズ・キュベット(Disporsable low size cuvette)に、脱イオン水350μL、緩衝液(pH3)40μLを入れ、ピペッティングにより撹拌した後、サンプルを10μL入れ、散乱強度を測定した。なお、測定は1分間に1回測定する条件に設定し、pH3に調節してから4分後に測定を開始し、連続で15分間散乱強度を測定した。結果を図6に示す。
pH3の酸性条件下にナノ粒子(上記の試験2と同じ)を20分間放置した際の内包されている薬剤レバミピドの放出挙動の評価を行った。酸性条件下でナノ粒子が崩壊し、レバミピドが放出されていれば、0.2μmのシリンジフィルターを通すことで除去することが可能である。
腹膜透析モデルとして、市販で用いられている透析液(ダイアニール-N PD4、Baxter、成分(w/v%)ブドウ糖1.36 塩化カルシウム0.0183 塩化マグネシウム0.00508 乳酸ナトリウム0.448 塩化ナトリウム0.538、体積10mL)とSi-nRNP(ポリマー濃度5mg/mL、シリカゲル濃度0.25mg/mL)が入った透析膜(分画分子量12,000~14,000)を尿素溶液(190mg/dL、20mL)の中に浸し、外液にある尿素量を比色分析法により定量した。外液の尿素量を示す結果を図8に示す。市販に用いられている透析液やRNP含有透析液では、透析速度が同程度であったが、Si-nRNPを用いると透析効率が向上することが明らかとなった。この結果は、Si-nRNPを透析液として用いた場合に、透析時間や効率を向上させることを示す。
通常、低分子量の化合物は、腹腔内に投与した後、血中に取り込まれ、全身に拡散することが懸念される。実際に低分子化合物TEMPOを腹腔内に投与した後、血中内の電子スピン共鳴(ESR)シグナルを測定した結果を図9に示す。図9から、一時間以上にわたって、血中に薬物が存在することが明らかである。高濃度の低分子TEMPO化合物の投与は、血圧低下やミトコンドリアのエネルギー伝達系の阻害などの副作用を生じる。一方、シリカ内包RNP(Si-nRNP)は腹膜から全く透過しないため、血中移行性がないことを確認できた。これは、全身への毒性を懸念する必要がなく、極めて安全な腹膜透析液として期待されるデータである。
腹膜硬化モデルラットは、0.1%(v/v)のグルコンサンクロロへキシジン(Chlorhexidine gluconate)を腹腔内に一週間毎日投与することにより作成した。また生理食塩水(saline)、Si-nRNP、もしくは低分子化合物TEMPOLを同時に一週間毎日投与することによって、その腹膜劣化抑制効果を腹膜炎症により産生されるスーパーオキシド量を定量することにより調べた。結果を図10に示す。
磁性粒子内包ニトロキシドラジカル含有ナノ粒子(Fe-nRNP)の調製方法-pH7.4(生体条件下)における表面修飾-
1.5mLマイクロチューブに、各カチオン性セグメントPMNTの重合度(unit:製造実施例1の式中のnの値に相当する。)がそれぞれ、5, 10, 20, 30unitのPEG-b-PMNTを、磁性粒子(90μg(カルボキシ基22.5nmol、ライフテクノロジーズから入手、製品名:Dynabeads (r)M-270 Carboxylic Acid、粒径:2.8μm)のカルボキシ基に対して、50、100、200アミノmol等量をそれぞれ秤量した。表3に仕込み量をまとめる。0.1M HClの10μLをPEG-b-PMNTに加えることによりPEG-b-PMNTを溶かし、磁性粒子を3μL(90μg、22.5カルボキシ基mol)とpH7.4のリン酸バッファーを240mL加え、pHを測定した。0.1M NaOHと0.1M HClを用いてpHを7.4に調整し、約24時間攪拌した。攪拌後、磁性粒子表面に吸着していない未吸着PEG-b-PMNTを除去するため、磁石を用いてPEG-b-PMNT修飾磁性粒子(Fe-nRNP)を壁面に集め、溶液を洗浄した。その後pH7.4のリン酸バッファーを250μL加え、撹拌後、同様に溶液を取り除くことにより未吸着のPEG-b-PMNTを取り除いた。この動作を4回繰り返すことで未吸着のPEG-b-PMNTを完全に取り除いた。取り除いたことを確認するために、4回目の洗浄液を回収しておき、電子スピン共鳴(ESR)測定をすることでシグナルが消失していることを確認した。PEG-b-PMNTの修飾量は、ESR測定を用い、電子スピンスペクトルの積分値により行った。
Claims (15)
- 無機粒子とポリマーを含む有機-無機ハイブリッド複合体であって、
無機粒子がシリカ粒子及び磁性粒子からなる群より選ばれ、
ポリマーが一般式(I)で表されるブロックコポリマーである、複合体。
PEG-CNR (I)
式中、PEGはポリ(エチレングリコール)を含むセグメントであり、
CNRは、連結基を介してポリマー主鎖に結合した環状ニトロキシドラジカルをペンダント基の一部として含む反復単位を含むポリマーセグメントである。 - 無機粒子が、平均粒径3nm~1000nmのシリカ粒子を含む、請求項1に記載の複合体。
- 無機粒子が、平均粒径3nm~1mmのFe3O4、γ-Fe2O3、FePtからなる群より選ばれる1種以上の磁性粒子を含む請求項1に記載の複合体。
- ブロックコポリマーの連結基が、少なくとも1つのイミノ(-NH-)またはオキシ(-O-)を含む、請求項2または3に記載の複合体。
- ブロックポリマーの連結基がo-もしくはp-フェニレン-C1-6アルキレン-NH-(C1-6アルキレン)q-またはo-もしくはp-フェニレン-C1-6アルキレン-O-(C1-6アルキレン)q-(ここで、qは0または1である)であり、当該連結基を介してポリマー主鎖に結合した環状ニトロキシドラジカルが、2,2,6,6-テトラメチルピペリジン-1-オキシル-4-イル、2,2,5,5-テトラメチルピロリジン-1-オキシル-3-イル、2,2,5,5-テトラメチルピロリン-1-オキシル-3-イル及び2,4,4-トリメチル-1,3-オキサゾリジン-3-オキシル-2-イル、2,4,4-トリメチル-1,3-チアゾリジン-3-オキシル-2-イル及び2,4,4-トリメチル-イミダゾリンジン-3-オキシル-2-イルからなる群より選ばれ、
ここで、ポリマー主鎖が重合性不飽和二重結合に由来し、当該主鎖に前記フェニレンの未結合末端が結合しており、かつ、
シリカ粒子が平均粒径3nm~500nmであり、磁性粒子の平均粒径が3nm~1000nmである、請求項1に記載の複合体。 - 無機粒子とポリマーを含む有機-無機ハイブリッド複合体であって、
無機粒子が、平均粒径3nm~1000nmのシリカ粒子、または平均粒径3nm~1mmのFe3O4、γ-Fe2O3及びFePtからなる群より選ばれる1種以上を含む磁性粒子であり、
ポリマーが、一般式(II)で表される、複合体。
Aは、非置換または置換C1-C12アルコキシを表し、置換されている場合の置換基は、ホルミル基、式R1R2CH-(ここで、R1及びR2は独立して、C1-C4アルコキシまたはR1とR2は一緒になって-OCH2CH2O-、-O(CH2)3O-もしくは-O(CH2)4O-を表す。)の基を表し、
L1は、単結合、-(CH2)cS-、-CO(CH2)cS-、からなる群より選ばれ、ここでcは1ないし5の整数であり、
L2は、-C1-6アルキレン-NH-(C1-6アルキレン)q-または-C1-6アルキレン-O-(C1-6アルキレン)q-であり、ここでqは0または1であり、そして
Rは、2,2,6,6-テトラメチルピペリジン-1-オキシル-4-イル、2,2,5,5-テトラメチルピロリジン-1-オキシル-3-イル、2,2,5,5-テトラメチルピロリン-1-オキシル-3-イル及び2,4,4-トリメチル-1,3-オキサゾリジン-3-オキシル-2-イル、2,4,4-トリメチル-1,3-チアゾリジン-3-オキシル-2-イル及び2,4,4-トリメチル-イミダゾリンジン-3-オキシル-2-イルからなる群より選ばれ、
L2-Rは、nの総数の少なくとも50%が存在し、存在しない場合、残りのL2-R部は、メチル、ハロメチルまたはヒドロキシメチル基であることができ、
mは、20~5,000の整数であり、そして
nは、独立して、3~1,000の整数である。 - L2が、-C1-6アルキレン-NH-(C1-6アルキレン)q-である、請求項6または7に記載の複合体。
- L2が、-C1-6アルキレン-O-(C1-6アルキレン)q-である、請求項6または7に記載の複合体。
- 無機粒子が、シリカ粒子である、請求項6または7に記載の複合体。
- 無機粒子が、磁性粒子である、請求項6または7に記載の複合体。
- 請求項6または7のいずれかに記載の複合体であって、無機粒子がシリカ粒子である複合体と製薬学的に許容され得る希釈剤または賦形剤を含む医薬組成物。
- 請求項6または7のいずれかに記載の複合体であって、無機粒子がシリカ粒子である複合体と製薬学的に許容され得る希釈剤または賦形剤を含む医薬組成物であって、腹膜透析液の形態にある、組成物。
- 請求項6または7のいずれかに記載の複合体であって、無機粒子がシリカ粒子である複合体と経口投与により腸にデリバリーされる薬物を含む医薬組成物。
- 請求項6または7のいずれかに記載の複合体であって、無機粒子がシリカ粒子である複合体の腹膜透析液を調製するための、使用。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US14/376,985 US9333265B2 (en) | 2012-02-07 | 2013-02-06 | Organic-inorganic hybrid composite of polymerized nitroxide compound and inorganic particles |
EP13746757.7A EP2813546A4 (en) | 2012-02-07 | 2013-02-06 | HYBRID ORGANIC-INORGANIC COMPLEX OF A HIGH-MOLECULAR NITROXIDE COMPOUND AND INORGANIC PARTICLE |
JP2013557553A JP6083814B2 (ja) | 2012-02-07 | 2013-02-06 | 高分子化ニトロキシド化合物と無機粒子の有機−無機ハイブリッド複合体 |
CN201380017711.3A CN104204082B (zh) | 2012-02-07 | 2013-02-06 | 高分子化氮氧化合物与无机颗粒的有机-无机杂合复合物 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012-024460 | 2012-02-07 | ||
JP2012024460 | 2012-02-07 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2013118783A1 true WO2013118783A1 (ja) | 2013-08-15 |
Family
ID=48947544
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2013/052769 WO2013118783A1 (ja) | 2012-02-07 | 2013-02-06 | 高分子化ニトロキシド化合物と無機粒子の有機-無機ハイブリッド複合体 |
Country Status (5)
Country | Link |
---|---|
US (1) | US9333265B2 (ja) |
EP (1) | EP2813546A4 (ja) |
JP (1) | JP6083814B2 (ja) |
CN (1) | CN104204082B (ja) |
WO (1) | WO2013118783A1 (ja) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2018135592A1 (ja) | 2017-01-19 | 2018-07-26 | 国立大学法人筑波大学 | 側鎖に環状ニトロキシドラジカルとトリアルコキシシリルを含む共重合体およびその使用 |
JP2019001786A (ja) * | 2017-06-19 | 2019-01-10 | 国立大学法人 筑波大学 | 感染症治療薬 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10298280A (ja) * | 1997-04-23 | 1998-11-10 | Ciba Specialty Chem Holding Inc | ポリアルキレングリコール基を含有するヒンダードアミン |
JP2008525600A (ja) * | 2004-12-27 | 2008-07-17 | アボット カーディオヴァスキュラー システムズ インコーポレイテッド | ポリ(エステルアミド)ブロックコポリマー |
JP2009057609A (ja) | 2007-08-31 | 2009-03-19 | Japan Advanced Institute Of Science & Technology Hokuriku | 磁性体ナノ粒子及びその製造方法 |
WO2009133647A1 (ja) | 2008-05-02 | 2009-11-05 | 国立大学法人筑波大学 | 高分子化環状二トロキシドラジカル化合物およびその使用 |
JP2011173960A (ja) * | 2010-02-23 | 2011-09-08 | Univ Of Tsukuba | 高分子ミセル型光刺激応答性一酸化窒素供与体 |
JP2011184429A (ja) | 2010-02-10 | 2011-09-22 | Univ Of Tsukuba | 低分子抗酸化剤及び高分子化環状ニトロキシドラジカル化合物を含む組成物 |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE19726282A1 (de) * | 1997-06-20 | 1998-12-24 | Inst Neue Mat Gemein Gmbh | Nanoskalige Teilchen mit einem von mindestens zwei Schalen umgebenen eisenoxid-haltigen Kern |
EP1240902B1 (en) * | 1999-12-20 | 2013-02-13 | Kurokawa, Kiyoshi | Carbonyl stress-ameliorating agents |
JP4643314B2 (ja) * | 2005-03-10 | 2011-03-02 | 独立行政法人科学技術振興機構 | 規則的に配列したナノ粒子状シリカ、及びその製造方法 |
JP5264783B2 (ja) * | 2007-02-12 | 2013-08-14 | ザ リージェンツ オブ ザ ユニバーシティ オブ カリフォルニア | NOx吸着用二官能性活性部位 |
JP5850518B2 (ja) | 2010-11-22 | 2016-02-03 | 国立大学法人 筑波大学 | 高分子化環状ニトロキシドラジカル化合物の潰瘍性消化管の炎症の処置剤 |
EP2808349B1 (en) | 2012-01-24 | 2017-05-17 | University of Tsukuba | Triblock copolymer and use thereof |
-
2013
- 2013-02-06 US US14/376,985 patent/US9333265B2/en active Active
- 2013-02-06 WO PCT/JP2013/052769 patent/WO2013118783A1/ja active Application Filing
- 2013-02-06 CN CN201380017711.3A patent/CN104204082B/zh active Active
- 2013-02-06 JP JP2013557553A patent/JP6083814B2/ja active Active
- 2013-02-06 EP EP13746757.7A patent/EP2813546A4/en not_active Withdrawn
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10298280A (ja) * | 1997-04-23 | 1998-11-10 | Ciba Specialty Chem Holding Inc | ポリアルキレングリコール基を含有するヒンダードアミン |
JP2008525600A (ja) * | 2004-12-27 | 2008-07-17 | アボット カーディオヴァスキュラー システムズ インコーポレイテッド | ポリ(エステルアミド)ブロックコポリマー |
JP2009057609A (ja) | 2007-08-31 | 2009-03-19 | Japan Advanced Institute Of Science & Technology Hokuriku | 磁性体ナノ粒子及びその製造方法 |
WO2009133647A1 (ja) | 2008-05-02 | 2009-11-05 | 国立大学法人筑波大学 | 高分子化環状二トロキシドラジカル化合物およびその使用 |
JP2011184429A (ja) | 2010-02-10 | 2011-09-22 | Univ Of Tsukuba | 低分子抗酸化剤及び高分子化環状ニトロキシドラジカル化合物を含む組成物 |
JP2011173960A (ja) * | 2010-02-23 | 2011-09-08 | Univ Of Tsukuba | 高分子ミセル型光刺激応答性一酸化窒素供与体 |
Non-Patent Citations (1)
Title |
---|
See also references of EP2813546A4 |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2018135592A1 (ja) | 2017-01-19 | 2018-07-26 | 国立大学法人筑波大学 | 側鎖に環状ニトロキシドラジカルとトリアルコキシシリルを含む共重合体およびその使用 |
US12049543B2 (en) | 2017-01-19 | 2024-07-30 | Crestecbio Inc. | Copolymer containing cyclic nitroxide radical and trialkoxysilyl in side chain, and use thereof |
JP2019001786A (ja) * | 2017-06-19 | 2019-01-10 | 国立大学法人 筑波大学 | 感染症治療薬 |
JP7116428B2 (ja) | 2017-06-19 | 2022-08-10 | 国立大学法人 筑波大学 | 感染症治療薬 |
Also Published As
Publication number | Publication date |
---|---|
US20150118310A1 (en) | 2015-04-30 |
US9333265B2 (en) | 2016-05-10 |
CN104204082A (zh) | 2014-12-10 |
JPWO2013118783A1 (ja) | 2015-05-11 |
JP6083814B2 (ja) | 2017-02-22 |
EP2813546A4 (en) | 2015-09-16 |
EP2813546A1 (en) | 2014-12-17 |
CN104204082B (zh) | 2016-08-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Wang et al. | Synthesis of hemoglobin conjugated polymeric micelle: a ZnPc carrier with oxygen self-compensating ability for photodynamic therapy | |
Yu et al. | Influence of geometry, porosity, and surface characteristics of silica nanoparticles on acute toxicity: their vasculature effect and tolerance threshold | |
US9849186B2 (en) | Triblock copolymer and use therefor | |
US8425887B2 (en) | Amide dendrimer compositions | |
JP2019089832A (ja) | 血液代用組成物及びその使用方法 | |
CN103251561A (zh) | 一种双敏感可崩解式纳米囊泡药物载体制剂及其制备方法 | |
CA2658338A1 (en) | Amine dendrimers | |
Andrikopoulos et al. | Nanomaterial synthesis, an enabler of amyloidosis inhibition against human diseases | |
CN112206326B (zh) | 用于靶向活化cd44分子的氨基酸自组装纳米载体递送系统、其制备方法和应用 | |
Fu et al. | An ultrasound activated oxygen generation nanosystem specifically alleviates myocardial hypoxemia and promotes cell survival following acute myocardial infarction | |
JP6083814B2 (ja) | 高分子化ニトロキシド化合物と無機粒子の有機−無機ハイブリッド複合体 | |
JP2013173689A (ja) | 高分子化ニトロキシドラジカル化合物と非ステロイド性抗炎症薬の複合体 | |
CN1128167C (zh) | 一种壳聚糖-聚丙烯酸复合物的纳米微球及其制法和用途 | |
Yoshitomi et al. | Development of silica-containing redox nanoparticles for medical applications | |
US20080305174A1 (en) | Polymeric nanocapsules for use in drug delivery | |
KR20170041509A (ko) | 의약용 단백질의 지속방출을 위한 약물전달체 및 이의 제조방법 | |
Gupta et al. | Multidirectional benefits of nanotechnology in the diagnosis, treatment and prevention of tuberculosis | |
JP6872216B2 (ja) | イミノ二酢酸を側鎖に有する親水性高分子及びその使用 | |
US20110301120A1 (en) | Use of a chitosan polymer for heparin neutralization | |
RU2318513C1 (ru) | Лекарственное средство на основе d-циклосерина, препарат пролонгированного действия, содержащий наночастицы, способ его получения | |
US20230089986A1 (en) | Novel cerium oxide nanocomplex and a composition for preventing or treating cerebral infarction comprising the same | |
WO2022244690A1 (ja) | ポリ(エチレングリコール)-b-ポリ(4-ナイロン)及びそのナノ粒子 | |
Parry et al. | Dendrimers in Medical Science | |
US20230099752A1 (en) | Novel cerium oxide nanocomplex and a composition for preventing or treating peritonitis comprising the same | |
JP7088476B2 (ja) | インドール及びその誘導体吸着剤 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 13746757 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2013557553 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2013746757 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 14376985 Country of ref document: US |