WO2013118504A1 - 太陽電池封止材および太陽電池モジュール - Google Patents

太陽電池封止材および太陽電池モジュール Download PDF

Info

Publication number
WO2013118504A1
WO2013118504A1 PCT/JP2013/000663 JP2013000663W WO2013118504A1 WO 2013118504 A1 WO2013118504 A1 WO 2013118504A1 JP 2013000663 W JP2013000663 W JP 2013000663W WO 2013118504 A1 WO2013118504 A1 WO 2013118504A1
Authority
WO
WIPO (PCT)
Prior art keywords
solar cell
ethylene
olefin copolymer
weight
parts
Prior art date
Application number
PCT/JP2013/000663
Other languages
English (en)
French (fr)
Inventor
成伸 池永
文人 竹内
伊藤 智章
Original Assignee
三井化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三井化学株式会社 filed Critical 三井化学株式会社
Priority to CN201380008864.1A priority Critical patent/CN104105773B/zh
Priority to US14/377,818 priority patent/US9260556B2/en
Priority to JP2013537986A priority patent/JP5405699B1/ja
Priority to KR1020147021887A priority patent/KR101531807B1/ko
Publication of WO2013118504A1 publication Critical patent/WO2013118504A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/46Polymerisation initiated by wave energy or particle radiation
    • C08F2/48Polymerisation initiated by wave energy or particle radiation by ultraviolet or visible light
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F255/00Macromolecular compounds obtained by polymerising monomers on to polymers of hydrocarbons as defined in group C08F10/00
    • C08F255/08Macromolecular compounds obtained by polymerising monomers on to polymers of hydrocarbons as defined in group C08F10/00 on to polymers of olefins having four or more carbon atoms
    • C08F255/10Macromolecular compounds obtained by polymerising monomers on to polymers of hydrocarbons as defined in group C08F10/00 on to polymers of olefins having four or more carbon atoms on to butene polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D123/00Coating compositions based on homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Coating compositions based on derivatives of such polymers
    • C09D123/02Coating compositions based on homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Coating compositions based on derivatives of such polymers not modified by chemical after-treatment
    • C09D123/04Homopolymers or copolymers of ethene
    • C09D123/08Copolymers of ethene
    • C09D123/0807Copolymers of ethene with unsaturated hydrocarbons only containing more than three carbon atoms
    • C09D123/0815Copolymers of ethene with aliphatic 1-olefins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/048Encapsulation of modules
    • H01L31/0481Encapsulation of modules characterised by the composition of the encapsulation material
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F230/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and containing phosphorus, selenium, tellurium or a metal
    • C08F230/04Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and containing phosphorus, selenium, tellurium or a metal containing a metal
    • C08F230/08Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and containing phosphorus, selenium, tellurium or a metal containing a metal containing silicon
    • C08F230/085Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and containing phosphorus, selenium, tellurium or a metal containing a metal containing silicon the monomer being a polymerisable silane, e.g. (meth)acryloyloxy trialkoxy silanes or vinyl trialkoxysilanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F255/00Macromolecular compounds obtained by polymerising monomers on to polymers of hydrocarbons as defined in group C08F10/00
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F8/00Chemical modification by after-treatment
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F8/00Chemical modification by after-treatment
    • C08F8/30Introducing nitrogen atoms or nitrogen-containing groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F8/00Chemical modification by after-treatment
    • C08F8/42Introducing metal atoms or metal-containing groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2351/00Characterised by the use of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Derivatives of such polymers
    • C08J2351/06Characterised by the use of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Derivatives of such polymers grafted on to homopolymers or copolymers of aliphatic hydrocarbons containing only one carbon-to-carbon double bond
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2203/00Applications
    • C08L2203/20Applications use in electrical or conductive gadgets
    • C08L2203/204Applications use in electrical or conductive gadgets use in solar cells
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2312/00Crosslinking
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/10Photovoltaic [PV]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • the present invention relates to a solar cell sealing material and a solar cell module.
  • solar cells are attracting attention as a means of generating energy that is clean and free from depletion.
  • a solar cell When a solar cell is used outdoors such as a roof portion of a building, it is generally used in the form of a solar cell module.
  • the above solar cell module is generally manufactured by the following procedure. First, a crystalline solar cell element formed of polycrystalline silicon, single crystal silicon, or the like (hereinafter also referred to as a power generation element or a cell, which indicates the same), or amorphous silicon or crystalline silicon, A thin film solar cell element obtained by forming a very thin film of several ⁇ m on a substrate such as glass is manufactured. Next, in order to obtain a crystalline solar cell module, a solar cell module protective sheet (surface side transparent protective member) / solar cell encapsulant / crystalline solar cell element / solar cell encapsulant / protection for solar cell module The sheets (back side protective member) are laminated in this order.
  • the thin film solar cell element / solar cell sealing material / solar cell module protective sheet (back surface side protective member) are laminated in this order. Then, a solar cell module is manufactured by utilizing the lamination method etc. which vacuum-suck these and heat-press them.
  • the solar cell module manufactured in this way has weather resistance and is suitable for outdoor use such as a roof portion of a building.
  • Patent Document 1 Japanese Patent Publication No. 6-35575 discloses a sealing composition for sealing an electronic material in which an organic peroxide or a photosensitizer and a silane coupling agent are mixed with EVA. A composition for use is described. Furthermore, it is disclosed that a (meth) acrylic acid ester and / or an allyl group-containing compound may be mixed.
  • Patent Document 2 Japanese Patent Application Laid-Open No. 2007-123488 describes a solar cell containing an organic peroxide and a polyfunctional monomer having at least one of or both of an acryloyl group and a methacryloyl group in EVA. An adhesive sheet is disclosed.
  • the scale of power generation systems such as mega solar is increasing, and there is a movement to increase the system voltage for the purpose of reducing transmission loss.
  • the potential difference between the frame and the cell increases in the solar cell module. That is, the frame of the solar cell module is generally grounded, and when the system voltage of the solar cell array is 600V to 1000V, in the module having the highest voltage, the potential difference between the frame and the cell is the system voltage 600V to 1000V as it is.
  • glass has a lower electrical resistance than a solar cell encapsulant, and a high voltage is generated between the glass and the cell via the frame.
  • the present invention has been made in view of such problems of the prior art, and a problem to be solved by the invention is to provide a solar cell sealing material having excellent electrical characteristics.
  • a solar cell encapsulant having excellent electrical characteristics can be obtained by including at least one crosslinking aid selected from the group consisting of a compound, triallyl compound, oxime and maleimide, and a (meth) acrylate monomer. I found. Furthermore, by adjusting the content of the aluminum element contained in the ethylene / ⁇ -olefin copolymer to a specific range, it was found that the electrical characteristics were further improved, and the present invention was completed.
  • the following solar cell encapsulant is provided.
  • the content of the (meth) acrylate monomer in the solar cell encapsulant is 0.1 to 5.0 parts by weight with respect to 100 parts by weight of the ethylene / ⁇ -olefin copolymer,
  • the solar cell encapsulating material, wherein the content of the crosslinking assistant in the solar cell encapsulating material is 0.1 to 3 parts by weight with respect to 100 parts by weight of the ethylene / ⁇ -olefin copolymer.
  • the volume resistivity of the sealing layer formed by crosslinking the solar cell sealing material measured at a temperature of 100 ° C. and an applied voltage of 500 V is 1.0 ⁇ 10 15 to 1.0 ⁇ .
  • the organic peroxide has a one minute half-life temperature in the range of 100 to 170 ° C.
  • the content of the organic peroxide in the solar cell encapsulant is 0.1 to 3.0 parts by weight with respect to 100 parts by weight of the ethylene / ⁇ -olefin copolymer.
  • the solar cell sealing material according to any one of the above.
  • the ethylene / ⁇ -olefin copolymer was polymerized in the presence of an olefin polymerization catalyst containing a metallocene compound and at least one compound selected from the group consisting of an organoaluminum oxy compound and an organoaluminum compound, 1] thru
  • the solar cell sealing material as described in any one.
  • the solar cell sealing material as described in any one.
  • a surface-side transparent protective member A back side protection member; A solar cell element; The solar cell element formed by crosslinking the solar cell sealing material according to any one of [1] to [12] is sealed between the front surface side transparent protective member and the back surface side protective member.
  • the solar cell encapsulant by using the solar cell encapsulant, in addition to the above-mentioned various characteristics being excellent, troubles such as deformation of the encapsulant even when the temperature rises during use of the solar cell module. Can be avoided. And the solar cell module excellent in economical efficiency, such as cost, can be provided, without impairing the external appearance of a solar cell. Furthermore, by using the solar cell encapsulant, it is possible to provide a solar cell module that can significantly suppress the generation of PID even when a high voltage is applied between the frame and the cell.
  • (meth) acrylate means “acrylate” or “methacrylate”.
  • represents the following from the above unless otherwise specified.
  • the solar cell encapsulant of this embodiment is composed of an ethylene / ⁇ -olefin copolymer, an organic peroxide, a divinyl aromatic compound, a cyanurate, a diallyl compound, a triallyl compound, an oxime, and a maleimide. And at least one crosslinking aid selected from the group consisting of: a (meth) acrylate monomer.
  • the ethylene / ⁇ -olefin copolymer used for the solar cell encapsulant of the present embodiment is obtained by copolymerizing ethylene and an ⁇ -olefin having 3 to 20 carbon atoms.
  • ⁇ -olefin ⁇ -olefins having 3 to 20 carbon atoms can be used singly or in combination of two or more. Among these, ⁇ -olefins having 10 or less carbon atoms are preferable, and ⁇ -olefins having 3 to 8 carbon atoms are particularly preferable.
  • ⁇ -olefins include propylene, 1-butene, 1-pentene, 1-hexene, 3-methyl-1-butene, 3,3-dimethyl-1-butene, 4-methyl-1- Examples include pentene, 1-octene, 1-decene, 1-dodecene and the like. Of these, propylene, 1-butene, 1-pentene, 1-hexene, 4-methyl-1-pentene and 1-octene are preferable because of their availability.
  • the ethylene / ⁇ -olefin copolymer may be a random copolymer or a block copolymer, but a random copolymer is preferred from the viewpoint of flexibility.
  • the ethylene / ⁇ -olefin copolymer of the present embodiment may be a copolymer comprising ethylene, an ⁇ -olefin having 3 to 20 carbon atoms, and a non-conjugated polyene.
  • the ⁇ -olefin is the same as described above, and examples of the non-conjugated polyene include 5-ethylidene-2-norbornene (ENB), 5-vinyl-2-norbornene (VNB), and dicyclopentadiene (DCPD).
  • ENB 5-ethylidene-2-norbornene
  • VNB 5-vinyl-2-norbornene
  • DCPD dicyclopentadiene
  • the ethylene / ⁇ -olefin copolymer of the present embodiment preferably further satisfies the following requirements a1 to a5.
  • the content ratio of the structural unit derived from ethylene contained in the ethylene / ⁇ -olefin copolymer is preferably 80 to 90 mol%, more preferably 80 to 88 mol%, still more preferably 82 to 88 mol%, particularly preferably. Is 82 to 87 mol%.
  • the content of the structural unit derived from the ⁇ -olefin having 3 to 20 carbon atoms (hereinafter also referred to as “ ⁇ -olefin unit”) contained in the ethylene / ⁇ -olefin copolymer is preferably 10 to 20 mol%. More preferably 12 to 20 mol%, still more preferably 12 to 18 mol%, and particularly preferably 13 to 18 mol%.
  • the content ratio of the ⁇ -olefin unit contained in the ethylene / ⁇ -olefin copolymer is 10 mol% or more, high transparency can be obtained. Further, extrusion molding at a low temperature can be easily performed, and for example, extrusion molding at 130 ° C. or lower is possible. For this reason, even when the organic peroxide is kneaded into the ethylene / ⁇ -olefin copolymer, it is possible to suppress the progress of the crosslinking reaction in the extruder, and the gel-like foreign matter is not present on the sheet of the solar cell encapsulant. Occurrence and deterioration of the appearance of the sheet can be prevented. Moreover, since moderate softness
  • the crystallization speed of the ethylene / ⁇ -olefin copolymer becomes appropriate, so that it was extruded from an extruder. Since the sheet is not sticky, it can be easily peeled off by the first cooling roll, and a sheet-like sheet of solar cell sealing material can be obtained efficiently. Further, since no stickiness is generated on the sheet, blocking can be prevented, and the sheet feeding property is good. In addition, a decrease in heat resistance can be prevented.
  • melt flow rate (MFR) of the ethylene / ⁇ -olefin copolymer measured under the conditions of 190 ° C. and 2.16 kg load is usually 0.1 to 50 g / 10 min, preferably 2 -50 g / 10 min, more preferably 10-50 g / 10 min, even more preferably 10-40 g / 10 min, particularly preferably 12-27 g / 10 min, most preferably 15-25 g / 10 min. is there.
  • the MFR of the ethylene / ⁇ -olefin copolymer can be adjusted by adjusting the polymerization temperature, the polymerization pressure, the molar ratio of the ethylene and ⁇ -olefin monomer concentrations and the hydrogen concentration in the polymerization system, which will be described later. Can be adjusted.
  • the MFR When the MFR is in the range of 0.1 to 10 g / 10 min, a sheet can be produced by calendering.
  • the MFR When the MFR is in the range of 0.1 to 10 g / 10 min, the flowability of the resin composition containing the ethylene / ⁇ -olefin copolymer is low, and therefore, due to the molten resin protruding when the sheet is laminated with the battery element. This is preferable in that the laminating apparatus can be prevented from being soiled.
  • the MFR is 2 g / 10 min or more, the fluidity of the solar cell encapsulant is improved, and it is possible to produce by sheet extrusion molding.
  • the sheet has a MFR of 10 g / 10 min or more
  • the flowability of the resin composition containing the ethylene / ⁇ -olefin copolymer is improved when the sheet is produced by extrusion molding, and the productivity at the time of sheet extrusion molding is improved. Can be improved.
  • the MFR is 50 g / 10 min or less
  • the molecular weight is increased, and therefore, adhesion to a roll surface such as a chill roll can be suppressed. Therefore, peeling is unnecessary, and a sheet having a uniform thickness can be formed.
  • a resin composition having “stiffness” since it becomes a resin composition having “stiffness”, a thick sheet of 0.3 mm or more can be easily formed.
  • the crosslinking characteristic (especially crosslinking rate) at the time of laminate molding of the solar cell module is improved, it can be sufficiently crosslinked to suppress a decrease in heat resistance.
  • the draw-down during sheet forming can be further suppressed, a wide sheet can be formed, the cross-linking characteristics and heat resistance are further improved, and the best solar cell encapsulant Sheet of can be obtained.
  • the density of the ethylene / ⁇ -olefin copolymer measured according to ASTM D1505 is preferably 0.865 to 0.884 g / cm 3 , more preferably 0.866 to 0.883 g / cm 3 , It is preferably 0.866 to 0.880 g / cm 3 , particularly preferably 0.867 to 0.880 g / cm 3 .
  • the density of the ethylene / ⁇ -olefin copolymer can be adjusted by a balance between the content ratio of ethylene units and the content ratio of ⁇ -olefin units.
  • the density of the ethylene / ⁇ -olefin copolymer is 0.884 g / cm 3 or less, the crystallinity is lowered and the transparency can be enhanced. Furthermore, extrusion molding at low temperature becomes easy, and for example, extrusion molding can be performed at 130 ° C. or lower. For this reason, even if an organic peroxide is kneaded into the ethylene / ⁇ -olefin copolymer, the cross-linking reaction in the extruder is prevented from progressing, and the generation of gel-like foreign matters on the solar cell encapsulant sheet is suppressed. In addition, deterioration of the appearance of the sheet can be suppressed. Moreover, since it is highly flexible, it is possible to prevent the occurrence of cell cracks and thin film electrode cracks, which are solar cell elements, when the solar cell module is laminated.
  • the density of the ethylene / ⁇ -olefin copolymer is 0.865 g / cm 3 or more, the crystallization speed of the ethylene / ⁇ -olefin copolymer can be increased, so that the sheet extruded from the extruder is sticky. It is difficult, peeling with a 1st cooling roll becomes easy, and the sheet
  • the Shore A hardness of the ethylene / ⁇ -olefin copolymer is preferably 60 to 85, more preferably 62 to 83, still more preferably 62 to 80, and particularly preferably 65 to 85. 80.
  • the Shore A hardness of the ethylene / ⁇ -olefin copolymer can be adjusted by controlling the content and density of the ethylene units in the ethylene / ⁇ -olefin copolymer within the above-mentioned numerical range. That is, an ethylene / ⁇ -olefin copolymer having a high ethylene unit content and a high density has a high Shore A hardness. On the other hand, an ethylene / ⁇ -olefin copolymer having a low content of ethylene units and a low density has a low Shore A hardness.
  • the Shore A hardness is 60 or more, the ethylene / ⁇ -olefin copolymer is less sticky and blocking can be suppressed. Moreover, when processing a solar cell sealing material into a sheet form, the drawing
  • the Shore A hardness is 85 or less, the crystallinity is lowered and the transparency can be increased. Furthermore, since it is highly flexible, it is possible to prevent cracking of cells that are solar cell elements and chipping of thin film electrodes during laminate molding of the solar cell module.
  • the content (residue amount) of aluminum element (hereinafter also referred to as “Al”) contained in the ethylene / ⁇ -olefin copolymer is preferably 10 to 500 ppm, more preferably 20 to 400 ppm, and still more preferably 20 ⁇ 300 ppm.
  • Al content depends on the concentration of the organoaluminum oxy compound or organoaluminum compound added in the polymerization process of the ethylene / ⁇ -olefin copolymer.
  • the organoaluminum oxy compound or organoaluminum compound added in the polymerization process of the ethylene / ⁇ -olefin copolymer can be added at a concentration that allows the activity of the metallocene compound to be sufficiently expressed. Therefore, it is unnecessary to add a compound that reacts with the metallocene compound to form an ion pair.
  • the compound that forms the ion pair may remain in the ethylene / ⁇ -olefin copolymer, thereby causing a decrease in electrical characteristics (for example, 100 ° C. or the like). However, this phenomenon can be prevented.
  • the Al content is 500 ppm or less, the progress of the crosslinking reaction in the extruder can be prevented, so that a gel-like foreign matter is generated on the sheet of the solar cell sealing material and the appearance of the sheet is prevented from deteriorating. be able to.
  • a method for controlling the aluminum element contained in the ethylene / ⁇ -olefin copolymer as described above for example, (II-1) Organoaluminum described in the method for producing an ethylene / ⁇ -olefin copolymer described later is used.
  • the concentration in the production process of the oxy compound and (II-2) organoaluminum compound or the polymerization activity of the metallocene compound in the production conditions of the ethylene / ⁇ -olefin copolymer By adjusting the concentration in the production process of the oxy compound and (II-2) organoaluminum compound or the polymerization activity of the metallocene compound in the production conditions of the ethylene / ⁇ -olefin copolymer, the ethylene / ⁇ -olefin copolymer It is possible to control the aluminum element contained in.
  • the solar cell encapsulant of the present embodiment further satisfies the following requirements.
  • the B value determined from the 13 C-NMR spectrum and the following formula (1) of the ethylene / ⁇ -olefin copolymer is preferably 0.9 to 1.5, and preferably 0.9 to 1.3. Is more preferably 0.95 to 1.3, particularly preferably 0.95 to 1.2, and most preferably 1.0 to 1.2.
  • the B value can be adjusted by changing the polymerization catalyst for polymerizing the ethylene / ⁇ -olefin copolymer. More specifically, an ethylene / ⁇ -olefin copolymer having a B value in the above numerical range can be obtained by using a metallocene compound described later.
  • [P E ] represents the proportion (molar fraction) of structural units derived from ethylene contained in the ethylene / ⁇ -olefin copolymer
  • [P 2 O ] represents the ethylene / ⁇ -olefin copolymer.
  • [P OE ] is the proportion of ⁇ -olefin / ethylene chains contained in all dyad chains (moles).
  • This B value is an index representing the distribution of ethylene units and ⁇ -olefin units in the ethylene / ⁇ -olefin copolymer.
  • the block chain of ethylene units or ⁇ -olefin copolymers becomes shorter, the distribution of ethylene units and ⁇ -olefin units is more uniform, and the composition distribution of the copolymer rubber is narrower. Yes.
  • the B value is 0.9 or more, the composition distribution of the ethylene / ⁇ -olefin copolymer can be reduced.
  • the block chain of ethylene units is reduced, and extrusion molding at low temperatures is facilitated. Therefore, extrusion molding can be performed at 130 ° C. or lower, for example.
  • T ⁇ / T ⁇ In the 13 C-NMR spectrum of the ethylene / ⁇ -olefin copolymer, the intensity ratio of T ⁇ to T ⁇ (T ⁇ / T ⁇ ) is preferably 1.5 or less, more preferably 1.2 or less, It is particularly preferably 1.0 or less, and most preferably less than 0.7.
  • T ⁇ / T ⁇ can be adjusted by changing the polymerization catalyst for polymerizing the ethylene / ⁇ -olefin copolymer. More specifically, an ethylene / ⁇ -olefin copolymer having T ⁇ / T ⁇ in the above numerical range can be obtained by using a metallocene compound described later.
  • T ⁇ and T ⁇ in the 13 C-NMR spectrum correspond to the peak intensity of “CH 2 ” in the structural unit derived from an ⁇ -olefin having 3 or more carbon atoms. More specifically, as shown in the following general formula (3), the peak intensities of two types of “CH 2 ” having different positions with respect to the tertiary carbon are meant.
  • T ⁇ / T ⁇ can be obtained as follows.
  • the measured 13 C-NMR spectrum was analyzed by Lindeman Adams's proposal (Analysis Chemistry, 43, p1245 (1971)), J. Am. C. Analysis is performed according to Randall (Review Macromolecular Chemistry Physics, C29, 201 (1989)) to obtain T ⁇ / T ⁇ .
  • the strength ratio of T ⁇ to T ⁇ (T ⁇ / T ⁇ ) in 13 C-NMR of the ethylene / ⁇ -olefin copolymer indicates the coordination state of the ⁇ -olefin to the polymerization catalyst during the polymerization reaction.
  • the substituent of the ⁇ -olefin hinders the polymerization growth reaction of the polymer chain and tends to promote the generation of a low molecular weight component. For this reason, stickiness is generated in the sheet and the sheet is blocked, and the sheet feeding property tends to be deteriorated. Furthermore, since the low molecular weight component bleeds to the sheet surface, the adhesion is hindered and the adhesiveness is lowered.
  • the molecular weight distribution Mw / Mn of the ethylene / ⁇ -olefin copolymer represented by the ratio of the weight average molecular weight (Mw) and the number average molecular weight (Mn) measured by gel permeation chromatography (GPC) is 1.2. Is preferably in the range of -3.5, more preferably in the range of 1.7-3.0, still more preferably in the range of 1.7-2.7. A range of 4 is particularly preferable.
  • the molecular weight distribution Mw / Mn of the ethylene / ⁇ -olefin copolymer can be adjusted by using a metallocene compound described later during the polymerization.
  • an ethylene / ⁇ -olefin copolymer is polymerized in a living polymerization manner, so that catalytic activity can be obtained.
  • the production cost can be reduced.
  • the temperature range in which the molding can be performed is narrow and the discharge amount in the extruder is uniform, a sheet having a uniform thickness can be obtained, and the sheet molding becomes easy.
  • the ratio (Mw / Mn) of the weight average molecular weight (Mw) to the number average molecular weight (Mn) is a gel permeation chromatograph (trade name “Alliance GPC-2000”) manufactured by Waters.
  • the measurement was performed as follows. For the separation column, two trade names “TSKgel GMH6-HT” and two trade names “TSKgel GMH6-HTL” were used.
  • the column size is 7.5 mm in inner diameter and 300 mm in length, the column temperature is 140 ° C., the mobile phase is o-dichlorobenzene (manufactured by Wako Pure Chemical Industries, Ltd.), and the antioxidant is BHT (manufactured by Takeda Pharmaceutical).
  • the content of chlorine ions detected by ion chromatography from the extract after the solid phase extraction treatment is preferably 2 ppm or less, more preferably 1.5 ppm or less. It is preferably 1.2 ppm or less.
  • the content ratio of chloride ions can be adjusted by adjusting the structure of the metallocene compound described below and the polymerization conditions. That is, by increasing the polymerization activity of the catalyst, the amount of catalyst residue in the ethylene / ⁇ -olefin copolymer is reduced, and the ethylene / ⁇ -olefin copolymer having a chlorine ion content in the above numerical range is obtained. Obtainable.
  • An ethylene / ⁇ -olefin copolymer substantially free of chlorine ions can be obtained by using a metallocene compound containing no chlorine atom.
  • the content of chlorine ions in the ethylene / ⁇ -olefin copolymer is, for example, precisely weighed about 10 g of ethylene / ⁇ -olefin copolymer into a glass container sterilized and cleaned using an autoclave, etc. After adding 100 ml and sealing, using an extract obtained by ultrasonic (38 kHz) extraction at room temperature for 30 minutes, measurement is performed using an ion chromatograph apparatus (trade name “ICS-2000”) manufactured by Dionex. be able to.
  • ICS-2000 ion chromatograph apparatus
  • the amount of ethylene / ⁇ -olefin copolymer extracted into methyl acetate is preferably 5.0% by weight or less, more preferably 4.0% by weight or less, and 3.5% by weight or less. More preferably, it is particularly preferably 2.0% by weight or less.
  • a large amount of extraction into methyl acetate indicates that the ethylene / ⁇ -olefin copolymer contains a large amount of low molecular weight components and has a broad molecular weight distribution or composition distribution. Therefore, by using a metallocene compound described later and adjusting the polymerization conditions, an ethylene / ⁇ -olefin copolymer with a small amount of extraction into methyl acetate can be obtained.
  • the metallocene compound having a decreased polymerization activity is taken out of the polymerization system by shortening the polymerization residence time in the polymerization vessel, the generation of low molecular weight components can be suppressed.
  • the extraction amount to methyl acetate by the Soxhlet extraction method is 5.0% by weight or less, the sheet is not sticky, so that blocking can be suppressed and sheet feeding property can be improved.
  • the amount extracted into methyl acetate is, for example, about 10 g of ethylene / ⁇ -olefin copolymer accurately weighed, and an organic solvent that has a low boiling point such as methyl acetate or methyl ethyl ketone and is a poor solvent for ethylene / ⁇ -olefin copolymer.
  • the soxhlet extraction is performed at a temperature equal to or higher than the boiling point of each solvent, and the weight difference of the ethylene / ⁇ -olefin copolymer before and after the extraction or the amount of residue obtained by volatilizing the extraction solvent is calculated.
  • the melting peak of the ethylene / ⁇ -olefin copolymer based on differential scanning calorimetry is preferably in the range of 30 to 90 ° C., more preferably in the range of 33 to 90 ° C., It is particularly preferable that it exists in the range of ⁇ 88 ° C.
  • the melting peak is 90 ° C. or lower, the degree of crystallinity is lowered, and the flexibility of the obtained solar cell encapsulant is increased. Therefore, when the solar cell module is laminated, cell cracks or thin film electrode cracks are observed. Occurrence can be prevented.
  • the melting peak is 30 ° C.
  • the flexibility of the resin composition can be appropriately increased, and thus a solar cell encapsulant sheet can be easily obtained by extrusion molding.
  • the sheet can be prevented from sticking and blocking, and deterioration of the sheet feeding property can be suppressed.
  • the ethylene / ⁇ -olefin copolymer can be produced, for example, using various metallocene compounds shown below as catalysts.
  • the metallocene compound for example, the metallocene compounds described in JP-A-2006-077261, JP-A-2008-231265, JP-A-2005-314680 and the like can be used.
  • a metallocene compound having a structure different from the metallocene compounds described in these patent documents may be used, or two or more metallocene compounds may be used in combination.
  • a conventionally known metallocene compound (II) (II-1) an organoaluminum oxy compound, (II-2) a compound that reacts with the metallocene compound (I) to form an ion pair, and (II-3) an organoaluminum
  • an olefin polymerization catalyst comprising at least one compound selected from the group consisting of compounds (also referred to as a co-catalyst)
  • one or more monomers selected from ethylene and ⁇ -olefin are supplied.
  • Examples of (II-1) an organoaluminum oxy compound, (II-2) a compound that reacts with the metallocene compound (I) to form an ion pair, and (II-3) an organoaluminum compound include, for example, The metallocene compounds described in Japanese Patent No. 077261, Japanese Patent Application Laid-Open No. 2008-231265, Japanese Patent Application Laid-Open No. 2005-314680, and the like can be used. However, you may use the metallocene compound of a structure different from the metallocene compound described in these patent documents. These compounds may be put into the polymerization atmosphere individually or in advance in contact with each other.
  • (II-2) the ethylene / ⁇ -olefin having excellent electrical characteristics is produced by substantially using the compound (II-2) that reacts with the metallocene compound (I) to form an ion pair.
  • a copolymer can be obtained.
  • the ethylene / ⁇ -olefin copolymer can be polymerized by any of the conventionally known gas phase polymerization methods and liquid phase polymerization methods such as slurry polymerization methods and solution polymerization methods. Preferably, it is carried out by a liquid phase polymerization method such as a solution polymerization method.
  • a liquid phase polymerization method such as a solution polymerization method.
  • the molar ratio [(II-1) / M] of compound (II-1) to all transition metal atoms (M) in compound (I) is usually 1 to 10,000, preferably The amount used is 10 to 5,000.
  • the compound (II-2) has a molar ratio [(II-2) / M] to the total transition metal (M) in the compound (I) of usually 0.5 to 50, preferably 1 to 20. Used in various amounts.
  • Compound (II-3) is generally used in an amount of 0 to 5 mmol, preferably about 0 to 2 mmol, per liter of polymerization volume.
  • the solution polymerization method by copolymerizing ethylene and an ⁇ -olefin having 3 to 20 carbon atoms in the presence of the metallocene compound as described above, the comonomer content is high, the composition distribution is narrow, and the molecular weight distribution is narrow. An ethylene / ⁇ -olefin copolymer can be produced efficiently.
  • Examples of the ⁇ -olefin having 3 to 20 carbon atoms include linear or branched ⁇ -olefins such as propylene, 1-butene, 2-butene, 1-pentene, 3-methyl-1-butene, 1-hexene, Examples include 4-methyl-1-pentene, 3-methyl-1-pentene, 1-octene, 1-decene, 1-dodecene and the like.
  • Examples of ⁇ -olefins that can be used in the solution polymerization method include polar group-containing olefins.
  • polar group-containing olefins examples include ⁇ , ⁇ -unsaturated carboxylic acids such as acrylic acid, methacrylic acid, fumaric acid and maleic anhydride, and metal salts such as sodium salts thereof; methyl acrylate, ethyl acrylate, ⁇ , ⁇ -unsaturated carboxylic acid esters such as n-propyl acrylate, methyl methacrylate and ethyl methacrylate; vinyl esters such as vinyl acetate and vinyl propionate; unsaturated glycidyl such as glycidyl acrylate and glycidyl methacrylate Examples include esters.
  • Aromatic vinyl compounds such as styrene, o-methyl styrene, m-methyl styrene, p-methyl styrene, o, p-dimethyl styrene, methoxy styrene, vinyl benzoic acid, methyl vinyl benzoate, vinyl benzyl acetate, hydroxy Styrenes such as styrene, p-chlorostyrene, and divinylbenzene; 3-phenylpropylene, 4-phenylpropylene, ⁇ -methylstyrene, and the like can coexist in the reaction system to carry out high-temperature solution polymerization.
  • ⁇ -olefins described above propylene, 1-butene, 1-hexene, 4-methyl-1-pentene and 1-octene are preferably used.
  • cyclic olefins having 3 to 20 carbon atoms such as cyclopentene, cycloheptene, norbornene, 5-methyl-2-norbornene and the like may be used in combination.
  • the “solution polymerization method” is a general term for a method of performing polymerization in a state where a polymer is dissolved in an inert hydrocarbon solvent described later.
  • the polymerization temperature in the solution polymerization method is usually 0 to 200 ° C., preferably 20 to 190 ° C., more preferably 40 to 180 ° C.
  • the polymerization temperature is less than 0 ° C.
  • the polymerization activity is extremely lowered, and it is difficult to remove the heat of polymerization, which is not practical in terms of productivity.
  • the polymerization temperature exceeds 200 ° C., the polymerization activity is extremely lowered, so that it is not practical in terms of productivity.
  • the polymerization pressure is usually from normal pressure to 10 MPa gauge pressure, preferably from normal pressure to 8 MPa gauge pressure.
  • Copolymerization can be carried out in any of batch, semi-continuous and continuous methods.
  • the reaction time (average residence time when the copolymerization reaction is carried out in a continuous manner) varies depending on conditions such as the catalyst concentration and polymerization temperature, and can be selected as appropriate, but is usually 1 minute to 3 hours, Preferably, it is 10 minutes to 2.5 hours.
  • the polymerization can be carried out in two or more stages having different reaction conditions.
  • the molecular weight of the obtained ethylene / ⁇ -olefin copolymer can also be adjusted by changing the hydrogen concentration or polymerization temperature in the polymerization system.
  • the quantity of the compound (II) to be used can also adjust with the quantity of the compound (II) to be used.
  • the amount is suitably about 0.001 to 5,000 NL per kg of the ethylene / ⁇ -olefin copolymer to be produced.
  • the vinyl group and vinylidene group present at the molecular ends of the obtained ethylene / ⁇ -olefin copolymer can be adjusted by increasing the polymerization temperature and decreasing the amount of hydrogenation as much as possible.
  • the solvent used in the solution polymerization method is usually an inert hydrocarbon solvent, preferably a saturated hydrocarbon having a boiling point of 50 ° C. to 200 ° C. under normal pressure.
  • an inert hydrocarbon solvent preferably a saturated hydrocarbon having a boiling point of 50 ° C. to 200 ° C. under normal pressure.
  • Specific examples include aliphatic hydrocarbons such as pentane, hexane, heptane, octane, decane, dodecane, and kerosene; and alicyclic hydrocarbons such as cyclopentane, cyclohexane, and methylcyclopentane.
  • Aromatic hydrocarbons such as benzene, toluene and xylene, and halogenated hydrocarbons such as ethylene chloride, chlorobenzene and dichloromethane are also included in the category of “inert hydrocarbon solvents” and their use is not limited. .
  • the solution polymerization method not only a conventionally used organoaluminum oxy compound that dissolves in an aromatic hydrocarbon, but also a modification such as MMAO that dissolves in an aliphatic hydrocarbon or an alicyclic hydrocarbon. Methylaluminoxane can be used.
  • MMAO a modification such as MMAO that dissolves in an aliphatic hydrocarbon or an alicyclic hydrocarbon.
  • Methylaluminoxane can be used.
  • aliphatic hydrocarbons or alicyclic hydrocarbons are used as the solvent for solution polymerization, there is a possibility that aromatic hydrocarbons are mixed in the polymerization system or in the ethylene / ⁇ -olefin copolymer produced. It becomes possible to eliminate almost completely. That is, the solution polymerization method has characteristics that it can reduce the environmental burden and can minimize the influence on human health.
  • the ethylene / ⁇ -olefin copolymer obtained by the polymerization reaction and other components added as desired are melted by any method, and kneaded, granulated, etc. Preferably it is applied.
  • the solar cell sealing material of this embodiment contains an organic peroxide.
  • the organic peroxide is used as a radical initiator for graft modification of an ethylenically unsaturated silane compound and an ethylene / ⁇ -olefin copolymer, and further, an ethylene / ⁇ -olefin copolymer solar cell module laminate. Used as a radical initiator in the crosslinking reaction during molding.
  • a solar cell module having good adhesion to the front surface side transparent protective member, the back surface side protective member, the cell, and the electrode can be obtained.
  • a solar cell module excellent in heat resistance and adhesiveness can be obtained.
  • the content of the organic peroxide in the solar cell encapsulant of this embodiment is preferably 0.1 to 3 parts by weight with respect to 100 parts by weight of the above-mentioned ethylene / ⁇ -olefin copolymer,
  • the amount is more preferably 0.2 to 3 parts by weight, and particularly preferably 0.2 to 2.5 parts by weight.
  • the content of the organic peroxide is 0.1 parts by weight or more, the deterioration of the crosslinking characteristics such as the degree of crosslinking and the crosslinking rate of the solar cell encapsulant is suppressed, and ethylene / It is possible to improve the graft reaction of the ⁇ -olefin copolymer to the main chain and suppress the decrease in heat resistance and adhesiveness.
  • the content of the organic peroxide is 3.0 parts by weight or less, gel is unlikely to occur in the solar cell encapsulating sheet obtained from the resin composition at the time of extrusion sheet molding, and thus the increase in the torque of the extruder is suppressed. Sheet forming can be facilitated.
  • the organic peroxide preferably used is one that can graft-modify an ethylenically unsaturated silane compound to the ethylene / ⁇ -olefin copolymer or crosslink the ethylene / ⁇ -olefin copolymer.
  • the one minute half-life temperature of the organic peroxide is preferably 100 to 170 ° C. from the balance between the productivity in extrusion sheet molding and the crosslinking rate in the laminate molding of the solar cell module.
  • the half-life temperature of the organic peroxide is 100 ° C. or higher, gels are less likely to occur in the solar cell encapsulating sheet obtained from the resin composition during extrusion sheet molding, and thus the increase in the torque of the extruder is suppressed.
  • Sheet forming can be facilitated. Moreover, since it can suppress that an unevenness
  • the adhesiveness with a surface side transparent protection member, a cell, an electrode, and a back surface side protection member becomes favorable at the time of the lamination process of a solar cell module, and adhesiveness also improves. If the extrusion temperature of extrusion sheet molding is lowered to 90 ° C. or lower, molding is possible, but productivity is greatly reduced. When the one-minute half-life temperature of the organic peroxide is 170 ° C. or lower, it is possible to suppress a decrease in the crosslinking rate when the solar cell module is laminated, and thus it is possible to prevent a decrease in the productivity of the solar cell module. Moreover, the heat resistance of a solar cell sealing material and the fall of adhesiveness can also be prevented.
  • organic peroxides can be used.
  • Preferred examples of the organic peroxide having a 1 minute half-life temperature in the range of 100 to 170 ° C. include dilauroyl peroxide, 1,1,3,3-tetramethylbutylperoxy-2-ethylhexanoate Dibenzoyl peroxide, t-amylperoxy-2-ethylhexanoate, t-butylperoxy-2-ethylhexanoate, t-butylperoxyisobutyrate, t-butylperoxymaleic acid, 1 , 1-Di (t-amylperoxy) -3,3,5-trimethylcyclohexane, 1,1-di (t-amylperoxy) cyclohexane, t-amylperoxyisononanoate, t-amylperoxynormal Octoate, 1,1-di (t-butylperoxy) -3,3,5-trimethyl
  • dilauroyl peroxide t-butyl peroxyisopropyl carbonate, t-butyl peroxyacetate, t-butyl peroxyisononanoate, t-butyl peroxy-2-ethylhexyl carbonate, t-butyl peroxybenzoate, etc. Is mentioned.
  • the solar cell encapsulant of the present embodiment contains at least one crosslinking aid selected from the group consisting of divinyl aromatic compounds, cyanurates, diallyl compounds, triallyl compounds, oximes and maleimides.
  • a crosslinking aid By containing a crosslinking aid, an appropriate crosslinking structure can be obtained, and crosslinking characteristics, heat resistance, mechanical properties, and adhesiveness can be improved.
  • the content of the crosslinking aid in the solar cell encapsulant of this embodiment is 0.1 to 3 parts by weight, preferably 0.1 to 3 parts by weight with respect to 100 parts by weight of the ethylene / ⁇ -olefin copolymer. The amount is 2.5 parts by weight, more preferably 0.2 to 2.0 parts by weight.
  • the crosslinking characteristic of a solar cell sealing material can be further improved as content of a crosslinking adjuvant is 0.1 weight part or more.
  • content of a crosslinking adjuvant is 0.1 weight part or more.
  • the crosslinking aid is 3 parts by weight or less, the scorch property is suppressed, no gel is generated during extrusion molding, and the sheet appearance and adhesiveness can be improved.
  • crosslinking aid conventionally known ones generally used for olefinic resins can be used.
  • a crosslinking aid is a compound having two or more double bonds in the molecule.
  • divinyl aromatic compounds such as divinylbenzene and di-i-propenylbenzene
  • cyanurates such as triallyl cyanurate and triallyl isocyanurate
  • diallyl compounds such as diallyl phthalate
  • triallyl compounds such as diallyl phthalate
  • p-quinonedioxime, oximes such as pp′-dibenzoylquinone dioxime
  • maleimides such as phenylmaleimide.
  • crosslinking auxiliaries at least one selected from the group consisting of triallyl compounds and cyanurates is preferred, and triallyl isocyanurate is the most excellent balance of bubble generation and crosslinking characteristics of the solar cell encapsulant after lamination. Particularly preferred.
  • the solar cell encapsulant of this embodiment contains 0.1 to 5.0 parts by weight of (meth) acrylate monomer, preferably 0 to 100 parts by weight of ethylene / ⁇ -olefin copolymer. .1 to 4.5 parts by weight, particularly preferably 0.2 to 3.0 parts by weight.
  • the content of the (meth) acrylate monomer is 0.1 parts by weight or more, the crosslinked structure of the cured product of the solar cell encapsulant is good, and the volume resistivity is improved.
  • the movement of the molecular chain is suppressed and the volume resistivity tends to be improved.
  • the (meth) acrylate monomer is 5.0 parts by weight or less, the scorch property can be lowered, the gel can be suppressed at the time of extrusion molding, and the sheet appearance and adhesiveness can be prevented from being lowered.
  • (meth) acrylate type monomers can also be suppressed and the adhesiveness and heat resistance of a solar cell sealing material can be improved.
  • the said content in a solar cell sealing material extracts a (meth) acrylate type monomer by solvent extraction from a solar cell sealing material, and analyzes it using chromatography, such as a gas chromatography or a liquid chromatography. be able to.
  • a conventionally well-known thing can be used as a (meth) acrylate type monomer.
  • Specific examples include t-butyl acrylate, lauryl acrylate, cetyl acrylate, stearyl acrylate, 2-methoxyethyl acrylate, ethyl carbitol acrylate, methoxytripropylene glycol acrylate, methoxypolyethylene glycol acrylate, isostearyl acrylate, 2-acryloyloxy Monoacrylates such as ethyl succinate; monomethacrylates such as t-butyl methacrylate, lauryl methacrylate, cetyl methacrylate, stearyl methacrylate, methoxyethylene glycol methacrylate, methoxypolyethylene glycol methacrylate, isostearyl methacrylate, 2-methacryloyloxyethyl succinate; 1 , 4-Butanediol diacryl , 6-hexanedio
  • Such (meth) acrylate monomers may be used alone or in combination of two or more.
  • at least one selected from the group consisting of mono (meth) acrylate, di (meth) acrylate, tri (meth) acrylate and tetra (meth) acrylate is preferable, and methoxypolyethylene glycol (meth) acrylate, stearyl (meth) ) Acrylate, glycerin di (meth) acrylate, neopentyl glycol di (meth) acrylate, trimethylolpropane tri (meth) acrylate and ditrimethylolpropane tetra (meth) acrylate, dipentaerythritol hexa (meth) acrylate More preferred is at least one of the above.
  • the molecular weight of the (meth) acrylate monomer is preferably 150 or more, and more preferably 180 or more.
  • the molecular weight of the (meth) acrylate monomer is not particularly limited, but is preferably 2000 or less, and more preferably 1500 or less.
  • the total content of the crosslinking aid and the (meth) acrylate monomer is preferably 0.2 to 5.0 parts by weight, more preferably 100 parts by weight of the ethylene / ⁇ -olefin copolymer. Is 0.2 to 4.5 parts by weight, more preferably 0.3 to 3.0 parts by weight.
  • the graft amount of the (meth) acrylate monomer in the solar cell encapsulant sheet after the crosslinking treatment can be determined by IR measurement of the sheet piece.
  • absorption by other additives such as an ethylenically unsaturated silane compound overlaps with the absorption band of the (meth) acrylate group, the following may be performed.
  • the silicon atom content is determined by ICP measurement, and the content of the ethylenically unsaturated silane compound is determined.
  • a calibration curve for the content of the ethylenically unsaturated silane compound and the IR absorption intensity is obtained in advance, and the content of the ethylenically unsaturated silane compound obtained by ICP measurement is subtracted from the IR absorption band strength to obtain (meta) It can be calculated as the graft amount of the acrylate monomer.
  • the solar cell sealing material of this embodiment further contains an ethylenically unsaturated silane compound.
  • the content of the ethylenically unsaturated silane compound in the solar cell encapsulant of this embodiment is preferably 0.1 to 5 parts by weight with respect to 100 parts by weight of the ethylene / ⁇ -olefin copolymer.
  • the amount is preferably 0.1 to 4 parts by weight, particularly preferably 0.1 to 3 parts by weight.
  • the adhesiveness is improved.
  • the content of the ethylenically unsaturated silane compound is 5 parts by weight or less, the balance between the cost and performance of the solar cell encapsulant is good. ⁇ Since the amount of organic peroxide added for the graft reaction to the ⁇ -olefin copolymer can be suppressed and gel is less likely to occur in the solar cell encapsulating sheet obtained from the resin composition during extrusion sheet molding, an extruder The sheet can be easily formed by suppressing an increase in torque.
  • a conventionally well-known thing can be used for an ethylenically unsaturated silane compound, and there is no restriction
  • vinyltriethoxysilane, vinyltrimethoxysilane, vinyltris ( ⁇ -methoxyethoxysilane), ⁇ -glycidoxypropyltrimethoxysilane, ⁇ -aminopropyltriethoxysilane, ⁇ -methacryloxypropyltrimethoxysilane Etc. can be used.
  • the solar cell encapsulant of this embodiment may contain at least one additive selected from the group consisting of an ultraviolet absorber, a light stabilizer, and a heat resistance stabilizer.
  • the content of these additives is preferably 0.005 to 5 parts by weight with respect to 100 parts by weight of the ethylene / ⁇ -olefin copolymer.
  • the blending amount of the additive is within the above range, the effect of improving resistance to high temperature and humidity, heat cycle resistance, weather resistance stability, and heat stability is sufficiently ensured, and a solar cell sealing material This is preferable because the lowering of the adhesiveness and the adhesiveness with the surface side transparent protective member, the back side protective member, the cell, the electrode, and aluminum can be prevented.
  • the ultraviolet absorber examples include 2-hydroxy-4-normal-octyloxybenzophenone, 2-hydroxy-4methoxybenzophenone, 2,2-dihydroxy-4-methoxybenzophenone, 2-hydroxy-4-methoxy- Benzophenones such as 4-carboxybenzophenone and 2-hydroxy-4-N-octoxybenzophenone; 2- (2-hydroxy-3,5-di-t-butylphenyl) benzotriazole, 2- (2-hydroxy-5 -Methylphenyl) benzotriazoles such as benzotriazole; salicylic acid esters such as phenylsalicylate and p-octylphenylsulcylate are used.
  • Examples of the light stabilizer include bis (2,2,6,6-tetramethyl-4-piperidyl) sebacate, poly [ ⁇ 6- (1,1,3,3-tetramethylbutyl) amino-1,3, 5-triazine-2,4-diyl ⁇ ⁇ (2,2,6,6-tetramethyl-4-piperidyl) imino ⁇ hexamethylene ⁇ (2,2,6,6-tetramethyl-4-piperidyl) imino ⁇
  • Hindered amine compounds such as hindered piperidine compounds and the like are preferably used.
  • heat-resistant stabilizers include tris (2,4-di-tert-butylphenyl) phosphite, bis [2,4-bis (1,1-dimethylethyl) -6-methylphenyl] ethyl ester.
  • Phosphorous acid tetrakis (2,4-di-tert-butylphenyl) [1,1-biphenyl] -4,4′-diylbisphosphonite, and bis (2,4-di-tert-butylphenyl) Phosphite heat stabilizers such as pentaerythritol diphosphite; lactone heat stabilizers such as the reaction product of 3-hydroxy-5,7-di-tert-butyl-furan-2-one and o-xylene; 3,3 ′, 3 ′′, 5,5 ′, 5 ′′ -hexa-tert-butyl-a, a ′, a ′′-(methylene-2,4,6-triyl) tri-p-cresol, 1,3 , 5-trime Tyl-2,4,6-tris (3,5-di-tert-butyl-4-hydroxyphenyl) benzylbenzene, pentaerythritol t
  • ethylene resin composition constituting the solar cell encapsulant Various components other than the components detailed above can be appropriately contained in the ethylene resin composition constituting the solar cell encapsulant as long as the object of the present invention is not impaired.
  • Examples include various polyolefins other than ethylene / ⁇ -olefin copolymers, styrene-based, ethylene-based block copolymers, and propylene-based polymers.
  • the content of various components in the solar cell encapsulant is preferably 0.0001 to 50 parts by weight, more preferably 0.001 to 40 parts by weight with respect to 100 parts by weight of the ethylene / ⁇ -olefin copolymer. Parts by weight.
  • the above additives can be appropriately contained.
  • the solar cell encapsulant of this embodiment is excellent in electrical characteristics, adhesiveness with various solar cell members such as front surface side transparent protective member, back surface side protective member, thin film electrode, aluminum, solar cell element, heat resistance, extrusion It also has an excellent balance of moldability and crosslinking properties, and also has a good balance of transparency, flexibility, appearance, weather resistance, electrical insulation, moisture permeability, electrode corrosivity, and process stability. For this reason, it is used suitably as a solar cell sealing material of a conventionally well-known solar cell module.
  • the solar cell encapsulant has a sheet shape as a whole.
  • seat which consists of the above-mentioned resin composition can also be used suitably.
  • the thickness of the solar cell encapsulant layer is usually 0.01 to 2 mm, preferably 0.05 to 1.5 mm, more preferably 0.1 to 1.2 mm, still more preferably 0.2 to 1 mm, particularly preferably. Is 0.3 to 0.9 mm, most preferably 0.3 to 0.8 mm. When the thickness is within this range, damage to the surface side transparent protective member, solar cell element, thin film electrode, etc. in the laminating step can be suppressed, and a high amount of photovoltaic power can be obtained by ensuring sufficient light transmittance. be able to. Furthermore, it is preferable because the solar cell module can be laminated at a low temperature.
  • the solar cell encapsulant of this embodiment has a volume resistivity of 1 as measured by crosslinking the solar cell encapsulant, measured at a temperature of 100 ° C. and an applied voltage of 500 V, in accordance with JIS K6911. It is preferably 0.0 ⁇ 10 15 to 1.0 ⁇ 10 18 ⁇ ⁇ cm. A solar cell encapsulant with a small volume resistivity tends to have a characteristic of easily generating PID. Furthermore, in the time zone in which sunlight is irradiated, the module temperature of a conventional solar cell module may be, for example, 70 ° C. or higher.
  • the volume resistivity under a high temperature condition is demanded from the volume resistivity at 1 and the volume resistivity at a temperature of 100 ° C. is important.
  • the volume resistivity is preferably 1.0 ⁇ 10 15 to 1.0 ⁇ 10 18 ⁇ ⁇ cm, and more preferably 5.0 ⁇ 10 15 to 1.0 ⁇ 10 18 ⁇ ⁇ cm. If the volume resistivity is less than 1.0 ⁇ 10 15 ⁇ ⁇ cm, the PID phenomenon tends to occur in a short period of about one day in a constant temperature and humidity test at 85 ° C. and 85% rh.
  • volume resistivity exceeds 1.0 ⁇ 10 18 ⁇ ⁇ cm, static electricity will be applied to the sheet and it will be easier to adsorb dust, and dust will be mixed into the solar cell module, resulting in power generation efficiency and long-term reliability. It tends to cause a decline.
  • the volume resistivity is measured after being molded into a sealing material sheet and then processed into a cross-linked and flat sheet by a vacuum laminator, a hot press, a cross-linking furnace, or the like.
  • seat in a module laminated body measures by removing another layer.
  • the solar cell encapsulant of the present embodiment can satisfy the volume specific resistance while suppressing gel-like foreign matter generated in the crosslinked sheet.
  • a commonly used method can be used, but it is preferably produced by melt blending with a kneader, a Banbury mixer, an extruder or the like. In particular, the production with an extruder capable of continuous production is preferred.
  • the method for forming the solar cell encapsulant sheet is not particularly limited, and various known forming methods (cast molding, extrusion sheet molding, inflation molding, injection molding, compression molding, etc.) can be employed.
  • An ethylene sheet obtained by blending or blending with a stirring mixer such as a Henschel mixer, tumbler, or super mixer is put into an extruded sheet molding hopper, and extruded and melt kneaded.
  • the extrusion temperature range is preferably 100 to 130 ° C.
  • the productivity of the solar cell encapsulant can be improved.
  • the extrusion temperature is 130 ° C. or lower, gelation hardly occurs when the ethylene resin composition is made into a sheet with an extruder to obtain a solar cell encapsulant. Therefore, an increase in the torque of the extruder can be prevented and sheet forming can be facilitated.
  • seat the fall of an external appearance can be prevented.
  • a sheet or film having a desired thickness is produced by rolling the molten resin with a heated metal roll (calender roll).
  • the calendar molding machine various known calendar molding machines can be used, and a mixing roll, a three-calendar roll, and a four-calendar roll can be used.
  • the four calender rolls I type, S type, inverted L type, Z type, oblique Z type, etc. can be used.
  • the roll temperature is usually preferably 40 to 100 ° C.
  • the surface of the solar cell encapsulant sheet may be embossed.
  • embossing By decorating the sheet surface of the solar cell encapsulant by embossing, blocking between the encapsulant sheets or between the encapsulant sheet and other sheets can be prevented.
  • embossing reduces the storage elastic modulus of the solar cell encapsulant (solar cell encapsulating sheet), it becomes a cushion for the solar cell element when laminating the solar cell encapsulating sheet and the solar cell element. Thus, damage to the solar cell element can be prevented.
  • Porosity P expressed as a percentage V H / V A ⁇ 100 of the total volume V H of the recesses per unit area of the solar cell encapsulant sheet and the apparent volume VA of the solar cell encapsulant sheet (%) Is preferably 10 to 50%, more preferably 10 to 40%, and still more preferably 15 to 40%.
  • the apparent volume VA of the solar cell encapsulant sheet is obtained by multiplying the unit area by the maximum thickness of the solar cell encapsulant sheet.
  • the porosity P is 10% or more, the elastic modulus of the solar cell encapsulating material can be sufficiently lowered, so that sufficient cushioning properties can be obtained.
  • the crystalline solar cell prevents the cracking of the silicon cell and the solder that fixes the silicon cell and the electrode, and the thin film solar cell Then, the crack of a silver electrode can be prevented. That is, when the porosity of the solar cell encapsulant including a sheet made of an ethylene-based resin composition is 10% or more, even when pressure is locally applied to the solar cell encapsulant, the pressure is It deform
  • the passage of air can be ensured as the porosity of the solar cell encapsulant is 10% or more, it can be well deaerated during lamination. For this reason, it is possible to prevent the appearance of the solar cell module from deteriorating due to air remaining, or the corrosion of the electrode due to the remaining moisture in the air during long-term use. Further, since the voids generated in the flowable crosslinkable resin composition at the time of lamination are reduced, it is possible to prevent the laminator from being contaminated by protruding outside the adherends of the solar cell module.
  • the porosity P can be obtained by the following calculation.
  • V A (mm 3 ) t max (mm) ⁇ 10 6 (mm 2 ) (3)
  • the actual volume V 0 (mm 3 ) of the solar cell encapsulant of this unit area is based on the specific gravity ⁇ (g / mm 3 ) and unit area (1 m 2 ) of the resin constituting the solar cell encapsulant.
  • V H (mm 3 ) W / ⁇ (4)
  • the total volume V H (mm 3 ) of the recesses per unit area of the solar cell encapsulant is expressed as “Actual volume V A of solar cell encapsulant” to “Actual volume” as shown in the following formula (5). It is calculated by subtracting the volume “V 0 ”.
  • the porosity (%) can be obtained by the above calculation formula, but it can also be obtained by taking an image of a cross section or an embossed surface of an actual solar cell encapsulant and performing image processing. .
  • the depth of the recess formed by embossing is preferably 20 to 95% of the maximum thickness of the solar cell encapsulant, more preferably 50 to 95%, and 65 to 95%. Particularly preferred.
  • the percentage of the depth D of the recess with respect to the maximum thickness t max of the sheet may be referred to as the “depth ratio” of the recess.
  • the depth of the embossed concave portion indicates a height difference D between the topmost portion of the convex portion and the deepest portion of the concave portion of the uneven surface of the solar cell sealing material by the embossing.
  • the maximum thickness t max of the solar cell encapsulant is, when embossed on one surface of the solar cell encapsulant, the solar cell encapsulant from the top of the convex portion on one surface to the other surface (solar cell).
  • the distance from the top of the convex portion on one surface to the maximum of the convex portion on the other surface is shown. The distance (in the solar cell encapsulant thickness direction) to the top is shown.
  • Embossing may be performed on one side of the solar cell encapsulant or on both sides. When increasing the depth of the embossed recess, it is preferably formed only on one side of the solar cell encapsulant.
  • the maximum thickness t max of the solar cell encapsulant is 0.01 mm to 2 mm, preferably 0.05 to 1 mm, more preferably 0.1 to 1 mm, more preferably 0.15 to 1 mm, more preferably 0.2 to 1 mm, further preferably 0.2 to 0.9 mm, and particularly preferably 0.3 to 1 mm. 0.9 mm, most preferably 0.3 to 0.8 mm.
  • the maximum thickness t max of the solar cell encapsulant is within this range, damage to the surface side transparent protective member, solar cell element, thin film electrode, etc. in the laminating step can be suppressed, and the solar cell module laminate can be performed even at a relatively low temperature. It is preferable because it can be molded. Moreover, the solar cell sealing material can ensure sufficient light transmittance, and the solar cell module using the solar cell encapsulant has a high photovoltaic power generation amount.
  • the sheet can be used as a solar cell encapsulant in a single wafer form cut to fit the solar cell module size or a roll form that can be cut to fit the size just before producing the solar cell module.
  • the sheet-like solar cell encapsulant which is a preferred embodiment of the present embodiment only needs to have at least one layer made of the solar cell encapsulant. Therefore, the number of layers made of the solar cell encapsulant of this embodiment may be one layer or two or more layers. From the viewpoint of simplifying the structure and reducing costs, and from the viewpoint of effectively utilizing light by minimizing interfacial reflection between layers, it is preferable to be further increased.
  • the solar cell encapsulant sheet may be composed of only a layer made of the solar cell encapsulant of the present embodiment, or a layer other than the layer containing the solar cell encapsulant (hereinafter “other layers”). May also be included). Examples of other layers include a hard coat layer, an adhesive layer, an antireflection layer, a gas barrier layer, and an antifouling layer for protecting the front or back surface, if classified for purposes.
  • layer made of UV curable resin layer made of thermosetting resin, layer made of polyolefin resin, layer made of carboxylic acid modified polyolefin resin, layer made of fluorine-containing resin, cyclic olefin (co)
  • layer made of UV curable resin layer made of thermosetting resin
  • layer made of polyolefin resin layer made of carboxylic acid modified polyolefin resin
  • layer made of fluorine-containing resin layer made of fluorine-containing resin
  • cyclic olefin (co) examples thereof include a layer made of a polymer and a layer made of an inorganic compound.
  • the positional relationship between the layer made of the solar cell encapsulant of this embodiment and the other layers is not particularly limited, and a preferable layer configuration is appropriately selected in relation to the object of the present invention. That is, the other layer may be provided between layers made of two or more solar cell encapsulants, or may be provided in the outermost layer of the solar cell encapsulating sheet, or in other locations. It may be provided. In addition, other layers may be provided only on one side of the layer made of the solar cell sealing material, or other layers may be provided on both sides. There is no restriction
  • the other layers are not provided, and only the layer made of the solar cell encapsulant of the present embodiment is used. What is necessary is just to produce the sealing sheet for batteries. However, if there are other layers necessary or useful in relation to the purpose, such other layers may be provided as appropriate. In the case of providing other layers, there are no particular restrictions on the method of laminating the layer made of the solar cell encapsulant of this embodiment and the other layers, but there are no limitations on cast molding machines, extrusion sheet molding machines, inflation molding machines, injections.
  • a method of obtaining a laminate by co-extrusion using a known melt extruder such as a molding machine, or a method of obtaining a laminate by melting or heating and laminating the other layer on one previously formed layer is preferred.
  • suitable adhesives for example, maleic anhydride-modified polyolefin resin (trade name “Admer (registered trademark)” manufactured by Mitsui Chemicals, Inc., product name “Modic (registered trademark)” manufactured by Mitsubishi Chemical Corporation, etc.)), unsaturated Including low (non) crystalline soft polymers such as polyolefins, ethylene / acrylic acid ester / maleic anhydride terpolymers (trade name “Bondaine (registered trademark)” manufactured by Sumika DF Chemical Co., Ltd.), etc.
  • An acrylic adhesive, an ethylene / vinyl acetate copolymer, or an adhesive resin composition containing these) may be laminated by a dry laminating method or a heat laminating method.
  • the adhesive those having a heat resistance of about 120 to 150 ° C. are preferably used, and a polyester-based or polyurethane-based adhesive is exemplified as a suitable one.
  • a silane coupling treatment, a titanium coupling treatment, a corona treatment, a plasma treatment, or the like may be used.
  • a solar cell module is typically a crystalline solar cell in which solar cell elements formed of, for example, polycrystalline silicon are sandwiched and stacked between solar cell sealing sheets, and both front and back surfaces are covered with protective sheets.
  • the solar cell module which is one of the preferred embodiments of the present embodiment is not limited to the above-described configuration, and a part of each of the above layers is appropriately omitted as long as the object of the present invention is not impaired. Layers other than the above can be provided as appropriate.
  • Examples of the layer other than the above include an adhesive layer, a shock absorbing layer, a coating layer, an antireflection layer, a back surface rereflection layer, and a light diffusion layer. These layers are not particularly limited, but can be provided at appropriate positions in consideration of the purpose and characteristics of each layer.
  • FIG. 1 is a cross-sectional view schematically showing one embodiment of the solar cell module of the present embodiment.
  • the solar cell module 20 includes a plurality of crystalline silicon-based solar cell elements 22 electrically connected by an interconnector 29, a pair of front surface side transparent protective members 24 and a back surface thereof.
  • a side protection member 26 is provided, and a sealing layer 28 is filled between these protection members and the plurality of solar cell elements 22.
  • the sealing layer 28 is obtained by bonding the solar cell sealing material of the present embodiment and then thermocompression bonding, and is in contact with the electrodes formed on the light receiving surface and the back surface of the solar cell element 22.
  • the electrode is a current collecting member formed on each of the light receiving surface and the back surface of the solar cell element 22 and includes a power collecting wire, a tabbed bus, a back electrode layer, and the like which will be described later.
  • FIG. 2 is a plan view schematically showing one configuration example of the light receiving surface and the back surface of the solar cell element.
  • FIG. 2 an example of the configuration of the light receiving surface 22A and the back surface 22B of the solar cell element 22 is shown.
  • the light receiving surface 22A of the solar cell element 22 collects a large number of linearly-collected current lines 32, charges from the current collector lines 32, and interconnector 29 (FIG. 1).
  • a bus bar with a tab (bus bar) 34 ⁇ / b> A connected thereto.
  • a conductive layer (back electrode) 36 is formed on the entire back surface 22B of the solar cell element 22, and charges are collected from the conductive layer 36 on the back surface 22B.
  • a tabbed bus bar (bus bar) 34B connected to the connector 29 (FIG. 1) is formed.
  • the line width of the collector line 32 is, for example, about 0.1 mm; the line width of the tabbed bus 34A is, for example, about 2 to 3 mm; and the line width of the tabbed bus 34B is, for example, about 5 to 7 mm. is there.
  • the thickness of the current collector 32, the tabbed bus 34A and the tabbed bus 34B is, for example, about 20 to 50 ⁇ m.
  • the current collector 32, the tabbed bus 34A, and the tabbed bus 34B preferably contain a highly conductive metal.
  • highly conductive metals include gold, silver, copper, and the like. From the viewpoint of high conductivity and high corrosion resistance, silver, silver compounds, alloys containing silver, and the like are preferable.
  • the conductive layer 36 contains not only a highly conductive metal but also a highly light reflective component, for example, aluminum from the viewpoint of improving the photoelectric conversion efficiency of the solar cell element by reflecting light received by the light receiving surface. It is preferable.
  • the current collector 32, the tabbed bus 34 ⁇ / b> A, the tabbed bus 34 ⁇ / b> B, and the conductive layer 36 are formed by applying a conductive material paint containing the above highly conductive metal to the light receiving surface 22 ⁇ / b> A or the back surface 22 ⁇ / b> B of the solar cell element 22, for example, a screen. It is formed by applying to a coating thickness of 50 ⁇ m by printing, drying, and baking at, for example, 600 to 700 ° C. as necessary.
  • the surface side transparent protective member 24 Since the surface side transparent protective member 24 is disposed on the light receiving surface side, it needs to be transparent. Examples of the surface side transparent protective member 24 include a transparent glass plate and a transparent resin film. On the other hand, the back surface side protection member 26 does not need to be transparent, and the material is not particularly limited. Examples of the back surface side protection member 26 include a glass substrate and a plastic film, but a glass substrate is preferably used from the viewpoint of durability and transparency.
  • the solar cell module 20 can be obtained by any manufacturing method.
  • the solar cell module 20 is a process of obtaining a laminated body in which, for example, the back surface side protective member 26, the solar cell sealing material, the plurality of solar cell elements 22, the solar cell sealing material, and the front surface side transparent protective member 24 are stacked in this order.
  • the solar cell element is usually provided with a collecting electrode for taking out the generated electricity. Examples of current collecting electrodes include bus bar electrodes, finger electrodes, and the like.
  • the collector electrode has a structure in which the collector electrode is disposed on both the front and back surfaces of the solar cell element.
  • the collector electrode blocks light and power generation efficiency is reduced. Problems can arise.
  • a back contact type solar cell element that does not require a collector electrode on the light receiving surface.
  • p-doped regions and n-doped regions are alternately provided on the back surface side provided on the opposite side of the light receiving surface of the solar cell element.
  • a p / n junction is formed on a substrate provided with a through hole (through hole), and the surface (light-receiving surface) side of the through hole inner wall and the through hole peripheral portion on the back surface side is formed.
  • a doped layer is formed, and the current on the light receiving surface is taken out on the back side.
  • the above-mentioned solar cell modules are connected in series from several units to several dozen units, 50V to 500V even in a small scale for residential use, and 600 to 1000V in a large scale called mega solar. Is operated.
  • An aluminum frame or the like is used for the outer frame of the solar cell module for the purpose of maintaining strength, and the aluminum frame is often grounded (grounded) from the viewpoint of safety.
  • the solar cell when the solar cell generates power, a voltage difference due to power generation occurs between the surface-side transparent protective member surface having a lower electrical resistance than the sealing material and the solar cell element.
  • the solar cell encapsulant that is sealed between the power generation cell and the surface-side transparent protective member or the aluminum frame is required to have good electrical characteristics such as high electrical insulation and high resistance.
  • the thin-film silicon-based solar cell module includes (1) a surface-side transparent protective member (glass substrate) / thin-film solar cell element / sealing layer / back-surface protective member laminated in this order; (2) surface-side transparent protective member / It may be a laminate of sealing layer / thin film solar cell element / sealing layer / back surface protective member in this order.
  • the front surface side transparent protective member, the back surface protective member, and the sealing layer are the same as those in the above-mentioned “crystalline silicon solar cell module”.
  • the thin film solar cell element in the aspect of (1) includes, for example, transparent electrode layer / pin type silicon layer / back electrode layer in this order.
  • the transparent electrode layer include semiconductor oxides such as In 2 O 3 , SnO 2 , ZnO, Cd 2 SnO 4 , ITO (In 2 O 3 with Sn added).
  • the back electrode layer includes, for example, a silver thin film layer. Each layer is formed by a plasma CVD (chemical vapor deposition) method or a sputtering method.
  • a sealing layer is arrange
  • the thin-film solar cell element in the aspect (2) includes, for example, a transparent electrode layer / pin type silicon layer / metal foil, or a metal thin film layer (for example, a silver thin film layer) disposed on a heat-resistant polymer film.
  • the metal foil include stainless steel foil.
  • the heat resistant polymer film include a polyimide film.
  • the transparent electrode layer and the pin type silicon layer are formed by the CVD method or the sputtering method as described above. That is, the pin-type silicon layer is formed on a metal foil or a metal thin film layer disposed on a heat-resistant polymer film; and the transparent electrode layer is formed on a pin-type silicon layer.
  • positioned on a heat resistant polymer film can also be formed by CVD method or a sputtering method.
  • the sealing layer is disposed between the transparent electrode layer and the front surface side transparent protective member; and between the metal foil or the heat resistant polymer film and the back surface side protective member.
  • the sealing layer obtained from a solar cell sealing material is in contact with electrodes, such as a current collection line of a solar cell element, a bus bar with a tab, and a conductive layer.
  • the thin-film solar cell element in the aspect (2) has a silicon layer that is thinner than a crystalline silicon-based solar cell element. Therefore, the thin-film solar cell element is damaged by pressurization when manufacturing a solar cell module or external impact when operating the module. Hard to do.
  • the flexibility of the solar cell sealing material used for the thin film solar cell module may be lower than that used for the crystalline silicon solar cell module.
  • the electrode of the thin film solar cell element is a metal thin film layer as described above, when it is deteriorated by corrosion, the power generation efficiency may be significantly reduced. Therefore, the solar cell according to the present embodiment includes a sheet made of an ethylene-based resin composition, which is less flexible than an ethylene / vinyl acetate copolymer (EVA), but does not necessarily require a crosslinking agent as a generation source of a decomposition gas.
  • the sealing material is more suitably used as a solar cell sealing material sheet for a thin film solar cell module.
  • Solar cell modules using silicon for solar cell elements include hybrid type (HIT type) solar cell modules in which crystalline silicon and amorphous silicon are laminated, and multi-junction type (tandem type) solar cells in which silicon layers having different absorption wavelength ranges are laminated.
  • HIT type hybrid type
  • tandem type multi-junction type
  • a battery module a back contact solar cell module in which p-doped regions and n-doped regions are alternately provided on the back side provided on the opposite side of the light-receiving surface of the solar cell element, innumerable spherical silicon particles (diameter of about 1 mm) and Examples include a spherical silicon solar cell module combined with a concave mirror (also serving as an electrode) having a diameter of 2 to 3 mm for increasing the light collecting ability. Further, in a solar cell module using silicon as a solar cell element, the role of an amorphous silicon type p-type window layer having a conventional pin junction structure is induced by “field effect” from “insulated transparent electrode”.
  • a field effect solar cell module having a structure replaced with an “inversion layer” is also included.
  • a GaAs solar cell module using single crystal GaAs for the solar cell element I-III called chalcopyrite system made of Cu, In, Ga, Al, Se, S, etc., instead of silicon as the solar cell element -CIS or CIGS (chalcopyrite) solar cell module using a group VI compound; CdTe-CdS solar cell using a Cd compound thin film as a solar cell element, Cu 2 ZnSnS 4 (CZTS) solar cell module, etc. It is done.
  • the solar cell encapsulant of this embodiment can be used as a solar cell encapsulant for all these solar cell modules.
  • the sealing material layer laminated under the photovoltaic element constituting the solar cell module has an adhesive property with the sealing material layer / electrode / back surface protection layer laminated on the photovoltaic element. It is necessary to have. Moreover, in order to maintain the smoothness of the back surface of the solar cell element as a photovoltaic element, it is necessary to have thermoplasticity. Furthermore, in order to protect the solar cell element as a photovoltaic element, it is necessary to be excellent in scratch resistance, shock absorption and the like.
  • the sealing material layer preferably has heat resistance.
  • sealing is performed by heating such as in the lamination method in which vacuum suction is applied and thermocompression bonding, or by the action of heat such as sunlight in long-term use of solar cell modules, etc.
  • the ethylene-based resin composition constituting the material layer does not change in quality or deteriorate or decompose.
  • additives contained in the resin may be eluted or decomposed products may be generated, acting on the electromotive force surface (element surface) of the solar cell element and degrading its function and performance. Can be prevented. Therefore, heat resistance is indispensable as a characteristic of the sealing material layer of the solar cell module.
  • the sealing material layer is preferably excellent in moisture resistance. In this case, moisture permeation from the back side of the solar cell module can be prevented, and corrosion and deterioration of the photovoltaic element of the solar cell module can be prevented.
  • the sealing material layer does not necessarily need to have transparency.
  • the solar cell encapsulant of the present embodiment has the above-described characteristics, and the solar cell encapsulant on the back surface side of the crystalline solar cell module and the solar cell encapsulant of the thin-film solar cell module vulnerable to moisture penetration Can be suitably used.
  • the solar cell module of the present embodiment may appropriately include any member as long as the object of the present invention is not impaired.
  • an adhesive layer, a shock absorbing layer, a coating layer, an antireflection layer, a back surface rereflection layer, a light diffusion layer, and the like can be provided, but not limited thereto.
  • the layers can be provided at appropriate positions in consideration of the purpose of providing such layers and the characteristics of such layers.
  • the surface side transparent protective member for the solar cell module used in the solar cell module is not particularly limited, but because it is located on the outermost layer of the solar cell module, including weather resistance, water repellency, contamination resistance, mechanical strength, It is preferable to have a performance for ensuring long-term reliability in outdoor exposure of the solar cell module. Moreover, in order to utilize sunlight effectively, it is preferable that it is a highly transparent sheet
  • Examples of the material for the surface side transparent protective member for solar cell modules include resin films and glass substrates made of polyester resin, fluororesin, acrylic resin, cyclic olefin (co) polymer, ethylene-vinyl acetate copolymer, and the like.
  • the resin film is preferably a polyester resin excellent in transparency, strength, cost and the like, particularly a polyethylene terephthalate resin, a fluorine resin having good weather resistance, and the like.
  • fluororesins examples include tetrafluoroethylene-ethylene copolymer (ETFE), polyvinyl fluoride resin (PVF), polyvinylidene fluoride resin (PVDF), polytetrafluoroethylene resin (TFE), and tetrafluoroethylene.
  • ETFE tetrafluoroethylene-ethylene copolymer
  • PVDF polyvinylidene fluoride resin
  • TFE polytetrafluoroethylene resin
  • FEP hexafluoropropylene copolymer
  • CTFE polytrifluoroethylene chloride
  • Polyvinylidene fluoride resin is excellent from the viewpoint of weather resistance, but tetrafluoroethylene-ethylene copolymer is excellent from the viewpoint of both weather resistance and mechanical strength.
  • a corona treatment and a plasma treatment on the surface protection member in order to improve the adhesion with a material constituting another layer such as a sealing material layer. It is also possible to use a sheet that has been subjected to stretching treatment for improving mechanical strength, for example, a biaxially stretched polypropylene sheet.
  • the glass substrate When a glass substrate is used as the surface side transparent protective member for a solar cell module, the glass substrate preferably has a total light transmittance of light having a wavelength of 350 to 1400 nm of 80% or more, more preferably 90% or more. .
  • a glass substrate it is common to use white plate glass with little absorption in the infrared region, but even blue plate glass has little influence on the output characteristics of the solar cell module as long as the thickness is 3 mm or less.
  • tempered glass can be obtained by heat treatment to increase the mechanical strength of the glass substrate, but float plate glass without heat treatment may be used.
  • an antireflection coating may be provided on the light receiving surface side of the glass substrate in order to suppress reflection.
  • the solar cell module back surface side protective member used for the solar cell module is not particularly limited, but is located on the outermost surface layer of the solar cell module, so that the weather resistance, mechanical strength, etc. are similar to the above surface side transparent protective member. Are required. Therefore, you may comprise the back surface side protection member for solar cell modules with the material similar to a surface side transparent protection member. That is, the above-mentioned various materials used as the front surface side transparent protective member can also be used as the back surface side protective member. In particular, a polyester resin and glass can be preferably used. Moreover, since the back surface side protection member does not presuppose passage of sunlight, the transparency calculated
  • a reinforcing plate may be attached to increase the mechanical strength of the solar cell module or to prevent distortion and warpage due to temperature change.
  • a steel plate, a plastic plate, an FRP (glass fiber reinforced plastic) plate or the like can be preferably used as the reinforcing plate.
  • the solar cell sealing material of this embodiment may be integrated with the back surface side protective member for the solar cell module.
  • the process of cutting the solar cell encapsulant and the back side protection member for the solar cell module into a module size at the time of module assembly can be shortened.
  • the process of laying up the solar cell encapsulant and the back side protection member for the solar cell module can be shortened or omitted by making the process of laying up with an integrated sheet.
  • the method for laminating the solar cell sealing material and the solar cell module back surface protection member in the case of integrating the solar cell sealing material and the solar cell module back surface side protection member is not particularly limited.
  • the lamination method includes a method of obtaining a laminate by co-extrusion using a known melt extruder such as a cast molding machine, an extrusion sheet molding machine, an inflation molding machine, an injection molding machine, or the like; A method of obtaining a laminate by melting or heat laminating the other layer is preferred.
  • a known melt extruder such as a cast molding machine, an extrusion sheet molding machine, an inflation molding machine, an injection molding machine, or the like.
  • suitable adhesives for example, maleic anhydride-modified polyolefin resin (trade name “Admer (registered trademark)” manufactured by Mitsui Chemicals, Inc., product name “Modic (registered trademark)” manufactured by Mitsubishi Chemical Corporation, etc.)), unsaturated Including low (non) crystalline soft polymers such as polyolefins, ethylene / acrylic acid ester / maleic anhydride terpolymers (trade name “Bondaine (registered trademark)” manufactured by Sumika DF Chemical Co., Ltd.), etc.
  • An acrylic adhesive, an ethylene / vinyl acetate copolymer, or an adhesive resin composition containing these may be laminated by a dry laminating method or a heat laminating method.
  • the adhesive preferably has a heat resistance of about 120 to 150 ° C., and specifically, a polyester-based or polyurethane-based adhesive is preferable.
  • at least one of the layers may be subjected to, for example, a silane coupling treatment, a titanium coupling treatment, a corona treatment, or a plasma treatment.
  • the solar cell element used for the solar cell module is not particularly limited as long as it can generate power using the photovoltaic effect of the semiconductor.
  • Solar cell elements include, for example, silicon (single crystal, polycrystal, amorphous) solar cells, compound semiconductor (III-III, II-VI, etc.) solar cells, wet solar cells, organic A semiconductor solar cell or the like can be used.
  • a polycrystalline silicon solar cell is preferable from the viewpoint of balance between power generation performance and cost.
  • Both silicon solar cell elements and compound semiconductor solar cell elements have excellent characteristics as solar cell elements, but are known to be easily damaged by external stress and impact. Since the solar cell sealing material of this embodiment is excellent in flexibility, it has a great effect of absorbing stress, impact, etc. on the solar cell element and preventing damage to the solar cell element. Therefore, in the solar cell module of this embodiment, it is desirable that the layer made of the solar cell sealing material of this embodiment is directly joined to the solar cell element. In addition, when the solar cell encapsulant has thermoplasticity, the solar cell element can be taken out relatively easily even after the solar cell module is once produced. Yes. Since the ethylene-based resin composition constituting the solar cell encapsulant of the present embodiment has thermoplasticity, the entire solar cell encapsulant has thermoplasticity, which is also preferable from the viewpoint of recyclability.
  • the structure and material of the electrode used for a solar cell module are not specifically limited, In a specific example, it has a laminated structure of a transparent conductive film and a metal film.
  • the transparent conductive film is made of SnO 2 , ITO, ZnO or the like.
  • the metal film is made of a metal such as silver, gold, copper, tin, aluminum, cadmium, zinc, mercury, chromium, molybdenum, tungsten, nickel, and vanadium. These metal films may be used alone or as a composite alloy.
  • the transparent conductive film and the metal film are formed by a method such as CVD, sputtering, or vapor deposition.
  • the manufacturing method of the solar cell module of this embodiment includes (i) a front surface side transparent protective member, a solar cell sealing material of this embodiment, a solar cell element (cell), a solar cell sealing material, and a back surface side. It includes a step of laminating protective members in this order to form a laminated body, and (ii) a step of pressing and heating the obtained laminated body to integrate them.
  • step (i) it is preferable that the surface on which the uneven shape (embossed shape) of the solar cell encapsulant is formed is disposed on the solar cell element side.
  • step (ii) the laminate obtained in step (i) is integrated (sealed) by heating and pressing using a vacuum laminator or a hot press according to a conventional method.
  • sealing since the solar cell sealing material of this embodiment has high cushioning properties, damage to the solar cell element can be prevented. Moreover, since the deaeration property is good, there is no air entrainment, and a high-quality product can be manufactured with a high yield.
  • the ethylene / ⁇ -olefin resin composition constituting the solar cell encapsulant is crosslinked and cured. This crosslinking step may be performed simultaneously with step (ii) or after step (ii).
  • step (ii) When the cross-linking step is performed after step (ii), vacuum and heating is performed for 3 to 6 minutes at a temperature of 125 to 160 ° C. and a vacuum pressure of 10 Torr or less in step (ii); The above laminate is integrated for about one minute.
  • the crosslinking step performed after step (ii) can be performed by a general method. For example, a tunnel-type continuous crosslinking furnace may be used, or a shelf-type batch-type crosslinking furnace may be used. .
  • the crosslinking conditions are usually 130 to 155 ° C. and about 20 to 60 minutes.
  • the crosslinking step is performed in the step (ii) except that the heating temperature in the step (ii) is 145 to 170 ° C. and the pressurization time at atmospheric pressure is 6 to 30 minutes.
  • the solar cell encapsulant of this embodiment has excellent cross-linking properties by containing a specific organic peroxide, and does not need to go through a two-step bonding process in step (ii), and at a high temperature. It can be completed in a short time, the cross-linking step performed after step (ii) may be omitted, and the module productivity can be significantly improved.
  • the solar cell module of this embodiment is manufactured at a temperature at which the crosslinking agent is not substantially decomposed and the solar cell sealing material of this embodiment melts.
  • the solar cell encapsulant is temporarily adhered to the substrate, and then the temperature is raised to sufficiently bond and crosslink the encapsulant.
  • What is necessary is just to select the additive prescription which can satisfy various conditions, for example, what is necessary is just to select the kind and impregnation amount, such as the said crosslinking agent and the said crosslinking adjuvant.
  • the crosslinking is preferably carried out to such an extent that the gel fraction of the crosslinked ethylene / ⁇ -olefin copolymer is 50 to 95%.
  • the gel fraction is more preferably 55 to 90%, further preferably 60 to 90%, and most preferably 65 to 90%.
  • the gel fraction can be calculated by the following method. For example, 1 g of a sample of the encapsulant sheet is taken from the solar cell module and subjected to Soxhlet extraction with boiling toluene for 10 hours. The extract is filtered through a stainless mesh of 30 mesh, and the mesh is dried under reduced pressure at 110 ° C. for 8 hours.
  • the weight of the residue remaining on the mesh is measured, and the ratio (%) of the weight of the residue remaining on the mesh to the sample amount (1 g) before the treatment is defined as the gel fraction.
  • the gel fraction is equal to or higher than the lower limit, the heat resistance of the solar cell encapsulant is improved.
  • a constant temperature and humidity test at 85 ° C. ⁇ 85% RH, high intensity xenon irradiation at a black panel temperature of 83 ° C. It is possible to suppress a decrease in adhesion in a test, a heat cycle test at -40 ° C to 90 ° C, and a heat resistance test.
  • the gel fraction is not more than the above upper limit value, it becomes a highly flexible solar cell encapsulant, and the temperature followability in the heat cycle test at ⁇ 40 ° C. to 90 ° C. is improved. Can be prevented.
  • the solar cell module of this embodiment is excellent in productivity, power generation efficiency, life, and the like. For this reason, the power generation equipment using such a solar cell module is excellent in cost, power generation efficiency, life and the like, and has a high practical value.
  • the power generation equipment described above is suitable for long-term use, both outdoors and indoors, such as being installed on the roof of a house, used as a mobile power source for outdoor activities such as camping, and used as an auxiliary power source for automobile batteries. .
  • MFR Based on ASTM D1238, the MFR of the ethylene / ⁇ -olefin copolymer was measured under the conditions of 190 ° C. and 2.16 kg load.
  • the ethylene / ⁇ -olefin copolymer is wet-decomposed and then fixed in pure water, and aluminum is quantified using an ICP emission analyzer (ICPS-8100, manufactured by Shimadzu Corporation) to determine the content of aluminum element. It was.
  • ICP emission analyzer ICPS-8100, manufactured by Shimadzu Corporation
  • the obtained sheet was cut into a size of 10 cm ⁇ 10 cm, and then laminated with a laminating apparatus (manufactured by NPC, LM-110X160S) at 150 ° C., 3 minutes under vacuum, and 15 minutes under pressure to produce a cross-linked sheet for measurement. .
  • the volume specific resistance ( ⁇ ⁇ cm) of the prepared crosslinked sheet was measured at an applied voltage of 500 V in accordance with JIS K6911. At the time of measurement, the temperature was set to 100 ⁇ 2 ° C. using a high temperature measurement chamber “12708” (manufactured by Advanced), and a micro ammeter “R8340A” (manufactured by Advanced) was used.
  • the ethylene / ⁇ -olefin copolymer normal hexane / toluene mixed solution produced in the polymerization vessel is continuously discharged through a discharge port provided at the bottom of the polymerization vessel, and the ethylene / ⁇ -olefin copolymer solution is discharged.
  • the jacket portion was led to a connecting pipe heated with 3 to 25 kg / cm 2 steam so that the normal hexane / toluene mixed solution had a temperature of 150 to 190 ° C.
  • a supply port for injecting methanol which is a catalyst deactivator, is attached.
  • Methanol is injected at a rate of about 0.75 L / hr, and ethylene / ⁇ -olefin copolymer is injected.
  • the mixture was merged into a combined normal hexane / toluene mixed solution.
  • the normal hexane / toluene mixed solution of the ethylene / ⁇ -olefin copolymer kept at about 190 ° C. in the connection pipe with steam jacket was subjected to pressure provided at the end of the connection pipe so as to maintain about 4.3 MPaG.
  • the liquid was continuously fed to the flash tank by adjusting the opening of the control valve.
  • the solution temperature and the pressure adjustment valve opening are set so that the pressure in the flash tank is about 0.1 MPaG and the temperature of the vapor part in the flash tank is maintained at about 180 ° C. It was broken. Thereafter, the strand was cooled in a water tank through a single screw extruder set at a die temperature of 180 ° C., and the strand was cut with a pellet cutter to obtain an ethylene / ⁇ -olefin copolymer as pellets. The yield was 2.2 kg / hr.
  • the physical properties are shown in Table 1.
  • Example 2 An embossed sheet (solar cell sealing material sheet) was obtained in the same manner as in Example 1 except that the formulation shown in Table 2 was used. All the void ratios of the obtained sheets were 28%. Table 2 shows various evaluation results of the obtained sheet.
  • Example 2 An embossed sheet (solar cell sealing material sheet) was obtained in the same manner as in Example 1 except that the formulation shown in Table 2 was used. The porosity of the obtained sheet was 28%. However, the torque of the extruder was higher than in Example 2, gel was seen on the surface of the obtained sheet, and the sheet appearance was deteriorated. Table 2 shows various evaluation results of the obtained sheet.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Electromagnetism (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Wood Science & Technology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Photovoltaic Devices (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Sealing Material Composition (AREA)
  • Polymerisation Methods In General (AREA)
  • Graft Or Block Polymers (AREA)

Abstract

 本発明の太陽電池封止材は、エチレン・α-オレフィン共重合体と、有機過酸化物と、ジビニル芳香族化合物、シアヌレート、ジアリル化合物、トリアリル化合物、オキシムおよびマレイミドからなる群より選択される少なくとも一種の架橋助剤と、(メタ)アクリレート系モノマーと、を含む。上記太陽電池封止材中の上記(メタ)アクリレート系モノマーの含有量が、上記エチレン・α-オレフィン共重合体100重量部に対して0.1~5.0重量部であり、上記太陽電池封止材中の上記架橋助剤の含有量が、上記エチレン・α-オレフィン共重合体100重量部に対して0.1~3重量部である。

Description

太陽電池封止材および太陽電池モジュール
 本発明は、太陽電池封止材および太陽電池モジュールに関する。
 地球環境問題、エネルギー問題などが深刻さを増す中、クリーンかつ枯渇のおそれが無いエネルギー生成手段として太陽電池が注目されている。太陽電池を建物の屋根部分などの屋外で使用する場合、太陽電池モジュールの形で使用することが一般的である。
 上記の太陽電池モジュールは、一般に、以下の手順によって製造される。まず、多結晶シリコン、単結晶シリコンなどにより形成される結晶型太陽電池素子(以下、発電素子あるいはセルと表記する場合もあるが、同じことを示す。)、あるいはアモルファスシリコンや結晶シリコンなどを、ガラスなどの基板の上に数μmの非常に薄い膜を形成して得られる薄膜型太陽電池素子などを製造する。
 次に、結晶型太陽電池モジュールを得るには、太陽電池モジュール用保護シート(表面側透明保護部材)/太陽電池封止材/結晶型太陽電池素子/太陽電池封止材/太陽電池モジュール用保護シート(裏面側保護部材)の順に積層する。
 一方、薄膜系太陽電池モジュールを得るには、薄膜型太陽電池素子/太陽電池封止材/太陽電池モジュール用保護シート(裏面側保護部材)の順に積層する。その後、これらを真空吸引して加熱圧着するラミネーション法などを利用することにより、太陽電池モジュールが製造される。このようにして製造される太陽電池モジュールは、耐候性を有し、建物の屋根部分などの屋外での使用にも適したものとなっている。
 太陽電池封止材として、エチレン・酢酸ビニル共重合体(EVA)膜は、透明性、柔軟性、および接着性などに優れていることから、広く用いられている。
 特許文献1(特公平6-35575号公報)には、封止用組成物として、EVAに有機過酸化物あるいは光増感剤およびシランカップリング剤が混和された電子材料を封止する封止用組成物が記載されている。さらに、(メタ)アクリル酸エステルおよび/またはアリル基含有化合物が混和されてもよいことが開示されている。
 また、特許文献2(特開2007-123488号公報)には、EVAに有機過酸化物とアクロイル基またはメタクロイル基の何れか一方あるいは双方を合計4個以上有する多官能モノマーを含有する太陽電池用接着シートが開示されている。
 これに対して、近年ポリオレフィン系の材料の検討が盛んであり、剛性と架橋特性のバランスと押出成形性に優れるエチレン・α-オレフィン共重合体を用いた太陽電池封止材用樹脂組成物も提案されている(例えば、特許文献3参照)。
特公平6-35575号公報 特開2007-123488号公報 特開2010-258439号公報
 近年の太陽光発電の普及に伴い、メガソーラーなど発電システムの大規模化が進んでおり、伝送損失を下げるなどの目的で、システム電圧の高電圧化の動きもある。システム電圧が上昇することにより、太陽電池モジュールにおいては、フレームとセルの間の電位差が大きくなることとなる。すなわち、太陽電池モジュールのフレームは一般に接地されており、太陽電池アレイのシステム電圧が600V~1000Vとなると、最も電圧が高くなるモジュールにおいては、フレームとセル間の電位差がそのままシステム電圧の600V~1000Vとなり、高電圧が印加された状態で日中の発電を維持することとなる。また、ガラスは太陽電池封止材に比較して電気抵抗が低く、フレームを介してガラスとセル間にも高電圧が発生することとなる。すなわち、日中発電している状況下において、直列接続されたモジュールはセルとモジュール間およびセルとガラス面との電位差が接地側から順次大きくなり、最も大きいところではほぼシステム電圧の高電圧の電位差が維持さることとなる。このような状態で用いられた太陽電池モジュールの中には、出力が大きく低下し、特性劣化が起こるPID(Potential Induced Degradationの略)現象が発生した結晶系発電素子を用いたモジュールの例も報告されている。そこで、この問題の解決するために、太陽電池素子に直接接している太陽電池封止材の電気特性の改良が望まれてきている。
 しかしながら、本発明者らの検討に拠れば、特許文献1および2に記載されたEVA組成物を太陽電池封止材の構成材料として使用する場合、EVAが分解して発生する酢酸ガスなどの成分が、太陽電池素子に影響を与える可能性が懸念されていた。さらに、EVA組成物は、極性基を多量に含有するため、電気特性が十分ではなかった。また、特許文献3に記載されたエチレン・α-オレフィン共重合体からなる太陽電池封止材用樹脂組成物は、電気特性が不十分であった。
 本発明は、このような従来技術の有する問題点に鑑みてなされたものであり、その課題とするところは、電気特性に優れる太陽電池封止材を提供することにある。
 本発明者らは上記課題を達成すべく鋭意検討した結果、エチレン・α-オレフィン共重合体を主成分とする太陽電池封止材に、有機過酸化物と、ジビニル芳香族化合物、シアヌレート、ジアリル化合物、トリアリル化合物、オキシムおよびマレイミドからなる群より選択される少なくとも一種の架橋助剤と、(メタ)アクリレート系モノマーと、を含有せることにより、電気特性に優れる太陽電池封止材が得られることを見出した。さらにエチレン・α-オレフィン共重合体に含まれるアルミニウム元素の含有量を特定の範囲に調整することにより、電気特性がさらに優れることを見出して、本発明を完成するに至った。
 すなわち、本発明によれば、以下に示す太陽電池封止材が提供される。
[1]
 エチレン・α-オレフィン共重合体と、有機過酸化物と、ジビニル芳香族化合物、シアヌレート、ジアリル化合物、トリアリル化合物、オキシムおよびマレイミドからなる群より選択される少なくとも一種の架橋助剤と、(メタ)アクリレート系モノマーと、を含む太陽電池封止材であって、
 当該太陽電池封止材中の上記(メタ)アクリレート系モノマーの含有量が、上記エチレン・α-オレフィン共重合体100重量部に対して0.1~5.0重量部であり、
 当該太陽電池封止材中の上記架橋助剤の含有量が、上記エチレン・α-オレフィン共重合体100重量部に対して0.1~3重量部である、太陽電池封止材。
[2]
 上記エチレン・α-オレフィン共重合体中のアルミニウム元素の含有量が10~500ppmである、上記[1]に記載の太陽電池封止材。
[3]
 JIS K6911に準拠し、温度100℃、印加電圧500Vで測定される、当該太陽電池封止材を架橋させて形成される封止層の体積固有抵抗が1.0×1015~1.0×1018Ω・cmである、上記[1]または[2]に記載の太陽電池封止材。
[4]
 上記(メタ)アクリレート系モノマーの分子量が150以上である、上記[1]乃至[3]いずれか一つに記載の太陽電池封止材。
[5]
 上記エチレン・α-オレフィン共重合体が、以下の要件a1)~a4)を満たす、上記[1]乃至[4]いずれか一つに記載の太陽電池封止材。
 a1)エチレンに由来する構成単位の含有割合が80~90mol%であり、炭素数3~20のα-オレフィンに由来する構成単位の含有割合が10~20mol%である。
 a2)ASTM D1238に準拠し、190℃、2.16kg荷重の条件で測定されるMFRが0.1~50g/10分である。
 a3)ASTM D1505に準拠して測定される密度が0.865~0.884g/cmである。
 a4)ASTM D2240に準拠して測定されるショアA硬度が60~85である。
[6]
 ASTM D1238に準拠し、190℃、2.16kg荷重の条件で測定される上記エチレン・α-オレフィン共重合体のMFRが、10~50g/10分である、上記[5]に記載の太陽電池封止材。
[7]
 上記有機過酸化物の1分間半減期温度が100~170℃の範囲にあり、
 当該太陽電池封止材中の上記有機過酸化物の含有量が、上記エチレン・α-オレフィン共重合体100重量部に対して0.1~3.0重量部である、上記[1]乃至[6]いずれか一つに記載の太陽電池封止材。
[8]
 上記エチレン・α-オレフィン共重合体が、メタロセン化合物と、有機アルミニウムオキシ化合物および有機アルミニウム化合物からなる群より選択される少なくとも一種の化合物を含むオレフィン重合用触媒の存在下で重合された、上記[1]乃至[7]いずれか一つに記載の太陽電池封止材。
[9]
 エチレン性不飽和シラン化合物をさらに含み、
 当該太陽電池封止材中の上記エチレン性不飽和シラン化合物の含有量が、上記エチレン・α-オレフィン共重合体100重量部に対して、0.1~5重量部である、上記[1]乃至[8]いずれか一つに記載の太陽電池封止材。
[10]
 紫外線吸収剤、ヒンダードアミン系光安定剤、耐熱安定剤からなる群より選択される少なくとも一種の添加剤をさらに含み、
 当該太陽電池封止材中の上記添加剤の含有量が、上記エチレン・α-オレフィン共重合体100重量部に対して、0.005~5重量部である、上記[1]乃至[9]いずれか一つに記載の太陽電池封止材。
[11]
 上記エチレン・α-オレフィン共重合体と、上記有機過酸化物と、上記(メタ)アクリレート系モノマーと、上記架橋助剤と、を溶融混錬後、シート状に押出成形して得られた、上記[1]乃至[10]いずれか一つに記載の太陽電池封止材。
[12]
 シート状である上記[1]乃至[11]いずれか一つに記載の太陽電池封止材。
[13]
 表面側透明保護部材と、
 裏面側保護部材と、
 太陽電池素子と、
 上記[1]乃至[12]いずれか一つに記載の太陽電池封止材を架橋させて形成される、上記太陽電池素子を上記表面側透明保護部材と上記裏面側保護部材との間に封止する封止層と、
を備えた太陽電池モジュール。
[14]
 表面側透明保護部材と、
 裏面側保護部材と、
 太陽電池素子と、
 上記太陽電池素子を上記表面側透明保護部材と上記裏面側保護部材との間に封止する封止層と、
を備えた太陽電池モジュールであって、
 上記封止層が、エチレン・α-オレフィン共重合体100重量部に対して、(メタ)アクリレート系モノマーが0.1~5.0重量部グラフトされ、かつ、ジビニル芳香族化合物、シアヌレート、ジアリル化合物、トリアリル化合物、オキシムおよびマレイミドからなる群より選択される少なくとも一種の架橋助剤が0.1~3重量部グラフトされた架橋樹脂層である、太陽電池モジュール。
 本発明によれば、電気特性に優れる太陽電池封止材を提供することができる。
 本発明によれば、上記太陽電池封止材を用いることにより、上記の諸特性が優れることに加え、太陽電池モジュールの使用時に温度上昇しても、封止材が変形したりするようなトラブルを回避することができる。そして、太陽電池の外観を損なうこともなく、コストなどの経済性に優れた太陽電池モジュールを提供することができる。
 さらに、上記太陽電池封止材を用いることにより、フレームとセル間に高電圧を印加した状態を維持してもPIDの発生を大幅に抑制できる太陽電池モジュールを提供することができる。
 上述した目的、およびその他の目的、特徴および利点は、以下に述べる好適な実施の形態、およびそれに付随する以下の図面によってさらに明らかになる。
本発明の太陽電池モジュールの一実施形態を模式的に示す断面図である。 太陽電池素子の受光面と裏面の一構成例を模式的に示す平面図である。
 以下、本発明の実施の形態について、図面を用いながら説明する。なお、すべての図面において、同様な構成要素には同様の符号を付し、適宜説明を省略する。
 また、本明細書において「(メタ)アクリレート」とは、「アクリレート」または「メタクリレート」を意味する。
 また、「~」はとくに断りがなければ、以上から以下を表す。
1.太陽電池封止材について
 本実施形態の太陽電池封止材は、エチレン・α-オレフィン共重合体と、有機過酸化物と、ジビニル芳香族化合物、シアヌレート、ジアリル化合物、トリアリル化合物、オキシムおよびマレイミドからなる群より選択される少なくとも一種の架橋助剤と、(メタ)アクリレート系モノマーとを含んでいる。
(エチレン・α-オレフィン共重合体)
 本実施形態の太陽電池封止材に用いられるエチレン・α-オレフィン共重合体は、エチレンと、炭素数3~20のα-オレフィンとを共重合することによって得られる。α-オレフィンとしては、通常、炭素数3~20のα-オレフィンを1種類単独でまたは2種類以上を組み合わせて用いることができる。中でも好ましいのは、炭素数が10以下であるα-オレフィンであり、とくに好ましいのは炭素数が3~8のα-オレフィンである。このようなα-オレフィンの具体例としては、プロピレン、1-ブテン、1-ペンテン、1-ヘキセン、3-メチル-1-ブテン、3,3-ジメチル-1-ブテン、4-メチル-1-ペンテン、1-オクテン、1-デセン、1-ドデセンなどを挙げることができる。中でも、入手の容易さからプロピレン、1-ブテン、1-ペンテン、1-ヘキセン、4-メチル-1-ペンテンおよび1-オクテンが好ましい。なお、エチレン・α-オレフィン共重合体はランダム共重合体であっても、ブロック共重合体であってもよいが、柔軟性の観点からランダム共重合体が好ましい。
 さらに、本実施形態のエチレン・α-オレフィン共重合体は、エチレンと、炭素数3~20のα-オレフィンと非共役ポリエンからなる共重合体であってもよい。α-オレフィンは前述と同様であって、非共役ポリエンとしては、5-エチリデン-2-ノルボルネン(ENB)、5-ビニル-2-ノルボルネン(VNB)、ジシクロペンタジエン(DCPD)などが挙げられる。これら非共役ポリエンを1種単独、または2種以上を組み合わせて用いることができる。
 本実施形態のエチレン・α―オレフィン共重合体は、以下の要件a1~a5の要件をさらに満たすことが好ましい。
(要件a1)
 エチレン・α-オレフィン共重合体に含まれる、エチレンに由来する構成単位の含有割合は、好ましくは80~90mol%であり、より好ましくは80~88mol%、さらに好ましくは82~88mol%、とくに好ましくは82~87mol%である。エチレン・α-オレフィン共重合体に含まれる、炭素数3~20のα-オレフィンに由来する構成単位(以下、「α-オレフィン単位」とも記す)の含有割合は、好ましくは10~20mol%であり、より好ましくは12~20mol%、さらに好ましくは12~18mol%、とくに好ましくは13~18mol%である。
 エチレン・α-オレフィン共重合体に含まれるα-オレフィン単位の含有割合が10mol%以上であると、高い透明性が得られる。また、低温での押出成形を容易に行うことができ、例えば130℃以下での押出成形が可能である。このため、エチレン・α-オレフィン共重合体に有機過酸化物を練り込む場合においても、押出機内での架橋反応が進行することが抑制でき、太陽電池封止材のシートにゲル状の異物が発生して、シートの外観が悪化するのを防ぐことができる。また、適度な柔軟性が得られるため、太陽電池モジュールのラミネート成形時に太陽電池素子の割れや、薄膜電極のカケなどの発生を防ぐことができる。
 エチレン・α-オレフィン共重合体に含まれるα-オレフィン単位の含有割合が20mol%以下であると、エチレン・α-オレフィン共重合体の結晶化速度が適度になるため、押出機より押し出されたシートがベタつかず、第1冷却ロールでの剥離が容易であり、シート状の太陽電池封止材のシートを効率的に得ることができる。また、シートにベタツキが発生しないのでブロッキングを防止でき、シートの繰り出し性が良好にある。また、耐熱性の低下を防ぐこともできる。
(要件a2)
 ASTM D1238に準拠し、190℃、2.16kg荷重の条件で測定されるエチレン・α-オレフィン共重合体のメルトフローレ-ト(MFR)は、通常0.1~50g/10分、好ましくは2~50g/10分であり、より好ましくは10~50g/10分であり、さらに好ましくは10~40g/10分、とくに好ましくは12~27g/10分、最も好ましくは15~25g/10分である。エチレン・α-オレフィン共重合体のMFRは、後述する重合反応の際の重合温度、重合圧力、並びに重合系内のエチレンおよびα-オレフィンのモノマー濃度と水素濃度のモル比率などを調整することにより、調整することができる。
 MFRが0.1~10g/10分の範囲にあると、カレンダー成形によってシートを製造することができる。MFRが0.1~10g/10分の範囲にあると、エチレン・α-オレフィン共重合体を含む樹脂組成物の流動性が低いため、シートを電池素子とラミネートする際にはみ出した溶融樹脂によるラミネート装置の汚れを防止できる点で好ましい。
 さらに、MFRが2g/10分以上であると、太陽電池封止材の流動性が向上し、シート押出成形によって生産することも可能である。さらに、MFRが10g/10分以上であると、押出成形によってシートを製造する場合に、エチレン・α-オレフィン共重合体を含む樹脂組成物の流動性が向上し、シート押出成形時の生産性を向上させることができる。
 また、MFRを50g/10分以下にすると、分子量が大きくなるため、チルロールなどのロール面への付着を抑制できるため、剥離が不要となり、均一な厚みのシートに成形することができる。さらに、「コシ」がある樹脂組成物となるため、0.3mm以上の厚いシートを容易に成形することができる。また、太陽電池モジュールのラミネート成形時の架橋特性(とくに架橋速度)が向上するため、十分に架橋させて、耐熱性の低下を抑制することができる。
 MFRが27g/10分以下であると、さらに、シート成形時のドローダウンを抑制でき、幅の広いシートを成形でき、また架橋特性および耐熱性がさらに向上し、最も良好な太陽電池封止材のシートを得ることができる。
(要件a3)
 ASTM D1505に準拠して測定されるエチレン・α-オレフィン共重合体の密度は好ましくは0.865~0.884g/cmであり、より好ましくは0.866~0.883g/cm、さらに好ましくは0.866~0.880g/cm、とくに好ましくは0.867~0.880g/cmである。エチレン・α-オレフィン共重合体の密度は、エチレン単位の含有割合とα-オレフィン単位の含有割合とのバランスにより調整することができる。すなわち、エチレン単位の含有割合を高くすると結晶性が高くなり、密度の高いエチレン・α-オレフィン共重合体を得ることができる。一方、エチレン単位の含有割合を低くすると結晶性が低くなり、密度の低いエチレン・α-オレフィン共重合体を得ることができる。
 エチレン・α-オレフィン共重合体の密度が0.884g/cm以下であると、結晶性が低くなり、透明性を高くすることができる。さらに、低温での押出成形が容易となり、例えば130℃以下で押出成形を行うことができる。このため、エチレン・α-オレフィン共重合体に有機過酸化物を練り込んでも、押出機内での架橋反応が進行するのを防ぎ、太陽電池封止材のシートにゲル状の異物の発生を抑制し、シートの外観の悪化を抑制することもできる。また、柔軟性が高いため、太陽電池モジュールのラミネート成形時に太陽電池素子であるセルの割れや薄膜電極のカケなどの発生を防ぐことができる。
 一方、エチレン・α-オレフィン共重合体の密度が0.865g/cm以上であると、エチレン・α-オレフィン共重合体の結晶化速度を速くできるため、押出機より押し出されたシートがベタつきにくく、第1冷却ロールでの剥離が容易になり、太陽電池封止材のシートを容易に得ることができる。また、シートにベタツキが発生しにくくなるのでブロッキングの発生を抑制し、シートの繰り出し性を向上させることができる。また、十分に架橋させられるため、耐熱性の低下を抑制することができる。
(要件a4)
 ASTM D2240に準拠して測定される、エチレン・α-オレフィン共重合体のショアA硬度は好ましくは60~85であり、より好ましくは62~83、さらに好ましくは62~80、とくに好ましくは65~80である。エチレン・α-オレフィン共重合体のショアA硬度は、エチレン・α-オレフィン共重合体のエチレン単位の含有割合や密度を上述の数値範囲に制御することにより、調整することができる。すなわち、エチレン単位の含有割合が高く、密度が高いエチレン・α-オレフィン共重合体は、ショアA硬度が高くなる。一方、エチレン単位の含有割合が低く、密度が低いエチレン・α-オレフィン共重合体は、ショアA硬度が低くなる。
 ショアA硬度が60以上であると、エチレン・α-オレフィン共重合体がベタつきにくくなりブロッキングを抑制できる。また、太陽電池封止材をシート状に加工する際は、シートの繰り出し性を向上させることもでき、耐熱性の低下も抑制できる。
 一方、ショアA硬度が85以下であると、結晶性が低くなり、透明性を高くすることができる。さらに、柔軟性が高いため、太陽電池モジュールのラミネート成形時に太陽電池素子であるセルの割れや、薄膜電極のカケなどを防ぐことができる。
(要件a5)
 エチレン・α-オレフィン共重合体に含まれる、アルミニウム元素(以下、「Al」とも記す)の含有量(残渣量)が好ましくは10~500ppmであり、より好ましくは20~400ppm、さらに好ましくは20~300ppmである。Al含有量は、エチレン・α-オレフィン共重合体の重合過程において添加する有機アルミニウムオキシ化合物や有機アルミニウム化合物の濃度に依存する。
 Al含有量が10ppm以上の場合は、エチレン・α-オレフィン共重合体の重合過程において添加された有機アルミニウムオキシ化合物や有機アルミニウム化合物が、メタロセン化合物の活性が十分発現させられる程度の濃度で添加できるので、メタロセン化合物と反応してイオン対を形成する化合物の添加が不要となる。該イオン対を形成する化合物が添加される場合、該イオン対を形成する化合物がエチレン・α-オレフィン共重合体中に残留することにより、電気特性の低下を起こすことがある(例えば100℃などの高温での電気特性が低下する傾向にある)が、こうした現象を防ぐことが可能である。
 また、Al含有量を少なくするためには、酸やアルカリでの脱灰処理が必要となり、得られるエチレン・α-オレフィン共重合体中に残留する酸やアルカリが電極の腐食を起こす傾向にあり、脱灰処理を施すために、エチレン・α-オレフィン共重合体のコストも高くなるが、こうした脱灰処理が不要となる。
 また、Al含有量が500ppm以下であると、押出機内での架橋反応の進行を防止できるため、太陽電池封止材のシートにゲル状の異物が発生し、シートの外観が悪化するのを防ぐことができる。
 上記のような、エチレン・α-オレフィン共重合体に含まれるアルミニウム元素をコントロールする手法としては、例えば、後述のエチレン・α-オレフィン共重合体の製造方法に記載の(II-1)有機アルミニウムオキシ化合物および(II-2)有機アルミニウム化合物の製造工程における濃度、または、エチレン・α-オレフィン共重合体の製造条件のメタロセン化合物の重合活性を調整することによって、エチレン・α-オレフィン共重合体に含まれるアルミニウム元素をコントロールすることができる。
 さらに、本実施形態の太陽電池封止材は、以下の要件をさらに満たすことも好ましい態様である。
(B値)
 エチレン・α-オレフィン共重合体の、13C-NMRスペクトルおよび下記式(1)から求められるB値は0.9~1.5であることが好ましく、0.9~1.3であることがより好ましく、0.95~1.3であることがさらに好ましく、0.95~1.2であることがとくに好ましく、1.0~1.2であることが最も好ましい。B値は、エチレン・α-オレフィン共重合体を重合する際の重合触媒を変更することにより調整可能である。より具体的には、後述するメタロセン化合物を用いることで、B値が上記の数値範囲にあるエチレン・α-オレフィン共重合体を得ることができる。
 B値=[POE]/(2×[P]×[P])       (1)
(式(1)中、[P]はエチレン・α-オレフィン共重合体に含まれるエチレンに由来する構成単位の割合(モル分率)を示し、[P]はエチレン・α-オレフィン共重合体に含まれる炭素数3~20のα-オレフィンに由来する構成単位の割合(モル分率)を示し、[POE]は全dyad連鎖に含まれるα-オレフィン・エチレン連鎖の割合(モル分率)を示す)
 このB値は、エチレン・α-オレフィン共重合体中における、エチレン単位とα-オレフィン単位の分布状態を表す指標であり、J.C.Randall(Macromolecules,15,353(1982))、J.Ray(Macromolecules,10,773(1977))らの報告に基づいて求めることができる。
 B値が大きいほど、エチレン単位またはα-オレフィン共重合体のブロック的連鎖が短くなり、エチレン単位とα-オレフィン単位の分布が一様であり、共重合ゴムの組成分布が狭いことを示している。なお、B値が0.9以上であると、エチレン・α-オレフィン共重合体の組成分布を小さくすることができる。とくに、エチレン単位のブロック的連鎖が小さくなり、低温での押出成形が容易となるので、例えば130℃以下で押出成形を行うことができる。このため、エチレン・α-オレフィン共重合体に有機過酸化物を練り込む場合においても押出機内での架橋反応が進行するのを抑制し、太陽電池封止材のシートにゲル状の異物が発生して、シートの外観が悪化するのを防ぐことができる。
(Tαβ/Tαα)
 エチレン・α-オレフィン共重合体の、13C-NMRスペクトルにおける、Tααに対するTαβの強度比(Tαβ/Tαα)は1.5以下であることが好ましく、1.2以下であることがさらに好ましく、1.0以下であることがとくに好ましく、0.7未満であることが最も好ましい。Tαβ/Tααは、エチレン・α-オレフィン共重合体を重合する際の重合触媒を変更することにより調整可能である。より具体的には、後述するメタロセン化合物を用いることで、Tαβ/Tααが上記の数値範囲にあるエチレン・α-オレフィン共重合体を得ることができる。
 13C-NMRスペクトルにおけるTααとTαβは、炭素数3以上のα-オレフィンに由来する構成単位中の「CH」のピーク強度に対応する。より具体的には、下記の一般式(3)に示すように、第3級炭素に対する位置が異なる2種類の「CH」のピーク強度をそれぞれ意味している。
Figure JPOXMLDOC01-appb-C000001
 Tαβ/Tααは以下のようにして求めることができる。エチレン・α-オレフィン共重合体の13C-NMRスペクトルをNMR測定装置(例えば、日本電子社製の商品名「JEOL-GX270」)を使用して測定する。測定は、試料濃度が5重量%になるように調整されたヘキサクロロブタジエン/d6-ベンゼン=2/1(体積比)の混合溶液を用いて、67.8MHz、25℃、d6-ベンゼン(128ppm)基準で行う。測定された13C-NMRスペクトルを、リンデマンアダムスの提案(Analysis Chemistry,43,p1245(1971))、J.C.Randall(Review Macromolecular Chemistry Physics,C29,201(1989))に従って解析し、Tαβ/Tααを求める。
 エチレン・α-オレフィン共重合体の13C-NMRにおける、Tααに対するTαβの強度比(Tαβ/Tαα)は、重合反応中における、α-オレフィンの重合触媒への配位状態を示している。Tαβ型でα-オレフィンが重合触媒に配位した場合、α-オレフィンの置換基がポリマー鎖の重合成長反応の妨げとなり、低分子量成分の生成を助長する傾向にある。このため、シートにベタツキが発生してブロッキングしてしまい、シートの繰り出し性が悪化する傾向にある。さらに、低分子量成分がシート表面にブリードしてくるために接着の阻害となり、接着性が低下する。
(分子量分布Mw/Mn)
 エチレン・α-オレフィン共重合体の、ゲル浸透クロマトグラフィー(GPC)で測定した重量平均分子量(Mw)と数平均分子量(Mn)との比で表される分子量分布Mw/Mnは、1.2~3.5の範囲にあることが好ましく、1.7~3.0の範囲にあることがより好ましく、1.7~2.7の範囲にあることがさらに好ましく、1.9~2.4の範囲にあることがとくに好ましい。エチレン・α-オレフィン共重合体の分子量分布Mw/Mnは、重合に際し、後述のメタロセン化合物を用いることにより調整することができる。
 Mw/Mnを1.2以上にすると、リビング重合的にエチレン・α-オレフィン共重合体を重合するため触媒活性を得ることができる。あるいは、従来公知の重合方法で得られたエチレン・α-オレフィン共重合体の低分子量成分、高分子量成分の分離が不要となるため、製造コストを低くすることができる。また、成形できる温度幅も狭く、さらに押出機での吐出量も均一になるため、均一な厚みのシートを得ることができ、シート成形が容易になる。
 一般に、分子量分布Mw/Mnが広くなると組成分布も広くなることが知られているが、Mw/Mnが3.5以下であると、低分子量成分が少なくなるのでシートがベタつかずブロッキングしにくくなるため、シートの繰り出し性を向上させることができる。また、低分子量成分がシート表面にブリードしてくるのを防げるため、接着性の低下を抑制することができる。
 本実施形態において、重量平均分子量(Mw)と数平均分子量(Mn)との比(Mw/Mn)は、Waters社製のゲル浸透クロマトグラフ(商品名「Alliance GPC-2000型」)を使用し、以下のようにして測定した。分離カラムには、商品名「TSKgel GMH6-HT」を2本、および商品名「TSKgel GMH6-HTL」を2本使用した。カラムサイズは、いずれも内径7.5mm、長さ300mmとし、カラム温度は140℃とし、移動相にはo-ジクロロベンゼン(和光純薬工業社製)および酸化防止剤としてBHT(武田薬品社製)0.025重量%を用いた。移動相を1.0ml/分の速度で移動させ、試料濃度は15mg/10mlとし、試料注入量は500μlとし、検出器として示差屈折計を用いた。標準ポリスチレンは、分子量がMw≦1000およびMw≧4×10については東ソー社製のものを用いた。また、分子量が1000≦Mw≦4×10についてはプレッシャーケミカル社製のものを用いた。分子量は、ユニバーサル校正して、用いた各α-オレフィンに合わせエチレン・α-オレフィン共重合体に換算した値である。
(塩素イオンの含有割合)
 エチレン・α-オレフィン共重合体の、固相抽出処理後の抽出液からイオンクロマトグラフィーにより検出される塩素イオンの含有割合は、2ppm以下であることが好ましく、1.5ppm以下であることがより好ましく、1.2ppm以下であることがとくに好ましい。塩素イオンの含有割合は、後述するメタロセン化合物の構造および重合条件を調整することにより調整することができる。すなわち、触媒の重合活性を高くすることにより、エチレン・α-オレフィン共重合体中の触媒残渣量を少なくし、塩素イオンの含有割合が上記の数値範囲にあるエチレン・α-オレフィン共重合体を得ることができる。
 エチレン・α-オレフィン共重合体中の塩素イオンの含有割合が2ppm以下にすることで、銀などで構成される電極の腐食により、太陽電池モジュールの長期信頼性を低下する問題を防ぐことができる。なお、塩素原子を含まないメタロセン化合物を用いることで、実質的に塩素イオンを含まないエチレン・α-オレフィン共重合体を得ることができる。
 エチレン・α-オレフィン共重合体中の塩素イオンの含有割合は、例えば、オートクレーブなどを用いて滅菌洗浄されたガラス容器にエチレン・α-オレフィン共重合体を約10g精秤し、超純水を100ml加えて密閉した後、常温で30分間超音波(38kHz)抽出を行って得られる抽出液を使用し、ダイオネクス社製のイオンクロマトグラフ装置(商品名「ICS-2000」)を用いて測定することができる。
(酢酸メチルへの抽出量)
 エチレン・α-オレフィン共重合体の、酢酸メチルへの抽出量は5.0重量%以下であることが好ましく、4.0重量%以下であることがより好ましく、3.5重量%以下であることがさらに好ましく、2.0重量%以下であることがとくに好ましい。酢酸メチルへの抽出量が多いことは、エチレン・α-オレフィン共重合体に低分子量成分が多く含まれており、分子量分布または組成分布が広がっていることを示している。そのため、後述のメタロセン化合物を使用し、重合条件を調整することにより、酢酸メチルへの抽出量が少ないエチレン・α-オレフィン共重合体を得ることができる。
 例えば、重合器内での重合滞留時間を短くすることにより、重合活性が低下したメタロセン化合物を重合系外に出せば、低分子量成分の生成を抑制できる。ソックスレー抽出法での酢酸メチルへの抽出量を5.0重量%以下であると、シートがベタつかないため、ブロッキングを抑制でき、シートの繰り出し性を向上させることができる。
 酢酸メチルへの抽出量は、例えばエチレン・α-オレフィン共重合体を約10g程度精秤し、酢酸メチルやメチルエチルケトンなどの低沸点かつエチレン・α-オレフィン共重合体の貧溶媒となる有機溶媒を用いて、各溶媒沸点以上の温度でソックスレー抽出を行い、抽出前後のエチレン・α-オレフィン共重合体の重量差または抽出溶媒を揮発させた残渣量より算出される。
(融解ピーク)
 エチレン・α-オレフィン共重合体の、示差走査熱量測定(DSC)に基づく融解ピークは30~90℃の範囲に存在することが好ましく、33~90℃の範囲に存在することがさらに好ましく、33~88℃の範囲に存在することがとくに好ましい。融解ピークが90℃以下であると、結晶化度が低くなり、得られる太陽電池封止材の柔軟性が高まるため、太陽電池モジュールをラミネート成形する際にセルの割れや、薄膜電極のカケの発生を防止することができる。一方、融解ピークが30℃以上であると、樹脂組成物の柔軟性を適度に高くできるため、押出成形にて太陽電池封止材シートを容易に得ることができる。また、シートがベタついてブロッキングするのを防止して、シートの繰り出し性の悪化を抑制することができる。
(エチレン・α-オレフィン共重合体の製造方法)
 エチレン・α-オレフィン共重合体は、例えば、以下に示す種々のメタロセン化合物を触媒として用いて製造することができる。メタロセン化合物としては、例えば、特開2006-077261号公報、特開2008-231265号公報、特開2005-314680号公報などに記載のメタロセン化合物を用いることができる。ただし、これらの特許文献に記載のメタロセン化合物とは異なる構造のメタロセン化合物を使用してもよいし、二種以上のメタロセン化合物を組み合わせて使用してもよい。
 メタロセン化合物を用いる重合反応としては、例えば以下に示す態様を好適例として挙げることができる。
 従来公知のメタロセン化合物と、(II)(II-1)有機アルミニウムオキシ化合物、(II-2)上記メタロセン化合物(I)と反応してイオン対を形成する化合物、および(II-3)有機アルミニウム化合物からなる群より選択される少なくとも一種の化合物(助触媒ともいう)と、からなるオレフィン重合用触媒の存在下に、エチレンとα-オレフィンなどから選ばれる一種以上のモノマーを供給する。
 (II-1)有機アルミニウムオキシ化合物、(II-2)上記メタロセン化合物(I)と反応してイオン対を形成する化合物、および(II-3)有機アルミニウム化合物としても、例えば、特開2006-077261号公報、特開2008-231265号公報、および特開2005-314680号公報などに記載のメタロセン化合物を用いることができる。ただし、これらの特許文献に記載のメタロセン化合物とは異なる構造のメタロセン化合物を使用してもよい。これら化合物は、個別に、あるいは予め接触させて重合雰囲気に投入してもよい。さらに、例えば特開2005-314680号公報などに記載の微粒子状無機酸化物担体に担持して用いてもよい。
 なお、好ましくは、前述の(II-2)上記メタロセン化合物(I)と反応してイオン対を形成する化合物を実質的に使用せずに製造することで、電気特性の優れるエチレン・α-オレフィン共重合体を得ることができる。
 エチレン・α-オレフィン共重合体の重合は、従来公知の気相重合法、およびスラリー重合法、溶液重合法などの液相重合法のいずれでも行うことができる。好ましくは溶液重合法などの液相重合法により行われる。上記のようなメタロセン化合物を用いて、エチレンと炭素数3~20のα-オレフィンとの共重合を行ってエチレン・α-オレフィン共重合体を製造する場合、(I)のメタロセン化合物は、反応容積1リットル当り、通常10-9~10-1モル、好ましくは10-8~10-2モルになるような量で用いられる。
 化合物(II-1)は、化合物(II-1)と、化合物(I)中の全遷移金属原子(M)とのモル比[(II-1)/M]が通常1~10000、好ましくは10~5000となるような量で用いられる。化合物(II-2)は、化合物(I)中の全遷移金属(M)とのモル比[(II-2)/M]が、通常0.5~50、好ましくは1~20となるような量で用いられる。化合物(II-3)は、重合容積1リットル当り、通常0~5ミリモル、好ましくは約0~2ミリモルとなるような量で用いられる。
 溶液重合法では、上述のようなメタロセン化合物の存在下に、エチレンと炭素数3~20のα-オレフィンとの共重合を行うことによって、コモノマー含量が高く、組成分布が狭く、分子量分布が狭いエチレン・α-オレフィン共重合体を効率よく製造できる。ここで、エチレンと、炭素数3~20のα-オレフィンとの仕込みモル比は、通常、エチレン:α-オレフィン=10:90~99.9:0.1、好ましくはエチレン:α-オレフィン=30:70~99.9:0.1、さらに好ましくはエチレン:α-オレフィン=50:50~99.9:0.1である。
 炭素数3~20のα-オレフィンとしては、直鎖状または分岐状のα-オレフィン、例えばプロピレン、1-ブテン、2-ブテン、1-ペンテン、3-メチル-1-ブテン、1-ヘキセン、4-メチル-1-ペンテン、3-メチル-1-ペンテン、1-オクテン、1-デセン、1-ドデセンなどを挙げることができる。
 溶液重合法において使用できるα-オレフィンの例には、極性基含有オレフィンも包含される。極性基含有オレフィンとしては、例えば、アクリル酸、メタクリル酸、フマル酸、無水マレイン酸などのα,β-不飽和カルボン酸類、およびこれらのナトリウム塩などの金属塩類;アクリル酸メチル、アクリル酸エチル、アクリル酸n-プロピル、メタクリル酸メチル、メタクリル酸エチルなどのα,β-不飽和カルボン酸エステル類;酢酸ビニル、プロピオン酸ビニルなどのビニルエステル類;アクリル酸グリシジル、メタクリル酸グリシジルなどの不飽和グリシジルエステル類などを挙げることができる。また、芳香族ビニル化合物、例えば、スチレン、o-メチルスチレン、m-メチルスチレン、p-メチルスチレン、o,p-ジメチルスチレン、メトキシスチレン、ビニル安息香酸、ビニル安息香酸メチル、ビニルベンジルアセテート、ヒドロキシスチレン、p-クロロスチレン、ジビニルベンゼンなどのスチレン類;3-フェニルプロピレン、4-フェニルプロピレン、α-メチルスチレンなどを反応系に共存させて高温溶液重合を進めることも可能である。
 以上述べたα-オレフィンの中では、プロピレン、1-ブテン、1-ヘキセン、4-メチル-1-ペンテンおよび1-オクテンが好ましく用いられる。また、溶液重合法においては、炭素数が3~20の環状オレフィン類、例えば、シクロペンテン、シクロヘプテン、ノルボルネン、5-メチル-2-ノルボルネン、などを併用してもよい。
 「溶液重合法」とは、後述の不活性炭化水素溶媒中にポリマーが溶解した状態で重合を行う方法の総称である。溶液重合法における重合温度は、通常0~200℃、好ましくは20~190℃、さらに好ましくは40~180℃である。溶液重合法においては、重合温度が0℃に満たない場合、その重合活性は極端に低下し、重合熱の除熱も困難となり生産性の点で実用的でない。また、重合温度が200℃を超えると、重合活性が極端に低下するので生産性の点で実用的でない。
 重合圧力は、通常、常圧~10MPaゲージ圧、好ましくは常圧~8MPaゲージ圧の条件下である。共重合は、回分式、半連続式、連続式のいずれの方法においても行うことができる。反応時間(共重合反応が連続法で実施される場合には、平均滞留時間)は、触媒濃度、重合温度などの条件によっても異なり、適宜選択することができるが、通常1分間~3時間、好ましくは10分間~2.5時間である。さらに、重合を反応条件の異なる2段以上に分けて行うことも可能である。得られるエチレン・α-オレフィン共重合体の分子量は、重合系中の水素濃度や重合温度を変化させることによっても調節することができる。さらに、使用する化合物(II)の量により調節することもできる。水素を添加する場合、その量は、生成するエチレン・α-オレフィン共重合体1kgあたり0.001~5,000NL程度が適当である。また、得られるエチレン・α-オレフィン共重合体の分子末端に存在するビニル基およびビニリデン基は、重合温度を高くすること、水素添加量を極力少なくすることで調整できる。
 溶液重合法において用いられる溶媒は、通常、不活性炭化水素溶媒であり、好ましくは常圧下における沸点が50℃~200℃の飽和炭化水素である。具体的には、ペンタン、ヘキサン、ヘプタン、オクタン、デカン、ドデカン、灯油などの脂肪族炭化水素;シクロペンタン、シクロヘキサン、メチルシクロペンタンなどの脂環族炭化水素が挙げられる。なお、ベンゼン、トルエン、キシレンなどの芳香族炭化水素類や、エチレンクロリド、クロルベンゼン、ジクロロメタンなどのハロゲン化炭化水素も「不活性炭化水素溶媒」の範疇に入り、その使用を制限するものではない。
 上述したように、溶液重合法においては、従来繁用されてきた芳香族炭化水素に溶解する有機アルミニウムオキシ化合物のみならず、脂肪族炭化水素や脂環族炭化水素に溶解するMMAOのような修飾メチルアルミノキサンを使用できる。この結果、溶液重合用の溶媒として脂肪族炭化水素や脂環族炭化水素を採用すれば、重合系内や生成するエチレン・α-オレフィン共重合体中に芳香族炭化水素が混入する可能性をほぼ完全に排除することが可能となる。すなわち、溶液重合法は、環境負荷を軽減化でき、人体健康への影響を最小化できるという特徴も有する。なお、物性値のばらつきを抑制するため、重合反応により得られたエチレン・α-オレフィン共重合体、および所望により添加される他の成分は、任意の方法で溶融され、混練、造粒などを施されるのが好ましい。
(有機過酸化物)
 本実施形態の太陽電池封止材は、有機過酸化物を含有している。有機過酸化物は、エチレン性不飽和シラン化合物と、エチレン・α-オレフィン共重合体とのグラフト変性の際のラジカル開始剤として、さらに、エチレン・α-オレフィン共重合体の太陽電池モジュールのラミネート成形時の架橋反応の際のラジカル開始剤として用いられる。エチレン・α-オレフィン共重合体に、エチレン性不飽和シラン化合物をグラフト変性することにより、表面側透明保護部材、裏面側保護部材、セル、電極との接着性が良好な太陽電池モジュールが得られる。さらに、エチレン・α-オレフィン共重合体を架橋することにより、耐熱性、接着性に優れた太陽電池モジュールを得ることができる。
 本実施形態の太陽電池封止材中の有機過酸化物の含有量は、上述のエチレン・α-オレフィン共重合体100重量部に対して、0.1~3重量部であることが好ましく、0.2~3重量部であることがより好ましく、0.2~2.5重量部であることがとくに好ましい。
 有機過酸化物の含有量が0.1重量部以上であると、太陽電池封止材の架橋度合いや架橋速度などの架橋特性の低下を抑制し、後述のエチレン性不飽和シラン化合物のエチレン・α-オレフィン共重合体の主鎖へのグラフト反応を良好にして、耐熱性、接着性の低下を抑制することができる。
 有機過酸化物の含有量が3.0重量部以下であると、押出シート成形時に樹脂組成物から得られる太陽電池封止シートにゲルが発生しにくくなるので、押出機のトルクの上昇を抑制しシート成形を容易にすることができる。また、押出機内で発生したゲル物によりシートの表面に凹凸が発生するのを抑制できるため、外観の低下を防止することができる。また、電圧をかけたとき、シート内部におけるクラックの発生を防止できるため、絶縁破壊電圧の低下を防ぐことができる。さらに、透湿性の低下も防止できる。また、シート表面に凹凸が発生するのを抑制できるため、太陽電池モジュールのラミネート加工時に表面側透明保護部材、セル、電極、裏面側保護部材との密着性が良好となり、接着性も向上する。
 好ましく用いられる有機過酸化物は、エチレン・α-オレフィン共重合体にエチレン性不飽和シラン化合物をグラフト変性したり、エチレン・α-オレフィン共重合体を架橋したりすることが可能なものであれば特に限定されないが、押出シート成形での生産性と太陽電池モジュールのラミネート成形時の架橋速度のバランスから、有機過酸化物の1分間半減期温度が100~170℃であることが好ましい。有機過酸化物の1分間半減期温度が100℃以上であると、押出シート成形時に樹脂組成物から得られる太陽電池封止シートにゲルが発生しにくくなるので、押出機のトルクの上昇を抑制しシート成形を容易にすることができる。また、押出機内で発生したゲル物によりシートの表面に凹凸が発生するのを抑制できるため、外観の低下を防止することができる。また、電圧をかけたとき、シート内部におけるクラックの発生を防止できるため、絶縁破壊電圧の低下を防ぐことができる。さらに、透湿性の低下も防止できる。また、シート表面に凹凸が発生するのを抑制できるため、太陽電池モジュールのラミネート加工時に表面側透明保護部材、セル、電極、裏面側保護部材との密着性が良好となり、接着性も向上する。押出シート成形の押出温度を90℃以下に下げると成形は可能であるが、生産性が大幅に低下する。有機過酸化物の1分間半減期温度が170℃以下であると、太陽電池モジュールのラミネート成形時の架橋速度の低下を抑制できるため、太陽電池モジュールの生産性の低下を防ぐことができる。また、太陽電池封止材の耐熱性、接着性の低下を防ぐこともできる。
 有機過酸化物としては公知のものが使用できる。1分間半減期温度が100~170℃の範囲にある有機過酸化物の好ましい具体例としては、ジラウロイルパーオキサイド、1,1,3,3-テトラメチルブチルパーオキシ-2-エチルヘキサノエート、ジベンゾイルパーオキサイド、t-アミルパーオキシ-2-エチルヘキサノエート、t-ブチルパーオキシ-2-エチルヘキサノエート、t-ブチルパーオキシイソブチレート、t-ブチルパーオキシマレイン酸、1,1-ジ(t-アミルパーオキシ)-3,3,5-トリメチルシクロヘキサン、1,1-ジ(t-アミルパーオキシ)シクロヘキサン、t-アミルパーオキシイソノナノエート、t-アミルパーオキシノルマルオクトエート、1,1-ジ(t-ブチルパーオキシ)-3,3,5-トリメチルシクロヘキサン、1,1-ジ(t-ブチルパーオキシ)シクロヘキサン、t-ブチルパーオキシイソプロピルカーボネート、t-ブチルパーオキシ-2-エチルヘキシルカーボネート、2,5-ジメチル-2,5-ジ(ベンゾイルパーオキシ)ヘキサン、t-アミル-パーオキシベンゾエート、t-ブチルパーオキシアセテート、t-ブチルパーオキシイソノナノエート、2,2-ジ(t-ブチルパーオキシ)ブタン、t-ブチルパーオキシベンゾエート、などが挙げられる。好ましくは、ジラウロイルパーオキサイド、t-ブチルパーオキシイソプロピルカーボネート、t-ブチルパーオキシアセテート、t-ブチルパーオキシイソノナノエート、t-ブチルパーオキシ-2-エチルヘキシルカーボネート、t-ブチルパーオキシベンゾエートなどが挙げられる。
 本実施形態の太陽電池封止材は、ジビニル芳香族化合物、シアヌレート、ジアリル化合物、トリアリル化合物、オキシムおよびマレイミドからなる群より選択される少なくとも一種の架橋助剤を含有している。架橋助剤を含有することにより、適度な架橋構造を有することができ、架橋特性、耐熱性、機械物性、接着性を向上できる。本実施形態の太陽電池封止材中の架橋助剤の含有量は、エチレン・α-オレフィン共重合体100重量部に対して、0.1~3重量部であり、好ましくは0.1~2.5重量部であり、より好ましくは0.2~2.0重量部である。
 架橋助剤の含有量が0.1重量部以上であると、太陽電池封止材の架橋特性をさらに向上させることができる。架橋助剤が3重量部以下であると、スコーチ性を抑制し、押出成形時にゲルが発生せず、シート外観、接着性を向上させることができる。
 架橋助剤としては、オレフィン系樹脂に対して一般に使用される従来公知のものが使用できる。このような架橋助剤は、分子内に二重結合を二個以上有する化合物である。具体的には、ジビニルベンゼン、ジ-i-プロペニルベンゼンなどのジビニル芳香族化合物;トリアリルシアヌレート、トリアリルイソシアヌレートなどのシアヌレート;ジアリルフタレートなどのジアリル化合物;トリアリル化合物;p-キノンジオキシム、p-p'-ジベンゾイルキノンジオキシムなどのオキシム;フェニルマレイミドなどのマレイミドが挙げられる。
 これらの架橋助剤の中でも、トリアリル化合物およびシアヌレートからなる群から選択される少なくとも一種が好ましく、ラミネート後の太陽電池封止材の気泡発生や架橋特性のバランスが最も優れる点からトリアリルイソシアヌレートが特に好ましい。
((メタ)アクリレート系モノマー)
 本実施形態の太陽電池封止材は、エチレン・α-オレフィン共重合体100重量部に対して、(メタ)アクリレート系モノマーを0.1~5.0重量部含有しており、好ましくは0.1~4.5重量部含有しており、とくに好ましくは0.2~3.0重量部含有している。(メタ)アクリレート系モノマーの含有量が0.1重量部以上であると、太陽電池封止材の硬化物の架橋構造が良好であり、体積固有抵抗が向上する。特に100℃などのエチレン・α-オレフィン共重合体の融点以上の温度領域においては、分子鎖の運動を抑制し、体積固有抵抗が向上する傾向にある。(メタ)アクリレート系モノマーが5.0重量部以下であると、スコーチ性を低くでき、押出成形時にゲルを抑制し、シート外観、接着性の低下を抑制できる傾向にある。また、(メタ)アクリレート系モノマー同士も抑制でき、太陽電池封止材の接着性や耐熱性が向上できる。
 なお、太陽電池封止材中の上記含有量は、太陽電池封止材から溶媒抽出にて(メタ)アクリレート系モノマーを抽出し、ガスクロマトグラフィーまたは液体クロマトグラフィーなどのクロマトグラフィーを用いて分析することができる。
 (メタ)アクリレート系モノマーとしては、従来公知のものを用いることができる。具体例としては、t-ブチルアクリレート、ラウリルアクリレート、セチルアクリレート、ステアリルアクリレート、2-メトキシエチルアクリレート、エチルカルビトールアクリレート、メトキシトリプロピレングリコールアクリレート、メトキシポリエチレングリコールアクリレート、イソステアリルアクリレート、2-アクロイルオキシエチルサクシネートなどのモノアクリレート;t-ブチルメタクリレート、ラウリルメタクリレート、セチルメタクリレート、ステアリルメタクリレート、メトキシエチレングリコールメタクリレート、メトキシポリエチレングリコールメタクリレート、イソステアリルメタクリレート、2-メタクロイルオキシエチルサクシネートなどのモノメタクリレート;1,4-ブタンジオールジアクリレート、6-ヘキサンジオールジアクリレート、9-ノナンジオールジアクリレート、1,10-デカンジオールジアクリレート、ネオペンチルグリコールジアクリレート、ジエチレングリコールジアクリレート、ジプロピレングリコールジアクリレート、トリエチレングリコールジアクリレート、トリプロピレングリコールジアクリレート、テトラエチレングリコールジアクリレート、テトラプロピレングリコールジアクリレート、トリクロデカンジメタノールジアクリレート、2-ヒドロキシ-3-アクリロイロキシプロピルメタクリレート、ポリエチレングリコールジアクリレート、ポリプロピレングリコールジアクリレート、ポリテトラメチレングリコールジアクリレート、グリセリンジアクリレートなどのジアクリレート;3-ブタンジオールジメタクリレート、6-ヘキサンジオールジメタクリレート、9-ノナンジオールジメタクリレート、1,10-デカンジオールジメタクリレート、ネオペンチルグリコールジメタクリレート、エチレングリコールジメタクリレート、ジエチレングリコールジメタクリレート、トリエチレングリコールジメタクリレート、ジプロピレングリコールジメタクリレート、トリプロピレングリコールジメタクリレート、トリクロデカンジメタノールジメタクリレート、グリセリンジメタクリレート、エトキシ化ポリプロピレングリコールジメタクリレート、ポリエチレングリコールジメタクリレート、ポリプロピレングリコールジメタクリレート、グリセリンジメタクリレートなどのジメタクリレート;エトキシ化グリセリントリアクリレート、トリメチロールプロパントリアクリレート、テトラメチロールメタントリアクリレート、ペンタエリスリトールトリアクリレートなどのトリアクリレート;エトキシ化ペンタエリスリトールテトラアクリレート、ジメチロールプロパンテトラアクリレート、トリメチロールプロパントリメタクリレート、トリメチロールエタントリメタクリレートなどのトリメタクリレート;ペンタエリスリトールテトラアクリレート、テトラメチロールメタンテトラアクリレート、ジトリメチロールプロパンテトラアクリレートなどのテトラアクリレート;ペンタエリスリトールテトラメタクリレート、テトラメチロールメタンテトラメタクリレート、ジトリメチロールプロパンテトラメタクリレートなどのテトラメタクリレート;ジペンタエリスリトールポリアクリレート、ジペンタエリスリトールヘキサアクリレートなどの多官能アクリレート;ジペンタエリスリトールポリメタクリレート、ジペンタエリスリトールヘキサメタクリレートなどの多官能メタクリレートなどが挙げられる。このような(メタ)アクリレート系モノマーは、単独で使用されてもよいし、二種以上が併用されてもよい。
 これらの中でも、モノ(メタ)アクリレート、ジ(メタ)アクリレート、トリ(メタ)アクリレートおよびテトラ(メタ)アクリレートからなる群から選択される少なくとも一種が好ましく、メトキシポリエチレングリコール(メタ)アクリレート、ステアリル(メタ)アクリレート、グリセリンジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレートおよびジトリメチロールプロパンテトラ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレートからなる群から選択される少なくとも一種がより好ましい。
 (メタ)アクリレート系モノマーの分子量は、150以上が好ましく、180以上がさらに好ましい。また、(メタ)アクリレート系モノマーの分子量は、特に限定されないが、2000以下が好ましく、1500以下がさらに好ましい。
 また、架橋助剤と(メタ)アクリレート系モノマーの含有量の合計が、エチレン・α-オレフィン共重合体100重量部に対して、好ましくは0.2~5.0重量部であり、より好ましくは0.2~4.5重量部であり、さらに好ましくは0.3~3.0重量部である。
 架橋処理後の太陽電池封止材シート中の(メタ)アクリレート系モノマーのグラフト量は、シート片のIR測定により求めることができる。エチレン性不飽和シラン化合物など他の添加剤による吸収が(メタ)アクリレート基の吸収帯と重なるときは、次のようにすればよい。ICP測定によりケイ素原子含有量を求めエチレン性不飽和シラン化合物の含有量を求める。別途エチレン性不飽和シラン化合物の含有量とIR吸収強度の検量線を予め得ておき、IR吸収帯強度からICP測定により求めたエチレン性不飽和シラン化合物の含有量を差し引き、これを(メタ)アクリレート系モノマーのグラフト量として算出することができる。
(エチレン性不飽和シラン化合物)
 本実施形態の太陽電池封止材は、さらにエチレン性不飽和シラン化合物を含むのが好ましい。本実施形態の太陽電池封止材中のエチレン性不飽和シラン化合物の含有量は、エチレン・α-オレフィン共重合体100重量部に対して、好ましくは0.1~5重量部であり、より好ましくは0.1~4重量部であり、とくに好ましくは0.1~3重量部である。
 エチレン性不飽和シラン化合物の含有量が0.1重量部以上であると、接着性が向上する。一方、エチレン性不飽和シラン化合物の含有量が5重量部以下であると、太陽電池封止材のコストと性能のバランスがよく、また、エチレン性不飽和シラン化合物を太陽電池モジュールのラミネート時にエチレン・α-オレフィン共重合体にグラフト反応させるための有機過酸化物の添加量を抑制でき、押出シート成形時に樹脂組成物から得られる太陽電池封止シートにゲルが発生しにくくなるので、押出機のトルクの上昇を抑制しシート成形を容易にすることができる。また、押出機内で発生したゲル物によりシートの表面に凹凸が発生するのを抑制できるため、外観の低下を防止することができる。また、電圧をかけたとき、シート内部におけるクラックの発生を防止できるため、絶縁破壊電圧の低下を防ぐことができる。さらに、透湿性の低下も防止できる。また、シート表面に凹凸が発生するのを抑制できるため、太陽電池モジュールのラミネート加工時に表面側透明保護部材、セル、電極、裏面側保護部材との密着性が良好となり、接着性も向上する。
 エチレン性不飽和シラン化合物は、従来公知のものが使用でき、とくに制限はない。具体的には、ビニルトリエトキシシラン、ビニルトリメトキシシラン、ビニルトリス(β-メトキシエトキシシラン)、γ-グリシドキシプロピルトリメトキシシラン、γ-アミノプロピルトリエトキシシラン、γ-メタクリロキシプロピルトリメトキシシランなどが使用できる。好ましくは、接着性が良好なγ-グリシドキシプロピルメトキシシラン、γ-アミノプロピルトリエトキシシラン、γ-メタクリロキシプロピルトリメトキシシラン、ビニルトリエトキシシランが挙げられる。
(紫外線吸収剤、光安定化剤、耐熱安定剤)
 本実施形態の太陽電池封止材は、紫外線吸収剤、光安定化剤、および耐熱安定剤からなる群より選択される少なくとも一種の添加剤を含んでいてもよい。これらの添加剤の含有量は、エチレン・α-オレフィン共重合体100重量部に対して、0.005~5重量部であることが好ましい。さらに、上記三種から選ばれる少なくとも二種の添加剤を含有することが好ましく、とくに、上記三種の全てが含有されていることが好ましい。上記添加剤の配合量が上記範囲にあると、高温高湿への耐性、ヒートサイクルの耐性、耐候安定性、および耐熱安定性を向上する効果を十分に確保し、かつ、太陽電池封止材の透明性や表面側透明保護部材、裏面側保護部材、セル、電極、アルミニウムとの接着性の低下を防ぐことができるので好ましい。
 紫外線吸収剤としては、具体的には、2-ヒドロキシ-4-ノルマル-オクチルオキシベンゾフェノン、2-ヒドロキシ-4メトキシベンゾフェノン、2,2-ジヒドロキシ-4-メトキシベンゾフェノン、2-ヒドロキシ-4-メトキシ-4-カルボキシベンゾフェノン、2-ヒドロキシ-4-N-オクトキシベンゾフェノンなどのベンゾフェノン系;2-(2-ヒドロキシ-3,5-ジ-t-ブチルフェニル)ベンゾトリアゾール、2-(2-ヒドロキシ-5-メチルフェニル)ベンゾトリアゾールなどのベンゾトリアリゾール系;フェニルサルチレート、p-オクチルフェニルサルチレートなどのサリチル酸エステル系のものが用いられる。
 光安定化剤としては、ビス(2,2,6,6-テトラメチル-4-ピペリジル)セバケート、ポリ[{6-(1,1,3,3-テトラメチルブチル)アミノ-1,3,5-トリアジン-2,4-ジイル}{(2,2,6,6-テトラメチル-4-ピペリジル)イミノ}ヘキサメチレン{(2,2,6,6-テトラメチル-4-ピペリジル)イミノ}]などのヒンダードアミン系、ヒンダードピペリジン系化合物などのものが好ましく使用される。
 耐熱安定剤としては、具体的には、トリス(2,4-ジ-tert-ブチルフェニル)ホスファイト、ビス[2,4-ビス(1,1-ジメチルエチル)-6-メチルフェニル]エチルエステル亜リン酸、テトラキス(2,4-ジ-tert-ブチルフェニル)[1,1-ビフェニル]-4,4'-ジイルビスホスフォナイト、およびビス(2,4-ジ-tert-ブチルフェニル)ペンタエリスリトールジホスファイトなどのホスファイト系耐熱安定剤;3-ヒドロキシ-5,7-ジ-tert-ブチル-フラン-2-オンとo-キシレンとの反応生成物などのラクトン系耐熱安定剤;3,3',3",5,5',5"-ヘキサ-tert-ブチル-a,a',a"-(メチレン-2,4,6-トリイル)トリ-p-クレゾール、1,3,5-トリメチル-2,4,6-トリス(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)ベンジルベンゼン、ペンタエリスリトールテトラキス[3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオネート]、オクタデシル-3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオネート、チオジエチレンビス[3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオネート]などのヒンダードフェノール系耐熱安定剤;硫黄系耐熱安定剤;アミン系耐熱安定剤などを挙げることができる。また、これらを一種単独でまたは二種以上を組み合わせて用いることもできる。中でも、ホスファイト系耐熱安定剤、およびヒンダードフェノール系耐熱安定剤が好ましい。
(その他の添加剤)
 太陽電池封止材を構成するエチレン系樹脂組成物には、以上詳述した諸成分以外の各種成分を、本発明の目的を損なわない範囲において、適宜含有させることができる。例えば、エチレン・α-オレフィン共重合体以外の各種ポリオレフィン、スチレン系やエチレン系ブロック共重合体、プロピレン系重合体などが挙げられる。太陽電池封止材中の各種成分の含有量は、上記エチレン・α-オレフィン共重合体100重量部に対して、好ましくは0.0001~50重量部であり、より好ましくは0.001~40重量部である。また、ポリオレフィン以外の各種樹脂、および/または各種ゴム、可塑剤、充填剤、顔料、染料、帯電防止剤、抗菌剤、防黴剤、難燃剤、架橋助剤、および分散剤などから選ばれる一種以上の添加剤を適宜含有することができる。
(太陽電池封止材)
 本実施形態の太陽電池封止材は、電気特性に優れ、表面側透明保護部材、裏面側保護部材、薄膜電極、アルミニウム、太陽電池素子などの各種太陽電池部材との接着性、耐熱性、押出成形性および架橋特性のバランスにも優れ、さらに、透明性、柔軟性、外観、耐候性、電気絶縁性、透湿性、電極腐食性、プロセス安定性のバランスに優れている。このため、従来公知の太陽電池モジュールの太陽電池封止材として好適に用いられる。
 太陽電池封止材は、その全体形状がシート状であることも好ましい実施形態の一つである。また、上述の樹脂組成物からなるシートを少なくとも一層有する、他の層と複合化された太陽電池封止材も好適に用いることができる。太陽電池封止材の層の厚みは、通常0.01~2mm、好ましくは0.05~1.5mm、より好ましくは0.1~1.2mm、さらに好ましくは0.2~1mm、とくに好ましくは0.3~0.9mm、最も好ましくは0.3~0.8mmである。厚みがこの範囲内であると、ラミネート工程における、表面側透明保護部材、太陽電池素子、薄膜電極などの破損が抑制でき、かつ、十分な光線透過率を確保することにより高い光発電量を得ることができる。さらには、低温での太陽電池モジュールのラミネート成形ができるので好ましい。
(体積固有抵抗)
 本実施形態の太陽電池封止材は、JIS K6911に準拠し、温度100℃、印加電圧500Vで測定される、太陽電池封止材を架橋させて形成される封止層の体積固有抵抗が1.0×1015~1.0×1018Ω・cmであることが好ましい。体積固有抵抗が小さい太陽電池封止材は、PIDを発生し易い特性を有する傾向にある。さらに、太陽光が照射される時間帯には、従来の太陽電池モジュールではモジュール温度が例えば70℃以上になることがあるので、長期信頼性の観点から、従来報告されている常温(23℃)での体積固有抵抗より高温条件下での体積固有抵抗が求められており、温度100℃での体積固有抵抗が重要となる。
 体積固有抵抗は、好ましくは1.0×1015~1.0×1018Ω・cmであり、より好ましくは5.0×1015~1.0×1018Ω・cmである。
 体積固有抵抗が1.0×1015Ω・cm未満であると、85℃,85%rhでの恒温恒湿試験において1日程度の短期間でPID現象を発生する傾向にある。体積固有抵抗が、1.0×1018Ω・cm超過であると、シートに静電気が帯びてしまいゴミを吸着しやすくなり、太陽電池モジュール内にゴミが混入し、発電効率や長期信頼性の低下を招く傾向にある。
 体積固有抵抗は、封止材シートに成形した後、真空ラミネーター、熱プレス、架橋炉などで架橋および平坦なシートに加工された後に測定される。また、モジュール積層体中のシートは、他の層を除去して測定する。
 本実施形態の太陽電池封止材は、架橋後のシートに発生するゲル状の異物を抑制しながら、上記体積固有抵抗を満たすことができる。
 本実施形態の太陽電池封止材の製造方法としては通常用いられている方法が利用できるが、ニーダー、バンバリミキサー、押出機などにより溶融ブレンドすることにより製造することが好ましい。とくに、連続生産が可能な押出機での製造が好ましい。
 太陽電池封止材のシートの成形方法にはとくに制限は無いが、公知の各種の成形方法(キャスト成形、押出シート成形、インフレーション成形、射出成形、圧縮成形など)を採用することができる。とくに、エチレン・α-オレフィン共重合体と、有機過酸化物と、ジビニル芳香族化合物、シアヌレート、ジアリル化合物、トリアリル化合物、オキシムおよびマレイミドからなる群より選択される少なくとも一種の架橋助剤と、(メタ)アクリレート系モノマーと、必要に応じて、エチレン性不飽和シラン化合物、紫外線吸収剤、光安定化剤、耐熱安定剤、およびその他添加剤を、例えば、ポリ袋などの袋の中で人力によりブレンドする、あるいは、ヘンシェルミキサー、タンブラー、スーパーミキサーなどの攪拌混合機を用いてブレンドして得られた、エチレン系樹脂組成物を、押出シート成形のホッパーに投入し、溶融混練を行いつつ押出シート成形を行い、シート状の太陽電池封止材を得ることが、接着性を向上させることができ、かつ、光安定剤の劣化を防いで耐候性や耐熱性などの長期信頼性が低下できるため、より好ましい。
 押出温度範囲としては、100~130℃が好ましい。押出温度を100℃以上にすると、太陽電池封止材の生産性を向上させることができる。押出温度を130℃以下にすると、エチレン系樹脂組成物を押出機でシート化して太陽電池封止材を得る際にゲル化を起こしにくくなる。そのため、押出機のトルクの上昇を防ぎ、シート成形を容易にできる。また、シートの表面に凹凸が発生しにくくなるため、外観の低下を防ぐことができる。また、電圧をかけたときシート内部におけるクラックの発生を抑制できるため、絶縁破壊電圧の低下を防止することができる。さらに、透湿性の低下も抑制できる。また、シート表面に凹凸が発生しにくくなるため、太陽電池モジュールのラミネート加工時に表面側透明保護部材、セル、電極、裏面側保護部材との密着性が良好になり、接着性に優れる。
 また、エチレン・α-オレフィン共重合体のMFRが例えば10g/10分以下の場合は、溶融樹脂を加熱した金属ロール(カレンダーロール)で圧延することによって所望の厚さのシートやフィルムを作製するカレンダー成形機を使用し、エチレン・α-オレフィン共重合体、有機過酸化物、ジビニル芳香族化合物、シアヌレート、ジアリル化合物、トリアリル化合物、オキシムおよびマレイミドからなる群より選択される少なくとも一種の架橋助剤と、(メタ)アクリレート系モノマーと、必要に応じて、エチレン性不飽和シラン化合物、紫外線吸収剤、光安定化剤、耐熱安定剤、およびその他添加剤の溶融混練を行いつつカレンダー成形を行い、シート状の太陽電池封止材を得ることもできる。カレンダー成形機としては、公知の各種カレンダー成形機を用いることができ、ミキシングロール、三本カレンダーロール、四本カレンダーロールを用いることができる。四本カレンダーロールとしては、とくに、I型、S型、逆L型、Z型、斜Z型などを用いることができる。また、カレンダーロールに掛ける前に、エチレン系樹脂組成物を適度な温度まで熱しておくことも好ましく、例えば、バンバリーミキサー、ニーダー、押出機などを設置することも好ましい実施形態の一つである。カレンダー成形の温度範囲は、ロール温度を、通常40~100℃とすることが好ましい。
 また、太陽電池封止材のシート(または層)の表面には、エンボス加工が施されてもよい。太陽電池封止材のシート表面を、エンボス加工によって装飾することで、封止材シート同士、または封止材シートと他のシートなどとのブロッキングを防止しうる。さらに、エンボスが、太陽電池封止材(太陽電池用封止シート)の貯蔵弾性率を低下させるため、太陽電池用封止シートと太陽電池素子とをラミネートする時に太陽電池素子などに対するクッションとなって、太陽電池素子の破損を防止することができる。
 太陽電池封止材のシートの単位面積当りの凹部の合計体積Vと、太陽電池封止材のシートの見掛けの体積Vとの百分比V/V×100で表される空隙率P(%)が、10~50%であることが好ましく、10~40%であることがより好ましく、15~40%であることがさらに好ましい。なお、太陽電池封止材のシートの見掛けの体積Vは、単位面積に太陽電池用封止シートの最大厚みを乗じることにより得られる。
 空隙率Pが10%以上であると、太陽電池封止材の弾性率を十分低下させることができるため、十分なクッション性を得ることができる。したがって、モジュールの製造工程にて、二段階でラミネート加工(加圧工程)する際に、結晶系太陽電池では、シリコンセルやシリコンセルと電極とを固定する半田の割れを防ぎ、薄膜系太陽電池では、銀電極の割れを防ぐことができる。すなわち、エチレン系樹脂組成物からなるシートを含む太陽電池封止材の空隙率が10%以上であると、太陽電池封止材に局所的に圧力が加えられた場合であっても、圧力が加えられた凸部が潰れるように変形する。このため、ラミネート加工時に、例えばシリコンセルなどに対して局所的に大きな圧力が加わったとしてもシリコンセルが割れてしまうのを防止することができる。また、太陽電池封止材の空隙率が10%以上であると、空気の通り道が確保できるため、ラミネート加工時に良好に脱気できる。このため、太陽電池モジュールに空気が残留して外観が悪化したり、長期使用時には、残留した空気中の水分により電極の腐食が生じたりすることを防止することができる。さらに、ラミネート時に、流動した架橋性樹脂組成物に生じる空隙が少なくなるため、太陽電池モジュールの各被着体の外部にはみ出して、ラミネーターを汚染することを防げる。
 一方、空隙率Pが50%以下であると、ラミネート加工の加圧時に空気を良好に脱気できるため、太陽電池モジュール内に空気が残留するのを防ぐことができる。このため、太陽電池モジュールの外観の悪化を防ぎ、長期使用時には、残留した空気中の水分により電極の腐食を起こすこともない。また、ラミネート加工の加圧時に空気を良好に脱気できるため、太陽電池封止材と被着体との接着面積が増えて、十分な接着強度を得ることができる。
 空隙率Pは、次のような計算により求めることができる。エンボス加工が施された太陽電池封止材の、見掛けの体積V(mm)は、太陽電池封止材の最大厚みtmax(mm)と単位面積(例えば1m=1000×1000=10mm)との積によって、下記式(3)のようにして算出される。
  V(mm)=tmax(mm)×10(mm)     (3)
 一方、この単位面積の太陽電池封止材の実際の体積V(mm)は、太陽電池封止材を構成する樹脂の比重ρ(g/mm)と単位面積(1m)当りの太陽電池封止材の実際の重さW(g)と、を下記式(4)に当てはめることにより算出される。
  V(mm)=W/ρ      (4)
 太陽電池封止材の単位面積当りの凹部の合計体積V(mm)は、下記式(5)に示されるように、「太陽電池封止材の見掛けの体積V」から「実際の体積V」を差し引くことによって算出される。
  V(mm)=V-V=V-(W/ρ)     (5)
 したがって、空隙率(%)は次のようにして求めることができる。
 空隙率P(%)=V/V×100
  =(V-(W/ρ))/V×100
  =1-W/(ρ・V)×100
  =1-W/(ρ・tmax・10)×100
 空隙率(%)は、上記の計算式によって求めることができるが、実際の太陽電池封止材の断面やエンボス加工が施された面を顕微鏡撮影し、画像処理などすることによって求めることもできる。
 エンボス加工により形成される凹部の深さは、太陽電池封止材の最大厚みの20~95%であることが好ましく、50~95%であることがより好ましく、65~95%であることがとくに好ましい。シートの最大厚みtmaxに対する凹部の深さDの百分比を、凹部の「深さ率」と称する場合がある。
 エンボス加工の凹部の深さとは、エンボス加工による太陽電池封止材の凹凸面の凸部の最頂部と凹部の最深部との高低差Dを示す。また、太陽電池封止材の最大厚みtmaxとは、太陽電池封止材の一方の面にエンボス加工してある場合、一方の面の凸部の最頂部から他方の面までの(太陽電池封止材厚さ方向の)距離を示し、太陽電池封止材の両方の面にエンボス加工が施されている場合は、一方の面の凸部の最頂部から他方の面の凸部の最頂部までの(太陽電池封止材厚さ方向の)距離を示す。
 エンボス加工は、太陽電池封止材の片面に施されていても、両面に施されていてもよい。エンボス加工の凹部の深さを大きくする場合は、太陽電池封止材の片面にのみ形成するのが好ましい。エンボス加工が太陽電池封止材の片面にのみ施されている場合、太陽電池封止材の最大厚みtmaxは0.01mm~2mmであり、好ましくは0.05~1mmであり、より好ましくは0.1~1mmであり、さらに好ましくは0.15~1mmであり、さらに好ましくは0.2~1mmであり、さらに好ましくは0.2~0.9mmであり、とくに好ましくは0.3~0.9mmであり、最も好ましくは0.3~0.8mmである。太陽電池封止材の最大厚みtmaxがこの範囲内であると、ラミネート工程における、表面側透明保護部材、太陽電池素子、薄膜電極などの破損を抑制でき、比較的低温でも太陽電池モジュールのラミネート成形ができるので好ましい。また、太陽電池封止材は、十分な光線透過率を確保でき、それを用いた太陽電池モジュールは高い光発電量を有する。
 さらに、そのシートは、太陽電池モジュールサイズに合わせて裁断された枚葉形式、または太陽電池モジュールを作製する直前にサイズに合わせて裁断可能なロール形式にて太陽電池封止材として用いることができる。本実施形態の好ましい実施形態であるシート状の太陽電池封止材(太陽電池用封止シート)は、太陽電池封止材からなる層を少なくとも一層有していればよい。したがって、本実施形態の太陽電池封止材からなる層の数は、一層であってもよいし、二層以上であってもよい。構造を単純にしてコストを下げる観点、および層間での界面反射を極力小さくし、光を有効に活用する観点などからは、一層であることが好ましい。
 太陽電池封止材シートは、本実施形態の太陽電池封止材からなる層のみで構成されていてもよいし、太陽電池封止材を含有する層以外の層(以下、「その他の層」とも記す)を有していてもよい。その他の層の例としては、目的で分類するならば、表面または裏面保護のためのハードコート層、接着層、反射防止層、ガスバリア層、防汚層などを挙げることができる。材質で分類するならば、紫外線硬化性樹脂からなる層、熱硬化性樹脂からなる層、ポリオレフィン樹脂からなる層、カルボン酸変性ポリオレフィン樹脂からなる層、フッ素含有樹脂からなる層、環状オレフィン(共)重合体からなる層、無機化合物からなる層などを挙げることができる。
 本実施形態の太陽電池封止材からなる層と、その他の層との位置関係にはとくに制限はなく、本発明の目的との関係で好ましい層構成が適宜選択される。すなわち、その他の層は、2以上の太陽電池封止材からなる層の間に設けられてもよいし、太陽電池用封止シートの最外層に設けられてもよいし、それ以外の箇所に設けられてもよい。また、太陽電池封止材からなる層の片面にのみその他の層が設けられてもよいし、両面にその他の層が設けられてもよい。その他の層の層数にとくに制限はなく、任意の数のその他の層を設けることができるし、その他の層を設けなくともよい。
 構造を単純にしてコストを下げる観点、および界面反射を極力小さくし光を有効に活用する観点などからは、その他の層を設けず、本実施形態の太陽電池封止材からなる層のみで太陽電池用封止シートを作製すればよい。ただし、目的との関係で必要または有用なその他の層があれば、適宜そのようなその他の層を設ければよい。その他の層を設ける場合における、本実施形態の太陽電池封止材からなる層と他の層との積層方法についてはとくに制限はないが、キャスト成形機、押出シート成形機、インフレーション成形機、射出成形機などの公知の溶融押出機を用いて共押出して積層体を得る方法、あるいは予め成形された一方の層上に他方の層を溶融または加熱ラミネートして積層体を得る方法が好ましい。また、適当な接着剤(例えば、無水マレイン酸変性ポリオレフィン樹脂(三井化学社製の商品名「アドマー(登録商標)」、三菱化学社製の商品名「モディック(登録商標)」など)、不飽和ポリオレフィンなどの低(非)結晶性軟質重合体、エチレン/アクリル酸エステル/無水マレイン酸三元共重合体(住化シーディエフ化学社製の商品名「ボンダイン(登録商標)」など)をはじめとするアクリル系接着剤、エチレン/酢酸ビニル系共重合体、またはこれらを含む接着性樹脂組成物など)を用いたドライラミネート法、あるいはヒートラミネート法などにより積層してもよい。接着剤としては、120~150℃程度の耐熱性があるものが好ましく使用され、ポリエステル系あるいはポリウレタン系接着剤などが好適なものとして例示される。また、両層の接着性を改良するために、例えば、シラン系カップリング処理、チタン系カップリング処理、コロナ処理、プラズマ処理などを用いてもよい。
2.太陽電池モジュールについて
 太陽電池モジュールは、例えば、通常、多結晶シリコンなどにより形成された太陽電池素子を太陽電池用封止シートで挟み積層し、さらに、表裏両面を保護シートでカバーした結晶型太陽電池モジュールが挙げられる。すなわち、典型的な太陽電池モジュールは、太陽電池モジュール用保護シート(表面側透明保護部材)/太陽電池封止材/太陽電池素子/太陽電池封止材/太陽電池モジュール用保護シート(裏面側保護部材)という構成になっている。ただし、本実施形態の好ましい実施形態の1つである太陽電池モジュールは、上記の構成には限定されず、本発明の目的を損なわない範囲で、上記の各層の一部を適宜省略し、または上記以外の層を適宜設けることができる。上記以外の層としては、例えば接着層、衝撃吸収層、コーティング層、反射防止層、裏面再反射層、および光拡散層などを挙げることができる。これらの層は、とくに限定はないが、各層を設ける目的や特性を考慮して、適切な位置に設けることができる。
(結晶シリコン系の太陽電池モジュール)
 図1は、本実施形態の太陽電池モジュールの一実施形態を模式的に示す断面図である。なお、図1においては、結晶シリコン系の太陽電池モジュール20の構成の一例が示されている。図1に示されるように、太陽電池モジュール20は、インターコネクタ29により電気的に接続された複数の結晶シリコン系の太陽電池素子22と、それを挟持する一対の表面側透明保護部材24と裏面側保護部材26とを有し、これらの保護部材と複数の太陽電池素子22との間に、封止層28が充填されている。封止層28は、本実施形態の太陽電池用封止材を貼り合わせた後、加熱圧着されて得られ、太陽電池素子22の受光面および裏面に形成された電極と接している。電極とは、太陽電池素子22の受光面および裏面にそれぞれ形成された集電部材であり、後述する集電線、タブ付用母線、および裏面電極層などを含む。
 図2は、太陽電池素子の受光面と裏面の一構成例を模式的に示す平面図である。図2においては、太陽電池素子22の受光面22Aと裏面22Bの構成の一例が示されている。図2(A)に示されるように、太陽電池素子22の受光面22Aには、ライン状に多数形成された集電線32と、集電線32から電荷を収集するとともに、インターコネクタ29(図1)と接続されるタブ付用母線(バスバー)34Aと、が形成されている。また、図2(B)に示されるように、太陽電池素子22の裏面22Bには、全面に導電層(裏面電極)36が形成され、その上に導電層36から電荷を収集するとともに、インターコネクタ29(図1)と接続されるタブ付用母線(バスバー)34Bが形成されている。集電線32の線幅は、例えば0.1mm程度であり;タブ付用母線34Aの線幅は、例えば2~3mm程度であり;タブ付用母線34Bの線幅は、例えば5~7mm程度である。集電線32、タブ付用母線34Aおよびタブ付用母線34Bの厚みは、例えば20~50μm程度である。
 集電線32、タブ付用母線34A、およびタブ付用母線34Bは、導電性が高い金属を含むことが好ましい。このような導電性の高い金属の例には、金、銀、銅などが含まれるが、導電性や耐腐食性が高い点などから、銀や銀化合物、銀を含有する合金などが好ましい。導電層36は、導電性の高い金属だけでなく、受光面で受けた光を反射させて太陽電池素子の光電変換効率を向上させるという観点などから、光反射性の高い成分、例えばアルミニウムを含むことが好ましい。集電線32、タブ付用母線34A、タブ付用母線34B、および導電層36は、太陽電池素子22の受光面22Aまたは裏面22Bに、上記導電性の高い金属を含む導電材塗料を、例えばスクリーン印刷により50μmの塗膜厚さに塗布した後、乾燥し、必要に応じて例えば600~700℃で焼き付けすることにより形成される。
 表面側透明保護部材24は、受光面側に配置されることから、透明である必要がある。表面側透明保護部材24の例には、透明ガラス板や透明樹脂フィルムなどが含まれる。一方、裏面側保護部材26は透明である必要はなく、その材質はとくに限定されない。裏面側保護部材26の例にはガラス基板やプラスチックフィルムなどが含まれるが、耐久性や透明性の観点からガラス基板が好適に用いられる。
 太陽電池モジュール20は、任意の製造方法で得ることができる。太陽電池モジュール20は、例えば、裏面側保護部材26、太陽電池封止材、複数の太陽電池素子22、太陽電池封止材、および表面側透明保護部材24をこの順に積層した積層体を得る工程;該積層体を、ラミネーターなどにより加圧し貼り合わせ、同時に必要に応じて加熱する工程;上記工程の後、さらに必要に応じて積層体を加熱処理し、上記封止材を硬化する工程により得ることができる。
 太陽電池素子には、通常、発生した電気を取り出すための集電電極が配置される。集電電極の例には、バスバー電極、フィンガー電極などが含まれる。一般に、集電電極は、太陽電池素子の表面と裏面の両面に配置した構造をとるが、受光面に集電電極を配置すると、集電電極が光を遮ってしまうため発電効率が低下するという問題が生じうる。
 近年、発電効率を向上させるために、受光面に集電電極を配置する必要のないバックコンタクト型太陽電池素子を用いることが考えられる。バックコンタクト型太陽電池素子の一態様では、太陽電池素子の受光面の反対側に設けられた裏面側に、pドープ領域とnドープ領域とを交互に設ける。バックコンタクト型太陽電池素子の他の態様では、貫通孔(スルーホール)を設けた基板にp/n接合を形成し、スルーホール内壁および裏面側のスルーホール周辺部まで表面(受光面)側のドープ層を形成し、裏面側で受光面の電流を取り出す。
 一般に太陽電池システムにおいては、上述の太陽電池モジュールを直列数台から数十台につないでおり、住宅用の小規模のものでも50V~500V、メガソーラーと呼ばれる大規模のものでは600~1000Vでの運用がなされる。太陽電池モジュールの外枠には、強度保持などを目的にアルミフレームなどが使用され、安全上の観点からアルミフレームはアース(接地)される場合が多い。その結果、太陽電池が発電することで、封止材に比較して電気抵抗の低い表面側透明保護部材面と太陽電池素子の間には、発電による電圧差が生じることになる。
 その結果、発電セルと表面側透明保護部材またはアルミフレームとの間に封止される、太陽電池封止材には、高い電気絶縁性、高抵抗などの良好な電気特性が求められる。
(薄膜シリコン系(アモルファスシリコン系)の太陽電池モジュール)
 薄膜シリコン系の太陽電池モジュールは、(1)表面側透明保護部材(ガラス基板)/薄膜太陽電池素子/封止層/裏面保護部材をこの順に積層したもの;(2)表面側透明保護部材/封止層/薄膜太陽電池素子/封止層/裏面保護部材をこの順に積層したものなどでありうる。表面側透明保護部材、裏面保護部材、および封止層は、前述の「結晶シリコン系の太陽電池モジュール」の場合と同様である。
 (1)の態様における薄膜太陽電池素子は、例えば、透明電極層/pin型シリコン層/裏面電極層をこの順に含む。透明電極層の例には、In、SnO、ZnO、CdSnO、ITO(InにSnを添加したもの)などの半導体系酸化物が含まれる。裏面電極層は、例えば銀薄膜層を含む。各層は、プラズマCVD(ケミカル・ベ-パ・デポジション)法やスパッタ法により形成される。封止層は、裏面電極層(例えば銀薄膜層)と接するように配置される。透明電極層は、表面側透明保護部材上に形成されるので、表面側透明保護部材と透明電極層との間に封止層は配置されないことが多い。
 (2)の態様における薄膜太陽電池素子は、例えば、透明電極層/pin型シリコン層/金属箔、または耐熱性高分子フィルム上に配置された金属薄膜層(例えば、銀薄膜層)、をこの順に含む。金属箔の例には、ステンレススチール箔などが含まれる。耐熱性高分子フィルムの例には、ポリイミドフィルムなどが含まれる。透明電極層およびpin型シリコン層は、前述と同様、CVD法やスパッタ法により形成される。つまり、pin型シリコン層は、金属箔、または耐熱性高分子フィルム上に配置された金属薄膜層に形成され;さらに透明電極層はpin型シリコン層に形成される。また、耐熱性高分子フィルム上に配置される金属薄膜層もCVD法やスパッタ法により形成されうる。
 この場合、封止層は、透明電極層と表面側透明保護部材との間;および金属箔または耐熱性高分子フィルムと裏面側保護部材との間にそれぞれ配置される。このように、太陽電池封止材から得られる封止層は、太陽電池素子の集電線、タブ付用母線、および導電層などの電極と接している。また(2)の態様における薄膜太陽電池素子は、シリコン層が、結晶シリコン系の太陽電池素子に比べて薄いため、太陽電池モジュール製造時の加圧や上記モジュール稼動時の外部からの衝撃により破損しにくい。このため、結晶シリコン系の太陽電池モジュールに用いられるものよりも薄膜太陽電池モジュールに用いる太陽電池封止材の柔軟性は低くてもよい。一方、上記薄膜太陽電池素子の電極は上述のように金属薄膜層であるため、腐食により劣化した場合、発電効率が著しく低下する恐れがある。
 したがって、エチレン・酢酸ビニル共重合体(EVA)よりも柔軟性に劣るが分解ガスの発生源となる架橋剤を必ずしも必要としない、エチレン系樹脂組成物からなるシートを含む本実施形態の太陽電池封止材は、薄膜太陽電池モジュール用の太陽電池封止材シートとしてより好適に用いられる。
 また、その他の太陽電池モジュールとして、太陽電池素子にシリコンを用いた太陽電池モジュールがある。太陽電池素子にシリコンを用いた太陽電池モジュールには、結晶シリコンとアモルファスシリコンを積層したハイブリッド型(HIT型)太陽電池モジュール、吸収波長域の異なるシリコン層を積層した多接合型(タンデム型)太陽電池モジュール、太陽電池素子の受光面の反対側に設けられた裏面側にpドープ領域とnドープ領域とを交互に設けたバックコンタクト型太陽電池モジュール、無数の球状シリコン粒子(直径1mm程度)と集光能力を上げる直径2~3mmの凹面鏡(電極を兼ねる)を組み合わせた球状シリコン型太陽電池モジュールなどが挙げられる。
 また、太陽電池素子にシリコンを用いた太陽電池モジュールには、従来のpin接合構造を持つアモルファスシリコン型のp型窓層の役割を、「絶縁された透明電極」から「電界効果によって誘起される反転層」に置き換えた構造を持つ電界効果型太陽電池モジュールなども挙げられる。
 また、太陽電池素子に単結晶のGaAsを用いたGaAs系太陽電池モジュール;太陽電池素子としてシリコンの代わりに、Cu、In、Ga、Al、Se、Sなどからなるカルコパイライト系と呼ばれるI-III-VI族化合物を用いたCISまたはCIGS系(カルコパイライト系)太陽電池モジュール;太陽電池素子としてCd化合物薄膜を用いたCdTe-CdS系太陽電池、CuZnSnS(CZTS)太陽電池モジュールなどが挙げられる。本実施形態の太陽電池封止材は、これら全ての太陽電池モジュールの太陽電池封止材として用いることができる。
 とくに、太陽電池モジュ-ルを構成する光起電力素子の下に積層する封止材層は、光起電力素子の上部に積層される封止材層・電極・裏面保護層との接着性を有することが必要である。また、光起電力素子としての太陽電池素子の裏面の平滑性を保持するために、熱可塑性を有することが必要である。さらに、光起電力素子としての太陽電池素子を保護するために、耐スクラッチ性、衝撃吸収性などに優れていることが必要である。
 上記封止材層としては、耐熱性を有することが望ましい。とくに、太陽電池モジュ-ル製造の際、真空吸引して加熱圧着するラミネーション法などにおける加熱作用や、太陽電池モジュ-ルなどの長期間の使用における太陽光などの熱の作用などにより、封止材層を構成するエチレン系樹脂組成物が変質したり、劣化ないし分解したりしないことが望ましい。これにより、樹脂に含まれる添加剤などが溶出したり、分解物が生成したりして、太陽電池素子の起電力面(素子面)に作用し、その機能、性能などを劣化させてしまうことを防ぐことができる。このため、耐熱性は、太陽電池モジュ-ルの封止材層の有する特性として必要不可欠のものである。
 さらに、上記封止材層は、防湿性に優れていることが好ましい。この場合、太陽電池モジュールの裏面側からの水分の透過を防ぐことができ、太陽電池モジュールの光起電力素子の腐食、劣化を防ぐことができる。
 上記封止材層は、光起電力素子の上に積層する充填剤層と異なり、必ずしも透明性を有することを必要としない。本実施形態の太陽電池封止材は、上記の特性を有しており、結晶型太陽電池モジュールの裏面側の太陽電池封止材、水分浸透に弱い薄膜型太陽電池モジュールの太陽電池封止材として好適に用いることができる。
 本実施形態の太陽電池モジュールは、本発明の目的を損なわない範囲で、任意の部材を適宜有してもよい。典型的には、接着層、衝撃吸収層、コーティング層、反射防止層、裏面再反射層、光拡散層などを設けることができるが、これらに限定されない。これらの層を設ける位置にはとくに限定はなく、そのような層を設ける目的、および、そのような層の特性を考慮し、適切な位置に設けることができる。
(太陽電池モジュール用表面側透明保護部材)
 太陽電池モジュールに用いられる太陽電池モジュール用表面側透明保護部材は、とくに制限はないが、太陽電池モジュールの最表層に位置するため、耐候性、撥水性、耐汚染性、機械強度をはじめとして、太陽電池モジュールの屋外暴露における長期信頼性を確保するための性能を有することが好ましい。また、太陽光を有効に活用するために、光学ロスの小さい、透明性の高いシートであることが好ましい。
 太陽電池モジュール用表面側透明保護部材の材料としては、ポリエステル樹脂、フッ素樹脂、アクリル樹脂、環状オレフィン(共)重合体、エチレン-酢酸ビニル共重合体などからなる樹脂フィルムやガラス基板などが挙げられる。樹脂フィルムは、好ましくは、透明性、強度、コストなどの点で優れたポリエステル樹脂、とくにポリエチレンテレフタレート樹脂や、耐侯性のよいフッ素樹脂などである。フッ素樹脂の例としては、四フッ化エチレン-エチレン共重合体(ETFE)、ポリフッ化ビニル樹脂(PVF)、ポリフッ化ビニリデン樹脂(PVDF)、ポリ四フッ化エチレン樹脂(TFE)、四フッ化エチレン-六フッ化プロピレン共重合体(FEP)、ポリ三フッ化塩化エチレン樹脂(CTFE)がある。耐候性の観点ではポリフッ化ビニリデン樹脂が優れているが、耐候性および機械的強度の両立では四フッ化エチレン-エチレン共重合体が優れている。また、封止材層などの他の層を構成する材料との接着性の改良のために、コロナ処理、プラズマ処理を表面保護部材に行うことが望ましい。また、機械的強度向上のために延伸処理が施してあるシート、例えば2軸延伸のポリプロピレンシートを用いることも可能である。
 太陽電池モジュール用表面側透明保護部材としてガラス基板を用いる場合、ガラス基板は、波長350~1400nmの光の全光線透過率が80%以上であることが好ましく、90%以上であることがより好ましい。かかるガラス基板としては、赤外部の吸収の少ない白板ガラスを使用するのが一般的であるが、青板ガラスであっても厚さが3mm以下であれば太陽電池モジュールの出力特性への影響は少ない。また、ガラス基板の機械的強度を高めるために熱処理により強化ガラスを得ることができるが、熱処理無しのフロート板ガラスを用いてもよい。また、ガラス基板の受光面側に反射を抑えるために反射防止のコーティングをしてもよい。
(太陽電池モジュール用裏面側保護部材)
 太陽電池モジュールに用いられる太陽電池モジュール用裏面側保護部材は、とくに制限はないが、太陽電池モジュールの最表層に位置するため、上述の表面側透明保護部材と同様に、耐候性、機械強度などの諸特性を求められる。したがって、表面側透明保護部材と同様の材質で太陽電池モジュール用裏面側保護部材を構成してもよい。すなわち、表面側透明保護部材として用いられる上述の各種材料を、裏面側保護部材としても用いることができる。とくに、ポリエステル樹脂、およびガラスを好ましく用いることができる。また、裏面側保護部材は、太陽光の通過を前提としないため、表面側透明保護部材で求められる透明性は必ずしも要求されない。そこで、太陽電池モジュールの機械的強度を増すために、あるいは温度変化による歪、反りを防止するために、補強板を張り付けてもよい。補強板は、例えば、鋼板、プラスチック板、FRP(ガラス繊維強化プラスチック)板などを好ましく使用することができる。
 さらに、本実施形態の太陽電池封止材が、太陽電池モジュール用裏面側保護部材と一体化していてもよい。太陽電池封止材と太陽電池モジュール用裏面側保護部材とを一体化させることにより、モジュール組み立て時に太陽電池封止材および太陽電池モジュール用裏面側保護部材をモジュールサイズに裁断する工程を短縮できる。また、太陽電池封止材と太陽電池モジュール用裏面側保護部材とをそれぞれレイアップする工程を、一体化したシートでレイアップする工程にすることで、レイアップ工程を短縮・省略することもできる。太陽電池封止材と太陽電池モジュール用裏面側保護部材とを一体化させる場合における、太陽電池封止材と太陽電池モジュール用裏面側保護部材の積層方法は、とくに制限されない。積層方法には、キャスト成形機、押出シート成形機、インフレーション成形機、射出成形機などの公知の溶融押出機を用いて共押出して積層体を得る方法や;予め成形された一方の層上に、他方の層を溶融あるいは加熱ラミネートして積層体を得る方法が好ましい。
 また、適当な接着剤(例えば、無水マレイン酸変性ポリオレフィン樹脂(三井化学社製の商品名「アドマー(登録商標)」、三菱化学社製の商品名「モディック(登録商標)」など)、不飽和ポリオレフィンなどの低(非)結晶性軟質重合体、エチレン/アクリル酸エステル/無水マレイン酸三元共重合体(住化シーディエフ化学社製の商品名「ボンダイン(登録商標)」など)をはじめとするアクリル系接着剤、エチレン/酢酸ビニル系共重合体、またはこれらを含む接着性樹脂組成物など)を用いたドライラミネート法、あるいはヒートラミネート法などにより積層してもよい。
 接着剤としては、120~150℃程度の耐熱性があるものが好ましく、具体的にはポリエステル系またはポリウレタン系接着剤などが好ましい。また、二つの層の接着性を向上させるために、少なくとも一方の層に、例えばシラン系カップリング処理、チタン系カップリング処理、コロナ処理、プラズマ処理などを施してもよい。
(太陽電池素子)
 太陽電池モジュールに用いられる太陽電池素子は、半導体の光起電力効果を利用して発電できるものであれば、とくに制限はない。太陽電池素子は、例えば、シリコン(単結晶系、多結晶系、非結晶(アモルファス)系)太陽電池、化合物半導体(III-III族、II-VI族、その他)太陽電池、湿式太陽電池、有機半導体太陽電池などを用いることができる。これらの中では、発電性能とコストとのバランスなどの観点から、多結晶シリコン太陽電池が好ましい。
 シリコン太陽電池素子、化合物半導体太陽電池素子とも、太陽電池素子として優れた特性を有しているが、外部からの応力、衝撃などにより破損し易いことで知られている。本実施形態の太陽電池封止材は、柔軟性に優れているので、太陽電池素子への応力、衝撃などを吸収して、太陽電池素子の破損を防ぐ効果が大きい。したがって、本実施形態の太陽電池モジュールにおいては、本実施形態の太陽電池封止材からなる層が、太陽電池素子と直接的に接合されていることが望ましい。また、太陽電池封止材が熱可塑性を有していると、一旦、太陽電池モジュールを作製した後であっても、比較的容易に太陽電池素子を取り出すことができるため、リサイクル性に優れている。本実施形態の太陽電池封止材を構成するエチレン系樹脂組成物は、熱可塑性を有するため、太陽電池封止材全体としても熱可塑性を有しており、リサイクル性の観点からも好ましい。
(電極)
 太陽電池モジュールに用いられる電極の構成および材料は、とくに限定されないが、具体的な例では、透明導電膜と金属膜の積層構造を有する。透明導電膜は、SnO、ITO、ZnOなどからなる。金属膜は、銀、金、銅、錫、アルミニウム、カドミウム、亜鉛、水銀、クロム、モリブデン、タングステン、ニッケル、バナジウムなどの金属からなる。これらの金属膜は、単独で用いられてもよいし、複合化された合金として用いられてもよい。透明導電膜と金属膜とは、CVD、スパッタ、蒸着などの方法により形成される。
(太陽電池モジュールの製造方法)
 本実施形態の太陽電池モジュールの製造方法は、(i)表面側透明保護部材と、本実施形態の太陽電池封止材と、太陽電池素子(セル)と、太陽電池封止材と、裏面側保護部材とをこの順に積層して積層体を形成する工程と、(ii)得られた積層体を加圧および加熱して一体化する工程と、を含むことを特徴とする。
 工程(i)において、太陽電池封止材の凹凸形状(エンボス形状)が形成された面を太陽電池素子側になるように配置することが好ましい。
 工程(ii)において、工程(i)で得られた積層体を、常法に従って真空ラミネーター、または熱プレスを用いて、加熱および加圧して一体化(封止)する。封止において、本実施形態の太陽電池封止材は、クッション性が高いため、太陽電池素子の損傷を防止することができる。また、脱気性が良好であるため空気の巻き込みもなく、高品質の製品を歩留り良く製造することができる。
 太陽電池モジュールを製造するときに、太陽電池封止材を構成するエチレン・α-オレフィン系樹脂組成物を架橋硬化させる。この架橋工程は、工程(ii)と同時に行ってもよいし、工程(ii)の後に行ってもよい。
 架橋工程を工程(ii)の後に行う場合、工程(ii)において温度125~160℃、真空圧10Torr以下の条件で3~6分間真空・加熱し;次いで、大気圧による加圧を1~15分間程度行い、上記積層体を一体化する。工程(ii)の後に行う架橋工程は、一般的な方法により行うことができ、例えば、トンネル式の連続式架橋炉を用いてもよいし、棚段式のバッチ式架橋炉を用いてもよい。また、架橋条件は、通常、130~155℃で20~60分程度である。
 一方、架橋工程を工程(ii)と同時に行う場合、工程(ii)における加熱温度を145~170℃とし、大気圧による加圧時間を6~30分とすること以外は、架橋工程を工程(ii)の後に行う場合と同様にして行うことができる。本実施形態の太陽電池封止材は特定の有機過酸化物を含有することで優れた架橋特性を有しており、工程(ii)において二段階の接着工程を経る必要はなく、高温度で短時間に完結することができ、工程(ii)の後に行う架橋工程を省略してもよく、モジュールの生産性を格段に改良することができる。
 いずれにしても、本実施形態の太陽電池モジュールの製造は、架橋剤が実質的に分解せず、かつ本実施形態の太陽電池封止材が溶融するような温度で、太陽電池素子や保護材に太陽電池封止材を仮接着し、次いで昇温して十分な接着と封止材の架橋を行えばよい。諸条件を満足できるような添加剤処方を選べばよく、例えば、上記架橋剤および上記架橋助剤などの種類および含浸量を選択すればよい。
 また、上記架橋は、架橋後のエチレン・α-オレフィン共重合体のゲル分率が50~95%となる程度にまで行うことが好ましい。ゲル分率は、より好ましくは55~90%、さらに好ましくは60~90%、最も好ましくは65~90%である。ゲル分率の算出は下記の方法で行い得る。例えば、太陽電池モジュールより封止材シートのサンプルを1g採取し、沸騰トルエンでのソックスレー抽出を10時間行う。抽出液を、30メッシュでのステンレスメッシュでろ過し、メッシュを110℃にて8時間減圧乾燥を行う。メッシュ上に残存した残存物の重量を測定し、処理前のサンプル量(1g)に対する、メッシュ上に残存した残存物の重量の比(%)をゲル分率とする。
 上記ゲル分率が上記下限値以上であると、太陽電池封止材の耐熱性が良好となり、例えば85℃×85%RHでの恒温恒湿試験、ブラックパネル温度83℃での高強度キセノン照射試験、-40℃~90℃でのヒートサイクル試験、耐熱試験での接着性の低下を抑制することができる。一方、ゲル分率が上記上限値以下であると、高い柔軟性を有する太陽電池封止材となり、-40℃~90℃でのヒートサイクル試験での温度追従性が向上するため、剥離の発生を防止することができる。
(発電設備)
 本実施形態の太陽電池モジュールは、生産性、発電効率、寿命などに優れている。このため、この様な太陽電池モジュールを用いた発電設備は、コスト、発電効率、寿命などに優れ、実用上高い価値を有する。上記の発電設備は、家屋の屋根に設置する、キャンプなどのアウトドア向けの移動電源として利用する、自動車バッテリーの補助電源として利用するなどの、屋外、屋内を問わず長期間の使用に好適である。
 以下、本発明を実施例に基づいて具体的に説明するが、本発明はこれらの実施例に限定されるものではない。
(1)測定方法
[エチレン単位およびα-オレフィン単位の含有割合]
 試料0.35gをヘキサクロロブタジエン2.0mlに加熱溶解させて得られた溶液をグラスフィルター(G2)濾過した後、重水素化ベンゼン0.5mlを加え、内径10mmのNMRチューブに装入した。日本電子製のJNM GX-400型NMR測定装置を使用し、120℃で13C-NMR測定を行った。積算回数は8000回以上とした。得られた13C-NMRスペクトルより、共重合体中のエチレン単位の含有割合、およびα-オレフィン単位の含有割合を定量した。
[MFR]
 ASTM D1238に準拠し、190℃、2.16kg荷重の条件にてエチレン・α-オレフィン共重合体のMFRを測定した。
[密度]
 ASTM D1505に準拠して、エチレン・α-オレフィン共重合体の密度を測定した。
[ショアA硬度]
 エチレン・α-オレフィン共重合体を190℃、加熱4分、10MPaで加圧した後、10MPaで常温まで5分間加圧冷却して3mm厚のシートを得た。得られたシートを用いて、ASTM D2240に準拠してエチレン・α-オレフィン共重合体のショアA硬度を測定した。なおショアA硬度は、試験片シートに荷重後、15秒経過してから測定した。
[アルミニウム元素の含有量]
 エチレン・α-オレフィン共重合体を湿式分解した後、純水にて定容し、ICP発光分析装置(島津製作所社製、ICPS-8100)により、アルミニウムを定量し、アルミニウム元素の含有量を求めた。
[体積固有抵抗]
 得られたシートを10cm×10cmのサイズに裁断した後、150℃、真空3分、加圧15分でラミネート装置(NPC社製、LM-110X160S)でラミネートして測定用の架橋シートを作製した。作製した架橋シートの体積固有抵抗(Ω・cm)を、JIS K6911に準拠し、印加電圧500Vで測定した。なお、測定時、高温測定チャンバー「12708」(アドバンスト社製)を用いて温度100±2℃とし、微小電流計「R8340A」(アドバンスト社製)を使用した。
[ゲル分率]
 得られたシートを10cm×10cmのサイズに裁断した後、150℃、真空3分、加圧15分でラミネート装置(NPC社製、LM-110X160S)でラミネートして測定用の架橋シートを作製した。作成した架橋シートサンプル約1gを秤量し(秤量値をA(g))、沸騰トルエンでのソックスレー抽出を10時間行い、30メッシュでのステンレスメッシュでろ過後、メッシュを110℃にて8時間減圧乾燥を行い、メッシュ上の残存量B(g)を算出し、下記式を用いてゲル分率を算出した。
 ゲル分率(重量%)=100×B/A
(2)エチレン・α-オレフィン共重合体の合成
(合成例1)
 撹拌羽根を備えた内容積50Lの連続重合器の一つの供給口に、共触媒としてメチルアルミノキサンのトルエン溶液を8.0mmol/hr、主触媒としてビス(1,3-ジメチルシクロペンタジエニル)ジルコニウムジクロライドのヘキサンスラリーを0.025mmol/hr、トリイソブチルアルミニウムのヘキサン溶液を0.5mmol/hrの割合で供給し、触媒溶液と重合溶媒として用いる脱水精製したノルマルヘキサンの合計が20L/hrとなるように脱水精製したノルマルヘキサンを連続的に供給した。同時に重合器の別の供給口に、エチレンを3kg/hr、1-ブテンを15kg/hr、水素を5NL/hrの割合で連続供給し、重合温度90℃、全圧3MPaG、滞留時間1.0時間の条件下で連続溶液重合を行った。重合器で生成したエチレン・α-オレフィン共重合体のノルマルヘキサン/トルエン混合溶液は、重合器の底部に設けられた排出口を介して連続的に排出させ、エチレン・α-オレフィン共重合体のノルマルヘキサン/トルエン混合溶液が150~190℃となるように、ジャケット部が3~25kg/cmスチームで加熱された連結パイプに導いた。なお、連結パイプに至る直前には、触媒失活剤であるメタノールが注入される供給口が付設されており、約0.75L/hrの速度でメタノールを注入してエチレン・α-オレフィン共重合体のノルマルヘキサン/トルエン混合溶液に合流させた。スチームジャケット付き連結パイプ内で約190℃に保温されたエチレン・α-オレフィン共重合体のノルマルヘキサン/トルエン混合溶液は、約4.3MPaGを維持するように、連結パイプ終端部に設けられた圧力制御バルブの開度の調整によって連続的にフラッシュ槽に送液された。なお、フラッシュ槽内への移送においては、フラッシュ槽内の圧力が約0.1MPaG、フラッシュ槽内の蒸気部の温度が約180℃を維持するように溶液温度と圧力調整バルブ開度設定が行われた。その後、ダイス温度を180℃に設定した単軸押出機を通し、水槽にてストランドを冷却し、ペレットカッターにてストランドを切断し、ペレットとしてエチレン・α-オレフィン共重合体を得た。収量は2.2kg/hrであった。物性を表1に示す。
(合成例2)
 主触媒としての[ジメチル(t-ブチルアミド)(テトラメチル-η5-シクロペンタジエニル)シラン]チタンジクロライドのヘキサン溶液を0.012mmol/hr、共触媒としてのトリフェニルカルベニウム(テトラキスペンタフルオロフェニル)ボレートのトルエン溶液を0.05mmol/hr、トリイソブチルアルミニウムのヘキサン溶液を0.4mmol/hrの割合でそれぞれ供給するとともに、1-ブテンを5kg/hr、水素を100NL/hrの割合で供給した以外は、前述の合成例1と同様にしてエチレン・α-オレフィン共重合体を得た。収量は1.3kg/hrであった。物性を表1に示す。
Figure JPOXMLDOC01-appb-T000001
(3)太陽電池封止材(シート)の製造
(実施例1)
 合成例1のエチレン・α-オレフィン共重合体100重量部に対し、エチレン性不飽和シラン化合物としてγ-メタクリロキシプロピルトリメトキシシランを0.5重量部、有機過酸化物として1分間半減期温度が166℃のt-ブチルパーオキシ-2-エチルヘキシルカーボネートを1.0重量部、(メタ)アクリレートモノマーとしてメトキシポリエチレングリコールアクリレートを0.2重量部、架橋助剤としてトリアリルイソシアヌレートを1.3重量部、紫外線吸収剤として2-ヒドロキシ-4-ノルマル-オクチルオキシベンゾフェノンを0.4重量部、ヒンダードアミン系光安定剤としてビス(2,2,6,6-テトラメチル-4-ピペリジル)セバケートを0.2重量部、および耐熱安定剤1としてトリス(2,4-ジ-tert-ブチルフェニル)ホスファイト0.1重量部、耐熱安定剤2としてオクタデシル-3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオネート0.1重量部を配合した。
 サーモ・プラスチック社製の単軸押出機(スクリュー径20mmφ、L/D=28)にコートハンガー式T型ダイス(リップ形状:270×0.8mm)を装着し、ダイス温度100℃の条件下、ロール温度30℃、巻き取り速度1.0m/minで、第1冷却ロールにエンボスロールを用いて成形を行い、厚み500μmのエンボスシート(太陽電池封止材シート)を得た。得られたシートの空隙率は28%であった。得られたシートの各種評価結果を表2に示す。
(実施例2~4、比較例1および3)
 表2に示す配合としたこと以外は、上記実施例1と同様にしてエンボスシート(太陽電池封止材シート)を得た。得られたシートの空隙率は全て28%であった。得られたシートの各種評価結果を表2に示す。
(比較例2)
 表2に示す配合としたこと以外は、前述の実施例1と同様にしてエンボスシート(太陽電池封止材シート)を得た。得られたシートの空隙率は28%であった。しかし、実施例2に比べて押出機のトルクが高く、得られたシートの表面にはゲルが見られ、シート外観が悪化した。得られたシートの各種評価結果を表2に示す。
Figure JPOXMLDOC01-appb-T000002
 この出願は、2012年2月10日に出願された日本出願特願2012-026927号を基礎とする優先権を主張し、その開示の全てをここに取り込む。

Claims (14)

  1.  エチレン・α-オレフィン共重合体と、有機過酸化物と、ジビニル芳香族化合物、シアヌレート、ジアリル化合物、トリアリル化合物、オキシムおよびマレイミドからなる群より選択される少なくとも一種の架橋助剤と、(メタ)アクリレート系モノマーと、を含む太陽電池封止材であって、
     当該太陽電池封止材中の前記(メタ)アクリレート系モノマーの含有量が、前記エチレン・α-オレフィン共重合体100重量部に対して0.1~5.0重量部であり、
     当該太陽電池封止材中の前記架橋助剤の含有量が、前記エチレン・α-オレフィン共重合体100重量部に対して0.1~3重量部である、太陽電池封止材。
  2.  前記エチレン・α-オレフィン共重合体中のアルミニウム元素の含有量が10~500ppmである、請求項1に記載の太陽電池封止材。
  3.  JIS K6911に準拠し、温度100℃、印加電圧500Vで測定される、当該太陽電池封止材を架橋させて形成される封止層の体積固有抵抗が1.0×1015~1.0×1018Ω・cmである、請求項1または2に記載の太陽電池封止材。
  4.  前記(メタ)アクリレート系モノマーの分子量が150以上である、請求項1乃至3いずれか一項に記載の太陽電池封止材。
  5.  前記エチレン・α-オレフィン共重合体が、以下の要件a1)~a4)を満たす、請求項1乃至4いずれか一項に記載の太陽電池封止材。
     a1)エチレンに由来する構成単位の含有割合が80~90mol%であり、炭素数3~20のα-オレフィンに由来する構成単位の含有割合が10~20mol%である。
     a2)ASTM D1238に準拠し、190℃、2.16kg荷重の条件で測定されるMFRが0.1~50g/10分である。
     a3)ASTM D1505に準拠して測定される密度が0.865~0.884g/cmである。
     a4)ASTM D2240に準拠して測定されるショアA硬度が60~85である。
  6.  ASTM D1238に準拠し、190℃、2.16kg荷重の条件で測定される前記エチレン・α-オレフィン共重合体のMFRが、10~50g/10分である、請求項5に記載の太陽電池封止材。
  7.  前記有機過酸化物の1分間半減期温度が100~170℃の範囲にあり、
     当該太陽電池封止材中の前記有機過酸化物の含有量が、前記エチレン・α-オレフィン共重合体100重量部に対して0.1~3.0重量部である、請求項1乃至6いずれか一項に記載の太陽電池封止材。
  8.  前記エチレン・α-オレフィン共重合体が、メタロセン化合物と、有機アルミニウムオキシ化合物および有機アルミニウム化合物からなる群より選択される少なくとも一種の化合物を含むオレフィン重合用触媒の存在下で重合された、請求項1乃至7いずれか一項に記載の太陽電池封止材。
  9.  エチレン性不飽和シラン化合物をさらに含み、
     当該太陽電池封止材中の前記エチレン性不飽和シラン化合物の含有量が、前記エチレン・α-オレフィン共重合体100重量部に対して、0.1~5重量部である、請求項1乃至8いずれか一項に記載の太陽電池封止材。
  10.  紫外線吸収剤、ヒンダードアミン系光安定剤、耐熱安定剤からなる群より選択される少なくとも一種の添加剤をさらに含み、
     当該太陽電池封止材中の前記添加剤の含有量が、前記エチレン・α-オレフィン共重合体100重量部に対して、0.005~5重量部である、請求項1乃至9いずれか一項に記載の太陽電池封止材。
  11.  前記エチレン・α-オレフィン共重合体と、前記有機過酸化物と、前記(メタ)アクリレート系モノマーと、前記架橋助剤と、を溶融混錬後、シート状に押出成形して得られた、請求項1乃至10いずれか一項に記載の太陽電池封止材。
  12.  シート状である請求項1乃至11いずれか一項に記載の太陽電池封止材。
  13.  表面側透明保護部材と、
     裏面側保護部材と、
     太陽電池素子と、
     請求項1乃至12いずれか一項に記載の太陽電池封止材を架橋させて形成される、前記太陽電池素子を前記表面側透明保護部材と前記裏面側保護部材との間に封止する封止層と、
    を備えた太陽電池モジュール。
  14.  表面側透明保護部材と、
     裏面側保護部材と、
     太陽電池素子と、
     前記太陽電池素子を前記表面側透明保護部材と前記裏面側保護部材との間に封止する封止層と、
    を備えた太陽電池モジュールであって、
     前記封止層が、エチレン・α-オレフィン共重合体100重量部に対して、(メタ)アクリレート系モノマーが0.1~5.0重量部グラフトされ、かつ、ジビニル芳香族化合物、シアヌレート、ジアリル化合物、トリアリル化合物、オキシムおよびマレイミドからなる群より選択される少なくとも一種の架橋助剤が0.1~3重量部グラフトされた架橋樹脂層である、太陽電池モジュール。
PCT/JP2013/000663 2012-02-10 2013-02-07 太陽電池封止材および太陽電池モジュール WO2013118504A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201380008864.1A CN104105773B (zh) 2012-02-10 2013-02-07 太阳能电池密封材和太阳能电池模块
US14/377,818 US9260556B2 (en) 2012-02-10 2013-02-07 Encapsulating material for solar cell and solar cell module
JP2013537986A JP5405699B1 (ja) 2012-02-10 2013-02-07 太陽電池封止材および太陽電池モジュール
KR1020147021887A KR101531807B1 (ko) 2012-02-10 2013-02-07 태양 전지 밀봉재 및 태양 전지 모듈

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012026927 2012-02-10
JP2012-026927 2012-02-10

Publications (1)

Publication Number Publication Date
WO2013118504A1 true WO2013118504A1 (ja) 2013-08-15

Family

ID=48947274

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/000663 WO2013118504A1 (ja) 2012-02-10 2013-02-07 太陽電池封止材および太陽電池モジュール

Country Status (6)

Country Link
US (1) US9260556B2 (ja)
JP (1) JP5405699B1 (ja)
KR (1) KR101531807B1 (ja)
CN (1) CN104105773B (ja)
TW (1) TWI577723B (ja)
WO (1) WO2013118504A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105086097A (zh) * 2014-05-09 2015-11-25 杜邦公司 可交联的乙烯/乙酸乙烯酯共聚物的组合物及包含该组合物的太阳能电池封装材料
WO2016056524A1 (ja) * 2014-10-07 2016-04-14 株式会社プライムポリマー 無機物蒸着用フィルム、無機物蒸着フィルムおよびその用途
JP2016092353A (ja) * 2014-11-11 2016-05-23 凸版印刷株式会社 太陽電池用封止フィルムおよび太陽電池モジュール
WO2016104175A1 (ja) * 2014-12-26 2016-06-30 株式会社ブリヂストン 太陽電池用封止膜及びこれを用いた太陽電池
WO2016171080A1 (ja) * 2015-04-24 2016-10-27 三井化学東セロ株式会社 封止シートおよび太陽電池モジュール
JPWO2016158009A1 (ja) * 2015-03-31 2017-09-28 三井化学東セロ株式会社 封止シートおよび太陽電池モジュール
JP2018509750A (ja) * 2014-12-31 2018-04-05 広州鹿山新材料股▲ふん▼有限公司Guangzhou Lushan New Materials Co.,Ltd. 反射防止可能なポリオレフィンの太陽電池モジュール封止用接着フィルムおよびその製造方法

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201520253A (zh) * 2013-11-21 2015-06-01 Double Bond Chemical Ind Co 穩定劑以及包括該穩定劑的組成物
CN104966743B (zh) * 2015-07-21 2017-03-01 宁波华顺太阳能科技有限公司 一种抗pid光伏组件
US20180237620A1 (en) * 2015-08-07 2018-08-23 Mitsui Chemicals Tohcello, Inc. Photo-crosslinkable ethylene-based resin composition
CN110709461B (zh) 2017-05-31 2022-12-09 陶氏环球技术有限责任公司 用于密封剂膜的非极性基于乙烯的聚合物组合物
KR20230160049A (ko) * 2022-05-16 2023-11-23 주식회사 엘지화학 봉지재 필름용 조성물 및 이를 포함하는 봉지재 필름
WO2024014812A1 (ko) * 2022-07-11 2024-01-18 주식회사 엘지화학 올레핀계 공중합체용 가교제 조성물, 이를 포함하는 광소자용 봉지재 조성물 및 광소자용 봉지재 필름
WO2024014810A1 (ko) * 2022-07-11 2024-01-18 주식회사 엘지화학 올레핀계 공중합체용 가교제 조성물, 이를 포함하는 광소자용 봉지재 조성물 및 광소자용 봉지재 필름
KR20240045612A (ko) * 2022-09-30 2024-04-08 주식회사 엘지화학 봉지재 필름용 조성물 및 이를 포함하는 봉지재 필름

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012009754A (ja) * 2010-06-28 2012-01-12 Japan Polyethylene Corp 太陽電池封止材用組成物、それからなる太陽電池封止材およびそれを用いた太陽電池モジュール
JP2012019001A (ja) * 2010-07-07 2012-01-26 Japan Polyethylene Corp 太陽電池封止材用樹脂組成物、及びそれを用いた太陽電池封止材、その製造方法、ならびに太陽電池モジュール

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0635575B2 (ja) * 1984-04-24 1994-05-11 株式会社ブリヂストン 封止用組成物及び該組成物による封止方法
JP2006036874A (ja) * 2004-07-26 2006-02-09 Du Pont Mitsui Polychem Co Ltd 太陽電池封止用エチレン共重合体組成物及びそれを用いた太陽電池モジュール
JP2006036875A (ja) * 2004-07-26 2006-02-09 Du Pont Mitsui Polychem Co Ltd 太陽電池封止用エチレン共重合体組成物及びそれを用いた太陽電池モジュール
JP2006036876A (ja) * 2004-07-26 2006-02-09 Du Pont Mitsui Polychem Co Ltd 太陽電池封止材及びそれを用いた太陽電池モジュール
EP1820821B1 (en) * 2004-11-25 2012-02-29 Mitsui Chemicals, Inc. Propylene resin composition and use thereof
JP5366109B2 (ja) * 2004-12-28 2013-12-11 三井化学東セロ株式会社 太陽電池封止材
JP4559342B2 (ja) 2005-10-27 2010-10-06 積水化学工業株式会社 太陽電池用接着シート
US8525017B2 (en) 2005-11-25 2013-09-03 Mitsui Chemicals, Inc. Sealing material for solar battery, sheet for sealing solar battery, and solar battery module using the same
US8581094B2 (en) * 2006-09-20 2013-11-12 Dow Global Technologies, Llc Electronic device module comprising polyolefin copolymer
GB0812186D0 (en) * 2008-07-03 2008-08-13 Dow Corning Modified polyolefins
JP2010258439A (ja) 2009-03-31 2010-11-11 Japan Polyethylene Corp 太陽電池封止材用樹脂組成物
JP5696044B2 (ja) * 2009-06-01 2015-04-08 三井化学東セロ株式会社 エチレン系樹脂組成物、太陽電池封止材およびそれを用いた太陽電池モジュール
US20130087198A1 (en) * 2010-06-24 2013-04-11 John A. Naumovitz Electronic Device Module Comprising Heterogeneous Polyolefin Copolymer and Optionally Silane
TWI550005B (zh) * 2010-10-08 2016-09-21 三井化學股份有限公司 太陽電池密封材以及太陽電池模組

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012009754A (ja) * 2010-06-28 2012-01-12 Japan Polyethylene Corp 太陽電池封止材用組成物、それからなる太陽電池封止材およびそれを用いた太陽電池モジュール
JP2012019001A (ja) * 2010-07-07 2012-01-26 Japan Polyethylene Corp 太陽電池封止材用樹脂組成物、及びそれを用いた太陽電池封止材、その製造方法、ならびに太陽電池モジュール

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105086097A (zh) * 2014-05-09 2015-11-25 杜邦公司 可交联的乙烯/乙酸乙烯酯共聚物的组合物及包含该组合物的太阳能电池封装材料
WO2016056524A1 (ja) * 2014-10-07 2016-04-14 株式会社プライムポリマー 無機物蒸着用フィルム、無機物蒸着フィルムおよびその用途
KR20170060126A (ko) * 2014-10-07 2017-05-31 가부시키가이샤 프라임 폴리머 무기물 증착용 필름, 무기물 증착 필름 및 그의 용도
AU2015329163B2 (en) * 2014-10-07 2019-04-04 Prime Polymer Co., Ltd. Film for Inorganic Substance Deposition, Inorganic Substance Deposited Film and Uses Thereof
KR102005645B1 (ko) 2014-10-07 2019-07-30 가부시키가이샤 프라임 폴리머 무기물 증착용 필름, 무기물 증착 필름 및 그의 용도
JP2016092353A (ja) * 2014-11-11 2016-05-23 凸版印刷株式会社 太陽電池用封止フィルムおよび太陽電池モジュール
WO2016104175A1 (ja) * 2014-12-26 2016-06-30 株式会社ブリヂストン 太陽電池用封止膜及びこれを用いた太陽電池
JP2018509750A (ja) * 2014-12-31 2018-04-05 広州鹿山新材料股▲ふん▼有限公司Guangzhou Lushan New Materials Co.,Ltd. 反射防止可能なポリオレフィンの太陽電池モジュール封止用接着フィルムおよびその製造方法
JPWO2016158009A1 (ja) * 2015-03-31 2017-09-28 三井化学東セロ株式会社 封止シートおよび太陽電池モジュール
WO2016171080A1 (ja) * 2015-04-24 2016-10-27 三井化学東セロ株式会社 封止シートおよび太陽電池モジュール
JP6035001B1 (ja) * 2015-04-24 2016-11-30 三井化学東セロ株式会社 封止シートおよび太陽電池モジュール

Also Published As

Publication number Publication date
KR101531807B1 (ko) 2015-06-25
TWI577723B (zh) 2017-04-11
CN104105773A (zh) 2014-10-15
US9260556B2 (en) 2016-02-16
KR20140117489A (ko) 2014-10-07
JP5405699B1 (ja) 2014-02-05
CN104105773B (zh) 2017-03-01
TW201339227A (zh) 2013-10-01
US20150013755A1 (en) 2015-01-15
JPWO2013118504A1 (ja) 2015-05-11

Similar Documents

Publication Publication Date Title
JP5405699B1 (ja) 太陽電池封止材および太陽電池モジュール
JP5016153B2 (ja) 太陽電池封止材および太陽電池モジュール
JP5877593B2 (ja) 太陽電池封止材および太陽電池モジュール
JP5465813B2 (ja) 太陽電池封止用シートセット
JP5859633B2 (ja) 太陽電池封止材および太陽電池モジュール
JP6001087B2 (ja) 太陽電池封止材および太陽電池モジュール
WO2013150730A1 (ja) 太陽電池モジュール
JP5964326B2 (ja) 太陽電池封止材および太陽電池モジュール
JP5830600B2 (ja) 太陽電池封止材および太陽電池モジュール
JP5801733B2 (ja) 太陽電池封止材および太陽電池モジュール
JP2013229410A (ja) 太陽電池封止材および太陽電池モジュール
WO2016084681A1 (ja) 太陽電池モジュール
JP5940661B2 (ja) 太陽電池モジュール
JP2016136628A (ja) 太陽電池モジュール及びその製造方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2013537986

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13746720

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20147021887

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14377818

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13746720

Country of ref document: EP

Kind code of ref document: A1