WO2013118662A1 - Light-emitting apparatus - Google Patents

Light-emitting apparatus Download PDF

Info

Publication number
WO2013118662A1
WO2013118662A1 PCT/JP2013/052434 JP2013052434W WO2013118662A1 WO 2013118662 A1 WO2013118662 A1 WO 2013118662A1 JP 2013052434 W JP2013052434 W JP 2013052434W WO 2013118662 A1 WO2013118662 A1 WO 2013118662A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
light emitting
protective cover
circuit board
transparent resin
Prior art date
Application number
PCT/JP2013/052434
Other languages
French (fr)
Japanese (ja)
Inventor
俊二 柄川
村松 正博
菜津子 北島
Original Assignee
シチズンホールディングス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2012029479A external-priority patent/JP6025163B2/en
Priority claimed from JP2012257322A external-priority patent/JP6118080B2/en
Application filed by シチズンホールディングス株式会社 filed Critical シチズンホールディングス株式会社
Publication of WO2013118662A1 publication Critical patent/WO2013118662A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V7/00Reflectors for light sources
    • F21V7/0008Reflectors for light sources providing for indirect lighting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2105/00Planar light sources
    • F21Y2105/10Planar light sources comprising a two-dimensional array of point-like light-generating elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2115/00Light-generating elements of semiconductor light sources
    • F21Y2115/10Light-emitting diodes [LED]
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/09Shape and layout
    • H05K2201/09009Substrate related
    • H05K2201/09027Non-rectangular flat PCB, e.g. circular
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/10Details of components or other objects attached to or integrated in a printed circuit board
    • H05K2201/10007Types of components
    • H05K2201/10106Light emitting diode [LED]
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/0058Laminating printed circuit boards onto other substrates, e.g. metallic substrates
    • H05K3/0064Laminating printed circuit boards onto other substrates, e.g. metallic substrates onto a polymeric substrate

Definitions

  • the present invention relates to a light emitting device using a light emitting element such as an LED (Light Emitting Diode), and more specifically, the light emitted from the light emitting element is reflected by a reflecting member to
  • the present invention relates to the improvement of a reflection type light emitting device which emits light in the direction opposite to the direction).
  • a reflecting member (reflector) is disposed to be opposed to the light emitting surface of the LED element, light (emitted light) emitted from the LED element is reflected by the reflector, and the reflected light (reflected light) is LED
  • Patent Document 1 a so-called reflective type in which light is emitted in the back direction of the element has been developed.
  • This reflection type light emitting device can emit the light emitted from the LED element to the outside with high efficiency, and therefore is particularly useful for a light emitting device that requires high luminance.
  • LED elements have a smaller amount of heat generation compared to incandescent lights and the like, and are used as light parts of traffic lights under conditions exposed to, for example, snowfall.
  • the snow attached to the protective cover provided at the forefront of the light portion is difficult to melt, and the attached snow may reduce the visibility of the light emission state of the light portion.
  • the above problem may occur not only when the light emitting device is used as a traffic light, but also when it is used as a street light, a lighting fixture, or the like which may cause snowfall or icing.
  • the present invention has been made in view of the above circumstances, and it is an object of the present invention to provide a light emitting device capable of removing snow and ice attached even when snow and ice are attached.
  • the space where the circuit board on which the light emitting element is mounted is exposed is partitioned by the cover and the partition portion disposed on the back side of the circuit board, whereby the heat generated from the circuit board is wide.
  • a narrow space is formed to prevent heat diffusion, it is easy to transfer the convective heat to the cover to raise the temperature of the cover, and even in the situation where snow or ice adheres to the cover, These attached snow and ice are melted away with heat and eliminated.
  • a light emitting device includes a light transmitting cover, a circuit board having a plurality of light emitting elements mounted on one side and a surface on the other side in contact with the cover, and the circuit A partition member disposed on the side opposite to the cover with respect to the substrate and configured to reflect light emitted from the light emitting element; and a partition part configured to transmit the light between the light emitting element and the reflecting member It may be a partition member separate from the reflection member, or a part (a partition part) integral with the reflection member may be formed as a part of the reflection member.
  • the adhered snow or ice can be eliminated.
  • FIG. 2 is a partial cross-sectional view showing the configuration of the lighting unit of Embodiment 1; It is the figure which showed typically the state by which several LED elements etc. are distributed and mounted in the circuit board.
  • FIG. 3 is a view showing a cross section of the main part cut in a plane (a plane along the line AA in FIG. 2) orthogonal to the extending direction of the circuit board. It is a block diagram which shows the circuit by a LED element and a control circuit. It is a figure explaining the function of a control circuit, and shows the state which switched to series connection between the groups of LED elements.
  • FIG. 4 shows the example of the structure which made the support part and the transparent resin plate separately.
  • FIG. 4 shows the example which joined the protective cover and the transparent resin plate by the screw and the nut.
  • FIG. 4 shows the example which joined the protective cover and the transparent resin plate by crimping metal pins.
  • FIG. 14 is a view showing a cross section of the relevant part cut in a plane (plane along the line BB in FIG. 13) orthogonal to the extending direction of the circuit board. It is a perspective view showing a reflector. It is principal part sectional drawing equivalent to FIG. 14 which shows the example of the structure which made the support part and the reflector separate.
  • the present embodiment (Embodiment 1) is an example in which the light emitting device according to the present invention is applied to the lighting unit 100 corresponding to each color (red, yellow, green) of the traffic signal lamp 200 shown in FIG.
  • the traffic signal lamp 200 shown in FIG. 1 is one in which three lamp parts 100 are vertically arranged, it goes without saying that the traffic signal lamp 200 may be horizontally arranged.
  • the vertical type in which the lighting sections 100 are vertically arranged is advantageous because it has less snowfall.
  • each lighting unit 100 has a protective cover 30 formed in a substantially disc shape, a unit case 40 formed in a cylindrical shape with a bottom, and the outside of the protective cover 30 and the unit case 40.
  • a housing is formed of an annular waterproof rubber packing 50 which holds the peripheral edge portions in an overlapping state and prevents water immersion in the internal space surrounded by the protective cover 30 and the unit case 40.
  • the protective cover 30 is made of, for example, polycarbonate, and has translucency to transmit light emitted from an LED element 14 (see FIG. 3 and the like) described later.
  • Unit case 40 is formed of, for example, an ABS resin, and is provided with a connector 70 to which an electric wire for receiving power supply such as a commercial power supply from an external control device is connected.
  • a spiral circuit board 11 printed wiring board etc.
  • a reflector 20 reflection member for reflecting light
  • a transparent resin plate 80 as a partition member
  • a back side of the reflector 20 reflection
  • the heat insulating material 60 disposed on the side opposite to the concave surface 21 (see FIG. 4) which is a surface is accommodated.
  • LED elements 14 (light emitting elements) and four control circuits 15 are provided on one surface 11 m side of the spiral circuit board 11 along the extending direction, for example. , And a set of terminals 16 are distributed and mounted.
  • LED element 14 in this embodiment is a package mounting of the LED chip.
  • the circuit board 11 is provided such that the opposite surface 11 n on which the LED elements 14 and the like are not mounted is in contact with the back surface 32 (surface facing the inside of the housing) of the protective cover 30.
  • the protective cover 30 is attached to the protective cover 30 with an adhesive or a double-sided tape.
  • the light emitting surface 14 a from which the light L is emitted from the LED element 14 faces the inside of the housing, not the direction of the front surface 31 of the protective cover 30, and the protective cover 30 is the back surface 14 b of the LED element 14 ( It is arrange
  • the terminal 16 provided on the circuit board 11 is connected to a connector 70 provided on the unit case 40 by an electric wire or the like, and receives power supply such as commercial power from an external control device.
  • a large number of LED elements 14 mounted on the circuit board 11 are divided into a plurality of groups and connected, and the control circuit 15 is a commercial power source for emitting (driving) the LED elements 14.
  • control is performed to appropriately switch the connection form between a plurality of groups according to the magnitude of the rectified voltage, between parallel connection and series connection
  • it is the LED drive circuit disclosed in Japanese Patent Application Laid-Open No. 2011-159902.
  • control circuits 15 in the present embodiment are mounted on the circuit board 11.
  • the 31 LED elements 14 mounted on the circuit board 11 are arranged in order of eight, eight, eight and seven four groups (for example, group A, group B, It is divided into group C and group D).
  • the three control circuits 15 among the four control circuits 15 are disposed one by one between each group of the LED elements 14, and the remaining one control circuit 15 is a terminal 16 and the first group of the LED elements 14. It is placed between.
  • the plurality of LED elements 14 belonging to each group are all connected in series in the group. Further, the connection between each group is switchably connected in series connection and parallel connection, and each control circuit 15 selects one of these two connection forms according to the magnitude of the rectified voltage input to terminal 16. One of the connection forms is selected, and control to switch to the selected connection form is performed.
  • the commercial power supply supplied to the terminal 16 is an AC voltage
  • the AC voltage is full-wave rectified to drive the LED element 14, but a DC voltage (rectification obtained by the full-wave rectification)
  • the magnitude of the voltage changes in time series.
  • the control circuit 15 selects one of the following (1) to (3) as a connection form between each group of seven or eight LED elements 14 in accordance with the value of the rectified voltage input to the terminal 16. Control it. That is, (1) During a period in which the input rectified voltage is greater than a preset first threshold, control is made to connect all groups A, B, C, D in series as shown in FIG. 6A, (2) As shown in FIG. 6B, groups A and B are connected in series as shown in FIG. 6B during a period in which the input rectified voltage is less than or equal to a predetermined first threshold and greater than a second threshold (value less than the first threshold).
  • the rectified voltage can not cause the LED element 14 to emit light in series connection, for example, by switching the connection form between each group of the plurality of LED elements 14 according to the magnitude of the input rectified voltage. Even in a period of voltage lower than the threshold value, the LED element 14 can emit light stably by connecting a part or all in parallel.
  • the reflector 20 is provided on the side facing the light emitting surface 14 a of the LED element 14 as shown in FIG. 4 and emits light from the LED element 14, and a concave portion of a transparent resin plate 80 (partition section, partition member) described later.
  • Light L transmitted through 83, 84, 85 (only the recess 83 is described in FIG. 4) is reflected in the direction of the recesses 83, 84, 85 and the protective cover 30 (direction toward the back surface 14b of the LED element 14).
  • the concave surface 21 (concave reflecting surface) corresponding to each of the LED elements 14 is formed.
  • the concave surface 21 is formed of a substantially paraboloid whose focal point is the light emitting point 14c which is the center of the light emitting surface 14a, and when the emitted light L emitted from the light emitting surface 14a is reflected, the reflected light L is substantially parallel. I am trying to be a light.
  • the reflector 20 is formed by depositing or plating a metal film on the concave surface 21 of the injection-molded resin part, the reflector 20 may be formed by pressing a plate of a metal such as aluminum, and the emitted light L Of the concave surface 21 serving as the reflecting surface, a portion directly below the light emitting surface 14 a of the LED element 14 is formed so as to protrude substantially conically toward the light emitting surface 14 a.
  • the portion of the substantially conical slope 22 is formed to prevent the reflected light L from returning to the LED element 14 as it is when the emitted light L emitted substantially vertically downward from the light emitting surface 14 a is reflected. It is done.
  • the reflected light L returns to the LED element 14 as it is, the reflected light L is blocked by the LED element 14 itself, but if a substantially conical projecting portion is formed as in this embodiment. Since the light L reflected by the inclined surface 22 is not returned to the LED element 14 as it is, light shielding by the LED element 14 itself can be avoided.
  • the light L reflected by the concave surface 21 of the reflector 20 (including the inclined surface 22. The same applies hereinafter) to the protective cover 30 is transmitted through the protective cover 30 and emitted to the outside of the lamp part 100 to be viewed from outside And so on.
  • transmits is set to S1.
  • the transparent resin plate 80 is made of, for example, a transparent material such as polycarbonate, and as shown in FIGS. 4 and 7, the concave portions 83, 84, 85 partially recessed toward the reflector 20 have It is formed.
  • the portions other than the concave portions 83, 84, 85 of the transparent resin plate 80 connect the concave portions 83, 84, 85 and are formed in a contour shape along the back surface 32 of the protective cover 30.
  • the support 86 may support the transparent resin plate 80 on the protective cover 30 by welding, for example, or an adhesive or the like may be applied between the transparent resin plate 80 and the support 86 to form the protective cover 30.
  • the transparent resin plate 80 may be supported.
  • the support portion 86 is formed as a part of the transparent resin plate 80, but the support portion 86 is formed separately from the transparent resin plate 80, for example, As shown in FIG. 8, the transparent resin plate 80 is interposed between the surface 81 facing the protective cover 30 and the back surface 32 of the protective cover 30 except for the concave portions 83, 84 and 85 and is transparent to the protective cover 30. You may comprise as a supporting member which supports the resin plate 80. As shown in FIG.
  • the support portion 86 may support the transparent resin plate 80 on the protective cover 30 by welding, for example, or between the transparent resin plate 80 and the support portion 86 and between the protective cover 30 and the support portion 86. An adhesive or the like may be applied between them to support the transparent resin plate 80 on the protective cover 30.
  • the concave portions 83 (84, 85) of the transparent resin plate 80 respectively protect portions of the circuit board 11 on which the LED elements 14 are mounted between the LED elements 14 and the reflector 20.
  • a portion enclosed with 30 is divided into a closed narrow space P around the portion of the circuit board 11.
  • the support part 86 of the structure shown in FIG. 8 it is preferable that it is annularly formed over the outer periphery of each recessed part 83, 84, 85, and it forms in this way annularly. By doing this, the support 86 can be surrounded by the protective cover 30 and the transparent resin plate 80 around the LED element 14.
  • the support portions 86 may not be formed annularly in such a manner, and may be formed so as to be scattered in places other than the concave portions 83 84 85 of the transparent resin plate 80.
  • the recesses 84 and 85 are also the same as the recess 83, but the recess 85 is a portion that integrally surrounds a portion of the circuit board 11 in which the terminal 16, the control circuit 15, and the LED element 14 are continuously arranged,
  • the recess 84 is a portion that integrally surrounds the circuit board 11 and the portion of the control circuit 15 and the two LED elements 14 and 14 arranged side by side with the control circuit 15.
  • the recessed part 83 is a part which surrounds separately the part of only the remaining LED elements 14 which are not enclosed by recessed part 84 and 85 among the circuit boards 11. As shown in FIG.
  • the recesses 83, 84 and 85 of the transparent resin plate 80 and the circuit board 11 are not in direct contact with each other. It has become an arrangement.
  • the area of the surface of the protective cover 30 facing the space P formed by the protective cover 30 and the concave portion 83 of the transparent resin plate 80 is S2 as shown in FIG.
  • the area S2 is formed to be smaller than the area S1 of the area of the protective cover 30 described above through which the light L reflected by the reflector 20 passes.
  • the protective cover 30 and the concave portions 83, 84, 85 of the transparent resin plate 80 separate the convection range of the heat generated from the LED element 14 It becomes only inside the narrow space P formed inside.
  • the heat in the narrow space P is released when it is released to a wide space (in particular, a substantially open space not divided by the concave portions 83, 84, 85, etc. of the transparent resin plate 80). It is more difficult to diffuse and is easier to transmit to the protective cover 30 facing the space.
  • the heat is conducted from the circuit board 11 which is a heat source to the protective cover 30, and the convective heat is transferred to the space P and the convective heat is transferred to the protective cover 30. Furthermore, the heat of the protective cover 30 dissipates heat to the outside by heat transfer by convection and heat radiation.
  • the heat generated from the LED element 14 can make the temperature of at least the portion of the protective cover 30 facing the narrow space P higher than that of the case where the transparent resin plate 80 is not provided.
  • the protective cover 30 is heated, so the adhered snow or ice is heated Therefore, it is possible to prevent the visibility of the emitted light L which is melted down and flows downward and transmitted through the protective cover 30 from being obstructed by snow or ice.
  • transparent resin plate 80 divides the space where LED element 14 is exposed, that is, the space between back surface 32 of protection cover 30 and reflector 20, LED element 14 is separated by protection cover 30. It does not have to be enclosed.
  • the transparent resin plate 80 partitions the space where the LED element 14 is exposed, so that the convection space of the heat generated from the LED element 14 can be narrowed and the heat transfer to the protective cover 30 can be improved. It is.
  • the joint between the protective cover 30 and the transparent resin plate 80 as a heat insulating partition member is a hole 38 formed so as to penetrate the protective cover 30 and the support portion 86 of the transparent resin plate 80 as shown in FIG.
  • the screw 91 may be inserted into the joint, and the joint may be performed by fastening the screw 91 and the nut 92, or as shown in FIG. 10, the protective cover 30 and the support portion 86 of the transparent resin plate 80
  • Column-shaped metal pins 94 are inserted into the holes 38 formed to penetrate, and an axial compressive load is applied to both end portions 94a and 94b of the metal pin 94 to plasticize the both end portions 94a and 94b so as to crush them. It may be joined by deformation caulking.
  • Bonding with such a mechanical bonding member (a combination of screws 91, bolts and nuts 92, excessive tightening of both ends 94a and 94b of metal pin 94, etc.) is more preferable than bonding with adhesive or welding. Since the stability against environmental temperature and deformation over time is high, the long-term reliability of the bonding state is high.
  • the space P surrounded by the protective cover 30 and the concave portions 83, 84, 85 of the transparent resin plate 80 can be maintained in a partitioned state for a long period of time, so that the snow melting effect can be maintained long. it can.
  • the screw 91 is exposed on the outer surface side of the protective cover 30, but the waterproof packing 93 is sandwiched between the screw 91 and the protective cover 30, and the screw 91 and the protective cover Prevents flooding from a slight gap between 30 and 30.
  • FIGS. 9 and 10 show an example in which the fastening member is applied to one in which the support portion 86 is formed in a part of the transparent resin plate 80 shown in FIG.
  • the fastening members similar to those shown in FIGS. 9 and 10 can be applied to the case where the support portion 86 is formed separately from the transparent resin plate 80.
  • the circuit board 11 since the circuit board 11 is provided in contact with the protective cover 30, the heat generation of the LED element 14 is transmitted to the protective cover 30 via the circuit board 11 even by heat conduction.
  • the temperature of the protective cover 30 can be further raised.
  • the lighting unit 100 can further warm the protective cover 30 by heat conduction from the control circuit 15 by providing the control circuit 15 on the circuit board 11 in a certain place, and this control
  • the circuit 15 is also surrounded by the recesses 84 and 85 of the transparent resin plate 80 and the protective cover 30 and is confined in the narrow space P, so the heat of the control circuit 15 convecting in the space P is the protective cover 30. Heat transfer by convection, and the temperature of the protective cover 30 can be further raised.
  • the area S2 of the surface facing the protective cover 30 in the space P formed by the protective cover 30 and the concave portion 83 of the transparent resin plate 80 is reflected by the reflector 20 and protected. Since the area is smaller than the area S1 of the area from which the light L is emitted from 30 to the outside, the heat convective space P can be limited to a narrow area, and the degree of heat diffusion can be reduced.
  • the area where the protective cover 30 faces the space P is wide and the recess is thin.
  • the heat from the circuit board 11, which is a heat source raises the temperature of the protective cover 30 widely, and the temperature is It becomes difficult to rise.
  • the concave portions 83, 84, 85 are formed so that their curvatures change smoothly (continuously), so that the light L emitted from the LED element 14 into the closed space P is the transparent resin plate 80.
  • the traveling direction of the light L can be continuously changed by the incidence to the concave portions 83, 84, 85 and the light emission from the concave portions 83, 84, 85.
  • the traveling direction of the light L can be changed continuously.
  • the intensity distribution of the light L visually recognized in the exterior of the lighting part 100 can be changed smoothly.
  • the light portion 100 of the present embodiment is an example in which each concave portion 83, 84, 85 of the transparent resin plate 80 is formed so as to change the curvature smoothly, but the light portion 100 of each concave portion 83, 84, 85 Among them, the recess 83 surrounding only the LED element 14 is preferably formed as a spherical surface centered on the light emitting point 14 c of the LED element 14 as shown in FIG.
  • the recess 83 of the transparent resin plate 80 is a spherical surface centered on the light emitting point 14 c of the LED element 14, the light L emitted from the light emitting point 14 c of the LED element 14 is substantially perpendicular to the transparent resin plate 80 Incident to
  • the light L enters the concave portion 83 of the transparent resin plate 80, the light L is reflected at the interface between the air layer of the space P partitioned by the concave portion 83 and the transparent resin plate 80 (surface of the concave portion 83 of the transparent resin plate 80)
  • the ratio at which light L is incident perpendicularly to the interface is the smallest. Therefore, the amount of light reflected from the transparent resin plate 80 in the light L emitted from the LED element 14 can be reduced.
  • the reflected light is reflected perpendicularly to the surface of the recess 83 of the transparent resin plate 80. Therefore, the reflected light returns to the LED element 14, does not pass through the protective cover 30, and is not emitted to the outside of the lighting unit 100.
  • the recess 83 is a non-spherical transparent resin plate 80, the light reflected by the surface of the recess 83 does not necessarily return to the LED element 14, and therefore emits through the protective cover 30 to the outside of the lamp portion 100. .
  • the light reflected by the surface of the concave portion 83 of the transparent resin plate 80 and emitted to the outside of the light portion 100 is visually recognized by pedestrians, drivers, etc. as unnatural light scattered in the vicinity of the LED element 14 It can be done.
  • the concave portion 83 of the transparent resin plate 80 is formed into a spherical surface centering on the LED element 14, the reflection at the concave portion 83 is suppressed, and even if it is reflected by the concave portion 83, the reflected light is a light Since the light is not emitted to the outside of the unit 100, unintended light is not visually recognized by a pedestrian or a driver outside the light unit 100.
  • the lighting unit 100 in the example shown in FIG. 11 is a portion ⁇ of the transparent resin plate 80 corresponding to the light path through which the light L emitted from the LED elements 14 toward the concave surface 21 of the corresponding reflector 20 passes. There is formed a diffusion portion 83 a for diffusing the light L emitted from the LED element 14.
  • the surface of the concave portion 83 is roughened to cause diffusion on the rough surface, or a substance to be diffused is mixed into the inside of the transparent resin plate 80.
  • various methods such as a method of forming a rough surface by a mold, a method of applying a diffusion material, and a method of forming by grinding can be applied.
  • the diffusion part 83 a when light L emitted from the LED element 14 toward the reflector 20 and reflected by the reflector 20 is viewed outside the lamp part 100, the light L as a point light source It is visually recognized as an image of the light emitting point 14 c of the LED element 14.
  • the LED element 14 When the light L emitted by the LED element 14 as a point light source is perceived as it is by the external viewer, it gives a granular feeling to the viewer but is viewed as the light L emitting surface light Can alleviate such graininess.
  • this sense of blockiness is formed by the distribution of a bright part (relatively bright part) and a non-bright part (relatively dark part) when the lamp part 100 is viewed from the outside.
  • the non-brighting portion serves to make the presence of the circuit board 11 for shielding the light L attached to the protective cover 30 less noticeable.
  • the blockiness disappears and the light amount distribution becomes uniform, the light L is not emitted only to the portion where the circuit board 11 is attached, so the contrast becomes strong between the portion where the circuit board 11 exists and the portion where it does not exist.
  • the presence of the circuit board 11 becomes remarkable, the above-described sense of blockiness can be made inconspicuous in the presence of the circuit board 11 because the glowing portions are scattered.
  • the light L diffused by the diffusion portion 83 a of the transparent resin plate 80 can also restrict the direction of the light emitted to the outside of the light portion 100 to some extent by the reflector 20, so the light emitted to the outside of the light portion 100 It is possible to prevent L from spreading excessively.
  • the entire transparent resin plate 80 diffuses light
  • a viewer outside the lighting unit 100 reflects the light by the reflector 20, and as a light image on the surface which passes through the transparent resin plate 80 again. Since L is recognized, the blockiness of the reflector 20 can also be relaxed.
  • the light emitted from the LED element 14 passes through the transparent resin plate twice and is emitted to the outside, the light L is diffused at the degree of passage, and when it is emitted to the outside from the protective cover 30, the spread angle of the light L is Since it may become excessively large, it is necessary to select a diffusion material having a diffusion material content and an appropriate degree of dispersion.
  • the process of roughening the surface is carried out only on a part thereof, rather than mixing the diffusion material only on a part thereof. But is easy to manufacture and is preferred.
  • the reflector 20 has the concave surface 21 which is a reflective surface of the concave (for example, paraboloid) corresponding to each LED element 14, these each
  • the concave surface 21 has a plurality of small convex small reflection surfaces 21a, 21b, 21c, 21d, 21e, 21f, 21g, 21h, 21i, 21j, 21k, 21l (these small reflection surfaces , The convex surface, the concave surface, or the flat surface) (facet reflector), the LED element 14 of the transparent resin plate 80 Small regions 83b, 83b,...
  • Each of these small regions 83b, 83b,..., L are formed to have substantially the same size as the small reflective surfaces 21a,. May be a convex shape toward the D element 14 may be a concave, preferably to those formed by the combination of which may be.) Planar.
  • Each concave surface 21 of the reflector 20 is formed of a combination of a plurality of small small reflecting surfaces 21 a,..., So that light L emitted from each LED element 14 and reflected by the corresponding concave surface 21 of the reflector 20 is A pedestrian or a driver outside the lighting unit 100, for example, reflects light L emitted from one LED element 14 to a plurality of small lights, since the light is reflected by different small reflection surfaces 21a,. It is visually recognized as light reflected by the reflecting surfaces 21a,.
  • the reflective surface is a single smooth concave surface 21, the central portion of the concave surface 21 is the brightest and monotonously darkens as it goes away from the central portion, but as described above, the reflective surface is a plurality of small reflective surfaces 21 a In the case of those formed by ..., since light reflected not only in the vicinity of the central part of the reflective surface but also on a plurality of small reflective surfaces 21a, ... including the central part is emitted to the outside, from the central part It is possible to obtain a distribution that gradually becomes dark while repeating light and dark, instead of becoming monotonously dark as it goes away.
  • the pedestrian or the driver visually recognizes the light L with a granular feeling depending on the size of the small reflective surfaces 21a,.
  • the concave portion 83 of the transparent resin plate 80 is formed by combining a plurality of small areas 83b having substantially the same size as the small reflective surfaces 21a, ... of the reflector 20, the light L emitted from the LED element 14
  • the light reflected from the surface of the concave portion 83 of the transparent resin plate 80 is reflected by each of the small regions 83b of the transparent resin plate 80, so that pedestrians and drivers outside the lighting unit 100 can use the transparent resin plate.
  • the light reflected by the concave portion 83 is visually recognized as the light reflected by the plurality of small regions 83 b,.
  • the pedestrian, the driver or the like visually recognizes the reflected light in the recess 83 with a granular feeling depending on the size of the small area 83 b.
  • each of the small regions 83b is substantially the same as that of the small reflective surfaces 21a, the grain size of the reflected light reflected by the small regions 83b is smaller than that of the small reflective surfaces 21a,. It matches with the grain size of the reflected light reflected by.
  • the light reflected by the concave portion 83 of the transparent resin plate 80 does not have a different grain size from the light reflected by the small reflective surfaces 21 a of the reflector 20, so the small reflective surface 21 a of the reflector 20 does not occur.
  • the reflected light at the concave portion 83 of the transparent resin plate 80 does not stand out from the viewpoint of the difference in grain size with respect to the reflected light at.
  • the degree of conspicuousness of the reflected light at the concave portion 83 of the transparent resin plate 80 can be reduced.
  • the transparent resin plate 80 is formed as a combination of a plurality of small regions 83 b,..., Even when the opening area of the transparent resin plate 80 is tried to be set large, Since it is not necessary to increase the length of the direction, the design freedom of the shape of the recess 83 surrounding the LED element 14 of the transparent resin plate 80 can be improved.
  • FIG. 12 in which the shape of the surface of the concave portion 83 of the transparent resin plate 80 is formed by a plurality of small regions 83b,... Compared with the example of FIG. 11 to prevent, the reflected light reflected on the surfaces of the plurality of small regions 83b,... Is not absorbed back to the LED element 14, and the light is visually recognized from the outside of the lamp 100 Since the light is reflected to the driver or the driver, the light extraction efficiency can be enhanced.
  • the lighting unit 100 of the present embodiment uses a spiral circuit board 11.
  • the circuit board in the light emitting device according to the present invention is not limited to that of this embodiment, and the reflector 20 is used. Any shape or characteristic may be applied as long as it has a gap or transparency that allows the reflected light L to be transmitted to the outside.
  • the circuit board 11 Since the circuit board 11 is disposed on the optical path of the light L reflected by the reflector 20, as the width W of the circuit board 11 becomes wider, the amount of blocking the reflected light L increases.
  • the width W be as narrow as possible or have a transparency that does not prevent the passage of the light L.
  • Embodiment 1 mentioned above is an example which applied a light-emitting device concerning the present invention to lighting part 100 of traffic signal lamp 200, but a light-emitting device concerning the present invention is not limited to this embodiment, A street lamp And lighting equipment.
  • the light portion 100 of the present embodiment which is a reflection type light emitting device, can adjust the direction and the like of the emitted light L from the LED element 14 according to the shape and the like of the reflector 20, the light L should be emitted.
  • the number of LED elements 14 can be significantly reduced compared to the conventional non-reflective LED traffic light part, and the cost can be reduced. It can be reduced.
  • the light part of the traffic light of non-reflection type using LEDs uses one hundred and twenty to four hundred and several hundred LEDs, the light part 100 of this embodiment has only 31 LED elements. 14 can be used to obtain visibility equal to or greater than that of a conventional non-reflection signal lamp.
  • the amount of light per unit area can be reduced, and glare can be reduced. It becomes suitable as the light part 100 of the traffic signal lamp 200 which a driver
  • the graininess is remarkable in the conventional traffic signal lamp using the non-reflecting LED signal lamp device, and if the number of LED elements is extremely reduced, the original circular shape can not be expressed. Since it is possible to realize substantially surface light emission with reduced graininess, it is possible to obtain visibility equal to or more than that of the conventional one by using a small number of LED elements 14.
  • the present embodiment (Embodiment 2) is an example in which the light emitting device according to the present invention is applied to the lamp portion 100 'corresponding to each color (red, yellow, green) of the traffic signal lamp 200 shown in FIG.
  • each lighting unit 100 ′ includes a protective cover 30 formed in a substantially disc shape, a unit case 40 formed in a cylindrical shape with a bottom, and the protective cover 30 and the unit case 40.
  • a housing is formed of an annular waterproof rubber packing 50 that holds the outer peripheral edge portions in a superimposed state and prevents water immersion in the internal space surrounded by the protective cover 30 and the unit case 40.
  • a transparent resin plate 80 separate from the reflector 20 and disposed between the circuit board 11 and the reflector 20 is disposed as a partition member or partition portion through which the light L is transmitted.
  • the lamp unit 100 'of the second embodiment is different in that the partition unit interposed between the circuit board 11 and the reflector 20 is configured as a part of the reflector 20' (reflection member).
  • the transparent resin layer 87 as a partition portion which partitions the space where the circuit board 11 is exposed and which transmits the light L is integrated with the reflector 20 ′. It is formed.
  • the configuration other than the transparent resin layer 87 and the reflector 20 ′ in the lighting unit 100 ′ of the second embodiment is substantially the same as the configuration in the lighting unit 100 of the first embodiment.
  • the reflector 20 ′ is provided on the side facing the light emitting surface 14 a of the LED element 14, and of the transparent resin layer 87 having a light transmitting property for transmitting the light L emitted from the LED element 14.
  • the reflective film 26 is formed on the convex surface 82 on the side far from the LED element 14.
  • the transparent resin layer 87 of the reflector 20 ' is made of, for example, a transparent material such as polycarbonate and, as shown in FIG. , 84, 85 (only the recess 83 is described in FIG. 14) are formed.
  • Recesses 83 are respectively formed corresponding to the portions of circuit board 11 on which LED elements 14 are mounted, as shown in FIG.
  • the recesses 84 and 85 are also the same as the recess 83, but the recess 85 is formed corresponding to the portion of the circuit board 11 in which the terminal 16, the control circuit 15, and the LED element 14 are continuously arranged,
  • the recess 84 is formed corresponding to the portion of the circuit board 11 that is the control circuit 15 and the two LED elements 14 and 14 arranged side by side.
  • the recess 83 is formed corresponding to only the remaining LED elements 14 of the circuit board 11 which are not surrounded by the recesses 84 and 85.
  • the recesses 83, 84 and 85 of the reflector 20 'and the circuit board 11 are not in direct contact but through the air layer It is arranged.
  • Portions of the transparent resin layer 87 of the reflector 20 'other than the concave portions 83, 84, 85 are formed to have a contour along the back surface 32 of the protective cover 30 while connecting the concave portions 83, 84, 85.
  • the support portion 86 may support the reflector 20 ′ on the protective cover 30 by welding, for example, or an adhesive or the like may be applied between the reflector 20 ′ and the support portion 86 to form a reflector on the protective cover 30. It may support 20 '.
  • the support portion 86 is formed as a part of the reflector 20' having the transparent resin layer 87 as a partition portion. Is separately formed, for example, as shown in FIG. 16, between the surface 81 facing the protective cover 30 and the back surface 32 of the protective cover 30 in the portion other than the concave portions 83, 84, 85 of the reflector 20 '.
  • the protective cover 30 may be configured as a support member to support the reflector 20 '.
  • the support portion 86 may support the reflector 20 ′ on the protective cover 30 by welding, for example, or between the reflector 20 ′ and the support portion 86 and between the protective cover 30 and the support portion 86. An adhesive or the like may be applied between them to support the reflector 20 ′ on the protective cover 30.
  • the recessed portions 83 (84, 85) of the transparent resin layer 87 of the reflector 20' are respectively the LED elements 14 of the circuit board 11 between the LED elements 14 and the reflector 20 '.
  • the mounted portion is enclosed with the protective cover 30 and partitioned into a narrow space P in which the periphery of the circuit board 11 is closed.
  • the support part 86 of the structure shown in FIG. 16 it is preferable that it is annularly formed over the outer periphery of each recessed part 83,84,85, and it forms in this way cyclically. By doing this, the support 86 can be surrounded by the protective cover 30 and the reflector 20 '.
  • the support portion 86 may not be formed annularly in such a manner, and may be formed so as to be dotted in places other than the concave portions 83 84 85 of the reflector 20 ′.
  • the support portions 86 formed around the recesses 84 and 85 are similar to the support portions 86 formed around the recess 83, but the support portions 86 formed around the recess 85, the protective cover 30, and the like.
  • the reflective film 26 is formed by depositing or plating a metal film on the convex surface 82 of the transparent resin layer 87, but is not limited to this form.
  • the portion directly below the light emitting surface 14a of the LED element 14 is substantially conical in shape toward the light emitting surface 14a as shown in FIGS. It is formed to be protruded.
  • the surfaces 28 and 29 of the reflective film 26 facing the transparent resin layer 87 direct light L incident from the LED element 14 to the transparent resin layer 87 in the direction of the protective cover 30 (direction of the back surface 14 b of the LED element 14). It is a reflective surface that reflects.
  • the reflecting surface 28 is formed substantially in a paraboloid whose focal point is the light emitting point 14c which is the center of the light emitting surface 14a, and when the light L emitted from the light emitting surface 14a is reflected, the reflected light L is It is made to be approximately parallel light.
  • the reflecting surface 29 formed along the surface of the transparent resin layer 87 which is formed so as to project in a substantially conical shape toward the light emitting surface 14a is the emitted light L emitted substantially vertically downward from the light emitting surface 14a.
  • the light is reflected, it is formed to prevent the reflected light L from returning to the LED element 14 as it is.
  • the reflected light L returns to the LED element 14 as it is, the reflected light L is blocked by the LED element 14 itself, but if a substantially conical projecting portion is formed as in this embodiment. Since the light L reflected by the reflective surface 29 which is the slope does not return to the LED element 14 as it is, light shielding by the LED element 14 itself can be avoided.
  • Light L reflected by the reflecting surfaces 28 and 29 of the reflector 20 'and traveling toward the protective cover 30 is transmitted through the protective cover 30 and emitted to the outside of the light portion 100' and can be viewed by an external viewer or the like It becomes.
  • the area of a region of the protective cover 30 through which the light L reflected by the reflector 20 'is transmitted is S1.
  • the protective cover 30 is formed so as to surround the area S1 of the area through which the light L from the reflective surfaces 28 and 29 transmits, by the protective cover 30 and the recess 83 of the reflector 20 '. Assuming that the area of the surface of the protective cover 30 facing the space P is S2, the reflector 20 'is formed such that the area S2 is smaller than the area S1 (S2 ⁇ S1).
  • the protective cover 30 and the concave portions 83, 84, 85 of the reflector 20' divide the heat convective range of the LED element 14 into a convective range It becomes only inside the narrow space P formed inside.
  • the heat in the narrow space P is released from the heat in the case of being released to a wide space (in particular, a substantially open space not divided by the concave portions 83, 84, 85, etc. of the reflector 20 '). It is hard to diffuse, and it is easy to be transmitted to the protective cover 30 which faced the space.
  • the heat is conducted from the circuit board 11 which is a heat source to the protective cover 30, and the convective heat is transferred to the space P and the convective heat is transferred to the protective cover 30. Furthermore, the heat of the protective cover 30 dissipates heat to the outside by heat transfer by convection and heat radiation.
  • the heat generated from the LED element 14 can make the temperature of at least the portion of the protective cover 30 facing the narrow space P higher than that of the case where the support portion 86 is not provided.
  • the protective cover 30 is heated, so the adhered snow or ice is heated Therefore, it is possible to prevent the visibility of the emitted light L which is melted down and flows downward and transmitted through the protective cover 30 from being obstructed by snow or ice.
  • the transparent resin layer 87 is partitioned to narrow the space where the LED element 14 is exposed, that is, the space between the back surface 32 of the protective cover 30 and the reflector 20 ′, the LED element 14 together with the protective cover 30. It does not have to surround it.
  • the transparent resin layer 87 partitions the space where the LED element 14 is exposed, so that the convection space of the heat generated from the LED element 14 can be narrowed and the heat transfer to the protective cover 30 can be improved. It is.
  • the joining between the protective cover 30 and the transparent resin layer 87 to the reflector 20 'as partition members for heat insulation is fastened with a screw 91 and a nut 92 in the same manner as the light portion 100 of the first embodiment.
  • the metal pins 94 may be joined by caulking.
  • the circuit board 11 is provided in contact with the protective cover 30 in the light portion 100 'of this embodiment, the heat generation of the LED element 14 is transmitted to the protective cover 30 via the circuit board 11 even by the type of heat conduction.
  • the temperature of the protective cover 30 can be further raised.
  • the lighting unit 100 'of the present embodiment can further warm the protective cover 30 by heat conduction from the control circuit 15 because the control circuit 15 is provided on the circuit board 11 everywhere. Since the control circuit 15 is also surrounded by the reflector 20 ′, the support portion 86 and the protective cover 30 and is confined in the narrow space P, the heat of the control circuit 15 convecting in the space P is transferred to the protective cover 30. The heat transfer can be facilitated by convection, and the temperature of the protective cover 30 can be further raised.
  • the reflection film 26 is formed on the transparent resin layer 87, the reflector 20' having the reflection surfaces 28 and 29 is integrally formed, and the light L incident from the LED element 14 is detected.
  • the reflector 20' having the reflection surfaces 28 and 29 is integrally formed, and the light L incident from the LED element 14 is detected.
  • the area S2 of the surface facing the protective cover 30 in the space P formed by the protective cover 30 and the concave portion 83 of the reflector 20' is reflected by the reflective surfaces 28 and 29. Because the area is smaller than the area S1 of the area from which the light L is emitted from the protective cover 30 to the outside, the space P to which heat is convective can be limited to a narrow area, and the degree of heat diffusion is reduced. it can.
  • the concave portions 83, 84, 85 are formed so that their curvatures change smoothly (continuously), so the light L emitted from the LED element 14 into the closed space P is transparent resin layer 87
  • the traveling direction of the light L can be continuously changed by the incidence on the light and the arrival at the reflecting surfaces 28 and 29.
  • the traveling direction of the light L is continuously changed by the emission from the transparent resin layer 87 and the arrival at the protective cover 30 of the light L reflected by the reflection surfaces 28 and 29 of the reflector 20 ′. Can.
  • the light emitting point 14c of the LED element 14 is the concave portion 83 surrounding only the LED element 14. It is preferable to form in the spherical surface centering on.
  • the amount of light L reflected by the surface of the transparent resin layer 87 among the light L emitted from the LED element 14 can be reduced, and further, temporarily the transparent resin Even when part of the light is reflected on the surface of the layer 87, the reflected light is reflected perpendicularly to the surface of the concave portion 83 of the transparent resin layer 87, so the reflected light is the LED element 14 Since the light does not pass through the protective cover 30 and is not emitted to the outside of the light portion 100 ', unnatural light is not visually recognized by pedestrians and drivers outside the light portion 100'.
  • a portion of the transparent resin layer 87 corresponding to the light path through which the light L emitted from each LED element 14 toward the concave surface 28 of the reflector 20 'passes (a portion in the lamp portion 100 of the embodiment shown in FIG.
  • a diffusion portion (corresponding to the diffusion portion 83a in the lamp portion 100 of the embodiment shown in FIG. 11) for diffusing the light L emitted from the LED element 14 may be formed on the ⁇ ).
  • the diffusion portion is formed as described above, when the light L emitted from the LED element 14 toward the reflector 20 ′ is diffused by the diffusion portion of the transparent resin layer 87 passing through, the diffusion portion of the transparent resin layer 87 An image of the diffused light is visually recognized from the outside as an image reflected by the reflector 20 ', and is artificially recognized as an image of a surface-emitting light source.
  • the LED element 14 When the light L emitted by the LED element 14 as a point light source is perceived as it is by the external viewer, it gives a granular feeling to the viewer but is viewed as the light L emitting surface light Can alleviate such graininess.
  • the lighting unit 100 can be 'configured using the LED elements 14 of the point light source due to the restriction that the surface light source can not be applied, the graininess due to the point light source can be alleviated.
  • the concave portion 83 of the transparent resin layer 87 surrounding the LED element 14 corresponds to each small reflection of the reflector 20. It is preferable to be formed by a combination of small areas (corresponding to the small areas 83b, 83b,... In the lighting unit 100 of the first embodiment) formed in substantially the same size as the surface.
  • the reflector 20 ' is a facet reflector formed of a combination of a plurality of small convex small reflection surfaces, and the concave portion 83 of the transparent resin layer 87 surrounding the LED element 14 is a small reflection of each of the reflector 20.
  • a pedestrian or the like visually recognized outside the light part 100 ' has a reflection light from the surface of the transparent resin layer 87 as a reflector, as it is formed by a combination of small areas formed in substantially the same size as the surface. Since the size of the reflected light and the particle size at the small reflective surface 20 are the same, the degree of the reflected light at the transparent resin layer 87 can be reduced.
  • the lighting unit 100 'of the present embodiment uses the spiral circuit board 11, but the circuit board in the light emitting device according to the present invention is not limited to that of this embodiment, and a reflecting surface is used. Any shape or characteristic can be applied as long as it has a gap or transparency that allows the light L reflected by 28 and 29 to be transmitted to the outside.
  • circuit board 11 is disposed on the optical path of the light L reflected by the reflection surfaces 28 and 29, as the width W of the circuit board 11 becomes wider, the amount of blocking the reflected light L increases. .
  • the width W be as narrow as possible or have a transparency that does not prevent the passage of the light L.
  • Embodiment 2 mentioned above is an example which applied a light-emitting device concerning the present invention to lighting part 100 'of traffic signal lamp 200, but a light-emitting device concerning the present invention is not limited to this embodiment, It can be applied to street lights and lighting fixtures.
  • circuit board 14
  • LED element (light emitting element) 20
  • reflector (reflection member) 21
  • protective cover (cover) 32
  • back surface 80
  • transparent resin plate (partition part, partition member) 83, 84, 85
  • Support part 87
  • Transparent resin layer (partition part) 100, 100 'light section (light emitting device) 200 traffic lights L light, emitted light, emitted light

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Traffic Control Systems (AREA)
  • Non-Portable Lighting Devices Or Systems Thereof (AREA)

Abstract

A circuit board (11) on which an LED element (14) is mounted is partitioned with a protection cover (30) (cover) arranged at the back face side of the circuit board (11) and with a transparent resin plate (80) (partitioning section) so that a narrow space (P) in which heat generated by the circuit board (11) is circulated by convection is formed, preventing thermal diffusion and facilitating the transfer of the heat circulated by convection to the protection cover (30) so as to raise the temperature of the protection cover (30). Thus, under conditions wherein snow or ice is deposited, snow or ice deposited on the protection cover (30) of a light-emitting apparatus is melted with the heat.

Description

発光装置Light emitting device
 本発明はLED(Light Emitting Diode:発光ダイオード)などの発光素子を用いた発光装置に関し、詳細には、発光素子から出射された光を反射部材で反射させて発光素子の背面方向(光の出射方向とは反対の方向)に出射するようにした反射型の発光装置の改良に関する。 The present invention relates to a light emitting device using a light emitting element such as an LED (Light Emitting Diode), and more specifically, the light emitted from the light emitting element is reflected by a reflecting member to The present invention relates to the improvement of a reflection type light emitting device which emits light in the direction opposite to the direction).
 従来、発光装置として、LED素子の発光面に対向させて反射部材(リフレクタ)を配置し、LED素子から出射した光(出射光)をリフレクタで反射させ、その反射した光(反射光)をLED素子の背面方向に出射させる、いわゆる反射型のものが開発されている(特許文献1)。 Conventionally, as a light emitting device, a reflecting member (reflector) is disposed to be opposed to the light emitting surface of the LED element, light (emitted light) emitted from the LED element is reflected by the reflector, and the reflected light (reflected light) is LED A so-called reflective type in which light is emitted in the back direction of the element has been developed (Patent Document 1).
 この反射型の発光装置は、LED素子からの出射光を高い効率で外部に出射することができるため、高い輝度が求められる発光装置では特に有用である。 This reflection type light emitting device can emit the light emitted from the LED element to the outside with high efficiency, and therefore is particularly useful for a light emitting device that requires high luminance.
特開平10-335706号公報Japanese Patent Application Laid-Open No. 10-335706
 ここで、発光装置は種々のものに用いられているが、白熱灯などと比較してLED素子は発熱量が少ないために、例えば降雪などに晒される状況で交通信号灯の灯火部として用いられているものでは、灯火部の最前面に設けられた保護カバーに付着した雪が溶けにくく、その付着した雪によって灯火部の発光状態の視認性が低下する虞がある。 Here, although various light emitting devices are used, LED elements have a smaller amount of heat generation compared to incandescent lights and the like, and are used as light parts of traffic lights under conditions exposed to, for example, snowfall. In some cases, the snow attached to the protective cover provided at the forefront of the light portion is difficult to melt, and the attached snow may reduce the visibility of the light emission state of the light portion.
 このことは、効率が高いために、LED素子の数を減らすことができる反射型の発光装置を交通信号灯の灯火部に使用した場合に、より顕著な問題となる。 This becomes a more significant problem when using a reflection type light emitting device capable of reducing the number of LED elements for the light portion of the traffic light because of the high efficiency.
 なお、上記問題は、発光装置が、交通信号灯に用いられた場合だけでなく、降雪や着氷の虞がある街路灯や照明器具等に用いられた場合も同様に生じうる。 The above problem may occur not only when the light emitting device is used as a traffic light, but also when it is used as a street light, a lighting fixture, or the like which may cause snowfall or icing.
 本発明は上記事情に鑑みなされたものであり、雪や氷が付着する状況下においても、これら付着した雪や氷を排除することができる発光装置を提供することを目的とするものである。 The present invention has been made in view of the above circumstances, and it is an object of the present invention to provide a light emitting device capable of removing snow and ice attached even when snow and ice are attached.
 本発明に係る発光装置は、発光素子が実装された回路基板が露出した空間を、回路基板の背面側に配置されたカバーと仕切り部とによって仕切ることで、回路基板から発せられた熱が広い空間で対流を起こさないように、狭い空間を形成して熱の拡散を防ぎ、対流する熱をカバーに伝え易くしてカバーの温度を高め、カバーに雪や氷が付着する状況下においても、これら付着した雪や氷を熱で溶かして排除するものである。 In the light emitting device according to the present invention, the space where the circuit board on which the light emitting element is mounted is exposed is partitioned by the cover and the partition portion disposed on the back side of the circuit board, whereby the heat generated from the circuit board is wide. In order to prevent convection in the space, a narrow space is formed to prevent heat diffusion, it is easy to transfer the convective heat to the cover to raise the temperature of the cover, and even in the situation where snow or ice adheres to the cover, These attached snow and ice are melted away with heat and eliminated.
 すなわち、本発明に係る発光装置は、透光性を有するカバーと、一方の面側に複数の発光素子を実装し、反対側の面が前記カバーに接して設けられた回路基板と、前記回路基板に対し前記カバーと反対側に配置された、前記発光素子から出射した光を反射する反射部材と、を備え、前記発光素子と前記反射部材との間に、前記光を透過する仕切り部(反射部材と別体の仕切り部材であってもよいし、反射部材の一部として反射部材と一体の部分(仕切り部)であってもよい。)が形成されていることを特徴とする。 That is, a light emitting device according to the present invention includes a light transmitting cover, a circuit board having a plurality of light emitting elements mounted on one side and a surface on the other side in contact with the cover, and the circuit A partition member disposed on the side opposite to the cover with respect to the substrate and configured to reflect light emitted from the light emitting element; and a partition part configured to transmit the light between the light emitting element and the reflecting member It may be a partition member separate from the reflection member, or a part (a partition part) integral with the reflection member may be formed as a part of the reflection member.
 本発明に係る発光装置によれば、雪や氷が付着する状況下においても、これら付着した雪や氷を排除することができる。 According to the light emitting device of the present invention, even in a situation where snow or ice adheres, the adhered snow or ice can be eliminated.
本発明の発光装置の一実施形態としての灯火部を備えた交通信号灯を示す模式図である。It is a schematic diagram which shows the traffic signal lamp provided with the lamp part as one Embodiment of the light-emitting device of this invention. 実施形態1の灯火部の構成を示す部分断面図である。FIG. 2 is a partial cross-sectional view showing the configuration of the lighting unit of Embodiment 1; 回路基板に、複数のLED素子等が分布して実装されている状態を模式的に示した図である。It is the figure which showed typically the state by which several LED elements etc. are distributed and mounted in the circuit board. 回路基板の延びた方向に対して直交する面(図2のA-A線に沿った面)で切断した要部の断面を示す図である。FIG. 3 is a view showing a cross section of the main part cut in a plane (a plane along the line AA in FIG. 2) orthogonal to the extending direction of the circuit board. LED素子と制御回路とによる回路を示すブロック図である。It is a block diagram which shows the circuit by a LED element and a control circuit. 制御回路の機能を説明する図であり、LED素子のグループ間を直列接続に切り替えた状態を示す。It is a figure explaining the function of a control circuit, and shows the state which switched to series connection between the groups of LED elements. 制御回路の機能を説明する図であり、LED素子のグループ間を直列接続と並列接続とを組み合わせた接続に切り替えた状態を示す。It is a figure explaining the function of a control circuit, and shows the state which switched to the connection which combined series connection and parallel connection between groups of LED elements. 制御回路の機能を説明する図であり、LED素子のグループ間を全て並列接続に切り替えた状態を示す。It is a figure explaining the function of a control circuit, and shows the state which switched to parallel connection between all the groups of LED elements. 透明樹脂プレートを示す斜視図である。It is a perspective view showing a transparent resin plate. 支持部と透明樹脂プレートとを別体にした構成の例を示す、図4相当の要部断面図である。It is principal part sectional drawing equivalent to FIG. 4 which shows the example of the structure which made the support part and the transparent resin plate separately. 保護カバーと透明樹脂プレートとをネジとナットとで接合した例を示す図である。It is a figure which shows the example which joined the protective cover and the transparent resin plate by the screw and the nut. 保護カバーと透明樹脂プレートとを、金属ピンをかしめることで接合した例を示す図である。It is a figure which shows the example which joined the protective cover and the transparent resin plate by crimping metal pins. 透明樹脂プレートの凹部を、LED素子を中心とした球面形状に形成するとともに、一部に拡散部を形成した例を示す図である。While forming the recessed part of a transparent resin plate in spherical shape centering on a LED element, it is a figure which shows the example which formed the spreading | diffusion part in one part. 透明樹脂プレートの凹部を、リフレクタの小反射面の大きさと略同じ大きさの小領域の集合として形成した例を示す図である。It is a figure which shows the example which formed the recessed part of the transparent resin plate as a collection of the small area | regions of the magnitude | size substantially the same as the magnitude | size of the small reflective surface of a reflector. 実施形2の灯火部の構成を示す部分断面図である。It is a fragmentary sectional view which shows the structure of the lighting part of Embodiment 2. FIG. 回路基板の延びた方向に対して直交する面(図13のB-B線に沿った面)で切断した要部の断面を示す図である。FIG. 14 is a view showing a cross section of the relevant part cut in a plane (plane along the line BB in FIG. 13) orthogonal to the extending direction of the circuit board. リフレクタを示す斜視図である。It is a perspective view showing a reflector. 支持部とリフレクタとを別体にした構成の例を示す、図14相当の要部断面図である。It is principal part sectional drawing equivalent to FIG. 14 which shows the example of the structure which made the support part and the reflector separate.
 以下、本発明に係る発光装置の実施形態について、図面を参照して説明する。 Hereinafter, embodiments of a light emitting device according to the present invention will be described with reference to the drawings.
(実施形態1)
 本実施形態(実施形態1)は、本発明に係る発光装置を図1に示した交通信号灯200の各色(赤色、黄色、緑色)にそれぞれ対応した灯火部100に適用した例である。
(Embodiment 1)
The present embodiment (Embodiment 1) is an example in which the light emitting device according to the present invention is applied to the lighting unit 100 corresponding to each color (red, yellow, green) of the traffic signal lamp 200 shown in FIG.
 なお、図1に示した交通信号灯200は、3つの灯火部100が縦に並んだものであるが、横に並んだものであってもよいことはいうまでもない。 Although the traffic signal lamp 200 shown in FIG. 1 is one in which three lamp parts 100 are vertically arranged, it goes without saying that the traffic signal lamp 200 may be horizontally arranged.
 ただし、積雪寒冷地における雪害対策としては、灯火部100が縦に並んだ縦型の方が、着雪が少なく有利である。 However, as a measure against snow damage in a snowy cold region, the vertical type in which the lighting sections 100 are vertically arranged is advantageous because it has less snowfall.
 各灯火部100は、図2に示すように、略円板状に形成された保護カバー30と、有底筒状に形成されたユニットケース40と、これら保護カバー30とユニットケース40との外周縁部同士を重ね合わせた状態に保持させるとともに、保護カバー30とユニットケース40とによって囲まれた内部空間への浸水を防止する環状の防水ゴムパッキン50とによりハウジングが形成されている。 As shown in FIG. 2, each lighting unit 100 has a protective cover 30 formed in a substantially disc shape, a unit case 40 formed in a cylindrical shape with a bottom, and the outside of the protective cover 30 and the unit case 40. A housing is formed of an annular waterproof rubber packing 50 which holds the peripheral edge portions in an overlapping state and prevents water immersion in the internal space surrounded by the protective cover 30 and the unit case 40.
 保護カバー30は、例えばポリカーボネートにより形成されていて、後述するLED素子14(図3等参照)から出射された光を透過させる透光性を有している。 The protective cover 30 is made of, for example, polycarbonate, and has translucency to transmit light emitted from an LED element 14 (see FIG. 3 and the like) described later.
 ユニットケース40は、例えばABS樹脂により形成されていて、外部の制御機器から商用電源等の電力供給を受けるための電線が接続されるコネクタ70が設けられている。 Unit case 40 is formed of, for example, an ABS resin, and is provided with a connector 70 to which an electric wire for receiving power supply such as a commercial power supply from an external control device is connected.
 このハウジングの内部には、渦巻き状の回路基板11(プリント配線板など)と、光を反射させるリフレクタ20(反射部材)と、仕切り部材としての透明樹脂プレート80と、リフレクタ20の背面側(反射面である凹面21(図4参照)とは反対側)に配置された断熱材60とが収容されている。 Inside the housing, a spiral circuit board 11 (printed wiring board etc.), a reflector 20 (reflection member) for reflecting light, a transparent resin plate 80 as a partition member, and a back side of the reflector 20 (reflection The heat insulating material 60 disposed on the side opposite to the concave surface 21 (see FIG. 4) which is a surface is accommodated.
 渦巻き状の回路基板11の一方の面11m側には、図3に示すように、その延びた方向に沿って、例えば31個のLED素子14(発光素子)と、例えば4つの制御回路15と、1組の端子16とが分布して実装されている。なお、本実施形態におけるLED素子14とは、LEDチップをパッケージ実装したものである。 As shown in FIG. 3, for example, 31 LED elements 14 (light emitting elements) and four control circuits 15 are provided on one surface 11 m side of the spiral circuit board 11 along the extending direction, for example. , And a set of terminals 16 are distributed and mounted. In addition, LED element 14 in this embodiment is a package mounting of the LED chip.
 そして回路基板11は、図3,4に示すように、LED素子14等が実装されていない反対側の面11nが、保護カバー30の裏面32(ハウジングの内部に臨んだ面)に接して設けられていて、例えば、接着剤や両面テープ等によって保護カバー30に貼付されている。 Then, as shown in FIGS. 3 and 4, the circuit board 11 is provided such that the opposite surface 11 n on which the LED elements 14 and the like are not mounted is in contact with the back surface 32 (surface facing the inside of the housing) of the protective cover 30. For example, it is attached to the protective cover 30 with an adhesive or a double-sided tape.
 したがって、LED素子14から光Lが出射される発光面14aは、保護カバー30のおもて面31の方向ではなく、ハウジングの内部を向いていて、保護カバー30はLED素子14の背面14b(発光面14aとは反対側(裏側)の面)の側に配置されている。 Therefore, the light emitting surface 14 a from which the light L is emitted from the LED element 14 faces the inside of the housing, not the direction of the front surface 31 of the protective cover 30, and the protective cover 30 is the back surface 14 b of the LED element 14 ( It is arrange | positioned at the side of the surface (back side) side opposite to the light emission surface 14a.
 回路基板11に設けられた端子16は、ユニットケース40に設けられたコネクタ70と電線等によって接続され、外部の制御機器から商用電源等の電力供給を受ける。 The terminal 16 provided on the circuit board 11 is connected to a connector 70 provided on the unit case 40 by an electric wire or the like, and receives power supply such as commercial power from an external control device.
 回路基板11上に実装された多数のLED素子14は、複数個ずつの複数のグループに区切られて接続されており、制御回路15は、LED素子14を発光(駆動)させるための商用電源の交流を整流して得られた整流電圧を各グループに印加するに際し、複数のグループ間の接続形態を、整流電圧の大きさに応じて並列接続と直列接続とを適宜に切り替える制御を行うもの(例えば、特開2011-159902号公報に開示されたLED駆動回路)である。 A large number of LED elements 14 mounted on the circuit board 11 are divided into a plurality of groups and connected, and the control circuit 15 is a commercial power source for emitting (driving) the LED elements 14. When applying a rectified voltage obtained by rectifying alternating current to each group, control is performed to appropriately switch the connection form between a plurality of groups according to the magnitude of the rectified voltage, between parallel connection and series connection For example, it is the LED drive circuit disclosed in Japanese Patent Application Laid-Open No. 2011-159902.
 すなわち、本実施形態における制御回路15は、回路基板11上に4つ実装されている。一方、回路基板11上に実装された31個のLED素子14は、端子16に近い側から順に、8個、8個、8個、7個の4つのグループ(例えば、グループA、グループB、グループC、グループD)に分けられている。 That is, four control circuits 15 in the present embodiment are mounted on the circuit board 11. On the other hand, the 31 LED elements 14 mounted on the circuit board 11 are arranged in order of eight, eight, eight and seven four groups (for example, group A, group B, It is divided into group C and group D).
 そして、4つの制御回路15のうち3つの制御回路15は、これらLED素子14の各グループ間に1つずつ配置され、残りの1つの制御回路15は、端子16とLED素子14の最初のグループとの間に配置されている。 The three control circuits 15 among the four control circuits 15 are disposed one by one between each group of the LED elements 14, and the remaining one control circuit 15 is a terminal 16 and the first group of the LED elements 14. It is placed between.
 図5に示すように、各グループに属する複数のLED素子14はいずれもグループ内で直列に接続されている。また、各グループ間の接続は直列接続と並列接続とが切り替え可能に接続されており、各制御回路15が、端子16に入力された整流電圧の大きさに応じて、これら2つの接続形態のうちいずれか一方の接続形態を選択し、その選択された接続形態に切り替える制御を行う。 As shown in FIG. 5, the plurality of LED elements 14 belonging to each group are all connected in series in the group. Further, the connection between each group is switchably connected in series connection and parallel connection, and each control circuit 15 selects one of these two connection forms according to the magnitude of the rectified voltage input to terminal 16. One of the connection forms is selected, and control to switch to the selected connection form is performed.
 詳細には、端子16に供給される商用電源は交流電圧であるため、LED素子14を駆動するために交流電圧を全波整流するが、その全波整流して得られた直流の電圧(整流電圧)の大きさは時系列に変化する。 Specifically, since the commercial power supply supplied to the terminal 16 is an AC voltage, the AC voltage is full-wave rectified to drive the LED element 14, but a DC voltage (rectification obtained by the full-wave rectification) The magnitude of the voltage) changes in time series.
 制御回路15は、端子16に入力された整流電圧の値に応じて、7個または8個のLED素子14からなる各グループ間の接続形態を、以下の(1)~(3)のうちいずれかに制御する。
 すなわち、
(1)入力された整流電圧が予め設定された第1の閾値よりも大きい期間中は、図6Aに示すように全てのグループA,B,C,Dを直列接続とするように制御し、
(2)入力された整流電圧が予め設定された第1の閾値以下かつ第2の閾値(第1の閾値未満の値)以上の期間中は、図6Bに示すようにグループA,Bを直列接続し、グループC,Dを直列接続し、2組の直列接続間を並列に接続するように制御し、
(3)入力された整流電圧が予め設定された第2の閾値未満の期間中は、図6Cに示すように全てのグループA,B,C,Dを並列接続とするように制御する。
 なお、図6A,6B,6Cにおける丸囲み矢印の記号は定電流源を示す。
The control circuit 15 selects one of the following (1) to (3) as a connection form between each group of seven or eight LED elements 14 in accordance with the value of the rectified voltage input to the terminal 16. Control it.
That is,
(1) During a period in which the input rectified voltage is greater than a preset first threshold, control is made to connect all groups A, B, C, D in series as shown in FIG. 6A,
(2) As shown in FIG. 6B, groups A and B are connected in series as shown in FIG. 6B during a period in which the input rectified voltage is less than or equal to a predetermined first threshold and greater than a second threshold (value less than the first threshold). Connect, connect groups C and D in series, and control to connect two sets of series connections in parallel,
(3) Control is made to connect all the groups A, B, C, and D in parallel as shown in FIG. 6C while the input rectified voltage is less than the preset second threshold.
The symbols of circled arrows in FIGS. 6A, 6B and 6C indicate constant current sources.
 このように、入力された整流電圧の大きさに応じて複数のLED素子14からなる各グループ間の接続形態を切り替えることにより、整流電圧が、例えば直列接続ではLED素子14を発光させることができない程度の、閾値よりも低い電圧の期間中であっても、一部または全部を並列接続することにより、LED素子14を安定して発光させることができる。 Thus, the rectified voltage can not cause the LED element 14 to emit light in series connection, for example, by switching the connection form between each group of the plurality of LED elements 14 according to the magnitude of the input rectified voltage. Even in a period of voltage lower than the threshold value, the LED element 14 can emit light stably by connecting a part or all in parallel.
 リフレクタ20は、図4に示すように、LED素子14の発光面14aに対向する側に設けられていて、LED素子14から出射し、後述の透明樹脂プレート80(仕切り部、仕切り部材)の凹部83,84,85(図4においては凹部83のみを記載)を透過した光Lを、凹部83,84,85および保護カバー30の方向(LED素子14の背面14bの向いた方向)に反射するように、各LED素子14ごとに対応する凹面21(凹状の反射面)が形成されている。 The reflector 20 is provided on the side facing the light emitting surface 14 a of the LED element 14 as shown in FIG. 4 and emits light from the LED element 14, and a concave portion of a transparent resin plate 80 (partition section, partition member) described later. Light L transmitted through 83, 84, 85 (only the recess 83 is described in FIG. 4) is reflected in the direction of the recesses 83, 84, 85 and the protective cover 30 (direction toward the back surface 14b of the LED element 14). Thus, the concave surface 21 (concave reflecting surface) corresponding to each of the LED elements 14 is formed.
 この凹面21は発光面14aの中心である発光点14cを焦点とする略放物面で形成されていて、発光面14aから出射した出射光Lを反射したとき、その反射した光Lが略平行光となるようにしている。 The concave surface 21 is formed of a substantially paraboloid whose focal point is the light emitting point 14c which is the center of the light emitting surface 14a, and when the emitted light L emitted from the light emitting surface 14a is reflected, the reflected light L is substantially parallel. I am trying to be a light.
 なお、リフレクタ20は、射出成形された樹脂部品の凹面21に金属膜を蒸着またはメッキして生成されているが、アルミなどの金属の板をプレス加工したものであってもよく、出射光Lの反射面となる凹面21のうち、LED素子14の発光面14aの直下の部分は、発光面14aに向けて略円錐状に突出して形成されている。 Although the reflector 20 is formed by depositing or plating a metal film on the concave surface 21 of the injection-molded resin part, the reflector 20 may be formed by pressing a plate of a metal such as aluminum, and the emitted light L Of the concave surface 21 serving as the reflecting surface, a portion directly below the light emitting surface 14 a of the LED element 14 is formed so as to protrude substantially conically toward the light emitting surface 14 a.
 そして、この略円錐状の斜面22の部分は、発光面14aから略鉛直下方に出射した出射光Lを反射したとき、その反射した光LがLED素子14にそのまま戻らないようにするために形成されたものである。 The portion of the substantially conical slope 22 is formed to prevent the reflected light L from returning to the LED element 14 as it is when the emitted light L emitted substantially vertically downward from the light emitting surface 14 a is reflected. It is done.
 つまり、反射した光LがLED素子14にそのまま戻ると、その反射した光LはLED素子14自体により遮光されるが、本実施形態のように略円錐状に突出した部分が形成されていると、その斜面22で反射した光Lは、LED素子14にそのまま戻らないため、LED素子14自体による遮光を回避することができる。 That is, when the reflected light L returns to the LED element 14 as it is, the reflected light L is blocked by the LED element 14 itself, but if a substantially conical projecting portion is formed as in this embodiment. Since the light L reflected by the inclined surface 22 is not returned to the LED element 14 as it is, light shielding by the LED element 14 itself can be avoided.
 リフレクタ20の凹面21(斜面22を含む。以下、同じ。)で反射されて保護カバー30に向かった光Lは、保護カバー30を透過して灯火部100の外部に出射され、外部の視認者等によって視認されうるものとなる。 The light L reflected by the concave surface 21 of the reflector 20 (including the inclined surface 22. The same applies hereinafter) to the protective cover 30 is transmitted through the protective cover 30 and emitted to the outside of the lamp part 100 to be viewed from outside And so on.
 なお、保護カバー30の、リフレクタ20で反射された光Lが透過する領域の面積をS1とする。 In addition, the area of the area | region which the light L reflected by the reflector 20 of the protective cover 30 permeate | transmits is set to S1.
 透明樹脂プレート80は、例えばポリカーボネートなどの透過性を有する材料で形成されていて、図4,7に示すように、部分的に、リフレクタ20の方に向けて凹んだ凹部83,84,85が形成されている。 The transparent resin plate 80 is made of, for example, a transparent material such as polycarbonate, and as shown in FIGS. 4 and 7, the concave portions 83, 84, 85 partially recessed toward the reflector 20 have It is formed.
 また、透明樹脂プレート80の凹部83,84,85以外の部分は、それら凹部83,84,85間を繋ぐとともに、保護カバー30の裏面32に沿った輪郭形状に形成されて、保護カバー30の裏面32に接した状態で保護カバー30に透明樹脂プレート80を支持する支持部86となっている(図4参照)。 The portions other than the concave portions 83, 84, 85 of the transparent resin plate 80 connect the concave portions 83, 84, 85 and are formed in a contour shape along the back surface 32 of the protective cover 30. A support portion 86 for supporting the transparent resin plate 80 on the protective cover 30 in a state of being in contact with the back surface 32 (see FIG. 4).
 この支持部86は例えば溶着によって、保護カバー30に透明樹脂プレート80を支持するものであってもよいし、透明樹脂プレート80と支持部86との間に接着剤等が塗布されて保護カバー30に透明樹脂プレート80を支持するものであってもよい。 The support 86 may support the transparent resin plate 80 on the protective cover 30 by welding, for example, or an adhesive or the like may be applied between the transparent resin plate 80 and the support 86 to form the protective cover 30. The transparent resin plate 80 may be supported.
 なお、本実施形態の灯火部100においては、支持部86が透明樹脂プレート80の一部として形成されているが、この支持部86は、透明樹脂プレート80とは別体に形成されて、例えば図8に示すように、透明樹脂プレート80の凹部83,84,85以外の部分の、保護カバー30に向いた面81と保護カバー30の裏面32との間に介在し、保護カバー30に透明樹脂プレート80を支持する支持部材として構成してもよい。 In the lighting unit 100 of the present embodiment, the support portion 86 is formed as a part of the transparent resin plate 80, but the support portion 86 is formed separately from the transparent resin plate 80, for example, As shown in FIG. 8, the transparent resin plate 80 is interposed between the surface 81 facing the protective cover 30 and the back surface 32 of the protective cover 30 except for the concave portions 83, 84 and 85 and is transparent to the protective cover 30. You may comprise as a supporting member which supports the resin plate 80. As shown in FIG.
 この場合も、支持部86は例えば溶着によって、保護カバー30に透明樹脂プレート80を支持するものであってもよいし、透明樹脂プレート80と支持部86との間および保護カバー30と支持部86との間にそれぞれ接着剤等が塗布されて保護カバー30に透明樹脂プレート80を支持するものであってもよい。 Also in this case, the support portion 86 may support the transparent resin plate 80 on the protective cover 30 by welding, for example, or between the transparent resin plate 80 and the support portion 86 and between the protective cover 30 and the support portion 86. An adhesive or the like may be applied between them to support the transparent resin plate 80 on the protective cover 30.
 図4に示した例では、透明樹脂プレート80の凹部83(84,85)はそれぞれ、LED素子14とリフレクタ20との間において、回路基板11のうちLED素子14が実装された部分を保護カバー30とともに囲んで、この回路基板11の部分の周囲を閉じた狭い空間Pに仕切っている。 In the example shown in FIG. 4, the concave portions 83 (84, 85) of the transparent resin plate 80 respectively protect portions of the circuit board 11 on which the LED elements 14 are mounted between the LED elements 14 and the reflector 20. A portion enclosed with 30 is divided into a closed narrow space P around the portion of the circuit board 11.
 なお、図8に示した構成の支持部86の場合は、各凹部83,84,85の外方の全周に亘って環状に形成されたものであることが好ましく、このように環状に形成されていることによって、支持部86が、保護カバー30と透明樹脂プレート80とによってLED素子14の周囲を囲んだ状態とすることができる。 In addition, in the case of the support part 86 of the structure shown in FIG. 8, it is preferable that it is annularly formed over the outer periphery of each recessed part 83, 84, 85, and it forms in this way annularly. By doing this, the support 86 can be surrounded by the protective cover 30 and the transparent resin plate 80 around the LED element 14.
 ただし、支持部86をそのように環状に形成するものでなく、透明樹脂プレート80の凹部83,84,85以外の部分の所々に点在して形成してもよい。 However, the support portions 86 may not be formed annularly in such a manner, and may be formed so as to be scattered in places other than the concave portions 83 84 85 of the transparent resin plate 80.
 凹部84,85も凹部83と同様であるが、凹部85は、回路基板11のうち、端子16と制御回路15とLED素子14とが連続して並んだ部分を一体的に囲む部分であり、凹部84は、回路基板11のうち、制御回路15とそれを挟んで並んだ2つのLED素子14,14との部分を一体的に囲む部分である。 The recesses 84 and 85 are also the same as the recess 83, but the recess 85 is a portion that integrally surrounds a portion of the circuit board 11 in which the terminal 16, the control circuit 15, and the LED element 14 are continuously arranged, The recess 84 is a portion that integrally surrounds the circuit board 11 and the portion of the control circuit 15 and the two LED elements 14 and 14 arranged side by side with the control circuit 15.
 なお、凹部83は、回路基板11のうち凹部84,85で囲まれていない残りのLED素子14のみの部分を個別に囲む部分である。 In addition, the recessed part 83 is a part which surrounds separately the part of only the remaining LED elements 14 which are not enclosed by recessed part 84 and 85 among the circuit boards 11. As shown in FIG.
 回路基板11と保護カバー30の裏面32とは直接接触しているが、透明樹脂プレート80の各凹部83,84,85と回路基板11とは直接接触しているのではなく、空気層を介した配置となっている。 Although the circuit board 11 and the back surface 32 of the protective cover 30 are in direct contact with each other, the recesses 83, 84 and 85 of the transparent resin plate 80 and the circuit board 11 are not in direct contact with each other. It has become an arrangement.
 また、前述した透明樹脂プレート80は、図4に示すように、保護カバー30と透明樹脂プレート80の凹部83とによって囲んで形成された空間Pに保護カバー30が臨む面の面積をS2とすると、この面積S2は、前述した保護カバー30の、リフレクタ20で反射された光Lが透過する領域の面積S1よりも狭い面積となるように形成されている。 In addition, as shown in FIG. 4, the area of the surface of the protective cover 30 facing the space P formed by the protective cover 30 and the concave portion 83 of the transparent resin plate 80 is S2 as shown in FIG. The area S2 is formed to be smaller than the area S1 of the area of the protective cover 30 described above through which the light L reflected by the reflector 20 passes.
 以上のように構成された実施形態1の灯火部100によると、LED素子14から発せられた熱の対流する範囲は、保護カバー30と透明樹脂プレート80の各凹部83,84,85とが仕切って形成された内側の狭い空間P内だけとなる。 According to the lighting unit 100 of the first embodiment configured as described above, the protective cover 30 and the concave portions 83, 84, 85 of the transparent resin plate 80 separate the convection range of the heat generated from the LED element 14 It becomes only inside the narrow space P formed inside.
 そして、この狭い空間P内の熱は、広い空間(特に、透明樹脂プレート80の各凹部83,84,85などで仕切られていない、実質的に開放された空間)に放出された場合の熱よりも拡散しにくく、その空間に臨んだ保護カバー30に伝わりやすい。 Then, the heat in the narrow space P is released when it is released to a wide space (in particular, a substantially open space not divided by the concave portions 83, 84, 85, etc. of the transparent resin plate 80). It is more difficult to diffuse and is easier to transmit to the protective cover 30 facing the space.
 なぜなら、発熱源である回路基板11から保護カバー30へ熱伝導するとともに、空間Pに対流熱伝達され、保護カバー30へ対流熱伝達するからである。さらに、保護カバー30の熱は、外部に対して対流と熱放射による熱伝達で放熱することになる。 This is because the heat is conducted from the circuit board 11 which is a heat source to the protective cover 30, and the convective heat is transferred to the space P and the convective heat is transferred to the protective cover 30. Furthermore, the heat of the protective cover 30 dissipates heat to the outside by heat transfer by convection and heat radiation.
 つまり、この放熱は空間Pに保護カバー30が臨む面で起こるので、その面積S2が広いほど放熱し易いために、保護カバー30の外縁の温度は下がる。これとは反対に、面積S2は狭いほど保護カバー30の温度は上がる。 That is, since this heat release occurs on the surface where the protective cover 30 faces the space P, the larger the area S2 is, the easier it is to dissipate heat, so the temperature of the outer edge of the protective cover 30 decreases. On the contrary, the smaller the area S2, the higher the temperature of the protective cover 30.
 この結果、LED素子14から発せられた熱が、保護カバー30の、少なくともその狭い空間Pに面した部分の温度を、透明樹脂プレート80を備えないものに比べて高くすることができる。 As a result, the heat generated from the LED element 14 can make the temperature of at least the portion of the protective cover 30 facing the narrow space P higher than that of the case where the transparent resin plate 80 is not provided.
 したがって、交通信号灯200が降雪などに晒される状況で使用される場合に、保護カバー30に雪や氷が付着しても、保護カバー30は温められているため、付着した雪や氷はその熱により溶けて下方に流れ落ち、保護カバー30を透過した出射光Lの視認性が雪や氷によって阻害されるのを防止することができる。 Therefore, even if snow or ice adheres to the protective cover 30 when the traffic light 200 is used under conditions such as snowfall, the protective cover 30 is heated, so the adhered snow or ice is heated Therefore, it is possible to prevent the visibility of the emitted light L which is melted down and flows downward and transmitted through the protective cover 30 from being obstructed by snow or ice.
 なお、透明樹脂プレート80は、LED素子14が露出した空間、すなわち保護カバー30の裏面32とリフレクタ20との間の空間を狭めるように仕切るものであれば、保護カバー30とによってLED素子14を囲むものでなくてもよい。 If transparent resin plate 80 divides the space where LED element 14 is exposed, that is, the space between back surface 32 of protection cover 30 and reflector 20, LED element 14 is separated by protection cover 30. It does not have to be enclosed.
 このように、LED素子14が露出した空間を透明樹脂プレート80が仕切ることによって、LED素子14から発せられた熱の対流空間を狭め、保護カバー30への熱の伝達を向上させることができるからである。 As described above, the transparent resin plate 80 partitions the space where the LED element 14 is exposed, so that the convection space of the heat generated from the LED element 14 can be narrowed and the heat transfer to the protective cover 30 can be improved. It is.
 保護カバー30と断熱用の仕切り部材としての透明樹脂プレート80との接合は、図9に示すように、保護カバー30と透明樹脂プレート80の支持部86とを貫通するように形成された孔38にネジ91を挿入し、このネジ91とナット92とを締結することで接合するものであってもよいし、図10に示すように、保護カバー30と透明樹脂プレート80の支持部86とを貫通するように形成された孔38に柱状の金属ピン94を挿入し、この金属ピン94の両端部94a,94bに軸方向の圧縮荷重を掛けて、これら両端部94a,94bを潰すように塑性変形させるかしめにより接合するものであってもよい。 The joint between the protective cover 30 and the transparent resin plate 80 as a heat insulating partition member is a hole 38 formed so as to penetrate the protective cover 30 and the support portion 86 of the transparent resin plate 80 as shown in FIG. The screw 91 may be inserted into the joint, and the joint may be performed by fastening the screw 91 and the nut 92, or as shown in FIG. 10, the protective cover 30 and the support portion 86 of the transparent resin plate 80 Column-shaped metal pins 94 are inserted into the holes 38 formed to penetrate, and an axial compressive load is applied to both end portions 94a and 94b of the metal pin 94 to plasticize the both end portions 94a and 94b so as to crush them. It may be joined by deformation caulking.
 このような機械的な接合部材(ネジ91やボルトとナット92との組み合わせ、金属ピン94の両端部94a,94bを過締めたものなど)による接合は、接着剤による接合や溶着による接合よりも、環境温度や経年の変形に対する安定性が高いため、接合状態の、長期的な信頼性が高い。 Bonding with such a mechanical bonding member (a combination of screws 91, bolts and nuts 92, excessive tightening of both ends 94a and 94b of metal pin 94, etc.) is more preferable than bonding with adhesive or welding. Since the stability against environmental temperature and deformation over time is high, the long-term reliability of the bonding state is high.
 これにより、保護カバー30と透明樹脂プレート80の凹部83,84,85とによって囲まれた空間Pを長期間に亘って仕切った状態で維持することができるため、融雪効果を長く持続させることができる。 As a result, the space P surrounded by the protective cover 30 and the concave portions 83, 84, 85 of the transparent resin plate 80 can be maintained in a partitioned state for a long period of time, so that the snow melting effect can be maintained long. it can.
 なお、図9に示したように、ネジ91は、保護カバー30の外面側に露出するが、ネジ91と保護カバー30との間には防水パッキン93が挟まれていて、ネジ91と保護カバー30との間の極わずかな隙間からの浸水を防止している。図10に示したものにおいても同様である。 As shown in FIG. 9, the screw 91 is exposed on the outer surface side of the protective cover 30, but the waterproof packing 93 is sandwiched between the screw 91 and the protective cover 30, and the screw 91 and the protective cover Prevents flooding from a slight gap between 30 and 30. The same applies to the one shown in FIG.
 また、図9,10は、図4に示した、支持部86が透明樹脂プレート80の一部に形成されているものに対して締結部材を適用した例示であるが、図8に示した、支持部86が透明樹脂プレート80とは別体に形成されているものに対しても、図9,10と同様の締結部材を適用することができる。 9 and 10 show an example in which the fastening member is applied to one in which the support portion 86 is formed in a part of the transparent resin plate 80 shown in FIG. The fastening members similar to those shown in FIGS. 9 and 10 can be applied to the case where the support portion 86 is formed separately from the transparent resin plate 80.
 本実施形態の灯火部100は、回路基板11が保護カバー30に接して設けられているため、熱伝導の形式によっても、LED素子14の発熱が回路基板11を介して保護カバー30に伝わり、保護カバー30の温度を一層高めることができる。 In the lamp unit 100 of the present embodiment, since the circuit board 11 is provided in contact with the protective cover 30, the heat generation of the LED element 14 is transmitted to the protective cover 30 via the circuit board 11 even by heat conduction. The temperature of the protective cover 30 can be further raised.
 さらに、本実施形態の灯火部100は、回路基板11上に制御回路15がところどころに設けられていることにより、保護カバー30を制御回路15からの熱伝導により一層温めることができるとともに、この制御回路15も透明樹脂プレート80の凹部84,85と保護カバー30とにより囲まれて、狭い空間P内に閉じ込められているため、この空間P内で対流する制御回路15の熱を、保護カバー30に対流で伝熱させやすくし、保護カバー30の温度をさらに高めることができる。 Furthermore, the lighting unit 100 according to the present embodiment can further warm the protective cover 30 by heat conduction from the control circuit 15 by providing the control circuit 15 on the circuit board 11 in a certain place, and this control The circuit 15 is also surrounded by the recesses 84 and 85 of the transparent resin plate 80 and the protective cover 30 and is confined in the narrow space P, so the heat of the control circuit 15 convecting in the space P is the protective cover 30. Heat transfer by convection, and the temperature of the protective cover 30 can be further raised.
 また、本実施形態の灯火部100は、保護カバー30と透明樹脂プレート80の凹部83とによって囲んで形成された空間Pに保護カバー30が臨む面の面積S2が、リフレクタ20で反射され保護カバー30から外部に光Lが出射する領域の面積S1よりも狭い面積であるため、熱の対流する空間Pを狭い領域に限定することができ、熱の拡散の度合いを低減することができる。 In the light portion 100 of the present embodiment, the area S2 of the surface facing the protective cover 30 in the space P formed by the protective cover 30 and the concave portion 83 of the transparent resin plate 80 is reflected by the reflector 20 and protected. Since the area is smaller than the area S1 of the area from which the light L is emitted from 30 to the outside, the heat convective space P can be limited to a narrow area, and the degree of heat diffusion can be reduced.
 すなわち、保護カバー30と凹部83とによって囲んで形成された空間Pの容積が小さいものであったとしても、その空間Pに保護カバー30が臨む面積が広く、かつ凹みが薄い空間である場合には、外部に光Lが出射する面の面積を広く確保することが可能ではあるが、発熱源である回路基板11からの熱は保護カバー30を広範囲に温度を上げることになり、その温度は上昇しにくくなる。 That is, even if the volume of the space P formed by surrounding the protective cover 30 and the recess 83 is small, the area where the protective cover 30 faces the space P is wide and the recess is thin. Although it is possible to secure a wide area of the surface from which the light L is emitted to the outside, the heat from the circuit board 11, which is a heat source, raises the temperature of the protective cover 30 widely, and the temperature is It becomes difficult to rise.
 これに対して、本実施形態のように、仕切られた空間Pに保護カバー30が臨む面の面積S2が、光Lの通過する面の領域の面積S1も狭く形成されていれば、熱の拡散の度合いを低減することができ、その温度は上昇しやすくなる。 On the other hand, if the area S2 of the surface on which the protective cover 30 faces the partitioned space P and the area S1 of the surface through which the light L passes are formed narrow as in this embodiment, heat The degree of diffusion can be reduced and its temperature tends to rise.
 なお、凹部83,84,85はいずれも、その曲率が滑らか(連続的)に変化するように形成されているため、LED素子14から閉じた空間Pに出射した光Lが、透明樹脂プレート80の凹部83,84,85を透過するときに、凹部83,84,85への入射と凹部83,84,85からの出射とで、光Lの進行方向を連続的に変化させることができる。 The concave portions 83, 84, 85 are formed so that their curvatures change smoothly (continuously), so that the light L emitted from the LED element 14 into the closed space P is the transparent resin plate 80. When the light is transmitted through the concave portions 83, 84, 85, the traveling direction of the light L can be continuously changed by the incidence to the concave portions 83, 84, 85 and the light emission from the concave portions 83, 84, 85.
 これと同様に、リフレクタ20で反射した光Lが透明樹脂プレート80の凹部83,84,85を透過するときに、凹部83,84,85への入射と凹部83,84,85からの出射とで、光Lの進行方向を連続的に変化させることができる。 Similarly, when the light L reflected by the reflector 20 passes through the recesses 83, 84, 85 of the transparent resin plate 80, the light L is incident on the recesses 83, 84, 85 and emitted from the recesses 83, 84, 85. Thus, the traveling direction of the light L can be changed continuously.
 したがって、灯火部100の外部において視認される光Lの強度分布を滑らかに変化させることができる。 Therefore, the intensity distribution of the light L visually recognized in the exterior of the lighting part 100 can be changed smoothly.
 本実施形態の灯火部100は、透明樹脂プレート80の各凹部83,84,85を、曲率が滑らかに変化するように形成されたものとした例であるが、各凹部83,84,85のうち、LED素子14のみを囲む凹部83については、図11に示すように、LED素子14の発光点14cを中心とした球面で形成したものとするのが好ましい。 The light portion 100 of the present embodiment is an example in which each concave portion 83, 84, 85 of the transparent resin plate 80 is formed so as to change the curvature smoothly, but the light portion 100 of each concave portion 83, 84, 85 Among them, the recess 83 surrounding only the LED element 14 is preferably formed as a spherical surface centered on the light emitting point 14 c of the LED element 14 as shown in FIG.
すなわち、透明樹脂プレート80の凹部83が、LED素子14の発光点14cを中心とした球面であることにより、LED素子14の発光点14cから出射した光Lは透明樹脂プレート80に対して略垂直に入射する。 That is, since the recess 83 of the transparent resin plate 80 is a spherical surface centered on the light emitting point 14 c of the LED element 14, the light L emitted from the light emitting point 14 c of the LED element 14 is substantially perpendicular to the transparent resin plate 80 Incident to
そして、光Lが透明樹脂プレート80の凹部83に入射するときに、凹部83で仕切られた空間Pの空気層と透明樹脂プレート80との界面(透明樹脂プレート80の凹部83の表面)で反射する割合は、光Lがその界面に垂直に入射するときが最も少ない。したがって、LED素子14から発光した光Lのうち透明樹脂プレート80で反射する反射光の量を低減することができる。 Then, when the light L enters the concave portion 83 of the transparent resin plate 80, the light L is reflected at the interface between the air layer of the space P partitioned by the concave portion 83 and the transparent resin plate 80 (surface of the concave portion 83 of the transparent resin plate 80) The ratio at which light L is incident perpendicularly to the interface is the smallest. Therefore, the amount of light reflected from the transparent resin plate 80 in the light L emitted from the LED element 14 can be reduced.
しかも、仮に、透明樹脂プレート80の凹部83の表面で、一部の光が反射した場合であっても、その反射した光は、透明樹脂プレート80の凹部83の表面に対して垂直に反射するため、その反射した光はLED素子14に戻り、保護カバー30を通過して灯火部100の外部に出射しない。 Moreover, even if part of the light is reflected on the surface of the recess 83 of the transparent resin plate 80, the reflected light is reflected perpendicularly to the surface of the recess 83 of the transparent resin plate 80. Therefore, the reflected light returns to the LED element 14, does not pass through the protective cover 30, and is not emitted to the outside of the lighting unit 100.
 一方、凹部83が球面でない透明樹脂プレート80の場合、その凹部83の表面で反射した光は、必ずしもLED素子14に戻るものではないため、保護カバー30を通って灯火部100の外部に出射する。 On the other hand, when the recess 83 is a non-spherical transparent resin plate 80, the light reflected by the surface of the recess 83 does not necessarily return to the LED element 14, and therefore emits through the protective cover 30 to the outside of the lamp portion 100. .
 そして、透明樹脂プレート80の凹部83の表面で反射して灯火部100の外部に出射した光は、LED素子14の近傍に点在する、不自然な光として、歩行者や運転者等に視認され得る。 Then, the light reflected by the surface of the concave portion 83 of the transparent resin plate 80 and emitted to the outside of the light portion 100 is visually recognized by pedestrians, drivers, etc. as unnatural light scattered in the vicinity of the LED element 14 It can be done.
 しかし、透明樹脂プレート80の凹部83を、LED素子14を中心とした球面に形成した例では、凹部83での反射を抑制するとともに、仮に凹部83で反射したとしても、その反射した光は灯火部100の外部に出射しないため、灯火部100の外部の歩行者や運転者等に、不自然な光を視認させることがない。 However, in the example in which the concave portion 83 of the transparent resin plate 80 is formed into a spherical surface centering on the LED element 14, the reflection at the concave portion 83 is suppressed, and even if it is reflected by the concave portion 83, the reflected light is a light Since the light is not emitted to the outside of the unit 100, unintended light is not visually recognized by a pedestrian or a driver outside the light unit 100.
 また、図11に示した例の灯火部100は、透明樹脂プレート80のうち、各LED素子14から、対応するリフレクタ20の凹面21に向かって出射した光Lが通過する光路に対応した部分αには、そのLED素子14から出射した光Lを拡散させる拡散部83aが形成されている。 Further, the lighting unit 100 in the example shown in FIG. 11 is a portion α of the transparent resin plate 80 corresponding to the light path through which the light L emitted from the LED elements 14 toward the concave surface 21 of the corresponding reflector 20 passes. There is formed a diffusion portion 83 a for diffusing the light L emitted from the LED element 14.
 この拡散部83aは、例えば凹部83の面を粗くして、その粗面で拡散を起こさせるものや、透明樹脂プレート80の内部に、拡散させる物質を混ぜたものである。 In the diffusion portion 83a, for example, the surface of the concave portion 83 is roughened to cause diffusion on the rough surface, or a substance to be diffused is mixed into the inside of the transparent resin plate 80.
 凹部83の面を粗くする手法としては、型によって粗面を形成するもの、拡散材を塗布して形成するもの、研削によって形成するものなど、種々の手法を適用することができる。 As a method of roughening the surface of the concave portion 83, various methods such as a method of forming a rough surface by a mold, a method of applying a diffusion material, and a method of forming by grinding can be applied.
 ここで、拡散部83aが形成されていないものでは、LED素子14からリフレクタ20に向かって出射し、リフレクタ20で反射した光Lが、灯火部100の外部で視認されるとき、点光源としてのLED素子14の発光点14cの像として視認される。 Here, in the case where the diffusion part 83 a is not formed, when light L emitted from the LED element 14 toward the reflector 20 and reflected by the reflector 20 is viewed outside the lamp part 100, the light L as a point light source It is visually recognized as an image of the light emitting point 14 c of the LED element 14.
 一方、図11に示したように、拡散部83aが形成されたものでは、LED素子14からリフレクタ20に向かって出射した光Lが通過する透明樹脂プレート80の拡散部83aによって拡散されると、その透明樹脂プレート80の拡散部83aで拡散された光の像がリフレクタ20で反射された像として、外部から視認されることになり、擬似的に、面発光した光源の像として認識される。 On the other hand, as shown in FIG. 11, in the case where the diffusion portion 83a is formed, when light L emitted from the LED element 14 toward the reflector 20 is diffused by the diffusion portion 83a of the transparent resin plate 80 through which the light L passes, An image of light diffused by the diffusion portion 83a of the transparent resin plate 80 is visually recognized from the outside as an image reflected by the reflector 20, and is artificially recognized as an image of a surface-emitting light source.
 そして、点光源としてのLED素子14で発光した光Lが、外部の視認者にそのまま視認されると、視認者対して粒状感を与えるのに対して、面発光する光Lとして視認されたときは、そのような粒状感を緩和させることができる。 When the light L emitted by the LED element 14 as a point light source is perceived as it is by the external viewer, it gives a granular feeling to the viewer but is viewed as the light L emitting surface light Can alleviate such graininess.
 したがって、面光源を適用することができない制約のため点光源のLED素子14を用いた構成の灯火部100であっても、点光源による粒状感を緩和させることができる。 Therefore, even with the lighting unit 100 configured using the LED elements 14 of the point light source due to the restriction that the surface light source can not be applied, it is possible to alleviate the graininess due to the point light source.
 なお、図11に示すように、透明樹脂プレート80のうち、LED素子14から、そのLED素子14に対応するリフレクタ20の凹面21に向かう光L(リフレクタ20のうち、個々のLED素子14に隣接するLED素子14に対応した凹面21に向かう光L′を含まない。)の光路に対応する部分αにおいてのみ、拡散部83aが形成されているものの例では、灯火部100の外部の視認者は、リフレクタ20に映った光像として光Lを認識するため、灯火部100が、LED素子14の数(リフレクタ20における凹面21の数)に分割された状態に見える感覚であるブロック感は残る。 As shown in FIG. 11, light L directed from the LED element 14 to the concave surface 21 of the reflector 20 corresponding to the LED element 14 in the transparent resin plate 80 (adjacent to each LED element 14 of the reflector 20) In the example where the diffusion part 83a is formed only in the part α corresponding to the light path of the light L 'directed to the concave surface 21 corresponding to the LED element 14). Since the light L is recognized as a light image reflected on the reflector 20, a block feeling which is a feeling that the lighting unit 100 looks divided into the number of LED elements 14 (the number of concave surfaces 21 in the reflector 20) remains.
 ただし、このブロック感は、灯火部100を外部から視認したとき、光っている部分(相対的に明るい部分)と光っていない部分(相対的に暗い部分)とが分布することで形成されるが、一方、その光っていない部分(相対的に暗い部分)が、保護カバー30に貼付された、光Lを遮蔽する回路基板11の存在を目立たなくするのに役立つ。 However, this sense of blockiness is formed by the distribution of a bright part (relatively bright part) and a non-bright part (relatively dark part) when the lamp part 100 is viewed from the outside. On the other hand, the non-brighting portion (relatively dark portion) serves to make the presence of the circuit board 11 for shielding the light L attached to the protective cover 30 less noticeable.
 つまり、ブロック感が無くなって光量分布が一様になると、回路基板11が貼付された部分だけ光Lが外部に出射しないため、回路基板11が存在する部分と存在しない部分とでコントラストが強くなり、回路基板11の存在感が顕著になるが、上述したブロック感は、光っている部分が点在した状態であるため、回路基板11の存在を目立たなくすることができる。 That is, when the blockiness disappears and the light amount distribution becomes uniform, the light L is not emitted only to the portion where the circuit board 11 is attached, so the contrast becomes strong between the portion where the circuit board 11 exists and the portion where it does not exist. Although the presence of the circuit board 11 becomes remarkable, the above-described sense of blockiness can be made inconspicuous in the presence of the circuit board 11 because the glowing portions are scattered.
 また、透明樹脂プレート80の拡散部83aで拡散した光Lも、灯火部100の外部へ出射する光の向きを、リフレクタ20によってある程度制限することができるため、灯火部100の外部へ出射する光Lが過度に拡がるのを防止することができる。 In addition, the light L diffused by the diffusion portion 83 a of the transparent resin plate 80 can also restrict the direction of the light emitted to the outside of the light portion 100 to some extent by the reflector 20, so the light emitted to the outside of the light portion 100 It is possible to prevent L from spreading excessively.
 図11に示したものは、拡散部83aを透明樹脂プレート80の一部にのみ形成したものであるが、透明樹脂プレート80に拡散材を混在させる等して、透明樹脂プレート80の全体を拡散部とする構成を採用することもできる。 Although what was shown in FIG. 11 formed the spreading | diffusion part 83a only in a part of transparent resin plate 80, it is made to mix the spreading | diffusion material in the transparent resin plate 80, etc., and the whole transparent resin plate 80 is diffused. It is also possible to adopt a configuration as a part.
 このように、透明樹脂プレート80の全部が光を拡散させるものの場合は、灯火部100の外部の視認者は、リフレクタ20で反射し、透明樹脂プレート80を再び通過した面での光像として光Lを認識するため、リフレクタ20のブロック感も緩和させることができる。 As described above, in the case where the entire transparent resin plate 80 diffuses light, a viewer outside the lighting unit 100 reflects the light by the reflector 20, and as a light image on the surface which passes through the transparent resin plate 80 again. Since L is recognized, the blockiness of the reflector 20 can also be relaxed.
 ただし、LED素子14から出射した光は、透明樹脂プレートを2回通過して外部に出射するため、通過の度に拡散されて、保護カバー30から外部に出射したときには、光Lの拡がり角度が過度に大きくなる可能性があるので、拡散材の含有率や適切な分散度の拡散材を選択する必要がある。 However, since the light emitted from the LED element 14 passes through the transparent resin plate twice and is emitted to the outside, the light L is diffused at the degree of passage, and when it is emitted to the outside from the protective cover 30, the spread angle of the light L is Since it may become excessively large, it is necessary to select a diffusion material having a diffusion material content and an appropriate degree of dispersion.
 なお、透明樹脂プレート80の一部にのみ拡散部83aを形成したものでは、その一部にのみ拡散材を混在させるよりも、その一部に対してのみ、表面を粗くする加工等を施す方が、製造が容易で好ましい。 In the case where the diffusion part 83a is formed only in a part of the transparent resin plate 80, the process of roughening the surface is carried out only on a part thereof, rather than mixing the diffusion material only on a part thereof. But is easy to manufacture and is preferred.
 また、上述した各実施形態の灯火部100において、リフレクタ20は、各LED素子14ごとに対応する凹状(例えば、放物面)の反射面である凹面21を有しているが、これらの各凹面21が、例えば図12に示すように、複数の小さな凸状の小反射面21a,21b,21c,21d,21e,21f,21g,21h,21i,21j,21k,21l(これら小反射面は、凸面であってもよいし、凹面であってもよいし、平面であってもよい。)の組み合わせによって形成されたもの(ファセットリフレクタ)であるときは、透明樹脂プレート80の、LED素子14を囲む凹部83を、リフレクタ20の各小反射面21a,…と略同じ大きさに形成された小領域83b,83b,…(これら各小領域83b,83b,…も、LED素子14に向かって凸状であってもよいし、凹状であってもよいし、平面状であってもよい。)の組み合わせによって形成されたものとするのが好ましい。 Moreover, in the lighting part 100 of each embodiment mentioned above, although the reflector 20 has the concave surface 21 which is a reflective surface of the concave (for example, paraboloid) corresponding to each LED element 14, these each For example, as shown in FIG. 12, the concave surface 21 has a plurality of small convex small reflection surfaces 21a, 21b, 21c, 21d, 21e, 21f, 21g, 21h, 21i, 21j, 21k, 21l (these small reflection surfaces , The convex surface, the concave surface, or the flat surface) (facet reflector), the LED element 14 of the transparent resin plate 80 Small regions 83b, 83b,... (Each of these small regions 83b, 83b,..., L) are formed to have substantially the same size as the small reflective surfaces 21a,. May be a convex shape toward the D element 14 may be a concave, preferably to those formed by the combination of which may be.) Planar.
 リフレクタ20の各凹面21が複数の小さな小反射面21a,…の組み合わせによって形成されていることにより、各LED素子14から出射され、リフレクタ20の、対応する各凹面21で反射する光Lは、その反射する部分に応じて、それぞれ異なる小反射面21a,…で反射するため、灯火部100の外部の歩行者や運転者等は、1つのLED素子14から出射した光Lを、複数の小反射面21a,…で反射した光として視認する。 Each concave surface 21 of the reflector 20 is formed of a combination of a plurality of small small reflecting surfaces 21 a,..., So that light L emitted from each LED element 14 and reflected by the corresponding concave surface 21 of the reflector 20 is A pedestrian or a driver outside the lighting unit 100, for example, reflects light L emitted from one LED element 14 to a plurality of small lights, since the light is reflected by different small reflection surfaces 21a,. It is visually recognized as light reflected by the reflecting surfaces 21a,.
 反射面が単一の滑らかな凹面21である場合は、凹面21の中心部付近が最も明るく、中心部から離れるにしたがって単調に暗くなるが、上述のように反射面が複数の小反射面21a,…によって形成されたものの場合は、反射面の中心部付近だけでなく、中心部を含む周囲の複数の小反射面21a,…で反射された光も外部に出射されるため、中心部から離れるにしたがって単調に暗くなるのではなく、明暗を繰り返しながら徐々に暗くなる分布を得ることができる。 When the reflective surface is a single smooth concave surface 21, the central portion of the concave surface 21 is the brightest and monotonously darkens as it goes away from the central portion, but as described above, the reflective surface is a plurality of small reflective surfaces 21 a In the case of those formed by ..., since light reflected not only in the vicinity of the central part of the reflective surface but also on a plurality of small reflective surfaces 21a, ... including the central part is emitted to the outside, from the central part It is possible to obtain a distribution that gradually becomes dark while repeating light and dark, instead of becoming monotonously dark as it goes away.
 このとき、その歩行者や運転者等は、小反射面21a,…の大きさに依存した粒状感を以て光Lを視認する。 At this time, the pedestrian or the driver visually recognizes the light L with a granular feeling depending on the size of the small reflective surfaces 21a,.
 一方、透明樹脂プレート80の凹部83が、リフレクタ20の小反射面21a,…と略同じ大きさの小領域83bを複数組み合わせて形成されていることにより、LED素子14から発光した光Lのうち透明樹脂プレート80の凹部83の表面で反射する光は、透明樹脂プレート80の各小領域83b,…ごとに反射するため、灯火部100の外部の歩行者や運転者等は、その透明樹脂プレート80も凹部83で反射した光を、複数の小領域83b,…で反射した光として視認する。 On the other hand, the concave portion 83 of the transparent resin plate 80 is formed by combining a plurality of small areas 83b having substantially the same size as the small reflective surfaces 21a, ... of the reflector 20, the light L emitted from the LED element 14 The light reflected from the surface of the concave portion 83 of the transparent resin plate 80 is reflected by each of the small regions 83b of the transparent resin plate 80, so that pedestrians and drivers outside the lighting unit 100 can use the transparent resin plate. Also, the light reflected by the concave portion 83 is visually recognized as the light reflected by the plurality of small regions 83 b,.
 つまり、その歩行者や運転者等は、小領域83bの大きさに依存した粒状感を以て、凹部83で反射光を視認する。 That is, the pedestrian, the driver or the like visually recognizes the reflected light in the recess 83 with a granular feeling depending on the size of the small area 83 b.
 そして、各小領域83b,…の大きさは、小反射面21a,…と略同じ大きさであるため、小領域83b,…で反射した反射光の粒状の大きさが小反射面21a,…で反射した反射光の粒状の大きさに揃う。 Since the size of each of the small regions 83b is substantially the same as that of the small reflective surfaces 21a, the grain size of the reflected light reflected by the small regions 83b is smaller than that of the small reflective surfaces 21a,. It matches with the grain size of the reflected light reflected by.
 したがって、透明樹脂プレート80の凹部83での反射光が、リフレクタ20の小反射面21a,…での反射光と粒状の大きさが異なる、という事態は生じないため、リフレクタ20の小反射面21a,…での反射光に対して、透明樹脂プレート80の凹部83での反射光が粒状の大きさの違いという観点で目立つ、ということがない。 Therefore, the light reflected by the concave portion 83 of the transparent resin plate 80 does not have a different grain size from the light reflected by the small reflective surfaces 21 a of the reflector 20, so the small reflective surface 21 a of the reflector 20 does not occur. The reflected light at the concave portion 83 of the transparent resin plate 80 does not stand out from the viewpoint of the difference in grain size with respect to the reflected light at.
 つまり、灯火部100の外部から光を視認する歩行者や運転者等は、リフレクタ20での反射光の他に、透明樹脂プレート80の凹部83での反射光を視認していても、両反射光の粒状の大きさが略同じであるため、透明樹脂プレート80の凹部83での反射光の目立ち度合いを低減することができる。 That is, even if a pedestrian or driver who visually recognizes light from the outside of the light unit 100 visually recognizes the reflected light at the concave portion 83 of the transparent resin plate 80 in addition to the reflected light at the reflector 20 Since the particle size of the light is substantially the same, the degree of conspicuousness of the reflected light at the concave portion 83 of the transparent resin plate 80 can be reduced.
 なお、透明樹脂プレート80の凹部83の表面の形状を、図11に示した、LED素子14を中心とした球面として、透明樹脂プレート80での反射光の出射を防止する例においては、仮に、その球面の、保護カバー30の面に沿った開口面積を大きく設定しようと試みた場合、リフレクタ20に向かう方向の長さ(球面の半径に相当:灯火部100の厚さに影響する物理量)を大きくせざるを得ない。 In the example shown in FIG. 11 where the shape of the surface of the concave portion 83 of the transparent resin plate 80 is a spherical surface centered on the LED element 14, temporary emission of reflected light from the transparent resin plate 80 is prevented. If an attempt is made to set the opening area of the spherical surface along the surface of the protective cover 30 large, the length in the direction toward the reflector 20 (corresponding to the radius of the spherical surface: physical quantity affecting the thickness of the lamp 100) I can not but increase it.
 これに対して、透明樹脂プレート80を複数の小領域83b,…の組み合わせとして形成したものでは、透明樹脂プレート80の上記開口面積を大きく設定しようと試みた場合であっても、リフレクタ20に向かう方向の長さを大きくする必要がないため、透明樹脂プレート80の、LED素子14を囲む凹部83の形状の設計自由度を向上させることができる。
On the other hand, in the case where the transparent resin plate 80 is formed as a combination of a plurality of small regions 83 b,..., Even when the opening area of the transparent resin plate 80 is tried to be set large, Since it is not necessary to increase the length of the direction, the design freedom of the shape of the recess 83 surrounding the LED element 14 of the transparent resin plate 80 can be improved.
 また、透明樹脂プレート80の凹部83の表面の形状を複数の小領域83b,…で形成した図12の例を、LED素子14を中心とした球面として透明樹脂プレート80での反射光の出射を防止する図11の例と比較すると、複数の小領域83b,…の表面で反射した反射光は、LED素子14に戻され吸収されることがなく、灯火部100の外部から光を視認する歩行者や運転者等へ反射されるため、光の取り出し効率を高めることができる。 Further, the example of FIG. 12 in which the shape of the surface of the concave portion 83 of the transparent resin plate 80 is formed by a plurality of small regions 83b,... Compared with the example of FIG. 11 to prevent, the reflected light reflected on the surfaces of the plurality of small regions 83b,... Is not absorbed back to the LED element 14, and the light is visually recognized from the outside of the lamp 100 Since the light is reflected to the driver or the driver, the light extraction efficiency can be enhanced.
 本実施形態の灯火部100は、渦巻き状の回路基板11を用いたものであるが、本発明に係る発光装置における回路基板は、この実施形態のものに限定されるものではなく、リフレクタ20による反射光Lを外部に透過可能の隙間や透明性を有しているものであれば、いかなる形状、特性のものであっても適用することができる。 The lighting unit 100 of the present embodiment uses a spiral circuit board 11. However, the circuit board in the light emitting device according to the present invention is not limited to that of this embodiment, and the reflector 20 is used. Any shape or characteristic may be applied as long as it has a gap or transparency that allows the reflected light L to be transmitted to the outside.
 なお、回路基板11はリフレクタ20で反射した光Lの光路上に配置されるため、回路基板11の幅Wが広くなるにしたがって、反射した光Lを遮る量が増大することになる。 Since the circuit board 11 is disposed on the optical path of the light L reflected by the reflector 20, as the width W of the circuit board 11 becomes wider, the amount of blocking the reflected light L increases.
 したがって、幅Wは可能な限り狭くするか、または光Lの通過を妨げない透過性を有するものであることが望ましい。 Therefore, it is desirable that the width W be as narrow as possible or have a transparency that does not prevent the passage of the light L.
 上述した実施形態1は、本発明に係る発光装置を交通信号灯200の灯火部100に適用した例であるが、本発明に係る発光装置は、この実施形態に限定されるものではなく、街路灯や照明器具等に適用することができる。 Embodiment 1 mentioned above is an example which applied a light-emitting device concerning the present invention to lighting part 100 of traffic signal lamp 200, but a light-emitting device concerning the present invention is not limited to this embodiment, A street lamp And lighting equipment.
 また、反射型の発光装置である本実施形態の灯火部100は、LED素子14からの出射光Lの向き等をリフレクタ20の形状等によって任意に調整することができるため、光Lを出射しようとする範囲については、高い効率で外部に出射することができるため、従来の非反射型LEDの交通信号灯の灯火部に比べて、LED素子14の数量を大幅に低減することができ、コストを低減することができる。 Further, since the light portion 100 of the present embodiment, which is a reflection type light emitting device, can adjust the direction and the like of the emitted light L from the LED element 14 according to the shape and the like of the reflector 20, the light L should be emitted. In the range to be taken, since the light can be emitted to the outside with high efficiency, the number of LED elements 14 can be significantly reduced compared to the conventional non-reflective LED traffic light part, and the cost can be reduced. It can be reduced.
 例えば、LEDを用いた非反射型の交通信号灯の灯火部は、百数十個から四百数十個のLEDを用いているが、本実施形態の灯火部100は、わずか31個のLED素子14を用いて、従来の非反射型の信号灯と同程度またはそれ以上の視認性を得ることができる。 For example, although the light part of the traffic light of non-reflection type using LEDs uses one hundred and twenty to four hundred and several hundred LEDs, the light part 100 of this embodiment has only 31 LED elements. 14 can be used to obtain visibility equal to or greater than that of a conventional non-reflection signal lamp.
 しかも、点光源であるLED素子14の光をリフレクタ20の凹面21の全体に拡げて出射させるため、単位面積当たりの光量を低減して、まぶしさ(グレア)を軽減させることができ、車両の運転者が直視するものである交通信号灯200の灯火部100として好適なものとなる。 Moreover, since the light of the LED element 14 which is a point light source is spread and emitted over the entire concave surface 21 of the reflector 20, the amount of light per unit area can be reduced, and glare can be reduced. It becomes suitable as the light part 100 of the traffic signal lamp 200 which a driver | operator looks at directly.
 また、非反射型のLED信号灯器を用いた従来の交通信号灯では粒状感が顕著であり、LED素子の数を極端に減らすと、本来の円形状を表せなくなるが、本実施形態の灯火部100は粒状感を軽減した略面発光を実現できるので、わずかな数のLED素子14を用いて従来のものと同程度またはそれ以上の視認性を得ることができる。 Moreover, the graininess is remarkable in the conventional traffic signal lamp using the non-reflecting LED signal lamp device, and if the number of LED elements is extremely reduced, the original circular shape can not be expressed. Since it is possible to realize substantially surface light emission with reduced graininess, it is possible to obtain visibility equal to or more than that of the conventional one by using a small number of LED elements 14.
(実施形態2)
 以下、本発明に係る発光装置の他の実施形態(実施形態2)について説明する。なお、実施形態1として示した発光装置である灯火部100と実質的に同じ構成については同一の符号を付すとともに、重複する説明は省略するものとする。
Second Embodiment
Hereinafter, another embodiment (embodiment 2) of the light emitting device according to the present invention will be described. In addition, while attaching | subjecting the code | symbol same about the structure substantially the same as the light part 100 which is a light-emitting device shown as Embodiment 1, the overlapping description shall be abbreviate | omitted.
 本実施形態(実施形態2)は、本発明に係る発光装置を図1に示した交通信号灯200の各色(赤色、黄色、緑色)にそれぞれ対応した灯火部100′に適用した例である。 The present embodiment (Embodiment 2) is an example in which the light emitting device according to the present invention is applied to the lamp portion 100 'corresponding to each color (red, yellow, green) of the traffic signal lamp 200 shown in FIG.
 各灯火部100′は、図13に示すように、略円板状に形成された保護カバー30と、有底筒状に形成されたユニットケース40と、これら保護カバー30とユニットケース40との外周縁部同士を重ね合わせた状態に保持させるとともに、保護カバー30とユニットケース40とによって囲まれた内部空間への浸水を防止する環状の防水ゴムパッキン50とによりハウジングが形成されている。 As shown in FIG. 13, each lighting unit 100 ′ includes a protective cover 30 formed in a substantially disc shape, a unit case 40 formed in a cylindrical shape with a bottom, and the protective cover 30 and the unit case 40. A housing is formed of an annular waterproof rubber packing 50 that holds the outer peripheral edge portions in a superimposed state and prevents water immersion in the internal space surrounded by the protective cover 30 and the unit case 40.
 ここで、実施形態1の灯火部100は、回路基板11とリフレクタ20との間に介在した、リフレクタ20とは別体の透明樹脂プレート80が、光Lを透過する仕切り部材または仕切り部として配置された構成であり、実施形態2の灯火部100′は、回路基板11とリフレクタ20との間に介在する仕切り部を、リフレクタ20′(反射部材)の一部として構成した点が異なる。 Here, in the light portion 100 of the first embodiment, a transparent resin plate 80 separate from the reflector 20 and disposed between the circuit board 11 and the reflector 20 is disposed as a partition member or partition portion through which the light L is transmitted. The lamp unit 100 'of the second embodiment is different in that the partition unit interposed between the circuit board 11 and the reflector 20 is configured as a part of the reflector 20' (reflection member).
 すなわち、実施形態2の灯火部100′は、図14に示すように、回路基板11が露出する空間を仕切り、光Lを透過する仕切り部としての透明樹脂層87がリフレクタ20′と一体的に形成されている。 That is, as shown in FIG. 14, in the light portion 100 ′ of the second embodiment, the transparent resin layer 87 as a partition portion which partitions the space where the circuit board 11 is exposed and which transmits the light L is integrated with the reflector 20 ′. It is formed.
 実施形態2の灯火部100′における、透明樹脂層87およびリフレクタ20′以外の構成については、実施形態1の灯火部100における構成と実質的に同じである。 The configuration other than the transparent resin layer 87 and the reflector 20 ′ in the lighting unit 100 ′ of the second embodiment is substantially the same as the configuration in the lighting unit 100 of the first embodiment.
 リフレクタ20′は、図14に示すように、LED素子14の発光面14aに対向する側に設けられていて、LED素子14から出射した光Lを透過する透光性を有する透明樹脂層87の、LED素子14から遠い側の凸面82に反射膜26が形成されたものである。 As shown in FIG. 14, the reflector 20 ′ is provided on the side facing the light emitting surface 14 a of the LED element 14, and of the transparent resin layer 87 having a light transmitting property for transmitting the light L emitted from the LED element 14. The reflective film 26 is formed on the convex surface 82 on the side far from the LED element 14.
 リフレクタ20′の透明樹脂層87は、例えばポリカーボネートなどの透過性を有する材料で形成されていて、図15に示すように、LED素子14に向いた面81には、部分的に凹んだ凹部83,84,85(図14においては凹部83のみを記載)が形成されている。 The transparent resin layer 87 of the reflector 20 'is made of, for example, a transparent material such as polycarbonate and, as shown in FIG. , 84, 85 (only the recess 83 is described in FIG. 14) are formed.
 凹部83はそれぞれ、図14に示すように、回路基板11のうちLED素子14が実装された部分に対応して形成されている。 Recesses 83 are respectively formed corresponding to the portions of circuit board 11 on which LED elements 14 are mounted, as shown in FIG.
 凹部84,85も凹部83と同様であるが、凹部85は、回路基板11のうち、端子16と制御回路15とLED素子14とが連続して並んだ部分に対応して形成されていて、凹部84は、回路基板11のうち、制御回路15とそれを挟んで並んだ2つのLED素子14,14との部分に対応して形成されている。 The recesses 84 and 85 are also the same as the recess 83, but the recess 85 is formed corresponding to the portion of the circuit board 11 in which the terminal 16, the control circuit 15, and the LED element 14 are continuously arranged, The recess 84 is formed corresponding to the portion of the circuit board 11 that is the control circuit 15 and the two LED elements 14 and 14 arranged side by side.
 なお、凹部83は、回路基板11のうち凹部84,85で囲まれていない残りのLED素子14のみに対応して形成されている。 The recess 83 is formed corresponding to only the remaining LED elements 14 of the circuit board 11 which are not surrounded by the recesses 84 and 85.
 回路基板11と保護カバー30の裏面32とは直接接触しているが、リフレクタ20′の各凹部83,84,85と回路基板11とは直接接触しているのではなく、空気層を介した配置となっている。 Although the circuit board 11 and the back surface 32 of the protective cover 30 are in direct contact, the recesses 83, 84 and 85 of the reflector 20 'and the circuit board 11 are not in direct contact but through the air layer It is arranged.
 リフレクタ20′の透明樹脂層87のうち凹部83,84,85以外の部分は、それら凹部83,84,85間を繋ぐとともに、保護カバー30の裏面32に沿った輪郭形状に形成されて、保護カバー30の裏面32に接した状態で保護カバー30にリフレクタ20′を支持する支持部86となっている(図14参照)。 Portions of the transparent resin layer 87 of the reflector 20 'other than the concave portions 83, 84, 85 are formed to have a contour along the back surface 32 of the protective cover 30 while connecting the concave portions 83, 84, 85. A support portion 86 for supporting the reflector 20 'on the protective cover 30 in contact with the back surface 32 of the cover 30 (see FIG. 14).
 この支持部86は例えば溶着によって、保護カバー30にリフレクタ20′を支持するものであってもよいし、リフレクタ20′と支持部86との間に接着剤等が塗布されて保護カバー30にリフレクタ20′を支持するものであってもよい。 The support portion 86 may support the reflector 20 ′ on the protective cover 30 by welding, for example, or an adhesive or the like may be applied between the reflector 20 ′ and the support portion 86 to form a reflector on the protective cover 30. It may support 20 '.
 なお、本実施形態の灯火部100′においては、支持部86が仕切り部としての透明樹脂層87を有するリフレクタ20′の一部として形成されているが、この支持部86は、リフレクタ20′とは別体に形成されて、例えば図16に示すように、リフレクタ20′の凹部83,84,85以外の部分の、保護カバー30に向いた面81と保護カバー30の裏面32との間に介在し、保護カバー30にリフレクタ20′を支持する支持部材として構成してもよい。 In the light portion 100 'of this embodiment, the support portion 86 is formed as a part of the reflector 20' having the transparent resin layer 87 as a partition portion. Is separately formed, for example, as shown in FIG. 16, between the surface 81 facing the protective cover 30 and the back surface 32 of the protective cover 30 in the portion other than the concave portions 83, 84, 85 of the reflector 20 '. The protective cover 30 may be configured as a support member to support the reflector 20 '.
 この場合も、支持部86は例えば溶着によって、保護カバー30にリフレクタ20′を支持するものであってもよいし、リフレクタ20′と支持部86との間および保護カバー30と支持部86との間にそれぞれ接着剤等が塗布されて保護カバー30にリフレクタ20′を支持するものであってもよい。 Also in this case, the support portion 86 may support the reflector 20 ′ on the protective cover 30 by welding, for example, or between the reflector 20 ′ and the support portion 86 and between the protective cover 30 and the support portion 86. An adhesive or the like may be applied between them to support the reflector 20 ′ on the protective cover 30.
 本実施形態の灯火部100′は、リフレクタ20′の透明樹脂層87の凹部83(84,85)はそれぞれ、LED素子14とリフレクタ20′との間において、回路基板11のうちLED素子14が実装された部分を保護カバー30とともに囲んで、この回路基板11の部分の周囲を閉じた狭い空間Pに仕切っている。 In the light portion 100 'of the present embodiment, the recessed portions 83 (84, 85) of the transparent resin layer 87 of the reflector 20' are respectively the LED elements 14 of the circuit board 11 between the LED elements 14 and the reflector 20 '. The mounted portion is enclosed with the protective cover 30 and partitioned into a narrow space P in which the periphery of the circuit board 11 is closed.
 なお、図16に示した構成の支持部86の場合は、各凹部83,84,85の外方の全周に亘って環状に形成されたものであることが好ましく、このように環状に形成されていることによって、支持部86が、保護カバー30とリフレクタ20′とによってLED素子14の周囲を囲んだ状態とすることができる。 In addition, in the case of the support part 86 of the structure shown in FIG. 16, it is preferable that it is annularly formed over the outer periphery of each recessed part 83,84,85, and it forms in this way cyclically. By doing this, the support 86 can be surrounded by the protective cover 30 and the reflector 20 '.
 ただし、支持部86をそのように環状に形成するものでなく、リフレクタ20′の凹部83,84,85以外の部分の所々に点在して形成してもよい。 However, the support portion 86 may not be formed annularly in such a manner, and may be formed so as to be dotted in places other than the concave portions 83 84 85 of the reflector 20 ′.
 凹部84,85の周囲にそれぞれ形成された支持部86も凹部83の周囲にそれぞれ形成された支持部86と同様であるが、凹部85の周囲にそれぞれ形成された支持部86、保護カバー30およびリフレクタ20′の透明樹脂層87は、回路基板11のうち、端子16と制御回路15とLED素子14とが連続して並んだ部分を一体的に囲んでいる。 The support portions 86 formed around the recesses 84 and 85 are similar to the support portions 86 formed around the recess 83, but the support portions 86 formed around the recess 85, the protective cover 30, and the like. The transparent resin layer 87 of the reflector 20 'integrally surrounds a portion of the circuit board 11 in which the terminal 16, the control circuit 15, and the LED element 14 are continuously arranged.
 凹部84の周囲にそれぞれ形成された支持部86、保護カバー30およびリフレクタ20′の透明樹脂層87は、回路基板11のうち、制御回路15とそれを挟んで並んだ2つのLED素子14,14との部分を一体的に囲んでいる。 The support portion 86 formed around the recess 84, the protective cover 30, and the transparent resin layer 87 of the reflector 20 'are two circuit elements 11 and 14 of the circuit board 11 aligned with the control circuit 15 therebetween. And one part of it.
 なお、凹部83の周囲にそれぞれ形成された支持部86、保護カバー30およびリフレクタ20′の透明樹脂層87は、回路基板11のうち凹部84,85で囲まれていない残りのLED素子14のみの部分を個別に囲んでいる。 The supporting portion 86 formed around the recess 83, the protective cover 30, and the transparent resin layer 87 of the reflector 20 'are only the remaining LED elements 14 not surrounded by the recesses 84 and 85 in the circuit board 11. The parts are individually enclosed.
 反射膜26は、透明樹脂層87の凸面82に金属膜を蒸着またはメッキして生成されているが、この形態に限定されるものではない。 The reflective film 26 is formed by depositing or plating a metal film on the convex surface 82 of the transparent resin layer 87, but is not limited to this form.
 なお、反射膜26が形成される透明樹脂層87の凸面82のうち、LED素子14の発光面14aの直下の部分は、図14,16に示すように、発光面14aに向けて略円錐状に突出して形成されている。 Of the convex surface 82 of the transparent resin layer 87 on which the reflective film 26 is formed, the portion directly below the light emitting surface 14a of the LED element 14 is substantially conical in shape toward the light emitting surface 14a as shown in FIGS. It is formed to be protruded.
 反射膜26の、透明樹脂層87に向いた面28,29が、LED素子14から透明樹脂層87に入射した光Lを保護カバー30の方向(LED素子14の背面14bの向いた方向)に反射する反射面となっている。 The surfaces 28 and 29 of the reflective film 26 facing the transparent resin layer 87 direct light L incident from the LED element 14 to the transparent resin layer 87 in the direction of the protective cover 30 (direction of the back surface 14 b of the LED element 14). It is a reflective surface that reflects.
 なお、反射面28は発光面14aの中心である発光点14cを焦点とする略放物面で形成されていて、発光面14aから出射した出射光Lを反射したとき、その反射した光Lが略平行光となるようにしている。 The reflecting surface 28 is formed substantially in a paraboloid whose focal point is the light emitting point 14c which is the center of the light emitting surface 14a, and when the light L emitted from the light emitting surface 14a is reflected, the reflected light L is It is made to be approximately parallel light.
 一方、透明樹脂層87の、発光面14aに向けて略円錐状に突出して形成されている面に沿って形成された反射面29は、発光面14aから略鉛直下方に出射した出射光Lを反射したとき、その反射した光LがLED素子14にそのまま戻らないようにするために形成されたものである。 On the other hand, the reflecting surface 29 formed along the surface of the transparent resin layer 87 which is formed so as to project in a substantially conical shape toward the light emitting surface 14a is the emitted light L emitted substantially vertically downward from the light emitting surface 14a. When the light is reflected, it is formed to prevent the reflected light L from returning to the LED element 14 as it is.
 つまり、反射した光LがLED素子14にそのまま戻ると、その反射した光LはLED素子14自体により遮光されるが、本実施形態のように略円錐状に突出した部分が形成されていると、その斜面である反射面29で反射した光Lは、LED素子14にそのまま戻らないため、LED素子14自体による遮光を回避することができる。 That is, when the reflected light L returns to the LED element 14 as it is, the reflected light L is blocked by the LED element 14 itself, but if a substantially conical projecting portion is formed as in this embodiment. Since the light L reflected by the reflective surface 29 which is the slope does not return to the LED element 14 as it is, light shielding by the LED element 14 itself can be avoided.
 リフレクタ20′の反射面28,29で反射されて保護カバー30に向かった光Lは、保護カバー30を透過して灯火部100′の外部に出射され、外部の視認者等によって視認され得るものとなる。 Light L reflected by the reflecting surfaces 28 and 29 of the reflector 20 'and traveling toward the protective cover 30 is transmitted through the protective cover 30 and emitted to the outside of the light portion 100' and can be viewed by an external viewer or the like It becomes.
 なお、保護カバー30の、リフレクタ20′で反射された光Lが透過する領域の面積をS1とする。 The area of a region of the protective cover 30 through which the light L reflected by the reflector 20 'is transmitted is S1.
 ここで、図14に示すように、保護カバー30の、反射面28,29からの光Lが透過する領域の面積S1に対し、保護カバー30とリフレクタ20′の凹部83とによって囲んで形成された空間Pに保護カバー30が臨む面の面積をS2とすると、リフレクタ20′は、面積S2が面積S1よりも狭い面積となる(S2<S1)ように形成されている。 Here, as shown in FIG. 14, the protective cover 30 is formed so as to surround the area S1 of the area through which the light L from the reflective surfaces 28 and 29 transmits, by the protective cover 30 and the recess 83 of the reflector 20 '. Assuming that the area of the surface of the protective cover 30 facing the space P is S2, the reflector 20 'is formed such that the area S2 is smaller than the area S1 (S2 <S1).
 以上のように構成された実施形態2の灯火部100′によると、LED素子14から発せられた熱の対流する範囲は、保護カバー30とリフレクタ20′の各凹部83,84,85とが仕切って形成された内側の狭い空間P内だけとなる。 According to the light portion 100 'of the second embodiment configured as described above, the protective cover 30 and the concave portions 83, 84, 85 of the reflector 20' divide the heat convective range of the LED element 14 into a convective range It becomes only inside the narrow space P formed inside.
 そして、この狭い空間P内の熱は、広い空間(特に、リフレクタ20′の各凹部83,84,85などで仕切られていない、実質的に開放された空間)に放出された場合の熱よりも拡散しにくく、その空間に臨んだ保護カバー30に伝わりやすい。 Then, the heat in the narrow space P is released from the heat in the case of being released to a wide space (in particular, a substantially open space not divided by the concave portions 83, 84, 85, etc. of the reflector 20 '). It is hard to diffuse, and it is easy to be transmitted to the protective cover 30 which faced the space.
 なぜなら、発熱源である回路基板11から保護カバー30へ熱伝導するとともに、空間Pに対流熱伝達され、保護カバー30へ対流熱伝達するからである。さらに、保護カバー30の熱は、外部に対して対流と熱放射による熱伝達で放熱することになる。 This is because the heat is conducted from the circuit board 11 which is a heat source to the protective cover 30, and the convective heat is transferred to the space P and the convective heat is transferred to the protective cover 30. Furthermore, the heat of the protective cover 30 dissipates heat to the outside by heat transfer by convection and heat radiation.
 つまり、この放熱は空間Pに保護カバー30が臨む面で起こるので、その面積S2が広いほど放熱し易いために、保護カバー30の外縁の温度は下がる。これとは反対に、面積S2は狭いほど保護カバー30の温度は上がる。 That is, since this heat release occurs on the surface where the protective cover 30 faces the space P, the larger the area S2 is, the easier it is to dissipate heat, so the temperature of the outer edge of the protective cover 30 decreases. On the contrary, the smaller the area S2, the higher the temperature of the protective cover 30.
 この結果、LED素子14から発せられた熱が、保護カバー30の、少なくともその狭い空間Pに面した部分の温度を、支持部86を備えないものに比べて高くすることができる。 As a result, the heat generated from the LED element 14 can make the temperature of at least the portion of the protective cover 30 facing the narrow space P higher than that of the case where the support portion 86 is not provided.
 したがって、交通信号灯200が降雪などに晒される状況で使用される場合に、保護カバー30に雪や氷が付着しても、保護カバー30は温められているため、付着した雪や氷はその熱により溶けて下方に流れ落ち、保護カバー30を透過した出射光Lの視認性が雪や氷によって阻害されるのを防止することができる。 Therefore, even if snow or ice adheres to the protective cover 30 when the traffic light 200 is used under conditions such as snowfall, the protective cover 30 is heated, so the adhered snow or ice is heated Therefore, it is possible to prevent the visibility of the emitted light L which is melted down and flows downward and transmitted through the protective cover 30 from being obstructed by snow or ice.
 なお、透明樹脂層87は、LED素子14が露出した空間、すなわち保護カバー30の裏面32とリフレクタ20′との間の空間を狭めるように仕切るものであれば、保護カバー30とによってLED素子14を囲むものでなくてもよい。 If the transparent resin layer 87 is partitioned to narrow the space where the LED element 14 is exposed, that is, the space between the back surface 32 of the protective cover 30 and the reflector 20 ′, the LED element 14 together with the protective cover 30. It does not have to surround it.
 このように、LED素子14が露出した空間を透明樹脂層87が仕切ることによって、LED素子14から発せられた熱の対流空間を狭め、保護カバー30への熱の伝達を向上させることができるからである。 As described above, the transparent resin layer 87 partitions the space where the LED element 14 is exposed, so that the convection space of the heat generated from the LED element 14 can be narrowed and the heat transfer to the protective cover 30 can be improved. It is.
 なお、保護カバー30と断熱用の仕切り部材としての透明樹脂層87乃至リフレクタ20′との接合は、実施形態1の灯火部100と同様に、ネジ91とナット92とで締結するものであってもよいし、柱状の金属ピン94をかしめにより接合するものであってもよい。 The joining between the protective cover 30 and the transparent resin layer 87 to the reflector 20 'as partition members for heat insulation is fastened with a screw 91 and a nut 92 in the same manner as the light portion 100 of the first embodiment. However, the metal pins 94 may be joined by caulking.
 このような機械的な接合部材による接合は、長期的な信頼性が高い。 Bonding by such mechanical bonding members is highly reliable in the long term.
 本実施形態の灯火部100′は、回路基板11が保護カバー30に接して設けられているため、熱伝導の形式によっても、LED素子14の発熱が回路基板11を介して保護カバー30に伝わり、保護カバー30の温度を一層高めることができる。 Since the circuit board 11 is provided in contact with the protective cover 30 in the light portion 100 'of this embodiment, the heat generation of the LED element 14 is transmitted to the protective cover 30 via the circuit board 11 even by the type of heat conduction. The temperature of the protective cover 30 can be further raised.
 さらに、本実施形態の灯火部100′は、回路基板11上に制御回路15がところどころに設けられていることにより、保護カバー30を制御回路15からの熱伝導により一層温めることができるとともに、この制御回路15もリフレクタ20′と支持部86と保護カバー30とにより囲まれて、狭い空間P内に閉じ込められているため、この空間P内で対流する制御回路15の熱を、保護カバー30に対流で伝熱させやすくし、保護カバー30の温度をさらに高めることができる。 Furthermore, the lighting unit 100 'of the present embodiment can further warm the protective cover 30 by heat conduction from the control circuit 15 because the control circuit 15 is provided on the circuit board 11 everywhere. Since the control circuit 15 is also surrounded by the reflector 20 ′, the support portion 86 and the protective cover 30 and is confined in the narrow space P, the heat of the control circuit 15 convecting in the space P is transferred to the protective cover 30. The heat transfer can be facilitated by convection, and the temperature of the protective cover 30 can be further raised.
 また、本実施形態の灯火部100′は、透明樹脂層87に反射膜26を形成して反射面28,29を有するリフレクタ20′を一体的に形成し、LED素子14から入射した光Lを保護カバー30の外部に向けて出射するように反射させるため、狭い空間Pを仕切るための仕切り部材などを、リフレクタ20′とは別に独立して備える必要がなく、部品点数を削減して構成の簡素化、コスト低減を図ることができる。 In the light portion 100 'of the present embodiment, the reflection film 26 is formed on the transparent resin layer 87, the reflector 20' having the reflection surfaces 28 and 29 is integrally formed, and the light L incident from the LED element 14 is detected. There is no need to separately provide a partition member or the like for partitioning the narrow space P separately from the reflector 20 'in order to reflect the light so as to emit toward the outside of the protective cover 30, and the number of parts is reduced. Simplification and cost reduction can be achieved.
 さらに、本実施形態の灯火部100′は、保護カバー30とリフレクタ20′の凹部83とによって囲んで形成された空間Pに保護カバー30が臨む面の面積S2が、反射面28,29で反射され保護カバー30から外部に光Lが出射する領域の面積S1よりも狭い面積であるため、熱の対流する空間Pを狭い領域に限定することができ、熱の拡散の度合いを低減することができる。 Furthermore, in the light portion 100 'of the present embodiment, the area S2 of the surface facing the protective cover 30 in the space P formed by the protective cover 30 and the concave portion 83 of the reflector 20' is reflected by the reflective surfaces 28 and 29. Because the area is smaller than the area S1 of the area from which the light L is emitted from the protective cover 30 to the outside, the space P to which heat is convective can be limited to a narrow area, and the degree of heat diffusion is reduced. it can.
 すなわち、保護カバー30と透明樹脂層87とによって囲んで形成された凹部83,84,85の空間Pの容積が小さいものであったとしても、その空間Pに保護カバー30が臨む面積が広く、かつ凹みが薄い空間である場合には、外部に光Lが出射する面の面積を広く確保することが可能ではあるが、発熱源である回路基板11からの熱は保護カバー30を広範囲に温度を上げることになり、その温度は上昇しにくくなる。 That is, even if the volume of the space P of the concave portions 83, 84, 85 formed by surrounding the protective cover 30 and the transparent resin layer 87 is small, the area where the protective cover 30 faces the space P is wide, And when it is a space where the recess is thin, it is possible to secure a wide area of the surface from which the light L is emitted to the outside, but the heat from the circuit board 11 which is a heat source causes the The temperature becomes difficult to rise.
 これに対して、本実施形態のように、仕切られた空間Pに保護カバー30が臨む面の面積S2が、光Lの通過する面の領域の面積S1も狭く形成されていれば、熱の拡散の度合いを低減することができ、その温度は上昇しやすくなる。 On the other hand, if the area S2 of the surface on which the protective cover 30 faces the partitioned space P and the area S1 of the surface through which the light L passes are formed narrow as in this embodiment, heat The degree of diffusion can be reduced and its temperature tends to rise.
 なお、凹部83,84,85はいずれも、その曲率が滑らか(連続的)に変化するように形成されているため、LED素子14から閉じた空間Pに出射した光Lが、透明樹脂層87への入射と反射面28,29への到達とで、光Lの進行方向を連続的に変化させることができる。 The concave portions 83, 84, 85 are formed so that their curvatures change smoothly (continuously), so the light L emitted from the LED element 14 into the closed space P is transparent resin layer 87 The traveling direction of the light L can be continuously changed by the incidence on the light and the arrival at the reflecting surfaces 28 and 29.
 これと同様に、リフレクタ20′の反射面28,29で反射した光Lの、透明樹脂層87からの出射と保護カバー30への到達とで、光Lの進行方向を連続的に変化させることができる。 Similarly, the traveling direction of the light L is continuously changed by the emission from the transparent resin layer 87 and the arrival at the protective cover 30 of the light L reflected by the reflection surfaces 28 and 29 of the reflector 20 ′. Can.
 したがって、灯火部100′の外部において視認される光Lの強度分布を滑らかに変化させることができる。 Therefore, the intensity distribution of the light L visually recognized in the exterior of the light part 100 'can be changed smoothly.
 なお、本実施形態2の灯火部100′においても、実施形態1の灯火部100と同様に、LED素子14のみを囲む凹部83については、図11に示すように、LED素子14の発光点14cを中心とした球面で形成したものとするのが好ましい。 In the light portion 100 'of the second embodiment, as in the light portion 100 of the first embodiment, as shown in FIG. 11, the light emitting point 14c of the LED element 14 is the concave portion 83 surrounding only the LED element 14. It is preferable to form in the spherical surface centering on.
このように構成された灯火部100′によれば、LED素子14から発光した光Lのうち透明樹脂層87の表面で反射する反射光の量を低減することができ、しかも、仮に、透明樹脂層87の表面で一部の光が反射した場合であっても、その反射した光は、透明樹脂層87の凹部83の表面に対して垂直に反射するため、その反射した光はLED素子14に戻り、保護カバー30を通過して灯火部100′の外部に出射しないため、灯火部100′の外部の歩行者や運転者等に、不自然な光を視認させることがない。 According to the light portion 100 'configured in this manner, the amount of light L reflected by the surface of the transparent resin layer 87 among the light L emitted from the LED element 14 can be reduced, and further, temporarily the transparent resin Even when part of the light is reflected on the surface of the layer 87, the reflected light is reflected perpendicularly to the surface of the concave portion 83 of the transparent resin layer 87, so the reflected light is the LED element 14 Since the light does not pass through the protective cover 30 and is not emitted to the outside of the light portion 100 ', unnatural light is not visually recognized by pedestrians and drivers outside the light portion 100'.
 また、透明樹脂層87のうち、各LED素子14から、リフレクタ20′の凹面28に向かって出射した光Lが通過する光路に対応した部分(図11に示した実施形態の灯火部100における部分αに相当)に、そのLED素子14から出射した光Lを拡散させる拡散部(図11に示した実施形態の灯火部100における拡散部83aに相当)を形成してもよい。 Further, a portion of the transparent resin layer 87 corresponding to the light path through which the light L emitted from each LED element 14 toward the concave surface 28 of the reflector 20 'passes (a portion in the lamp portion 100 of the embodiment shown in FIG. A diffusion portion (corresponding to the diffusion portion 83a in the lamp portion 100 of the embodiment shown in FIG. 11) for diffusing the light L emitted from the LED element 14 may be formed on the α).
 このように拡散部が形成したものでは、LED素子14からリフレクタ20′に向かって出射した光Lが通過する透明樹脂層87の拡散部によって拡散されると、その透明樹脂層87の拡散部で拡散された光の像がリフレクタ20′で反射された像として、外部から視認されることになり、擬似的に、面発光した光源の像として認識される。 In the case where the diffusion portion is formed as described above, when the light L emitted from the LED element 14 toward the reflector 20 ′ is diffused by the diffusion portion of the transparent resin layer 87 passing through, the diffusion portion of the transparent resin layer 87 An image of the diffused light is visually recognized from the outside as an image reflected by the reflector 20 ', and is artificially recognized as an image of a surface-emitting light source.
 そして、点光源としてのLED素子14で発光した光Lが、外部の視認者にそのまま視認されると、視認者対して粒状感を与えるのに対して、面発光する光Lとして視認されたときは、そのような粒状感を緩和させることができる。 When the light L emitted by the LED element 14 as a point light source is perceived as it is by the external viewer, it gives a granular feeling to the viewer but is viewed as the light L emitting surface light Can alleviate such graininess.
 したがって、面光源を適用することができない制約のため点光源のLED素子14を用いた構成の灯火部100′であっても、点光源による粒状感を緩和させることができる。 Therefore, even with the lighting unit 100 'configured using the LED elements 14 of the point light source due to the restriction that the surface light source can not be applied, the graininess due to the point light source can be alleviated.
 また、リフレクタ20′が、複数の小さな凸状の小反射面の組み合わせによって形成されたファセットリフレクタであるものでは、透明樹脂層87の、LED素子14を囲む凹部83が、リフレクタ20の各小反射面と略同じ大きさに形成された小領域(実施形態1の灯火部100における小領域83b,83b,…に相当)の組み合わせによって形成されたものとするのが好ましい。 Further, in the case where the reflector 20 'is a facet reflector formed of a combination of a plurality of small convex small reflection surfaces, the concave portion 83 of the transparent resin layer 87 surrounding the LED element 14 corresponds to each small reflection of the reflector 20. It is preferable to be formed by a combination of small areas (corresponding to the small areas 83b, 83b,... In the lighting unit 100 of the first embodiment) formed in substantially the same size as the surface.
 このように、リフレクタ20′が、複数の小さな凸状の小反射面の組み合わせによって形成されたファセットリフレクタであり、透明樹脂層87の、LED素子14を囲む凹部83が、リフレクタ20の各小反射面と略同じ大きさに形成された小領域の組み合わせによって形成されたものであると、灯火部100′の外部で視認する歩行者等は、透明樹脂層87の表面での反射光が、リフレクタ20の小反射面での反射光と粒状の大きさが揃うため、透明樹脂層87での反射光の目立ち度合いを低減することができる。 Thus, the reflector 20 'is a facet reflector formed of a combination of a plurality of small convex small reflection surfaces, and the concave portion 83 of the transparent resin layer 87 surrounding the LED element 14 is a small reflection of each of the reflector 20. A pedestrian or the like visually recognized outside the light part 100 'has a reflection light from the surface of the transparent resin layer 87 as a reflector, as it is formed by a combination of small areas formed in substantially the same size as the surface. Since the size of the reflected light and the particle size at the small reflective surface 20 are the same, the degree of the reflected light at the transparent resin layer 87 can be reduced.
 本実施形態の灯火部100′は、渦巻き状の回路基板11を用いたものであるが、本発明に係る発光装置における回路基板は、この実施形態のものに限定されるものではなく、反射面28,29による反射光Lを外部に透過可能の隙間や透明性を有しているものであれば、いかなる形状、特性のものであっても適用することができる。 The lighting unit 100 'of the present embodiment uses the spiral circuit board 11, but the circuit board in the light emitting device according to the present invention is not limited to that of this embodiment, and a reflecting surface is used. Any shape or characteristic can be applied as long as it has a gap or transparency that allows the light L reflected by 28 and 29 to be transmitted to the outside.
 なお、回路基板11は反射面28,29で反射した光Lの光路上に配置されるため、回路基板11の幅Wが広くなるにしたがって、反射した光Lを遮る量が増大することになる。 In addition, since the circuit board 11 is disposed on the optical path of the light L reflected by the reflection surfaces 28 and 29, as the width W of the circuit board 11 becomes wider, the amount of blocking the reflected light L increases. .
 したがって、幅Wは可能な限り狭くするか、または光Lの通過を妨げない透過性を有するものであることが望ましい。 Therefore, it is desirable that the width W be as narrow as possible or have a transparency that does not prevent the passage of the light L.
 上述した実施形態2は、本発明に係る発光装置を交通信号灯200の灯火部100′に適用した例であるが、本発明に係る発光装置は、この実施形態に限定されるものではなく、街路灯や照明器具等に適用することができる。 Embodiment 2 mentioned above is an example which applied a light-emitting device concerning the present invention to lighting part 100 'of traffic signal lamp 200, but a light-emitting device concerning the present invention is not limited to this embodiment, It can be applied to street lights and lighting fixtures.
関連出願の相互参照Cross-reference to related applications
本出願は、2012年2月7日に日本国特許庁に出願された特願2012-024076、2012年11月26日に日本国特許庁に出願された特願2012-257322および2012年2月14日に日本国特許庁に出願された特願2012-029479に基づいて優先権を主張し、その全ての開示は完全に本明細書で参照により組み込まれる。
This application is related to Japanese Patent Application No. 2012-024076 filed on Feb. 7, 2012 in Japan Patent Office, Japanese Patent Application No. 2012-257322 filed on Nov. 26, 2012 in Japanese Patent Office, and February 2012 Priority is claimed on the basis of Japanese Patent Application No. 2012-029479 filed on the 14th in the Japanese Patent Office, the entire disclosure of which is incorporated herein by reference in its entirety.
11  回路基板
14  LED素子(発光素子)
20  リフレクタ(反射部材)
21  凹面
30  保護カバー(カバー)
32  裏面
80  透明樹脂プレート(仕切り部、仕切り部材)
83,84,85 凹部
86  支持部
87  透明樹脂層(仕切り部)
100,100′ 灯火部(発光装置)
200 交通信号灯
L   光、出射光、射光
11 circuit board 14 LED element (light emitting element)
20 reflector (reflection member)
21 concave 30 protective cover (cover)
32 back surface 80 transparent resin plate (partition part, partition member)
83, 84, 85 Recess 86 Support part 87 Transparent resin layer (partition part)
100, 100 'light section (light emitting device)
200 traffic lights L light, emitted light, emitted light

Claims (11)

  1.  透光性を有するカバーと、
     一方の面側に複数の発光素子を実装し、反対側の面が前記カバーに接して設けられた回路基板と、
     前記回路基板に対し前記カバーと反対側に配置された、前記発光素子から出射した光を反射する反射部材と、を備え、
     前記発光素子と前記反射部材との間に、前記光を透過する仕切り部が介在していることを特徴とする発光装置。
    A translucent cover,
    A circuit board on which a plurality of light emitting elements are mounted on one side and the other side is in contact with the cover;
    And a reflective member disposed on the side opposite to the cover with respect to the circuit board and reflecting light emitted from the light emitting element.
    A light emitting device characterized in that a partition portion which transmits the light is interposed between the light emitting element and the reflecting member.
  2.  前記仕切り部が、前記発光素子と前記反射部材との間に配置された、前記反射部材とは別体の仕切り部材であることを特徴とする請求項1に記載の発光装置。 The light emitting device according to claim 1, wherein the partition portion is a partition member which is disposed between the light emitting element and the reflecting member and which is separate from the reflecting member.
  3.  前記仕切り部が、前記反射部材の一部として形成されていることを特徴とする請求項1に記載の発光装置。 The light emitting device according to claim 1, wherein the partition portion is formed as a part of the reflection member.
  4.  前記カバーと前記仕切り部とによって前記発光素子を囲んでいることを特徴とする請求項1から3のうちいずれか1項に記載の発光装置。 The light emitting device according to any one of claims 1 to 3, wherein the light emitting element is surrounded by the cover and the partition portion.
  5.  前記仕切り部を前記カバーに支持する支持部を備えたことを特徴とする請求項1から4のうちいずれか1項に記載の発光装置。 The light emitting device according to any one of claims 1 to 4, further comprising a support portion configured to support the partition portion on the cover.
  6.  前記支持部が、前記仕切り部の一部として形成されていることを特徴とする請求項5に記載の発光装置。 The light emitting device according to claim 5, wherein the support portion is formed as a part of the partition portion.
  7.  前記仕切り部の、前記回路基板を囲む部分は、その曲率が滑らかに変化するように形成されていることを特徴とする請求項1から6のうちいずれか1項に記載の発光装置。 The light emitting device according to any one of claims 1 to 6, wherein a part of the partition part surrounding the circuit board is formed so as to change its curvature smoothly.
  8.  前記仕切り部の、前記回路基板を囲む部分は、前記発光素子を中心とした球面で形成されていることを特徴とする請求項1から6のうちいずれか1項に記載の発光装置。 The light emitting device according to any one of claims 1 to 6, wherein the part of the partition part surrounding the circuit board is formed as a spherical surface centered on the light emitting element.
  9.  前記反射部材は、各発光素子ごとに対応する凹状の反射面を有し、前記凹状の反射面は、複数の小さな反射面の組み合わせによって形成されたものであり、
     前記仕切り部の、前記回路基板を囲む部分は、前記反射部材における前記小さな反射面と略同じ大きさに形成された小領域の組み合わせによって形成されていることを特徴とする請求項1から7のうちいずれか1項に記載の発光装置。
    The reflecting member has a concave reflecting surface corresponding to each light emitting element, and the concave reflecting surface is formed by a combination of a plurality of small reflecting surfaces,
    The part of the partition part surrounding the circuit board is formed by a combination of small areas formed in substantially the same size as the small reflective surface of the reflective member. The light-emitting device according to any one of the above.
  10.  前記仕切り部のうち、前記発光素子から前記反射部材に向かって出射した光が通過する光路に対応した部分は、前記発光素子から出射した光を拡散させるように形成されていることを特徴とする請求項1から9のうちいずれか1項に記載の発光装置。 In the partition portion, a portion corresponding to an optical path through which light emitted from the light emitting element toward the reflecting member passes is formed so as to diffuse light emitted from the light emitting element. The light emitting device according to any one of claims 1 to 9.
  11.  前記回路基板には、その延びる方向に沿って多数の発光素子が実装され、
     これら多数の発光素子は、各グループごとに複数の発光素子を有する複数のグループに区切られて接続され、
     前記発光素子を駆動する整流電圧を前記グループに印加するに際し、前記複数のグループ間の接続形態を、前記整流電圧の大きさに応じて並列接続と直列接続とのうち一方または並列接続と直列接続とを組み合わせた接続に切り替える制御回路を、前記グループの間にそれぞれ備え、
     前記仕切り部は、前記制御回路と前記反射部材との間で、前記回路基板の周囲を前記カバーとともに囲むものであることを特徴とする請求項1から10のうちいずれか1項に記載の発光装置。
    A large number of light emitting elements are mounted on the circuit board along the extending direction thereof;
    These many light emitting elements are divided and connected to a plurality of groups each having a plurality of light emitting elements in each group,
    When applying a rectified voltage for driving the light emitting elements to the groups, the connection form between the plurality of groups is connected in series with one or more of parallel connection and series connection according to the magnitude of the rectified voltage. Control circuits for switching the connection to a combination of
    The light emitting device according to any one of claims 1 to 10, wherein the partition portion is configured to surround the circuit board together with the cover between the control circuit and the reflecting member.
PCT/JP2013/052434 2012-02-07 2013-02-04 Light-emitting apparatus WO2013118662A1 (en)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2012024076 2012-02-07
JP2012-024076 2012-02-07
JP2012-029479 2012-02-14
JP2012029479A JP6025163B2 (en) 2012-02-14 2012-02-14 Light emitting device
JP2012-257322 2012-11-26
JP2012257322A JP6118080B2 (en) 2012-02-07 2012-11-26 Light emitting device

Publications (1)

Publication Number Publication Date
WO2013118662A1 true WO2013118662A1 (en) 2013-08-15

Family

ID=48947426

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/052434 WO2013118662A1 (en) 2012-02-07 2013-02-04 Light-emitting apparatus

Country Status (1)

Country Link
WO (1) WO2013118662A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107850285A (en) * 2015-06-05 2018-03-27 欧洲热力有限责任公司 A kind of lamp

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0251287A (en) * 1988-08-12 1990-02-21 Iwasaki Electric Co Ltd Multicolor led
JPH1126813A (en) * 1997-06-30 1999-01-29 Toyoda Gosei Co Ltd Light emitting diode lamp
JP2004119422A (en) * 2002-09-24 2004-04-15 Pioneer Electronic Corp Light emitting device drive circuit
JP2006352030A (en) * 2005-06-20 2006-12-28 Arumo Technos Kk Light emitting diode
JP2007142173A (en) * 2005-11-18 2007-06-07 Koha Co Ltd Illuminator

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0251287A (en) * 1988-08-12 1990-02-21 Iwasaki Electric Co Ltd Multicolor led
JPH1126813A (en) * 1997-06-30 1999-01-29 Toyoda Gosei Co Ltd Light emitting diode lamp
JP2004119422A (en) * 2002-09-24 2004-04-15 Pioneer Electronic Corp Light emitting device drive circuit
JP2006352030A (en) * 2005-06-20 2006-12-28 Arumo Technos Kk Light emitting diode
JP2007142173A (en) * 2005-11-18 2007-06-07 Koha Co Ltd Illuminator

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107850285A (en) * 2015-06-05 2018-03-27 欧洲热力有限责任公司 A kind of lamp
CN107850285B (en) * 2015-06-05 2021-02-19 欧洲热力有限责任公司 A lamp

Similar Documents

Publication Publication Date Title
US8358081B2 (en) Lamp assembly
CN102563507B (en) Improve the spotlight of performance
US9291316B2 (en) Integrated linear light engine
KR101500760B1 (en) Side-loaded light emitting diode module for automotive rear combination lamps
US20070274084A1 (en) Directly viewable luminaire
JP2009129809A (en) Lighting system
JP4902630B2 (en) Light guide type lighting fixture
TW201139932A (en) Lighting device with heat dissipation elements
JP4671064B2 (en) lighting equipment
JP2008204692A (en) Luminaire
US8534880B1 (en) Solid state lighting system
JP6118080B2 (en) Light emitting device
KR20230175149A (en) Led light source module for vehicle lamp
WO2016148924A1 (en) Solid-state lamp with angular distribution optic
KR102217466B1 (en) Lmap unit and lighting device and vehicle lamp using the same
WO2013118662A1 (en) Light-emitting apparatus
JP6029100B2 (en) Light emitting device
JP6025163B2 (en) Light emitting device
JP2016538682A (en) Lighting device and lighting fixture
KR20180078011A (en) Lamp for vehicle
JP2014086339A (en) Light-emitting device
CN107850272B (en) Lighting device with light guide
US9816698B2 (en) Lighting device having a light source heat sink arranged separate from a driver
JP7192083B2 (en) LED lighting device
KR102661276B1 (en) Optical module of lamp for vehicle and lamp for vehicle using the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13747179

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13747179

Country of ref document: EP

Kind code of ref document: A1